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Abstract: A two-fluid Eulerian–Lagrangian coupled model is developed to investigate the complex
interactions between solid particles and the ambient water during the process of submerged granular
column collapse. In this model, the water phase is considered to be a Newtonian fluid, whereas the
granular column is modeled as an elastic–perfectly plastic material. The water flow field is calculated
by the mesh-based Eulerian Finite Volume Method (FVM), with the free surface captured by the
Volume-of-Fluid (VOF) technique. The large deformation of the granular material is simulated by the
mesh-free, particle-based Lagrangian Smoothed Particle Hydrodynamics method (SPH). Information
transfer between Eulerian nodes and Lagrangian particles is performed by the aid of the SPH
interpolation function. Both dry and submerged granular column collapses are simulated with the
proposed model. Experiments of the submerged cases are also conducted for comparison. Effects of
dilatancy (compaction) of initially dense (loose) packing granular columns on the mixture dynamics
are investigated to reveal the mechanisms of different flow regimes. Pore water pressure field and
granular velocity field are in good agreement between our numerical results and experimental
observations, which demonstrates the capability of the proposed Eulerian–Lagrangian coupled
method in dealing with complex submerged water–granular mixture flows.

Keywords: granular column collapse; water–grain mixture flow; Eulerian–Lagrangian coupled method

1. Introduction

Submerged granular column collapse is a typical water–grain interaction problem
which serves as a model to investigate many underwater natural and hazardous processes,
such as debris flows [1], landslides [2], submarine avalanches [3], etc. A large amount of
granular material (mud, sand, gravel or rocks) that starts flowing underwater can create a
tsunami [4] and damage undersea cables, pipelines, etc. A most recent example is the 2018
Sunda Strait tsunami. On 22 December 2018, a tsunami devastated several coastal regions
of Sumatra and Java, Indonesia. Hundreds of people are reported dead with thousands
injured. The tsunami is believed to have been caused by the collapse of Anak Krakatau
that followed an eruption of the Anak Krakatau volcano in the Sunda Strait. Due to its
harmful impacts to the coastal regions and underwater structures, submerged granular
column collapse has long been a research concern for geophysicists, hydrologists and
underwater engineers.

Ref. [5] developed a depth-averaged version of two-phase flow equations to describe
the initiation of underwater granular avalanches. The rheology of the granular phase is
based on a shear-rate-dependent critical state theory and a rheological model proposed
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for immersed granular flows. Using these phenomenological constitutive equations, the
model can describe both the dilatancy effects experienced by the granular skeleton dur-
ing the initial deformation and the rheology of wet granular media when the flow is
fully developed.

Ref. [6] derived a set of two-phase continuum equations for studying a compressible
granular flow composed of homogenous solid particles and a Newtonian ambient fluid.
They found that the hydrodynamic fluid pressure helps the solids transit from dense-
compacted to dense-suspended granular flow, whereas the drag forces counteract the
solids movement, especially within the near-wall viscous layer. Ref. [7] studied the
dynamics of a dense granular flow composed of a binary mixture of small and large grains
immersed in an ambient fluid. Segregation of small and large grains with the presence of
ambient water was investigated.

Ref. [8] conducted the experimental research of the collapse of a granular column
in a viscous liquid. The role of the initial volume fraction was investigated. They found
that the morphology of the deposits is mainly controlled by the initial volume fraction of
the granular mass and not by the aspect ratio of the column, an observation which differs
from dry granular collapse. For initially loose packing columns, the collapse is over within
the order of seconds, whereas for dense packing columns, the collapse could take as long
as tens of seconds. Understanding how these complex media flow underwater remains
a challenge.

Ref. [9] investigated the effect of an ambient fluid on the dynamics of collapse and
spread of a granular column by means of the contact dynamics method and computational
fluid dynamics. They found that the effects of fluid in viscous and fluid-inertial regimes
are to both reduce the kinetic energy during collapse and enhance the flow by lubrication
during spread. Hence, the runout distance of the granular material in a fluid may be below
or equal to that in the absence of fluid due to compensation between these effects. They also
found that for a given aspect ratio and packing fraction, the runout distance may be similar
in the grain-inertial and fluid-inertial regimes but with considerably longer duration in the
latter case.

Ref. [10] developed a mixture model to predict various flows involving high con-
centration liquid-particle mixtures. Compared with the experiments of Ref. [8], their
approach gives reasonably good predictions for the case of initially loose columns, but it
was unsuccessful in simulating the collapse of an initially dense columns. Ref. [11] also
proposed a Eulerian–Eulerian two-phase model based on a collisional-frictional law for
the granular stress to describe the underwater granular flows. However, free surface wave
was not considered in their paper.

Recently, a two-fluid SPH mixture model to analyze the water-soil interactions was
proposed by the authors [12–15]. With this mixture model, it is possible to investigate the
temporal and spatial evolutions of the volume fractions of both constituents. Dilatancy or
compaction of granular materials can also be taken into consideration in this model.

