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Abstract: Neural networks are computing systems inspired by the biological neural networks in
human brains. They are trained in a batch learning mode; hence, the whole training data should be
ready before the training task. However, this is not applicable for many real-time applications where
data arrive sequentially such as online topic-detection in social communities, traffic flow prediction,
etc. In this paper, an efficient hardware implementation of a low-latency online neural network
system is proposed for a traffic flow prediction application. The proposed model is implemented
with different Machine Learning (ML) algorithms to predict the traffic flow with high accuracy
where the Hedge Backpropagation (HBP) model achieves the least mean absolute error (MAE) of
0.001. The proposed system is implemented using floating point and fixed point arithmetics on Field
Programmable Gate Array (FPGA) part of the ZedBoard. The implementation is provided using
BRAM architecture and distributed memory in FPGA in order to achieve the best trade-off between
latency, the consumption of area, and power. Using the fixed point approach, the prediction times
using the distributed memory and BRAM architectures are 150 ns and 420 ns, respectively. The
area delay product (ADP) of the proposed system is reduced by 17 × compared with the hardware
implementation of the latest proposed system in the literature. The execution time of the proposed
hardware system is improved by 200 × compared with the software implemented on a dual core Intel
i7-7500U CPU at 2.9 GHz. Consequently, the proposed hardware model is faster than the software
model and more suitable for time-critical online machine learning models.

Keywords: direct memory access; field programmable gate array; Hedge Back Propagation; online
neural network

1. Introduction

The use of neural networks in various fields has been on the rise due to their ability
to model nonlinear complex problems for solving classification and regression problems.
The increase in development and advancement in neural networks have led them to be
used in every aspect of human life like video surveillance [1], speech recognition [2], health
care [3], intelligent transportation [4], weather forecasting and natural disasters monitor-
ing [5], e-marketing [6], article analysis [7], and the oil and gas industry [8]. Numerous
challenges are faced while building neural network models such as diminishing feature
reuse [9], vanishing gradient [10], internal covariate shift during training [11], and saddle
points [12] along with the need for huge of computational resources due to the large volume
of training data. Researchers trying to address and solve these problems assume that neural
network models are trained in batch learning mode, which needs the whole dataset to be
available prior to training. This is not the case for streaming data, which is a continuous
flow of data that requires being processed in real time without the need for data to be
in the batch form. A lot of applications make use of streaming data such as traffic flow
prediction, fraud detection, marketing, sales, and business analytics. Consequently, there is
a tremendous importance for developing neural network models for streaming data [13].
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Numerous attempts have been made in the literature to build online neural network
models [14–18]. All of the work proposed is software-optimized and lacks the benefits of
parallel processing hardware solutions found in FPGAs. Hardware Intellectual Property (IP)
accelerators implemented on FPGAs can provide a quick response time, high performance,
low power, high reliability, and flexibility for embedded applications, which makes them
possible good options to be used instead of GPUs, which consume more power than FPGAs.

One of the areas where online neural networks can make a high impact is traffic
flow prediction, which is one of the top fields that are investigated in Intelligent Transport
Systems (ITS). Not only does it assists travelers in making suitable travel decision but also it
is helpful in autonomous vehicles to reduce traffic congestion and car accidents [19]. Traffic
flow prediction relies heavily on historical and real-time traffic data gathered from different
sensor sources; radars, including inductive loops; mobile phones; global positioning
systems; cameras; crowd sourcing; social media; etc. The traffic data vary within time
because of the extensive widespread traditional traffic sensors and new traffic sensor
technologies appearing. Consequently, traffic flow prediction is a very suitable case study
to test the efficiency of an online neural network model.

In this paper, an adequate online machine learning model is presented for traffic
flow prediction that provides highly accurate results. In addition, the inference part was
implemented on the hardware by extracting the weights after training. The results show
that the speed of the hardware design is much faster than that of software. Therefore,
it is better to use hardware models for time-critical online machine learning algorithms.
This paper investigates three different hardware architectures for storing the weights: are
Block RAM (BRAM), Double Data Rate (DDR), and distributed memory to find the most
suitable hardware design that is adequate for online machine learning. The implementation
using floating point and fixed point arithmetics on Field Programmable Gate Array (FPGA)
is investigated in order to achieve the best trade-off between latency, the consumption of
area, and power.

The rest of the paper is organized as follows: Section 2 presents the related work.
Section 3 provides the background for machine learning models used in the paper to
compare the Online Neural Network (ONN) model using Hedge Back Propagation (HBP).
Section 4 provides the background on Adaptive Momentum (ADAM) optimizer. Section 5
provides the background on the ONN using HBP algorithm. Section 6 provides a detailed
description of the proposed hardware architecture of the ONN accelerator. Section 7
evaluates and compares the performance of the six hardware implementations. Section 8
discusses the conclusions drawn from the paper. Finally, future work is presented in
Section 9.

