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Abstract: Dynamic simulation provides an efficient approach for improving the efficiency of parabolic
trough power plants and control circuits. In the dynamic simulation, the possibilities and operating
conditions of the plant are evaluated regarding materials, processes, emissions, or economics. Several
studies related to the dynamic simulation of the parabolic trough technology are summarised and
discussed in this work. This study is the first research that presents a thorough description of the
advanced control circuits used in the solar field and thermal storage system of a parabolic trough
power plant. This power plant was implemented using advanced process simulation software
(APROS). The dynamic model was built based on the real specifications of the power plant.

Keywords: dynamic simulation; parabolic trough power plant; control circuit; solar field; thermal
storage system

1. Introduction

Solar energy is one of the best renewable energy sources to meet the energy demand
in countries with high solar irradiation. Generally, solar energy is a permanent source
of energy, and is locally available. There are two main technologies used in solar power
plants—namely, photovoltaic technology, and concentrated solar power (CSP) technology.
In general, only direct radiation is used in these systems, while the diffuse part of sunlight
cannot be concentrated. Direct normal irradiation (DNI) is reflected by means of mirrors
and concentrated on the absorbent surface, leading to a rise in the temperature of the
absorbent surface [1,2]. This concentrated solar radiation is then transformed into thermal
energy to heat a certain fluid, which can be used directly to generate renewable heat, or
can be used for producing electricity. In the case of electricity production, the heated
fluid will run a turbine (usually a steam turbine). Thereafter, the mechanical power
resulting from the steam turbine will be transformed into electricity by the electrical
power generator [3–5]. Today, CSP technology can be divided into four types—namely,
linear Fresnel reflector, central tower, parabolic trough, and parabolic dish technology.
Among the CSP technologies, parabolic trough technology is the most mature, as has been
commercially proven [6–8].

The general design of parabolic trough power plants is principally concentrated on
the high performance of the process, while the market requirements increasingly aim
to improve the operating flexibility due to the current international trends in renewable
energies. A dynamic simulation is a useful tool for enhancing the operation of parabolic
trough power plants at different operating periods subject to the vagaries of weather, which
in turn leads to load fluctuations and several start-up processes. Certain applications can
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be implemented based on the dynamic simulation, such as the optimisation of control
circuits, and stress evaluation for critical components.

In the literature review, there are several steady-state models concerning the parabolic
trough power plant, while dynamic models are rarely implemented. Among the few
dynamic models in the literature, there is no updated work that discusses in detail the
description of the advanced controllers used in the solar field (SF) and thermal storage
system (TSS) of a parabolic trough power plant.

Feldhoff et al. [9] indicated that the simplified solar field design and a competitive
thermal storage system are required in order to make better use of the economic potential
of direct steam generation (DSG). Several works have been presented with regards to
feasibility of integrating various thermal storage options with parabolic trough (PT) or
linear Fresnel reflector (LFR) solar fields using DSG technology. Valenzuela et al. [3]
implemented and developed the control strategies for generating steam directly under high
pressures and temperatures using parabolic trough solar collectors. The controllability of
the power plant was achieved using a PI control scheme during clear days, and even with
the transient periods of the solar radiation. Classical controllers were implemented due
to the knowledge of power plant operators using PI controllers. Hakkarainen et al. [10]
implemented two different DSG solar fields using advanced process simulation software.
These models are used to simulate and to optimise thermal energy storage operations.
Regarding the solar fields for both technologies (PT and LFR), only the configuration
of the solar collector modules was described. Further simulation results for the stable
operations and storage requirements in different cases were discussed. Mosleh et al. [11]
examined and compared a dynamic simulation with several phase change materials (PCMs)
using the TRNSYS program. They have demonstrated that materials whose melting point
temperature is close to the superheated steam temperature are suitable for a thermal
potential energy storage system. The solar fraction of sodium nitrate is the best choice
among other materials. Liu et al. [12] developed model predictive control for a parabolic
trough and solar tower combined with the coal-fired power plant using Ebsilon Professional
software. Predictive solar radiation data were applied during the period of real electricity
generation for 10 consecutive days. The study showed that the average coal consumption
decreased by 20% due to the storage system control strategy, which relies on transferring
more stored energy to the working cycle. Frejo et al. [13] suggested a new central model
for a control algorithm to optimise the thermal energy collected by solar parabolic troughs.
The best operation strategy of the power plant was conducted by regulating the valves
located at the inlet of each loop, which provided a response superior to those obtained with
normal control processes for parabolic trough solar plants. The simulation of the model was
performed for two hours for the solar field ACUREX in Spain. This approach significantly
increased the produced thermal energy. The proposed model controller, unfortunately,
cannot be used realistically for medium and large power plants, due to its computational
complexity. The researchers did not take into consideration various possible storage options
and their feasibility for these solar fields.