In this paper, a Eulerian–Lagrangian coupled method for the simulation of underwater
granular column collapse is presented. There are some reasons for developing coupled
methods. First, for the water phase, it often provides an environment for the granular
flow. Using Lagrangian method to solve the environmental water flow problem is always
difficult due to the time-consuming process of particle methods. In fact, large number
of numerical particles are needed for the water phase and the interaction pair particles
should be searched in a fast and efficient way. However, with a mesh-based method, the
cell size can be much larger than the particle interval and the node connectivity remains
fixed in most of the cases. Second, the water pressure term in the Lagrangian methods
is difficult to calculate correctly due to the weak compressibility of the model. On the
contrary, the mesh-based method can result in a very smoothed pressure field. Thus, the
coupled method should be much more efficient and accurate than the particle methods, as
illustrated by [16] where a novel methodology that combines the smoothed discrete particle
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hydrodynamics (SDPH) and the finite volume method (FVM) was developed to enhance
the effective performance in solving the problems of gas-particle multiphase flows.

In this paper, the coupled framework of SDPH-FVM of [16] is extended to the wa-
ter–granular mixture flow. For the water phase, FVM is employed to discretize the water
flow field on a stationary grid to simulate the fluid motion. At the meanwhile, the SPH
method is employed to simulate the large deformation of the granular phase. The pro-
posed two-fluid mixture Eulerian–Lagrangian coupled model is applied to analyze the
water–grain interactions during submerged granular column collapse. Experiments of
the same scale are also conducted to verify the numerical results. Dilatancy or com-
paction effects of the granular materials on the formation of different regimes are analyzed,
which helps reveal the mechanisms of granular material collapse in the presence of an
ambient fluid.

This paper is organized as follows. In Section 2, the mathematical formulation of
the mixture theory is given. Section 3 is devoted to the numerical implementation of the
Eulerian–Lagrangian coupled method. Model validation and numerical simulation of
underwater granular column collapse are presented in Section 4. Conclusions and remarks
are given in Section 5.

2. Mathematical Formulation
2.1. Water-Soil Mixture Model

In the two-fluid mixture model, the grains and the fluid are described as two con-
tinuum phases characterized by individual velocities, stresses and interaction through
hydrodynamic forces. For each phase we define partial densities ρη , partial velocities vη ,
and partial stresses ση , with η = l, s standing for fluid and solid, respectively. Each phase
must satisfy individual balance laws for the conservation of mass

Dηρη

Dt
= −ρη∇ · vη , (1)

and momentum

∂

∂t
(ρηvη) +∇ · (ρηvη ⊗ vη) = ∇ · ση + ρη g + fη , (2)

where ⊗ is the dyadic product, g the gravitational acceleration, Dη(·)/Dt the material
time derivative along the path of particles of η phase with Dη(·)

Dt = ∂(·)
∂t + vη · ∇(·), fη the

inter-phase force exerted on phase η by the other constituent, satisfying the Newton’s third
law, i.e., fl + fs = 0. Making use of Equation (1), the momentum Equation (2) can be
rewritten as

ρη
Dηvη

Dt
= ∇ · ση + ρη g + fη . (3)

The above governing Equations (1) and (3) are expressed with partial variables, but
the constitutive relationships are written with intrinsic (or true) variables as if they were
single-phase flows. Thus, it is necessary to postulate the relationship of both kinds of
variables. Here it is assumed that

ρη = φη ρ̃η , vη = ṽη , (4)

where variables with a tilde (˜) denote intrinsic variables, and φη is the volume fraction of
phase η, satisfying the saturation condition of φl + φs = 1.

For the stress, we assume that

σs = φsσ̃s, σl = −p I + φl τ̃l , (5)
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where σ̃s is the intrinsic stress of the granular material, p the pore water pressure, and τ̃l
the intrinsic deviatoric stress tensor of the water. The volume fractions φs and φ f in (5)
imply that stresses are only acted on part of each constituent due to the porosity of the
granular material. The interaction force fs (i.e., − fl) is assumed to be in the form

fs = −φs∇p + Cd(vl − vs). (6)

Here the first term on the right-hand side can be identified as a buoyancy force and
the second term is simply an inter-phase resistance term, with Cd being the drag coefficient.
Cd can be calculated according to the Darcy’s law [13].

In this study, the water phase is calculated in the Eulerian framework, thus it is
convenient to rewrite the momentum equations of water as

∂vl
∂t

+ vl · ∇vl = −
1
ρ̃l
∇p + ν∇2vl +

1
ρl

τ̃l · ∇φl + g − Cd
ρl

(vl − vs), (7)

where use has been made of

1
ρl
∇ · (φl τ̃l) =

φl
ρl
∇ · τ̃l +

1
ρl

τ̃l · ∇φl

=
µ

ρ̃l
∇ · ε̃l +

µ

ρl
ε̃l · ∇φl = ν∇ · ε̃l +

µ

ρl
ε̃l · ∇φl . (8)

The shear stress tensor τ̃l for water phase is given by

τ̃
αβ
l = µε̃

αβ
l , (9)

where µ is the dynamic viscosity of the water, ν = µ
ρ̃l

the kinematic viscosity, and the strain

rate tensor ε̃
αβ
l is defined as

ε̃
αβ
l = ε

αβ
l =

∂vβ
l

∂xα
+

∂vα
l

∂xβ
− 2

3

(
∂vγ

l
∂xγ

)
δαβ, (10)

in which δαβ is the Kronecker delta symbol, and γ is a dummy index applicable to Einstein’s
summation convention.

