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Abstract: We investigate the molecular origin of shear-thinning in melts of flexible, semiflexible
and rigid oligomers with coarse-grained simulations of a sheared melt. Entanglements, alignment,
stretching and tumbling modes or suppression of the latter all contribute to understanding how
macroscopic flow properties emerge from the molecular level. In particular, we identify the rise and
decline of entanglements with increasing chain stiffness as the major cause for the non-monotonic
behaviour of the viscosity in equilibrium and at low shear rates, even for rather small oligomeric
systems. At higher shear rates, chains align and disentangle, contributing to shear-thinning. By
performing simulations of single chains in shear flow, we identify which of these phenomena are of
collective nature and arise through interchain interactions and which are already present in dilute
systems. Building upon these microscopic simulations, we identify by means of the Irving–Kirkwood
formula the corresponding macroscopic stress tensor for a non-Newtonian polymer fluid. Shear-
thinning effects in oligomer melts are also demonstrated by macroscopic simulations of channel flows.
The latter have been obtained by the discontinuous Galerkin method approximating macroscopic
polymer flows. Our study confirms the influence of microscopic details in the molecular structure of
short polymers such as chain flexibility on macroscopic polymer flows.

Keywords: shear flow; shear-thinning; semiflexible polymers; oligomers; heterogeneous multiscale
methods; molecular dynamics; discontinuous Galerkin method; soft matter; non-Newtonian fluids

1. Introduction

Understanding the relation between viscosity and structure and its implications on
macroscopic flow is of prime importance, particularly for semiflexible polymers, which
are omnipresent in nature (DNA, actin filaments, microtubules), and synthetic polymers
(polyelectrolytes, dendronised polymers). Technological applications are manifold and
include, e.g., purifying DNA in microfluidic devices [1–3] or separation of polymers [4].
Computer simulations at multiple scales nowadays provide powerful tools to probe and
understand fundamental structure-flow relations as well as their applications.

At the microscopic level, non-equilibrium molecular dynamics (NEMD) simulations
have been applied for forty years [5–16] to study how macroscopic flow properties, such
as shear-thinning, emerge from dynamics of microscopic structures. From the beginning,
fundamental issues were approached from two sides. On the one hand, generic bead-spring
models (similar to the ones applied in this work) were used to probe the general behaviour
of polymer melts under shear, such as shear viscosity at zero shear rate [5], progressive
alignment and elongation with shear and corresponding correlations with stress [7], the
increase in viscosity when approaching the glass-transition in polymer melts and movement
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modes of individual chains [10]. On the other hand, research in this direction was also
driven by modelling and comparing simulations with actual experiments involving specific
polymers [6,8,9]. The underlying models tend to be more involved in these cases and
include bending and even torsion terms absent in the early studies mentioned above. It
therefore comes as a bit of a surprise that the specific influence of stiffness on shear-thinning
in polymers has only recently come into the focus of attention. Particularly, Reference [13]
provides a comprehensive study and already anticipates some of the effects also discussed
in this work, while [14] focuses on the influence of chain stiffness on individual movement
modes in single chain simulations in a MPCD solvent. We will argue, amongst others, that
the emergence and decline of entanglements (e.g., as considered for melts of long flexible
chains under shear in [17] and for polyethylene in [18,19]) may also play an important role
for short oligomers in this context.

For complex multiscale systems, bridging over a large range of dynamically cou-
pled scales is a challenging problem. In previous decades, this question has led to the
development of new mathematical algorithms and hybrid multiscale methods. One pos-
sibility to build a multiscale algorithm relies on the Lagrangian–Eulerian decomposition,
where the Lagrangian-type particles are embedded in the Eulerian description of fluid;
see, e.g., [20–22]. Another approach is based on the domain decomposition. Hereby,
a small accurate atomistic region is embedded into a coarser macroscopic model, see,
e.g., [23]. Several hybrid models combining particle dynamics with the macroscopic
continuum model can be found in the literature. In this context, we should mention,
e.g., the hybrid heterogeneous multiscale methods [21,22,24–28], the seamless multiscale
methods [29,30], the equation-free multiscale methods [31,32], the triple-decker atomistic-
mesoscopic-continuum method [23], and the internal-flow multiscale method [33,34]. A
nice overview of multiscale flow simulations using particles is presented in [35].

In this paper, we apply a hybrid multiscale method that couples atomistic details ob-
tained by molecular dynamics with a continuum model approximated by the discontinuous
Galerkin method. In order to extract mean flow field information from the molecular dy-
namics, averaging needs to be performed. Specifically, the required rheological information
for the complex stress tensor is calculated by means of the Irving–Kirkwood formula [36].
Consequently, the averaged stress tensor is passed to the macroscopic continuum model.
Thus, our method belongs to the class of hybrid particle-continuum methods under the
statistical influence of microscale effects. We note in passing that the degree of scale separa-
tion of a physical system influences the sensitivity of the accuracy of a solution and the
computational speed-up over a full molecular simulation [34].

The present paper is organised in the following way. First, we review and explore with
NEMD simulations the molecular foundation of shear-thinning in low molecular weight
polymers as a function of chain stiffness in the framework of a microscopic bead-spring
model (Sections 2 and 3). In particular, we will show how shear-thinning emerges from
an intricate interplay of molecular alignment, stretching and tumbling modes [12,14,37].
The comparison of our high-density melt with simulations of single chains will also al-
low us to provide educated guesses for the density dependence of individual effects. In
Sections 4 and 5, we use microscopic data obtained from simulations in Section 3 as input
for the study of various macroscopic channel flows using a hybrid multiscale method and
investigate differences from Newtonian flow behaviour arising due to shear-thinning effects.