2. Related Work
2.1. Software Implementation of Online Neural Networks

Due to the importance of traffic flow prediction and the need for traffic management,
many researchers are developing machine learning models for traffic flow prediction.
Most significant parts of this work discussed in this section. In [20], a convolution neural
network (CNN) model is implemented to predict traffic flow. Since CNN is mainly used
for images, the spatiotemporal traffic dynamics are converted to images. These images are
composed of 2D time–space matrices that shows the relation between time and space of
traffic flow. However, this method is very complex and time-consuming for converting
spatiotemporal traffic dynamics to images. The Stacked Autoencoder (SAE) model for
traffic flow prediction was implemented in [21–23] to enhance feature extraction. On the
other hand, one of the main disadvantages of SAEs is that they do not produce significant
effect when errors are present in the first layers [24]. Consequently, their usage is not
preferred for traffic flow prediction. A comparison among different ensemble decision
trees models, which are Gradient Boosting Regression Tress (GBRT), Random Forest (RF),
and Extreme Gradient Boosting (XGBoost), was conducted in [25]. Ensemble models were
used to increase the performance of decision tree by combining multiple weak learners
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to produce a strong learner that can provide more accurate predictions. There are two
problems discussed in the paper that may appear in traffic flow prediction problems.
The first problem is that predicting traffic flow is a dynamic nonlinear problem due to
extraordinary events, such as accidents and congestion. The second problem is that
scalable models are needed to efficiently handle large amount of data. A nonlinear dataset,
published by VicRoads for the state of Victoria, Australia, was used to overcome the first
problem. Finally, XGBoost, which is a scalable learning system, performed the best in terms
of accuracy and time complexity as it achieved a mean absolute error of 0.6283. However,
this error was obtained by training on a small number of samples.

The authors of [26] proposed a short-term traffic prediction model using back propa-
gation artificial NN for two-lane highways with mixed traffic in India. They used Tanh
and sigmoid activation functions, which need high computation time. Additionally, Refer-
ence [27] used Support Vector Regression (SVR), RF, Neural Networks (NN), and Multiple
Linear Regression (MLR) to predict traffic status in the city of Thessaloniki. The mean
absolute errors obtained were 3.67 for SVR, 3.74 for MLP, 3.87 for RF, and 4.1 for MLR; but
these errors are not adequate to solve the traffic flow prediction problem.

Furthermore, multiple regression models for traffic flow prediction, which are MLR
and RF were implemented in [28]. Then, these algorithms’ results were compared with
SVR and artificial NN. The lowest root mean square errors obtained from the GPS truck
trajectory dataset were 19.06 for MLR and 20.97 for RF. References [29–32] proposed deep
architectures; however, deep networks are considered inefficient solutions for real-time
applications as they result in high computational time. Reference [29] implemented a deep
belief network (DBN) at the bottom and a multitask regression layer (MTL) at the top to
solve the traffic flow prediction problem in transportation modelling and management.
It used the PeMs dataset with a low prediction accuracy of 90%. On the contrary, Refer-
ence [30] implemented STResNet to predict the inflow and outflow of crowds in each region
of a city. The model was based on a convolution neural network. They used two different
datasets: TaxiBJ and Trajectory data, which are the taxicab GPS data and meteorology data
in Beijing. The RMSE for the two datasets were 16.96 and 6.93, respectively.

Diffusion Convolutional Recurrent Neural Network (DCRNN) for traffic forecasting
was proposed by [32]. The dataset was PEMS-BAY, which is collected by California
Transportation Agencies (CalTrans) Performance Measurement System (PeMS), obtaining
an MAE of 2.07. Furthermore, Long Short-Term Memory (LSTM) for traffic flow prediction
was implemented by [33]. It used data of a toll station in Xi’an and produced an MAE
equal to 20.156.

There are several attempts to design online learning algorithms. They are explained
in this section. First was to discuss is the work by [34], which was able to overcome
catastrophic forgetting; however, the model is complex since new units are added with
each new available example. Online kernel classification models were designed by [35,36].
Although these models learn nonlinearity, they suffer from shallow networks. In [35],
the final prediction is determined from some previous predefined kernels in an online
learning fashion. Their work is related to online predictions with expert advice using
Hedge algorithm. They proposed two different approaches to update the kernels, which
are deterministic and stochastic. The stochastic approach has some limitations such as
having difficulty in choosing the type of kernel for the best accuracy and they are not able
to learn a feature representation. A Cost-Sensitive Online Multiple Kernel Classification
algorithm was proposed by [36]. Although the model does not need to define a prior kernel,
with the increased number of features, the model slowly converges for a small number of
instances. Finally, a deep network model was designed by [16,37,38]. However, they are
not appropriate for streaming data applications because they use sliding window approach
with a (mini) batch training.
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2.2. Hardware Implementation of Neural Networks

Implementing hardware neural network is favorable compared with the software
implementation since hardware achieves low latency and low power consumption. Not
only do NN designers face challenges in implementing efficient real-time NN models
but also they have to deal with an immense number of multiplication, addition, and
sequential programming, which is always a bottleneck, especially for ONN. Consequently,
designers turn to hardware implementation for NN. Nowadays, advanced FPGAs have
specialized blocks such as DSP and BRAM to conduct complicated mathematical operations.
Hence, FPGAs are now extremely adequate for real-time applications [39]. Although there
are many approaches for implementing hardware neural network accelerators on FPGA
boards, none of them support an online neural network architecture. The state-of-the-art in
this research area is discussed in this subsection. Reference [40] has implemented a multi-
layer perceptron neural network using VHDL, ModelSim SE, and floating point arithmetic
operations. It designed an on-chip Multilayer Perceptron (MLP) with Back Propagation
algorithm. The MLP was used to solve the XOR problem using VHDL and tested on
Virtex-E board. The sigmoid activation function package was used for implementation of
the XOR. The model operated at a low frequency equal to 5.332 MHz and used 87% of LUT
and 98% of slices.