The liquid phase is allowed to have limited compressibility, in which case Equation (1)
for water can be written as

1
ρlc2

l

∂p
∂t

+∇ · vl = 0, (11)

where the constant cl is the speed of sound in the fluid. For incompressible fluids 1/c2
l is

set to zero. In the limited compressibility model density changes are assumed to be small
(say less than 1%) and the ρl appearing in the pressure gradient terms in Equation (11)
can be treated as constant. An artificial sound speed in water is set to a value lower than
the physical one to obtain a higher time step size according to the Courant number. The
staggered grid method is employed to discretize the pressure and velocity fields. A weakly
formulation of the continuous equation is applied to achieve the pressure iteratively.

A finite volume method (FVM) is used to solve the equations of water phase. Under-
water granular column collapse can result in free surface waves which can be captured
using the volume of fluid (VOF, Hirt and Nichols [17]) method. It is assumed that near the
free surface the granular phase vanishes and there exists only the water and air phases
separated by the free surface. The time dependence of the VOF function F, defined as the
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volume fraction of the water in a computational grid cell across the water-air interface, is
governed by

∂F
∂t

+ vl · ∇F = 0. (12)

For an incompressible fluid, Equation (12) may be combined with Equation (1) to yield

∂F
∂t

+∇ · (vl F) = 0. (13)

As we have seen, there are two volume fraction functions: the first one is the volume
fraction F to distinguish the free surface between the water and the air; the second is
the volume fraction φl denoting the water content in the liquid-granular mixture. The
first volume fraction is introduced by the VOF method. The second volume fraction is
introduced by the mixture theory.

2.2. Constitutive Laws for the Solid Phase

Consider the granular material as an elastic–perfectly plastic material with a Drucker-
Prager yield criterion

Y(I1, J2) =
√

J2 + αθ I1 − kc, (14)

where I1 is the first invariant of the total stress tensor σ̃
αβ
s , and J2 is the second invariant of

the deviatoric stress tensor τ̃
αβ
s , defined by

I1 = σ̃xx
s + σ̃

yy
s + σ̃zz

s , J2 =
1
2

τ̃
αβ
s τ̃

αβ
s . (15)

For plane strain problem, αθ and kc in Equation (14) are determined by (see Bui et al. [18])

αθ =
tan θ√

9 + 12 tan2 θ
, kc =

3c√
9 + 12 tan2 θ

, (16)

where c and θ are the cohesion and the friction angle of granular materials, respectively.
A plastic flow rule is needed to describe the development of the plastic deformation.

The flow rule is characterized by the plastic potential function H. If H is chosen to be equal
to the yield function Y, we then use the so-called associated flow rule, with which the
constitutive relation can be written as [18]

˙̃σαβ
s − σ̃

αγ
s ω̇

βγ
s − σ̃

γβ
s ω̇

αγ
s = 2Gėαβ

s + Kε̇
γγ
s δαβ − λ̇

[
3αθKδαβ + G/

√
J2τ̃

αβ
s

]
, (17)

where ėαβ
s is the deviatoric strain rate tensor ε̇

αβ
s , G the shear modulus, K the bulk modulus.

Here the Jaumann rate has been applied, with the rotational rate tensor ω̇
αβ
s defined as

ω̇
αβ
s =

1
2

(
∂vα

s
∂xβ
− ∂vβ

s
∂xα

)
. (18)

The rate of change of plastic multiplier λ̇ is calculated by

λ̇ =
3αθKε̇

γγ
s + (G/

√
J2)τ̃

αβ
s ε̇

αβ
s

9α2
θK + G

. (19)

The second type of flow rule is the non-associated flow rule, in which the plastic
potential function H takes the form

H =
√

J2 + 3I1 sin ψ, (20)
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where ψ is the dilatancy angle. In this case, the constitutive relation for the granular
material is

˙̃σαβ
s − σ̃

αγ
s ω̇

βγ
s − σ̃

γβ
s ω̇

αγ
s = 2Gėαβ

s + Kε̇
γγ
s δαβ − λ̇

[
9K sin ψδαβ + G/

√
J2τ̃

αβ
s

]
, (21)

where the rate of change of plastic multiplier λ̇ is given as

λ̇ =
3αθKε̇

γγ
s + (G/

√
J2)τ̃

αβ
s ε̇

αβ
s

27αθK sin ψ + G
. (22)

In this study, a critical state theory [5,19] is employed to determine the dilatancy
angle ψ

1
φs

dφs

dt
= − tan ψ |γ̇|, (23)

tan ψ = K3(φs − φeq), (24)

where φeq is the granular volume fraction obtained in the steady regime, K3 is a constant,
|γ̇| is the magnitude of the shear rate tensor (γ̇ij = 1

2 (vi,j + vj,i) − 1
3 vα,αδij), defined by

its second invariant, i.e., |γ̇| =
√

1/2γ̇ijγ̇ij. Equation (23) can be derived from the mass
conservation equation and the definitions of the dilatancy angle ψ and the strain γ [20]. It
implies only that dilatancy can cause variation of porosity which in turn affects the pore
pressure and efficient solid stress, as well as the inter-granular friction. Equation (24) is a
closure relation, obtained by fitting the experimental measurements. In this study, K3 is
set to 4.09, according to Pailha and Pouliquen [5]. Because Equations (23) and (24) act as a
feedback control law for φs, this phenomenon is known as “pore pressure feedback” [21,22]
and will be shown in our numerical simulations later.