2. Microscopic Model and Simulation Techniques

For our microscopic model, we use standard bead-spring chains to represent the
oligomers, as formulated by Kremer and Grest [38]. In this model, all beads interact with
each other via a repulsive Weeks–Chandler–Andersen potential [39]:

VWCA(r) = 4ε

[(σ

r

)12
−
(σ

r

)6
+

1
4

]
, r < 2

1
6 σ

= 0, r > 2
1
6 σ

(1)
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with σ = 1 and ε = 1. Adjacent beads are connected with an additional FENE interac-
tion [40,41]:

VFENE = −1
2

KR2 ln
[

1−
( r

R

)2
]

(2)

with K = 30 and R = 1.5. Semiflexibility is implemented with a bending potential:

Vθ = κ(1 + cos θ) (3)

with θ being the angle between the three involved consecutive atoms and κ being the
coefficient of stiffness. A cosine type bending potential such as Equation (3) originates
from the well-known Kratky–Porod model [42–44] and is a common choice for modelling
semiflexibility in polymers [45]. Note that even though our short flexible chains are essen-
tially unentangled, Reference [46] suggests for a very similar model that the entanglement
length drops steeply with increasing stiffness for semiflexible chains, implying that chains
of length N = 15 are already entangled for our intermediate range of stiffnesses (κ ≈ 5).

Non-equilibrium molecular dynamics simulations of a sheared melt at density ρ = 0.8
were performed using the LAMMPS simulation package [47]. System sizes were set
to (15σ)3 if not mentioned otherwise. Shear along the x-direction was introduced by
superimposing a velocity gradient on thermal velocities using the SLLOD equations [48–51]
and coupling the latter to the Nose–Hoover thermostat [50,52]. Temperature T = 1 was
maintained throughout our simulations, and the Velocity Verlet algorithm was used to
integrate the equations of motion. Note that LAMMPS implements a non-orthogonal
simulation box with periodic boundary conditions that deforms continuously in accordance
with the applied shear rate [53,54]—an approach that has been shown to be equivalent to
the commonly used Lees–Edwards boundary conditions [51,55].

Shear viscosity η(γ̇) was calculated using the relation

η =
σxy

γ̇
, (4)

where γ̇ is the applied shear rate and σxy is a non-diagonal component of the stress tensor
as determined by the Irving–Kirkwood formula [36,56]:

σxy = − 1
V

[
N

∑
i

(
mivi,xvi,y

)
+

N

∑
i

N

∑
j>i

(
rij,x fij,y

)]
. (5)

Here, mi is the mass of the ith particle, vi the peculiar velocity of the ith particle, and rij
and fij are the distance and force vectors between the ith and the jth particle, respectively.
For comparison, we have also calculated shear viscosity via the Green–Kubo relation:

ηGK =
V

kBT

∫ ∞

0

〈
σxy(t)σxy(0)

〉
dt. (6)

where V is the volume of the system, and kB is the Boltzmann constant. ηGK is measured
under equilibrium conditions (γ̇ = 0) and serves as a reference value for η(γ̇→ 0).

Note that forces arising from the thermostat and its coupling to the SLLOD conditions
are not explicitly considered in Equation (5) and may potentially result in a small systematic
error. For a detailed discussion of this effect in the context of dissipative thermostats, the
reader is referred to Reference [57].

In addition, we have carried out Brownian dynamics simulations of single chains
(same potentials as above) in an external shear flow profile. The equation of motion of
monomers i is given by

ṙi =
1
ζ

fi + γ̇zi + ξi(t), (7)

where ζ is the monomeric friction, fi the intermolecular force acting on i, and ξi,α(t) an
uncorrelated Gaussian white noise with mean zero obeying the fluctuation–dissipation
theorem, i.e., 〈ξiα(t)ξiβ(t′)〉 = (2kBT/ζ) δijδαβδ(t − t′). In the simulations, we used an
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Euler forward algorithm with a time step ∆t = 10−4ζσ2/ε. The time scales of the two
models were adjusted by mapping the Rouse times of fully flexible chains (κ = 0) at
equilibrium (γ̇ = 0). To determine the Rouse time, we determined the autocorrelation
function of the squared end-to-end distance,

CRee(t) =
〈R2

ee(t)R2
ee(0)〉 − 〈R2

ee〉2
〈R4

ee〉 − 〈R2
ee〉2

. (8)

For ideal Rouse chains, it can be calculated analytically, giving

CRee(t) =
( 8

π2 ∑
podd

1
p2 e−p2(t/τR)

2
)2

, (9)

where p sums over the Rouse modes of the chain. At late times, the behaviour is dominated
by the first Rouse mode with p = 1. We thus fitted the late time behaviour of

√
CRee(t) to

the function Ae−t/τR for chains of length N = 15 in a melt and for the corresponding single
Brownian chains. The fit parameters for the prefactor A were in rough agreement with the
theoretical value 8/π2 = 0.81 in both cases (A = 0.87 for melt chains, and A = 0.90 for
single oligomers). The fitted Rouse time of melt chains was τR = (85.4± 0.1)

√
mσ2/ε, and

that of single oligomers was τR = (8.45± 0.02)ζσ2/ε. Hence, the time scales match when
choosing ζ = 10.1

√
mε/σ2. We have also carried out a more intricate mapping (discussed

in Appendix A), which matches Rouse times for each value of κ, but does not change our
results qualitatively.

3. Shear-Thinning in Oligomer Melts—A Molecular Analysis

In the following section, we would like to investigate and review the molecular
foundation of shear-thinning in low molecular weight polymer melts. We will show
and highlight that macroscopic flow properties of polymers are governed by an intricate
interplay of stretching, alignment and tumbling of individual molecules as well as collective
modes at the molecular level.

Figure 1a displays viscosity η as a function of shear rate γ̇ for flexible oligomers with
different chain lengths N. Flexible oligomers exhibit shear-thinning [10], i.e., decrease of
viscosity with increasing shear rate. For consistency, we also compare viscosities as derived
from Equation (5) with those obtained from the Green–Kubo relation, Equation (6) (points
on the y-axis). The latter agree with the values for γ̇ = 0.001 within the error bars. The
overall shape of η(γ̇), namely a plateau at low shear rates followed by a shear-thinning
regime, which becomes more pronounced with increasing molecular weight, has also been
observed for various polymers experimentally [9,58,59]. The inset shows that ηGK increases
linearly with N for small chain lengths in agreement with simulations from [5].

