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Abstract: Na1/2Bi1/2TiO3-based materials have gained considerable attention for their potential to
exhibit giant strain, very-high ionic conductivity comparable to yttria stabilized zirconia or high me-
chanical quality factor for use in high power ultrasonics. In recent times, quenching Na1/2Bi1/2TiO3-
based compositions have been demonstrated to enhance the thermal depolarization temperature,
thus increasing the operational temperature limit of these materials in application. This work investi-
gates the role of quenching-induced changes in the defect chemistry on the dielectric, ferroelectric
and piezoelectric properties of quenched Na1/2Bi1/2TiO3-BaTiO3. The quenched samples indeed
demonstrate an increase in the bulk conductivity. Nevertheless, while subsequent annealing of
the quenched samples in air/oxygen atmosphere reverts back the depolarization behaviour to that
of a furnace cooled specimen, the bulk conductivity remains majorly unaltered. This implies a
weak correlation between the defect chemistry and enhanced thermal stability of the piezoelectric
properties and hints towards other mechanisms at play. The minor role of oxygen vacancies is further
reinforced by the negligible (10–15%) changes in the mechanical quality factor and hysteresis loss.

Keywords: lead-free piezoceramics; quenching; Na1/2Bi1/2TiO3 ; oxygen vacancies; thermal
depolarization

1. Introduction

The impending regulation that revived the interest on lead-free piezoelectric alterna-
tives [1] identified four major families of materials based on BaTiO3 [2], Na1/2Bi1/2TiO3 [3],
K0.5Na0.5NbO3 [4] and BiFeO3 [5,6]. Amongst these, Na1/2Bi1/2TiO3-based compositions
are versatile and when appropriately modified, demonstrate potential use in (a) solid
oxide fuel cells (high ionic conductivity) [7] and (b) high temperature capacitors [8] and
high-power ultrasonics [9,10] (insulating character with high mechanical quality factor).
In particular, Na1/2Bi1/2TiO3-based materials exhibit superior mechanical [11] and high
power [9] properties in comparison to the lead-based Pb(Zr,Ti)O3. Further, processing
strategies such as chemical doping [12–14], composite formation [15–17] and quench-
ing [18] have been demonstrated to significantly alter the conductivity [19], strain [20],
mechanical quality factor [14,21,22] and depolarization temperature [14,16,23]. In recent
years, quenching from sintering temperature has been adopted as a route to enhance the
depolarization temperature (Td) of Na1/2Bi1/2TiO3 (NBT) [18]. Quenching was also shown
to be effective in tailoring the ergodicity of NBT-based materials [24].

Na1/2Bi1/2TiO3-BaTiO3 (NBT-BT) solid solution exhibits a morphotropic phase bound-
ary (MPB) which spans a wide range of compositions from 5–11 mole% BT [25,26] with
varying degrees of average structural distortions (rhombohedral to pseudocubic to tetrago-
nal with increasing BT content). The exact range of the MPB is also often debated depending
on the synthesis routes [27] and control of stoichiometry [28]. The compositions at the MPB
of NBT-BT are non-ergodic relaxors, which undergo an irreversible transformation from
the relaxor to ferroelectric state upon application of stress [29] or electric field [25]. Upon
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heating the stress/field induced ferroelectric state, it transforms back to the relaxor state
at the ferroelectric-relaxor transformation temperature (TF-R), which sets the upper limit
for the depolarization temperature. TF-R is typically established from the first anomaly in
the poled temperature-dependent dielectric response [30]. Quenching has been effective
in enhancing the Td of NBT-BT, with significant changes (increase by 40–60 ◦C) noted
for the non-ergodic relaxor compositions [23]. Based on the annealing study in oxygen
atmosphere, quenching-induced increase in oxygen vacancy concentration was proposed
to be the mechanism of enhanced Td [23]. The quenched samples, subsequently annealed
in oxygen atmosphere at 800 ◦C for 12 h, exhibited a reversal of TF-R back to that of the
furnace cooled state. Quenching disrupts the equilibrium concentration of oxygen vacan-
cies at room temperature due to frozen-in defects from the high temperature state. The
reversal of TF-R upon annealing the quenched sample would then imply that annealing
should also affect the defect population and enable equilibration of defects. Additionally,
the domain wall mobility in ferroelectrics is greatly influenced by point defects such as
oxygen vacancies, that as mobile/coupled defect complexes constrain the domain wall
motion, resulting in hardening of the electromechanical properties [31,32]. Therefore, it is
imperative to investigate the effect of the increased defect concentration on the electrical
properties. Specifically, it is of interest to investigate the influence of quenching on the
mechanical quality factor, which is one of the important figures of merit for high power
applications, such as in ultrasonics. This work aims to establish the influence of quenching
and subsequent annealing of Na1/2Bi1/2TiO3-BaTiO3 on the ferroelectric hysteresis and
mechanical quality factor to gauge the hardening effects and rationalize the results based
on the electrical conductivity.

