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Abstract: Water vapor fluxes play a key role in the energy budget of the atmosphere, and better flux
measurements are needed to improve our understanding of the formation of clouds and storms.
Large-scale measurements of these fluxes are possible by employing the eddy correlation (EC) method
from an aircraft. A hygrometer used for such measurements needs to deliver a temporal resolution of
at least 10 Hz while reliably operating in the harsh conditions on the exterior of an aircraft. Here, we
present a design concept for a calibration-free, first-principles, open-path dTDLAS hygrometer with a
planar, circular and rotationally symmetric multipass cell with new, angled coupling optics. From our
measurements, the uncertainty of the instrument is estimated to be below 4.5% (coverage factor k = 1).
A static intercomparison between a dTDLAS prototype of the new optics setup and a traceable dew
point mirror hygrometer was conducted and showed a systematic relative deviation of 2.6% with a
maximal relative error of 2.2%. Combined with a precision of around 1 ppm H2O at tropospheric
conditions, the newly designed setup fulfills the static precision and accuracy requirements of the
proposed airborne EC hygrometer.

Keywords: water vapor; laser spectroscopy; near-infrared; dTDLAS; eddy covariance

1. Introduction

Water vapor is the most important greenhouse gas, and plays a key role in the energy
budget of the atmosphere [1]. Water vapor fluxes transport latent heat vertically from the
Earth’s surface into the atmosphere, and they are a major contributor to many meteoro-
logical processes, including the formation of clouds, storms and hurricanes [2]. The eddy
correlation (EC) method can be used to measure these fluxes by correlating the vertical
component of the wind vector with fast and accurate H2O concentration values [3]. This
method is commonly used in stationary setups, such as meteorological EC flux towers, to
determine the water vapor flux from the ground into the atmosphere at one specific loca-
tion [4,5]. To study fluxes on larger scales, EC measurements from airplanes are possible
but are significantly more challenging from a technical and metrological standpoint [6,7].
The requirements for a hygrometer used for airborne EC measurements are (A) a high
temporal resolution of more than 100 milliseconds (i.e., a 10 Hz rep rate), (B) a large
dynamic H2O range from below 100 to 30,000 µmol/mol (ppm, parts per million), (C)
resistance to vibrations and large temperature variations, (D) small aerodynamic drag for
the components mounted outside the aircraft and (E) compatibility with aviation licensing
requirements [3,8].

A large number of airborne hygrometers have been demonstrated in the past. Besides
the sensor type, the use of a closed- or open-path optical cell is one of the key character-
istics of an airborne hygrometer. Notable instruments that utilize an extractive sampling
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system and a closed-path cell on aircrafts are described in [6,7,9–17]. Although closed-path
instruments, such as SEALDH-II, can reach a spectrometric temporal resolution of up to
140 Hz, the response time of the instrument is significantly limited by the transport of
the gas sample to the optical cell, particularly by H2O adsorption/desorption processes
in the sampling system [11]. The SPARC Report and AquaVIT-1 intercomparison both
found sampling problems to be one of the major contributors to the observed deviation
between hygrometers for atmospheric studies of 10% and more [18,19]. Whereas instru-
ments with open-path optical cells avoid sampling and adsorption limitations, open-path
instruments that are used on aircrafts face significant design and approval challenges
due to the added complexity of conditions on the exterior of the aircraft [9,20–23]. The
multi-channel, multi-phase Hygrometer for Atmospheric Investigation (HAI), developed
for the German research aircraft HALO [24], demonstrated the simultaneous use of an
open- and closed-path cell and showed the benefits of an open-path system, especially
when fast concentration fluctuations are of interest (e.g., during EC measurements) [9,25].