Dilatancy (or compaction) also contributes to the inter-particle friction due to the
geometrical entanglement. To reflect this, the friction angle θ in (16) should be replaced by
θ + ψ, see [15].

3. Eulerian–Lagrangian Coupled Method
3.1. FVM and SPH Coupling

In the numerical simulation, the domain of water phase is discretized by Eulerian
mesh, while the granular phase is discretized by material particles, as seen in Figure 1.
Both fictitious cells and virtual boundary particles are used to implement the boundary
conditions. The VOF code used is an adaptation of the SOLA-VOF code developed in
the Los Alamos National Laboratory (Hirt and Nichols [17]). An in-house SPH code is
developed to undertake the analysis of the granular phase, for the problem of submerged
granular column collapse. In this section, the VOF and SPH implementations are not
described in detail. Interested readers are referred to [17] for VOF method and [12,13] for
SPH implementation.
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Free surface

Tank wall

Fictitious cells

Virtual boundary particles

SPH solid particles

Initial solid profile

Figure 1. Domain discretization.

The key issue is the transfer of the information between Eulerian grid nodes and
Lagrangian particles. The interpolation process is depicted in Figure 2. In our approach,
this transfer is accomplished using the smooth kernel of the SPH method. In fact, the
foundation of SPH method is based on the following integral representation of a field
function f (x):

〈 f (x)〉 =
∫

Ω
f (x′)W(x− x′, h)dx′, (25)

where W(x − x′, h) is called the kernel or smoothing function, and h is the smoothing
length which defines the influence domain Ω of the kernel W(x− x′, h). In SPH method,
the computational domain is discretized into a finite number of particles. The continuous
integral representation of the field variable f (x) at position xi, in Equation (25), is then
approximated by summation over the neighboring particles in the support domain, as

〈 f (xi)〉 ≈
N

∑
j=1

mj

ρj
f (xj)Wij, (26)

where Wij = W(xi − xj, h); mj and ρj are the mass and density of particle j at position
xj, respectively; N is the number of particles in the support domain of particle i. A
Wendland quintic kernel function is chosen in this study to perform the SPH interpolation
approximation (Wang et al. [12]).

SPH method suffers from the so-called boundary deficiency problem due to the trun-
cation of the support domain of the kernel function Wij by the boundary. To overcome this
deficiency, a re-normalization technique is introduced to perform the SPH approximation
(Chen et al. [16]):

〈 f (xi)〉 ≈
∑N

j=1
mj
ρj

f (xj)Wij

∑N
j=1

mj
ρj

Wij
, (27)

where N is the number of particles in the support domain of particle i. With this re-
normalization technique, information transfer from the solid particles to the grid nodes
can be implemented by

〈 f (xg)〉 ≈
∑

Np
i=1

mi
ρi

f (xi)Wig

∑
Np
i=1

mi
ρi

Wig

, (28)
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where xg is the node position, Np is the number of solid particles in the support domain of
grid node xg. Analogously, information transfer from the grid nodes to a certain particle
can be done by

〈 f (xi)〉 ≈
∑

Ng
g=1

mg
ρg

f (xg)Wig

∑
Ng
g=1

mg
ρg

Wig

, (29)

where Ng is the number of grid nodes in the support domain of the solid particle at xi;
mg and ρg are, in principle, the mass and density of the water particles at grid node xg,
respectively. However, due to the Eulerian nature of the FVM method for the water phase,
no water particles exist in the present method. In fact, mg/ρg represents a volume of
fluid at the position xg, thus the volume of the cell centered at xg can be used as mg/ρg to
perform the interpolation in (29). Usually, the cell size is larger than the particle interval.
The support domain of the interpolation function should therefore be enlarged to contain
sufficiently many grid nodes.

Cell centered at u
i j

Cell centered at v
ij

Cell centered at p
i j

u
i j

v
i j

p
i j

kh

SPH kernel support
Cell center

Solid particles

p
i j

u
i j

v
i j

kh

Figure 2. Interpolation strategy between Eulerian grid nodes and Lagrangian particles. Staggered
grid for the Eulerian variables is illustrated. Left: Grid information transfer to a certain particle;
Right: Transfer of particles information to the grid nodes. A square-type cell system (same ∆x, ∆y
sides) is used here. kh is the radius of the support domain of a solid particle or a grid node, h is the
initial distance between solid particles and k is a constant normally in the range from 2 to 4. A larger
value of k implies more particles in the support domain.

3.2. Special Treatment of the Pore Pressure

The interaction force fs in (6) contains the buoyancy force −φs∇p. Using the SPH
approximation rule (26), this term for the solid particle i would be approximated by

−φi∇pi ≈ −φi

Ng

∑
g

mg

ρg
pg∇iWig, (30)

where subscript g means the nearby grid nodes. However, this approximation results often
in numerical instability (shown later). Thus, the buoyancy force −φs∇p at solid particle i
is replaced by

−φi∇pi ≈ −φi

Ng

∑
g

mg

ρg
(pg − p′i)∇iWig, (31)
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where p′i is the pore water pressure at the location of solid particle i, obtained using the
re-normalized SPH interpolation approximation (29).

Water volume fraction φg on a grid node xg is calculated, according to the saturation
condition φl + φs = 1, by

φl(xg) = 1− 1
ρ̃s

∑
i

miWgi, (32)

where the summation term gives solid volume fraction φs at the position of grid node xg.