A hardware Multilayer Perceptron (MLP) for Real-Time Human Activity Classification
was implemented by [41]. The paper only implemented the prediction phase on hardware
using an Artix-7 board. All weights were stored in the board’s on-chip memory instead of
an off-chip memory to reduce the communication latency. Consequently, it supports offline
training, which represents one of the main disadvantages in this model, since it has to be
reprogrammed each time there are new weights available. Additionally, hardware Multi-
Layer perceptron for speech recognition on a Virtex-E board was implemented by [42]. The
hardware model was only designed for the classification phase. Similar to [41], the weights
were stored in Virtex-E board’s on-chip RAM. Hence, it has the same disadvantage. In
addition, Reference [43] designed wearable human activity recognition (HAR) systems on
Spartan-6 LX family devices. The design allocated relatively high resources compared with
other implementations that exploit less number of resources; 5432 LUT, 65 BRAM, and
19 DSPs.

The research work conducted in various studies as in [44–47] implemented a Multi-
Layer neural network using fixed point arithmetic. Reference [44] was implemented on a
Virtex-4 FPGA. It was shown that a network with 1500 neurons and 32 layers made use
of 50% of the resources of the board. References [45,46] implemented a two-layer model.
Reference [45] implemented a full parallel and pipelined (32-3-4) neural network topology
with 8 bit fixed points. It was implemented on Xilinx Virtex-6 and Virtex-7 boards. It was
able to classify 288 pixels in 0.67 µs. The design used less than 4% of board resources. It
occupied 2798 LUT, 7 RAM18E1, and 12 DSPs. Contrarily, Reference [46] implemented
a parallel neural network topology for gas classification. The model presented obtained
an accuracy of 97.4% and a latency of 540 ns. Additionaly, it was implemented on Zynq-
7000 XC7Z010T-1CLG400 from Xilinx. Finally, [47] implemented a five-layer multilayer
perceptron suitable for chaotic time series prediction. It used hyperbolic tangent activation
function that consumed a lot of hardware resources. References [48–51] implemented a
three-layer Artificial Neural Network (ANN). They all used a sigmoid activation function,
which consumes lots of resources and takes huge computation times. Moreover, they used
a distributed memory for storing weights which is not applicable for online applications.
Finally, Reference [50] only simulated the ANN without testing it on a real FPGA.

3. Adopted Machine Learning Models

The machine learning models used to compare the performance of the implemented
online neural network are explained in this section.
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3.1. Multi-Layer Perceptron (MLP)

Neural Networks are modeled as collections of neurons that are connected in a definite
graph. The outputs of neurons are inputs to other neurons in the following layer. Neural
Network models are organized into definite layers of neurons. Commonly, a fully connected
layer is used for Multi-Layer Preceptron, in which neurons between two adjacent layers
are fully connected but neurons within a single layer are not connected. Figure 1 is a
generic shape of an MLP. In order to produce nonlinearity, activation functions such as
Rectified linear unit (Relu), sigmoid, Tanh, etc. are added to the hidden layers. On the other
hand, the output layer neurons commonly do not have an activation function. The reason
is that the last output layer is usually taken to represent either the class scores (e.g., in
classification), which are normally real-valued numbers, or some kind of real-valued target
(e.g., in regression). The formulas for MLP are as follows:

f (0) = σ(W(0)x + b(0)) (1)

f (l) = σ(W(l) f (l−1) + b(l)) ∀L = 1, ..., L− 1 (2)

f (L) = W(L) f (L−1) + b(L) (3)

Figure 1. A 2 layer MLP model.

3.2. Multiple Linear Regression (MLR)

Linear regression (LR) is a supervised learning algorithm that uses a parametric linear
function for a regression problem. It is used to predict a dependent variable (output) from
independent variables (input). The formula for MLR is as follows:

yi = β0 + β1xi1 + β2xi2 + β3xi3 + ..... + βpxin (4)

where i = n samples, xi1, xi2, xi3....xin present the independent variables (input), and yi is
the dependent variable (output). The β coefficients denote the slope for each independent
variable. It is calculated as follows:

β = (XT .X)−1(XT .Y) (5)

Although MLR is considered the simplest algorithm for ML algorithms, it represents
an accurate model for linear regression [52].
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4. Adaptive Momentum (ADAM)

Optimization has been rapidly revolutionized with the increased development in
machine learning techniques. Choosing an appropriate optimizer affects both the timing
and accuracy for a ML model. The ADAM [53] optimizer is an adaptive optimization
algorithm developed for deep neural networks. The optimizer is powerful in accelerating
the training process by generating adaptive learning rates and is a combination of both
SGD with momentum and RMSprop algorithms. That is why an ADAM optimizer is used
in the MLP implemented in this thesis. The following equations show how ADAM works:
Equation (6) is the gradient on a current mini-batch.

gt = ∇ f (w) (6)

Equations (7) and (8) are two moments. Betas are considered exponential decay rates,
which are hyperparameters for the moment estimate. The first moment is the mean while
the second moment is uncentered variance, β1 is 0.9, and β2 is 0.999.

mt = β1mt−1 + (1− β1)gt (7)

vt = β2vt−1 + (1− β2)g2
t (8)

It is clear that the similarities appear in the folloiwng:

1. m is the exponential moving average of gradients (such as in SGD with momentum)
(Equation (7)).

2. The learning rate α is divided by square root of v, which is the exponential moving
average of squared gradients (suhc as in RMSprop) (Equation (8)).

The next two equations are the bias correction.

m
′
t =

mt

1− βt
1

(9)

v
′
t =

vt

1− βt
2

(10)

Finally, the weights are updated using the bias correction equations and η which is the
step size.

w
′
t = wt−1 − η

m
′
t√

v′t + ε
(11)

5. Online Neural Network (ONN) Model

Online learning has no separation phase between training and testing. Each time an
example is passed to the model, it is first considered as a test example, and the model
should predict an output. Then, after the true value is passed, the same example can be
used as a training example to improve the model in prediction. Moreover, online learning is
known as learning a hypothesis from data examples sequentially, one at a time [54]. In this
section, the inference and the training parts of the online machine learning are explained.