In Figure 1b, we investigate the dependence of viscosity on shear rate as a function
of stiffness for an oligomer melt with chain length N = 15. While for large shear rates,
viscosity decreases with increasing stiffness and intriguingly even drops below the value
determined for monomers (for κ > 3), η(κ) becomes non-monotonic for low shear rates.
For γ̇ = 0.001, flexible chains with κ = 0 have the lowest viscosity, while viscosity increases
for semiflexible chains and drops down again for rigid chains, an effect described in [13]
for a similar model. A similar non-monotonic behaviour is exhibited by ηGK (shown on
the margins of Figure 1b as a function of κ). While the rise of viscosity can already be
explained with the emergence of entanglements for intermediate stiffnesses, at the end of
this section we will associate the following decline with a collective alignment of chains
(and associated disentanglements), which are amplified by shear (Figure 4).
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Figure 1. (a) Viscosity η as a function of shear rate γ̇ for a melt of flexible oligomer chains (κ = 0) with
N = 1, 2, 5, 10 and 15 beads per chain. Corresponding shear viscosities according to the Green–Kubo
relation ηGK are shown on the y-axis and displayed as a function of N in the inset. Density ρ = 0.8
and box dimensions are 10× 10× 10σ3 for N = 1, 2, 5 and 10 and 15× 15× 15σ3 for N = 15. (b) η(γ̇)

for a melt with N = 15 and ρ = 0.8 and varying stiffnesses. ηGK for κ = 0, 3, 5, 7 and 10 are displayed
on the y-axis. The viscosity for monomers at γ̇ = 0.5 (blue triangle) is also shown for reference. If not
displayed explicitly, errors are smaller than symbol sizes. All lines serve as guides to the eye.

In Figure 2a, we quantify the stretching of individual chains with shear. The size
of a flexible chain as measured by the mean square end-to-end distance 〈R2

ee〉 increases
continuously as a function of shear rate. For κ = 5, the average size only increases
slightly towards moderate shear rates before decreasing again at high rates similar to [14],
ruling out stretching as a main driving force for shear-thinning in this regime for melts of
semiflexible chains. Figure 2b visualises the alignment of chains along the shear direction
by plotting the ratio of the x-component to the total 〈R2

ee〉. Without shear, each component
contributes equally, yielding a ratio of 1/3 (dotted line in Figure 2b). While this holds
for flexible chains at low shear rates, deviations become more pronounced for shear rates
exceeding 0.01. This is also roughly the rate at which noticeable deviations from ηGK
start to occur in Figure 1a and shear-thinning sets in. This behaviour becomes even more
pronounced for semiflexible chains. At γ̇ = 0.001, chains are already partially aligned, and
the viscosity in Figure 1b already deviates significantly from the value obtained from the
Green–Kubo relation. Shear-thinning sets in at even lower shear rates and is reinforced
with progressive alignment of chains. This relation provides a clear indication that chain
alignment is strongly correlated with the occurrence of shear-thinning in agreement with
previous observations [13,14]. Note that for κ > 5, chains are already stretched and aligned
in equilibrium simulations without shear (values on y-axis of Figure 2a,b) indicating the
emergence of nematic behaviour in agreement with previous observations in a similar
model [46,60]. For κ = 10, there is even an initial drop from the bulk ratio once shear sets
in. Interestingly, stretching and alignment of chains can already be observed qualitatively
in simulations of single chains in shear flow (dashed lines in Figure 2a,b), indicating that
these phenomena should in principle be observable for melts of all densities. However,
while the alignment of flexible chains is well-reproduced, the increase is less pronounced
for higher stiffnesses, indicating that collective alignment contributions due to stiffness are
not captured by single chain simulations.

In the following, we turn to movement modes of individual chains.
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Figure 2. (a) 〈R2
ee〉 as a function of shear rate γ̇ for stiffnesses κ = 0, κ = 5 and κ = 10 at density

ρ = 0.8. (b) Ratio of the x-component 〈R2
ee,x〉 and 〈R2

ee〉 as a function of γ̇ for κ = 0, κ = 5 and κ = 10.
The dotted line at the ratio of 1/3 marks the value for an unsheared melt. Results for a single chain
in shear flow are shown as dashed lines (with points) in both figures. Values on the y-axis (in (a,b),
colour scheme such as in Figure 1b) correspond to equilibrium simulations without shear. As there is
no preferred orientation in the bulk, the value for the ratio refers to the largest component. For κ ≤ 5,
there is no preferred orientation in the bulk. All lines serve as guides to the eye.

Figure 3 shows the distribution of R2
ee of individual chains in melts. While equilibrium

simulations (γ̇ = 0) have a broad distribution of end-to-end distances for κ = 5 (solid green
line in Figure 3a), conformations develop a preference for stretched chains at moderate
shear rates (γ̇ = 0.01, solid red line). At about this rate, 〈R2

ee〉 displays a maximum
in Figure 2a. For the highest shear rate γ̇ = 0.5 (solid black line), U-shaped tumbling
conformations coexist with stretched conformations explaining the decrease of 〈R2

ee〉 in
Figure 2a for γ̇ > 0.02 [14]. For flexible chains, compact conformations dominate the
behaviour at small and large shear rates (Figure 3b), as already noted in [10], even though
the latter also exhibit some degree of stretched conformations. This also explains why
〈R2

ee〉 is significantly smaller in comparison to semiflexible chains (Figure 2a). It is worth
noting that the occurrence of compact conformations does not impede the continuous
alignment of chains along the shear direction with increasing shear rate, as demonstrated
in Figure 2b. The intricate interplay between stretching and tumbling as a function of shear
rate and stiffness can also be observed for our single chain simulations (as noted for flexible
chains already in [10] and studied in [11]), indicating that these movement modes are not a
collective phenomenon and should occur in melts of all densities [15].
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Figure 3. (a) Probability distributions P(R2
ee) for stiffness κ = 5 at shear rates γ̇ = 0, 0.01 and 0.5.