2. Materials and Methods

(1−x)Na1/2Bi1/2TiO3-xBaTiO3 (NBT100xBT) (x = 0.06, 0.09; x denotes number of moles)
ceramics were prepared using the conventional solid-state reaction route. Stoichiometric
ratios of Na2CO3 (99.5%), BaCO3 (99.8%), Bi2O3 (99.975%) and TiO2 (99.6%) (all Alfa Aesar,
Thermo Fisher Scientific GmbH, Kandel, Germany) were milled in ethanol at 250 rpm
for 24 h. The purity of the starting raw materials are indicated in brackets. The powders
were calcined at 900 ◦C for 3 h with a heating rate of 5 ◦C /min. After calcination, all
the powders were remilled in ethanol at 250 rpm for 24 h. The remilled powders were
then cold isostatically compacted at 350 MPa into disks. To prevent volatilization of
sodium and bismuth, the compacted green bodies were embedded in a powder bed of
the same composition. Subsequently, following a heating rate of 5 ◦C/min, sintering
was performed at 1150 ◦C for 3 h. These samples were removed from the furnace after
they cooled to room temperature and are denoted as “FC” (furnace cooled). The samples
that were directly taken out from the furnace after the sintering dwell time and cooled in
ambient air using a fan are denoted as “Q1150” (quenched). The samples were ground
to remove the surface. Next, annealing was done at 400 ◦C for 30 min to relieve the
mechanically induced stresses that resulted from the grinding step. The final dimensions
of the samples were 7.6–7.7 mm in diameter and 0.6 mm thick. The samples were then
sputtered with Pt to obtain electroded surfaces. Poling was done at room temperature
under an electric field of 6 kV/mm for 15 min. Permittivity measurements were carried
out using a HP analyzer interfaced with a furnace in the temperature regime from ambient
temperature to 500 ◦C with a heating rate of 2 ◦C/min. Polarization- and strain- electric
field hysteresis loops were recorded with a triangular field at a frequency of 1 Hz using
a Sawyer-Tower circuit coupled with an optical sensor. Resonance measurements were
performed on poled samples using an impedance analyzer (Alpha-Analyzer, Novocontrol,
Montabaur, Germany) and the mechanical quality factor was determined using the 3 dB
method [33]. The electrical conductivity was measured using the same impedance analyzer.
The impedance dataset was evaluated with the help of RelaxIS (rhd instruments, Darmstadt,
Germany). Annealing experiments in air and oxygen atmosphere were performed at 800 ◦C
for 12 h in accordance with the prior study [23] and the impedance spectra was measured
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in situ during the annealing step. All the other electrical characterization (temperature-
dependent permittivity, hysteresis and mechanical quality factor) was done ex situ by
measuring the response before and after the annealing step. Quenched samples annealed
in air and oxygen atmosphere are denoted as “Q-Air800” and “Q-O2800” respectively.

