
electronics

Article

Genetic Algorithms to Maximize the Relevant Mutual
Information in Communication Receivers †

Jan Lewandowsky 1,* , Sumedh Jitendra Dongare 2 , Rocío Martín Lima 1, Marc Adrat 1, Matthias Schrammen 3

and Peter Jax 3

����������
�������

Citation: Lewandowsky, J.; Dongare,

S.J.; Martín Lima, R.; Adrat, M.;

Schrammen, M.; Jax, P. Genetic

Algorithms to Maximize the Relevant

Mutual Information in

Communication Receivers. Electronics

2021, 10, 1434. https://doi.org/

10.3390/electronics10121434

Academic Editor:

Tadeusz A. Wysocki

Received: 20 May 2021

Accepted: 10 June 2021

Published: 15 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Fraunhofer Institute for Communication, Information Processing and Ergonomics, Fraunhoferstraße 20,
53343 Wachtberg, Germany; rocio.martin.lima@fkie.fraunhofer.de (R.M.L.);
marc.adrat@fkie.fraunhofer.de (M.A.)

2 Communications Engineering Lab, Technical University of Darmstadt, Landgraf-Georg-Straße 4,
64283 Darmstadt, Germany; s.dongare@nt.tu-darmstadt.de

3 Institute of Communication Systems, RWTH Aachen University, Muffeter Weg 3a, 52074 Aachen, Germany;
schrammen@iks.rwth-aachen.de (M.S.); jax@iks.rwth-aachen.de (P.J.)

* Correspondence: jan.lewandowsky@fkie.fraunhofer.de; Tel.: +49-228-9435-731
† This article is an extended and improved version of our paper published in: Lewandowsky, J.; Dongare, S.J.;

Adrat, M.; Schrammen, M.; Jax, P. Optimizing parametrized information bottleneck compression mappings
with genetic algorithms. In Proceedings of the 14th International Conference on Signal Processing and
Communication Systems (ICSPCS’2020), Adelaide, Australia, 14–16 December 2020; pp. 1–8.

Abstract: The preservation of relevant mutual information under compression is the fundamental
challenge of the information bottleneck method. It has many applications in machine learning and in
communications. The recent literature describes successful applications of this concept in quantized
detection and channel decoding schemes. The focal idea is to build receiver algorithms intended to
preserve the maximum possible amount of relevant information, despite very coarse quantization.
The existent literature shows that the resulting quantized receiver algorithms can achieve performance
very close to that of conventional high-precision systems. Moreover, all demanding signal processing
operations get replaced with lookup operations in the considered system design. In this paper, we
develop the idea of maximizing the preserved relevant information in communication receivers
further by considering parametrized systems. Such systems can help overcome the need of lookup
tables in cases where their huge sizes make them impractical. We propose to apply genetic algorithms
which are inspired from the natural evolution of the species for the problem of parameter optimization.
We exemplarily investigate receiver-sided channel output quantization and demodulation to illustrate
the notable performance and the flexibility of the proposed concept.

Keywords: information bottleneck; mutual information; genetic algorithms; machine learning

1. Introduction

The information bottleneck method is a powerful framework from the machine learn-
ing field [1]. Its fundamental idea is to compress an observed random variable Y to some
compressed representation T according to a compression rule. This rule is designed to
preserve so-called relevant mutual information I(X;T) ≤ I(X;Y), where X is a properly
chosen relevant random variable of interest. The method is very generic and has nu-
merous applications, for example, in image and speech processing, in astronomy and in
neuroscience [2–4].

In the past few years, the method has also attracted considerable attention in the
communications community. It was revealed to be useful in the design of strongly quan-
tized baseband signal processing algorithms for detection and channel decoding with
low complexity, but performance close to that of non-quantized conventional reference
algorithms [5–7]. The communications-related applications of the method lead from the
design of channel output quantizers over the decoding of low-density parity-check codes
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and polar codes to entire baseband receiver chains that include channel estimation and
detection [5–13]. Fundamentally, the idea of most aforementioned applications of the
method in communications is to design deterministic compression mappings t = f (y) that
replace the classical arithmetical operations in the baseband signal processing algorithms.
These mappings are typically considered as lookup tables that store the respective t for
each possible y. The lookup table approach sketched above is well-suited for many of the
baseband signal processing problems already studied in communications. In some other
applications, however, it is desirable to have an arithmetical rule or a sequence of process-
ing steps in an algorithm which maps an observed realization y onto the compressed t.
This is the case, for example, when the cardinality of Y and, therefore, the resulting lookup
table implementing t = f (y) becomes fairly large. As a result, it is meaningful to consider
parametrized compression mappings t = fθ(y) with M parameters θ = [θ0, θ1, . . . , θM−1]
that preserve a desired large amount of mutual information I(X;T).

In this article, we develop parametrized mappings for communication receivers that
only need few parameters and simple signal processing operations to preserve significant
amounts of relevant information. The mappings investigated use exact or approximate
nearest neighbor search algorithms [14,15]. Other approaches to designing parametrized
systems exist in the literature. Some of the most popular use neural networks [16–18]. Our
motivation to study the proposed nearest neighbor search-based systems instead is that
they offer a very simple implementation with a small number of mathematical operations
to determine the system output t. This is an important aspect for their practical use in
communication receivers.

Finding optimum parameters θ, however, is cumbersome for the proposed parame-
trized mappings, especially if approximate nearest neighbor search algorithms are used.
Therefore, we use genetic algorithms for the required optimization of the parameters
θ. Genetic algorithms are very generic and powerful optimization algorithms that are
inspired by the natural evolution of the species [19,20]. Their general idea is to create a
population of candidate solutions to an optimization problem. Then, a so-called fitness
of each individual in the population is evaluated with respect to the target function. The
members of the population breed novel generations by combining their genetic information
using simple crossover operators. In this process, the Darwinistic principle of promoting
solutions with higher fitness is applied and also mutations happen. Fascinatingly, like this
genetic algorithms can in fact find very good solutions to very complicated optimization
tasks [19–22].

The above motivates us to apply genetic algorithms to optimize parametrized com-
pression mappings that aim for maximum preservation of relevant information. Such
mappings have numerous applications in learning and also in the baseband signal process-
ing of communication receivers. This article investigates the receiver-sided channel output
quantization in communication receivers based on nearest neighbor search algorithms,
similar to the original conference version of this article [23]. As novel contributions, we in-
troduce and optimize parametrized mappings that involve K-dimensional trees [24,25]. We
propose and investigate the design of a novel demodulation scheme for data transmission
using non-binary low-density parity-check codes with binary phase-shift keying (BPSK)
modulation which is based on nearest neighbor search in the K-dimensional trees as an
entirely new contribution of this article.

In summary, the contributions of this article are:

• We develop and investigate the idea of applying genetic algorithms to maximize mu-
tual information in a parametrized information bottleneck setup for communication
receivers.

