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Abstract: We consider the estimation of parameter-dependent statistics of functional outputs of
steady-state convection–diffusion–reaction equations with parametrized random and deterministic
inputs in the framework of linear elliptic partial differential equations. For a given value of the deter-
ministic parameter, a stochastic Galerkin finite element (SGFE) method can estimate the statistical
moments of interest of a linear output at the cost of solving a single, large, block-structured linear
system of equations. We propose a stochastic Galerkin reduced basis (SGRB) method as a means to
lower the computational burden when statistical outputs are required for a large number of deter-
ministic parameter queries. Our working assumption is that we have access to the computational
resources necessary to set up such a reduced-order model for a spatial-stochastic weak formulation of
the parameter-dependent model equations. In this scenario, the complexity of evaluating the SGRB
model for a new value of the deterministic parameter only depends on the reduced dimension. To
derive an SGRB model, we project the spatial-stochastic weak solution of a parameter-dependent
SGFE model onto a reduced basis generated by a proper orthogonal decomposition (POD) of snap-
shots of SGFE solutions at representative values of the parameter. We propose residual-corrected
estimates of the parameter-dependent expectation and variance of linear functional outputs and
provide respective computable error bounds. We test the SGRB method numerically for a convection–
diffusion–reaction problem, choosing the convective velocity as a deterministic parameter and the
parametrized reactivity or diffusivity field as a random input. Compared to a standard reduced basis
model embedded in a Monte Carlo sampling procedure, the SGRB model requires a similar number
of reduced basis functions to meet a given tolerance requirement. However, only a single run of the
SGRB model suffices to estimate a statistical output for a new deterministic parameter value, while
the standard reduced basis model must be solved for each Monte Carlo sample.

Keywords: model order reduction; proper orthogonal decomposition; stochastic galerkin; finite
elements; parametrized partial differential equation; Monte Carlo; reduced basis method

MSC: 65C30; 65N30; 65N35; 60H35; 35R60

1. Introduction

Convection–diffusion–reaction equations appear in many fields of science and en-
gineering when modelling flow phenomena. They describe the behavior of a physical
quantity of interest in a considered domain under the influence of diffusive and convective
effects when there is also production. These types of equations are, for example, used
to model combustion and chemotaxis, and also appear in the context of the incompress-
ible Navier–Stokes equations when solving the Oseen system or vorticity formulations.
An overview of different applications can, for example, be found in [1]. We investigate
convection–diffusion–reaction equations in the abstract framework of linear elliptic par-
tial differential equations and revisit the concrete equations in the Results Section 3. We
consider boundary-value problems subject to a finite number of random and deterministic
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input parameters. Our goal is to compute the parameter-dependent expected value and
variance of a functional output of interest. In this context, a reduced basis model provides
a computationally inexpensive map between the deterministic input parameters and the
corresponding output statistics. Moreover, it provides a computable a posteriori bound for
the error between the reduced basis statistical estimate and a corresponding high-fidelity
estimate. Reduced basis methods for linear elliptic boundary value problems with affinely
parametrized deterministic data are well-understood [2–4]. We consider two approaches to
include stochastic parameters:

• The Monte Carlo reduced basis (MCRB) method: The underlying equations are formu-
lated weakly regarding the physical space, that is, the problem depends on both
the deterministic and stochastic parameters. Monte Carlo sampling is used to esti-
mate the parameter-dependent expected value and variance of a functional output
of interest. An MCRB method for linear elliptic problems with error bounds for the
expectation and variance of a linear functional output is derived in [5]. Improved
error bounds are provided by [6]. Further advances are the introduction of a weighted
error estimator [7] and the embedding in a multi-level procedure [8]. MCRB methods
have also been applied to parabolic problems [9], saddle point problems [10], Bayesian
inverse problems [11–13], and the assessment of rare events [14].

• Stochastic Galerkin reduced basis (SGRB) method: The underlying equations are formu-
lated weakly regarding the spatial and stochastic dimensions, so that the problem
depends on the deterministic parameters only. Parameter-dependent estimates of
the expected value and variance of a functional output are obtained by direct inte-
gration of the reduced solution. The principle of SGRB methods is introduced in [15]
for stochastic time-dependent incompressible Navier–Stokes problems, formulated
weakly regarding the spatial and stochastic dimensions, with time acting as a parame-
ter. Applications to linear dynamical systems are studied in [16,17]. SGRB methods
can be related to space-time reduced basis methods [18,19], which rely on a weak
formulation with respect to space and time. The idea of using SGRB methods to
estimate parameter-dependent expected values is discussed in ([20], Section 8.2.1).

The main contributions of the paper can be split into three parts: First, we derive
a novel residual-corrected parameter-dependent estimate of the variance of a functional
output of interest of a linear elliptic partial differential equation for a Monte Carlo reduced
basis approach by carefully combining techniques from [5,6]. In contrast to some other
available variance estimators as the one described in [21], our estimator converges quadrat-
ically in terms of residual norms, see also [6]. Second, we adopt ideas from [22,23] to derive
a new computable residual-corrected estimate for the variance of a functional output of
interest for an SGRB method in the same setting. Estimates for the variance of functional
outputs without residual correction are, for example, considered in [24]. We eventually
show that the SGRB method can yield an online speedup with respect to the MCRB method
in the order of magnitude of the Monte Carlo samples for two numerical examples.

The creation of a stochastic Galerkin reduced basis model requires an underlying
stochastic Galerkin finite element (SGFE) model or an equivalent high-fidelity Galerkin
approximation. At least a few snapshots of the SGFE solution for different values of
the deterministic parameters are needed to provide a suitable reduced basis. Moreover,
evaluations of the SGFE linear and bilinear forms are necessary to derive the respective
reduced-order Galerkin model and error bounds. We assume that the resources necessary
for these computations are available in the setup phase. We briefly discuss the associated
costs in Section 3.3 but refer to [25] for a more detailed analysis of the costs of stochatic
Galerkin methods. We point out that the presented SGRB method is not a tool to reduce
the computational burden associated with a single solution of an SGFE model as it is
the objective in, for example, [26,27] using proper generalized decomposition, in [28,29]
using a rational Krylov method and a low-rank tensor approximation, respectively, and
in [30,31] using problem-tailored preconditioned iterative solvers. Instead, the SGRB
approach targets the situation where a certain number of SGFE simulations are feasible in
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an expensive pre-processing step to create a reduced-order model which can be evaluated
cheaply for any given deterministic parameter. As an extreme scenario, one could imagine
having supercomputer resources available in the setup phase, whereas the reduced-order
model shall be evaluated on a microcontroller in real time. Therefore, SGRB models can be
particularly useful in settings where statistical estimates are required for many values of
the deterministic parameters, like in robust optimal control or the real-time exploration of
parameter-dependent statistics.

Compared to Monte Carlo reduced basis methods, stochastic Galerkin reduced basis
methods can substantially decrease the computational cost of estimating the expectation
and variance for a given value of the deterministic parameters. The reason is that MCRB
methods require sampling the reduced-order solution, which may lead to a large number
of reduced-order simulations for a single query of the deterministic parameters. The same
issue arises when a stochastic collocation method is applied instead of Monte Carlo [32].
SGRB methods overcome this drawback by evaluating the stochastic integrals in the offline
stage, that is, during the setup of the reduced-order model. As a result, the cost of solving
an SGRB model is similar to the cost of a single solution of a comparable RB model within
an MC loop. At the same time, the SGRB model directly delivers a statistical estimate
without sampling. Therefore, one can expect a speed-up factor in the order of magnitude
of the number of MC samples.