5.1. Hedge Backpropagation (HBP) Prediction

In this section, the prediction of an online Neural Network using Hedge Backpropaga-
tion [14] is explained for a network with L hidden layers. HBP predicts the final output
from a weighed combination of classifiers denoted by α(l) f (l) from each layer, while the
normal Multi-Layer preceptron model has only one final classifier from the last layer. Each
neuron receives inputs from the previous layer, multiplies it by w(l), and forwards the
output to be multiplied twice: once for its next layer with matrix w(l+1) and the second
with matrix θ(l) to produce classifier f (l), as shown in Equations (13) and (14), respectively.
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The procedure is repeated for L times. Finally, the output is produced by the summation of
each classifier with its weight α(l). The implemented two-layer model is shown in Figure 2.

Figure 2. A 2 layer HBP model.

The mathematical operations used by HBP for prediction are given below:

F =
L

∑
l=0

α(l) f (l) (12)

f (l) = So f tmax(h(l)θ(l) + b(l)) ∀l = 0, ..., L (13)

h(l) = σ(w(l)h(l−1) + b(l)) ∀l = 1, ..., L (14)

h(0) = x (15)

where σ is an activation function, e.g., sigmoid, tanh, ReLU, etc. This paper used a Relu
activation function, which has the equation shown below:

F(x) = max(0, x) (16)

Relu is considered a nonlinear activation function with low computational complexity.
Softmax function inside Equation (13) is not used in the implementation as it is used for
classification problems, while traffic flow prediction is considered a regression problem.

5.2. Online Neural Network (ONN) Training

The training algorithms for ONN parameters (α(l), θ(l), w(l), and b(l)) are explained
in this section. Parameter α is trained using the Hedge Algorithm [55], which is a form of
Online Learning with Expert Advice. In the model; the experts are the output classifiers.
Each classifier has its own weight, which is denoted by α. The classifier that produces less
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loss has a higher weight and vice versa. Initially, all weights α are equally weighted, which
means α(l) = 1

L+1 . When the network produces the final output, α is updated as follows:

αl
t+1 = αl

tβ
L( f (l)(x),y) (17)

where β ∈ (0, 1) is the discount rate parameter. L( f l(x), y) is the loss function determined
by the ML designer. At every iteration, each α is smoothed and normalized as follows:

Smoothing α
(l)
t+1 = max(α(l)t+1,

s
L
), ∀l = 0, ..., L (18)

Normalize
α
(l)
t+1
Zt

, where Zt =
L

∑
l=0

α
(l)
t+1 (19)

Parameters W and θ are learned by applying the OGD rule. However, θ(l) uses the loss
from its classifier h(l), while W l uses the summation of the adaptive loss function shown in
Equations (20) and (21), respectively.

θ
(l)
t+1 = θ

(l)
t − η∇

θ
(l)
t
L(F(Xt, yt))

= θ
(l)
t − ηα(l)∇

θ
(l)
t
L( f (l), yt)

(20)

As shown in Equation (21), the summation of gradients starts with j = l, since w(l)

depends only on its own and the precedence classifiers.

w(l)
t+1 = w(l)

t − η
L

∑
j=l

α(j)∇(l)
w L( f (j), yt) (21)

Finally, the ONN models using HBP have several advantages:

• The model overcomes the vanishing gradient by letting the gradient to be back
propagated from shallower classifiers.

• The model depth is adaptive because each classifier output has its own weight α that
is trained based on its performance.

• α weights let the model act as a shallow network at the beginning of the training,
allowing for faster convergence and then exploiting a deeper network as it proceeds
with training.

• The hedging provides better convergence for non-stationary datasets unlike previous
online learning algorithms.

• In comparison with a normal MLP, HBP provides better final predictions. This is a
result of the output weighed summation from each classifier, which acts now as an
ensemble model.

6. Hardware Architecture

Traffic flow prediction is an important aspect in ITS. It decreases traffic problems,
such as congestion and accidents. Hence, an accurate method is needed for traffic flow
prediction. This paper uses the HBP ONN model for predicting traffic flow. The proposed
design is composed of two layers with six neurons at each layer, i.e., six input neurons, two
hidden layers, and two weighed combination outputs, as shown in Figure 2.

6.1. Dataset Description

The benchmark dataset used from open-access traffic flow database of Caltrans Per-
formance Measurement System (PeMS), U.S.A [56]. It consists of 51,406 samples that were
divided into 60% training, 20% validation, and 20% testing. The PEMS data were collected
every five minutes daily from 4 April to 27 November 2016 by a detector located on Route
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22, Garden Grove. The model used six features: the day, the time in hours and minutes,
the total miles that are driven by the vehicles, the total time spent by the vehicles, the speed
detected by the detector, and the number of trucks for prediction.