The objectives of this review are explained as follows: First, to review the works that
deal with the explanation of the control circuits of the SF and TSS of parabolic trough power
plants. To the best of our knowledge, few works in the literature have been studied as
important controllers of the SF and TSS in parabolic trough solar power plants. Second, all
control circuits of the SF and TSS are described here in detail, based on real data obtained
from the Andasol II plant. Third, this is the first study that describes in detail the control
circuits of the SF and TSS using APROS software. Finally, the main objective of this research
is to provide a useful reference tool for researchers regarding advanced control circuits for
parabolic trough power plants.

2. Mathematical Background

There are several simulation programmes that can be used in the implementation and
optimisation of control circuits in the dynamic simulation. These programs are improved
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by universities or companies, and they are normally not openly available. However,
they are applied in scientific research and industrial applications. The cited references
of this research are non-exhaustive, and limited to widely known codes that are applied
in scientific research and industrial applications. The cited references of this research are
in agreement with the related simulation software, such as advanced process simulation
software (APROS) [10,14–18], ASPEN Plus DYNAMICS, ASPEN HYSYS [19,20], DYMOLA
(based on Modelica language) [21–32], MATHEMATICA [33], SIMULINK [26], RELAP [34],
and TRNSYS [35,36].

The Andasol II model is carried out using commercial APROS software developed
by VTT Finland [37]. APROS includes many components and solution techniques for a
full-scale dynamic simulation of thermal power plants. In addition, it consists of two flow
models—namely, a mixture flow model, and a two-fluid flow model. In addition, its ability
to accurately follow the changes of load in power plants during their operation was proven
in several previous studies. For this reason, this software is used in this study.

The control circuits of SF and TSS for the parabolic trough power plant “Andasol II”
are described at a high level of detail. All control circuits used in both parts (SF and TSS)
are modelled using APROS software. Figure 1 illustrates the typical setup of a parabolic
trough power plant. The APROS model is divided into several nets in order to provide
high flexibility and accuracy.
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3. Solar Field Model

The solar field includes four sections. The four sections are evenly distributed across
two sectors, which are the south and north sectors. Each sector contains 78 mirror loops.
Four main pumps pump the heat transfer fluid (HTF). These are placed between the inlet
of the solar field and the outlet of the HP economiser. Then, the heat transfer fluid (HTF)
is divided from the main cold line pipes to the south and the north sectors, distributing
through 156 loops. The HTF absorbs the solar radiation through the collector loops. The
HTF in the north and the south collector loops will meet before the solar field outlet. Two
paths of the hot thermal oil are opened at the outlet of the SF. In the first path, the thermal
oil is transferred from the SF to the PB. In the second path, the surplus of absorbed heat is
transmitted by the thermal oil to the thermal storage system.

The real DNI leaves the control circuit of the DNI and enters the boundary condition
transfer modules in the four sections of the solar field. After subtracting the heat losses,
the useful thermal power is applied to the HTF (Therminol VP-1), which passes through
the heat structure pipes. Firstly, the thermal oil mass flow is raised up to 390 kg/s, and
remains unaltered until achieving the designated inlet temperature (295 ◦C). Hereby, each
section in the solar field collects a certain amount of thermal power. After achieving the
design inlet temperature, the thermal oil’s temperature and mass flow increase gradually in
order to achieve the maximum mass flow rate (1170 kg/s) at the design outlet temperature
(393 ◦C). It should be mentioned here that the pressure losses for all of the components
of the power plant were previously included in the APROS model. Furthermore, APROS
software provides the possibility of defining the type of material depending on some major
properties (e.g., the specific heat, the conductivity, and the density). The type of material for
each layer was selected to determine the properties of the material and select the thickness
of the wall, as well as select the type of fluid inside the pipes. The absorber tubes in the
solar field were divided into three layers; each layer represents the type of the material (i.e.,
stainless steel layer, vacuum layer, and borosilicate glass layer). The insulated pipes were
divided into two layers (i.e., steel layer and insulated layer).

