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Abstract

Hybridmaterialien zeigen im Vergleich zu ihren Bestandteilen verbesserte oder neue Eigenschaften.
Magnetische Hybridmaterialien bestehen im allgemeinem aus einem magnetischem Füllmaterial,
welches in einem nicht magnetischen Trägermaterial (Trägermatrix) eingebettet ist. Ist das
Trägermaterial ein Elastomer, werden diese Materialien auch magneto-rheologische Elastomere
(MRE) genannt. In den meisten Fällen bestehen MREs aus magnetischen Partikeln, die in eine
Polymermatrix eingebettet wurden. Werden MREs einem magnetischen Feld ausgesetzt, zeigen
sie zwei Reaktionen: Die Magnetostriktion und den magnetorheologischen (MR) Effekt. Mag-
netostriktion ist die Fähigkeit des Materials, seine Form durch das Anlegen eines Magnetfeldes
zu ändern, wohingegen der MR Effekt die Variation der Steifigkeit des Materials im Magnetfeld
beschreibt. Um einen starke Magnetostriktion zu erzielen, müssen sich die Partikel im MRE
unter dem Einfluss eines Magnetfeldes umordnen. Deshalb ist es für eine Optimierung dieser
Fähigkeit wichtig, den Zusammenhang zwischen Formveränderung und Partikelbewegung im
MRE zu verstehen.
Diese Arbeit baut auf den früheren Arbeiten von Huang und Puljiz et al. auf [69,133,135]. Die
MRE-Proben wurden ähnlich wie in [133, 135] als Schichtsystem aus Polymer [Polydimethyl-
siloxan (PDMS)] und Partikeln hergestellt. Dies vereinfachte eine Partikel-Positionierung. Um die
Anzahl der unbekannten Parameter gering zu halten, wurden zunächst Proben mit zwei param-
agnetischen Nickel-Partikeln, die in einem Abstand von ungefähr einem Partikel Durchmesser
zueinander plaziert wurden, hergestellt. Danach wurde die Komplexität der Proben durch die
Hinzugabe von weiteren Partikeln sukzessive gesteigert. Da die magnetisch Kraft zwischen den
beiden Partikeln nicht nur durch die Feldstärke sondern auch durch die Partikelposition relativ
zur Feldorientierung geändert werden kann, wurden die Proben einem homogenen, schrittweise
rotierenden Magnetfeld von 180mT ausgesetzt. Durch das optische Aufnehmen der Partikeltra-
jektorien wurde der Partikelabstand für die dazugehörige Magnetfeldorientierung bestimmt. Die
beiden Partikel zeigten einen neuen magneto-aktiven Zustand, der sich dadurch auszeichnet, dass
kleine Veränderungen in der Magnetfeldorientierung eine große Änderung des Partikelabstands
hervorriefen. Dieser magneto-aktive Zustand hängt vom ursprünglichem Partikelabstand, dem
Young’s Modul der PDMS-Matrix und der Magnetfeldstärke ab. Er tritt nur für ein definiertes
Verhältniss zwischen den drei Größen, also nur für ein bestimmtes Verhältnis zwischen elastischer
und magnetischer Kraft auf.
Um den Einfluss weiterer Partikel zu untersuchen, wurde zunächst die Partikelanzahl in einer lin-
earen Anordnung bis auf vierzehn erhöht. Dabei zeigte sich, dass keine durchgängige Partikelkette
ensteht, sondern ein Zerfall in unterschiedlich große Partikelgruppen stattfindet. Ob Partikel in
Kontakt kamen, korrelierte dabei stark mit ihrem Abstand zu den benachbarten Partikeln. Auch
Matrix vermittelte Wechselwirkungen konnten belegt werden und spielten eine Rolle.
In Partikelgittern von fünf auf fünf Partikeln wurden Partikelgruppen mit mehr als fünf Partikeln
detektiert. Für magnetische Feldrichtungen entlang der Gitterachsen konnte der Einfluss von
Gitterfehlern gezeigt werden. Es ergab sich ein Zusammenhang zwischen der durchschnittlichen
Größe der Partikelgruppen und der Fläche, welche die Randpartikel umrahmten. Dabei galt, je
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größer die Partikelgruppen desto kleiner die Fläche.
Abschließend wurden magnetische Hohlkugeln und magnetisch aktive Membrane hergestellt, die
eine dicht gepackte Partikel-Monolage beinhalteten. Die Hohlkugeln zeichneten sich durch große
und in ihrer Richtung steuerbare Deformationen aus. Die Membrane fungierten als Tropfenselektor
und wiesen im Vergleich zur reinen PDMS-Matrix eine deutlich erhöhte Steifigkeit auf.
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Abstract

Magnetic-hybrid materials generally consist of non-magnetic carrier materials interspersed with a
magnetic filler material. If the carrier material is an elastomer they are called more specifically
magnetorheologic elastomer (MREs). Under an appliedmagnetic field, thosematerials can respond
in two ways: The magnetostriction and the magnetorheological (MR) effect. Magnetostriction
is the ability to deform when subjected to a magnetic field. The MR effect is the alternation
of mechanical properties like tensile strain under an applied magnetic field. To obtain strong
magnetostrictive effects, the particles inside the MRE have to rearrange in position and orientation
under the influence of a magnetic field. To be applicable e.g. as an actuator, it is of utter importance
to understand the link between particle movement and macroscopic deformation.
This work extends the previous studies of Huang and Puljiz et al. [69, 133, 135]. Similar to
[133, 135] the sample were prepared as layer system of polymer layers [polydimethylsiloxan
(PDMS)] and particles. This facilitated particle positioning. At first, MRE samples comprising two
paramagnetic nickel particles with initial inter-particle distance of roughly one particle diameter
were prepared in order to keep the amount of unknown parameters small. Subsequently, the
sample complexity was increased by introducing more particles into the system. As the magnetic
forces not only depends on the distance between the particles but also on their position relative
to the external field, the system was exposed to a slowly, stepwise rotating magnetic field of
180mT . Resolving the particle attachment and detachment and measuring the angles between
particle axis and external field for all corresponding magnetic field orientations, I identified a
strong magneto-active configuration. This strong magneto-active configuration is characterized
by a large inter-particle distance change generated by a small alternation of the external magnetic
field orientation. It is sensitive to the initial inter-particle distance, Young’s modulus of the matrix,
and magnetic field strength and thus, was only stable in a defined parameter range, i.e. for a
defined ratio between elastic and magnetic forces.
To determine the influence of additional particles, the particle number in this linear arrangement
was successively increased up to fourteen particles. Particles did not form a continuous particle
chain but particle groups of different particle numbers. Thereby, the distance to neighbor particles
determined whether particles were able to get into contact or not. Also matrix mediated interaction
was observed.
In addition, in five by five particle lattices, particle groups of more than five particles formed. For
magnetic fields orientated along the lateral lattice direction the influence of lattice irregularities
was shown. Furthermore, a correlation between the mean particle number per group and the
area the rim particles surround, existed. It was an inverse correlation, i.e. the larger the mean
particle number per group the smaller the area.
Concluding, magnetically hollow spheres and magneto-active membranes comprising a dense
packed monolayer of particles, were prepared. The hollow spheres showed large and direction
changable deformations. The membrane was used as drop size selector and showed a significantly
larger stiffness as the pure PDMS matrix.
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1 Introduction

Within material science, the research on combined materials, or hybrid-materials, is of great sig-
nificance. One can distinguish between blends and composites. In contrast to blends, composite’s
constituents show two or more distinct physical or chemical phases [84]. The distinct phases are
on the one hand the matrix material and on the other hand the second phase, the filler material.
Thus, composites consist of two or more different constituents, resulting in a material that shows
altered and or enhanced structural or functional properties e.g. superior mechanical properties.
These improved properties are non-attainable by one of the composite parts alone.
The practical benefits of a hybrid material can be seen for example in widely used catheters
used in healthcare. They are made from a hybrid material where silica particles were added to
the silicon rubber matrix to improve its mechanical properties like tensile strength and wettabil-
ity [142]. Apart from the aim to create materials with enhanced features a significant amount of
research does focus on materials that alter their properties when stimulated externally [62,65].
External stimulation can be but is not limited to optical, electronic, chemical, and magnetic [48].
Every stimulation has its advantages and disadvantages. This thesis focuses solely on magnetic
stimulation due to fact that relatively high magnetic field strengths can be achieved with minor
technical effort and that stimulation takes place contactless.
The history of magnetic hybrid-materials starts with the creation of so-called magnetic slurries
(1948) [138]. Today a more common name is magnetorheological fluids (MRF). They are usually
fabricated by combining a carrier fluid, magnetically polarizable particles and a stabilizer [65].
The most familiar MRFs are the ferrofluids which are in principle in their thermodynamic equilib-
rium [128]. In the case of ferrofluids, a suspension of surface-treated ferromagnetic particles (7 -
10 vol.%) with an average diameter in the nanometer range are dispersed in a more or less viscous
carrier fluid [125, 126, 150]. Therefore, they combine rheological and magnetical properties
which can be stimulated by relatively low magnetic fields of around 50mT [125,126]. By applying
a magnetic field the viscosity and shape can be selectively changed. To date MRFs are used in
electrical machines, damping systems, bearings, or positioning systems [35,123,126,149].
The actual response to the external stimulation happens on the particle level. Since the particles
can be considered as thermally induced magnetic dipoles (high magnetic moments) a relatively
small magnetic field gradient can already induce forces that outweigh the gravitation force and
change the ferrofluid’s shape. Also, the viscosity variation can be traced back to the particle level.
On one hand, the particles experience due to their magnetic moment a rotation in the magnetic
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field that counteracts the mechanical rotation when the fluid is sheared. On the other hand,
the particles form chain-like agglomerates that break during shearing. Therefore, the response
depends on the MRF’s characteristics such as the density of magnetic particles, magnetic field
strength (H), temperature(T), type of carrier fluid etcetera [65].
To be useful MRFs need to fulfill some fundamental requirements: The magnetic particles should
not agglomerate. The same applies to the sedimentation or segregation of the particles which
should not occur and if it does, in a way that the particles can easily be dispersed again. By using
nano-particles or coating the particle’s surface, thermal energy and steric repulsion provide for the
ferrofluids stabilization [125,126]. Another aspect that needs to be considered is the possibility
of leakage as the carrier material is a somewhat viscose fluid. Hence suitable confinements are
essential. Confinement can happen by enclosures or by fixing the position of the fluid with an
external magnetic field. To date, MRFs are still an actual topic in research [5,105,118,169].
To circumvent some of the restrictions, like the enclosure to avoid leakage of MRFs, and disadvan-
tages, like segregation or sedimentation (stability) of MRFs, other magneto-active composites
evolved. Among those are magneto-rheological elastomer (MRE), magneto-rheological grease,
magneto-rheological polymer gels, and magneto-rheological plastomers [3]. One of the first
magneto-active elastomers to emerge were in 1983 the MREs [145], where the carrier fluid
was replaced by an elastomer, functioning as carrier matrix. Since the elastomer results from a
solution of cross-linkable monomers that form a chemical network it counts as a solid and therefore
prevents embedded particles from sedimentation or segregation. Additionally, the mechanical
stability of the elastomer prohibits leakage in comparison to MRFs and thus MREs do not need
any confinement.

1.1 Magnetostriction and magnetic field-stiffening

Being magneto-active, MREs show two main responses to external magnetic fields, magnetic field-
stiffening (magnetorheological or MR-effect) and magnetostriction [67]. The magnetorheological
effect is the response of MREs to change their mechanical properties e.g. increase of shear and
tensile strength, when subjected to a magnetic field [14,25,42,130]. Magnetostriction on the
other hand is the deformation of MREs induced by a magnetic field [44, 46]. This effect is
already known since 1847 as Joule experienced the deformation of an iron bar [50]. Due to
their in comparison to an iron bar soft matrix magnetostriction is by far more pronounced in
MREs [44,46,67]. Thus MREs are widely used for applications, such as transducers, actuators,
sensors, biomedical systems, and vibration damping [10,11,91,103].
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Apart from the change in matrix material (silicone rubber, natural rubber, polyurethane, hydrogels)
[10,11,31] and magnetic filler particles (volume fraction, size, magnetization, shape) [14,25,
26,44,46,55,102,154,164,173], the underlying microscopic particle structure affects the two
main responses of MREs [67]. Concerning the microscopic particle structure, one differs between
isotropic and anisotropic particle distribution [11]. Isotropic MREs are fabricated under the
absence of a magnetic field by dispersing the magnetic filler particles in the uncured elastomer
matrix [13,152,154,164]. Thus, the particles are randomly distributed. If the particles are not
randomly distributed but structured e.g. aligned and in a chain-like arrangement, the MREs are
called anisotropic. This is achieved by curing theMREs under an appliedmagnetic field. Depending
on the time the sample is influenced by the magnetic field and the particles magnetization different
particle configuration form [14,23,24,33,55,69,96,157]. Apart from the isotropic and anisotropic
particle distribution, it is possible to directly pattern the particle configuration [134,135,179]. Not
only microscopic but macroscopic structuring of magneto-active structures has been enabled by
molding technique [53] and 3D printing [7–9,147]. While all those microscopic and macroscopic
structuring affect the magnetostriction and magneto-rheology in their way, the responses of MREs
to external magnetic fields start on the particle level. Still, the macroscopic responses need to be
related to the particle microstructure and internal particle movements.
To connect the magnetorheological effect with the actual particle movement, x-ray tomographic
measurement, were conducted by the Odenbach group [130, 152–155, 168, 173]. For these
measurements, magneto-active elastomer samples, consisting of a polydimethylsiloxan (PDMS)
based matrix with dispersed carbonyl iron particles or NdFeB-particles [152–154], are exposed
to a magnetic field of 250mT. Subsequently, a horizontally aligned X-ray beam penetrates the
sample and is projected on a X-ray image intensifier [155]. The X-ray image is transformed into
visible light and detected with a CCD camera. Digitization and processing follow and thus an
image with 10µm spatial resolution is obtained [155]. By taking 1440 radiographic images in
0.25◦ steps and assembling them, a 3D tomographic image of the sample is received and the
particle position in a 3D sample subjected to a magnetic field was determined [152]. A comparison
with the particle position before the magnetic loading ensured the evaluation of particle paths.
Furthermore, the Odenbach group could link the MR effect, a significant enhancement of the
Young’s modulus under an applied magnetic field, to a change in the internal structure e.g. the
transition of the particle microstructure (orientation and position) from isotropic to anisotropic
(aligned and in a chain-like arrangement) [152–154]. Zhang, et al. [179] reported a change
in the MR-effect when subjected to a magnetic field depending on the lattice configured of the
particles. To summarize the previous paragraph, the MR-effect of MREs depends on following
main parameters [10,22,152–154,178]:
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1. MRE microstructure

2. Particle concentration

3. Matrix stiffness

4. Preloading and strain

Concerning the magnetostriction of MREs, a differentiation between isotropic and anisotropic
MREs has to be made. Anisotropic MREs show in general higher magnetostriction but also
dependence on the orientation of particle chains concerning the external magnetic field direction
was observed [38, 60, 109]. Further, the aspect ratio of the MRE (shape), the particle volume
fraction and sample strain affect the magnitude of the magnetostriction [44,60,109]. Diguet, et al.
[44] reported a maximum in magnetostriction for a certain particle volume fraction. Additionally,
a strong dependence on the prestress was measured. For a prestress in form of compression they
observed an elongation of the MRE under applied magnetic field [38]. In contrast, if changing
the prestress to a tensile value, the MREs contracted when subjected to a magnetic field [38].
Apart from microscopic structuring, macroscopic structuring with 3D printing can create many
different deformation shapes [95]. To date, the influence of particle patterning, like Zhang et
al. [179] performed for the MR-effect, has not been investigated for the magnetostriction effect.
First experiments resolved the particle movement of up to four particles and thus the change in
inter-particle distance [134,135].
Complementary to the experimental research on MREs, many theoretical models and simulations
have evolved over the years to depict MREs’s responses. While some incorporate a discrete particle
distribution other use a continuum approach [54,66,72,74,139,162]. Thus, one can find models
that describe the macroscopic behaviour of MREs containing chains [42], zick zack chains [66]
and lattice structures [72,74]. Some have already been validated by experiments. Simulations
and theoretical description of the actual particle displacement under the application of a magnetic
field can be found as well [16,17,85,88,113,116,134,136,137,160,163]. Due to the continuous
advancement in the synthesis of different MREs, whether they differ in the matrix material or
particle distribution, theories and models need to be adapted to reproduce the actual response. In
general, theories and models are based on two different strategies to depict the relation of elastic
to magnetic forces e.g use a continuum approach or the actual particle distribution.
To summarize the previous sections:

• Composites consist of two or more different materials showing a physical or chemical phase
and show compared to the single constituent enhanced properties. Especially composites
that can be stimulated by an external magnetic field, magneto-active materials, are of
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great interest due to their strong responses when subjected to an external magnetic field.
Compared to electric or chemical stimulation, magnetic stimulation takes place contactless
and magnetic field strengths required to generate material responses are producible with
small permanent magnets.