2. Materials and Methods
2.1. Monte Carlo Reduced Basis Method

We introduce a complete probability space (Θ,F ,P) consisting of a set Θ of elementary
events, a σ-algebra F on Θ, and a probability measure P on F . For k = 1, . . . , K with
K ∈ N, we define independent random variables ξk : Θ → Ξk, where Ξk ⊂ R is the
image of ξk. We introduce respective probability distributions Pξk and probability densities
pξk : Ξk → R+, so that Pξk (B) =

∫
B pξk (y)dy = P(ξ−1

k (B)) for all B in the Borel σ-
algebra of Ξk. We collect the random variables in a random vector ξ : Θ→ Ξ, where ξ =
(ξ1, . . . , ξK)

T and Ξ = Ξ1 × · · · × ΞK, with joint distribution Pξ and density pξ : Ξ → R+.
We denote the expectation of any Pξ -measurable function g : Ξ → R with density pξ by
E[g] =

∫
Ξ g(y)dPξ (y) =

∫
Ξ g(y)pξ (y)dy. We define the variance V[g] = E[(g− E[g])2]

for any g ∈ L2
ξ (Ξ), where L2

ξ (Ξ) := { v : Ξ → R |
∫

Ξ v(y)2 pξ (y)dy < ∞ }.
We introduce a deterministic parameter µ ∈ P with a domain P ⊂ RP with P ∈ N.

The final statistical outputs are scalar-valued µ-dependent functions representing approxi-
mations to the expectation and variance of a linear functional of a PDE solution.

We let {ξ1, . . . , ξNξ } be a set of independent copies of the random vector ξ . For some
g ∈ L2

ξ (Ξ), we define Monte Carlo estimators

E[g] :=
1

Nξ

Nξ

∑
n=1

g(ξn), E[g] :=
1

Nξ − 1

Nξ

∑
n=1

g(ξn), V[g] := E[g2]− E[g]E[g], (1)

for which E[E[g]] = E[g] and E[V[g]] = V[g] hold, that is, the estimators are unbiased.
They are thus estimators of the true expectation and variance of g and converge to the
true values almost surely as Nξ → ∞, see ([33], Section 4.3). These different estimators
also appear in the derivation of the output bounds as explained in Section 2.1.3. We let
ΞNξ := {y1, . . . , yNξ } be a realization of {ξ1, . . . , ξNξ }. A realization of a Monte Carlo
estimate is obtained after substituting ξn by yn in (1), assuming that g(y) is computable
for any y ∈ ΞNξ . In our approach, we view Nξ as a discretization parameter and fix ΞNξ

before we build the reduced basis model.
We focus on the case where g depends on its argument via a discretized PDE prob-

lem. In the following, we provide a full-order model (Section 2.1.1) and a reduced-order
model (Section 2.1.2) to approximate the solution of the PDE for a given realization of the
deterministic and random input parameters. The computation of linear outputs and the
corresponding statistics are described in Section 2.1.3, together with the respective error
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bounds. For the separation of the computation into an expensive offline phase and an
inexpensive online phase, we refer to [5,6].

2.1.1. Monte Carlo Finite Element (MCFE) Model

We use a stochastic strong form of a parametrized PDE problem with random data to
formulate an MCFE model. Samples of the solution of the PDE problem are characterized
by a separable Hilbert space X with inner product (·, ·)X and norm ‖ · ‖X. We introduce
a parametrized bilinear and linear form a(·, ·; y, µ) : X × X → R and f (·; y, µ) : X → R,
respectively. This allows a stochastic strong formulation of a linear elliptic PDE problem:

Problem 1 (MCFE model). For given (y, µ) ∈ ΞNξ ×P , find

u(y, µ) ∈ X : a(u(y, µ), v; y, µ) = f (v; y, µ) ∀v ∈ X. (2)

We assume that a(·, ·; y, µ) is (y, µ)-uniformly bounded and coercive on X and that
f (·; y, µ) is (y, µ)-uniformly bounded on X. Then, Problem 1 has a unique solution for any
given (y, µ) ∈ ΞNξ ×P according to the Lax–Milgram lemma.

It is a usual premise in reduced basis methods that the discretization space of the
underlying full-order model is assumed to be large enough to capture the solution with
sufficient precision, see [4]. The assessment of the error of the full-order solution with
respect to the infinite-dimensional exact solution is delegated to the choice of the full-order
discretization. In this spirit, we assume X to be a sufficiently well-resolving finite element
space with MFE degrees of freedom. Similarly, we assume ΞNξ to be a large enough sample
set so that the error associated with the MC sampling is sufficiently small. Consequently,
the errors associated with the MC sampling and the FE discretization are not represented
in our error estimates.

2.1.2. Monte Carlo Reduced Basis Model

Let XR ⊂ X be an R-dimensional subspace. An example is given in Section 2.3.1. A
reduced-order model of Problem 1 is:

Problem 2 (MCRB model). For given (y, µ) ∈ ΞNξ ×P , find

uR(y, µ) ∈ XR : a(uR(y, µ), v; y, µ) = f (v; y, µ) ∀v ∈ XR.

The unique solvability of Problem 2 is a direct consequence of Problem 1 being well-
posed and XR being a subspace of X.

2.1.3. Output Statistics and Error Estimates

We derive residual-corrected RB approximations of MCFE estimates of the expectation
and variance of linear outputs of the parametrized PDE problem. We provide error bounds
converging quadratically in terms of residual norms. In particular, we transfer the dual-
based error bounds of [6], considering the true expectation and variance of RB outputs,
to the setting of [5], considering MC approximations of the expectation and variance.
This requires an additional dual problem, as well as a careful handling of different MC
discretizations of the expected value, namely E[·] and E[·], according to (1). Throughout this
section, we assume the same dependency on the deterministic and stochastic parameters as
in Sections 2.1.1 and 2.1.2, but often omit an explicit notation of the parameter dependence
for clarity.

We introduce a parametrized linear form l(·; y, µ) : X → R, assumed to be (y, µ)-
uniformly bounded on X. This linear form is the quantity of interest for the MCRB model.
We complement Problems 1 and 2 with auxiliary sets of dual problems to allow for residual-
corrected output computations by carefully combining techniques presented in [5,6]. These
auxiliary problems are essential for the estimates of the output statistics below. For brevity,
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we provide the definitions and problems all at once as they fit in the same structural
framework:

Definition 1. Subspaces XR
(1), . . . , XR

(4) and linear forms l(1), . . . , l(4) are given by

XR
(1) ⊂ X, l(1)(·) := l(·),

XR
(2) ⊂ X, l(2)(·) := 2(l(uR)− r(uR

(1)))l(·),
XR
(3) ⊂ X, l(3)(·) := E[l(uR)− r(uR

(1))]l(·),
XR
(4) ⊂ X, l(4)(·) := E[l(uR)− r(uR

(1))]l(·).

Problem 3 (dual MCFE models). For given (y, µ) ∈ ΞNξ ×P , find

u(i) ∈ X : a(v, u(i)) = −l(i)(v) ∀v ∈ X, i = 1, . . . , 4.

Problem 4 (dual MCRB models). For given (y, µ) ∈ ΞNξ ×P , find

uR
(i) ∈ XR

(i) : a(v, uR
(i)) = −l(i)(v) ∀v ∈ XR

(i), i = 1, . . . , 4.