• We design very powerful parametrized compression mappings that preserve large
amounts of relevant information with very few parameters. These mappings are
based on exact and approximate nearest neighbor search algorithms.

• We illustrate enormous flexibility and generality of the considered approach.
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• We present results on channel output quantization and demodulation in communica-
tion receivers.

The article is structured as follows. The next section provides a brief overview of
the required preliminaries. In Section 3, we propose different classes of parametrized
mappings that can preserve significant amounts of relevant information. Moreover, we
motivate and explain their genetic optimization. Section 4 then provides practical results
on the proposed communication receiver design with maximum preservation of relevant
information. Finally, Section 5 concludes the article.

2. Preliminaries

This section introduces fundamentals on the information bottleneck method and
genetic algorithms. At the end of the section, two important distance metrics for vectors
are briefly recalled that will be required in the remainder of the article.

2.1. The Information Bottleneck Method

The information bottleneck method is an information theoretical framework intro-
duced by N. Tishby et al. in [1]. It originates from machine learning and considers three
discrete random variables X,Y and T which form a Markov chain X→ Y → T. X is termed
the relevant random variable. The idea is that Y is observed and shall be compressed to a
more compact representation T. It is well-known from the famous rate-distortion theory
that in this context a compression corresponds to minimizing the so-called compression
information I(Y;T). However, it shall be guaranteed that also the mutual information
I(X;T) is maximized. As a result, one can conclude that X defines which features of Y are
considered to be relevant and shall be preserved under compression. The compression
rule that maps a realization y ∈ Y onto its compressed representation t ∈ T is typically
considered as a conditional probability distribution p(t|y). This allows us to cover proba-
bilistic and also deterministic mappings of y onto t. In this article, however, we will restrict
ourselves to deterministic mappings p(t|y) ∈ {0, 1} ∀(y, t) that, of course, fulfill the law of
total probability. In this situation, t is a determinstic function of y, i.e., t = f (y).

There exist many information bottleneck algorithms [26–30] that can construct the
desired compression mapping t = f (y) for a given cardinality of T . A popular information
bottleneck algorithm in communications is the KL-means algorithm from [26,27]. Due to
the fact that Y is discrete, it is possible to store the mapping t = f (y) in a lookup table
with size |Y| by just storing each t for the respective y. The mapping t = f (y) then clusters
the event space of Y into several clusters Yt which, mathematically, are the preimages of
t = f (y).

2.2. Genetic Algorithms

Genetic algorithms are very powerful and generic optimization algorithms that have
various applications in many fields of engineering [19–22]. They aim to mimic the natural
evolution of the species to solve multi-parameter optimization problems. Consider the
problem of finding parameters θ = [θ0, θ1, . . . , θM−1] that maximize a function g : RM −→
R+

0 .
In order to find optimum parameters θ, a genetic algorithm works on a population

P =
{

θ(0), θ(1), . . . , θ(npop−1)
}

of npop candidate solutions. Initially, this population is

often drawn randomly. The real world parameter description θ(l) is typically termed the
phenotype of an individual in the population. Each member θ(l), l ∈ {0, 1, . . . , npop − 1}
of the population implies a certain value of the target function g

(
θ(l)
)

which is readily
termed the fitness of this individual.

In addition to the phenotype description of every individual, a genotype description
can be introduced. The idea is to encode the numerical values of the parameters θ

(l)
m using

so-called alleles into a long genetic string. In the simplest form, the alleles are just binary
zeros or ones and the genotype of an individual is a long sequence of these numbers,
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accordingly. For a given phenotype, one can determine the genotype by considering
uniform discretization of the search spaces [θmin

m , θmax
m ] for the parameters θm into 2rm

regions, respectively. Like this the values of the parameters θ
(l)
m can be interpreted as bit

sequences of length rm which encode the corresponding index of the region in binary form.
A simple method to obtain the respective bit sequences is determining the region indices
z(l)m for all the appearing θ

(l)
m in θ(l) as

z(l)m =

⌊
θ
(l)
m − θmin

m
θmax

m − θmin
m

(2rm − 1)

⌋
. (1)

The z(l)m are integers and can be converted into their binary representations easily.
Then, one just concatenates all the obtained binary numbers to a long binary string to
obtain the genotype. As an example, consider θ(l) =

[
θ
(l)
0 , θ

(l)
1

]
= [1.326,−0.839], θ0, θ1 ∈

[−2, 2], r0 = r1 = 8. One obtains z(l)0 = 212, z(l)1 = 74 and the corresponding genotype
[11010100 01001010]. Of course, the reverse genotype to phenotype conversion can be
done similarly.

An instance of the populationP exists in a generation of the genetic algorithm. In every
generation, parent solutions are randomly selected from P and their genetic information
is combined using simple genetic crossover operators on the genotypes to create children
which form the population of the following generation. Such a crossover operation with
ncross = 2 crossover positions is illustrated in Figure 1.

[1101010001001010]

[0110101101010111]

[1101001101001010]

[0110110001010111]

parents: children:

random crossover
positions

random crossover
positions

Figure 1. Illustration of a two point crossover in the processing of a genetic algorithm. The genotypes
of the children are formed by combining the genotypes of both parents.

It is key that in the described processing, the individuals with higher fitness are more
likely to become parents of the next generation than the weaker individuals with lower
fitness. This is realized using simple inversion sampling to draw the parents. Moreover, the
concept of elitism promotes the fittest individuals and guarantees them propagating their
genetic material into the next generation. Finally, mutations of alleles in the genotypes of the
children are performed with a certain mutation probability pmut to assure some diversity.

Fascinatingly, when the processing is executed for several generations, genetic algo-
rithms can find very good solutions to enormously complicated optimization tasks [19]. A
particular strength of genetic algorithms is their generality. They need no other assump-
tions on the target function than that it allows to measure the fitness of an individual in the
population. This motivates us to investigate the possibility of maximizing the preserved
relevant information I(X;T) under compression in information bottleneck settings with
genetic algorithms.

2.3. Distance Metrics

In this section, we want to briefly recall two elementary distance metrics for vectors
y = [y0, y1, . . . , yN−1] and θt = [θt,0, θt,1, . . . , θt,N−1] that will be used frequently in the
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remainder of the article. A well-known distance measure is the Euclidean distance between
y and θt, i.e.,

dE(y, θt) =

√√√√N−1

∑
n=0

(yn − θt,n)2. (2)

When it comes to implementation, the Euclidean distance has some disadvantages. In
particular, taking the square under the root in Equation (2) requires costly multiplications
in digital hardware. In addition, the square root is also costly on some signal processing
platforms. As a result, in some applications a more favorable distance is the Manhattan
distance [31] given by

dM(y, θt) =
N−1

∑
n=0
|yn − θt,n|. (3)

This distance measure only requires sign inversions and additions which are fairly
low-cost operations.