3.3. Time Integration and Boundary Conditions

For the FVM simulation, a forward Eulerian integration scheme is employed to
integrate Equations (7), (11) and (13) for the fluid phase, while for the SPH calculation, a
second-order accurate numerical integration scheme, namely the Leap-Frog (LF) method
is adopted here to integrate Equations (1), (3), (17) or (21), and (23) for the granular
phase (see Wang et al. [14]). The time step size is controlled by the so-called Courant-
Fredrich-Levy (CFL) condition and additional constraints due to the interaction forces and
viscous diffusion

∆t ≤ 0.3 min(h/cl , h/cs), ∆t ≤ 0.2 min(h/ fl , h/ fs), ∆t ≤ 0.2 min(h2/ν), (33)

where ∆t is the time step size; h is the smoothing length of particles; cl and cs are the
sound speed of water and grains, respectively; fl and fs are the drag forces acting on water
particles and solid particles, respectively; ν is the water viscosity. The time step ∆t for a
simulation should be chosen to be the minimum value of the above constraints. Although
Leap-Frog integration is a second-order method, in contrast to Eulerian integration scheme,
which is only first order, the accuracy of the time stepping scheme of the coupled method
is only first order.

In FVM simulation, in addition to the free surface boundary conditions treated by
the VOF technique, it is necessary to set conditions at all mesh boundaries. At the mesh
boundaries, a variety of conditions may be set using layers of fictitious cells surrounding
the mesh. The basic idea is to set values for the dependent variables in the fictitious cells
such that the desired boundary conditions are met at the boundaries, see [17]. For the SPH
simulation, the wall boundary is treated by the dynamic particle method, proposed by [23].

4. Simulations and Results Analysis
4.1. Dry Granular Column Collapse

We first apply the proposed SPH model to the problem of single-phase dry granular
column collapse in the air. This problem has been studied by the present authors [12],
using SPH method. In [12], we compared our numerical results with experimental and
computational results of [18]. An excellent agreement was observed. Thus, in this section,
only the effects of some material and geometrical parameters, such as the internal friction
angle θ, the material stiffness E and the aspect ratio a of the column, on the granular column
collapse, are investigated.

We first investigate the case that a 2D granular column of 0.1 m wide and 0.1 m high
is released at t = 0. The initial configuration of the granular column is shown in Figure 3.
Material properties for the granular medium are listed in Table 1. The granular material
is assumed to be cohesionless. In the simulation, a total of 12,800 solid particles are used,
with an initial particle spacing of 0.00125 m. The sound speed is chosen cs = 150 m/s,
which is needed to control the time step size according to the CFL condition (33). The time
step size is set to ∆t = 5× 10−6 s.
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granular

L
i

H
i

Removable
gate

Figure 3. Dry granular column collapse in air.

Table 1. Properties of the granular material used in the computation for an initially 10 cm × 10 cm
(Li × Hi) dry granular column collapse in air.

Property Symbol Value

True density ρ̃s 2700 kg/m3

Young’s modulus E 70 MPa
Poisson’s ration ν 0.3
Internal friction angle θ 20◦

Cohesion c 0
Dilatancy angle ψ 2.5◦

In this study, computations of the plastic behavior are based on the non-associated
flow rule which results in the phenomenon of dilatancy. For the non-associated flow
rule, the significance of dilatancy can be characterized by the dilatancy angle ψ. In the
simulation for the dry granular collapse, the dilatancy angle ψ is set to be constant, while for
submerged cases, this variable is a dynamic quantity computed from the mixture rheology
relationships (23) and (24), as seen in the next section, i.e., although in the dry case, a
granular medium obeys a relaxation towards the critical state, we do not use the same
dilatancy law as used in the submerged section with the dilatancy angle coupled with the
volume fraction. We point out that although dilatancy can adjust the friction coefficient
to some extends, its effect on the collapse dynamics of a granular medium is prominent
only if it is interactive with the pore pressure feedback mechanism. Here for the dry case, a
dilatancy angle ψ = 2.5◦ is taken, which normally results in a relatively high dilatancy.

Figure 4 shows the influence of the internal friction angle θ on the morphology of
the deposit, where two friction angles, namely θ1 = 20◦ and θ2 = 30◦, are considered,
respectively. We can see that the runout distance of the granular column decreases with the
increase of the internal friction angle. This is reasonable if we bear in mind the fact that the
internal friction increases the strength of the granular material, as seen in Equation (14).
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Figure 4. Influence of the internal friction angle θ on the morphology of the deposit for dry granular
column collapse. Soil profiles at t = 0.5 s are plotted.

Figure 5 investigates the influence of the Young’s modulus E on the morphology of
the deposit. Two values of E, i.e., 70 MPa and 7 MPa, are investigated. It can be seen that
for dry granular column collapse, the morphology of the deposit is not sensitive to the
Young’s modulus E of the granular material. Thus, in the following study, a typical value
for the granular materials is used, namely E = 70 MPa.

X(m)

Y
(m

)

0 0.1 0.2 0.3 0.4
0

0.05

0.1

0.15

0.2

E = 70 Mpa

E = 7 Mpa

Initial soil profile

Figure 5. The final slope of a dry granular column collapse with different Young’s modulus E.