6.2. Implementation

The training phase was implemented using python. In addition, the validation dataset
was used to optimize all hyperparameters to obtain the smallest MAE. The best hyper-
parameters obtained β = 0.99, s = 0.2, and η = 0.00001. They were chosen to provide the
highest accuracy. The model was trained iteratively for seven epochs. Each epoch had
two phases, which were training and testing. After reaching the seventh epoch, the Mean
Absolute Error (MAE) was 0.001 and no more training was conducted for the model. The
weights θ, w, and α were extracted to be used for hardware implementation. For efficient
hardware implementation; the paper presents three different storage elements (BRAM,
DDR, and distributed memory) to store and retrieve the weights. Each IP was implemented
differently to support its corresponding memory. Additionally, the ONN models were
implemented twice using 24 bit fixed and 32 bit floating points. Each IP is composed of
three main matrix multiplications and additions. The multiplication in the first layer is
between the input vector (X) feature and the weight vector θ1 followed by an addition of
one bias. The output is then multiplied by its weight α1. In the second layer, there exists
two phases. The first phase is a matrix multiplication between X and w followed by the
vector bias addition. The resultant output is a six unit vector fed to the second phase for
multiplication by θ2 and then one bias addition. The resultant output is then multiplied
by its weight α2. The final prediction is the summation of the two layer outputs. Each IP
implemented used a set of pragmas to optimize the code. These pragmas are listed below:

• Pipelining: Pipelining pragma is used in high-level synthesis optimization techniques
to improve the throughput of the system. This was conducted by allowing concurrent
operations to take place inside the algorithm.

• Allocation: This pragma is responsible for defining the limited number of resources
inside a kernel. Consequently, it restricts the number of RTL examples and hardware
resources such as (DSPs and BRAM) used for implementing particular loops, functions,
operations, or cores.

• Partitioning: Partitioning pragma is for arrays. It breaks up the large array into smaller
arrays or individual elements (buffers). As a result, the accelerator can access the data,
simultaneously resulting in high throughput but consumes high area resources.

6.2.1. Accelerator Design for the Distributed Memory Architecture

In this model, all weights are stored inside the IP core in distributed memory. Parti-
tioning and allocation pragmas are added for design optimization. Partitioning weights
are optimized in terms of latency. All weights were stored in registers to allow for multiple
readings for computation at the same time. Consequently, the multiplications of w of layer
2 and θ of layer 1 are calculated simultaneously. By adding the allocation pragmas for
addition and multiplications, the number of DSPs were reduced and reused for multiple
calculations. As shown in Figure 3, the first block is executed; then, the next block makes
use of the multipliers of the previous block. On the other hand, each time the weights
need to be updated, the FPGA needs to be reprogrammed again. This includes updat-
ing the HLS code and regenerating the bitstream for the whole system in Vivado. It is
considered an inefficient method for online neural network because weights need to be
updated continuously.
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Figure 3. IP design for distributed memory.

6.2.2. Accelerator Design for the BRAM Architecture

The IP algorithm is implemented for storing weights inside a true dual port BRAM.
The IP has five BRAM interfaces for the features, w, θ, b, and the result. For a fixed point,
two pragmas are added (allocation and pipeline) for better resource allocation and latency.
On the other hand, all of the other pragmas were tested and the pipeline pragma had the
only effect inside the floating point architecture. A parallel performance occurs in loading
weights and a feature and then multiplying for w in layer 2 and θ1 for layer 1, as shown in
Figure 4. Additionally, the implemented algorithm for the matrix multiplication between
w and x was optimized such that the IP iterates through the elements of the input vector
only once. Therefore, before moving to the next element in the input vector, each feature
should finish its multiplications with all neurons weights. Each of theses multiplication
results are stored in a vector. The size of this vector is equal to the number of neurons of
this layer. Each element in the vector acts as an accumulator because its value is added to
the multiplication of the next feature. In that way, the number of readings are reduced for
the input reducing latency. Finally, the last matrix multiplication is executed between θ2
and the output of (x and w1).

Figure 4. IP design for BRAM and DDR.
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6.2.3. Accelerator Design for the DDR Architecture

The IP architecture for DDR is very similar to the BRAM design in Figure 4. However,
there is an extra logic added to support the AXI4 stream interface for w, θ1, θ2, and X. Those
stream interfaces can only send integer numbers so there is a need to convert those integer
numbers to either be floating or fixed inside the IP before starting the matrix multiplication.
The output result is sent via the axi-lite interface. Pipeline, allocation, and partitioning
pragmas are added for fixed point IP. On the contrary, only the pipeline pragma is added
in the floating point IP because it is the only pragma that has an effect on the IP.

6.2.4. Whole System for the BRAM Design

This design is used when the size of the weights needed to be stored in the zedboard
zynq-700 is less than or equal to 560 Kbits. This is the maximum size of the Block RAM
(BRAM) inside the board. The size of the floating point weights is 2688 bits, while fixed
point weights is 2016 bits, allowing the BRAM to store them. The BRAM system architecture
consists of the Zynq processing system (ARM Processor), the ONN IP, AXI-Interconnect,
five BRAM controllers, and five true dual port memories for accessing and storing (X, w,
θ, b, and F). For simplicity, only one BRAM controller and one true dual port BRAM are
shown in Figure 5. The Zynq processing system (ARM Processor) is connected to the ONN
IP and BRAM controller using AXI-interconnect through the AXI3-(GP) General purpose
Port. The AXI-interconnect converts the AXI3 to AXI4 lite interfaces for both the ONN IP
and BRAM controller.

Figure 5. The proposed system design using BRAM.

First, the Zynq processing system (ARM processor) sends the control signals for the
ONN IP and BRAM controller. These control signals are responsible to initialize the IPs to
check that they are free from errors and configured correctly. After initialization, the Zynq
processing system sends the weights and features to be stored inside the BRAM. This is
performed with the help of the BRAM controller, which has two ports, one connected to the
Zynq processing system while the other connected to the AXI4 (memory mapped) slave
interface. A true dual port memory is used so that the Zynq processing system and the IP
access the memory simultaneously for faster prediction. Afterwards, the IP retrieves the
weights and features for computation. Finally, the predicted output is stored back inside
the BRAM and the results are shown on the Xilinx SDK tool.