Here, we present a design concept for a new calibration-free direct tunable diode
laser absorption spectroscopy (dTDLAS) hygrometer, particularly optimized for airborne
open-path EC measurements using a rotationally symmetric optical multipass cell. The
multipass cell forms a particularly thin optical plane that is normal to the direction of the
flow, thereby minimizing the transition time through the light sheet. This new design is
integrated in a setup with fast pressure and temperature probes close to the optical plane.
The spectroscopic performance of the newly designed, compact optics setup is validated
by static intercomparison with an SI-traceable dew point mirror (DPM) hygrometer.

2. Materials and Methods

Figure 1 shows the schematic setup of the dTDLAS hygrometer. The light emitted
by the fiber-coupled distributed feedback (DFB) diode laser is wavelength modulated
by a laser current driver to sweep the H2O absorption line at 1369 nm. The laser beam
is collimated inside the optics and passes through the multipass cell onto the InGaAs
detector [26]. A transimpedance amplifier is used to amplify the photodiode signal and to
prepare it for its digitization before the data are stored and evaluated with a PC.
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Figure 1. Functional block diagram of a dTDLAS hygrometer.

2.1. dTDLAS Methodology

The basic principle of dTDLAS has been described in detail in [27,28]. The relationship
between the intensity of the laser beam and the absorption due to water vapor inside the
cell can be described by an extended version of the Lambert–Beer law [29]:

I(λ)= E(t)+I0(λ)·Tr(t)· exp[−S(T)·g(λ− λ0)·N·L] (1)



Appl. Sci. 2021, 11, 5189 3 of 10

In addition to the terms of the standard Lambert–Beer equation for light intensity with-
out absorption I0(λ), the line strength S(T), the normalized line shape function g(λ− λ0),
the absorber number density N and the optical pathlength L, the equation also accounts
for stray light and background radiation E(t) reaching the detector, as well as broad-
band transmission losses Tr(t), caused, e.g., by mirror contamination. The water vapor
amount fraction c can be calculated by combining Equation (1) with the definition of the
concentration in amount fraction and the ideal gas law to

c = − kB · T
S(T) · L · p

∫
ln
(

I(ν)−E(τ)
I0(ν) · Tr(τ)

)
dν
dt

dt (2)

The individual contributions to the amount fraction c are directly measured quantities,
such as the temperature T, the pressure p and the absorption signal I(ν). Constant parame-
ters, such as the Boltzmann constant kB, and characteristic parameters of the instrument,
such as the optical pathlength L and the dynamic tuning behavior of the laser dν

dt , are also
used. The spectral line strength S(T) is taken from the HITRAN database, as well as the
measured data from previous publications [25,30–33]. The emission offset E(τ) is measured
at the beginning of each scan when the laser current is below the laser threshold so that
the laser output is zero, rendering it possible to determine the zero line. The remaining
parameters can be fitted using a Voigt profile for the line shape and a polynomial term for
the baseline I0(ν), i.e., the light intensity at the detector without absorption.

Because the quantities T, p, L, S(T) and dν
dt are all traceable to SI units, the use of the

complete physical model given in Equation (2) establishes a direct link between the H2O
concentration and the SI, without the need to calibrate the dTDLAS hygrometer with, e.g., a
water vapor generator.

The used spectral line at 1369 nm (7299.43 cm−1) was selected because of (A) minimal
cross-sensitivities to other species and a minimized amount of neighboring H2O lines; (B)
the compatibility with cost-effective, high-quality telecommunication lasers and detectors;
and (C) since accurate and validated H2O line data are available [25,30–32]. While the
cross-sensitivities to other species are minimal, there are still 18 weaker water spectral
lines influencing the main line at 7299.43 cm−1. To keep the degrees of freedom of the fit
low, which improves the fit stability, most of the parameters of the 19 spectral lines are
precalculated using spectral line data as well as measured temperature and pressure.

Only the line area, the Lorentz full width at half maximum (FWHM) of the Voigt
profile and the line position of the main line, as well as the three coefficients of the baseline
polynomial, are left as free-fitting parameters. In the case of challenging environmental
conditions, the stability of the fit could be further increased by pre-calculating the Lorentz
FWHM. This method is described in detail in [9,11,25,32].