3.1. Solar Field Control Structures

In order to control the temperature and thermal oil mass flow in the SF during the
dynamic simulation, it is essential to implement control circuits that keep the nominal
conditions of thermal power transferred to the power block. Hence, several controllers
were modelled in the SF circuit to obtain reasonable responses during the fluctuations in
the operating conditions.

3.1.1. DNI Control Circuit

The DNI controller adjusts the amount of solar irradiation collected by the absorber
tubes and then transferred to the thermal oil. The useful heat is absorbed using 312 collector
rows, as illustrated in Figure 2. After achieving the design mass flow of 1170 kg/s in the
SF, the DNI decreases gradually in one collector to maintain the outlet temperature at
393 ◦C. If the solar irradiance continues to increase, one collector is automatically turned
off (i.e., DNI = 0 W/m2). This process is implemented by the selector, which sends the
signal (activated or deactivated) to the actuator. The signal of a selector is limited based on
two boundary conditions—the design temperature of the HTF (393 ◦C) at the SF outlet,
and the maximum value of the mass flow (1170 kg/s). After achieving these conditions, the
signal passed into the actuator is changed by the selector from an activated to a deactivated
signal, as displayed in Figure 2. Hence, the useful heat collected through this collector
will not transfer to the HTF in the absorber tubes. Subsequently, the DNI in the second
collector begins reducing gradually until the second collector is inactivated. A fully loaded
hot storage tank is achieved with a molten salt level of 14 m; this means that the total mass
flow of the thermal oil must be reduced by further deactivating the boundary condition
modules (BCs), alternately.
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3.1.2. HTF Main Control Valve at the Inlet of the SF (HTF MCV)

The HTF temperature at the outlet of the SF is regulated using HTF MCV at the inlet
of the SF. This control process is performed by regulating the thermal oil mass flow passing
through the SF. Two processes are achieved via this control valve: firstly, after sunrise the
thermal oil mass flow in the SF is regulated at a constant value of 2.5 kg/s per loop. The
thermal oil flow is kept constant at this value until achieving the design temperature of the
HTF (295 ◦C) at the inlet of the SF. Secondly, the thermal oil temperature at the outlet of the
SF continues to rise until it reaches its nominal value of (393 ◦C). Thereafter, this design
outlet temperature of the HTF is kept, using this controller (HTF MCV), by increasing or
reducing the thermal oil mass flow passing through the solar field. It is worth mentioning
that there is a control valve before the inlet of each loop; these valves are controlled by
the same procedure that applies to the HTF MCV. The advantage of using these valves is
to maintain the design temperature of thermal oil (393 ◦C) at the loop outlet, when some
clouds prevent the solar radiation from falling on a certain loop. Unfortunately, in this
study, the location of loops adversely affected by the existing clouds was not available from
the supplier. Therefore, the decrease in the heat collected within the solar field was evenly
distributed among all loops. It should be mentioned here that each selector includes two
functions. These functions are chosen based on one, two, or more boundary conditions
for these selectors. The HTF MCV is modelled with four selectors, as demonstrated in
Figures 3 and 4. The boundary condition of selector 1 is when the DNI has reached a value
more than 25 W/m2, when selector 1 will change its function from a certain orifice (which
keeps the thermal oil mass flow at 156 kg/s) to the second function (increase HTF mass
flow from 156 kg/s to 390 kg/s). The boundary condition of selector 2 is when the thermal
oil temperature reaches the design inlet value of 295 ◦C. After achieving this condition,
selector 2 will choose the second function, which regulates the thermal oil mass flow rate
to reach the design temperature of the thermal oil at the outlet of the SF (393 ◦C). Selector 3
consists of two functions; the first function is applied during normal cases (clear periods),
and the second function is activated during the cloudy periods. The second function of
selector 3 is enabled when two boundary conditions are achieved: the first condition is that
the thermal oil mass flow continues decreasing down to a minimum condition value of
312 kg/s, and the second condition is that the HTF temperature decreases to below 393 ◦C.
After achieving both conditions, the thermal oil mass flow is still unaltered at a minimum
value of 312 kg/s, despite the decline in the design outlet temperature of the HTF. Two
functions are passed through selector 4, the first of which comes from selector 3. When
two boundary conditions are achieved (312 kg/s and 377 ◦C), the second function starts
maintaining the thermal oil temperature of 377 ◦C at the outlet of the SF by closing the
HTF MCV gradually until it is totally closed.
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3.1.3. HTF Control Valve at the Outlet of the SF (to Power Block)