The influence of the aspect ratio a of the column on the morphology of the deposit is
shown in Figure 6. The aspect ratio a is defined as a = Hi/Li, where Hi and Li denote the
initial height and width of the granular column, respectively. We can see that for a granular
column with high aspect ratio, say a > 1.0 for example, the height of the deposit is lower
than the initial height of the column, and at the end of the collapse, a pile with a sharp top
is developed. However, in the case of low aspect ratio, a < 1.0, the height of the column is
almost unchanged during the collapse, leading to a pile of flat top at the end of the collapse.
This result agrees with the experimental observations conducted by [24].



J. Mar. Sci. Eng. 2021, 9, 617 12 of 20

X(m)

Y
(m

)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.1

0.2

0.3

0.4

a=3
2

0.5
1

L
i

H
i

Initial profile

Sharp top

Flat top

Figure 6. Dry granular column collapse with different aspect ratios (a = Hi/Li =

0.1/0.1, 0.2/0.1, 0.3/0.1, 0.1/0.2, respectively).

Ref. [18] pointed out that the use of the continuity Equation (1) in the current SPH
application to dry granular material is optional and can be removed from the governing
equations if the bulk density is kept constant. Retaining the continuity equation with
the assumption of constant density corresponds to resolving the variation of void ratio
or porosity of a granular material. The idea is illustrated in Figure 7, where numerical
simulations with and without continuity Equation (1) are presented. We can see that the
numerical results in these two cases are nearly the same, thus the continuity Equation (1)
is not important for the simulation of dry soil column collapse. However, in the case
of submerged granular column collapse, the continuity equation should be employed to
resolve the variation of volume fraction of granular material, as seen in the next section.

X(m)

Y
(m

)

0 0.1 0.2 0.3 0.4
0

0.05

0.1

0.15

0.2

Simulation without density equation
Simulation with density equation

Figure 7. Numerical simulations of dry granular column collapse with and without continuity
Equation (1). The slope profile at t = 0.3 s is shown. The initial granular column is 0.1 m wide and
0.2 m high.

4.2. Submerged Granular Column Collapse

In this section, the submerged granular column collapse is simulated using the pro-
posed coupled Eulerian–Lagrangian model for two-fluid mixture flows. Both initially
dense and loose packing columns are considered in succession.

Figure 8 shows a rectangular tank of 0.50 m in length and 0.15 m in height. The initial
water level in the tank is 0.1 m. The submerged granular column is Li long and Hi high.
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At t = 0, the gate is suddenly removed, and the column then collapses. The gate can be
removed within 0.03 s. Although granular column collapse is known to be quite sensitive
to the way the gate is removed, the effects of the gate movement on the granular motion
and the surrounding fluid motion are ignored. Material properties used in the calculation
are shown in Table 2. Model experiments of the same scale are also conducted to validate
our numerical simulations. The experimental setup is the same as that in [13], but with a
pressure sensor mounted on the side wall of the tank to measure the pore water pressure
at point P1. The position of the pressure sensor is shown in Figure 8. The sensor used is
an HM91 micro pore pressure sensor and transducer produced by HELM SENSOR. The
measuring range of this diffused silicon piezoresistive pressure sensor is from 0 to 10 kPa,
with a 24 V DC power supply. The overall accuracy is ±0.1%FS (Full Scale). The loose
packing is made by gently pouring the spherical glass beads into the reservoir delimited by
the removable gate. To create dense packing columns, we gently tap on the tank wall. By
doing so, the solid volume fraction reached in our setup is 0.55± 0.005 for the immersed
loose packing and 0.60± 0.003 for the immersed dense packing. The solid volume fraction
is measured and calculated by the displacement method. The diameter of the spherical
glass beads ranges from 150 µm to 300 µm, with an average diameter of 225 µm and
standard deviation of 40 µm.

Water

L i

Hi

50cm

15
cm

Removable
gate

10
cm

Dw

2cm

Pressure sensor P1

∇

granular

Figure 8. Submerged granular column collapse. Dw is the water depth. Li and Hi are the initial
length and height of the granular column, respectively.

Table 2. Material properties for the simulation of an initial 6 cm × 8 cm (Li × Hi) granular column
collapse in water.

Property Symbol Value

True density of granular material ρ̃s 2700 kg/m3

Young’s modulus of granular material E 70 MPa
Poisson’s ration of granular material ν 0.3
Internal friction angle of granular material θ 20◦

Cohesion of granular material c 0
Initial volume fraction of granular material φs0 0.55 (loose), 0.60 (dense)
Hydraulic conductivity of granular material k 0.005 m/s
Viscosity of the water µ 0.001 Pa · s
Initial true density of the water ρ̃ f 0 1000 kg/m3

Mean granular diameter (glass beads) d 225 µm

There are a total of 9600 Eulerian cells and 3072 SPH particles for water and solid phase
in the tank, respectively. The initial particle spacing is 0.00125 m. The grid size is twice as
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that of the solid particle interval, which means there are nearly four solid particles in one
cell. Thus, the support domain of a solid particle should be doubled in order to contain
more grid nodes. Numerical parameters are chosen as follows: Virtual speed of sound for
water c f = 10 m/s; speed of sound for granular material cs = 150 m/s; artificial viscosity
parameters α = 0.1, β = 0; the artificial diffusive parameter in δ-SPH method δ = 0.1 for
SPH simulation of solid phase; for the repulsive force, D = 0.01 and r0 = 0.00125 m; time
step size ∆t = 2.5× 10−6 s, which satisfies the constraints in (33). The non-associated flow
rule with dilatancy angle ψ determined by (23) and (24) is implemented in the calculation.
For the meaning of some of the above parameters, see [12].