Figure 2a shows typical raw photodiode signals for 1759 ppm and 7324 ppm water
vapor amount fractions. Here, the laser is modulated at a frequency of 139.8 Hz, resulting
in a duration of 3.6 ms per up ramp. The model given in Equation (2) is fitted to the raw
signal, and the baseline polynomial and the fit to the raw signal are shown. The use of
a complete physical model for the description of the absorption signal enables a good
estimation of the baseline, even if the edges of the absorption line extend beyond the fit
range, as is the case with the signal at 7324 ppm. Figure 2b shows the optical density data
(OD, also known as absorbance; derived from the data in Figure 2a) fitted with a Voigt
profile. The residual between the measured data and the fit is plotted underneath. The
time axis of the raw data is converted into a wavenumber axis by applying the measured
non-linear dynamic tuning behavior of the laser. The W-shape in the residuals can be traced
to a known deficiency of the Voigt profile when fitting absorption signals at high signal-to-
noise-ratios [10,25]. This systematic effect does not influence the optical resolution of the
instrument, as it only depends on the line shape and the used Voigt profile and is, therefore,
neglected when evaluating the optical resolution of the spectrometer. This is achieved by
introducing the local standard deviation (1σlocal) inside the blue box in Figure 2b to capture
the statistical optical noise of the instrument. By dividing the maximum peak optical
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density (ODmax) by the local standard deviation 1σlocal, a signal-to-noise-ratio S/Nlocal of
6507 can be determined.
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2.2. Optics Design

The optical setup of the dTDLAS hygrometer is centered around the rotationally
symmetric multipass cell shown in Figure 3a [26]. The laser beam passes the cell a total of
51 times in a star polygon pattern, resulting in a total pathlength close to 4 m. The optical
measurement region is very planar and thin, has a maximum thickness of around 3 mm
directly in front of the gold-coated mirror surface and decreases towards the center of
the cell due to the confocal mirror geometry. To reduce the effects of stray light and to
prevent interferences between neighboring reflections, an aperture mask with 51 elongated
holes was designed and optimized and placed inside the multipass cell. In contrast to
the commercially available cell, we designed an open-path configuration in order to take
full advantage of the thin optical plane that is oriented perpendicular to the direction of
the flow. This open-path circular cell configuration minimizes gas transport times and
the effects of gas transition broadening while simultaneously avoiding delayed sensor
response by gas sampling problems and, in particular, the H2O adsorption/desorption
that is usually associated with sampling systems for atmospheric water vapor [6,34].

Figure 3b shows the optical components of a new, “angled” laser-to-cell-coupling-
setup located underneath the multipass cell. The beam is collimated using an off-axis
parabolic mirror and focused into the cell with a concave, gold-coated mirror. A planar
mirror (mirror 3 in Figure 3b) is used to reflect the beam upwards into the multipass cell and
directs the outcoming beam from the cell onto the second concave mirror, which focuses it
on the detector. This setup enables the optical plane of the secondary optics to be oriented
at a 90◦ angle to the optical plane inside the multipass cell. This new geometry drastically
reduces the surface area normal to the direction of the air flow, which is indispensable
to minimizing the aerodynamic drag on the instrument when using it on an aircraft. All
optical components are reflective, which reduces interference fringes caused by unwanted
reflections on lenses. The two windows at the entrance of the multipass cell and in front of
the detector are anti-reflection coated and oriented at an angle to avoid light reflections
back into the optical path.
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2.3. Uncertainty Estimation