The HTF control valve at the outlet of the SF (or to the power block (PB CVin)) adjusts
the thermal oil mass flow that is transmitted to the power block (PB). PB CVin is opened
when the HTF temperature reaches the design temperature value of 295 ◦C at the inlet of
the SF. Then, it continues opening in order to achieve the nominal value of thermal oil mass
flow (600 kg/s), with a temperature of 393 ◦C. This process is achieved by comparing the
thermal oil mass flow rate at the SF outlet with a setpoint of 600 kg/s through PI controller,
as shown in Figure 5.

3.1.4. Control Valve of the Thermal Storage System (SF–TS CV)

SF–TS CV is installed between the SF outlet and the TSS inlet; it controls the excess
flow of thermal oil into the TSS, as demonstrated in Figure 6. The operational procedures
of this control circuit are implemented based on two cases: In the first case, the valve
begins to open when the thermal oil mass flow at the SF outlet exceeds the nominal value
of 600 kg/s with a temperature of 393 ◦C. In the second case, the SF–TS CV starts closing
when the solar irradiance is low and the thermal oil mass flow is less than the nominal
value (600 kg/s).

3.1.5. HTF Redirection Control Valve (RDCV)

In the evening period, the PB is operated based on the TSS. Therefore, the HTF path
should be changed to the TSS instead of the solar field. This process is achieved via HTF
redirection control valve (RDCV), as illustrated in Figure 7. This control circuit includes
one selector, and operates with two functions: The first function is that the RDCV remains
closed when solar radiation is available. The second function is that the RDCV is gradually
opened in order to redirect the HTF to the TSS, and then transfers the thermal power to
the power block. Therefore, the selector will change from the first function to the second
function after achieving two boundary conditions: the first condition is that the thermal
oil mass flow at the outlet of the SF should be less than the design value of 600 kg/s. The
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second condition is that the level of the hot tank must be more than a minimum value
of 0.6 m.
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3.1.6. HTF Recirculation Control Valve (RCV)

The HTF recirculation valve (RCV) is installed between the hot header and the cold
header in the solar field, as shown in Figure 8. There are two functions in this control
circuit: The first is that the RCV remains closed as long as there is stored energy. The second
function is activated when the TSS is completely exhausted. Here, the RCV will be opened
to regulate the thermal oil mass flow in the SF at a certain value of 156 kg/s, and continues
until the sunrise of the second day.
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3.1.7. HTF Protection System

To keep the thermal oil from freezing during the cold periods, a thermal oil protection
system is applied in this work. The protection system prevents the thermal oil temperature
in the SF from decreasing below a value of 70 ◦C, and from exceeding the maximum value
of 110 ◦C in the next operation This temperature range is regulated by two protection
control valves (PCV1 and PCV2), as shown in Figure 9. Accordingly, PCV2 starts opening
in order to pass HTF through the heaters when the thermal oil temperature at the inlet of
the SF decreases below 70 ◦C. On the other hand, PCV1 starts closing in order to maintain
the thermal oil temperature at the SF inlet in the range of 70–110 ◦C.
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4. Thermal Storage Model

As solar irradiation depends on the daylight and the clarity of the sky, CSP plants are
usually non-dispatchable. In order to make them highly dispatchable, a TSS can be added
to the CSP plants. Although the solar power source is intermittent, continuous electrical
power can be produced due to the use of the TSS. A two-operation mode efficiencies



Appl. Sci. 2021, 11, 6155 10 of 15

(during charge and discharge modes) of more than 96 % was documented for TSS units
consisting of hot and cold storage tanks of the molten salt [38].