• One of the first magneto-active materials were MRFs which used a liquid as carrier material.
To overcome some disadvantages of the MRFs like leakage or segregation, composites
with an exchange carrier material such as magneto-rheological elastomer (MRE), magneto-
rheological grease, magneto-rheological polymer gels and magneto-rheological plastomers
etc. emerged.

• Most applications make use of the MRE’s reaction when subjected to a magnetic field. In
the case of MREs, one differentiates between magnetostriction, the ability to deform under
applied magnetic field, and magneto-rheology, the change of mechanical properties when
influenced by a magnetic field.

• Experiments, theoretical models, and simulations observed a strong dependence on the
underlying particle microstructure of both effects. The particle microstructure is mainly
divided into isotropic and anisotropic particle distribution. An isotropic particle distribution
is achieved by just dispersing particles in the uncured carrier material e.g. a polymer. An
anisotropic particle arrangement arises when a magnetic field is applied during the curing
process.

• New fabrication methods like 3D printing [9,95,132,147,156] are used to structure MREs
macroscopically or creating magnetic domains, thus creating ever more targeted responses.

1.2 Integration in the state of the art

To integrate the presented work in the framework of previous studies some of the above-mentioned
work is discussed here in more detail. This should give the reader a better overview of which
subjects have already been addressed and where knowledge still is lacking. MREs undergo a
reversible shape change (magnetostriction) and/or mechanical property change when exerted
to a magnetic field and can be used as dampers, actuators, etc.. The kind and magnitude of
the response, as well as the needed stimulation, are of utter importance regarding the MRE’s
practicality. The response is related to parameters such as concentration and microstructure of
the filler particles, matrix stiffness, magnetic field strength, etc. The impact of those parame-
ters on the macroscopic level is relatively well studied. In contrast, the fundamental relation
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between macroscopic and internal mechanism is much less understood. How do the internal
particle movements depend on the microscopic particle distribution? How does the relation of
elastic to magnetic force influence particle movements? What macroscopic responses (elongation,
contraction) do the internal particle movements induce?
The relation between macroscopic responses and internal particle mechanism needs to be ad-
dressed and understood to allow the tailored design of MREs for the specifically required func-
tionality. Considerable contribution to comprehend the MRE’s particle level mechanisms and
their connection to macroscopic responses was done in the following studies [6,16,17,19–21,69,
86–89,111,113–115,130,133–135,137,152–154,173,179]. Zhang, et al. [179] showed that
MREs patterned with particles placed on a 3D body-centered cubic lattice show a decreasing
magnetic induced shear modulus. X-ray tomographic measurements by the Odenbach group added
knowledge by evaluating internal particle movements and structural changes on the particle level.
Subsequently, these internal changes could be linked to magnethorheological effects. But X-ray
tomographic measurements are time intensive since a single 3D image consists of a multitude of
radiographic images. As a result, the time resolution is quite low. Due to the low time resolution
and high particle amount in the MREs, the tracking of particles requires high analytical effort.
High polydispersities of particle size and shape facilitate the tracking process. Nevertheless,
usually, an overall particle movement is evaluated instead of single-particle paths. Furthermore,
modeling the magneto-mechanical response is quite well-advanced, too [29]. Models that are
based on the internal structure [30,66,72,74] exist connecting the particle distribution (chains,
planes, isotropic) with the magneto-mechanical response.
Concerning the magnetostriction of MREs, theoretical studies exist, that relate the underlying
microscopic structure to the macroscopic deformation as well [54,72–74]. For example, Ivaneyko,
et al. [73] showed by mimicking different particle distribution that MREs elongate. This model
is only valid for small particle movements, though, and thus in general not applicable for soft
polymers where the internal deformations usually are quite large. Alternatively, computational
simulations were conducted to comprehend the particle movement. To this end, the energy of
the system was split into an elastic and magnetic contribution. On the one hand, the matrix was
simulated as a mesh with underlying elasticity models, e.g Neo-Hookean or Mooney-Rivlin to
provide the elastic contribution. On the other hand, the magnetic mutual particle interactions were
considered based on experimentally determined particle magnetization. Consequently, internal
particle movement induced magnetostriction could be simulated. Thus computational simulations
provided important results that assisted greatly with the understanding of MRE’s deformation
process [86,87,89,114,115].
Experiments that confirm or reject theoretical and computational models are by far rarer for the
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magnetostrictive response than for the MR-effect. They are mostly based on the investigation of
the difference between anisotropic and isotropic MREs and in the case of anisotropic MREs, on
the distinction between the various orientations and shapes of chain structures [38,44,60,109].
These experiments could report elongations or contractions of versatile magnitude, depending
on the particle structure, prestress, particle volume fraction, etc.. But they did not analyze how
internal particle movement contributed to the external deformation, nor how the initial inter-
particle distance might affect particle movement. For isotropic MREs the development of particle
chains was reported by Stepanov, et al. [160] and linked to the magnetostriction. But the overall
particle configuration change was not related to single particle movement. Particle tracking and
evaluation of the inter-particle distance was done for up to four magnetic particles [134]. Puljiz, et
al. fabrication method reduced the MREs to a 2D system as particles were placed on one solidified
PDMS layer and allowed to adapt the initial inter-particle distance [134]. Thus, the relation
between magnetic and elastic force could be adjusted more precisely and ensure the particles
were prevented from touching under the applied magnetic field. The applied magnetic field was
homogeneous and the field orientation, lying in the particle plane, was rotated. Particle tracking
of a two-particle system and determination of the inter-particle distance showed an oscillating
trend. For most of the field orientations, the particle distance decreased. Adding one or two
particles and thus creating a triangle or square, the influence of mutual magnetic and elastic
interaction was observed. A theoretical calculation fitted quite well with the experimental data. In
a subsequent study, the initial inter-particle distance was diminished [135]. Consequently, while
the magnetic field strength was increased step-wise, the particle snapped into contact at a certain
critical field strength. Theoretical calculation predicts a hysteresis if the magnetic field would
be reduced step-wise, see Biller et al. [16,17]. This is because touching particles have a locally
increase magnetization and as a result particle separation occurs at weaker external magnetic
field strength than required to bring them into contact [17,135]. However, experiments could
not resolve the separation event. The present work develops this point further.

1.3 Aim of this thesis

To make the use of MREs deformations more applicable, a focused stimulation and form of
the deformation response are important. Hence, data on the internal dynamics of MREs is
needed. As the internal dynamic depends on the precise determination of the ratio between
elastic and magnetic forces, particle displacement and its dependence on the magnetic field, MREs
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constituents, and particle microstructure have to be addressed.
First, a high spatial and temporal resolution of the particle needs to be achieved. So far a high
spatial resolution was only accomplished by x-ray tomographic measurements on larger probes
requiring a significant amount of time for every image. Measurements, which are quite similar
to the ones performed for this thesis, provided high spatial resolution in 2D and are temporal
much faster than x-ray tomographic measurements [134,135]. Apart from few studies where the
orientation of the magnetic field was adapted [69,134], the particle displacement was conducted
by changing the magnetic field strength. Since the magnetic interaction does not only depend
on the magnetization of the particles but also on their position relative to the external field, the
orientation of the external magnetic field enables a simple modification of the magnetic force.
Linking the particle displacement to the magnetic field orientation gives rise to deformations
based on a different stimulation variation apart from the magnetic field strength. Since these
particle movements can be induced by constant magnetic fields in the hundred milli Tesla range,
the magnetic fields required to induce particle movement can be realized without great technical
effort by permanent magnets. As a result, no currents are needed and changes to the magnetic
field orientation can be easily done. These changes to the magnetic field orientation should
induce strong deformations of the MRE. For this dissertation, the possibility of strong internal
and external deformations induced by changes in the orientation of a magnetic field of constant
strength was studied.
To obtain strong magnetostrictive effects, the particles inside the MRE must rearrange in position
and orientation under the influence of a magnetic field. Those rearrangements are facilitated
by softer elastomer carrier materials and especially if particles are enabled to snap into contact,
huge internal deformation of the matrix accompanies the particle displacement. Hence, the issue
of mechanical matrix instability arises and destruction of the carrier material through repeated
particle displacement becomes an issue. This thesis would like to address the dependence of the
particle displacement on the matrix stiffness and to evaluate the reproducibility of the particle
displacement. If it is possible to create a strong particle displacement along with long mechanical
endurance of the carrier material, it will benefit MREs applicability.
It is already known that the particle microstructure influences the MREs responses. While isotropic
particle distribution [152], chain-like [38] and lattice formation [179] were investigated, the
dependence of the displacement on the initial inter-particle distance, particle mutual magnetization
and particle distribution has hardly been addressed by experiments, yet [134]. Due to this thesis,
it will be explored how the initial inter-particle distance and particle distribution influence the
magneto activity to see whether particles are forming structures like chains [160] or not. The
structure formation will then be linked to particle displacement and thereby to the amount of
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macroscopic deformation. Thus, the following questions will be answered: Can discrete particle
distribution with defined inter-particle distance enhance the deformation of MREs?
Concluding, experiments were conducted to evaluate the difference between internal deformation,
induced by particle interaction and external deformation, induced by particle movement in the
magnetic field. This gives indications which deformations, best to exploit concerning the actual
application the MRE, should be used in and how these deformations depend on the internal
particle structure, relation of elastic to magnetic force, and the magnetic history. Furthermore,
in this context, dis-/advantages of the used fabrication method compared to the common one,
where particles are just dispersed inside the carrier material will be presented. A simple way to
macroscopically structure MREs will be shown. This bridges the gap to the 3D-printed MREs
which are produced at the expense of high technical effort. Additionally, the developed fabrication
process provides a simple method to tailor the MRE’s response to its technical requirement.
At this point, it should be mentioned that the in this thesis investigated samples are more strictly
speaking magnetorheological polymer gels than MREs. But since polymer gels are fabricated by
adding unlinked polymers to the MREs, they are, apart from a weaker carrier matrix, physically
identical. Hence, in the following, they will be synonymously calledMRE. To address thementioned
issues, the presented work is structured as follows: In chapter 2 MREs constituent parts will be
introduced. The focus lies on the materials that are used to fabricate the measured samples. Since
the MREs responses are connected to the materials, a short overview of the most commonly used
materials will be given. Subsequently, the magnetic and elastic forces that arise by applying a
magnetic field are described in chapter 3. In this chapter, I also present two theoretical models
that were constructed by collaborators and fit quite well with experimental results. In chapter 4
the magnetic and optical setup for investigating the MRE samples is explained. Additionally, the
different sample fabrication methods as well as the in situ measurement of the Young’s modulus of
the matrix are included. Chapter 5 discusses the result of MRE with discrete particle distribution.
Subsequently, chapter 6 discusses the results of magnetic coated spheres and PDMS membranes
with a 2D magnetic layer. Concluding, in chapter 7 the main results of this thesis, an outlook for
future experiments and issues that need to be addressed will be summarized.
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2 MRE’s constituent parts

MREs consist of magnetic filler elements, typically magnetic particles, included in an elastic matrix,
mostly polymers. Filler particles come in various shapes and magnetic properties. They can be
spherical [38,69], irregularly shaped [152] or with surface roughness and edges [134]. Their
magnetic characteristics can be hard or soft magnetic, differing in magnetic hysteresis losses,
coercivity, remanence, saturation magnetization, etc.. Filler particles can be ferromagnetic or
(super-)paramagnetic particles, with a magnetic net magnetization with an applied field or without.
The matrix material also influences the behaviour of the MRE. MRE’s mechanical properties are
strongly connected to the elasticity and viscosity of the matrix material. Other properties can be
added if e.g. an electric conducting matrix material is chosen. It is apparent, that for the magnetic
filler material as well as for the matrix material various options exist. Depending on the chosen
options the MRE can exhibit diverse responses. The production process of MREs also influences
their behaviour e.g anisotropic MREs show different responses than isotropic MREs. Materials
investigated in this theses will be characterized in the following sections. In section 4.1 used
production processes are described.