Definition 2. A primal residual r and dual residuals r(1), . . . , r(4) are given by

r(·) := f (·)− a(uR, ·), (3)

r(i)(·) := −l(i)(·)− a(·, uR
(i)), i = 1, . . . 4. (4)

The following error bounds require a coercivity factor

α(y, µ) := inf
v∈X\{0}

a(v, v; y, µ)

‖v‖2
X

∀(y, µ) ∈ ΞNξ ×P , (5)

and a dual space X′ of X, with norm

‖F‖X′ := sup
v∈X\{0}

|F(v)|
‖v‖X

∀F ∈ X′. (6)

For efficiency, an offline/online decomposition of the dual norms of the functional is
possible, and the coercivity factor can be replaced by a strictly positive lower bound [5,6].

First, we provide a bound for the error of the RB solution to Problem 2 with respect to
the FE solution to Problem 1, point-wise in ΞNξ ×P , see ([6], Proposition 3.1):

Theorem 1 (solution bound). For given (y, µ) ∈ ΞNξ ×P ,

‖u− uR‖X ≤
‖r‖X′

α
. (7)

Proof. We define e := u− uR and derive

α‖e‖2
X

(5)
≤ a(e, e)

(2)
= f (e)− a(uR, e)

(3)
= r(e)

(6)
≤ ‖r‖X′‖e‖X .

Dividing by α‖e‖X gives the result.

We approximate a parameter-dependent linear output l(u(y, µ); y, µ) point-wise with
a residual-corrected reduced-order approximation, see ([6], Theorem 3.6):
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Theorem 2 (output bound). For given (y, µ) ∈ ΞNξ ×P ,

|l(u)− l(uR) + r(uR
(1))| ≤

‖r‖X′‖r(1)‖X′

α
. (8)

Proof. We define e := u− uR and reformulate

|l(u)− l(uR) + r(uR
(1))|

(3)
= |l(e) + f (uR

(1))− a(uR, uR
(1))|

(2)
= |l(e) + a(e, uR

(1))|
(4)
= |r(1)(e)|

(6)
≤ ‖r(1)‖X′‖e‖X

(7)
≤
‖r(1)‖X′‖r‖X′

α
.

We approximate the MCFE estimate E[l(u(·, µ); ·, µ)] of the parameter-dependent
expected linear output as follows, see ([6], Corollary 4.2.):

Theorem 3 (expected output bound). For given µ ∈ P ,

|E[l(u)]− E[l(uR)] + E[r(uR
(1))]| ≤ E

[
‖r‖X′‖r(1)‖X′

α

]
.

Proof. By Jensen’s inequality

|E[l(u)]− E[l(uR)] + E[r(uR
(1))]| ≤ E[|l(u)− l(uR) + r(uR

(1))|]
(8)
≤ E

[
‖r‖X′‖r(1)‖X′

α

]
.

Finally, we approximate the MCFE estimate V[l(u(·, µ); ·, µ)] of the parameter-dependent
variance of the linear output, see ([6], Theorem 4.5):

Theorem 4 (output variance bound). For given µ ∈ P ,∣∣V[l(u)]−V[l(uR)] + V[r(uR
(1))] + E[r(uR

(2))]− E[r(uR
(3))]− E[r(uR

(4))]
∣∣

≤ E

[
‖r‖2

X′‖r(1)‖2
X′

α2

]
+ E

[
‖r‖X′‖r(1)‖X′

α

]
E

[
‖r‖X′‖r(1)‖X′

α

]

+ E

[∥∥r(2) − r(3) −
Nξ−1

Nξ
r(4)
∥∥

X′
∥∥r
∥∥

X′

α

]
.
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Proof. By (1), defining e := u− uR,∣∣E[l(u)2]− E[l(u)]E[l(u)]− E[l(uR)2] + E[l(uR)]E[l(uR)]

+ E[r(uR
(1))

2]− E[r(uR
(1))]E[r(u

R
(1))] + E[r(uR

(2))]− E[r(uR
(3))]− E[r(uR

(4))]
∣∣

≤
∣∣∣E[(l(u)− l(uR) + r(uR

(1)))
2]
∣∣∣︸ ︷︷ ︸

(8)
≤E
[
‖r‖2

X′ ‖r(1)‖
2
X′

α2

]
+
∣∣∣E[l(u)− l(uR) + r(uR

(1))]
∣∣∣︸ ︷︷ ︸

(8)
≤E
[
‖r‖X′ ‖r(1)‖X′

α

]
∣∣∣E[l(u)− l(uR) + r(uR

(1))]
∣∣∣︸ ︷︷ ︸

(8)
≤E
[
‖r‖X′ ‖r(1)‖X′

α

]
+
∣∣∣ E[ 2(l(uR)− r(uR

(1)))l(e) + r(uR
(2))︸ ︷︷ ︸

(3),(2),(4)
= −r(2)(e)

]− E[ E[l(uR)− r(uR
(1))]l(e) + r(uR

(3))︸ ︷︷ ︸
(3),(2),(4)
= −r(3)(e)

]

− E[ E[l(uR)− r(uR
(1))]l(e) + r(uR

(4))︸ ︷︷ ︸
(3),(2),(4)
= −r(4)(e)

]
∣∣∣,

where

∣∣E[r(2)(e)]− E[r(3)(e)]− E[r(4)(e)]
∣∣ (6),(7)
≤ E

[∥∥r(2) − r(3) −
Nξ−1

Nξ
r(4)
∥∥

X′
∥∥r
∥∥

X′

α

]
.

2.2. Stochastic Galerkin Reduced Basis Method

In the following, we replace the Monte Carlo sampling by a stochastic Galerkin
procedure, see [33]. One can also use stochastic collocation methods in this context, see [32].
The benefit of the stochastic Galerkin method is, however, that no additional sampling is
necessary in the online phase. We provide a full-order model (Section 2.2.1) and a reduced-
order model (Section 2.2.2) to approximate the stochastic solution of the PDE problem for a
given realization of the deterministic input parameters. The computation of statistics of
linear outputs are described in Section 2.2.3, together with the respective error bounds. The
computation can be separated into an expensive offline phase and an inexpensive online
phase by standard means [3].

2.2.1. Stochastic Galerkin Finite Element Model

We introduce a stochastic Galerkin discretization space S ⊂ L2
ξ (Ξ). An example is

given in Section 3.2. We define the product space X̄ := S⊗ X, which is a Hilbert space
with inner product (·, ·)X̄ := (·, ·)L2

ξ (Ξ ,X) and norm ‖ · ‖X̄ := ‖ · ‖L2
ξ (Ξ ,X) in terms of the

Bochner-type space L2
ξ (Ξ, X) := { v : Ξ → X |

∫
Ξ ‖v(y)‖2

X pξ (y)dy < ∞ }.
We derive a spatial-stochastic weak formulation by taking the expectation of (2).

Defining ā(w, v; µ) := E[a(w, v; ·, µ)] and f̄ (v; µ) := E[ f (v; ·, µ)] provides

Problem 5 (SGFE model). For given µ ∈ P , find

ū(µ) ∈ X̄ : ā(ū(µ), v; µ) = f̄ (v; µ) ∀v ∈ X̄. (9)

As a consequence of the coercivity and boundedness properties associated with
Problem 1, the bilinear form ā(·, ·; µ) is µ-uniformly bounded and coercive on X̄ and the
linear form f̄ (·; µ) is µ-uniformly bounded on X̄. Therefore, Problem 5 has a unique
solution for any given µ ∈ P according to the Lax–Milgram lemma.
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2.2.2. Stochastic Galerkin Reduced Basis Model

We introduce an R-dimensional reduced space X̄R ⊂ X̄. Suitable reduced spaces are
provided in Section 2.3.2. A reduced form of Problem 5 is given as follows:

Problem 6 (SGRB model). For given µ ∈ P , find

ūR(µ) ∈ X̄R : ā(ūR(µ), v; µ) = f̄ (v; µ) ∀v ∈ X̄R.