3. Design of Parametrized Compression Mappings That Maximize Relevant
Information for Communication Receivers

The general system setup that we consider in this article is sketched in Figure 2.

signal
processing

fθ(y)
y ∈ Y t ∈ T

relevant
variable X,

realizations x

observed
variable Y,

realizations y

I(X;Y)

parameters
θ

max
θ

I(X;T)

Figure 2. Optimizing parameters in a parametrized information bottleneck like setup. The parameters
θ shall be tuned to maximize I(X;T) for a given parametrized function fθ(y).

As shown there, we consider a generic receiver-sided signal processing scheme that
inputs an observed random variable Y. The observed random variable Y is a random
vector with realizations y = [y0, y1, . . . , yN−1] because many signal processing components
in communications process more than one scalar input variable. The system has M tunable
parameters θm ∈ R, m ∈ {0, 1, . . . , M− 1}. The design idea for tuning the parameters θm is
choosing them, such that the mutual information I(X;T) is maximized. Like this, the system
output T shares a desired huge amount of information with the relevant random variable
X. We consider the system output t ∈ T to be from some finite set T with cardinality
|T |. Only this cardinality |T |, the mapping rule of y onto t implied by t = fθ(y) and
the joint probability distribution p(x, y) determine I(X;T). In contrast, I(X;T) does not
depend on the particular elements of T . The reason is that I(X;T) is determined only by
the probability distributions p(x, t), p(x) and p(t), as this mutual information is given by

I(X;T) = ∑
x∈X

∑
t∈T

p(x, t) log
p(x, t)

p(x) p(t)
. (4)

After all, the considered system design can be understood as an instance of the infor-
mation bottleneck method described in Section 2.1. In contrast to the classical information
bottleneck approach from [1], however, a parametrized system design for the mapping of
realizations y onto t by t = fθ(y) is considered here. In addition, the choice of the output
cardinality |T | allows us to adjust an inherent compression level achieved by the system,
as this cardinality determines the number of bits required to represent the system output.
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The system design approach introduced in Figure 2 has very intuitive applications
in the communications context. Consider, for example, the data transmission scheme
sketched in Figure 3. In this example, a phase shift keying (PSK) modulation scheme is
used to transmit data over a complex additive white Gaussian noise (AWGN) channel.
The transmission of the complex symbol x = xre + jxim yields the channel observation
y = yre + jyim at the receiving end. Obviously, the system fed with the samples y =
[yre, yim] in vector notation should preserve information on the transmitted modulation
symbol x in this example. Considering outputs t ∈ T to be from a discrete set of integers
T = {0, 1, . . . , 2q − 1}, the system conducts a q bit quantization of the continuous received
samples y with a minimum loss of relevant information on the transmitted modulation
symbol x. In addition, each t ∈ T implies a conditional probability distribution p(x|t).
Therefore, the considered system can also be used straightforwardly for demodulation of
the transmitted symbol x. The considered system will be investigated further in Section 4.

quantizer/
demodulator

fθ(y)

complex
AWGN
channel

PSK
modulation

input
data

quantized output
t ∈ {0, 1, . . . , 2q − 1},

demodulation
with p(x|t)

parameters θ,
max
θ

I(X;T)

modulation
symbol
x ∈ X

received
sample

y = [yre, yim]

Figure 3. Exemplary application of a parametrized mapping t = fθ(y) for the quantization and
demodulation of an AWGN channel output under PSK modulation. The system output t ∈ T shall
be highly informative about the transmitted modulation symbol x ∈ X .

3.1. Flexible Parametrized Mappings

Independent of the techniques used for the parameter optimization that we will de-
scribe later, the system design sketched above needs flexible classes of parametrized
functions fθ(y) which allow to preserve significant amounts of relevant information
I(X;T) ≤ I(X;Y) for properly tuned parameters θ. We propose different ideas to im-
plement the mapping of y onto t ∈ T in the considered systems which are described
in the following. The considered mappings are all instances of nearest neighbor search
algorithms [14] which need the definition of a distance metric like the ones from Section 2.3.

3.1.1. Clustering by Simple Exact Nearest Neighbor Search

The first class of parametrized mappings of y onto t ∈ T = {0, 1, . . . , |T | − 1} that we
consider determines the outgoing t for an incoming y as

t = fθ(y) = arg min
t′∈T
{ d(y, θt′)}, (5)

where d(y, θt) is some properly defined, but at the same time, arbitrary distance measure
between an incoming vector y and an optimized parameter vector θt of the same dimension
N as y. In this article, we will consider the Euclidean distance dE(y, θt) and the Manhattan
distance dM(y, θt) from Section 2.3, but we want to stress that the proposed method can deal
with arbitrary distances. This mapping is characterized by |T | such parameter vectors θt =
[θt,0, θt,1, . . . , θt,N−1] which we compactly gather in a long vector θ = [θ0, θ1, . . . , θ|T |−1]. As
each vector θt has length N, there are N · |T | parameters θm in θ. Clearly, the approach is
very much inspired by a vector quantizer which we aim to design with a genetic algorithm
such that it maximizes the mutual information I(X;T).
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In its simplest form, the considered mapping can be implemented by calculating all
possible distances d(y, θt) ∀t ∈ T and choosing the vector θt with the smallest distance.
This approach is sometimes also termed the naive nearest neighbor search [14], but for
small values of |T | it offers a quite practical solution to identifying the nearest neighbor.
The integer index t of the closest found vector then is the output of the system.

3.1.2. Exact and Approximate Nearest Neighbor Clustering Using K-Dimensional Trees

The simple nearest neighbor search approach from above has the apparent disadvan-
tage that its complexity grows linearly with |T |. As a result, the simple nearest neighbor
search is limited to moderate cardinalities |T | in practice. Aiming for I(X;T) ≈ I(X;Y),
however, often requires quite large cardinalities |T |.

Fortunately, so-called K-dimensional tree data structures [24,25] can help to reduce
the complexity of the simple nearest neighbor search algorithm for large |T |. These data
structures can often determine the nearest neighbor of y without explicitly calculating
all possible distances d(y, θt) ∀t ∈ T . The resulting average query complexity of a K-
dimensional tree scales logarithmically with the number |T | of vectors θt, hence typically
resulting in a drastic reduction of required distance calculations in comparison to the simple
nearest neighbor search. It shall be mentioned, however, that the worst case complexity of a
search still is O(|T |). K denotes the dimensionality of the data. In our case, K corresponds
to the number N of inputs processed by the system from Figure 2.

Figure 4 shows an exemplary K-dimensional tree which can be used to conduct nearest
neighbor search in an exemplary set of |T | = 7 vectors θ0, θ1, . . . , θ6 with length N = 3
that we have chosen randomly for illustration purposes. We consider the task of finding
the node θt with the smallest Euclidean distance to an exemplary query vector y that is
also provided in Figure 4. The true nearest neighbor of y is θ5 with Euclidean distance
dE(y, θt) ≈ 1.52.