6.2.5. Whole System for DDR Design

This design is used when the weights are large in size and cannot be stored inside the
BRAM. Although the weights used for traffic flow prediction were small in size, the DDR
architecture was implemented to be analyzed and compared with the BRAM architecture.
This system is composed of the Zynq processing system, Direct Memory Access (DMA),
DDR3, an ONN IP accelerator, and AXI-Interconnect, as shown in Figure 6, similar to the
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BRAM design in which the the GP port using the AXI-Interconnect is used to send the
control signals to both the ONN IP accelerator and the DMA for initialization.

Figure 6. The proposed system design using DDR.

In the beginning, the weights are stored inside the DDR3, which is inside the zedboard.
The Zynq processing system has a high-performance port (HP), which is connected to the
DMA AXI-Full port using AXI-Interconnect. It is responsible for streaming the data stored
inside the DDR. Then, the weights are received at the IP accelerator by the master stream
port, which is connected to the DMA. Finally, the IP executes the algorithm and sends
the results back to the Zynq processing system using the AXI-Lite interface through the
GP port.

6.2.6. Whole System for the Distributed Memory Design

The system for the distributed memory architecture is very similar to the BRAM
system. However, it is a simpler design as it is composed of two BRAMs and two BRAM
controllers for (X and F). As in Figure 5, the system is composed of the Zynq processing
system to send features through the BRAM controller in a true dual port memory. Then,
after the IP executes the algorithm, the output is stored back in another BRAM and the
ARM processor is able to retrieve it.

6.2.7. SDK Testing Environment

1. BRAM and Distributed Memory:Figure 7 shows how the system is tested on an
FPGA using SDK tool for the BRAM system, while Figure 8 shows that for the distributed
memory system. The two tests are very similar. For BRAM systems, the C++ code starts
with defining the five BRAM addresses, while for distributed memory, only two BRAM
addresses are defined. Second, the IPs are configured to be able to work. After that, inside
the BRAM architecture, the weights and features are stored inside their corresponding
BRAMs. On the contrary, only the features are stored inside the BRAM for distributed
memory architecture. Then, the IPs access the BRAMs for calculations. When the predicted
result is calculated, the IPs store it inside its BRAM. Finally, the processor retrieves the
predicted output and shows the value in the console of Xilinx SDK.
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Figure 7. SDK test for the BRAM architecture.

Figure 8. SDK test for the DM architecture.

2. DDR Figure 9 shows how the the system is tested on FPGA using Xillinx SDK.
The IP and the four DMAs are configured and initialized. Then, all of the features and
weights are converted to int to be stored in the DDR3. Furthermore, the IP starts; waiting
for weights and features from the DMA. Then, the DMA sends the inputs, w, θ, and b to the
IP for computation. When the IP finishes calculations, the result from the AXI-lite interface
is then converted from int to either fixed/floating depending on the IP used.
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Figure 9. SDK test for DDR architecture.

7. Results and Discussion

The MLP consists of four layers: the input layer, two hidden layers, and the output
layer. The input layer has six neurons, where each neuron connects directly to the six
features. The 2 hidden layers have 100 neurons each, and the output layer has 1 neuron to
calculate the traffic flow. A Relu function is used for all three layers except the output layer
with no activation function. The model is optimized using the Adam technique. For the
training phase, the MLP is trained for 50 epochs. This model was trained with varying
batch size (1, 5, 10, and 15) to investigate its effect on MLP. From Table 1, it is clear that
HBP provided the best result with MAE 0.001. Additionally, it should be noted that the
batch size truly affects the error on MLP. The best two batch sizes are 1 and 15 with MAE
0.077 and 0.074, respectively.

Table 1. Performance comparison between software models.

Model Batch Size MAE

MLP 1 0.077

MLP 5 0.107

MLP 10 0.126

MLP 15 0.074

MLR 41,126 0.0519

HBP 1 0.001

7.1. Performance Evaluation for Each Sample Set

The effect of varying data-set sizes is evaluated for the ONN model. The training
data set is divided into four sample sets; each is 20% of the training set. The samples were
used by the models for training with a batch size equal to 1 and for updating the weights
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and then testing the model on the testing set, which was 20% of the dataset. Therefore,
whenever a new sample set is available, the set is taken to the model to train and update
the weights and then to test it on the test set. This experiment is repeated five times, and
the average values are taken. The following Figure 10 shows how ONN using the HBP
model performs during the process of sampling. It is clear that the learning rate highly
affects the performance of the model and that the learning rate with 0.0001 is better than
that with 0.000001. Additionally, the figure shows that the model improves its performance
when the whole dataset is passed to the model.

Figure 10. Performance evaluated on the test set for each sample set.

7.2. Hardware Timing Analysis

In this section, a timing analysis is conducted. It compares the execution time between
the online hardware NN IP and the whole system configuration with the ARM processor
as well as between the software execution time. As mentioned in Section 5, there are six
different IP cores to support six system architectures. The execution time of the hardware
ONN IPs is calculated by extracting the number of clock cycles required for traffic flow
prediction multiplied by the clock of the PL. On the other hand, the processing time of the
complete system is measured by counting the number of ARM processor’s clock cycles
spent obtaining the prediction from SDK. The PL is clocked at 100 Mhz, while the ARM
processor runs at 650 MHz. As shown in Table 2, all ONN IP latencies are smaller than the
whole system latency.