2.1 Particles

Magnetic particles as filler element are readily available in a wide range of shapes and magnetic
attributes. For this thesis nickel particles, a paramagnetic material, was selected as filler element.
In a paramagnetic material the internal magnetic moments are randomly orientated and there-
fore average macroscopically to zero, i.e. it has no macroscopic magnetic moment without an
applied field. The nickel particles were purchased from Alfar Aesar (−100 + 325 mesh, purity
99.8%). Those particles have a size distribution from 50 to 300µm and were already used in prior
research work [134,135]. Magnetic characterization was previously done via a vibrating sample
magnetometer (VSM) [134]. In these measurements, a cylindrical volume sample of the material
in powder form was used. A different approach was chosen this time. For this purpose, just one
particle was investigated with a superconducting quantum interference device (SQUID-Quantum
Design MPMS XL). SQUID measurements were performed by Dirk Sindersberger at the OTH
Regensburg [151]. A particle with high sphericity was used and compared to VSM measurements
no back calculation from a volume magnetic moment of the powder to the magnetization of a
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single particle was required. This minimizes errors caused by the assumption of a homogeneous
particle distribution (inhomogeneities through enclosed air neglected) and local magnetic field
inhomogeneities in the volume samples.
To ensure a stable location for the particle within the SQUID it was encapsulated in a resin
ball. First, half of the resin sphere was cast in a silicone mold and the particle positioned while
crosslinking was still ongoing. Thus the particle attached nicely to the surface of the hemisphere.
Filling the mold up with resin created a spherical shape. After crosslinking, the resin didn’t allow
optical detection anymore and particle presence was checked using a Mates CMOS-MagView
magnetic field camera. An external magnetic field was ramped up from zero to 7T and back
to −7T . In the range of −1T to 1T the step size was 10mT , thereafter 100mT steps up to 3T
and finally in 1T steps. To obtain the actual magnetic behaviour of the particle the diamagnetic
background of the resin as well as the particle’s demagnetization field had to be evaluated. The
diamagnetic background can be extracted from the slope of the magnetization at fields over the
magnetic saturation point of the particle and has to be subtracted from measured magnetization.
The particles demagnetization field can be calculated by assuming a spherical particle shape with:

H⃗d =
γdM⃗p

4π
. (2.1)

For a sphere the demagnetization factor γd equals 4
3
π and M⃗p is the magnetization of the particle

[75]. This field has to be subtracted from the applied field. Thus, the SQUID measurements result
in the trend depicted in figure Fig. 2.1 a). Taking the magnetization at zero field after one sweep,
a remanence of 5.7 kA/m was extracted. The non-alternating magnetization at high magnetic
fields determines the saturation volume magnetization. The saturation volume magnetization is
extracted by fitting the curve with:

M⃗p(H) =Ms(ζH⃗), (2.2)

where H⃗ denotes the magnetic field strength inside the particle, ζ a dimensionless fitting parameter
andMs the saturation volume magnetization. The magnetic field strength inside the particle is
given by subtracting the demagnetization field H⃗d from the applied magnetic field strength H⃗e. By
fitting the SQUID measurement with the equation Eq. 2.2 the saturation volume magnetization
was determined with (314.2± 0.5) kA/m, see Fig. 2.1 a). Comparing these results with the VSM
measurement of Puljiz, et al. [134,135], the SQUID measurement reveals a saturation volume
magnetization that is only approximately 6% lower than the VSM results. Whereas the relative
permeability µr = 6.4 found by the SQUID measurement shows a difference of 120% to the
VSM measurement. Inherent to the measurement system, the SQUID measurement provides
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a more precise magnetization than the VSM measurements because the SQUID measures the
magnetic moment of a single particle with known volume whereas the VSM measures a volume
sample of unknown particle distribution. Hence, in this thesis more accurate values for the
particle magnetization are used than in previous studies [134,135]. The SQUID measurement
also demonstrates that the purchased nickel particles are superparamagnetic with a relatively
high volume saturation magnetization and low magnetic hysteresis loss. Specifying the particle
diameter its volume can be calculated under the assumption of spherical shape. Thus, the particle
magnetization M⃗p is determined from M⃗p =

m⃗
Vp
, with m⃗ the magnetic moment of the particle and

Vp the particle volume. Additionally, tomographic measurements from Ulrich Bröckel (Umwelt
Campus Birkenfeld) revealed, a slightly non-sphericality and surface roughness of the particles
Fig. 2.1 b). Those result in measurement artifacts and some deviation with simulations which
will be remarked with occurrence. Otherwise, slightly non-sphericality and surface roughness
are neglected for the purpose of this thesis because the resulting deviation from the volume of a
spherical particle with the same diameter is minor and thus also the magnetic characteristics.

Figure 2.1: a) the magnetization curve of a nickel particle with diameter of 218µm measured by SQUID. The
diamagnetic background of the resin was subtracted and the the demagnetization field taken into account. A
remanence of 5.7 kA/m and saturation volume magnetization of 314.2 kA/m was extracted. b) Tomographic scan
of a nickel particle. The particle was surrounded by air and enclosed by a glass tube.[Adapted from [151], 2021,
©Springer Nature, CC BY 4.0, [151]]
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2.2 Matrix-material

The carrier matrix-material of MREs is an elastomer. Concerning the mechanical properties, the
term elastomer is used for cross-linked polymeric materials, including polymer gels, that recover to
nearly their original dimension after being extended or compressed [39]. Chemical cross-linking
and components used to produce elastomers will be covered in the remainder of this chapter. But
first, a very brief introduction to rubber chemistry with a special focus on polydimethylsiloxan
(PDMS), an elastomer that was used as a carrier matrix in this work, is given.

2.2.1 Chemistry of macromolecules

On the chemical level, an elastomer is a three dimensional chemical network of a polymer and is
characterized mostly through its mechanical properties, which will be explained in more detail
in chapter 3. A polymer is a macromolecule consisting of repeating identical units, so-called
monomers, which are covalently bonded. To name just a few polymers: PDMS, polyvinylalcohol
(PVA), polyethylenterephthalat, polydiphenylsiloxan [100]. If those polymer molecules are only
connected through entanglement, Van der Waals forces, or hydrogen bonds, a physical network is
formed which easily can be destroyed [100]. In contrast, an elastomer is a three dimensional
chemical network formed by covalent bonding of polymer chains to each other. The points where
those chains bond are so-called crosslinks. The bonding can either be self-induced or by using a
crosslinking agent. Elastomers get their elasticity from their three dimensional polymer networks.
The elasticity strongly depends on the network density and the amount and order of the crosslinks.
Furthermore, the network can not be destroyed by solvents but only swollen with e.g. water
(hydrogels) or polymers (polymergel) etc.. Using PDMS as an example the chemical reaction
taking place during a crosslinking will be explained.

2.2.2 Polydimethylsiloxane

PDMS is a silicon-based organic polymer consisting of repeating monomers units with chemical
formula [SiO(CH3)2] [174]. Three ways are known to chemically connect silicones [1,166]:

• Addition crosslinking

• Cosslinking with peroxides

• Condensation crosslinking
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The kind of chemical connection process taking place depends on the functional groups of the
polymer and the crosslinking agent. If the polymer contains a vinyl group (red circle Fig. 2.2)
and the crosslinking agent a silyl (SiH) group (blue circle Fig. 2.2), addition crosslinking takes
place. To start the process a catalyst has to be present. Most common are platinum complexes.
For cross-linked PDMS, vinyl terminated PDMS polymers (Fig. 2.2 polymer) of variable chain
length are usually crosslinked by methylhydrosiloxane–dimethylsiloxane copolymer (Fig. 2.2
crosslinking agent) [106]. Adding a platinum catalyst, the silyl (SiH) groups of the crosslinking
agent and vinyl groups of the polymer bond by hydrosilylation reaction Fig. 2.3 [28]. At the same
time, secondary crosslinking reactions do take place at a much slower pace. They hardly affect
the cured network though and can be neglected. For a detailed description of those secondary
processes, the reader is referred to [28]. The time until the network is cured strongly depends
on the ratio of polymer to crosslinking agent, temperature, and catalyst amount. Moderators or
inhibitors can additionally be deployed to control the working time. Once the network is cured
the Young’s modulus stays constant.
The cross-linked PDMS is widely used in research and for applications due to its low cost, simple
production, optical transparency in the visible range, low shrinking rate, ability to replicate struc-
tures and adaptable Young’s modulus [81]. A common, readily available two component PDMS kit
is SYLGARDTM 184 from Dow Corning Corporation. As reported, the Young’s modulus strongly
depends on the mixing ratio between polymer and crosslinking agent [93]. A stoichiometric
ratio exists for the mixing ratio between polymer and crosslinking agent at which the volume
density of cross links reaches its maximum and with it, the Young’s modulus. Every deviation of
this stoichiometric ratio leads to an excess of one of the components and softens the cross-linked
PDMS by reducing the volume density of cross-links [93]. The generation of cross-links not only
depends on the number of functional groups but also on the diffusion length of the functional
groups. Hence, the stiffness is affected by the curing temperature as it controls the diffusion of

Figure 2.2: The two components mixed to create a PDMS network are schematically depicted. On the left side,
marked with polymer, the chemical structure of a vinyl terminated polydimethylsiloxanepolymer is shown. The
functional vinyl-group is encircled (red). On the right side, marked with crosslinking agent, the chemical structure of
a methylhydrosiloxane–dimethylsiloxane copolymer is sketched. The functional silyl-group is encircled (blue).
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Figure 2.3: The image is adapted from [2]. It shows schematically the PDMS before and after curing. On the left
side the uncured components, polymer, and crosslinking agent are depicted. The vinyl-group is indicated by two red
lines and the silyl-group by the blue H. After adding the platinum catalyst the hydrosilylation reaction takes place.
On the right the cured chemical network is visible. The covalent bonds (crosslinks) are marked with purple circles.

the functional groups [81].
In the presented work investigated PDMS samples are based on mixing a polymer and a crosslink-
ing agent. The exact description of the chemical components and their mixing ratios will be
addressed in chapter 4.1. An important subtlety needs to be mentioned already here: The cross-
linked PDMS network is swollen by adding a non-functionalized polymer before curing, effectively
diluting the prepolymer solution. This enables to create cross-linked PDMS matrices with much
lower Young’s modulus than achievable with readily available two-component PDMS kits. The
swelling also strongly changes the curing dynamic and will be explained in the following. The
transition from the still viscoelastic liquid solution of polymer chains to a solidified viscoelastic
polymer network, is called sole-gel process (de Gennes et al. [40] and Stauffer et al. [159]). It
was first proposed by Stauffer and Aharony [158] that the point (percolation point) at which this
transition starts can be described by the percolation law. The percolation law predicts the growth
of branched polymers and can define the number of cross-links per volume required to establish
a viscoelastic solid. From a physical point of view, a drastic change of properties occurs at the
percolation point. Defining p as the percentage of reacted bonds and pc the percentage of reacted
bonds at the percolation point, one gets the distinction: For p < pc the polymer is a viscoelastic
liquid and for p > pc an viscoelastic solid [167]. Since the bonding amount directly connects to
the ratio r of the functional groups, in the case of PDMS the ratio of silyl groups to vinyl groups, a

16



critical mixing ratio rc exists. In the vicinity of the percolation point the shear modulus G is quite
sensitive to the mixing ratio and follows a power law [167]:

G = G0
(r − rc)

rc

t

, (2.3)

with G0 a prefactor and t the exponent depending on the chemical components used. In the
case of a swollen PDMS this dependency remains [69]. Hereby the mixing ratio of the polymer
and crosslinking agent (prepolymer) stays the same but the concentration of the swelling agent
is adapted. Thus, a power law dependency of the shear modulus on the mixing ratio between
the prepolymer and swelling agent evolves. The addition of a swelling agent decreases the
fraction of bondings as the number of functional ends getting into contact is decreased even if the
stoichiometric ratio of the prepolymer was kept constant.
In summary: A polymer is a macromolecule consisting of repeating identical atomic structures
so-called monomers. To create an elastomer, polymer chains need to be bonded, covalently. Thus,
they form a chemical network giving the elastomere its enhanced elasticity compared to a solution
of unbounded polymer chains. PDMS follow the so called additive crosslinking process. The vinyl
groups on the polymer chain bond covalently to silyl groups on the crosslinking chain under a
hydrosilylation reaction. To start the reaction a platinum catalyst usually is used. In the course of
this work the mixture of the polymer and crosslinking agent will be referred to as prepolymer. The
stiffness of the resulting elastomere strongly depends on the mixing ratio of the prepolymer. Near
the percolation point, the transition between liquid and solid, the shear modulus of the elastomer
follows a power law dependency on the prepolymer mixing ratio. Consequently, the shear modulus
is quite sensitive to the mixing ratio at this point. Two methods exist to effectively alter the Young’s
modulus. Either the prepolymer mixing ratio can be varied or a non-functionalized polymer can
be added to the prepolymer functioning as a swelling agent. For a fixed prepolymer mixture the
shear modulus then follows a power law near the percolation point, depending on the mixing
ratio of prepolymer to swelling agent.
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3 Theoretical background

MREs consist of different matrix and filler materials. Their macro-and microscopic responses to
an external magnetic field therefore can differ significantly. To reflect their responses, theoretical
models and simulations need to grasp the underlying physics quite accurately. The following
sections focus on the materials introduced in chapter 2, namely, PDMS and nickel particles.
Since the particles can be assumed as rigid and the matrix as non-magnetic both materials can
be looked at independently concerning their physics. Thus, when a magnetic field is applied
only the particles react to it. The following section distinguishes particles in a homogeneous
and inhomogeneous magnetic field. Thereby the magnetic dipole-dipole force, the mutual force
between magnetized particles will be derived. As the particles are connected to the matrix material
any movement induced by the magnetic forces initiates an answer of the matrix. The answer of
the matrix is governed by the viscoelastic behaviour of PDMS which will be introduced. A way to
describe the responses of PDMS is the Kelvin-Voigt model. It links the mechanical attributes of the
material like elastic modulus (Young’s modulus) and viscosity with its deformation under applied
stress.
Finally, the key elements of the work of Puljiz et al. [134, 135] and Metsch et al. [116] are
introduced. Both are chosen as in the course of a cooperation their simulation and theoretical
models were partly validated with the presented experimental work. Thus, they provide a suitable
theoretical basis for further understanding the particle dynamics in the later experimentally
investigated MRE samples.

3.1 Linear elasticity

Matter reacts differently to external forces depending upon its state. While solids conserve their
shape unlimited in the absence of an applied external force, fluids tend to take the shape of
their vessels. Subjected to stress the solid can deform. Elastic deformation is reversible, meaning
the solid recovers its original shape after the stress is lifted. To quantify the resistance the
solid opposes to the deformation a so-called modulus is introduced. Depending on the kind of
deformation different moduli can be defined. If the material is elongated, the resistance is given
by the elastic modulus E (Young’s modulus), if the material is isotropically compressed, by the
compression modulus (bulk modulus) Kb and if the material is sheared, by the shear modulus
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Figure 3.1: a) adapted from [144]. The elastic material depicted in yellow is simply sheared by the movement of
the upper plate while the lower plate stays fixed (plates are depicted in gray). A strain is generated with γ = U

d .
b) the configuration of a rheometer with a plate to plate geometry is shown. The lower plate stays fixed while the
upper plate is rotated with an angular frequency of ω. Thus the elastic material (yellow) is shear deformed and by
measuring the needed torque to uphold the deformation the stress is determined. With the strain and stress finally,
the storage G′ and loss modulus G′′ are extracted.

G. These moduli allow further distinction between hard (large modulus) and soft solids (small
modulus) [127]. Every solid ruptures or shows plastic deformation above a certain stress, called
yield stress.
In contrast, fluids try to evade the applied stress by flowing. The flowing resembles a permanent
and irreversible deformation. To quantify the resistance the fluids oppose to the flow the viscosity
is introduced. While elastic materials have a so-called memory effect viscous fluids undergo an
irreversible shape change [127].
Starting with the ideal mechanical models: Taking an isotropic elastic solid, the response to
stress under infinitesimal simple shear deformation is described by the constitutive equation, the
Hooke’s law [127]:

σ = Gγ. (3.1)

Herein, σ denotes the applied stress, G the shear modulus, and γ = U
d
the strain, Fig. 3.1 a). The

Hooke’s law gives the proportionality between stress and strain. It also states that the material
recovers its original shape after the stress is lifted. Hence, the elasticity can be related to the
so-called memory effect, meaning the material has a memory of its original state. For viscous
fluids, however, the stress σ and shear rate γ̇ = ∂γ

∂t
are connected through the shear viscosity η,

described by Newton’s law:
σ = ηγ̇. (3.2)

In contrast to elastic solids, Newtonian fluids obeying this law do not exhibit a memory. They
deform irreversibly.
As Maxwell remarked already in 1867 all fluids are viscoelastic. Not only fluids but a lot of
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materials possess mechanical characteristics of both kinds (elastic and viscous). They are called
viscoelastic materials due to their elastic and viscous properties. Whether their response is
dominated by their elastic or viscous properties depends usually on the strength of the applied
stress and the time the material is subjected to this stress. Further classification into viscoelastic
fluids and viscoelastic solids is done. Viscoelastic fluids still end up deformed irreversible, provided
the viscoelastic fluids are subjected to the stress long enough. When applying a sudden shear rate
of γ̇ for a time t < τ the viscoelastic fluid behaves elastically and for a time t > τ viscous. The
time τ = η

G
(viscoelastic relaxation time) at which the material transitions from the viscous to the

elastic regime is defined by the ratio between viscosity and elasticity.
Viscoelastic solids show a transition the other way around. If the exposure to stress is shorter than
τ it behaves like a viscous fluid and like an elastic solid, if the exposure is longer. The crosslinked
PDMS used as matrix material is by definition [83] a polymergel and considered a viscoelastic
solid. An elastomer consists of polymer chains that form permanent crosslinks in form of chemical
covalent bonds, thereby creating a solid chemical network [127]. A polymer gel additionally
contains free uncrosslinked molecules effectively swelling the chemical network (elastomer) [83].
The swelling occurs by adding a fluid before or after the chemical network did form. Depending
on the kind of added fluid the gel is designated differently, e.g. when adding water the material
is called hydrogel, when adding a polymer, polymergel.
For viscoelastic materials, the viscoelastic relaxation time τ defines transitions from the viscous
to the elastic regime or vice versa. It is also the typical time the material needs to recover its
equilibrium state after stress release. For small deformations, the material is in the linear elastic
regime and the stress is linearly proportional to the strain. In the nonlinear regime, when the
material is strongly deformed, the stress is non-linear proportional to the strain. In the linear
regime, the shear modulus is constant and the viscosity does not vary. In the nonlinear regime, the
shear modulus usually increases with the shear rate while the viscosity usually decreases. Limited
to the linear regime, the Kelvin-Voigt model describes the mechanical response of a viscoelastic
solid such as polymer gels.
The Kelvin-Voigt model combines a viscous and elastic part where the elasticity of the material is
resembled by a spring while the dashpot accounts for the viscous damping with viscosity η. More
specifically, it models the material’s stress-strain behaviour by coupling a spring and a dashpot
parallel Fig. 3.2 a) [127]. As both elements are in parallel the stress sums up to:

σ = Gγ + ηγ̇. (3.3)
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Figure 3.2: a) The Kelvin-Voigt model is illustrated by a dashpot with viscosity η and spring with elasticity G. Herein,
the spring accounts for the elasticity of the material while the dashpot stands for internal friction and dissipation. b)
an exemplary frequency dependence for the storage and loss modulus, G’ respectively G”, of a Kelvin-Voigt material.
The storage modulus remains constant while the loss modulus increases linearly with the frequency.