The two peaks of the distribution for γ̇ = 0.5 correspond to U-shaped configurations and stretched
configuration of individual oligomers, respectively, as indicated by typical snapshots. (b) P(R2

ee) for
stiffness κ = 0 and shear rate γ̇ = 0 and 0.5. Results for a single chain in shear flow are shown as
dashed lines in both figures.

In Figure 4, we finally investigate the non-monotonous behaviour of the Green–Kubo
viscosity ηGK and viscosity at low shear rates (γ̇ = 0.001) as functions of κ. ηGK increases
with increasing chain stiffness, reaches a maximum at about κ = 6 and undergoes a sharp
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decrease after that. Furthermore, η(γ̇ = 0.001) increases up to κ = 5 and decreases
subsequently. Intriguingly, ηGK matches with η(γ̇ = 0.001) up to κ = 3, but, between
κ = 4 and κ = 6, ηGK is significantly larger than η(γ̇ = 0.001). As already pointed out,
Reference [46] estimates that the entanglement length decreases with increasing persistence
length, lp, to a point at which the entanglement length becomes smaller than the chain
size. It estimates that at lp = 1.5, 3, 5, the entanglement lengths are approximately equal to
15, 8 and 6, respectively. Reference [61] estimates that the numerical values of lp are quite
close to the numerical values of κ. For example, κ = 3 and 5 correspond to lp ≈ 2.5 and ≈5,
respectively. Therefore, chains become entangled, and this effect increases with increasing
κ. It should be noted, however, that for both Reference [46] and [61], the number density
was 0.85, which is a bit higher than the number density of our system (0.8). Bond and
angular potentials forms also differ slightly in [46]. Incidentally, Reference [62] also obtains
an analytic expression that estimates entanglement length as a function of chain stiffness
for isotropic polymer chains. Unaligned and entangled chains impede collective motion
under equilibrium conditions, and as a result, ηGK(κ) increases up to κ = 6. Following
κ = 6, however, there is a sharp drop in ηGK. This is consistent with our observation
from Figure 2b that for κ = 7 and κ = 10, chains are already stretched and aligned under
equilibrium conditions, indicating that our system indeed undergoes an isotropic-nematic
transition following κ = 6. Entanglements decrease as chains align and conformations
become more susceptible to the applied shear, resulting in a decrease in ηGK. η(γ̇ = 0.001)
as a function of κ also exhibits a similar non-monotonous behaviour. While the initial
increase can also be attributed to progressive entanglements, for κ ≥ 4, the applied shear
already begins to align the chains towards the shear direction, counteracting entanglement
effects, as is evident in Figure 4b. As a result, η(γ̇ = 0.001) are lower than the corresponding
ηGK values. For κ ≥ 6, chains are more strongly aligned along the shear direction, thus
η(γ̇ = 0.001) as a function of κ decreases beyond κ = 5 [13]. This behaviour is, in contrast
to stretching and alignment with increasing shear rate, a collective phenomenon that
cannot be observed in corresponding simulations of single chains and should therefore
vanish gradually at smaller densities. Our finding that rheological properties in rather
short oligomeric systems are dominated by the emergence and decline of entanglements
may come as a surprise. However, it should be noted that some prior studies have also
associated shear-thinning with decreasing entanglements, albeit for much longer chains.
Reference [18] shows that in a linear polyethylene melt (C400H802) system comprising
polymers with a finite stiffness, the number of entanglement strands per chain decrease
with increasing shear rate. Reference [19] argues along similar lines for a melt comprising
of even longer linear polyethylene chains (C700H1402), and Reference [17] shows a similar
decrease in entanglements with increasing shear rate for flexible polymer chains (N = 200
and 400). In Appendix B, Figure A2 displays various configuration snapshots of oligomer
melts, which further visualise the interplay between disentanglement, alignment and shear.
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Figure 4. (a) Viscosity η as a function of stiffness κ for shear rate γ̇ = 0.001. Shear viscosity at zero
shear rate ηGK are shown as green dots. (b) 〈R2

ee,x〉/〈R2
ee〉 as a function of κ at γ̇ = 0.001 for melt and

single chain simulations (dashed lines). All lines serve as guides to the eye.
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4. Hybrid Multiscale Method

After studying the molecular origin of non-Newtonian behaviour of short polymer
melts, we now turn our attention to macroscopic simulations combining them with the
results of molecular dynamics.

The motion of an incompressible fluid flow at the macroscopic level is governed by
the continuity and the momentum equations

∇ · u = 0, in Ω× [0, T] (10a)
∂u
∂t

+ u · ∇u = ∇ · σ + g, in Ω× [0, T] (10b)

u = uD, on ∂ΩD (10c)

σ · n = 0, on ∂ΩN (10d)

u(t = 0) = u(0) in Ω, (10e)

where u is the velocity vector, σ the Cauchy stress tensor, and g an external body force. The
boundary of the computational domain Ω consists of the Dirichlet, Neumann and periodic
boundary, i.e., ∂Ω = ∂ΩD ∪ ∂ΩN ∪ ∂ΩP.

The Cauchy stress tensor can be split into two parts σ = −pI + τ with p being
an isotropic hydrostatic pressure and τ a viscous stress tensor. For the Navier–Stokes
equations, we have τ = η(∇u +∇uT) with η being a constant viscosity. This relation is
more complex when non-Newtonian polymer fluids are considered.

In this work, we apply the hybrid multiscale method that couples the molecular
dynamics simulations with the macroscopic model (10a–e). As explained in Section 2, the
macroscopic stress tensor can be derived from the Irving–Kirkwood formula (5).

Our extensive molecular dynamics simulations imply that the stress tensor can actually
be expressed in the following simple way

τ = η(γ̇)(∇u +∇uT). (11)

Finally, the viscosity–shear rate dependence leads to a well-known Carreau–Yasuda
rheological model [63]

η(γ̇) = η∞ + (η0 − η∞)(1 + (a2γ̇)a3)a1 (12)

with the following coefficients: for flexible polymers (stiffness κ = 0) η0 = 7.76, η∞ = 1.08441,
a1 = −0.425387, a2 = 54.3905, a3 = 1.28991; and for semiflexible polymers with κ = 5
η0 = 36.052, η∞ = 1.09319, a1 = −0.214969, a2 = 2143.96, a3 = 2.78713.