Table 2. Timing Analysis between the ONN models and system architectures.

Memory Operation System Time (ns) IP Time (ns)

DDR
Fixed 8440 450

Floating 9640 940

BRAM
Fixed 560 420

Floating 1560 850

DM
Fixed 340 150

Floating 1540 840

The reason behind that is the communication overhead between the ARM processor
and the IP core from AXI-interconnect and routing. Additionally, Table 2 shows that the
latency for the distributed memory is the smallest. The weights are stored inside the
IP as registers. They can be accessed multiple of times at the same time, allowing for
parallel calculations. Unlike BRAM, which needs to be accessed once from the IP each clock
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cycle, the BRAM latencies produced from IP and system are less than the DDR latencies.
The reasons are listed below:

• IP model: The code that converts int to float for the DDR architecture consumes some
time inside the IP block, unlike the BRAM architecture, which stores the weight inside
it in float or fixed without converting them to the integer format. Hence, BRAM IP
block is faster than DDR block.

• System: Routing and placement inside any FPGA affects the timing of the system.
The DDR is placed as an external memory on the PS side of the zedboard, while the
BRAM is located inside the PL. This means that the BRAM is located closer to the IP
than DDR. Therefore, the communication time between the IP and the BRAM is faster
and that the latency is lower than DDR.

Additionally, it is shown that the latency of the fixed point format is faster than the
floating point format. This is because the calculations for a fixed point is simpler and
requires a smaller number of operations compared with floating point operations. Finally,
the software execution time was extracted from python and was 100,000 ns, which is 200X
slower than the hardware. Consequently, it is concluded that all of the hardware models
proposed perform better than the software model.

7.3. Hardware Resource Utilization Analysis

In this section, the six different IP ONN models are analyzed in terms of resource
utilization. They have been synthesized and implemented on zedboard to obtain the
utilization of the six different versions. Vivado 2017.4 is used to report them. Figure 11
conveys that the BRAM architecture with fixed points has the least number of flipflops.
In addition, DDR using fixed and BRAM with fixed and floating points have only 10 DSPs,
which represents a small number in comparison with the others.

Figure 11. IP utilization for different memory architectures.

7.4. Area-Delay Product (ADP)

Area-Delay Product (ADP) is a metric used in this paper to evaluate the overall
performance with respect to both utilization and execution time among all previous work.
Since some models are good in terms of utilization but have high latency and vice versa,
a metric is needed that can measure both utilization and latency together. It was very
hard to find a suitable metric in papers that can be taken as a reference to measure both
latency and utilization together. Therefore, this metric was designed to fulfil this aim.
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This proposed metric behaves similar to the concept of a power delay product metric
but replaces the power with utilization. It is defined in Equation (22). There are some
differences between the ADP and the power delay product. The first thing is that in case
the model does not have a specific parameter in the equation, it is excluded. In addition,
the number in the denominator reduces the value of the ADP to a small number for easier
representation. The smaller the Area Delay product number, the better the design in terms
of latency and utilization. The same formula was applied to previous work for consistency
and compared with our design.

As shown in Figure 12, the ADP of the MLP with HBP using distributed memory
has the smallest value followed by the ONN using BRAM. Therefore, it is clear that the
hardware ONN outperforms all previous work by factors of 24X and 17X, respectively.

ADP =
LUT ∗ FF ∗ BRAM ∗ DSP ∗ Latency

1010 (22)

Figure 12. Area-Delay Product.

7.5. Power Consumption Analysis

The total on-chip power consumption that combines both static and dynamic power
is shown in Figure 13. The static power is consumed in signals, logic, DSP, BRAM, and
Ps7 and is affected by the clocked frequency. Since the ARM processor is clocked at a high
frequency 650 MHz, it consumes the highest power in the system. The data was extracted
from the power report produced from the Vivado tool. The diagram shows that the IP with
a fixed point and BRAM architecture has the smallest power, equal to 1.721W. This result is
expected since the BRAM architecture using a fixed point has the least resources.

Figure 13. Total system power.
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7.6. Online Compatibility

Previous work implemented offline models and always assumed that the weights
are completely fixed, i.e., does not change with time. As a result, designers store their
weights in distributed memory (LUT) since it is the fastest memory type compared with
BRAM and DDR. However, this paper aims to design an online neural network (ONN)
known for learning the model from sequential data instances one at a time. This means
that the weights are updated continuously. As a result, the parameters used for inference
need to be stored in a memory that can be updated in real time. The data inside the DDR
and BRAM memory can be updated without modifying the HLS code using the Xilinx
SDK tool. Therefore, they are suitable for online machine learning algorithms. However,
it should be noted that fixed point models have lower latency, utilization, and power
than floating point models. Additionally, there is no degradation in the accuracy using
either fixed or floating point. This is because the output from the model is rounded up
to a whole number. The ONN model does not need to produce an accurate decimal
number. In consequence, fixed point is preferable to floating point in traffic flow prediction.
The ONN using distributed memory (LUT) was only implemented for comparison with
existing works.

7.7. Comparison with Existing Works

Based on the state-of-the-art, the MLP using HBP has never been implemented on
hardware before. Consequently, it was impossible to compare our design with an identical
one (same number of layers, topology, and application). As explained before, MLP using
HBP is a modified version of MLP so it was compared with other MLP topologies. The pre-
viously proposed architectures found in the literature are the closest possible architectures
to our design.