3. Results and Discussion
3.1. Influence of Annealing on the Dielectric Properties of Quenched Samples

Figures 1 and 2 depict the temperature-dependent permittivity response of NBT6BT
and NBT9BT subject to different thermal treatments. In the unpoled state, NBT6BT and
NBT9BT exhibit typical non-ergodic relaxor characteristics, exemplified by the frequency
dispersion below the maximum in permittivity (Figures 1a and 2a). While quenching
(Figure 1b) and subsequent annealing (Figure 1c,d) of NBT6BT retains the characteristic
frequency dispersion in the permittivity response (Figure 1b–d), the spontaneous ferro-
electric transition in NBT9BT Q1150 results in a sharp anomaly even in the unpoled state
(Figure 2b), akin to previous reports [23]. As noted previously [23], this anomaly disappears
upon annealing the quenched sample in oxygen atmosphere (Figure 2d). Notably, anneal-
ing the quenched sample in air results in reversal of the spontaneous ferroelectric order in
NBT9BT Q1150 (Figure 2c), akin to the oxygen annealing study done in prior work [23].
The vertical dash-dotted line in the poled permittivity plots denote TF-R (Figures 1e–h
and 2e–h, Table 1). NBT6BT FC and NBT9BT FC exhibit a TF-R of 100 and 151 ◦C, respec-
tively (Figures 1e and 2e, Table 1). Albeit differences in the quenching strategy adopted in
this study (directly from the sintering temperature, 1150 ◦C) compared to prior work (that
involved cooling to 1100 ◦C and then quenching) [23], the increase in TF-R upon quenching
is comparable at 143 ◦C and 203 ◦C for NBT6BT Q1150 and NBT9BT Q1150 (Figures 1f
and 2f, Table 1), respectively. The dielectric loss (tan δ) at room temperature is comparable
for the samples subject to different thermal treatments. The difference in permittivity at
low and high frequency (∆εHz) is used to establish the relaxor character based on the
frequency dispersion, while the difference in permittivity between the unpoled and poled
state (∆εp) can indicate the propensity to stabilize a ferroelectric order. ∆εp is lower for the
quenched materials, indicating propensity to stabilize the ferroelectric order [23]. ∆εHz is
also lower for the quenched samples, although with marginal changes for NBT6BT Q1150,
in comparison to the furnace cooled state. Upon annealing, both ∆εHz and ∆εp increases
than that of quenched samples and are comparable to that of the furnace cooled state.
This is in accordance with previous reports, wherein annealing at temperatures above
800 ◦C was shown to revert the quenching induced changes in TF-R to that of the furnace
cooled state [23–25]. Note that the choice of annealing atmosphere (air or oxygen) does not
significantly influence ∆εHz, ∆εp and TF-R (Table 1). ∆εHz and ∆εp for quenched NBT6BT
subjected to annealing in air and oxygen atmosphere differ by < 4%. ∆εHz of NBT9BT
Q-Air800 and NBT9BT Q-O2800 differ by 24% (while ∆εp is similar), which is currently
not understood. This could be related to the peculiar nature of compositions at the border
of the MPB of NBT-BT phase diagram, which exhibit average non-cubic distortions and
demonstrate ease of developing spontaneous ferroelectric order and reversal by changes in
the thermal and poling history [34] or defect chemistry [35].
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Figure 1. Temperature-dependent permittivity of NBT6BT for the (a,e) furnace cooled, (b,f) quenched and (c,d,g,h) 

quenched samples annealed in air/oxygen atmosphere in the unpoled and poled state. The vertical lines (dash-dot) in the 

poled dataset correspond to TF-R. 

Figure 1. Temperature-dependent permittivity of NBT6BT for the (a,e) furnace cooled, (b,f) quenched and (c,d,g,h) quenched
samples annealed in air/oxygen atmosphere in the unpoled and poled state. The vertical lines (dash-dot) in the poled
dataset correspond to TF-R.
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Figure 2. Temperature-dependent permittivity of NBT9BT for the (a,e) furnace cooled, (b,f) quenched and (c,d,g,h) 

quenched samples annealed in air/oxygen atmosphere in the unpoled and poled state. The vertical lines (dash-dot) corre-

spond to TF-R. 