We note in passing that for a particular situation considered in this paper, our hybrid
multiscale method can be seen as a parameter passing sequential coupling multiscale
method, see, e.g., ref. [29] for a detailed description of the concurrent and sequential
coupling strategies.

The oligomer chain length in both cases is N = 15. Figure 5 compares the MD data
and the fitting with the Carreau–Yasuda model.

Our next goal is to calculate the shear-dependent viscosity η(γ̇). In what follows, we
consider for simplicity the situation of two-dimensional shear flows and use the notation
u = (u, v). Applying (12), we need the value of the shear rate γ̇ of the polymer flow. It can
be obtained from the strain-rate tensor

S =
∇u +∇uT

2
=

 ∂u
∂x

(
∂u
∂y +

∂v
∂x

)
2(

∂u
∂y +

∂v
∂x

)
2

∂v
∂y

 (13)

by rotating it with respect to the streamlines to the anti-diagonal matrix
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S′ = ΘSΘT =

(
0 γ̇/2

γ̇/2 0

)
(14)

by an angle θ, which for incompressible flows is θ = 1
2 tan−1(− Sxx

Sxy
). Here, Sij are com-

ponents of the strain-rate tensor S and Θ the rotation matrix [64,65]. The new strain-rate
tensor S′ corresponds to a pure-shear deformation (i.e., in absence of normal stresses). The
shear rate can therefore be calculated from the components of the original strain-rate tensor
S and the angle θ

γ̇/2 = Sxy cos(2θ)− Sxx sin(2θ). (15)

The stress tensor in the shear flow can be calculated in the normal-stress free basis and
transformed back to the original basis according to (11)

τ = ΘT(2η(γ̇)S′
)
Θ. (16)

As shown in (16), we consider in the present work shear dependent flows, where
the stress tensor or, more precisely, the viscosity are nonlinear functions of the local shear
rate. In order to consider more general flow conditions, such as the extensional flow, rigid
rotation and mixed flows, one needs to take into account not only the shear rate dependence
but a complete decomposition of a three-dimensional symmetric tensor (stress tensor) into
a six-dimensional basis. In such a way, not only the viscosity but also additional response
coefficients will be computed from microscopic simulations in order to determine the local
stress tensor. We refer the reader to our recent work [66] where complex flows in general
geometries were studied, see also [67].

0.001 0.01 0.1 1

γ
.

1

10

η

κ=0

κ=5

Figure 5. Shear viscosity of flexible oligomer chains and oligomer chains with stiffness κ = 5 as
obtained by non-equilibrium molecular dynamics (open symbols) and fitting by the Carreau–Yasuda
rheological fluid model Equation (12) (dashed curves, compare with Figure 1b). Bold symbols on the
y-axis represent viscosity values at γ̇ = 0 obtained from equilibrium molecular dynamics simulations.

We proceed by describing a numerical method applied to (10a–e). For time integration,
we apply the implicit BDF2 scheme, which leads to the following system

3
2

u(n+1) + ∆t
(
u(n+1) · ∇u(n+1) +∇p(n+1) −∇ · τ(n+1) − g(n+1)) (17a)

= 2u(n) − 1
2

u(n−1) in Ω

∇ · u(n+1) = 0 in Ω. (17b)
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Discretisation in space is realised by the discontinuous Galerkin (dG) method [68–70].
Domain Ω is discretised by a quadrilateral mesh Th with a meshsize h. Mesh faces Fh can
be either the inner interfaces between adjacent elements F i

h or boundary faces F b
h . The face

normal nF points from an arbitrarily chosen (but fixed) element T1 towards T2. The face
normal points outward of the domain Ω on boundary faces.

We consider broken Sobolev spaces Vh, Qh that consist of piecewise quadratic and
piecewise linear polynomials, respectively,

Vh := {v ∈ L2(Ω)| for all T ∈ Th, v|T is a quadratic polynomial} (18a)

Qh := {q ∈ L2(Ω)| for all T ∈ Th, q|T is a linear polynomial}. (18b)

The usual average and jump operators of a scalar-valued function fh on interfaces
between adjacent elements T1 and T2 are defined as

{{ fh}} =
1
2
( f |T1 + f |T2), [[ fh]] = f |T1 − f |T2 . (19)

Vector-valued functions are treated componentwisely. For boundary faces, we set
{{ fh}} = [[ fh]] = f |T , when not mentioned otherwise.

The Discontinuous Galerkin (dG) method for an oligomer fluid flow (10a–e) is for-
mulated as follows. Given the initial data u(0)

h ∈ Vh, we look for a sequence of numerical

solutions u(n+1)
h ∈ Vh, p(n+1)

h ∈ Qh for n = 1, . . . , NT − 1 such that(
3
2

u(n+1)
h ,ϕh

)
+ ∆t

(
c(u(n+1)

h , u(n+1)
h ,ϕh)− b(p(n+1)

h ,ϕh) + a(η(γ̇h
(n+1)), u(n+1)

h ,ϕh)
)

= ∆t (g(n+1)
h ,ϕh) +

(
2u(n)

h −
1
2

u(n−1)
h ,ϕh

)
(20a)

b(qh, u(n+1)
h ) = 0 for any ϕh ∈ Vh, qh ∈ Qh. (20b)

The numerical shear rate γ̇h
(n+1) is computed locally, i.e., in each quadrature point

from the broken gradients ∇u(n+1)
h . Hereby, we compute the first approximation u(1)

h ,
e.g., by the Euler implicit method. The L2(Ω) scalar product is denoted by (· , ·). In what
follows, we define the discrete forms a, b, and c.