The subspace property X̄R ⊂ X̄ and the well-posedness of Problem 5 imply that
Problem 6 has a unique solution.

2.2.3. Output Statistics and Error Estimates

We derive SGRB approximations of the expectation and variance of linear outputs
together with error bounds with respect to the corresponding SGFE approximations. The
variance can be interpreted in terms of quadratic outputs. We follow the ideas of [22,23] to
derive the respective error bounds.

We introduce a linear form l̄(v; µ) := E[l(v; ·, µ)], which is µ-uniformly bounded on
X̄. This linear form is the quantity of interest in the SGRB model. We complement the
primal problem of Section 2.2.1 with corresponding dual problems:

Problem 7 (dual SGFE models). For given µ ∈ P , find

ū(1) ∈ X̄ : ā(v, ū(1)) = −l̄(v) ∀v ∈ X̄,

ū(2) ∈ X̄ : ā(v, ū(2)) = −E[l(ū + ūR)l(v)] ∀v ∈ X̄,

ū(3) ∈ X̄ : ā(v, ū(3)) = −
(
l̄(ū) + l̄(ūR)− 2r̄(ūR

(1))
)
l̄(v) ∀v ∈ X̄.

Letting X̄R
(1) ⊂ X̄, X̄R

(2) ⊂ X̄ and X̄R
(3) ⊂ X̄ be R-dimensional subspaces, we introduce

the following set of reduced dual equations:

Problem 8 (dual SGRB models). For given µ ∈ P , find

ūR
(1) ∈ X̄R

(1) : ā(v, ūR
(1)) = −l̄(v) ∀v ∈ X̄R

(1),

ūR
(2) ∈ X̄R

(2) : ā(v, ūR
(2)) = −2E[l(ūR)l(v)] ∀v ∈ X̄R

(2),

ūR
(3) ∈ X̄R

(3) : ā(v, ūR
(3)) = −2

(
l̄(ūR)− r̄(ūR

(1))
)
l̄(v) ∀v ∈ X̄R

(3).

The error bounds will be provided in terms of dual norms of residuals:

Definition 3. Based on Problems 5, 6, 7 and 8,

r̄(·) := f̄ (·)− ā(ūR, ·), (10)

r̄(1)(·) := −l̄(·)− ā(·, ūR
(1)), (11)

r̄(2)(·) := −2E[l(ūR)l(·)]− ā(·, ūR
(2)), (12)

r̄(3)(·) := −2
(
l̄(ūR)− r̄(ūR

(1))
)
l̄(·)− ā(·, ūR

(3)). (13)

We define, for any µ ∈ P , the coercivity factor

ᾱ(µ) = inf
v∈X̄\{0}

ā(v, v; µ)

‖v‖2
X̄
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and the continuity factor

γ̄(2)(µ) = sup
w,v∈X̄\{0}

E[l(w; µ, ·)l(v; µ, ·)]
‖w‖X̄‖v‖X̄

. (14)

It is possible to replace these factors by efficiently computable upper and lower
bounds [22]. We introduce the dual space X̄′ of X̄ with norm

‖F‖X̄′ := sup
v∈X̄\{0}

|F(v)|
‖v‖X̄

∀F ∈ X̄′. (15)

We can derive the following error bound for the error in the reduced-order approxi-
mation of the solution:

Theorem 5 (solution bound). For given µ ∈ P ,

‖ū− ūR‖X̄ ≤
‖r̄‖X̄′

ᾱ
. (16)

Proof. Analog to the proof of Theorem 1.

In view of the definition of the weak linear form l̄, we obtain the following bounds for
the expected value and variance of the output:

Theorem 6 (expected output bound). For given µ ∈ P ,

|E[l(ū)]− l̄(ūR) + r̄(ūR
(1))| ≤

‖r̄‖X̄′‖r̄(1)‖X̄′

ᾱ
. (17)

Proof. Analog to the proof of Theorem 2.

Theorem 7 (output variance bound). For given µ ∈ P ,∣∣V[l(ū)]−V[l(ūR)]− r̄(ūR
(1))

2 + r̄(ūR
(2))− r̄(ūR

(3))
∣∣

≤
γ̄(2)‖r̄‖2

X̄′

ᾱ2 +
‖r̄‖2

X̄′‖r̄(1)‖2
X̄′

ᾱ2 +
‖r̄(2) − r̄(3)‖X̄′‖r̄‖X̄′

ᾱ
. (18)

Proof. Setting e = ū− ūR, we rewrite

r̄(ūR
(2))

(9),(10)
= ā(e, ūR

(2))
(12)
= −2E[l(ūR)l(e)]− r̄(2)(e), (19)

r̄(ūR
(3))

(9),(10)
= ā(e, ūR

(3))
(13)
= −2(l̄(ūR)− r̄(ūR

(1)))l̄(e)− r̄(3)(e). (20)

After expressing the variance in terms of expectations, the left-hand side of (18) becomes∣∣E[l(ū)2]−E[l(ūR)2] + r̄(ūR
(2))︸ ︷︷ ︸

=E[l(e)2]−r̄(2)(e) by (19)

−l̄(ū)2 + l̄(ūR)2 − r̄(ūR
(1))

2 − r̄(ūR
(3))︸ ︷︷ ︸

=r̄(3)(e)−(l̄(e)+r̄(ūR
(1)))

2 by (20)

∣∣
≤
∣∣E[l(e)2]

∣∣+ (l̄(e) + r̄(ūR
(1)))

2 +
∣∣r̄(2)(e)− r̄(3)(e)

∣∣.
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The final result follows from the following bounds:

∣∣E[l(e)2]
∣∣ (14)
≤ γ̄(2)‖e‖2

X̄

(16)
≤

γ̄(2)‖r̄‖2
X̄′

ᾱ2 , (21)

(l̄(e) + r̄(ūR
(1)))

2
(17)
≤
‖r̄‖2

X̄′‖r̄(1)‖2
X̄′

ᾱ2 , (22)

∣∣r̄(2)(e)− r̄(3)(e)
∣∣ (15)
≤ ‖r̄(2) − r̄(3)‖X̄′‖e‖X̄

(16)
≤
‖r̄(2) − r̄(3)‖X̄′‖r̄‖X̄′

ᾱ
.

A different estimate for the expectation and variance of a functional output of interest
for an SGRB method without residual correction can be found in [24].

2.3. Reduced Spaces

We introduce candidate reduced spaces XR and X̄R to be used in Problems 2 and 6,
respectively. For simplicity, we focus on spaces generated by snapshot-based proper
orthogonal decomposition (POD), but the theory of Sections 2.1 and 2.2 does not depend
on this choice. For instance, the availability of computable error bounds also allows the
use of greedy snapshot sampling [5,6,34].

The procedures described in this section can also be applied to create the dual reduced
spaces encountered in Problems 4 and 8, by applying the POD to snapshots of the corre-
sponding discretized dual solutions. The creation of the dual reduced spaces must follow a
certain sequence because some of the discretized dual problems contain reduced primal
and dual solutions on their right-hand sides. For instance, creating X̄R

(3) from samples of

ū(3) requires the availability of X̄R and X̄R
(1) due to the right-hand side of the discretized

dual problem that defines ū(3), see Problem 7.
We motivate the POD spaces by corresponding continuous minimization problems.