Figure 2. Temperature-dependent permittivity of NBT9BT for the (a,e) furnace cooled, (b,f) quenched and (c,d,g,h) quenched
samples annealed in air/oxygen atmosphere in the unpoled and poled state. The vertical lines (dash-dot) correspond
to TF-R.
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Table 1. Characteristic parameters established from the permittivity plots in Figures 1–3.

Sample ∆εHz=(ε’
100Hz−ε’

1MHz) at
40 ◦C (Unpoled)

∆εp=|ε’
unpoled−ε’

poled|
at 40 ◦C and 10kHz

TF-R, ◦C
(Poled)

Tm, ◦C
at 1MHz

(Unpoled)

TRE, ◦C
(Unpoled)

NBT6BT
FC 533 656 100 272 231

Q1150 523 486 143 272 259
Q-Air800 664 702 100 261 255
Q-O2800 638 680 100 261 250

NBT9BT
FC 657 1041 151 267 268

Q1150 227 825 203 267 283
Q-Air800 549 963 163 259 276
Q-O2800 416 966 159 258 272
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Figure 3. Temperature dependence of ∆εHz, given by ε′100Hz − ε′1MHz of (a) NBT6BT and (b) NBT9BT
in the unpoled state for the furnace cooled, quenched and quenched samples subject to annealing in
air/oxygen atmosphere. The solid arrows correspond to the upper limit of the frequency-dependent
dielectric response (TRE).

The temperature corresponding to the maximum in permittivity (Tm in Table 1) is com-
parable for FC and Q1150 samples, as also noted for quenched NBT-BT-K0.5Na0.5NbO3 [24].
However, upon annealing, Tm decreases by 8–11 ◦C. The temperature dependence of ∆εHz
is plotted in Figure 3, wherein the minimum (indicated by solid arrows) corresponds to the
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upper temperature limit (TRE) of the frequency-dependent dielectric behavior [36]. ∆εHz(T)
exhibits broader peaks for NBT6BT materials indicating strong frequency dispersion, while
it is relatively narrow for NBT9BT materials. ∆εHz(T) of NBT9BT Q1150 exhibits a sharp
peak, corresponding to the spontaneous ferroelectric transition [23]. TRE is lower than Tm
for NBT6BT FC, akin to prior reports [36] on relaxor NBT100xBT compositions. However,
TRE and Tm of NBT9BT FC are comparable (Table 1). For Q1150, Q-Air800 and Q-O2800
samples, TRE < Tm for NBT6BT, while TRE > Tm for NBT9BT. The permittivity is influenced
by the changes in domain population and the number density of interfaces, for example
domain or grain boundaries. While NBT6BT FC is characterized by weak lamellar domain
contrast coexisting with polar nanoregions, NBT9BT FC exhibits a strong lamellar domain
contrast at room temperature [37]. Further, quenching alters the phase assemblage and
lamellar/PNR domain contrast in NBT100xBT, especially for the MPB compositions [37].
The difference in TRE for the quenched and subsequently annealed samples of NBT6BT
and NBT9BT can be rationalized by correlating to temperature-dependent changes of the
domain morphology. However, it is beyond the scope of this study.

3.2. Annealing Effects on the Conductivity of Quenched Samples

One of the hypotheses proposed earlier for enhanced TF-R of quenched samples is the
increase in oxygen vacancy concentration [23,38]. This perspective was further strength-
ened, when annealing in air/oxygen atmosphere was shown to revert the quenching
induced changes in TF-R back to that of the furnace cooled state [23,38,39]. Therefore, it
is expected that annealing also alters the electrical conductivity of the quenched samples.
Figure 4 depicts the Nyquist plots of impedance of quenched NBT6BT and NBT9BT at
800 ◦C as a function of time during in situ annealing in air and oxygen atmosphere. The
plots feature a single semicircle for all the samples, indicating a single dominant conduction
process. Further, the Nyquist plots are not very different as a function of annealing time.
The dc conductivity evaluated from the low frequency response of the impedance dataset
is plotted in Figure 5. Note that the conductivity of the quenched samples exhibit marginal
changes as a function of time during the annealing step. In contrast, anneaing the the
quenched NBT6BT samples in air at 800 ◦C for 2 h already decreases the TF-R from 136 ◦C
to 116 ◦C [38].