The convective term is rewritten in the conservative form and the interface integrals
are approximated by means of the Lax–Friedrichs numerical flux

c(uh, wh,ϕh) = −
∫

Ω
(uh ⊗wh) : ∇ϕh +

∫
Fh

(
{{uh ⊗wh}} · nF +

1
2

Λ[[uh]]
)
· [[ϕh]] (21)

where Λ = max(λ|T1 , λ|T2), and λ is the absolute eigenvalue of the Jacobian matrix(
∂[(u⊗w) · nF ]/∂u

)
|ū,w̄. The average and jump operators on the Dirichlet boundaries are

defined as

{{uh ⊗wh}} =
1
2
(
(uh ⊗wh)|T + (uD ⊗wD)

)
, [[uh]] = (uh|T − uD) F ⊂ ∂ΩD (22a)

{{uh ⊗wh}} = (uh ⊗wh)|T , [[uh]] = uh|T F ⊂ ∂ΩN (22b)

[[ϕh]] = ϕh|T F ⊂ ∂ΩD ∪ ∂ΩN . (22c)

The divergence of the velocity uh as well as the discrete gradient of the pressure ph
are both approximated using the form

b(rh, φh) = −
∫

Ω
φh · ∇rh +

∫
Fh\∂ΩN

{{φh}} · nF [[rh]]. (23)
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To discretize the viscous, terms we employ an almost-standard symmetric interior
penalty method (SIP), first introduced in [71] and extensively analysed in [72]

a(γ̇h, uh,ϕh) =
∫

Ω
η(γ̇h)(∇uh +∇uT

h ) : ∇ϕh +
∫
Fh\∂ΩN

µPη(γ̇h)[[uh]] · [[ϕh]]

−
∫
Fh\∂ΩN

({{
η(γ̇h)(∇uh +∇uT

h )
}}

nF
)
· [[ϕh]] +

({{
η(γ̇h)(∇ϕh +∇ϕT

h)
}}

nF
)
· [[uh]]. (24)

On the Dirichlet boundaries F ⊂ ∂ΩD, we set

{{. . .}} = (. . .)|T , [[uh]] = (uh|T − uD), [[ϕh]] = ϕh|T . (25)

Coefficient µP is a penalty parameter that we choose for a quadraliteral mesh in the
following way [73]

µP = αPc =
{

αP max(c|T1 , c|T2) F ∈ F i
h

αP c|T , F ∈ F b
h

(26a)

c|T = 32 A(∂T\F b
h )/2 + A(∂T ∩ F b

h )

V(T)
, (26b)

where αP ≥ 1 is a user-defined small coefficient. Area and volume are denoted by A and V,
respectively. We conclude this section by mentioning that the resulting nonlinear system is
approximated by the Newton method employing the Dogleg-globalisation and a direct
sparse solver for the linearised system; see [74].

5. Two Channel Flows of a Non-Newtonian Oligomer Fluid

In this section, we illustrate the consequences of shear-thinning, whose microscopic
origins have been discussed in previous sections, on two examples of macroscopic channel
flows. Numerical simulations have been realised within BoSSS code, for more details see
also [20,68,69,74,75].

In the first test, the so-called Poiseuille flow [76] is simulated. Here, an oligomer melt
flows through a narrow channel of length ` = 1, driven by a pressure difference between
the outlet and inlet of the channel. The intensity of the flow is controlled by the pressure
parameter related to the external pressure gradient Px = (Pin − Pout)/` = −∂p/∂x. Since
the viscosity is a function of the shear rate, we compute the Reynolds number using the
averaged viscosity η̄ = (η0 + η∞)/2, i.e.,

Re =
U L

η̄
, (27)

where U is the characteristic velocity (maximal inflow velocity) and L the characteristic
length, i.e., the channel diameter L = 1. In order to also take into account the effects of
asymptotic viscosity values, we define Re0 = UL/η0, Re∞ = UL/η∞ and introduce them
in Table 1.
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Table 1. Reynolds numbers.