Herein, the spring is modeled as a perfect Hookean solid and the dashpot as an ideal Newtonian
fluid. Considering a stress pulse of σ = σ0 applied at time t0 the strain over time t is given by:

γ(t) =
σ0
G

[
1− exp

(
−t
τ

)]
. (3.4)

For t→ ∞, γ → σ0

G
which is a quite realistic prediction.

Applying a dynamical strain in form of a sinusoidal deformation, the strain is given by:

γ(ω, t) = γ0 exp (iωt) , (3.5)

with an amplitude γ0 and an angular frequency ω. The linear viscoelastic behaviour is then given
by a dynamic complex shear modulus G∗(ω) in the form of:

σ(ω, t) = G∗(ω)γ(ω, t) with G∗ = G′ + iG′′. (3.6)

Hereby G′, also called storage modulus, is the real part of G∗ and accounts for the elasticity while
G′′, also called loss modulus, is the imaginary part of G∗ and accounts for the viscous part. In the
limit of vanishing frequency, G′ becomes G as used in the static case.
To describe the behaviour of a real material more accurately, more complex models can be
constructed by generalizing the Kelvin-Voigt model. Therefore, the amount of N different Kelvin-
Voigt elements are connected in row. The generalized linear viscoelastic constitutive equation
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then is [92]:

n0σ + n1σ̇ + n2σ̈ + n3
...
σ + . . . = m0γ +m1γ̇ +m2γ̈ +m3

...
γ + . . . , (3.7)

with n,m coefficients yet to be determined with the arrangement of springs and dashpots. Con-
sidering the sinusoidal strain in Eq. 3.5, the complex shear modulus can be described in the form:

G∗ =
m0 +m1(iω) +m2(iω)

2 +m3(iω)
3 + . . .

n0 + n1(iω) + n2(iω)2 + n3(iω)3 + . . .
. (3.8)

For the single Kelvin-Voigt model, Eq. 3.3, the coefficients are set with m0 = G, m1 = η, n0 = 1

and n1 = 0 and equation Eq. 3.8 further simplifies to G∗ = G + (iωη). Hence, for a material
that can be described by the single Kelvin-Voigt model the storage and loss modulus are G′ = G

and G′′ = ωη. An exemplary trend for the storage and loss modulus of a Kelvin-Voigt material is
depicted in Fig. 3.2 b).
To determine the storage and loss modulusG′, G′′ commercial rheometers are available. A common
geometry for rheometers is the plate to plate geometry. The sample is clamped between two
plates of identical diameter and an oscillating shear is applied while the stress is measured Fig.
3.1 b). In section 4.3.3 the storage modulus of an actual MRE sample is once determined with a
commercial rheometer (plate to plate geometry) and once in situ using the Kelvin-Voigt model as
a basis.
Two last parameters need to be introduced. The first one is the previously mentioned elastic or
Young’s modulus E. Applying thermodynamic relations between stress and strain the relationship
between the previously introduced shear and Young’s modulus can be defined as [127]:

E = G(2(1 + ν)). (3.9)

Herein, ν denotes the Poisson ratio. ν takes in the case of an incompressible material (volume is
conserved during deformation) the value of 0.5 and therefore E = 3G. The second parameter
is the elastic and dissipative energy created by the deformation of the material. The maximum
elastic energy density W that is stored when the material is deformed with γ0 is defined as:

W = G′γ
2
0

2
, (3.10)

and is recovered when the strain is lifted. The dissipative energy lost during a complete cycle
0 → γ0 → 0 is defined as:

Wdiss = πG′′γ20 . (3.11)
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To understand the basic mechanical behaviour of viscoelastic material under applied stress the
Kelvin-Voigt model is sufficient. For the samples investigated in this work, the Kelvin-Voigt model is
only applicable to a certain extent, though, as the deformations generated inside the material can
be quite high. The linear viscoelasticity of the Kelvin-Voigt model is in general only applicable for
small deformations. Furthermore, while the mechanic response under constant stress is depicted
quite realistically, the Kelvin-Voigt model is less accurate concerning the relaxation behaviour. To
this end, a short introduction to hyperelastic material models follows. Hereby the focus lies on the
Mooney-Rivlin model. In contrast to the Kelvin-Voigt model, it describes the material behaviour
for nonlinear stress-strain relation when large deformations are present.

3.1.1 Nonlinear elasticity: The hyperelastic material models

For high deformations, linear material models lack accuracy. In general hyperelastic material
models are used for high deformations of elastic materials as those models can predict nonlinear
elasticity, meaning nonlinear stress-strain material behaviour. In the following, the transition of
linear to non-linear elasticity will be explained.
Considering an isotropic material under multi-axial loading the Hookean law Eq. 3.1 becomes [45]:

σ = 2µγ + λ(tr γ)1. (3.12)

Herein, σ, γ denote the stress respectively the strain tensor, (tr ) the trace, µ and λ the Lamé
coefficients and 1 the identity matrix [45]. Equation Eq. 3.12 is the constitutive equation of
isotropic linear elasticity. The Lamè coefficients are given by [45]:

λ =
Eν

(1− 2ν)(1 + ν)
and µ =

E

2(1 + ν)
. (3.13)

E is the Young’s modulus and ν the Poisson ratio. Considering equation Eq.3.9, it is apparent that
the Lamè coefficient µ is the same as the shear modulus G. Applying simple shear strain (compare
Fig. 3.1 a)) the equation Eq. 3.12 becomes Eq. 3.1.
Considering the elastic energy densityW Eq. 3.10 it can also be written in the tensor form as [45]:

W =
1

2
γ:σ =

1

2
γijσji, (3.14)

with γij, σji the components of the strain respectively stress tensor. The elastic energy density
W is effectively the area under the stress-strain curve. After mathematical transformation the
elastic energy can be divided in a deviatoricWd (shape change) and volumetric termWV (volume
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change). The deviatoric part is dependent on the shear modulus while the volumetric part is
dependent on the bulk modulus Kb.
A hyperelastic material is still elastic and returns to its original shape after the load (stress or
strain) is removed. In contrast to linear elastic materials, the stress-strain relation is not depending
on a constant factor such as shear or elastic modulus but must be derived from a strain energy
density function. Since the process of shape change is still reversible (elastic) a potential for the
material can be defined [129]. This potential is the so-called strain energy density function W . It
gives a measure for the elastic deformation energy [129]. Two conditions need to be fulfilled:
The potential becomes zero for zero deformation and the material is isotropic. Introducing new
quantities to describe the material deformation one gets apart from the strain so-called principal
stretches with λstretch = γ + 1. Then the strain energy density function W becomes [129]:

W = f(I1, I2, I3), (3.15)

and is only dependent on the invariants I1,2,3 which are given in terms of the principal stretches
λstretch. Rivlin [146] specified the constitutive equation of the potential Eq. 3.15 in form of a
power series [64]:

W =
∞∑

i+j+k=1

Cijk(I1 − 3)i(I2 − 3)j(I3 − 1)k. (3.16)

The potential can be split into a dilatory and isochoric (constant volume) part [76].

W =
∞∑

i+j=1

Cij(I1 − 3)i(I2 − 3)j +
∞∑
k=1

1

Dk

(J2
v − ln Jv − 1)k, (3.17)

and Jv = ∆V
V
being the volume ratio (Jacobi determinant) and Cij, Dk material constants. Appar-

ent, the energy density function for hyperelastic materials is a polynomial function accounting for
nonlinearity in the stress-strain relation. Concerning the incompressibility as a further material
defining requirement, one can set the material to be incompressible by choosing I3 = 1. Thus the
dilatory part becomes zero and taking only the first terms of the sum, i.e., i = 1 and j = 1, the
potential reduces to [64]:

W = WV = C10(I1 − 3) + C01(I2 − 3), (3.18)

with C10 and C01 as material constants and I1,2 as invariants. This simplified equation Eq. 3.18 is
called the Mooney-Rivlin model. It describes the mechanical behaviour of hyperelastic materials
and is named after the work of Mooney [119] and Rivlin [146]. Depending on the material the
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potential Eq. 3.15 has to be adapted to describe the actual behaviour of the material. The adaption
is carried out by choosing the invariants or boundary conditions adequately e.g. by choosing
C01 = 0 Eq. 3.18 becomes the neo-Hookean hyperelastic material model. The neo-Hookean model
gives the stress-strain response of an elastic material for moderate strains. For consistency with
the linear elastic model C10 =

G
2
. To provide a description as precise as possible Eq. 3.17 has to

be modified for different hyperelastic materials.

3.2 Magnetic force

The field of electrostatics and magnetostatics exhibit many similarities and can be constructed
very similarly. Electrostatic point charges with strength q generate electrical fields with field
strength E⃗. The electric field of a point charge at the distance r⃗ is given by [97]:

E⃗ =
q

4πϵ0 |r|3
r̂, (3.19)

where, |r| denotes the norm of r⃗, r̂ the unit vector in the direction of r⃗ and ϵ0 the vacuum
permittivity. Bringing two point charges close to each other an attractive or repulsive force acts
between them. The magnitude of the force is proportional to the magnitude of charges and with
the inverse square of the distance between both charges (Coulomb’s law).
An electrical dipole can be described with a dumbbell model [97], where two opposite point
charges are sitting at the end of a very small dumbbell with position a⃗/2 and −a⃗/2. Taking the
dipole limit, i.e., a→ 0, q → ∞ and qa2 → 0, the dipole moment p⃗ is obtained as qa→ p⃗(̸= 0). In
order to obtain the electric field of an electric dipole, the dipole limit is applied to the electrostatic
potential Θp of the two opposite point charges which is given by [97]:

Θp =
q

4πϵ0

(
1∣∣r⃗ − a⃗

2

∣∣ − 1∣∣r⃗ + a⃗
2

∣∣
)
. (3.20)

Therefore, the electrostatic potential is Taylor expanded with relation to r⃗ and higher quadratic
terms in |a| are neglected. Applying the dipole limit, the electric field strength E⃗p = −∇Θp of the
electric dipole becomes [97]:

E⃗p =
1⃗

4πϵ0

3r̂(r̂ · p⃗)− p⃗

|r|3
. (3.21)

Subjecting matter to an electric field, electric dipole moments are induced inside the material
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with volume V . Depending on the material’s electric susceptibility χe the polarization P⃗ of the
material can be determined either by:

P⃗ = ϵ0χeE⃗, (3.22)

or by:
P⃗ =

p⃗

V
. (3.23)

The electric field inside the material is then defined by D⃗ = ϵ0E⃗ + P⃗ = ϵ0(1 + χe)E⃗.
In contrast to the electrostatic case no monopoles but only dipoles exist in the magnetostatic case.
Comparable to the electrostatic a magnetic field strength H⃗ and a magnetic dipole moment m⃗ can
be defined for magnetic dipoles [68]. When exerting a material to a magnetic field it is polarized
due to small dipoles that are induced inside the material. The so called magnetization M⃗ is on
one hand proportional to the volume V and on the other hand proportional to the magnetic field
strength H⃗. One can write:

M⃗ =
m⃗

V
, (3.24)

and
M⃗ = χH⃗, (3.25)

with χ the magnetic susceptibility. The linear relation between magnetizationM and magnetic
field strength H⃗ of equation Eq. 3.25 is only valid in a certain range of magnetic field strength
(see Fig. 2.1). χ is a characteristic parameter and enables to categorize materials into three
different classes:

1. χ < 0: Diamagnetic

2. χ > 0: Paramagnetic

3. χ = ∞: Ferromagnetic

While every material exhibits a diamagnetic background where the internally induced magnetic
field is directed opposing the applied field, only materials with intrinsic magnetic moment can show
para- or ferromagnetism [170]. Whether materials are paramagnetic or ferromagnetic is defined by
whether they exhibit a macroscopic magnetic field without applied field or not. Materials that show
only a net magnetic moment under applied magnetic field are called paramagnetic. Ferromagnetic
materials exhibit a macroscopic net magnetic moment without being subjected to an external
magnetic field and are usually used for permanent magnets. Compared to paramagnetic materials
they display in general higher magnetic hysteresis losses, higher coercivity (magnetic field required
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to demagnetize the material), higher remanence (magnetization after magnetic field is removed)
and higher saturation magnetization, the state when the magnetization does not increase anymore
with the external magnetic field. Since the nickel particles used for measurements in this work
are paramagnetic the following does focus on paramagnetic spherical particles in magnetic fields.
Assuming a spherical paramagnetic particle and subjecting it to a homogeneous magnetic field
it gets magnetized and generates a magnetic dipole moment. As deduced from Eq. 3.24 and
Eq. 3.25, the magnetization M⃗ for a particle, in the following M⃗p, is related to the magnetic
field strength H⃗. In Eq. 3.25 H⃗ denotes the magnetic field strenght inside a particle. This field
usually differs from the external applied field H⃗e as the particle’s magnetization generates a so call
demagnetization field. The demagnetization field for a spherical particle can be calculated with
H⃗d =

γdM⃗p

4π
(see equation Eq. 2.1). Thus, the magnetic field strength inside a spherical particle

becomes:
H⃗ = H⃗e − H⃗d with H⃗d =

M⃗p

3
. (3.26)

Substituting Eq. 3.25, 2.1 into 3.26 the magnetization dependency of a spherical particle on the
external magnetic field strength is given with:

M⃗p =
χ

1 + χ
3

H⃗e, (3.27)