In the extreme case, annealing at 800 ◦C for 12 h reverts and decreases the TF-R of the
quenched state back to that of furnace cooled specimen (Table 1). The impedance analysis
combined with the in situ annealing study and dielectric investigations (Section 3.1) indi-
cate that the changes in TF-R of the quenched and subsequently annealed samples are not
accompanied by the changes in the conductivity. Therefore, these results establish weak
correlation between the quenching-induced stabilization of ferroelectric order and the re-
lated changes in the defect chemistry. The negligible influence of the annealing atmosphere
(air/oxygen) holds true here as well, exemplified by the similar bulk conductivities (<3%
difference) of air and oxygen annealed samples (Figure 5).

Figure 6 depicts the Nyquist plots of quenched samples measured in situ during the
annealing step at 600 ◦C, in comparison to the furnace cooled specimen. Both quenched
NBT6BT and NBT9BT indicate lower resistivity, with stronger decrease noted for quenched
NBT6BT. This is in accordance with prior reports [39,40]. From the Arrhenius plots of
conductivity (Figure 7), the slope is used to estimate the activation energy (denoted with
units eV in the figure). Albeit the increase in bulk conductivity of the quenched samples, the
oxygen vacancy concentration is just at the threshold limit for high ionic conductivity [40].
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plots for the quenched samples correspond to the in situ annealing in air and oxygen atmosphere.

From the above, it is clear that although the increase in conductivity of quenched
samples cannot be disputed, the unchanged conductivity in the annealing study hints at
additional mechanisms at play. Note that prior works indicate an increase in the lattice
distortion upon quenching [18,23,38] and a counter effect upon annealing at 800 ◦C [38].
Considering that the Bi3+ ion at the A-site exhibits off-centered displacements even for
the furnace cooled specimen [41,42], it is plausible that the off-centering effects are more
pronounced upon quenching. The off-centered displacements enhance further along the
polar direction upon quenching [43], thus improving the lattice polarizability. This then
reflects as the observed increase in average lattice distortion, corroborated by the recent
structural and microstructural investigations on the quenched samples [37,43].

3.3. Electromechanical Hardening

Since the bulk conductivity of the quenched specimen is higher than that of the
furnace cooled specimen (Figure 7), the changes in defect chemistry can be expected to
alter the electromechanical response. Hardening in ferroelectrics is typically associated
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with defect dipoles that orient along the direction of spontaneous polarization, that con-
strain the domain wall motion [31]. However, mobile charged defects can also pin the
domain walls in their position and lead to ‘hard-type’ characteristics [32]. Since quenched
samples exhibit enhanced conductivity (Figure 7), hinting at increased oxygen vacancy
concentration [23,38], the electromechanical properties are investigated to probe into the
hardening effects. The characteristic feature of hardened ferroelectrics is the decrease in
remanent polarization and strain and increase in coercive field and mechanical quality
factor. Since NBT100xBT is a non-ergodic relaxor, the hardening behavior is characterized
after poling, upon which, the material transforms to the ferroelectric state. Given the
similar TF-R (Figure 1g,h and Figure 2g,h, Table 1) and bulk conductivity (Figures 5 and 7)
for air/oxygen annealed samples, the electromechanical properties were measured only
for quenched samples subjected to annealing in air atmosphere. Upon poling, furnace
cooled samples of NBT6BT and NBT9BT exhibit pinched hysteresis response (Figure A1),
typical for these materials. However, this is absent for the quenched samples with a 15%
increase in the remanent polarization for both NBT6BT Q1150 and NBT9BT Q1150 in
comparison to FC samples (Figure 8a,b). NBT6BT Q-Air800 exhibits a further 10% increase
in the remanent polarization in comparison with NBT6BT Q1150. A striking feature is the
35% and 18% increase in total strain for NBT6BT Q1150 and NBT9BT Q1150 respectively.
Similar to the polarization response, a further 16% and 8% increase in the total strain is
observed for NBT6BT Q-Air800 and NBT9BT Q-Air800, respectively, in comparison with
Q1150 samples. Note that in the unpoled state, the hysteresis response of furnace cooled
and quenched NBT6BT were comparable, while quenched NBT9BT exhibited a difference
that was attributed to the spontaneous ferroelectric order that develops in the material [23].
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in air for (a,c) NBT6BT and (b,d) NBT9BT obtained in the poled state. The numbers with units kV/mm in (c) and (d)
correspond to the coercive fields.
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The polarization and strain hysteresis in the poled state exhibits a marked departure
from the expected influence of oxygen vacancies constraining the domain wall mobility;
instead, the increase in total strain and remanent polarization is plausibly a signature of
enhanced ferroelectric order. This is in accordance with recent reports that establish increase
in volume fraction of polarized regions [44] and enhanced lamellar domain contrast [37].
The hysteresis response of Q-Air800 samples are in contrast to the depolarization behaviour,
wherein the TF-R of Q-Air800 samples are similar to FC (Table 1). The increase in remanent
polarization and total strain upon annealing the quenched samples can be rationalized
considering the fact that the annealing tends to equilibrate the defect concentration, thus
easing the domain wall mobility. The hardening effects, although minor are noted from
the increase in coercive field for Q1150 and its decrease upon subsequently annealing the
quenched samples in air (Q-Air800). The coercive field (established from the minimum in
strain-field hysteresis) is 2.9, 3.3 and 3.0 kV/mm for FC, Q1150, and Q-Air800 of NBT6BT,
respectively. The coercive field is 2.4, 2.8 and 2.6 kV/mm for FC, Q1150, and Q-Air800 of
NBT9BT, respectively.