θ1 = [−1.6,−2.8,−3.3]

θ2 =[−2.5,−1.2,−0.8] θ3 =[0.3,−0.6, 1.5]

θ6 =
[−2.9,−2.4, 2.4]

θ4 =
[−2.4, 3.0,−3.8]

θ5 =
[1.4,−0.7, 0.5]

θ0 =
[−0.7, 1.8,−4.0]

example query
y = [1.3,−0.5,−1.0]

1

2
3

4

Figure 4. Exemplary K-dimensional tree with |T | = 7 length N = 3 random vectors θ0, θ1, . . . , θ6.
The vectors are arranged according to decision thresholds given by the axis coordinate highlighted
in red in the subsequent levels of the tree. Arrows indicate the processing of querying the nearest
neighbor of the vector y.

The general principle of the search in the K-dimensional tree is that most of the explicit
distance calculations are avoided and replaced by very simple threshold decisions along
the axis of the data points. As it is highlighted in red in Figure 4 in the root node, the first
axis considered corresponds to the first coordinate θt,0. It is easy to see that all points in
the left half of the tree underneath the root node fulfill θt,0 ≤ −1.6 and all the points in the
right half have θt,0 > −1.6.

As a result, for querying the first coordinate of y is compared with the first coordinate
of the root node. Due to the fact that y0 > θ1,0, the query goes to the right child θ3 of the
root node which is indicated using the arrow labeled 1. This processing is now repeated,
but in the next reached node, the axis to split is the second, i.e., θt,1, as indicated in red
again. The change of the considered axis in the subsequent levels of the tree is fundamental.
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In each level, only the distances d(y, θt) to the visited nodes are calculated and only their
minimum is stored and tracked. At node θ3 we have the distance dE(y, θ3) ≈ 2.69 in
our example.

Obviously, the example query follows the path labeled 2, as y1 = −0.5 > −0.6 and
the query reaches the leaf node θ0. The distance to this node is dE(y, θ0) ≈ 4.28, so θ3
stays closer.

The described processing does not guarantee finding the true nearest neighbor of y
which is given by θ5 so far. Fascinatingly, however, it is very easy to find out, whether the
decision for a certain axis made so far went into the direction of the true nearest neighbor.
In order to do that, backtracing the path taken is required. In each visited node now the
distance of y along the split axis of the data in that node has to be considered only. If this
distance is smaller, than the minimum distance obtained so far, it follows that following
the other branch could be better.

In our example, when θ3 is visited again, it is easy to find that the distance along axis
θt,1 in the node θ3 is

√
(−0.6 + 0.5)2 = 0.1 < dE(y, θ3) ≈ 2.69, so the other branch labeled

by arrow 4 is taken into account and the true nearest neighbor is found. The backtracing
now can reach the root node and the processing is over.

Interestingly, the described processing can be implemented very elegantly using the
programming method of recursion. The recursion for the backtracing, however also adds a
significant amount of complexity. It is, therefore, mentionable that a very simple approxi-
mate nearest neighbor search algorithm with much lower complexity can be implemented
in the K-dimensional tree by dismissing the backtracing. Like this, the search complexity
can be fixed to O(log2(|T |)). The results presented in Section 4.2 show that in the consid-
ered application no practically relevant disadvantage of using approximate instead of exact
nearest neighbor search exists.

Exactly as in Section 3.1.1, the (approximate) nearest neighbor seach algorithm outputs
the index t of the closest found point which is the system output from Figure 2.

3.1.3. Approximate Nearest Neighbor Clustering Using Neighborhood Graphs

Another reduced complexity approximate algorithm for the problem of finding an ap-
proximate nearest neighbor of a query point y exists in the literature [14,15]. This algorithm
is based on a proximity neighborhood graph of nodes that correspond to the candidate
points θt. For simplicity, we consider neighborhood graphs, where all nodes have nneighbor
neighbors which correspond to the nneighbor closest points under the considered distance.

The neighborhood graph-based approximate nearest neighbor search algorithm is
depicted in Figure 5. When a new query point y shall be located, one enters the graph
from any entry node and checks whether or not there are points in the neighborhood of the
entry node which are closer to the query than the entry node itself. If this is the case, the
closest found neighbor becomes the novel entry node and the processing starts over. In the
shown example, the processing will stop after the neighbors of the entry node have been
processed. Of course, this procedure can be executed for several initial entry nodes nentry to
improve the accuracy. It is also very easy to add a complexity constraint on the maximum
number of allowed distance calculations by only allowing a certain path length lmax

path while
jumping through the neighborhood graph. In order to achieve a desired minimum of
distance calculations in the design, we define a set of nentry entry nodes and first choose
to determine the closest entry node to the query from that set. Then we only run the
approximate nearest neighbor search described above from the closest found entry node.
In the considered design, the worst case number of distance calculations to determine t for
a given y is given by

nmax
dist = nentry + nneighbor · lmax

path. (6)

Please note that this number is independent of |T |. As a result, one can allow for a
very large number of candidate vectors θt without a proportional increase in the number
of required distance calculations.
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nearest neighbor

entry node

query point

Figure 5. Visualization of the approximate nearest neighbor search in a neighborhood graph. The al-
gorithm traverses through the neighborhood graph greedily. ×markers correspond to the parameters
θt to be optimized, blue arrows indicate neighborhood relations.

Again the approximate nearest neighbor search algorithm then just outputs the integer
index t of the approximate closest point θt to y. Clearly, the possible performance of the
algorithm in terms of the preservation of I(X;T) and its complexity depend on the parame-
ters nentry, lmax

path and especially on nneighbor which defines the sparsity of the neighborhood
graph. Moreover, the particular set of entry nodes has an impact on the preserved relevant
information. We will see in the practical results in Section 4, that quite sparse graphs with
few entry nodes and small path length have the ability to preserve very significant amounts
of I(X;T).

3.2. Genetic Algorithm Optimization

In Sections 3.1.1–3.1.3, different approaches to the problem of finding the (approximate)
nearest neighbor θt of the system input y from Figure 2 were proposed and described.
Our intention is using the described approaches to implement the mapping t = fθ(y).
In doing so, the parameters θ = [θ0, θ1, . . . , θ|T |−1] shall be tuned, such that the mutual
information I(X;T) is maximized for a given |T |. This naturally raises the question of how
we can determine optimum parameters θ. We propose to perform the optimization of the
parameters θ = [θ0, θ1, . . . , θ|T |−1] for the considered mappings and irrespective of the
used distance function d(y, θt) with a genetic algorithm for various reasons explained in
the following. Afterwards, we describe how to perform the parameter optimization with a
genetic algorithm.

3.2.1. Why Genetic Algorithms?

Standard parameter optimization problems are often tackled by the application of
gradient-based methods. A very famous example for this is the parameter optimization
required to train neural networks in machine learning [16].