In order to determine the magnetization of a particle experimentally usually the magnetic moment
is measured for various external magnetic field strengths. Subsequently, the magnetization is
calculated with M⃗p = m⃗/Vp, with m the magnetic moment of the particle and Vp the particle
volume. The SQUID measurement presented in section 2.1 is an example for determining the
magnetization of a single particle, experimentally. In that case the magnetization dependence on
the external field M⃗p(He) was measured and the magnetization dependence on the internal field
M⃗p(H) had to be calculated. For visualization the different magnetic fields are sketched in Fig.
3.3 a).
Due to this magnetization, paramagnetic particles experience a force when subjected to a magnetic
field. Starting with a homogeneous magnetic field the magnetic dipole moment experiences a
torque Γ until it is orientated along the external field direction [68]. This torque is given by:

Γ⃗ = m⃗× B⃗ with B⃗ = (1 + χ)µ0H⃗e. (3.28)

m⃗ denotes the magnetic dipole moment, B⃗ the magnetic flux density, H⃗e the magnetic field
strength of the applied magnetic field and µ0 the magnetic permeability of free space. Since the
particle is paramagnetic and its magnetic orientation is not fixed in one direction by anisotropies,
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Figure 3.3: a) Fields in- and outside a magnetized particle. The external field H⃗e magnetizes the particle. In return,
the magnetization M⃗p creates a demagnetization field H⃗d in the opposite direction of the applied magnetic field. b)
The external magnetic field H⃗e induces magnetic dipole moments m⃗ inside the particles. As a result the particles
exhibit a magnetic dipole field H⃗p. For simplicity, the magnetic dipole field H⃗p of only one particle is depicted. b)
The dipole-dipole force acting mutually on the particles can be defined by the angle β between the particle axis r⃗
and the external magnetic field direction H⃗e.

the magnetic moment aligns to the applied magnetic field without a rotation of the particle. If the
magnetic field is inhomogeneous the particle additionally experiences a force in the direction of
highest field strength. This force can be calculated by:

F⃗m = ∇(m⃗ · B⃗) =
1

µ0

χVp(B⃗ · ∇)B⃗. (3.29)

Besides interacting with the external magnetic field a magnetic particle can interact with adjacent
magnetic particles. This mutual particle interaction is a result of the induced magnetic dipole
moments. Due to its magnetic dipole moment m⃗1 the particle generates a magnetic field of its
own which can be calculated by [75]:

H⃗p =
1

4π

3r̂(r̂ · m⃗1)− m⃗1

|r|3
, (3.30)

with r̂ the unit distance vector and |r| the distance norm. Adding a second identical particle with
the distance |r| to the first particle it is subjected to this field Fig. 3.3 b). Since here the magnetic
field in question is inhomogeneous a force F⃗12 arises acting on the second particle with magnetic
moment m⃗2. Inserting the dipole field of the particle Eq. 3.30 into the force that is acting on a
particle subjected to a inhomogeneous field Eq. 3.29 becomes [58]:

F⃗12 = µ0∇(m⃗2 · H⃗p). (3.31)
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After mathematical transformation Eq. 3.31 becomes [177]:

F⃗12 =
3µ0 |m1| |m2|

4π |r|4
[r̂ (m̂1 · m̂2) + m̂1 (r̂ · m̂2) + m̂2 (r̂ · m̂1)

− 5 (r̂ · m̂2) (r̂ · m̂1) r̂] .
(3.32)

Under the conditions that both particle are identical in size and follow a paramagnetic behaviour,
their magnetic moments are of same magnitude and aligned along the external magnetic field
direction. Hence it is valid to set m⃗1 = m⃗2 = m⃗. Then Eq. 3.32 further simplifies to [99]:

F⃗12 =
3µ0 |m|2

4π |r|4
[
(2 cos β)m̂+ (1− 5 cos2 β)r̂

]
, (3.33)

with m̂ and r̂ the unity vectors in direction of the magnetic moment respectively the connecting
centerline of the magnetic dipoles (Fig. 3.3 c) blue dashed line) and β the angle between this
centerline and the orientation of the external magnetic field Fig. 3.3 c). By using the projection
of m̂ on r̂ equation Eq. 3.33 becomes:

F⃗12 =
3µ0 |m|2

4π |r|4
[
(1− 3 cos2 β)r̂

]
, (3.34)

This is the magnetic dipole-dipole force along the particle axis. The "magic angle" of βm = 54.7◦

can be defined where the force switches from attraction to repulsion. Apart from the strong
distance dependency with the inverse fourth power, the magnetic dipole-dipole force is determined
by the value of the magnetic dipole moments. As the dipole moment is linked to the particle
volume, the dipole-dipole force is influenced by the particle sizes as well. Equating the size of a
particle with its diameter a size dependency of the third power of the particle diameter is given.
Hence, the dipole-dipole force will be more sensitive to an inter-particle distance change than a
variation in particle size.
Comparing the field equation for a magnetic Eq. 3.30 and an electric dipole Eq. 3.21 shows the
similarities. In analoguey to the electrostatic case the magnetic dipole field is obtained after the
Taylor expansion of the magnetic potential is terminated after the first order. For well separated
magnetic particles this approximation and the magnetic dipole-dipole force Eq. 3.32 hold as the
higher order terms of the magnetic potential (multipoles) decay inversely with higher order of the
distance. If particles are in close proximity the multipole term’s influence increases and the actual
magnetic force acting between the magnetic particles deviates from the dipole-dipole force. The
influence of the multipoles can be included as e.g. Biller et al. [17] showed by using a multipole
expansion to depict the mutual magnetic interactions of the magnetic particles. Furthermore, one
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has to consider that particles mutually influence their magnetization by their generated magnetic
fields. This becomes non negligible the closer particles get to each other. This can be taken into
account by solving the particle magnetization iteratively as e.g. done by Puljiz et al. [134] and
will be explained in section 3.3.1.

3.3 Framework of present work

Many simulations and theoretical modeling of MREs are available in literature [16, 18, 19, 36,
37,49,94,131,134,171]. The published theoretical work ranges from two particle interaction
to multi-particle interaction, from linear to nonlinear elasticity etc.. For the material system
presented in this work in modeling had already started in previous collaborations as part of a DFG
priority program (SPP 1681), and were validated by experiments of MREs with same constituents
as the samples investigated in this work [135]. The theoretical models calculate the magnetization
of two paramagnetic nickel particles and their displacements inside the matrix in an external
magnetic field. The arising mutual magnetic and elastic forces were solved iteratively. As a result,
the calculation provided the inter-particle distance dependency on the external magnetic field
strength and showed good qualitative and quantitative agreement with the experimental results.
The main equations and assumptions of Puljiz et al. [135] are be discussed in the following. Also,
the modeling framework of Metsch et al. [116] are be mentioned, since experiments presented
in this work were used to validate these simulations. In this work, the inter-particle distance
of two nickel particles subjected to a rotating homogeneous magnetic field was simulated by
calculating the free energy of the system. The free energy is split into a mechanical and magnetic
part and respective fields inside the sample are explicitly resolved. For the magnetic part, a SQUID
magnetization measurement provided the particle magnetization values. In contrast to [135] the
system’s mechanical part has been modeled with a nonlinear hyperelastic material model. The
experimental part of [116] is discussed in chapter 5.1.

3.3.1 Reversible magnetomechanical collapse

Initially, a single paramagnetic nickel particle is subjected to the external magnetic field. Its
magnetization is given by Eq. 3.27. Inserting a second particle near to the first (compare Fig. 3.3
b)), the magnetic dipole field of each particle Eq. 3.30 also contributes to the magnetization of its
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neighbor particle. Thus the effective magnetic moment needs to be calculated as [135]:

m⃗i = V
χ

1 + χ
3

[H⃗e + H⃗p(ri)]. (3.35)

This equation has to be solved iteratively in combination with Eq. 3.30 to determine the actual
magnetic moment of the particles. To start the iteration, the magnetization of a single nickel
particle was determined in a first step by fitting an experimentally obtained magnetization curve
(vibrating sample magneto-meter, Lake Shore 7407) [135]. The obtained magnetization of the
particle at the applied external magnetic field strength H⃗e allowed to calculate the magnetic field
H⃗p of the first particle at the position ri of the second particle. The external field strength and
the particle field strength of the first particle sum up and influence the magnetic moment m⃗i of
the second particle. This modified magnetic moment is used as input to calculate the magnetic
field H⃗p of the second particle which inserted into Eq. 3.35 gives yet a new modified magnetic
moment of the first particle. This iteration is repeated until the magnetic moment does not
change significantly anymore. The result is the actual magnetic moments of two particles in close
proximity. The force acting on the particles can then be calculated straight forward by solving Eq.
3.32 for every particle distance |r|.
In the case of Puljiz et al. [135] nickel particles were embedded in a PDMS matrix by placing them
on a cross-linked PDMS layer with defined distances before another layer of PDMS was poured
on top (Fig. 3.4 a)). In one experiment two nickel particles were embedded in a PDMS matrix.
The sample was placed in between two permanent magnets and the magnetic field was increased
stepwise by decreasing the distance between the two magnets. The magnetic force acting on the
particles displaces the particles and thereby distorts the matrix. The matrix was assumed to be
homogeneous, isotropic, and incompressible and the displacement matrices were mathematically
described in detail in [134]. As basic equations, the linear elastostatic Navier-Cauchy equations
were taken. The Navier-Cauchy equations result from the Cauchy-Euler’s law of motion for small
displacements in combination with the Hooke’s law Eq. 3.1 and describe the deformation of
elastic materials in the linear elastic regime. Replacing the velocity through displacement fields
in the Navier-Cauchy equations Puljiz et al. [134] discovered that the solution approach of the
hydrodynamic Navier-Stokes equations is applicable.
For simplification, only the underlying idea is given and the reader is referred to [134] for the
detailed mathematical description. When particle 1 is displaced it creates a displacement field
Fig. 3.4 b). Due to the deformation of the matrix, particle 2 is displaced as well and would be
distorted Fig. 3.4 b). Since the particle can be assumed as rigid it opposes distortion with a
counter displacement field. This counter displacement field is acting with a restoring force on
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Figure 3.4: a) exemplary two nickel particles are embedded in a PDMS matrix. No magnetic field was applied. As
the first PDMS layer is cured before the second layer is poured to allow particle positioning, an interface marked
with a dashed red line exists. b) when a magnetic field is applied the particle j is displaced from its original position
(blurred gray circle) as a force Fj is acting on it. This displacement is mediated by the matrix causing a displacement
field which displaces particle i.

particle 1. An iteration is needed again since the displacement of particle 1 displaces particle 2
and vice versa. Keeping in mind, that the magnetic force is distance depended, meaning that the
inter-particle distance affects the magnetic force, the iteration for the displacement, and actual
magnetic moments Eq. 3.35 or rather the iteration of the magnetic force need to be combined.
After different steps of iterations, the displacement fields are summed up and superimposed with
all acting forces resulting in a displaceability matrix (see Eq. 10 in [134]). It can be written in
form of [135]:

Ui =Mii · Fi +Mi ̸=j · Fj, (3.36)

whereMii,Mi ̸=j are the displaceability matrices, Ui is the deformation field, Fi is the magnetic
forces and (i, j) ∈ (1, 2), (2, 1) giving the particle number. The mathematical model was applied
and solved numerically by iteration [134,135]. It showed very good agreement with experimental
data.
Experimental data, as well as the mathematical model, showed an inter-particle dependence on
the magnetic field strength and that at a certain magnetic field strength the particle snapped into
contact. At this time, the experimental setup only allowed the stepwise increase of the magnetic
field. Thus, the magnetic field strength at which particles separate again could not be resolved
experimentally. The theoretical analysis predicts a hysteresis, meaning particles separate at lower
magnetic field strength than is needed to let them snap into contact. On one hand, this can be
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explained by the relation between magnetic dipole-dipole and elastic force. Since the dipole force
scales with the inverse fourth power of the inter-particle distance, for the same external magnetic
field strength, particles in contact are governed by a much stronger magnetic dipole-dipole force
than particles well separated. Biller et al. [17] could show that the total energy, the summation of
magnetic and elastic energy, has two minimum. Those two minimum resemble the equilibrium
state of particles well separated and particles in contact. With increasing magnetic field strength
the system transitions from one minimum to the other. As a result, the transition between the
two equilibrium states is by nature hysteretic in the applied field strength. On the other hand
finite-element (FE) simulations showed a spatial inhomogeneity of the magnetization inside the
particles. When particles are in contact the magnetization is strongly enhanced at the point of
contact. Including this spatial inhomogeneity of the magnetization into the calculations, the two
particle system shows an even more distinctive hysteresis compared to the sole dipole-dipole
model.

3.3.2 Field-induced interactions

The following equations and modeling was conducted by P. Metsch and M. Kästner (TU Dresden)
and can be read in detail in [116]. The experiments conducted to provide the input values for
the simulation and to validate the simulations will be presented later in the course of this work.
The model selected to simulate simplified two, three, and four particle MRE systems was also a
microscopic continuum approach. In contrast to the previous explained model of Puljiz et al., the
matrix was modeled as a nonlinear hyperelastic material and the dipole approximation assuming
a homogeneous magnetization inside the particles was exchanged by calculating the actual
(inhomogeneous) magnetization inside the particle. Choosing a low amount of particles reduces
the influencing factors to a manageable number and facilitates comparison with experiments.
The detailed microscopic continuum model can be found in [112] and here only the essential
equations are repeated which was similarly done in [116]. The derivations can be read as well
in [112]. Since the matrix material is non-magnetic and the particles are in contrast very stiff the
free energy can be split into a mechanical and magnetic contribution:

ρ0ψ(C,H) = ρ0ψ
mech(C) + ρ0ψ

mag(H), (3.37)

with ρ0 the mass density per unit volume. The mechanical part of the free energy describes the
properties of the non-magnetizable matrix and only depends on the Cauchy–Green deformation
tensor C. Assuming an isotropic and elastic matrix the free mechanical energy ψmech can be
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expressed by the compressible Mooney-Rivlin model in form of the strain energy density function:

W = ρ0ψ
mech(C) =

G

2
[p(I1 − 3) + (1− p)(I2 − 3)] +

Kb

4
(J2

v − 2lnJv − 1). (3.38)

p denotes a dimensionless parameter that regulates the influence of the first two principal
invariants I1,2 and Jv is the Jacobi determinant. As described in section 3.1.1, the Moonley-Rivlin
model divides the energy into a deviatoric and a volumetric term. Herein, the deviatoric part is
interrelated to the shear modulus G and the volumetric to the bulk modulus Kb. To account for
the matrix incompressibility the Poisson ratio was set to be 0.49 and to account for the equal
contribution of the invariants p = 0.5. Thus Eq. 3.38 simplifies to Eq. 3.18 with G = 4(C10 +C01).
Finally, the magnetic free energy of the particles needs to be determined. As a first step, this
included the magnetization measurement of a single particle with SQUID. Fitting the curve gives
the magnetization M⃗(H) for every magnetic field strength. The curve was fitted with a Langevin-
function. In contrast to the linearized relation between magnetization and field strength (Eq.
3.25) that is only valid up to a certain field strength, the Langevin-function describes the actual
magnetization-field strength relation for superparamagnetic materials. Hereby, the Langevin-
formalism sets the orientating force of the external magnetic field in relation to the disorientating
effect of thermal motion. Using the magnetization given by the Langevin-function the magnetic
free energy can be calculated with:

ρ0ψ
mag(H) = −µ0Ms

α
ln cosh(αH⃗). (3.39)

α denotes a scaling factor extracted by fitting the magnetization curve,Ms the saturation magne-
tization and µ0 the vacuum permeability.
For the finite element simulation with FEniCS the particles were assumed to be spherical and the
matrix was modeled as a mesh with Gmsh [116]. Comparable to experiments the magnetic field is
not instantaneously applied but ramped up to H = 135.3 kA/m in 10 steps. The magnetic relax-
ation of the particles occurs on a much faster timescale than the magnetic field variations hence,
providing a quasi-static measurement. Considering the experimental measurement on MREs that
will be shown later in this work, the following parameters were chosen for the simulation: To
account for the incompressibility of the PDMS matrix the Poissons ratio was set to be 0.49. As
the Young’s modulus could not be defined experimentally it was determined by identifying the
smallest error in the particle displacement between experiment and simulation. A comparison
between simulation and experimental results will be given in chapter 5.1.
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4 Sample fabrication and experimental setup

Chapter 2 introduced the MRE constituents and chapter 3 the basics for mechanical and magnetic
modeling needed to understand particle dynamics in MRE. This chapter starts with explaining
the sample fabrication method. A distinction between bulk samples, thin samples, and macro-
scopic magnetic structured samples will be made. To create particle movement, two different
types of magnetic fields, a homogeneous and an inhomogeneous gradient field, were used. The
homogeneous field was generated by permanent magnets arranged in a so-called Halbach-array.
The inhomogeneous gradient field was generated by an electromagnet. When MRE samples are
subjected to either of the mentioned magnetic field forces are generated that displace the particles
inside the MRE. In the presented work these particle movements are optically detected with
an optical setup that is described in the adjacent sections. In the course, the particle tracking
process will be explained and errors caused by the magnetic and optical setup will be determined.
Concluding, an in situ measurement of the samples Young’s modulus is presented.