The storage system studied in this work will be explained based on two operation
modes, including all control circuits.

The excess solar irradiation is transferred to the TSS and provided as a substitute for
the energy lost because of the clouds or during the night. This system allows for high
operating flexibility, and produces more stable electricity. Hot and cold insulated tanks
are connected by heat exchangers in APROS. The molten salt in both tanks is transferred
to the heat exchangers by the series of thermal storage pumps that are located after the
thermal storage tanks. The molten salt can be defined as a solution of potassium and
sodium nitrates with known specifications.

In the charge mode, the thermal oil from the SF heats the molten salt that flows from
the cold tank to the hot storage tank, with a temperature of approximately 386 ◦C. It should
be mentioned here that there will be losses in the heat exchangers between the thermal oil
and the molten salt. This means that the hot molten salt will reach a temperature below the
maximum value of HTF temperature of 393 ◦C, whereas the hot molten salt will reach a
temperature of 386 ◦C. Note that the capacity of this system can reach a maximum value of
about 1025 MWth h.

The thermal energy in the thermal storage system can be used in the discharge mode,
where the hot molten salt heats the thermal oil through the heat exchangers. Here, the
thermal storage system provides the nominal mass flow of the HTF (600 kg/s) with
a temperature of 377 ◦C in the evening period. This will affect the steam production
performance, whereas the nominal amount of generated steam (55 kg/s) in the daylight will
not be accomplished during the evening period. However, the hot thermal oil is transmitted
to the PB. After that, the thermal oil is returned to a cold tank with a temperature of about
292 ◦C.

4.1. Thermal Storage Control Structures

In order to regulate the thermal storage process during the dynamic simulation, it is
necessary to implement control circuits that maintain the nominal temperature and mass
flow rate conditions for the molten salt and the HTF. Hence, three control circuits are
modelled in the thermal storage system, in order to obtain reasonable responses during the
continuous changes in operating conditions.

4.1.1. Control Valve at the Thermal Storage System Inlet (TS MCVi)

The control valve at the thermal storage system inlet includes two tasks, depending
on the operation mode of the thermal storage system, as shown in Figure 10. The first task
is applied during charge mode, where this valve allows the surplus of thermal oil with
a temperature of 393 ◦C to pass through it into the heat exchangers in order to transmit
the thermal power from the HTF to the molten salt. Thereafter, the HTF leaves the TSS
with a temperature of 293 ◦C through the control valve at the thermal storage system
outlet (TS MCVo). Subsequently, the HTF that exited the thermal storage system will
be mixed with the HTF, which comes from the PB and enters the SF again. The second
task is activated during the cloudy periods and the evening hours; in the compensation
periods, the direction of the HTF flow will be reversed, where the HTF flows directly from
the PB to the TSS through the redirection control valve (RDCV), and then through TS
MCVo. Therefore, TS MCVo and TS MCVi are considered to be the inlet and outlet of the
TSS, respectively. Afterwards, the heated HTF flows to the PB to replenish the rest of the
nominal mass flow (600 kg/s).
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The HTF flow direction is reversed based on two conditions (THTF = 393 ◦C, and
.

m = 600 kg/s) that are applied to the selector: Firstly, this control valve remains open when
the HTF flow is directed from the SF to the TSS (SF–TS direction) during charge mode, as
long as the design temperature of the thermal oil at the outlet of the SF and the nominal
HTF mass flow are achieved. Secondly, when the one of the mentioned conditions (393 ◦C
and 600 kg/s) is not accomplished, the discharge mode starts, and the HTF flow direction
is changed from the SF–TS to the TS–PB direction.