We discretize these minimization problems using quadrature ([4], Sections 6.4 and 6.5).
The discrete minimization problems can be solved using a weighted singular value de-
composition of a snapshot matrix, based on [35]. Algorithm 1 provides a definition of
the POD algorithm in terms of linear algebra, assuming N snapshot vectors of length M.
The algorithm is formulated in a way that allows for general snapshot weighting and the
maximum possible number of output vectors. Actual implementations can benefit from
using a simpler (diagonal) snapshot weighting matrix and assuming a small number of
output vectors. Sections 2.3.1 and 2.3.2 describe how to generate the input to the algorithm
in order to compute POD basis vectors from available FE or SGFE snapshots.

Algorithm 1 Proper orthogonal decomposition.

Input: Snapshot matrix U =
(
U1, . . . , UN) ∈ RM×N . Symmetric positive definite weight-

ing matrices S ∈ RM×M andW ∈ RN×N .
Output: POD basis matrix Φ = (Φ1, . . . , ΦM) ∈ RM×M.

1: Compute Cholesky factor S̃ such that S = S̃TS̃ .
2: Compute Cholesky factor W̃ such thatW = W̃TW̃ .
3: Compute singular value decomposition Φ̃ΣṼT of S̃UW̃T .
4: Solve S̃Φ = Φ̃ for Φ.
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2.3.1. Spatial POD

We provide a POD of snapshots of the solution u of Problem 1, resulting in a spatial
POD space XR = span(ϕ1, . . . , ϕR) for R ≤ MFE. One can define a POD basis as a set of
functions which solve the continuous minimization problems

min
ϕ1,...,ϕR∈X

∫
P

∫
Ξ

∥∥∥∥∥u(y, µ)−
R

∑
r=1

(u(y, µ), ϕr)X ϕr

∥∥∥∥∥
2

X

dPξ (y)dµ, (ϕi, ϕj)X = δij, (23)

for R = 1, . . . , MFE. We approximate the double integral using Monte Carlo quadrature.
Concerning the Monte Carlo quadrature of the Ξ-integral on the one hand, we already

know that the reduced-order model will only be evaluated at the random parameter
points y1, . . . , yNξ , because the Monte Carlo discretization of the final stochastic estimates
is fixed from the beginning. We use exactly these points for the discretization of the POD
minimization problem, too, because with this choice, our reduced basis will be optimal in a
mean-square sense with respect to approximating the finite element solution at y1, . . . , yNξ .

Concerning the Monte Carlo quadrature of theP-integral on the other hand, our model
should be able to estimate the output statistics reasonably well at any point in P . Having
no further information about how the reduced-order model will ultimately be used, we dis-

cretize the deterministic parameter domain using a training set PNtrain
µ = {µ1, . . . , µNtrain

µ },
with µ1, . . . , µNtrain

µ distributed independently and uniformly over P . When testing the
performance of the resulting reduced-order model, we use a different set of points in
the parameter domain in order to verify the robustness of the model with respect to the
deterministic parameter.

The Monte Carlo quadrature of the double integral in (23) finally results in a set of
discretized POD minimization problems

min
ϕ1,...,ϕR∈X

1
Nξ Ntrain

µ

Nξ

∑
i=1

Ntrain
µ

∑
j=1

∥∥∥∥∥u(yi, µj)−
R

∑
r=1

(u(yi, µj), ϕr)X ϕr

∥∥∥∥∥
2

X

, (ϕi, ϕj)X = δij, (24)

for R = 1, . . . , MFE. For the POD computation in terms of Algorithm 1, we set N = Nξ Ntrain
µ

and M = MFE and let U(i−1)Nξ +j ∈ RM be the coefficient vector corresponding to the
expansion of u(yi, µj) ∈ X in a basis of X for i = 1, . . . , Nξ and j = 1, . . . , Ntrain

µ . By
substituting the finite element basis expansions into (24), we find

S =MX , U =
(

U1, . . . , UN
)

, W =
1
N

IN ,

whereMX denotes the mass matrix corresponding to X and IN denotes the N× N identity
matrix. The output of Algorithm 1 is a POD basis matrix Φ = (Φ1, . . . , ΦMFE) ∈ RMFE×MFE .
The i-th POD basis function ϕi can be obtained from the i-th POD basis vector Φi via an
expansion in the available basis of X, using the elements of Φi as expansion coefficients.
Finally, an R-dimensional POD reduced space is given by XR = span(ϕ1, . . . , ϕR) for any
R = 1, . . . , MFE and the trivial space X0 ⊂ X contains only the zero function.

2.3.2. Spatial-Stochastic POD

We introduce a reduced basis space that can be used to derive a stochastic Galerkin
reduced basis method. It employs a simultaneous reduction of the spatial and stochastic
degrees of freedom of a stochastic Galerkin finite element discretization.

Spatial-stochastic POD reduced basis functions can be defined as solutions to a set of
P-continuous POD minimization problems

min
ϕ̄1,...,ϕ̄R∈X̄

∫
P

∥∥∥∥∥ū(µ)−
R

∑
r=1

(ū(µ), ϕ̄r)X̄ ϕ̄r

∥∥∥∥∥
2

X̄

dµ, (ϕ̄i, ϕ̄j)X̄ = δij,
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for R = 1, . . . , MFEMSG. A Monte Carlo quadrature of the P-integral raises the issue of

choosing the sample points. Using the same training set PNtrain
µ = {µ1, . . . , µNtrain

µ } as in
Section 2.3.1 leads to discrete POD minimization problems

min
ϕ̄1,...,ϕ̄R∈X̄

1
Ntrain

µ

Ntrain
µ

∑
n=1

∥∥∥∥∥ū(µn)−
R

∑
r=1

(ū(µn), ϕ̄r)X̄ ϕ̄r

∥∥∥∥∥
2

X̄

, (ϕ̄i, ϕ̄j)X̄ = δij (25)

for R = 1, . . . , MFEMSG. Regarding the POD computation in terms of Algorithm 1, we
set N = Ntrain

µ and M = MFEMSG and denote the stochastic Galerkin finite element
coefficient vector of ū(µn) by Un. By substituting the stochastic Galerkin finite element
basis expansions into (25), we obtain

S =MS ⊗MX , U =
(

U1, . . . , UNtrain
µ

)
, W =

1
Ntrain

µ
INtrain

µ
,

where INtrain
µ

is the Ntrain
µ × Ntrain

µ identity matrix andMS is the mass matrix containing the
mutual S-inner products of the basis functions used to represent S. In view of Algorithm 1,
the i-th POD basis function ϕ̄i can be obtained from the i-th POD basis vector Φi via an
expansion in the available basis of X̄, using the elements of Φi as expansion coefficients.
Finally, an R-dimensional POD reduced space is given by X̄R = span(ϕ̄1, . . . , ϕ̄R) for any
R = 1, . . . , MFEMSG and the trivial space X̄0 ⊂ X̄ contains only the zero function.

3. Results

We assess the provided error bounds and compare the accuracy of the MCRB and
SGRB models in terms of computing the expectation and variance of a linear output for
two different convection–diffusion–reaction problems.