κ = 0

η0 = 7.76 η∞ = 1.084 η̄ = 4.422

Px U Re0 Re∞ Re

0.02 3.25 × 10−4 4.18 × 10−5 2.99 × 10−4 7.34 × 10−5

0.2 3.70 × 10−3 4.76 × 10−4 3.41 × 10−3 8.36 × 10−4

1 3.29 × 10−2 4.24 × 10−3 3.04 × 10−2 7.45 × 10−3

κ = 5

η0 = 36.05 η∞ = 1.093 η̄ = 18.57

Px U Re0 Re∞ Re

0.02 7.08 × 10−5 1.96 × 10−6 6.48 × 10−5 3.81 × 10−6

0.2 3.69 × 10−3 1.02 × 10−4 3.38 × 10−3 1.99 × 10−4

1 5.49 × 10−2 1.52 × 10−3 5.03 × 10−2 2.96 × 10−3

For the macroscopic model of our hybrid multiscale method, we have used a grid with
128× 1024 mesh cells, i.e., the mesh parameter h = (1/128, 1/1024). Numerical simulations
on a coarser grid confirm that the steady-state results presented here are independent on
the mesh resolution. Figure 6 shows the steady-state velocity profiles across the channel for
flexible (κ = 0) and semiflexible (κ = 5) polymer chains of the length N = 15. The external
pressure drop is chosen at values of Px = {0.02, 0.2, 1} in order to study the influence
of the different regimes of the shear rate-dependent viscosity on an oligomer flow. At
low-pressure drop (Px = 0.02 in Figure 6a), the flow is very slow and the shear rates are
low, too. The viscosity of both polymeric systems is at the Newtonian plateau (cf. Figure 5).
The viscosity of flexible chains is lower than that of the semiflexible chains (ca. 8 vs. 36),
and therefore, the velocity of the flexible chains is higher than that of the semiflexible chain
melt. At moderate pressure drop (Px = 0.2 in Figure 6b), the viscosity of the flexible chains
is still nearly a constant (the Newtonian regime), whereas the semiflexible chain melt is
already in the shear-thinning regime. By coincidence, the amplitude of the two profiles at
the centre of the channel is approximately the same, and one can easily recognise that the
shapes of the velocity profiles are very different: the semiflexible chains exhibit a broader
distribution (Figure 6b). Further increase in the pressure drop leads to an inverse situation:
the melt of semiflexible chain flows faster through the channel than the flexible chains melt
(cf. Px = 1 in Figure 6c).
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Figure 6. Steady-state velocity profiles of the pressure-driven channel flow of oligomer melts
consisting of either flexible or semiflexible chains with stiffness κ = 5. Solutions are computed by a
hybrid MD-dG method (20b) for various external pressure difference parameters Px.
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To compare different non-Newtonian and Newtonian flows, we plotted in Figure 7
the velocity distributions normalised by the maximal velocity together with the Newtonian
fluid solution. (i) At low-pressure drop, the flow of both flexible and semiflexible melts is
Newtonian, and it deviates from the Newtonian regime as the external pressure difference
increases. (ii) The non-Newtonian effect increases progressively in the flexible chain
melt, but it is non-monotone for the semiflexible chains: Px = 0.2 causes a larger non-
Newtonian effect on the velocity distribution than Px = 1. The reason for this retrograde
non-Newtonian behaviour is the following: The semiflexible chain melt is coming into the
regime of a second plateau of viscosity at high shear rates where the melt behaves like at
low shear rates, but the flow velocity is larger due to lower viscosity. The conjecture on the
existence of the second plateau at high shear rates is based in the existence of a positive
curvature of η(γ̇) for γ̇ > 0.01 in Figure 5. In contrast, the microscopic data for a flexible
chain does not indicate positive curvature within the measured shear rates.
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Figure 7. Velocity profiles of flexible and semiflexible oligomer chains in comparison with Newto-
nian flow profiles. The velocity profiles shown in Figure 6 were normalised by the corresponding
max(u(·, y)).

We proceed with the analysis of viscosity distributions η(y), see Figure 8. For slowly
flowing melts (Px = 0.02 in Figure 8a) the viscosity is almost constant in flexible and
semiflexible chain melts. At moderate pressure drop Px = 0.2, the viscosity is almost
constant in the flexible chain melt, but it is Λ-shaped with a large amplitude variation
between the centre of the channel and near the walls for the semiflexible chain melt. At
large pressure drop (Px = 1), the semiflexible chains develop a kind of viscosity spike
localised at the centre of the channel due to γ̇(`/2) = 0. Except for this singular region, the
viscosity distribution of semiflexible chains is very flat, and the viscosity value is smaller
than in the flexible chain melt.
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Figure 8. Steady-state viscosity distributions across the channel flow of flexible and semiflexible
oligomer melts at various external pressure drops Px.
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The second test is devoted to the study of complex geometry effects. Here we investi-
gate non-Newtonian flows in a channel with a backward-facing step, see Armaly et al. [77].
Newtonian flows in such a channel have been studied in, e.g., [78]. Depending on the
inflow velocity, this flow can be laminar, transitional or turbulent. In the laminar regime
at low Reynolds number, one or more recirculation zones of the secondary flow after the
expansion arise. One zone is located directly behind the backward-facing step, and it can
be observed already for a very low Reynolds number. Further zones randomly appear and
disappear in the case of high Reynolds numbers. In this test, there is a broad distribution of
the shear rates since the intensity of the flow and the shape of streamlines are very different
in the main and the secondary flows.

We study the flow of chain molecules in the channel of the length ` = 10 and the
height at the inlet Linlet = 1 and at the outlet Loutlet = 2. The inlet is located at x = 0.
The computation domain is a structured quadrilateral mesh shown in Figure 9a. In the
x-direction, the mesh is homogeneous with the mesh step hx = 1/20 except for the region
near the backward-facing step x ∈ [1, 2] where the grid density has been smoothly increased
in order to better resolve the transit region. The fine mesh step is hx = 1/100. In the y-
direction, the mesh has several high-resolution regions: near the walls at y ∈ {−1, 0, 1},
in the middle of the inlet part (y = 0.5) and of the main part (y = 0), and one zone at
y = −0.5. The fine mesh resolution in these zones is hy = 1/1000, and the coarse resolution
is hy = 1/20 elsewhere with a smooth transition in-between.

At the inlet at x = 0, the Dirichlet boundary condition is applied for the inflow velocity
(u(0, y) = 4Uinlety(1− y), v(0, y) = 0), where Uinlet is the amplitude of the inflow velocity
used as a control parameter for simulations. The outlet boundary conditions at x = `
impose zero stress (Neumann boundary conditions), i.e., σ · n = 0.

Figure 9. (a) Structured quadrilateral mesh used in the Armaly experiment: a cut–out
[0. . .2]× [−1. . .1] of the full domain [0. . .10]× [−1. . .1] is shown. Mesh resolution increases smoothly
at x ≈ 1 and at y ∈ {−1,−0.5, 0, 0.5, 1}. Mesh step varies between hx = 1/20 and 1/100 for the
x–direction and between hy = 1/20 and 1/1000 for the y–direction. (b) Velocity and streamlines
of the non-Newtonian flows of flexible, semiflexible chain molecules, and of the Newtonian flow,
Uinlet = 10, κ = 0 (top), κ = 5 (middle), η = 1 (bottom).

Figure 9b compares the velocity and the flow streamlines for flexible, semiflexible
chain molecules and the Newtonian fluid for inflow velocity Uinlet = 10. Although the
overall pictures look similar, one can clearly observe variations in the recirculation zone in
the corner behind the step. To analyse the solution in details, we plot in Figure 10 velocity
cross-sections at x = 1.2, 2, 6 for different inflow velocities. These positions represent
three characteristic regions of the flow behind the backward-facing step: the secondary
flow vortex at the bottom corner directly behind the backward-facing step (x = 1.2), flow
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directly behind the secondary flow (x = 2), and flow far behind the secondary flow (x = 6).
The velocity profiles change between x = 1.2 and x = 6 from strongly asymmetric in the
transit region at the backward-facing step to a symmetric one in the region far behind the
step, where the characteristic non-Newtonian shape is observed. The curve for semiflexible
chains is located between the curves for flexible chains and Newtonian fluid, indicating the
retrograde non-Newtonian effect discussed also for the Poisseuile flow (cf. Figure 6c). This
effect becomes more visible in the case of high inflow velocity, cf. the recirculation region
shown in the insets of Figure 10.