4.1.2. Control Valve at the Thermal Storage System Outlet (TS MCVo)

The control valve at the outlet of the TSS controls the process of thermal energy
compensation. This controller has two functions, as illustrated in Figure 11. The first
function is that TS MCVo remains open, like the TS MCVi, during charge mode, where
TS MCVi and TS MCVo are considered to be the inlet and outlet of the TSS, respectively.
During discharge mode, the second task is enabled, and the thermal oil flow is directed
from TS MCVo to TS MCVi. TS MCVo regulates the mass flow of the thermal oil in
order to maintain the nominal value of 600 kg/s at the PB inlet during the evenings and
cloudy periods.
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4.1.3. Hot Tank Control Valve (HTCV)

The hot tank control valve is located after the pumps of the hot tank in the thermal
storage system. This control circuit includes two functions, as shown in Figure 12. The first
function is that this valve remains closed during charge mode (the molten salt is transferred
from the cold drum to the hot drum through the heat exchanger). The second task is
enabled when the thermal oil temperature at the outlet of the solar field decreases below
the design outlet temperature (393 ◦C or 377 ◦C, during the daylight or in the evening
period, respectively). It should be mentioned here that the setpoint of the HTF temperature
will be changed automatically from 393 ◦C to 377 ◦C based on the temperature value, which
is regulated by the HTF MCV. However, the hot molten salt is sent to the heat exchangers
through the HTCV, which in turn regulates the design HTF temperature at the inlet of the
PB during the cloudy and night periods. Thereafter, the energy stored in the hot salt drum
is transmitted into the HTF which, in turn, transfers this energy into the power block to
produce the steam.
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5. Conclusions

A large number of works can be found regarding parabolic trough power plants;
however, few studies focus on the dynamic behaviour of the secondary systems—e.g.,
the TSS, taking into account stable electrical power and capacitance factor enhancement.
A particular focus is placed on the modelling of the SF. Most works refer to the use of a
simplified steady-state model instead of a comprehensive dynamic model of these power
plants. In order to understand the dynamic behaviour of the secondary systems (SF,
TSS, and PB) with high accuracy, more consideration should be devoted to the thorough
modelling of the power plants.

In this study, detailed solar field and thermal storage system models for a parabolic
trough power plant are implemented based on the specifications from data obtained from
Andasol II, located in Spain. In this work, the components of these models have been
accurately modelled using APROS software.

A detailed SF model was modelled with 156 collector loops, as well as implementing
many control circuits to regulate the operation processes. Therminol VP-1 was used as an
HTF in the SF. The reference solar field was designed to operate with maximum HTF mass
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flow (1170 kg/s) at the design outlet temperature (393 ◦C). Hereby, the solar field operates
with a total capacity of useful thermal energy of approximately 280 MWth.

A comprehensive TSS was implemented using hot and cold insulated drums and,
between them, heat exchangers. Moreover, the control circuits of this system are described.
The thermal storage system was operated with two operation modes—namely, charge mode
and discharge mode. During charge mode, the HTF from the solar field at a temperature of
393 ◦C heats the molten salt (sodium and potassium nitrates) that is pumped from the cold
tank to the hot tank and stored with temperature of approximately 386 ◦C. This process
continues until achieving a maximum capacity of stored energy of about 1025 MWth h.
This thermal storage provides high operational flexibility and stable electricity generation.

On the other mode, the hot salt heats the thermal oil via the heat exchangers. The
molten salt exits the heat exchangers and is sent into the cold tank at a temperature of
about 292 ◦C. Accordingly, the thermal storage system will provide the thermal power at
the nominal load (125.75 MWth) for a period of approximately 7.5 h in the evening period.

The purpose of this work was to provide reference models for the SF and TSS. This,
in turn, will help researchers and designers to understand the advanced control circuits
of these stations. In addition, these models can determine the best manner of power
plant operation.

Future studies will be focused on a detailed description of the power block controllers.
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Abbreviations

AD Adder
BC Boundary condition
BFP Boiler feedwater pump
CP Condenser pump
HP High pressure
HPRP High-pressure recirculation pump
HTCV Hot tank control valve
HTF Heat transfer fluid
HTF MCV Heat transfer fluid main control valve
LFR Linear Fresnel reflector
MS Molten salt
PB Power block
PCV1 The first protection control valve
PCV2 The second protection control valve
PD Parabolic dish
PI Proportional–integral controller
PT Parabolic trough
PB CV Power block control valve
PB MCV Power block main control valve
RCV Recirculation control valve
RDCV Redirection control valve
SF Solar field
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SF–TS CV Solar field to thermal storage control valve
TSS Thermal storage system
TS DCVo Thermal storage dual control valve at the outlet
TS MCVi Thermal storage main control valve at the inlet
TS MCVo Thermal storage main control valve at the outlet
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