4.1 Sample preparation method

There are two common preparation methods of MREs. The first method uses a magnetic field
during the curing process. MRE samples are subjected to the magnetic field while the carrier
matrix has yet to solidify. Depending on the time and strength of the applied magnetic field, more
or less extended particle configurations, e.g., chain-like agglomerations form. MREs that were
structured during the curing process have a "built-in" anisotropy due to the preferred orientation of
these structures along the applied field. In the second method, the samples are crosslinked under
zero-field influence. Such MREs are isotropic MREs as the particles are randomly distributed.
Both methods disperse the filler material inside the matrix material before curing. Therefore, the
inter-particle distance can only be adjusted indirectly. For isotropic MREs, the volume percentage
of added filler material is adapted. For anisotropic MREs, the amount of particles in contact, i.e.,
the average group size of the particle structures depends significantly on the strength and time of
the applied external magnetic field during the crosslinking process [23]. In both methods, the
inter-particle distance is not well controlled. To work around this limitation, the conventional
fabrication method of MREs that mixes the particles with the carrier material is not used in this
thesis. Instead, a process that builds up the samples layer by layer is used, similar to the process
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described in [69,134,135,179]. This process offers the possibility to deposit the particles with
a specific initial position and, therefore, defined inter-particle distances. This enables to create
particle configurations of selected shape like rectangle or hexagonal arrangements. Additionally,
a particle selection can be carried out limiting the influencing variables. Concluding, the potential
of the fabrication method to produce magnetically structured 3D MREs will be shown.

4.1.1 Bulksystems

Instead of using a readily available polymer kit like Sylgard® 184 from Dow Corning, a strongly
diluted functional PDMS is crosslinked by adding a platinum catalyst like in [69,134,135]. The
first step included preparing a stock amount of the so-called prepolymer mixture. To this end,
90.9 wt% difunctional vinyl-terminated polydimethylsiloxane (DMS-V25, 500 cSt Gelest Inc. with
a molecular weight of 17.200 g/mol) were mixed with 9.1 wt% of the SiH-containing methylhy-
drosiloxane–dimethylsiloxane crosslinker (HMS-151 Gelest Inc.). Within tolerance, the ratio of
the prepolymer mixture stayed unaltered for all samples. By adding a platinum catalyst solution
consisting of 5wt% platinum(0)-1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex (SIP6830.1
Gelest Inc.) and 95wt% trimethylsiloxy-terminated PDMS (molecular weight 770 g/mol, Alfa
Aesar) to the prepolymer mixture an elastic, chemically linked PDMS network is created. To
obtain swollen PDMS carrier matrices, an intermediate step was required.
A certain weight percentage of prepolymer mixture was added to the low-molecular-weight
trimethylsiloxy-terminated PDMS (molecular weight 770 g/mol). This was done prior to starting
the crosslinking reaction with a platinum catalyst solution. Thereby, the prepolymer portion
only accounts for a small weight percentage, in maximum up to 25%. The mixture of PDMS
and prepolymer mixture is called reactant solution. The reactant solution was always mixed in
the volume ratio of 16:1 with the catalyst solution. The actual crosslinking takes place through
a hydrosilation reaction, see section 2.2. As the chemical reaction only happens between the
prepolymer components, the low-molecular-weight PDMS is only woven in and effectively swells
the network. Hence, the Young’s modulus of the finished sample is adjustable by the weight
percentage of added prepolymer mixture to the chemically inert PDMS. Consequently, a swollen,
crosslinked PDMS matrix with adjustable stiffness is obtained. In the following, the crosslinked
PDMS matrices are defined by the weight percentage of the added prepolymer. A 25% PDMS
matrix contains thus 25 wt% prepolymer solution. Ingredients were weighted with a scale accu-
rate to the milligram range. Even so, slight fluctuations occur between the mixing ratios of every
new batch. Those small fluctuations are in the range of 0.2% and do not affect the stiffness of
the PDMS matrix, significantly, and can be neglected. To circumvent these fluctuations PDMS
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matrices could be prepared out of the same stock of reactant solution.
In the following, the term bulk samples will be used for samples with matrix dimensions exceeding
the particle extensions by far. Bulk system samples, i.e., samples with total thickness ≥ 3mm
were always prepared according to the following scheme: 320µl of reactant solution were mixed
with 20µl catalyst solution and cast into square plastic moulds with an edge length of 1.5 cm and
height of 1 cm. The mold kept the viscous PDMS in form during crosslinking. As the chemical
reaction is temperature dependent and a diffusion driven process, the PDMS network was cured
at 60◦C for 24 hours.
Afterwards, this layer has enough mechanical stability and the magnetic particles can be deposited
on the layer. The used particles were carefully selected for a high roundness and a specific di-
ameter. The roundness Round is given by [Round = 4 ∗ particle area/(π ∗major particle axis2)]
such that a perfectly spherical particle’s roundness is Round = 1. Used nickel particles showed a
roundness between 0.91 and 0.99 (extracted by ImageJ). After particle deposition and in order
not to harm the matrix, the particles were carefully pushed over the surface with a micro ma-
nipulator device until they reached their designated position. This procedure allowed a position
accuracy of ≈ ±10µm due to the resolution of the used microscope. More limiting factors for the
exact positioning of the particles are the PDMS softness and particle surface roughness. Particles
deposited on the matrix create a deformation in their surrounding. The softer the PDMS the larger
this deformation and hence, particles positioned in a distance smaller than a certain limiting
distance snapped together. The exact positioning of the particles also was influenced by their
surface roughness. Particles with a high surface roughness were more likely to exhibit a certain
equilibrium position due to the edges of the particles.
To fully encapsulate the positioned particles in the cross-linked PDMS matrix material, a second
layer of the same crosslinkable PDMS was cast on top (Fig. 4.1 and figure 3 in [133]). It consisted
of 320µl reactant solution with the same mixing ratio as the first layer, and 20µl catalyst solution.
Another curing period at 60◦C for 24 hours followed. The crosslinking process then is slowed
down to a point at which it ensures a matrix with stable Young’s modulus over the time period of
the measurements. The final matrix thickness is about 4mm and exceeds the particle diameters
by a factor of >10. Therefore, the particle movement is well decoupled from the mechanical
boundary conditions at the PDMS surface, and matrix boundaries do not influence the particle
movement.
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Figure 4.1: a) Side view sketch of an exemplary three particle bulk system. The black rim resembles the plastic
mould that keeps the PDMS solution from flowing during crosslinking. A PDMS layer is crosslinked before particle
and top layer deposition. The interface between the lower and upper PDMS layer is marked with a red dashed line.
b) Top view of a real three particle bulk sample. The particles are the black spots and the yellowish surrounding is
the PDMS matrix.

4.1.2 Free-standing layers

In bulk samples, the microscopical particle displacements do not lead to detectable macroscopic
matrix deformations. To facilitate macroscopic matrix deformation, the matrix flexibility was
enhanced by reducing the sample thickness, i.e., thin free-standing films were prepared. Previously
used plastic moulds could not be considered as the adhesion of the PDMS to the plastic was too
high to remove the samples from the moulds after crosslinking. Since it is not easy to prepare a
thin, free-standing PDMS matrix without support two strategies were used. The first one applied
the use of a sacrificial layer. To this end, 10 wt% polyvinylalkohol (PVA, 113000 MW, 90%
hydrolysation) were dissolved in water at 80◦C under continuous stirring. The obtained solution
was cast and dried at room temperature until the water evaporated and a solid film was formed.
After solidification, a rim of two component epoxy glue from UHU with dimension 2x2 cm was
mounted on top. The glue rim functioned as an enclosure preventing the PDMS solution from
spreading. Subsequently, PDMS solutions were mixed with the same ratio as in the previous
section only the volume of the reactant solution was reduced to 160µl. Hence, the bottom matrix
layer exhibits a thickness of ≈ 350µm. A curing period of 24 hours under 60◦C was conducted.
Afterwards, the deposition and arranging of the particles took place analogue to the bulk system.
Encapsulation was done with yet another layer PDMS. Its volume of 160µl resulted in an overall
PDMS matrix thickness of ≈ 700µm. Concluding, the PVA substrate was sacrificed by placing the
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whole construct into an 80 ◦ C water bath. This solved the PVA substrate leaving the thin MRE
sample free standing only supported by the glue rim. If required, the MRE sample could simply
be cut out of the glue rim to be completely unsupported.
An alternative method without sacrificial layers was to use a TeflonTM sheet as substrate. Analogue
to the sacrificial layer method, a two component epoxy glue rim with dimension 2x2 cm was
attached on top. Same volumes of reactant solution were used resulting in a film thickness of
≈ 700µm. Also curing time/temperature and particle selection/deposition/positioning remained
the same as for the sacrificial layer method. Instead of dissolving the substrate, it was carefully
peeled off. This is possible as the adhesion of the PDMS to TeflonTM is significantly lower than to
the plastic moulds. In the end, both procedures lead to thin PDMS films stabilized by a glue rim
or if required, completely unsupported MRE samples.

4.1.3 Magnetic coated PDMS spheres

Microparticles made out of PDMS are gaining more and more attention as they have a variety
of beneficial properties. They are biocompatible, simple surface modifiable, permeable to a
variety of gases and can be used in medical and environmental applications [79,107]. To create
PDMS microspheres/microbeads, two different methods are used. The first is a microfluidic
approach where a flow-focusing mechanism is applied. The PDMS solution is injected into an
aqueous solution and thereby dispersed into microdroplets [79,122]. Afterward, these droplets
are collected and cured, forming spherical monodisperse microspheres. The second method
requires the production of a stable emulsion and is called bulk technique [80,90,175,180]. Both
mentioned methods have their challenges.
For the microfluidic method, the channels are often constructed out of PDMS themselves. Hence,
the sidewalls are strongly adhesive for the injected PDMS solution. Thus, the sidewalls need to
be prepared by complex processes [79]. Furthermore, a surfactant needs to be added to the
aqueous solution the PDMS solution is injected into. The process of droplet generation with the
flow-focusing mechanism underlies additional influences: The viscosity of the PDMS solution, the
interfacial tension and flow rates of the aqueous and PDMS solution [79,122]. The bulk technique’s
challenge to create stable emulsions in aqueous solution and monodisperse droplets [32,90,107].
Creating stable emulsions can be problematic due to surface energy and the high viscosity of
common PDMS solutions. To create a stable emulsion, the mixture of water, surfactant, and PDMS
requires to be stirred for several hours. To prevent the droplets from aggregating or coalescing,
an ultrasonic emulsifier is often used, additionally.
In the following, a production process for PDMS spheres is presented that neither requires high
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technical effort nor the use of surfactants or other toxic chemicals. Apart from the PDMS it only
uses propan-2-ol (C3H8O) and distilled water. Propan-2-ol is widely used in industries and easily
attainable and manageable. Furthermore, the fabrication process only requires an Eppendorf
pipette. Hence, the fabrication method can be vastly applied without great risks and technical
effort.
Distilled water is mixed with propan-2-ol in a glass jar in the ratio of 50/50 volume fraction.
After preparing the PDMS solution like in 4.1.1 it is extruded into the propan-2-ol/water solution
with an Eppendorf pipette. Thereafter, the density of the propan-2-ol/water solution is adapted
carefully to create a density match between propan-2-ol/water solution and PDMS mixture as
follows:

1. If the sphere sinks to the bottom of the jar, water is added until the sphere floats again (Fig.
4.2 a) red arrow).

2. If the PDMS forms a layer on the surface of the solution, propan-2-ol is added until a floating
sphere forms (Fig. 4.2 a) red arrow).

The integrity of the sphere is not harmed during the matching process. Depending on the PDMS
mixing ratio it takes one to five minutes until the PDMS spheres are crosslinked and mechanically
stable enough to be removed with tweezers. Compared to typical PDMS solutions like Sylgard

Figure 4.2: a) Glass container containing propan-2-ol and water. The red arrow indicates a floating PDMS sphere. b)
Crosslinked PDMS spheres with different sizes in front of a folding rule. The size of the PDMS spheres ranges from a
few hundred µm to some mm. The orange arrow indicates a PDMS sphere with a diameter of ≈ 800µm.
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184 the crosslinking is significantly faster. Since the fabrication method functions without stirring
it exhibit high reproducibility concerning the sphere size. By adapting the pipette-ted volume,
spheres with radius in the range from a few hundred µm (Fig. 4.2 b) orange arrow) to some mm
can be produced, Fig. 4.2 b). While the output of spheres per batch compared to the microfluidic
and bulk techniques is lower the short curing time of this production method allows for more
production batches. Depending on the mixing ratio of the used PDMS solution the sphere´s
Young’s modulus can be adapted in the range of a few Pa to some kPa. Thus, a method to
fabricate PDMS spheres of different sizes and Young’s moduli was developed that does not require
significant technical or chemical effort. For the measurements presented in this work, only mm
size spheres were used as they are easier to handle.
After the preparation of the PDMS sphere, the next step involved the coating of the PDMS sphere
with magnetic particles. To this end, the spheres were rolled in a closed vessel containing nickel
particles characterized in section 2.1. Thus, a close packed monolayer of particles forms on the
sphere’s surface. Since the particles are attached by simple adhesion, two strategies to permanently
fix them to the PDMS spheres were followed. The first strategy was to embed the sphere in a PDMS
layer sample as described in 4.1.1. The second strategy was to coat the sphere with another layer
of PDMS. Therefore, the sphere was first mounted on top of a thin needle. Afterwards, PDMS was
poured on it while the needle was rotated to ensure a homogeneous distribution. Both methods
had to be done with caution in order not to harm the magnetic particle layer. Subsequently, the
spheres were cured for 24 hours at 60◦C to ensure a stable Young’s modulus.
With this procedure, it is possible to create either free-standing or embedded magnetic PDMS
spheres in various diameters and stiffnesses. It is a fast, simple, and efficient method without
significant technical or chemical effort. Its biggest advantage over the microfluidic and bulk
technique is the simple but defined adaptability of the sphere size.