4.3. Dense Packing Column Collapse

Submerged granular column collapse can cause free surface waves. Figure 9 shows
the free surface indicated by the water volume fraction φ f , where φ f = 0 in the air domain,
φ f = 1 in the pure water domain and 0 < φ f < 1 in the water–grain mixture. Here it
should be pointed out that although the VOF function F is used to indicate the water
free surface in the Eulerian domain, we combine F and φ f together and show the water
free surface and solid surface simultaneously using φ f only, as seen in Figure 9. It is seen
that the collapse of the submerged granular column leads to the sinkage of the water free
surface above. The magnitude of the sinkage of the water free surface is in the order of
1cm, which agrees well with the experimental observations. Thus, the proposed numerical
model has the capability of simulating free surface flows caused by underwater granular
column collapse.
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Figure 9. Numerical results show the evolution of water free surface and granular profile indicated
by the water volume fraction φ f at some representative times for the initially dense packing case.

The granular column profile indicated by the water volume fraction φ f is also shown
in Figure 9 which resolves the water volume fraction within the column and at its surface.
Here, it should be pointed out that the granular surface is, in fact, a surface where φ f
changes rapidly across it. In our numerical model, the water volume fraction φ f is calcu-
lated by interpolating the water volume fraction φa (i.e., Equation (32)) on the Lagrangian
solid particles to the Eulerian grid points using the SPH re-normalized interpolation ap-
proach (i.e., Equation (27)). Usually, in SPH simulation, a transition zone of φ f at the
granular surface develops, due to the incompleteness of the support domain of the SPH in-
terpolation function at the interface. However, as seen in Figure 9, due to the re-normalized
interpolation technique used in this study, the transition zone is limited in a narrow space,
namely the abrupt change of the volume fraction φ f at the interface is maintained.

We investigate the effectiveness of the special treatment of the pore water pressure
mentioned in (31). Figure 10 shows some solid particles expelled out from the granular
column by the improper treatment of the pore water pressure, i.e., Equation (30). Parti-
cle expelling results in the enlargement of the particle intervals. Consequently, a large
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transition zone of the water volume fraction φ f is formed and the pore water pressure in
this zone cannot be predicted correctly. This instability, previously reported by [25], can
be avoided by introducing p′ in the approximation of the pore pressure gradient, as seen
in (31). The main idea behind this treatment is to address the importance of the pressure
difference, instead of the pressure itself, in the approximation of the pore water pressure
gradient. With this treatment, the movement of the solid particles and the evolution of the
water volume fraction φ f are stable, as seen in Figure 9.

Solid particles expelled
from the column

∇ 0.95

0.9

0.85

0.8

0.75

0.7

0.65

0.6

0.55

0.5

0.45

0.4

φ
f

Transition zone
of the water
volume fraction φ

f

∇

Figure 10. Numerical instability caused by the conventional SPH approximation of the pore water
pressure gradient, i.e., Equation (30).

Figure 11 shows the snapshots from both experimental observations and numerical
simulations of an initially dense packing submerged granular column collapse. The granu-
lar velocity fields at representative times from the experiments and simulations are given
for comparison. The experimental velocity fields of the solid phase are obtained by the
software package Photoinfor which can capture the deformation patterns and analyzing
the evolution of the deformation quantitatively (Li et al. [26]) by means of the so-called
digital speckle correlation method (DSCM). The snapshots on the left column of Figure 11
are from experimental observations with arrows representing the velocity vectors of the
granular particles they start on at a certain instant. It is seen that upon removal of the
gate, particle movement takes place mainly at the upper left corner where the particles fall
off the pile with a large velocity. After that, the particles mainly move along the granular
surface layer and a “hydraulic-like granular jump” can be observed due to the stoppage of
the slow-moving particles at downstream. The same phenomena are observed from the
numerical simulations, except the discrepancy on the runout distance which may be due to
the sparseness of particles at the surge front. Both experimental observation and numerical
simulation show that the collapse of the initially dense packing column is finished within
about 3 s.

Figure 12 shows the water pressure field at some representative times for an initially
dense packing granular column collapse. Dense packing granular material exhibits dilation
when sheared. As a result of the dilation, the interstitial pore water is sucked into the
column, giving rise to a negative pore pressure field. In Figure 12, the hydrostatic pressure
has been subtracted and only the dynamic deviation of the pore pressure is shown. That
would make the low-pressure zone much more obvious. It is seen from Figure 12 that a
lower pressure zone in the shearing zone develops at the initial stage of the dense column
collapse. During the later stage of the collapse, this negative pressure field dissipates and
recovers to the hydrostatic pressure due to the pore water infiltration.
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Figure 11. Granular velocity fields at some representative times for the initially dense packing
column collapse. Left column: experimental observations; Right column: numerical simulations.
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Figure 12. Numerical results show the relative pore water pressure field evolution during the collapse
process of an initially dense packing submerged granular column.