Considering Equation (5) again, however, reveals that using a gradient-based ap-
proach is cumbersome in our context. This equation involves a min operation which causes
differentiability issues. A typical way to overcome them would be to use a smooth approxi-
mation [31], e.g., the softmin operation instead of the min during optimization, but we note
that like this, we would in fact not optimize the deterministic mapping rule that we aim
for in Equation (5), but only some non-deterministic approximation. Genetic algorithms,
however, can directly optimize the deterministic mapping rule, as will be explained soon.

Moreover, depending on the distance metric used, more issues can arise. If the Man-
hattan distance from Equation (3) shall be used, the non-differentiability of the absolute
magnitude |.| involved adds to the min from Equation (5) which makes a gradient ap-
proach for the optimization of the parameters θt,n very cumbersome and would require
mathematical approximations and workarounds [31]. Genetic algorithms, in contrast, can
easily deal with this matter.
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Finally and most importantly, in Sections 3.1.2 and 3.1.3, we have also studied approxi-
mate solutions to the nearest neighbor problem. These have drastically reduced complexity
in terms of the number of distance calculations required. If such heuristic algorithms are
applied, one can imagine the min operation from Equation (5) to be replaced with an ap-
proximate min. This operation is extremely hard, if not impossible, to describe analytically.
Considering the greedy processing of the approximate nearest neighbor search algorithms
from Sections 3.1.2 and 3.1.3, it is intuitively clear that for both, there is no mathematical
expression to adequately describe the mapping of y onto t, even though it is deterministic.
The mapping rules are rather given by subsequent processing steps in greedy algorithms.

As a result, the parameter optimization to maximize I(X;T) with standard gradient
methods is not possible in these cases. Genetic algorithms, however, can be applied easily
as discussed in the following.

3.2.2. Using Genetic Algorithms to Maximize the Preserved Relevant Information

We propose to perform the optimization of the parameters θ = [θ0, θ1, . . . , θ|T |−1] for
all considered mappings and irrespective of the actually used distance function d(y, θt)
with a genetic algorithm. For that purpose, we initially draw a population of individuals
P =

{
θ(0), θ(1), . . . , θ(npop−1)

}
. As it is typically assumed in the information bottleneck

setup, we assume that the joint probability distribution p(x, y) is known.
For any population member θ(l) it is then straightforward to determine the joint

probability distribution p(x, t) for this particular individual as

p(l)(x, t) = p(l)(x|t)p(l)(t) = ∑
y∈Y :

t= f
θ(l) (y)

p(x, y), (7)

and

p(l)(t) = ∑
x∈X

p(l)(x, t). (8)

These distributions directly allow us to calculate the respective preserved relevant
information I(X;T) for this population member according to Equation (4), that is,

I(l)(X;T) = ∑
x∈X

∑
t∈T

p(l)(x, t) log
p(l)(x, t)

p(x)p(l)(t)
. (9)

Note that 0 ≤ I(l)(X;T) ≤ I(X;Y) by definition. This allows us to use the mutual
information I(l)(X;T) directly as fitness g

(
θ(l)
)

of the population members θ(l) in the
generations of the genetic algorithm. The rest of the processing then just follows the
standard processing of genetic algorithms using selection, genetic crossovers and mutations
over the generations as described, for example, in [19,20].

It is very important to note that all the involved equations can be evaluated totally
irrespective of the actual operations performed in the signal processing block fθ(y) from
Figure 2. The presented equations in fact work for all possible deterministic mappings
of y onto t ∈ T . The genetic algorithm just treats fθ(y) as a black box. Therefore, we
can just use either the exact or the approximate nearest neighbor search approaches from
Sections 3.1.1–3.1.3. We can also freely decide what distance measure d(y, θt) we want to
use. As a result, the presented approach is very generic.

4. Results and Discussion

This section presents results on the application of the proposed parametrized compres-
sion mappings for quantizing the output of a communications channel and demodulation
with the developed system design approach. It shall be mentioned that the applications
studied serve to illustrate the method and the performance of the designed mappings. They
allow us a very vivid illustration that reveals insights into the working of the proposed
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method. However, numerous other applications can be investigated in future work, for ex-
ample, in channel decoding, detection and other receiver-sided baseband signal processing
tasks [5–13].

4.1. Quantization of the Channel Output with Minimum Loss of Relevant Information

In the following, we first consider KL-means quantization as proposed in [26]. KL-
means quantization shall serve as a benchmark for the designed parametrized compression
mappings. The most important figure of merit that we consider is the preserved relevant
information I(X;T) for a given output cardinality of the designed quantizers.

4.1.1. Information Bottleneck Quantizer Design with the KL-Means Algorithm

An intuitive application of the information bottleneck method in communications is
the design of a channel output quantizer that maximizes the relevant information on the
transmitted modulation symbols X. As already discussed and shown in Figure 3, in this
context, Y corresponds to the received channel output. If Y is continuous, for example, for
an AWGN channel, it has to be very finely discretized to |Y| uniformly spaced samples
on some interval of interest. T is the quantized output variable of the quantizer. A q
bit quantizer designed with the Information Bottleneck method maps realizations y onto
quantization indices t ∈ T = {0, 1, . . . , 2q − 1}, such that |T | = 2q and I(X;T) → max.
I(X;T) is independent of the elements in T . We consider integer quantization indices that
need q bits in the hardware.

As in [26], we consider complex AWGN channels and complex modulation alphabets,
such that the continuous received sample at a certain time instance is

y = yre + jyim = (xre + nre) + j(xim + nim), (10)

where nre + jnim is a realization of a complex valued, circularly symmetric Gaussian process
with variance σ2

n and mean 0 and x = xre + jxim is a complex modulation symbol. For a
simple notation, we assume that y is already finely discretized using a large number of
|Y| uniformly spaced samples in a grid on the complex plane with

√
|Y| points for yre

and yim, respectively. In addition, we define the vector representation y = [yre, yim] of the
received sample.

In this situation, we want to quantize y to a number of |T | << |Y| quantization
regions. The considered quantizers are particularly useful for phase-shift keying (PSK)
signals [26]. An example for 8-PSK under AWGN with noise variance σ2

n = 0.5 is provided
in Figure 6. This figure shows the quantization regions obtained with the KL-means
algorithm in the complex plane.

For this example, yre and yim were both finely discretized into
√
|Y| = 256 uniformly

spaced samples on the interval [−1.5,+1.5] with properly paying attention to clipping
effects. Like this, one obtains a grid with cardinality |Y| = 2562 = 65, 536 in the complex
plane. This grid was quantized to |T | = 16 different quantization regions. This implies
strong compression.

A typical application of the designed quantizer could be in a radio, where the analog-
to-digital converter has a resolution of 8 bits for the real and the in-phase component of the
received signal, but the signal shall be quantized to be processed further using just 4 bits
per sample with minimum relevant information loss. In this example, I(X;Y) ≈ 1.49533
bit and I(X;T) ≈ 1.38887 bit. This indicates that despite the very coarse quantization a
significant amount of relevant information on the transmitted modulation symbols (that is,
around 92.8%) is preserved. Hence, it illustrates that the KL-means algorithm preserves
relevant information.