A distinct signature of hardening is established from the unipolar strain-field hystere-
sis (Figure 9) and mechanical quality factor (Figure 10). Note that the unipolar hysteresis
response is almost identical for FC, Q1150, and Q-Air800 samples, indicating similar
hysteresis losses.
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subjected to annealing in air for (a) NBT6BT and (b) NBT9BT obtained in the poled state.

The mechanical quality factor is a dimensionless measure of the losses of a piezo-
electric material at resonance [33] and is one of the figures of merit to gauge materials
for high power applications, such as ultrasonic motors, transformers, and high intensity
focused ultrasound. The mechanical quality factor exhibits a 10–15% increase upon quench-
ing. Negligible changes in the mechanical quality factor and coupling coefficient upon
quenching was also previously noted for pure NBT [18]. These results indicate that the
electromechanical hardening effects upon quenching is not as pronounced as is the case
with ‘hard-type’ NBT-based materials [12,14,22]. Nevertheless, this makes quenching a
promising approach to tailor material properties beyond the limits of chemical doping.
For example, 0.5 mole% Zn2+ doping in NBT6BT exhibits a TF-R of 143 ◦C and mechanical
quality factor of 287; quenching 0.5 mole% Zn2+ doped NBT6BT was demonstrated to
increase the TF-R further to 163 ◦C, while retaining the mechanical quality factor at 280 [14].
Note that, quenching the doped composition resulted in a significant increase in TF-R
beyond the upper limit established by doping (with 1 mole% Zn-doping in NBT6BT, TF-R
increases only marginally to 150 ◦C) [14]. A similar observation of increase in TF-R upon
quenching, independent of that established by chemical modification was also recently
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noted for quenching 1 wt.% CuO-added ternary (Bi1/2Li1/2)TiO3-modified NBT6BT solid
solution [45].
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4. Conclusions

Annealing the quenched samples of NBT6BT and NBT9BT leads to a decrease in TF-R
but has negligible effects on the bulk conductivity. This indicates no correlation between
the defect chemistry and the thermal depolarization of quenched NBT-BT. While quenching
does enhance the bulk conductivity, indicating increased oxygen vacancy concentration,
it is not significant enough to strongly alter the domain wall mobility and thus results in
minor hardening effects, reflected as 10–15% increase in mechanical quality factor. These
results provide the premise for combining quenching with the chemical doping strategy to
facilitate enhancement of the depolarization temperature without significantly altering the
electromechanical properties.
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