Figure 11 shows a detailed analysis of the viscosity profiles at the cross-sections
x = 1.2, 2, 6. One sharp viscosity peak is located at the centre of the main part of the
channel (y = 0) far behind the backward-facing step (cf. Figure 11c). An analogous peak
has already been observed for the non-Newtonian Poiseuille flow in Figure 8. Another
peak arises at y < −0.5 due to the secondary flow at the corner (cf. Figure 11a), indicating
that the non-Newtonian effect plays an important role in this region, too.

Our extensive simulations explain that (i) the retrograde non-Newtonian behaviour is
a result of a nearly homogeneous distribution of the viscosity η(y) at high shear rates in
the flow regime when η(γ̇) does not vary significantly (post shear-thinning plateau). (ii) By
tuning the flow parameters, it is possible to control the strength of the shear-thinning effect
in a melt by varying the area under the Λ-shaped viscosity curve in Figure 8. (iii) A higher
flow intensity leads to a wider shear rate distribution and to a narrower Λ-shaped viscosity
spike. Note that the height of this spike is limited by the shear viscosity in the non-sheared
system, as the flat region of the velocity profile corresponds to shear rates close to zero.
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Figure 10. Velocity profiles at x ∈ {1.2, 2, 6} in Newtonian (blue curves) and non–Newtonian flows
of flexible κ = 0 (black circles) and semiflexible κ = 5 (red squares) chain molecules in the Armaly
experiment with Uinlet ∈ {1, 10}. Insets: zooming into the region of the secondary flow.
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Figure 11. Viscosity profiles at x ∈ {1.2, 2, 6} in non–Newtonian flows of flexible (black circles)
and semiflexible (red squares) chain molecules in the Armaly experiment with Uinlet ∈ {1, 10}.
Newtonian flow viscosity η = 1 is shown with blue lines.

6. Summary and Outlook

In this manuscript, we have investigated and reviewed the molecular origins of shear-
thinning at moderate to high shear rates in a high-density, low molecular weight melt of
coarse-grained bead-spring polymers as a function of chain length and stiffness concisely.

In equilibrium and at low shear rates, viscosity exhibits a non-monotonous behaviour
with increasing chain stiffness. While the decline (at high stiffnesses and low shear rates)
has previously been associated with an isotropic-nematic transition [13], here, we attribute
the initial rise with the emergence of entanglements in the melt. With increasing shear
rate, this peculiar behaviour gradually vanishes as chains disentangle with the onset of
collective alignment and the characteristic shear-thinning sets in. Our study thus indicates
that even for rather small oligomers, rheological properties can be dominated by the
presence of entanglements.

In addition, we have investigated movement modes of individual chains both in
simulations of melts and single chains under shear. While in the flexible case, individual
chains tumble at moderate and high shear rates [17], for semiflexible chains, we observe a
transition from stretched conformations at moderate rates to a state in which stretched and
tumbling chains coexist in agreement with single chain simulations in an MPCD solvent
in [14]. In the near future, we plan to study explicitly the shear rate dependence of number
of entanglements per chain [46,60,79–82] for the entire range of chain stiffnesses explored
in this paper.

In Section 5, we have demonstrated the influence of microscopic shear-thinning
behaviour on macroscopic channel flow. Using the hybrid multiscale method that cou-
ples molecular dynamics and discontinuous Galerkin schemes, we have studied flows of
oligomer melts in two types of channels for flexible and semiflexible molecules, respectively.
We have observed a transition from a Newtonian to a non-Newtonian flow (as well as
a retrograde non-Newtonian effect for semiflexible chains) caused by the shear-thinning
viscosity effects. Furthermore, we have also analysed the effects of complex geometry.
In the near future, we would like to investigate shear-thinning in two-component melts
consisting of polymers with varying lengths and stiffnesses as well as consequences of the
latter for the macroscopic flow in simple and complex geometries.
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Appendix A. Alternative Time-Scale Mapping

In addition to the simple time scale mapping between single chain simulations and
melts described at the end of Section 2, here, we consider matching Rouse times for each
value of κ. Note that while this procedure works well for κ ≤ 6 and κ = 10, we did
not obtain a convincing exponential fit for the autocorrelation function of the sheared
melt in the intermediate range of stiffnesses, likely due to the presence of entanglements.
Excluding values for κ = 7, 8 and 9, the relative scaling factor ζ(κ)/ζ(κ = 0) was 1.15 for
κ = 1, 1.29 for κ = 2, 1.46 for κ = 3, 1.81 for κ = 4, 2.07 for κ = 5, 2.58 for κ = 6, and
finally, 2.52 for κ = 10. The results reported in Section 3, for the most part do not change
qualitatively in comparison to the simplified matching.

If we apply this time-scale matching procedure to the results shown in Figure 2a,b,
the single chain curves corresponding to κ = 5 and 10 will be shifted to the left by factors
of 2.07 and 2.52, respectively, which will not change our qualitative conclusions. Figure A1
(which corresponds to Figure 4b) shows 〈R2

ee,x〉/〈R2
ee〉 as a function of κ at γ̇ = 0.001. For

single chain simulations, the ratio is no longer flat but rises marginally for larger values
of κ. Again, this outcome does not change the qualitative conclusions described in the
main text.
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Figure A1. 〈R2
ee,x〉/〈R2

ee〉 as a function of κ at γ̇ = 0.001 for melt (line with dots) and single chain
simulations (only dots) with the more involved mapping described in the appendix.

Appendix B. Snapshots

Configuration (a) shows an entangled melt representing the viscosity maximum in
Figure 4a. The same melt already exhibits partial alignment and disentanglement under
shear, which leads to the pronounced drop in viscosity in the same figure. Configuration
(c) is in a nematic phase and already aligned under equilibrium conditions.
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Figure A2. Snapshots of melts corresponding to (a) κ = 6 in equilibrium, (b) κ = 6 at γ̇ = 0.001
(c) κ = 10 in equilibrium.
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