Note that, due to the very complicated shape of the optimized quantization regions
obtained using the KL-means algorithm from Figure 6, this quantizer cannot be charac-
terized by simple thresholds for yre and yim. The KL-means algorithm instead delivers a
table which holds the respective t ∈ T for all of the possible vectors y = [yre, yim], such
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that, effectively one ends up with a lookup table of size |Y| = 65,536 that characterizes
the quantizer.
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Figure 6. Quantization regions for the output of an AWGN channel with 8-PSK modulation in the
complex plane for σ2

n = 0.5, |T | = 16 constructed with the KL-means algorithm. I(X;Y) ≈ 1.49533
bit, I(X;T) ≈ 1.38887 bit.

4.1.2. Genetic Algorithm Quantizer Design Using Exact Nearest Neighbor Search

Figure 7 shows the quantization regions obtained for a simple exact nearest neighbor
search approach described in Section 3.1.1.

Figure 7a uses the Euclidean distance and Figure 7b uses the Manhattan distance in
Equation (5). The parameters θt were tuned using the genetic algorithm based method
from Section 3.2.2.
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(a) Euclidean distance, I(X;Y) ≈ 1.49533 bit, I(X;T) ≈ 1.38286 bit.
Figure 7. Cont.
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(b) Manhattan distance, I(X;Y) ≈ 1.49533 bit, I(X;T) ≈ 1.37313 bit.

Figure 7. Quantization regions for the output of an AWGN channel with 8-PSK modulation in the
complex plane for σ2

n = 0.5, |T | = 16 constructed with the genetic algorithm.

For the genetic algorithm optimization, we have used the configuration consoli-
dated in Table 1. This configuration was determined experimentally and found to yield
good results.

Table 1. Overview of parameters of the genetic algorithm.

Parameter Description Value

npop population size 200
ncross number of crossovers for genetic combination 5
pmut mutation probability of each bit in the genotype 10−4

rm number of bits to represent a parameter in the genotype 10
nelite number of elite population members (guaranteed to breed) 20
ngen number of evolved generations 2000

The phenotypes θ(l) in this scenario hold 2 · |T | = 2 · 16 = 32 real valued parameters
that represent the real and the imaginary parts of 16 complex numbers. The optimized
parameters θt are denoted using ×markers in Figure 7 in the complex plane. As it can be
seen, the genetic algorithm automatically learns favorable positions θt in terms of the maxi-
mum preservation of I(X;T) under the respective distance d(y, θt). The quantizers from
Figure 7a,b both can be described with 32 << 65, 536 parameters, but have quantization
regions with very complicated shapes that allow us to preserve large amounts of relevant
information. The preserved relevant mutual information is I(X;T) ≈ 1.38286 bit (i.e., 92.5%
of I(X;Y)) for the Euclidean distance and I(X;T) ≈ 1.37313 bit (i.e., 91.8% of I(X;Y)) for
the Manhattan distance.

The conference version of this article [23] also holds a quantitative comparison for
different signal-to-noise ratios (SNRs) that we skip here for brevity.

4.1.3. Genetic Algorithm Quantizer Design with Approximate Nearest Neighbor Search

The numbers presented in the prior section illustrate that for |T | = 16, there is still
a mentionable gap between I(X;Y) and I(X;T) for all considered quantizers. In order to
close that gap, one has to increase the output cardinality |T | of the quantizer to further
decrease the quantization loss. This, however, proportionally increases the number of
distance calculations for the method from Section 3.1.1. Here we use the approximate
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nearest neighbor search algorithm from Section 3.1.3 to overcome that issue. Figure 8
compares the preserved relevant information I(X;T) of the KL-means algorithm and the
proposed genetic algorithm optimized compression mappings for an output cardinality of
|T | = 256 as a function of the SNR 1/σ2

n of the AWGN channel. Due to its simpler distance
calculation, we only consider the Manhattan distance dM(y, θt) here. For this investigation,
we were forced to decrease the cardinality of the grid that finely discretizes the complex
plane to

√
|Y| = 128 points for yre, yim ∈ [−1.5, 1.5], respectively. The reason is that

the time complexity of the KL-means algorithm from [26] is proportional to the product
|T | · |Y| and with |Y| = 65, 536 as used in the previous investigation and |T | = 256 used
here, it was just not possible to create the KL-means quantizers in a reasonable time, even
though we have used a highly-parallel implementation of that algorithm which parallelizes
the algorithm on a graphics card [32]. Please note that using a coarser grid slightly degrades
I(X;Y). This indicates that using the KL-means algorithm for very large cardinalities |T | is
challenging. The method proposed here, however, easily allows using such a large |T |.
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Figure 8. Comparison of KL-means and genetic algorithm optimized quantization using approximate
nearest neighbor search from Section 3.1.3 for |T | = 256 in terms of preserved I(X;T). I(X;Y) serves
as an ultimate upper bound.

The approximate nearest neighbor search algorithm from Section 3.1.3 used the pa-
rameters nneighbor = 6 neighbors, nentry = 6 entry nodes and a maximum path length of
lmax
path = 5. These parameters were found to offer a good tradeoff between sparsity of the

neighborhood graph and performance. The worst case number of distance calculations to
determine t for a given y in this setting is nmax

dist = 6 + 6 · 5 = 36 according to Equation (6)
which is significantly less than |T | = 256. During our experiments we found out that
it is even possible to reduce the maximum number of distance calculations further by
decreasing nentry, nneighbor or lmax

path at the expense of very slight losses in I(X;T). Moreover,
we have added the choice of the first entry node as a parameter to the genetic algorithm
such that it is included in the optimization process. The rest of the entry nodes is chosen,
such that all resulting entry nodes have possibly large distances among each other. The
shown results indicate that the proposed compression mappings based on the approximate
nearest neighbor search algorithm from Section 3.1.3 with parameters θ optimized using
genetic algorithms can deal with very huge cardinalities |T |. Such large cardinalities |T |
are required to minimize the remaining quantization loss, such that I(X;T) ≈ I(X;Y), as
it can clearly be seen in Figure 8. Moreover, the performance is virtually identical to the
KL-means quantizers.
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4.2. Genetic Algorithm Designed Demodulation Using K-Dimensional Trees

Next, we want to investigate an application of the proposed baseband signal pro-
cessing approach illustrated in Figure 2 in a data transmission system that employs a
non-binary low-density parity-check code over the Galois field 2N (GF

(
2N)) with N > 1

for forward error correction, but uses BPSK for signalling over an AWGN channel. A
data transmission scheme similar to the one studied here was investigated for a lookup
table-based information Bottleneck approach in [33]. For a deep introduction to non-binary
low-density parity-check codes we kindly refer the reader to [34].