To investigate the time evolution of the pore water pressure quantitatively, pore water
pressure at point P1 is investigated experimentally and numerically. Figure 13 shows
the predicted relative pore water pressure at point P1 compared with the experimental
measurements. Here, “relative” means the pressure difference from the hydrostatic pressure
of the surrounding fluid at the same depth. Experimental measurements show that at
the initial stage, say 0 < t < 1, a negative pressure is measured, and then it is recovered
to the hydrostatic pressure during the later stage of the collapse. The fluctuations in the
experimental pore pressure signal are due to the sloshing of the water free surface in the



J. Mar. Sci. Eng. 2021, 9, 617 17 of 20

tank caused by the removing of the gate. Numerical pore water pressure shows the same
trend, but the negative pressure appears later than in the experiments. The reason may be
also due to the gate removing duration.
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Figure 13. Relative pore water pressure at point P1 during the collapse process of an initially dense
packing granular column.

4.4. Loose Packing Column Collapse

Now we investigate the loose packing case. The initially loose packing column collapse
shows some different scenarios. In Figure 14, the granular velocity fields obtained for
an initially loose packing column is shown. It is seen that upon removal of the gate, the
upper part of the column drops quickly, resulting in a surge of the front. After that, a thin
layer of surface particles flows down a mild slope. Both experimental observation and
numerical simulation show that the collapse of the initially dense packing column of this
case is finished within about 1.5 s, much shorter than in the case of dense packing collapse.
The experiments of [8] revealed that the collapse of an initially loose granular column can
be finished within a few seconds, while for an initially dense granular column, the collapse
can last for a much longer time, e.g., tens of seconds. Moreover, the runout distance of
loose columns is twice longer than that of dense columns. Please note that [8] used a kind
of very sticky liquid (µ = 0.012 Pa·s) in the experiments. Thus, the difference between our
results and the experimental observations of [8] may be due to the fluid viscosity, which
should be a good topic for the future.

Figure 15 shows the relative pore pressure field evolving during the collapse of an
initially loose packing granular column. It is seen that due to the compaction of the
loose packing, a high-pressure zone develops in the granular column at the initial stage
of the collapse. For loose column collapse, a positive pore pressure can be measured
below the column. Here, positive pressure is relative to the hydrostatic pressure of the
surrounding fluid at the same depth. After that, the pore pressure dissipates and restores
to the hydrostatic pressure in a short period. Figure 16 shows the predicted relative pore
water pressure at point P1 compared with the experimental measurements. Experimental
measurements show that at the initial stage, say about 0 < t < 0.2 s, a positive pressure is
observed, and then it is recovered to the hydrostatic pressure during the later stage of the
collapse. Numerical pore water pressure shows the same trend, but the positive pressure
lasts a longer time than in the experiments. Interestingly, overshoot and oscillation of the
pore pressure can be seen from both numerical and experimental results. Please note that in
the dilatancy model (24), K3 is a rheology parameter which should be calibrated in practice.
Thus, a well calibrated K3 might be useful to obtain a more realistic pore pressure feedback
mechanism. However, this should be clarified in the future.
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Figure 14. Granular velocity field at some representative times for an initially loose packing column
collapse. Left column: experimental observations; Right column: numerical simulations.
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Figure 15. Numerical results show the relative pore water pressure field evolution during the collapse
process of an initially loose packing submerged granular column.
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Figure 16. Relative pore water pressure at point P1 during the collapse process of an initially loose
packing granular column.

5. Conclusions

In this paper, numerical simulation of submerged granular column collapse by means
of a Eulerian–Lagrangian coupled method is presented. Conservation equations of mass
and momentum for both phases (water and solid particles) are formulated, based on
the mixture theory. The solid is considered to be an elastic–perfectly plastic material. A
Drucker-Prager yielding function with associated and non-associated plastic flow rules,
respectively, is employed to describe the elastic-plastic behavior of the solid particles. The
critical state theory is combined to consider the dilatancy or compaction of the granular
material when subjected to shear.

A Eulerian–Lagrangian coupled method is employed to solve the proposed two-fluid
mixture model. In this method, the continuous phase is solved using the Eulerian finite vol-
ume method (FVM) with the free surface captured by the volume-of-fluid (VOF) technique.
The dispersed phase is solved by the Lagrangian smoothed particle hydrodynamic method
(SPH). The Eulerian grid is composed of rectangular uniform Cartesian cells. The granular
is decomposed into many material particles. The key issue is the information transfer
between the Eulerian grid nodes and the Lagrangian particles. In the present method, this
transfer is accomplished using the SPH kernel function. A re-normalized interpolation
technique and an alternative treatment of the pressure term in the momentum equation for
solid are employed to reduce the numerical instability of the SPH simulation.

The dry granular column collapse is studied first using the proposed approach. We
investigate the influence of the stiffness, internal friction angle and aspect ratio on the
morphology of the deposit. It is found that the morphology of the deposit is mainly
dependent on the internal friction angle and the aspect ratio. The stiffness of the solid
particles, which is identified by the bulk modulus of the solid material, has little effects on
the granular deposit.

Compared with the dry granular column collapse, submerged granular column col-
lapse exhibits many different features. For loose packing, the collapse process takes within
a second; whereas dense packing can retard the flow significantly. Dilatancy (compaction)
effects on the formation of different regimes is investigated. Agreement between our
numerical simulations and experimental observations is good.In many situations, such as
the underwater landslides, it is necessary to consider the effects of the ambient water on
the mixture movements. The proposed coupled approach in this paper can deal with such
problems widely occurred in underwater engineering and science.
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