3.1. Convection–Diffusion–Reaction Model

Let y = (y1, . . . , yK)
T ∈ Ξ ⊂ RK denote the value of a sample of a random param-

eter vector, µ = (µ1, µ2)
T ∈ P ⊂ R2 the value of a deterministic parameter vector and

x = (x1, x2)
T ∈ Ω ⊂ R2 the coordinate in the computational domain Ω. We model

the random input by a second-order random field with expected value τ0. We use two
different covariances for two different test cases. For the first one, we use a separable
exponential covariance c1(x) = σ2 exp(−|x1|/L − |x2|/L), where σ is the standard de-
viation and L is the correlation length, see [36]. For the second one, we use a Gaussian
covariance c2(x) = σ2 exp(−‖x1 − x2‖2/L2), see [33]. We approximate the random field
using a truncated Karhunen–Loève expansion τ(x; y) = τ0 + στ ∑K

k=1
√

λkτk(x)yk, where
λk denote the eigenvalues of the corresponding eigenvalue problem, ordered decreasingly
by magnitude, and τk(x) denote respective eigenfunctions. The covariance function c1(x)
allows for an analytical solution of the eigenvalue problem [36]. The eigenvalue problem
for covariance c2(x) is solved numerically using finite elements, see, for example, [37]. We
assume that the parameters of the Karhunen–Loève expansion originate from indepen-
dent uniformly distributed random variables. This is done frequently in the uncertainty
quantification literature, see, for example, [31,33]. The truncation index K can be inter-
preted as a modeling parameter because it enters the definition of the bilinear form. The
convection–diffusion–reaction equations then take the following form.

Problem 9 (spatial strong form). For any (y, µ) ∈ Ξ ×P , find u(·; y, µ) : Ω→ R such that

µ · ∇u(x; y, µ)−∇ · (ε(x; y)∇u(x; y, µ))− κ(x; y)u(x; y, µ) = 1, x ∈ Ω,

u(x; y, µ) = 0, x ∈ ∂Ω.

The deterministic parameter vector µ ∈ P ⊂ R2 can be interpreted as a spatially
uniform convective velocity. The random parameter vector y ∈ Ξ ⊂ RK enters either
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via a parametrized random reactivity (test case 1) or diffusivity (test case 2). For the
first example, the reactivity is given by κ(x; y) = κ0 + σκ ∑K

k=1
√

λkκk(x)yk as described
above and the diffusivity is constant, that is, ε(x; y) = ε0. For the second example, the
reactivity is constant, that is, κ(x; y) = κ0, and the diffusivity is given as ε(x; y) = ε0 +
σε ∑K

k=1
√

λkεk(x)yk. The concrete instances of the example problems are determined by
the model parameters given in Table 1. The output of the example problems is given by
l(u(y, µ); y, µ), where

l(v; y, µ) =
∫ 1

2

0

∫ 1
2

0
v(x)dx1 dx2. (26)

In order to express the example problems in terms of the spatial weak form of
Problem 1, we set

a(w, v; y, µ) = a0(w, v) +
K

∑
k=1

ykak
y (w, v) +

2

∑
p=1

µpap
µ (w, v), (27)

with

a0(w, v) = ε0

∫
Ω
∇w(x) · ∇v(x)dx − κ0

∫
Ω

w(x)v(x)dx,

ak
y (w, v) = σκ

√
λk

∫
Ω

κk(x)w(x)v(x)dx, (test case 1 or)

ak
y (w, v) = σε

√
λk

∫
Ω

εk(x)∇w(x) · ∇v(x)dx, (test case 2) k = 1, . . . , K,

ap
µ (w, v) =

∫
Ω

∂xp w(x)v(x)dx, p = 1, 2

and
f (v; y, µ) =

∫
Ω

v(x)dx. (28)

A spatial weak form of Problem 9 is provided in terms of the standard infinite-
dimensional Sobolev space H1

0(Ω), as follows:

Problem 10 (spatial weak form). For given (y, µ) ∈ Ξ ×P , find

u(y, µ) ∈ H1
0(Ω) : a(u(y, µ), v; y, µ) = f (v; y, µ) ∀v ∈ H1

0(Ω).

By taking the expectation and using the notation of Section 2.2.1, a spatial-stochastic
weak form is given by:

Problem 11 (spatial-stochastic weak form). For given µ ∈ P , find

ū(µ) ∈ L2
ξ (Ξ, H1

0(Ω)) : ā(ū(µ), v; µ) = f̄ (v; µ) ∀v ∈ L2
ξ (Ξ, H1

0(Ω)).

The bilinear forms of Problems 10 and 11 are (y, µ)- and µ-uniformly bounded and
coercive, respectively, because µ is constant, that is, divergence-free, the random parameters
y are bounded, and the problems have Dirichlet boundary conditions. In that setting, the
convective parts of the bilinear forms are skew-self-adjoint and their contributions to the
coercivity estimates are always positive, see, for example, ([38], Section 6.2). The example
problems thus fit in the abstract settings of Sections 2.1 and 2.2 and are well-posed.
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Table 1. Model parameters of the test problems.

Symbol Value Description

κ0 −1000 expected value of reactivity
ε0 1 expected value of diffusivity
σκ 200 standard deviation of reactivity
σε 0.2 standard deviation of diffusivity
L 1 correlation length
K 5 Karhunen-Loève truncation index
Ω (−0.5, 0.5)2 spatial domain with boundary ∂Ω
P [−200, 200]2 deterministic parameter domain
Ξ [−

√
3,
√

3]K random parameter domain

3.2. Discretization

The MCFE and SGFE discretizations (Problems 1 and 5) provide necessary links
between the infinite-dimensional test problems (Problems 10 and 11) and the respective
reduced-order models (Problems 2 and 6). We compute the coercivity and continuity
constants necessary for the output bounds by solving eigenvalue problems associated with
the discrete counterparts of the bilinear forms in Problems 10 and 11. These steps can
be replaced by more efficient procedures, as pointed out in Section 2.1. In the following,
we describe the computational details of the MCFE and SGFE discretizations of the test
problems. Table 2 lists our choice of the relevant discretization parameters.

Table 2. Discretization parameters of the test problems. The default values are used in the snapshot
simulations. The reference values are used to assess the accuracy of the snapshot discretizations.

Symbol Default Reference Description

MFE 225 961 number of FE degrees of freedom
Nξ 1024 16384 number of MC samples of y ∈ Ξ
d 2 3 degree of SG polynomials

MSG 243 1024 number of SG degrees of freedom: (d + 1)K

3.2.1. Finite Element Method

We derive an instance of the stochastic strong finite element problem by replacing
H1

0(Ω) in Problem 10 with a finite-dimensional subspace. In particular, we employ the
space X ⊂ H1

0(Ω) formed by continuous piecewise linear finite elements corresponding to
a regular graded simplicial triangulation of Ω, characterized by the number MFE of finite
element degrees of freedom. The triangulation of the computational domain Ω is shown in
Figure 1. We estimate the spatial discretization error using simulations on a finer reference
triangulation as a substitute for the exact solution.

3.2.2. Monte Carlo Method

We provide estimates of the expectation and variance by discretizing the respective
stochastic integrals using Monte Carlo quadrature in the sense of Section 2.1.1. To this
end, we generate random samples y1, . . . , yNξ ∈ Ξ according to the distribution Pξ with a
standard pseudorandom number generator. A reference simulation with a higher number
of samples delivers an estimate of the sampling error. An exemplary solution of Problem 10
approximated by an MCFE method is shown in the right plot of Figure 1.
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Figure 1. Computational domain with triangulation (left) and exemplary mean value of the solution
of Problem 9 with a randomly chosen convective velocity, approximated by an MCFE approach (right).