4.1.4 Membranes with 2D magnetic layer

This section focuses on the fabrication process of magnetic membranes. Hereby the term mem-
brane stands for thin free-standing PDMS samples containing a monolayer of magnetic particles.
Membranes were produced similar to the thin free-standing PDMS samples. First, a 4 cm on
2 cm rectangle glue rim was attached to a TeflonTM substrate. The glue rim consisted of two
component epoxy glue from UHU. After preparing the PDMS solution as in 4.1.1 a thin layer of it
was cast by pouring 640µl PDMS inside the rim. Nickel particles were scattered on the layer after
its mechanical stability was ensured. The particles were carefully distributed by dragging a thin
glass slide over the surface without harming the underlying PDMS film. Hence a close packed
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monolayer of particles formed (see the sketch in Fig. 4.3 a)). The thickness of this magnetic
layer consequently amounts to one particle diameter. Excess particles did not adhere to the layer
and were shaken off. A second layer of 640µl was poured on top to encapsulate the particles.
Different particle patterns could be formed by placing cured epoxy structures on the PDMS layer
before distributing the particles. Those epoxy structures could easily be removed after particle
distribution. Consequently, the areas covered by the epoxy structure stayed particle free and were,
thus, non-magnetic Fig. 4.3 b). Subsequently, the membranes were cured for 24 hours at 60◦C.
Afterwards, they were peeled off the Teflon substrate. To get free-standing membranes, they were
cut out of the glue rim. The membrane thickness was ≈ 1mm. The membrane stiffness could
again be adapted by the PDMS mixing ratio. Therefore, the presented production method allows
the preparation of 2D magnetic structured membranes with defined magnetic areas. Furthermore,
the size, thickness and stiffness of the membrane is easily adaptable.

4.2 Magnetic setups

In this work, two kinds of magnetic fields were applied to the samples: A homogeneous and an
inhomogeneous gradient field. A homogeneous magnetic field was accomplished by a distinctive
arrangement of permanent magnets, a Halbach-array. To create an inhomogeneous magnetic
field no permanent magnets are used. The field is generated by electrical current passing through

Figure 4.3: a) Sketch of a membrane with a close packed monolayer of particles positioned between two PDMS
layers (side view). Particles are distributed on a cross-linked PDMS layer with a thickness of roughly 500µm. The
dashed line marks the interface to the second cross-linked PDMS layer which is deposit after particle distribution. An
overall membrane thickness of approximately 1mm is obtained. b) Top-view image of a 2D magnetic structured
cross-linked PDMS membrane. A cross out of solid glue was placed on the first cross-linked PDMS layer before
particle deposition ensuring a particle free area.
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coils, so-called electromagnets. In the following, the assembly of the two setups will be described.
Additionally, the generated magnetic fields and some of their characteristics like field strength,
course of the field, etc. will be determined.

4.2.1 Halbach-array

The Halbach-array was configured by Shilin Huang and is described in detail in [69]. In this
paragraph important features of the Halbach-array are mentioned and some further measurements
are added. The used array consists of 32 NdFeB permanent magnets sourced from AR.ON GmbH.
According to the datasheet, they exhibit a remanence of 1.32T . They were arranged on two
rings. Each inner ring’s magnet size was 8 × 8 × 15mm, each outer ring’s magnet size was
14× 14× 15mm (see sketch Fig. 4.4). The magnetic orientation was altered 45◦ between every
adjacent magnet. For magnets lying on the x- receptively y-axis the magnetic orientation shows
in the same direction. Inner and outer ring have the same magnetic orientation configuration Fig.
4.4. Both rings can be rotated simultaneously around a cavity of 2.5 cm in diameter. This cavity
allows the placement of the Halbach-array around the sample holder and hence the sample can
be centered regarding the z-direction inside the Halbach-array. Since inner and outer ring are

Figure 4.4: Sketch of both Halbach-array rings. The inner and outer ring consist of 16 NdFeB permanent magnets.
The magnetic moment of each magnet is depicted with a black arrow. In the shown constellation the field inside the
array is at maximum with a flux density of ≈ 216mT and homogeneous in x and y direction. [Adapted from [151],
2021, ©Springer Nature, CC BY 4.0, [151]]
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also rotatable against each other the magnetic field strength can be reduced to a certain degree.
At a specific rotation between the inner and outer ring, the magnetic repulsion of the permanent
magnets is too strong. As a result, both rings try to separate and can not be kept in the rotated
position anymore.
Comsol Multiphysics [121] simulations were carried out by modeling the permanent magnets with
the Ampere’s law [69]. Other simulation parameters like dimension, position, and remanence of
the magnets were taken from the real setup. Only the aluminum housing was not incorporated
and assumed to be magnetically inactive. The simulation showed that the magnetic field in the
area of ≈ 9mm2 around the center of the Halbach-array [69] can be assumed as homogeneous,
i.e., the small field gradients do not affect the measurement. The simulation was validated by
measurements with a Gaussmeter Lakeshore 410. For this thesis, the Gaussmeter Lakeshore 410
measurements were repeated. To this end, the magnetic field probe head was, while centered
in the z- and y-axis, moved in 0.1mm steps along the x-axis. At each step, the magnetic flux
density B was measured Fig. 4.5 a). The jumps in the magnetic flux density are due to the
Gaussmeter resolution limit of 0.1mT . Subsequently, a second order polynomial fit was applied
and its first derivative with respect to x was determined. The derivative provides the gradient of
the magnetic field in x-direction Fig. 4.5 b). The gradient shows a linear dependence (slope of
0.4mT/mm2) on the distance from the center. Since the gradient 3mm from the center is still
close to 1mT/mm the field can be assumed as homogeneous in the area of observation. This
becomes even more apparent when comparing the dipole-dipole force with the force generated
by the gradient in the magnetic field. Assuming two nickel particles with a diameter of 200µm
and an inter-particle distance of 300µm the dipole-dipole force becomes ≈ 85µN . In contrast,
assuming a nickel particle with a diameter of 200µm positioned in x-direction 3mm from the
center, the force generated by the gradient is ≈ 4µN and thus, more than 20 times weaker than
the dipole-dipole force.
The gradient of the magnetic field along the z-axis was measured in the same way, Fig. 4.5 c) and
d). A maximum flux density of 216mT was measured in the center of the Halbach-array. Since the
samples were slightly shifted along the z-axis the actual flux density at the sample position was
180mT . The shift also resulted in a z-gradient. That gradient, however, is too small to negatively
affect the measurements (gradient force ≈ 7 times weaker than comparable dipole-dipole force)
and no particle displacement in z-direction under applied magnetic field was observed. As the
magnetic field along the particle plane (x-y plane) can be assumed as homogeneous, the force
due to the small gradient in the field can be neglected. Every particle displacement in the x-y
plane is a result of magnetic particle interaction.
To determine the magnetic field direction, the external housing was equipped with a scale with
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Figure 4.5: The magnetic flux density of the Halbach-array a) in the x direction while the probe head was centered
in z and y direction. The steps in the measurement are due to the accuracy of the Gaussmeter. A polynomial fit of
second order depicts the trend accurately (red line). b) the gradient of the field in x direction is given by the first
derivative with respect to x. It shows a linear dependence with a slope of 0.4mT/mm2. The magnetic flux density
of the Halbach-array c) in z direction while the probe head was centered in x and y direction. A polynomial fit of
second order depicts the trend accurately (red line). d) the gradient of the field in the z direction is given by the first
derivative with respect to z. It shows a linear dependence with a slope of −0.2mT/mm2.

incremental steps of 1◦. The reading error during measurements was estimated to be ±0.5◦.
Additionally, a systematic offset to the magnetic field orientation of ±1.5◦ was considered to
reflect the error introduced by the determination of the actual magnetic field orientation. Both
errors added up and resulted in a total magnetic field orientation error of ±2◦ for every magnetic
measurement conducted with the Halbach-array.
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4.2.2 Electromagnet

In a homogeneous magnetic field, the displacements of the particles take place because of their
mutual magnetic interaction. To create a force on a single particle, the magnetic field has to
have a gradient. To obtain gradient fields an electromagnetic setup was used. For this setup, two
solenoids were removed from a D-frame DC lifting magnet (Mecalectronic [70]). Their inductance
L was measured at 5mH while the resistance R was determined to be 7.3Ω. The solenoids were
connected parallel and a resistance of 2Ω was connected in series. In every solenoid, an ARMCO
pure iron core with pointed pole shoes (diameter of 0.66 cm) was inserted Fig. 4.6. The distance
between both pole shoes was 1.3 cm. The iron cores reinforce the solenoid’s field which is strongest
at the surface of the pole shoes and weakest in the center between both. A dual power supply
(280W , EX354D, Thurlby Thandar Instruments) was used to generate a stable voltage. The dual
power supply has two independent and isolated outputs and can supply a maximum voltage
of 0 to 35.5V and a maximum current of 0 to 4A at each output. With a waveform generator
(33220A, Agilent), signals with different frequencies, amplitude, and form were generated. The
signals were amplified by a custom-built current-amplifier which was powered by the dual power
supply. For low frequencies, the inductance of the solenoids does not play a role but for higher
frequencies, the set current strength is not reached before the voltage changes. To avoid the
influence of the inductance, only signals with a frequency of 100mHz (rectangular signal, 2V )
were applied. The generated magnetic flux density B at maximum voltage and current of the
power supply was measured with a Gaussmeter (Lakeshore 410) by moving the probe head in

Figure 4.6: For simplicity, the actual two solenoids are depicted only as one in the image (brownish color). An
electric current runs through it and creates a magnetic field. The iron core was placed in the center of the solenoid.
It ends in pointed pole shoes. The gradient field between the pole shoes is indicated by black arrows.
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0.1mm steps from the surface of one pole shoe towards the center between both pole shoes Fig.
4.7 a). The error in the step size was estimated to be 0.05mm and the error of the magnetic flux
density due to the resolution limit of the Gaussmeter to be 0.2mT . The trend of the magnetic
field B was fitted with an exponential function with four parameters p1−4 defined by the fit:

y = p1e

(
−x
p2

)
+ p3 + p4x. (4.1)

The fit converged with a χ2 tolerance of 1E-14 for p1 = (54±7)mT/mm, p2 = (2.4±0.3)mT/mm,
p3 = (19± 8)mT/mm and p4 = (2± 1)mT/mm Fig. 4.7 a) red line. After fitting the field trend
and differentiation Eq. 4.1 in respect to x the gradient at each distance from the pole shoe surface
is determined, Fig. 4.7 b). The gradient increases the closer one gets to the pole shoe’s surface.
Near the center between both pole shoes, the gradient becomes quite small because both pole
shoes act with roughly the same field strength.

4.3 Optical setup

The optical setup will be exposed to magnetic stray fields. As the magnetic components would

Figure 4.7: a) the magnetic flux density of the electromagnet between its pole shoes. It follows an exponential
decline when moving from the pole shoe’s surface towards the center. An exponential decay function was fitted to
the trend (red line). The error of the distance from the pole shoe is assumed with 0.05mm and of the flux density
with 0.2mT . Deriving the field in respect to the distance determines the gradient of the field b). Near the pole shoe,
the gradient is highest decaying to almost zero in the center between the pole shoes.
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interfere with the magnetic field at the position of the sample, aluminum with its neglectable
magnetization capability was used as the main material for the optical setup design. Any influence
on the applied magnetic field by the optical setup itself is negligible. A mounting plate and
the sample holder were screwed onto posts on top of a breadboard (Thorlabs GmbH) (Fig. 4.8
a)). This fixation ensures mechanical stability during the measurements. To prevent a relative
movement between sample and camera the camera post was screwed onto the breadboard as well.
Images were taken from above vertical to the sample plane. It was possible to adjust the distance
between the sample and the camera. Thereby, the focus plane could be adapted. Samples were
fixed on a cylindrical sample holder to prevent them from being displaced especially between

Figure 4.8: a) Real image of the optical setup. The optical setup consists of a CCD camera (mvBlueCOUGAR-S
from Matrix Vision GmbH), a tube without magnification to prevent optical aberrations, Mitutoyo objectives, a
camera holder, and the sample holder made from aluminum. The Halbach-array is placed around the cylindrical
sample holder. For illumination, a LED-light source (Intraled 3, Volpi AG) was used. With the camera holder, the
distance between sample and camera could be adapted. b) A sketch of the essential components. For clarity, the
Halbach-array is not shown. Samples were placed on a cylindrical elevation with a recess in the middle which allowed
the illumination of the samples from below. [Reused from [151], 2021, ©Springer Nature, CC BY 4.0, [151]]
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zero-field and field images. The cylindrical sample holder allowed to place the Halbach-array
around the samples (Fig. 4.8 a)). Furthermore. it ensures the sample to be near the center of
the Halbach-array and thus being subjected to a homogeneous magnetic field. A sketch of the
essential parts of the setup but without Halbach-array is shown in Fig. 4.8 b). A round cavity
in the cylinder allowed vertical illumination from below. Fixing a translucent glass between the
LED-light source (Intraled 3, Volpi AG) and the opening in the cylinder provided a homogeneous
illumination of the samples.
Different Mitutoyo objectives could be mounted on top of the CCD camera (mvBlueCOUGAR-S
from Matrix Vision GmbH). Inserting a 1× tube of 23 cm length between objective and camera
prevents aberrations of the focus plane. A conversion from pixel to µm was done by imaging a
micrometer grid. To this end, a line was plotted on the micrometer grid and its length measured.
This procedure led to following conversions, Tab. 4.1. Since the particles are not transparent

× Mitutoyo objectives Conversion from pixel to µm
2 2.35±0.03
5 0.94±0.01
10 0.47±0.01
20 0.23±0.02

Table 4.1: Depending on the magnification of the used Mitutoyo objective a different conversion from pixel to
micrometer had to be carried out. For the used objectives the conversation factors are listed.

and measured with light transmitted vertically from below, it was only possible to resolve the
maximum particle dimension sharply. Hence, the focus plane was adjusted to the maximum
particle diameter. To get information about the particle surface that lies outside the maximum
dimension, the particle had to be measured in reflecting mode. For the reflective measurement,
the sample was illuminated from above. As the PDMS has high transparency for light in the visible
range, the light was mostly reflected by the surface of the nickel particles. Consequently, the
surface of the nickel particles could be optically dissolved.