Pairing a non-binary channel code with BPSK offers a particularly interesting use
case of the system illustrated in Figure 2. As it will be explained in the following, in
the considered setup N received samples have to be processed for the demodulation of a
GF
(
2N) symbol at the receiving end. Hence, this problem perfectly matches the architecture

of the considered system.
For completeness, it shall be mentioned that it is also common to pair non-binary

channel codes with 2N-ary modulation schemes, for example, 2N-PSK. For such a coding
and modulation scheme, the demodulation problem can be conducted using the systems
investigated in Section 4.1. To do so, one has to use p(x|t) after the quantization, as it has
already been mentioned in Section 3.

The data transmission system that includes a non-binary channel code and BPSK
modulation studied in this section is sketched in Figure 9.

K-d-tree
demodulator

fθ(y)

GF
(
2N

)

channel
decoder

GF
(
2N

)

channel
encoder

GF
(
2N

)
to

BPSK
mapping

bit to
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(
2N

)

mapping

q bit
quantizer
(ADC)

input
data

AWGN
channel

received
signal ỹ

received
signal ỹ
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(
2N

)
to

bit
mapping

decision
bits

transmitter and channel:

receiver:

parameters θ,
max
θ

I(X;T)

y t

p(x|t)

Figure 9. Illustration of the considered data transmission scheme which employs a non-binary low-
density parity-check code over GF

(
2N). At the receiver, a demodulator using the nearest neighbor

search from Section 3.1.2 in K-dimensional trees is employed.

The upper part of the figure shows the considered transmitter and the channel. The
lower part illustrates the receiver processing including the demodulator designed with a
genetic algorithm.

In the transmitter, random data bits are mapped onto GF
(
2N) symbols and then

encoded using a non-binary low-density parity-check encoder with code rate R. In order
to transmit the data over an AWGN channel using BPSK modulation, each output symbol
of the encoder is mapped onto N consecutive BPSK symbols which are transmitted over
the channel.

At the receiving end, first a coarse analog-to-digital conversion is performed using a q
bit quantizer. N outputs yk ∈ {0, 1, . . . , 2q − 1}, k ∈ {0, 1, . . . , N − 1} from this quantizer
correspond to the received samples for the transmitted BPSK symbols for a single GF

(
2N)

output symbol of the channel encoder in this setup. The scalar channel output quantizer is
designed as explained in [11].
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The next crucial task of the communication receiver is to provide symbol probabilities
for x ∈ GF

(
2N) to the channel decoder, such that it can perform soft channel decoding.

The applied channel decoder performs the iterative sum-product algorithm, also known as
belief-propagation decoding, to decode the non-binary low-density parity-check code with
a maximum of imax decoding iterations.

As a result, an output symbol x ∈ GF
(
2N) of the channel encoder forms the relevant

random variable X for our proposed demodulator. We use a genetic algorithm optimized
demodulator which conducts either approximate or exact nearest neighbor search in a
K-dimensional tree. The demodulator determines the index t of the nearest neighbor θt
as explained in Section 3.1.2 and delivers the symbol probability p(x|t) to the channel
decoder. Please note that the distribution p(x|t) is obtained as a side product of the genetic
algorithm optimization, as it is inherently determined to compute I(X;T) (cf. Equations (7)
and (8)).

After decoding, the decoded information symbols are transformed into the decision
bits by reversing the transmitter-sided bit-to-symbol mapping. For brevity, we provide
the parameters that characterize the data transmission scheme used in this section further
in Table 2.

Table 2. Overview of parameters of data transmission system.

Parameter Description Value

q bit width for channel output quantization 4
imax number of belief propagation decoding iterations 20
2N field order of non-binary low-density parity-check code 8
Kcw uncoded information per codeword (in GF(8) symbols) 130
Ncw codeword length of non-binary code (in GF(8) symbols) 260

R code rate of non-binary low-density parity-check code 0.5
dc check node degree of applied regular code 4
dv variable node degree of applied regular code 2

d(y, θt) distance type used in K-dimenstional tree demodulator Euclidean

We compare the bit error rate performances of the considered data transmission
scheme including the proposed demodulation technique with state-of-the-art methods
in a bit error rate simulation. Due to the fact that the optimum parameters θ depend on
the channel Eb/N0, we have designed the proposed tree-based demodulators for different
Eb/N0 offline, stored them together with the corresponding distributions p(x|t) and used
them in the simulation. The space complexity of storing the K-dimensional tree is linear
in |T |, i.e., O(|T |). Therefore, storing the obtained demodulators for the different Eb/N0
is technically not challenging and only needs a few kilobytes of memory. As a result, the
construction costs of the tree were one-time costs that only affected the genetic algorithm
optimization, but not the demodulator implementation.

We have used the same optimization settings for the genetic algorithm as in
Sections 4.1.2 and 4.1.3 (cf. Table 1). As a result, the design of the demodulators could be
conducted offline, such that no on-the-fly generation was required. Conducting the genetic
algorithm optimization only needed a few minutes on a standard computer.

As the toughest reference system, we consider a demodulator which has access to the
continuous received samples ỹ = [ỹ0, ỹ1, . . . , ỹN−1] in double floating point precision, i.e.,
no quantizer is involved. In this case, the a posteriori distribution p(x|ỹ) is determined
for each symbol in the transmitted codeword and delivered to the channel decoder for
decoding. Assuming equally likely symbols x ∈ GF

(
2N), it is given by

p(x|ỹ) ∝
N−1

∏
k=0

exp
(
−|ỹk − [x]k|2

2 σ2
n

)
= exp


−

N−1
∑

k=0
|ỹk − [x]k|2

2 σ2
n


 ∀x ∈ GF

(
2N
)

, (11)
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where x is a vector with the BPSK symbols transmitted over the channel for symbol x ∈
GF
(
2N) and [x]k denotes the k-th element of this vector. Please note that this demodulator

also requires calculating 2N squared Euclidean distances in the argument of the exponential
(one for each Galois field symbol). In addition, it needs several divisions and the evaluation
of the exponential function. Especially the latter is costly in digital hardware. Our aim is
to approach the performance of this non-quantized reference system with the proposed
demodulation techniques as closely as possible while circumventing most of the costly
signal processing operations.

For reference, we also consider a very simple demodulator. This demodulator per-
forms a hard decision on the BPSK symbols on the channel and maps this hard decision
onto the corresponding GF

(
2N) symbol directly. The decoder then is fed with a distribution

that mimics p(x|ỹ) with probability 1 for the hard decision symbol and 0 for all others.
This system, of course, cannot profit from soft information from the demodulation process.
We use it to illustrate the gains of using soft demodulation in the data transmission system.