3.2.3. Stochastic Galerkin Method

Stochastic Galerkin methods estimate the expectation and variance by directly eval-
uating the respective stochastic integrals, given a stochastic Galerkin solution based on
a finite-dimensional subspace of L2

ξ (Ξ). In general, a stochastic Galerkin finite element
method applied to a linear elliptic problem with a random elliptic coefficient leads to a large,
block-structured system of linear algebraic equations. In our case, however, the underlying
random variables y1, . . . , yK are independent and enter the bilinear form linearly, see (27).
Under these conditions, it is possible to find a double-orthogonal polynomial basis which
decouples the blocks in the system matrix [39,40]. The resulting block-diagonal system of
equations can be solved efficiently due to the relatively small bandwidth and the ability to
treat the blocks in parallel. To define a suitable double-orthogonal basis, we start with K
spaces of possibly different dimensions, spanned by univariate Legendre polynomials over
the interval [−

√
3,
√

3]. We normalize the polynomials regarding the underlying uniform
distribution and rotate the bases such that they consist of double-orthogonal univariate
polynomials, as described in [39]. Finally, a tensor product of these univariate double-
orthogonal polynomial bases forms a basis of an MSG-dimensional subspace S ⊂ L2

ξ (Ξ).
In our experiments, we use the same polynomial degree d in all directions. We assess
the error associated with the choice of d by comparing with a reference solution using a
higher degree.

3.2.4. Reduced Basis

The considered reduced-order models rely on POD spaces generated from snapshots
of the underlying discretized solution. We choose Ntrain

µ = 64 as the number of training
samples in the deterministic parameter domain. Consequently, Section 2.3 specifies the
creation of the reduced spaces.

3.3. Computational Costs

We analyze the computational costs associated with the MCRB and SGRB method.
We focus on the offline costs, that is, the costs necessary to set up the reduced models
and estimators. The costs of the online phase depend on the dimensions of the reduced
spaces which are not known a priori. The computational costs of the online phase for the
numerical examples considered in Section 3 are briefly analyzed in Section 4.

The offline phase consists of several steps which are necessary to construct the
reduced-order models and estimators. In the following, we list the computations that
dominate the overall costs. At first, all coercivity constants necessary for the estimators in
Sections 2.1.3 and 2.2.3 are computed. As a second step, we construct the reduced spaces
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for the primal and dual Problems 2, 4, 6 and 8 based on the POD Algorithm 1. This must
be done five times for the MCRB method (one primal problem and four dual problems)
and four times for the SGRB method (one primal problem and three dual problems). Con-
structing a reduced space consists of the snapshot computations and the singular value
decomposition of the weighted snapshot matrix. The systems of equations to compute the
snapshots for the SGRB method are decoupled with respect to the SG basis because of the
double-orthogonal polynomials. An overview of the listed computations is given in Table 3
for the MCRB method and in Table 4 for the SGRB method. We only state the problems
that must be solved and their dimensions as we use the same algorithms for both methods.
For the MCRB approach, the coercivity constant is computed Nξ times, that is, for every
MC sample of the random parameters, see Section 2.1.3. Using a strictly positive lower
bound instead reduces the costs to the computation of one single eigenvalue problem.

One can see that the difference in the offline costs primarily results from the difference
between the number of MC samples Nξ and the dimension of the SG basis MSG. Conse-
quently, the SGRB method will be competitive in scenarios where MSG, that is, the number
of random parameters and the polynomial degree, is small. For problems with a large
number of random parameters, MSG can become orders of magnitude larger than Nξ .

Table 3. Primary computational costs of the offline phase of the MCRB approach.

# Dimension Problem to Solve Output

Nξ MFE ×MFE eigenvalue problem coercivity constant
5Nξ · Ntrain

µ MFE ×MFE system of equations snapshots
5 MFE × Nξ · Ntrain

µ singular value decomposition reduced basis

Table 4. Primary computational costs of the offline phase of the SGRB approach.

# Dimension Problem to Solve Output

1 MFE MSG ×MFE MSG eigenvalue problem coercivity constant
4MSG · Ntrain

µ MFE ×MFE system of equations snapshots
4 MFE MSG × Ntrain

µ singular value decomposition reduced basis

3.4. Numerical Results

Figure 2 presents the parameter-dependent output statistics obtained with the default
parameter-dependent SGFE models. The top row shows the results for test case 1 and the
bottom row shows the results for test case 2. The crosses in Figure 2 correspond to the
snapshot training parameter values provided by the pseudorandom number generator.
Additionally, Figure 2 shows the test parameter values that are used to assess the model.
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Figure 1. blabla Parameter-dependent output expectation E[l(u(·, µ); ·, µ)] and variance V[l(u(·, µ); ·, µ)] for
the functional l given by (26). Crosses mark the snapshot parameter values. The square marks the parameter

value corresponding to ??. Circles mark the parameter values used to obtain ??.

5.3. Results. Figure 1 presents the parameter-dependent output statistics obtained with
the default parameter-dependent SGFE model. The crosses in Figure 1 correspond to the
snapshot training parameter values provided by the pseudo random number generator. Ad-
ditionally, Figure 1 shows the test parameter values that are used to assess the model.

The reduced basis estimates of the output statistics together with the respective error
bounds are provided by Theorems 2.9 and 2.10 for the MCRB method and Theorems 3.7
and 3.8 for the SGRB method. First, we validate the error bounds for a single random
realization of the deterministic parameter, marked by a square in Figure 1. The convergence
regarding the number of reduced basis functions R is presented in ??. The error components
of the underlying discretized solution are provided as a reference. Looking at the discretization
errors only, we see that number of MC samples is sufficient to approximate the expectation
but actually too small to balance the FE error in case of the variance. The SG error, on
the other hand, is smaller than the FE error in all cases, which provides evidence that the
stochastic Galerkin discretization of the stochastic domain is sufficiently fine. Concerning the
reduced basis models, we observe that R ≈ 16 reduced basis functions are sufficient to obtain
reduced-order estimates which are on a par with the full-order estimates in all considered
cases. The plots suggest that all error bounds converge at the same rates as the respective
errors. This is useful, because it implies that efficiency of the error bounds does not become
significantly worse when the number of reduced basis functions is increased.

We assess the convergence globally over P in order to confirm that the point-wise obser-
vation in the deterministic parameter space provided by ?? is not a lucky coincidence. To this
end, we employ an L2(P)-norm, approximated using Monte Carlo quadrature with N test

µ
= 64

samples shown as circles in Figure 1. The convergence results are presented in ??. Since
we have averaged over the parameter space, the plots appear less random than the plots in
??. The convergence of the estimates and the corresponding bounds correspond quite well.
Moreover, the MCRB and SGRB methods perform similar in terms of accuracy per number
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snapshot training parameter values provided by the pseudo random number generator. Ad-
ditionally, Figure 1 shows the test parameter values that are used to assess the model.

The reduced basis estimates of the output statistics together with the respective error
bounds are provided by Theorems 2.9 and 2.10 for the MCRB method and Theorems 3.7
and 3.8 for the SGRB method. First, we validate the error bounds for a single random
realization of the deterministic parameter, marked by a square in Figure 1. The convergence
regarding the number of reduced basis functions R is presented in ??. The error components
of the underlying discretized solution are provided as a reference. Looking at the discretization
errors only, we see that number of MC samples is sufficient to approximate the expectation
but actually too small to balance the FE error in case of the variance. The SG error, on
the other hand, is smaller than the FE error in all cases, which provides evidence that the
stochastic Galerkin discretization of the stochastic domain is sufficiently fine. Concerning the
reduced basis models, we observe that R ≈ 16 reduced basis functions are sufficient to obtain
reduced-order estimates which are on a par with the full-order estimates in all considered
cases. The plots suggest that all error bounds converge at the same rates as the respective
errors. This is useful, because it implies that efficiency of the error bounds does not become
significantly worse when the number of reduced basis functions is increased.