The individual contributions to the laser absorption model provided in Equation (2)
can be used to derive an uncertainty budget for this dTDLAS hygrometer. The most relevant
uncertainty contribution is the gas temperature, which is measured by calibrated PT100
sensors. Because of possible temperature variations between the sensor and the optical
plane of the multipass cell, the relative uncertainty of the gas temperature is estimated to be
0.33% (≈1 K). The uncertainty of the pressure is estimated to be 0.2% (≈2 hPa). The optical
pathlength is determined by the CAD model and is estimated to have an uncertainty of
0.5% (≈2.1 cm). The uncertainty of the line strength is provided by the HITRAN database
with 3.5% [31]. Inhomogeneities in the H2O concentration along the optical path, and
between the optical plane and the sample point of an extractive reference instrument used
for validation of the dTDLAS are conservatively estimated to be 1.0%. The uncertainty
of the line area (integrated term in Equation (2)) is influenced by the tuning of the laser
(1%) and the quality of the fit (2%). The combined contribution of both of these parameters
is 2.2%. This results in a total uncertainty of 4.5% (k = 1) for the H2O amount fraction
(concentration), which is similar to comparable dTDLAS hygrometers [25]. The dominating
contributors to the total instrument uncertainty are the line strength (65.7%), followed
by the line area (fit and tuning) (26.8%) and spatial inhomogeneities (5.3%). The optical
pathlength accounts for 1.3%, and the temperature and pressure for 0.6 and 0.2% of the
total uncertainty.

3. Static Validation with a Dew Point Mirror and Spectroscopic Performance

The spectroscopic performance and accuracy of the new optics design are validated
with constant gas flow, but under stable H2O amount fraction conditions with a spectrom-
eter prototype with the angled coupling optics in an open-path configuration. For this,
the prototype, shown in Figure 4, is placed inside a climate chamber that is continuously
purged with dry air. In this configuration, we reduced the H2O concentration from above
12,000 ppm to below 1000 ppm over the course of four hours. The climate chamber was
heated to 30 ◦C to reduce H2O adsorption effects on the chamber walls. The slow con-
centration change makes it possible to use a dew point mirror (DPM) hygrometer as an
SI-traceable reference. The inlet of the DPM, as well as temperature and pressure sensors,
was placed near the optical plane of the multipass cell.
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(b) the back view. The infrared laser beam is visualized in red.

Figure 5 shows a linear regression of the dTDLAS and DPM H2O measurements
between 1300 ppm and 11,500 ppm. The systematic deviation between both instruments is
2.61% with a good linearity, as indicated by the R2-value being close to one. The maximum
relative deviation between dTDLAS and DPM is 2.2%. All observed deviations are well
within the predicted uncertainty of 4.5% for the dTDLAS hygrometer and 2.5% for the
DPM. It should be noted that an automatic mirror check of the DPM and the subsequent
slow stabilization of the dew point temperature made it necessary to exclude the data
between 2600 ppm and 6000 ppm from the regression due to non-equilibrated conditions.
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Figure 5. Correlation plot of the dTDLAS vs. the DPM measurements between 1300 ppm and 11,500 ppm with linear
regression. Data where the DPM performed an automatic mirror cleaning are excluded from this plot. The systematic error
is around 2.61%.

To investigate the spectroscopic performance of the instrument, two water amount
fractions, one for the lower and one for the upper end of the regression shown in Figure 5,
are analyzed. The laser was modulated at a frequency of 139.8 Hz. The data acquisition
hardware used in this static test can evaluate approximately 10% of the scanned absorption
profiles. Ten of these recorded profiles are then averaged before the first-principles evalua-
tion method described in Section 2.1 is applied. The data for each absorption profile shown
in Figure 6 were acquired over a period of 0.72 s, with an effective total measuring time of
0.036 s. A good estimate of the precision of the instrument can be obtained by dividing
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the concentration by the signal-to-noise ratio (also called noise equivalent concentration,
NEC). As the focus of this evaluation is the performance of the newly designed optics, the
influence of the discrepancies between the line shape and the Voigt profile is excluded
using the local standard deviation 1σlocal. In Figure 6a, the NEC at 1321 ppm is 1.01 ppm,
and in Figure 6b, the NEC at 11,542 ppm is 0.86 ppm. To compare these results with other
hygrometers, the precision is normalized with the length of the optical path and the square
root of the temporal bandwidth (1.4 Hz). This results in 3.6 ppm mHz−1/2 at 1321 ppm
and 3.0 ppm mHz−1/2 at 11,542 ppm.
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Figure 6. Optical density at 1321 ppm (a) and at 11,542 ppm (b). H2O in the air at 1015 hPa. The data are averaged over 10
subsequent scans of the absorption line.