Table 3 shows a comparison of the hardware ONN model using HBP with some
previous hardware MLP models. As shown in Table 3, the online neural network typologies
for both distributed memory and BRAM storage have the smallest latencies, 150 ns and
420 ns, respectively. Finally, the LUT in a distributed memory system is reduced by 20.6%
and the DSPs in the BRAM system is reduced by 16%.

Table 3. ONN with HBP comparison with MLP.

Work Topology Memory Data Precision LUT FF BRAM DSP Latency ns ADP

[41] 7-6-5 Distributed Memory Fixed 16 bits 3466 569 0 81 270 4.3

[45] 32-3-4 Distributed Memory Fixed 8 bit 2798 1538 7 12 680 24.5

[46] 12-3-1 Distributed Memory Fixed 24 bit 4032 2863 2 28 540 34.9

[51] 12-7-3 Distributed Memory Fixed 24 bit 21,648 13,330 2 219 19,968 252,380

[43] 14-19-19-7 Distributed Memory Fixed 16 bits 5432 2175 65 19 800 1167

[40] 2-2-1 Distributed Memory Floating 61,386 32,015 0 0 605 118.89

This Work 6-1/6-1 BRAM Fixed 24 bit 2825 210 0 10 420 0.245

This Work 6-1/6-1 Distributed Memory Fixed 24 bit 2222 604 0 11 150 0.177

8. Conclusions

This research proposes a highly accurate traffic flow prediction system using an
online neural network. The model with a (6-1)/(6-1) topology has a higher accuracy in
comparison with the normal MLP with varying batch size (1, 5, 10, and 15) and MLR. The
HBP model provides the best result, with MAE 0.001. In addition, this paper implements
different hardware architectures for the proposed system to achieve the most suitable
design in terms of latency, utilization, and power. The BRAM architecture and distributed
memory architecture provide the most adequate solution for the abovementioned aspects.
The BRAM requires only 420 nanoseconds for prediction while distributed memory requires
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150 nanoseconds. However, an important metric that should be taken into account is the
online compatibility. It allows hardware designers to choose the most suitable system for
online learning. DDR and BRAM are compatible, while the distributed memory is not
suitable for online learning. This is because the weights in the distributed memory are hard
coded (fixed) inside the HLS code. However, in online learning, the weights continuously
update. The DDR architecture is used when the weights of the model are larger than 4.9 Mb,
while the BRAM architecture is very suitable for applications in which the weights size is
smaller than 4.9 Mb. This value is obtained from the zedboard datasheet. It is preferable for
online machine learning designers to use the BRAM architecture for ONN because it has
less latency than the DDR architecture given that latency is the most important parameter
in online applications. Consequently, for larger designs, it is recommended for designers
to use larger FPGA boards that have larger BRAM capacity. Moreover, it is recommended
to use fixed point instead of floating point because fixed point models have lower latency,
utilization, and power than floating point models. The fixed point models did not have any
degradation in accuracy because the number of cars are rounded up and an exact decimal
number is not needed. Additionally, the ADP of the ONN using BRAM is 17X better than
the newest MLP model. Moreover, the execution time of the hardware implementation
using BRAM on the zedboard zynq-700 improved by a factor of 200X compared with the
software implementation on a dual-core Intel i7-7500U CPU at 2.9 GHz. Finally, these
results recommend that the BRAM architecture using fixed point is the most suitable one
for online machine learning algorithms.

9. Future Work

In this study, the training phase was performed using python software and the weights
were extracted to be used in the hardware ONN model. This can be altered by implementing
the training part inside the ARM processor of the ZYNQ board. The weights are directly
transferred from the PS to the PL without the intermediate part of python. Additionally,
the training phase can be implemented using both fixed point and floating point. In
addition, the inference as well as the training parts of the ONN model can be implemented
using any HDL language. Hence, the HLS tool does not synthesize the C/C++ code to
HDL. This implementation can be compared with the HLS ONN model in terms of latency,
utilization, and power. Finally, the HBP algorithm, which is used for updating (α) the
weights assigned for each expert, can be altered with new algorithms and can compare
these new algorithms with HBP.
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Abbreviations
The following abbreviations are used in this manuscript:

ADAM (Adaptive Momentum)
ADP (Area-Delay Product)
AI (Artificial Intelligence)
ANN (Artificial Neural Network)
AXI (Advance eXtensible Interface)
BRAM (Block RAM)
CalTrans (California Transportation Agencies)
CNN (Convolution Neural Network)
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DBN (Deep Belief Network)
DCRNN (Diffusion Convolutional Recurrent Neural Network)
DSP (Digital Signal Processing)
FF (Flip Flop)
FPGA (Field-Programmable Gate Array)
GBRT (Gradient Boosting Regression Trees)
GD Gradient Descent
HDL (Hardware Design Language)
HLS (High Level Synthesis)
ITS (Intelligent Transport System)
LR (Linear Regression)
LUT (Look-Up Table)
LSTM (Long Short Term Memory)
MAE (Mean Absolute Error)
ML (Machine Learning)
MLR (Multiple Linear Regression)
MLP (Multi-Layer Perceptron)
MTL (Multi-Task regression Layer)
NN (Neural Networks)
PeMs (Performance Measurement System)
PL (Programmable Logic)
PS (Processing System)
Relu (Rectifier Linear Unit)
RF (Random Forest)
RMSE (Root Mean Square Error)
RMSprop (Root Mean Square Propagation)
SAE (Stacked Auto Encoder)
SDK (Software Development Kit)
SGD (Stochastic Gradient Descent)
SVR (Support Vector)
XGB (Extreme Gradient Boosting Regression Trees)
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