We assess the convergence globally over P in order to confirm that the point-wise obser-
vation in the deterministic parameter space provided by ?? is not a lucky coincidence. To this
end, we employ an L2(P)-norm, approximated using Monte Carlo quadrature with N test
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samples shown as circles in Figure 1. The convergence results are presented in ??. Since
we have averaged over the parameter space, the plots appear less random than the plots in
??. The convergence of the estimates and the corresponding bounds correspond quite well.
Moreover, the MCRB and SGRB methods perform similar in terms of accuracy per number

Figure 2. Parameter-dependent output expectation E[l(u(·, µ); ·, µ)] and variance V[l(u(·, µ); ·, µ)]

for the functional l given by (26). The top row shows the results for test case 1 and the bottom row
shows the results for test case 2. Crosses mark the snapshot parameter values. The square marks
the parameter value corresponding to Figures 3 and 4. Circles mark the parameter values used to
obtain Figures 5 and 6.

The reduced basis estimates of the output statistics together with the respective error
bounds are provided by Theorems 3 and 4 for the MCRB method, and Theorems 6 and 7
for the SGRB method. First, we validate the error bounds for a single random realization of
the deterministic parameter, marked by a square in Figure 2. The convergence regarding
the number of reduced basis functions R is presented in Figures 3 and 4. The error
components of the underlying discretized solutions are provided as references. Looking
at the discretization errors only, we see that the number of MC samples is sufficient to
approximate the expectation, but is actually too small to balance the FE error in case of the
variance. The SG error, on the other hand, is smaller than the FE error in all cases, which
provides evidence that the stochastic Galerkin discretization of the stochastic domain is
sufficiently fine. Concerning the reduced basis models, we observe that R ≈ 16 reduced
basis functions are sufficient to obtain reduced-order estimates which are on a par with
the full-order estimates in all considered cases. The plots suggest that all error bounds
converge at the same rates as the respective errors. This is useful, because it implies that
efficiency of the error bounds does not become significantly worse when the number of
reduced basis functions is increased.

We assess the convergence globally over P in order to confirm that the point-wise
observations in the deterministic parameter space provided by Figures 3 and 4 is not a
lucky coincidence. To this end, we employ an L2(P)-norm, approximated using Monte
Carlo quadrature with Ntest

µ = 64 samples shown as circles in Figure 2. The convergence
results are presented in Figures 5 and 6. Since we have averaged over the parameter space,
the plots appear less random than the plots in Figures 3 and 4. The convergence of the
estimates and the corresponding bounds correspond quite well. Moreover, the MCRB and
SGRB methods perform similarly in terms of accuracy per number of basis functions.
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In Figures 3–6, it appears that the SGRB error bound over-estimates the actual error
more severely (by four orders of magnitude) than the MCRB error bound (two orders of
magnitude). A closer inspection of the individual components of the error estimate reveals
that for larger R, the lower-order term involving the continuity factor becomes responsible
for the major portion of the error estimate. In particular, for R = 64 at the parameter
point corresponding to Figure 3, the terms on the right-hand side of Theorem 7 amount to
approximately 4.2 · 10−12, 1.2 · 10−19 and 5.2 · 10−14, respectively.
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Figure 3. Log–log plots of the errors in the approximation of the expectation (top row) and variance
(bottom row) of a linear functional with an MCRB method (left column) and an SGRB method (right
column) depending on the dimension R of the reduced spaces, for a random point in the deterministic
parameter domain, for the first test case. Respective error bounds and approximate FE/SG/MC
discretization errors.
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Figure 2.Figure 4. Log–log plots of the errors in the approximation of the expectation (top row) and variance
(bottom row) of a linear functional with an MCRB method (left column) and an SGRB method (right
column) depending on the dimension R of the reduced spaces, for a random point in the deterministic
parameter domain, for the second test case. Respective error bounds and approximate FE/SG/MC
discretization errors.
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Figure 5. Log–log plots of the errors in the approximation of the expectation (top row) and variance
(bottom row) of a linear functional with an MCRB method (left column) and an SGRB method (right
column) depending on the dimension R of the reduced spaces, measured in terms of an approximate
L2(P)-norm, for the first test case. Respective error bounds and approximate FE/SG/MC discretiza-
tion errors. It is a coincidence that the approximate FE and MC errors of the estimated expectation
are very close in this outcome of the random experiment.
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Figure 3.Figure 6. Log–log plots of the errors in the approximation of the expectation (top row) and variance
(bottom row) of a linear functional with an MCRB method (left column) and an SGRB method
(right column) depending on the dimension R of the reduced spaces, measured in terms of an
approximate L2(P)-norm, for the second test case. Respective error bounds and approximate
FE/SG/MC discretization errors.

4. Discussion

We have investigated the use of MCRB and SGRB methods to estimate parameter-
dependent statistics of functional outputs of interest of elliptic PDEs with parametrized
random and deterministic input data. Our analysis is restricted to linear elliptic variational
problems and cannot be generalized to nonlinear or non-elliptic equations in a straight-
forward way. It further relies on the fact that all parameters enter the equations affinely.
For more complex, non-affine input representations, additional approximation steps, such
as empirical interpolation techniques, are necessary for the analysis and methods to be
applicable. Furthermore, reduced-order methods, as considered in this work, are only
reasonable surrogates for the high-fidelity models when the parameter-dependent output
of interest lives on a low-dimensional manifold. This is the case for our numerical examples,
as can be seen by the fast decay of the error contributions.
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We have observed that the SGRB method can deliver estimates of the expectation
and variance of linear outputs with an accuracy similar to the MCRB method for the
convection–diffusion–reaction model problems. Additionally, the SGRB error bounds
regarding the expected value were very close to the respective MCRB bounds in our
experiments. Concerning the variance, the presented SGRB bounds overestimate the
error more severely than the available MCRB bounds, which opens opportunities for
future improvement of the SGRB variance bound. Nevertheless, the MCRB and SGRB
variance bounds both converge at the same order depending on the number of reduced
basis functions. This behavior is reflected by the theory, which predicts the same order of
convergence in terms of dual norms of residuals.

The MCRB statistical output estimates and error bounds require a Monte Carlo sam-
pling of the reduced quantities point-wise in the random parameter domain. In our
convection-diffusion-rection model problems, 1024 samples were sufficient to balance the
finite element error for the expectation, but an accurate prediction of the variance would
require even more samples. The SGRB estimates and bounds, on the other hand, are
obtained by an exact integration of the corresponding reduced basis expansions in the
setup phase of the reduced-order model, and, thus, do not rely on Monte Carlo sampling.
As a consequence, the primal and dual SGRB problems need to be solved only once for
each new deterministic parameter. This benefit comes at the cost of a more expensive
offline phase. In our tests, the SGRB and the MCRB methods achieved a similar reduction
of degrees of freedom for a given error tolerance. As a consequence, the possible online
speedup of SGRB methods compared to MCRB methods is in the order of magnitude of
the number of Monte Carlo samples. This is particularly attractive in scenarios where
evaluating the reduced-order model shall be as inexpensive as possible, while the offline
costs are not a primary concern.
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