4. Conclusions and Outlook to the Airborne Application

The novel concept of an airborne eddy correlation dTDLAS hygrometer with a thin,
planar, rotationally symmetric multipass cell in an open-path configuration offers several
benefits, such as small gas transit times, no sampling errors and high temporal resolu-
tion, particularly in combination with a calibration-free, first-principles data evaluation.
Airborne water vapor flux measurements using the EC method would greatly benefit
from this proposed instrument. The measurement uncertainty of this laser hygrometer
is estimated to be less than 4.5% (k = 1), with the largest individual contributors being
the spectral line data (65.7%) and the fitted line area (26.8%). The first step toward an
airborne instrument was made by validating our newly designed, compact, 90◦-angled
optics setup under static conditions by comparison with an SI-traceable dew point mirror
hygrometer. The linear regression between the uncalibrated first-principles dTDLAS and
the calibrated DPM showed, over the range from 1300 to 11,500 ppm, an average deviation
of the correlation slope from unity of 2.6%. The maximal relative error was 2.2%. The
spectroscopic performance was evaluated by analyzing two absorbance profiles at low
(1321 ppm) and high (11,542 ppm) amount fractions. Averaging 10 subsequently recorded
profiles, the signal-to-local noise ratio is 1306 and 13,430 at 1321 ppm and 11,542 ppm,
respectively. The NEC is approximately 1 ppm at 1321 ppm and 11,542 ppm, which can be
used as a first estimate of the precision of the instrument. The high precision combined
with the good agreement, with a traceable reference without any calibration, indicates that
the designed optics setup will be suitable for airborne EC measurements.

4.1. Next Steps

In order to also fulfill the dynamic requirements for EC measurements, the dTDLAS
data acquisition rate needs to be optimized. This will be achieved by increasing the laser
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scan repetition rate to around 1 kHz (several kHz are possible [35]) and by enhancing
the data throughput by capturing and evaluating all scanned absorption profiles. These
optimizations will enable further improvements in the precision of the instrument by
increasing the number of pre-averaged scans while maintaining a temporal resolution
above 10 Hz. The dynamic response of the hygrometer will be characterized and validated
using a fast H2O step change generator [36,37].

4.2. Outlook to the Airborne Instrument

For airborne EC measurements using our planar cell setup, we developed a low
air drag concept for an open-path EC laser hygrometer to be used on the outside of the
airplane fuselage. Figure 7 shows an explosion view of the design of this airborne EC
instrument. The hygrometer is designed around the optics assembly (1) containing the
statically validated optical setup, which is covered (6) and can be continuously purged with
dry air to reduce the effects of parasitic absorption [25]. The temperature and pressure probe
consists of a heated pitot-static tube combined with a thermocouple and a PT100 for fast
and accurate temperature measurements. The pitot-static tube is mounted inside the optical
multipass cell such that the tube passes through the “hole” at the center of the beam pattern
visible in Figures 3a and 4. This placement enables static pressure measurements inside the
optical measurement plane. CFD simulations were used to optimize aerodynamic fairing
(3) and to minimize the pressure and velocity differences in the optical plane compared to
the free air flow. The inlet of the fairing is heatable and made of aluminum to prevent icing
and to reduce absorption. The hygrometer is designed for an average indicated airspeed
of 75 m/s, and the current length of the pylon (5) and the baseplate are optimized for the
Cessna F406 research aircraft of the TU-Braunschweig.
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