Figure 10 shows bit error rate performances of the considered data transmission
system over Eb/N0 for the different applied demodulation techniques. Of course, the
non-quantized soft-decision reference system (�-markers) has the best possible perfor-
mance, as it suffers from no quantization loss at all. Comparing it to the system with
hard demodulation (⊗-markers) shows that at an exemplary bit error rate of 10−4 a soft
demodulation gain of more than 3 dB over Eb/N0 exists for this data transmission system
with a non-binary low-density parity-check code over GF(8).
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Figure 10. Bit error rate results for non-binary GF(8) low-density parity-check encoded data transmis-
sion over an AWGN channel with the parameters mentioned in Table 2. The proposed K-dimensional
tree demodulators can achieve performance very close to the considered optimum reference system.

Interestingly, for the proposed K-dimensional tree demodulators with different cardi-
nalities |T | the shown results indicate that with proposed genetic algorithm optimization
of the vectors θt, one can learn very powerful demodulators which can approach the per-
formance of the optimum considered reference scheme up to a very slight loss over Eb/N0.
For the demodulator with exact nearest neighbor search and |T | = 1024 (◦-markers),
almost the full soft processing gain, i.e., more than 3 dB over Eb/N0 can be realized, even
though a coarse q = 4 bit channel output quantizer is in place. The remaining gap to the
non-quantized reference demodulator is just 0.2 dB at a bit error rate of 10−4. At the same
time, most of the signal processing operations inside the demodulator degenerate to simple
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threshold decisions along the axis of the vectors in the processing of the search in the
K-dimensional tree described in Section 3.1.2. Even if the absolute number of vectors θt is
very large, only very few distance calculations need to be performed. This goes back to the
logarithmic average search complexity in the K-dimensional tree described in Section 3.1.2.
As a result, using large output cardinalities like |T | = 1024 which are required to achieve
performance so close to the optimum reference scheme is easily possible here. With the
simple nearest neighbor search approach from Section 3.1.1, in contrast, using such a large
cardinality |T | is practically infeasible.

Another very interesting observation from Figure 10 is that the bit error rates obtained
with exact and approximate nearest-neighbor search for the same output cardinalities
|T | superimpose (cf. (◦,+)-markers (�,×)-markers, (D,•)-markers). This finding is in
fact very important because it highlights that the genetic algorithm automatically learns
the different mapping rule applied inside the demodulator and tunes the parameters
θ accordingly.

As it has been explained in Section 3.1.3 switching to approximate nearest neighbor
search yields a fixed search complexityO(log2(|T |)). In the considered case for |T | = 1024
using approximate nearest neighbor search, typically ndist = 10 distances have to be
calculated to achieve performance enormously close to the soft demodulation reference
system. Please note that for a number of θt vectors which is a power of 2 there is the
possibility that log2(|T |)+1 distance calculations are needed. This, however only affects
one of all possible paths in the tree and happens very rarely, especially if the tree is large.
Therefore, the single additional distance calculation may be neglected. Anyway, we will
mention it as the worst-case to be precise in the following. For the GF(8) code used here,
according to Equation (11) the soft demodulator has to determine ndist = 8 distances to
obtain the probabilities p(x|ỹ) ∀x ∈ GF(8). However, it is important to note that the soft
symbol demodulator reference system has a significantly higher complexity anyway.

Most importantly, the non-quantized soft demodulator uses 64 bit double floating-
point values from the channel. The proposed demodulator circumvents the need of repre-
senting and processing the received samples from the channel with high precision, as it
directly works on the q = 4 bit output integers yk ∈ {0, 1, . . . , 15} from the quantizer. There
is no need to represent the quantized received values using real numbers as representation
values, as the genetic algorithm learns to directly process the q bit quantization indices.
This alone yields a significant complexity reduction of the receiver because the resolution
used for the analogue-to-digital conversion of the receiver can be reduced significantly. In
addition, the soft demodulator reference system requires divisions by 2 σ2

n and 2N = 23 = 8
evaluations of the very costly exponential function in the considered case of a GF(8) code.
Once the right hand side of Equation (11) has been evaluated for all x ∈ GF(8), one needs
a normalization step to obtain a valid probability distribution p(x|ỹ) which needs seven
summation and eight division operations for the used GF(8) code. All these add on top of
the required eight distance calculations.

The proposed system with |T | = 1024 and approximate nearest neighbor search
trades the required high precision of the analog-to-digital conversion and the numerous
mentioned costly operations for typically two (worst case: three) additional distance calcu-
lations and very simple thresholding operations during the search in the K-dimensional
tree. Despite this, it achieves almost identical performance as the optimum non-quantized
reference scheme.

Finally, the curves for |T | = 128 and |T | = 32 for approximate nearest neighbor search
in Figure 10 (×-markers, •-markers) reveal that even the demodulators with fewer distance
calculations than the optimum soft demodulator can already realize very significant soft
processing gains in comparison to the hard decision demodulator. At a bit error rate of
10−4, the demodulator with |T | = 32, i.e., typically just five (worst case: six) distance
calculations achieves more than 2 dB soft processing gain over Eb/N0 in comparison to the
hard decision demodulator. The one for |T | = 128 with typically seven (worst case: eight)
distance calculations achieves 2.5 dB and has a remaining gap of approximately 0.5 dB to
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the non-quantized reference scheme. This illustrates that the proposed method allows to
flexibly tune the trade-off between complexity and performance.

5. Conclusions

In this article, genetic algorithms were successfully applied for the optimization of
parametrized compression mappings that shall preserve a maximum possible amount of
relevant information. These mappings were used to build subsystems of communication
receivers, i.e., channel output quantizers and demodulators. To the best of our knowledge,
our conference version of this article [23] described the first application of genetic algo-
rithms for the maximization of mutual information in this context. It investigated potential
applications of this principle for distance-based channel output quantization. The results
were also included in this article. The resulting distance-based quantizers can compete with
quantizers designed with the KL-means information bottleneck algorithm while requiring
significantly fewer parameters for their description. The graph-based approximate nearest
neighbor search algorithm used in this application allows for a tunable complexity and
only needs a small number of distance calculations.

As a novelty, we have developed the idea of maximizing the relevant mutual infor-
mation in communication receivers with genetic algorithms further and also presented
entirely new results. We have introduced the idea to apply either approximate or exact
nearest neighbor search in K-dimensional trees in the receiver-sided signal processing to
build signal processing blocks that aim for maximum preservation of relevant information.
That technique was exemplarily used to build a novel demodulation technique for a data
transmission scheme using non-binary low-density parity-check codes. The resulting
demodulators can achieve the performance of a non-quantized optimum reference scheme
up to a small fraction of a decibel over Eb/N0, even though all costly signal processing
breaks down to a simple and very efficient search in a K-dimensional tree. We have also
shown that using an approximate nearest neighbor search instead of an exact one does
not cause significant performance degradation, but further reduces the complexity of the
considered mappings based on K-dimensional trees.

The proposed method is very generic and can also be applied to other signal processing
problems. A possible future application of the proposed method could be the reduced
complexity decoding of non-binary low-density parity-check codes.
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