4.3.1 Measurement procedure using the Halbach-array

Before the MRE samples were subjected to the magnetic field of the Halbach-array, an image was
taken (zero-field case). With the help of the open software TrackMate from ImageJ [165] the
particle positions, the x- and y-coordinate of the particles xi, yi, were extracted. This is referred
to as the initial particle position. The particle position determination was done as follows: At the
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start, the inverted grayscale images were loaded into ImageJ [71]. Apart from enhancing the
contrast, no further image modifications were applied. To extract the particle’s x-y coordinates,
the LoG detector (Laplacian of Gaussian) in TrackMate was selected. Applying the LoG detector
the image is convolved with a Gaussian kernel and then the Laplacian operator is applied. This
results in a strong negative response for bright areas with the size defined by the Gaussian kernel.
The detailed mathematics behind the detection process is shown in [104].
In TrackMate it is sufficient to set a mask size which defines the diameter of the particles the
algorithm tries to detect, i.e., the algorithm searches for areas and shapes defined by the mask
which are bright compared to their surroundings. As the mask is given by the Gaussian kernel
only circular shapes with a roundness of 1 are detected. In the presented work the mask size
was set always to the diameter of the largest particle in the picture as a mask size smaller than
the particle diameter created a larger detection error than a mask size larger than the particle
diameter. After the detection algorithm is completed the particle positions can be extracted in
form of x- and y-coordinates. By calculating:

|r| =
√
(∆x)2 + (∆y)2, (4.2)

with∆x = x2−x1 the difference in the x-coordinate and∆y = y2−y1 respectively the difference in
y-coordinate of both particles. Thus, the inter-particle distance |r12| is obtained. In the following,
the inter-particle distance of samples not subjected to a magnetic field is referred to as initial
inter-particle distance.
Subsequently, the samples were centered inside the Halbach-array by placing it around the
cylindrical sample holder. Prior to the actual measurement full loading cycles were carried out,
i.e., the sample was subjected to the magnetic field of the Halbach-array and subsequent the
Halbach-array was rotated in consecutive 360◦ turns around the sample. Those full loading
cycles exclude any influence of the pre-loading on the PDMS matrix’s stress-strain behaviour, the
so-called Mullins effect [43,120] and reveal if the particle displacement ruptures the matrix.
Continuing with the actual measurement process: After the loading cycles, the Halbach-array was
rotated in 5◦ steps, after every step a single image was taken. The system was in an equilibrium
state for every field orientation since magnetic moment relaxations or matrix viscosity effects
are of a much faster timescale. Therefore dynamics effects play no role in these measurements,
implying that the measurements were quasi-static.
For the various magnetic field orientations, an image of the particles does exist and the above
introduced detection method of the particle position is applied. The next step was to connect the
identical particles in every image. Therefore, connecting parameters between adjacent images
needed to be set in TrackMate. Three connecting parameters required to be defined: Themaximum
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linking distance, which sets the spacial distance range for matching particles between adjacent
images, the gap-closing distance, which sets the maximum distance a particle can be linked when
not detected in the adjacent image and the gap-closing maximum frame gap, which sets the
maximum amount of frames a particle can not be detected and still be linked. In the presented
work the gap-closing maximum frame gap was always set to two since no particle vanishes between
adjacent images. Since every particle is present in each image also the maximum gap-closing
distance could be arbitrarily chosen. Only the maximum linking distance was adapted such that
every particle was linked with itself in the adjacent image. Following this procedure, for each
particle, a x-y trajectory can be extracted for the various magnetic field orientations.
To determine whether the matrix shows the Mullins effect or is ruptured by particle displacement
a measurement of ≈ 40 full loading cycles was conducted with an exemplary two particle sample
and the above particle center tracking method was applied Fig. 4.9 a). Since the maximum of
the inter-particle distance does not change significantly, it is apparent the sample does not show
any signs of Mullins effect or matrix destruction Fig. 4.9 a). If the Mullins effect would arise or
the matrix would be ruptured by the particle movement throughout the full loading cycles, the

Figure 4.9: a) 40 cycles of 360◦ turns of the Halbach-array were conducted. The inter-particle distance of an
exemplary two particle system is shown. b) For simplicity, only one ring of the Halbach-array is depicted (gray
rectangular objects) with the magnetic moments of the permanent magnets is indicated by black arrows. The
magnetic field orientation is marked with a dashed blue line. Two exemplary nickel particles are inserted. The
particle axis is marked with a dashed red line. β denotes the angle between current field orientation and particle
axis. θ denotes the angle of the magnetic field orientation compared to the initial position marked with a dashed
orange line. [Adapted from [151], 2021, ©Springer Nature, CC BY 4.0, [151]]
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restoring elastic force of the matrix would decrease, i.e., the maximum inter-particle distance
would decrease and the period between two maxima increase. The small fluctuations of maximum
and minimum of the inter-particles visible in Fig. 4.9 a) are due to particle surface roughness and
particle rotation around their center.
Furthermore, the particles are assumed as circles (roundness of 1) and detected as such as the
particle tracking method uses a LoG (Laplacian of the Gaussian) detection. Due to the surface
roughness of the particles the detection with a circular mask can lead to deviation in the detection
of the x and y coordinate. To determine the uncertainty in the particle tracking, the image of an
exemplary two particle system was rotated in 25, 45, and 90◦ and the particle tracking method
was applied. The tracking mechanism does provide nearly identical particle centers for all the
images. Thus, it is valid to estimate the error in the particle center detection to be ±1 pixels in x
and y direction. The norm of the center to center vector |r| was calculated with Eq. 4.2 and the
error was determined with ±4.68µm for the 2× Mitutoyo objective.
In Fig. 4.9 b), all relevant orientations and angles are summarized: The magnetic field orientation
B̂ Fig. 4.9 b) (dashed blue line), the center-to-center vector between the particles P⃗ Fig. 4.9 b)
(dashed red line), the initial orientation of the particle pair P⃗0 Fig. 4.9 b) (dashed orange line), β
the angle between particle axis and the magnetic field orientation and θ the angle of the magnetic
field orientation in relation to its starting orientation. Determining the inter-particle distance and
the external magnetic field orientation B̂, with:

β = acos

[
P⃗ · B̂
|r|

]
, (4.3)

the angle β between particle axis P⃗ =

(
∆x

∆y

)
(Fig. 4.9 b) dashed red line) and the magnetic

field orientation B̂ was calculated Fig. 4.9 b). Consequently, the angle β between particle axis
and magnetic field orientation and the inter-particle distance |r| can be extracted to calculate
the magnetic dipole-dipole force Eq. 3.32. Furthermore, the dependence of the inter-particle
distance on the angle between the particle axis and the magnetic field orientation can be extracted
from the measured particle trajectories. During the measurements, a particle displacement in the
z-direction (out of the particle axis x-y-plane) was never observed and the particle stayed in focus
throughout the measurements.
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4.3.2 Electromagnetic measurements

After the electromagnet’s characteristics have been explained in section 4.2.2 the subtleties of
electromagnetic measurements will be evaluated in this section. Within this work, the electromag-
net was used to create magnetic field gradients. The gradient fields were used to macroscopically
deform magneto-active membranes. To this end, the membranes were placed on a plastic sam-
ple holder Fig. 4.10 (red object) with the magneto-active particle layer orthogonal to the field
direction. The sample holder was cut in a way that it supports the membrane at the two edges
of the longer side. Hence the membranes were free-standing with the same area between the
edge suspension points. This facilitates the deformation evaluation as, independent of the matrix
stiffness, the same model for calculating the theoretical deformation can be applied. Additionally,
the sample holder contained a horizontal connection between both suspension points to ensure
mechanical stability. The front of the sample holder was not connected and ensured a good
optical detection of the sample. Images were taken with a high-speed digital camera (NX4-S1,
Integrated Design Tools, Inc.) and a macro-zoom objective (8− 108mm, F2,5/1) from the front.

Figure 4.10: For simplicity, the actual two solenoids are depicted only as one in the image (brownish color). A
current runs through it and creates the magnetic field. The iron core was placed in the center of the solenoid. It
ends in pointed pole shoes. The gradient field between the pole shoes is indicated by black arrows. Step motors
to adjusted the height of the sample holder (red sheet) are depicted by the black rectangles. The sample holder is
placed on screws that are attached to the step motors (gray).
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Illumination was done from above with a LED-light source (intraLED 3, Volpi AG). Stepper motors,
used as suspension points for the sample holder, could stepwise move the membrane closer or
further away from the surface of one iron pole shoe Fig. 4.10 (black shapes). With that setup, the
magnetic force acting on the membrane could be in- or decreased. Exact parameters from the
actual measurements are shown in section 6.2.

4.3.3 Rheological measurements

With a rheometer, the mechanical characteristics such as viscosity or elasticity of a liquid, soft-solid
or solid can be measured. To determine the Young’s modulus of the used polymer matrix, in this
case, PDMS, a common choice is a parallel-plate-rheometer. In the rheometer the prefabricated
sample is fixed between a stationary, fixed circular flat plate of diameter 25mm and an opposing
rotatable plate of the same size and shape. By oscillating the rotatable plate, a shear deformation
is applied to the polymer. To prepare a polymer sample for rheometer measurement, the polymer
is cast in a mold on top of the lower, stationary rheometer plate and crosslinked for 24 hours
under 60◦C. Afterwards, the sample is restrained by lowering the top plate until it contacts the
polymer surface. A normal force of roughly 1N is applied on top of the sample to ensure good
contact between the sample and the plates. The rotatable plate functions as an actuator and
exerts a torque with a certain angular frequency on the polymer. The torque is related to the
stress and the rotation (displacement) of the sample to the strain.
In the specific rheometer used (HR 3, TA Instruments), either the rotation (strain-controlled) or
the torque (stress-controlled) can be preselected while the other value is measured. Concerning
the case of a preselected constant torque, the angular frequency is increased in steps and the
rotation of the rotatable plate is measured. The rotation can be rheologically evaluated as strain.
Thus, to every angular frequency, a corresponding strain is obtained and the shear modulus Eq.
3.6 can be determined for different frequencies. The complex shear modulus consists out of a
storage (real part) and loss modulus (imaginary part). For an exemplary 23% PDMS sample, a
rheological measurement with a HR 3 rheometer from TA Instruments in plate to plate geometry
is depicted in Fig. 4.11 a). Due to the sample fabrication, the surface of the sample is slightly
elevated at the edges. This could not be prevented, because, due to capillary forces, the PDMS
solution was slightly pulled upwards at the mould’s surface. Because of the slightly elevated
sample edges, the upper plate was not in perfect contact with the polymer sample and therefore
absolute values of the shear modulus can deviate from the actual ones. As the measured polymer
can be considered incompressible, its Poisson ratio ν is in good approximation 0.5. Therefore, the
Young’s modulus can be calculated with 3*G (see Eq. 3.9).
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Figure 4.11: a) a plate to plate rheometer measurement was conducted for a cross-linked PDMS with 23wt%
of prepolymer solution. The loss modulus G′′ and storage modulus G′ were measured for various plate rotation
frequencies. The loss modulus is small indicating a negligible viscosity. The storage modulus was determined with
(2.59± 0.01) kPa. b) For simplicity, only one ring of the Halbach-array is shown (gray rectangular objects) with the
magnetic moments of the permanent magnets indicated by black arrows. The magnetic field orientation is marked
with a dashed blue line. A chain of exemplary 5 nickel particles is inserted. The particle axis is marked with a dashed
red line. β denotes the angle between the current field orientation and the chain axis. βi denotes the angle of the
chain axis compared to its initial position marked with a dashed orange line. [Adapted from [151], 2021, ©Springer
Nature, CC BY 4.0, [151]]

Another approach to specifying the Young’s modulus is an in-situ measurement. The in-situ
measurement has the advantage that it considers the exact particle coupling to the matrix. Since
the particles are positioned between two not with each other crosslinked PDMS layer, this can be
crucial. The in-situ measurement is based on the approach from [172], where the dynamic shear
modulus is measured by oscillatory rotating a chain of magnetic particles in a viscoelastic liquid.
To make the approach applicable it was adapted to crosslinked polymers by using the Kelvin-Voigt
model for viscoelastic solids. Furthermore, the dynamic measurements were converted into static.
To start, the fundamental equations are explained and then the experimental realization is
described: A particle chain of N paramagnetic particles is assumed. Subjecting the particle chain
to a magnetic field, it experiences a torque as long as the magnetic field orientation is not aligned
with the chain orientation [69, 110, 172]. Considering only nearest neighbor interaction, the
magnetic torque Γm becomes:

Γm =
3µ0m

2

4π

N2

2d3
sin (2β) . (4.4)
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Herein, β denotes the angle between chain axis and magnetic field orientation Fig. 4.11 b), m
the magnetic moment of one particle with diameter d and µ0 the permeability of free space. Since
the chain is deflected from its initial position, an elastic torque arises for the deformation of
the polymer matrix, which counterbalances the magnetic torque. Taking the Kelvin-Voigt model
(chapter 3.1) and due to the static measurement neglecting dynamical parts in equation Eq. 3.3
which equals the elimination of any dissipative terms, the elastic torque Γ becomes:

Γ = C ∗ βi with C = κeV G. (4.5)

Herein, βi denotes the angle of the chain orientation to its initial position Fig. 4.11 b), V = N ∗Vp
the Volume of the rotating object with N the particle amount per chain and Vp the particle volume,
G the shear modulus and Γ the elastic torque. κe is the geometrical elastic rotation factor that
can be calculated by [172]:

κe =
2N2

ln(N
2
) + b

N

. (4.6)

It contains parameter b, which was experimentally determined by [172] to be 2.4. The chain
rotates until the elastic torque equals the magnetic torque. Setting Γ = Γm equation 4.5 becomes:

µ0NM
2

16
sin (2β) = Gβiκe. (4.7)

Here, the substitutionm =M ∗Vp was carried out to get the dependency on the magnetizationM
of a single particle. Rearranging the equation after the shear modulus G it can be calculated by:

G =
µ0NM

2

16βiκe
sin[2β]. (4.8)

Thus, the shear modulus G can be determined from the experimental quantities βi the angle
of the chain to its original position, β the angle between the chain and external magnetic field
orientation, N the particle amount per chain andM the magnetization of the chain.
To determine the Young’s modulus experimentally, 5 particles were positioned in chain formation
between two crosslinked PDMS layers. The sample was prepared according to the bulk sample
fabrication introduced in section 4.1.1. Samples for various PDMS mixing ratios were produced,
Tab. 4.2. After curing for 24 hours under 60◦C to ensure a constant Young’s modulus throughout
the measurements, the samples were positioned in a way that the chain was orientated in x-
direction inside the Halbach-array. In order to exclude any rupture of the matrix, no full-loading
cycle was carried out prior to the actual measurement and the Halbach-array was positioned in a
way that the magnetic field orientation and chain orientation were aligned.
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After positioning the samples in the center of the Halbach-array, the following procedure was
applied: The Halbach magnet was turned clockwise in 5◦ steps. An image was recorded with the
Blue Cougar camera at each step. Between every step sufficient time elapsed so any dynamic
effects could be excluded. Due to magnetic torque Eq. 4.4 acting on the chain it starts to rotate in
the direction of the set magnetic field orientation. As the elastic torque Eq. 4.5 counteracts the
chain’s deflection, the chain rotation is not of the same magnitude as the magnetic field rotation,
i.e., an angle β between the magnetic field and chain orientation arises. Defining the connecting
line between the ending particle centers as the chain orientation, the angle between current and
initial chain orientation was calculated employing equation:

βi = acos

[
∆xi∆x0 +∆yi∆y0√

∆xi
2 +∆yi

2 ·
√
∆x0

2 +∆y0
2

]
. (4.9)

Herein, ∆x0,i,∆y0,i denote the difference between x respectively y coordinate of the edge particles
in the zero field and the deflected positions Fig. 4.12. The equation Eq.4.9 is obtained by the scalar

product of the connecting vectors of the ending particles P⃗0 =

(
∆x0

∆y0

)
respectively P⃗i =

(
∆xi

∆yi

)
Fig. 4.12 dashed lines.
In a wide angle range θ of the magnetic field orientation, an assumption of a stiff chain is justified
while only the end particles are taken into account. The magnetization is extracted by the single

Figure 4.12: An exemplary five particle chain rotated by the angle βi from its initial (light gray particles) to its
current position (black particles). The angle βi is calculated by calculating the scalar product of the connecting
vectors of the ending particles P0 and Pi (dashed lines). Therefore, the difference in the x and y coordinates ∆x0,i

respectively ∆y0,i of the ending particles was determined. The centers of the ending particles are marked with a dot.
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particle SQUID measurement (chapter 2.1) and hence, for the various magnetic field orientations
the shear modulus G can be calculated by Eq. 4.8. To determine a mean value only the values for
a magnetic field orientation of θ = 5 to 25◦ were used since for higher magnetic field orientation
the assumption of a stiff chain is not justified any-more and errors in the calculated shear modulus
due to chain instabilities increase. Furthermore, the model assumes linear elasticity. For magnetic
field angles larger than 25◦ this is not valid anymore as the chain deforms the matrix strongly.
Comparing the mean shear modulus of a PDMS with mixing ratio 23% obtained by the in-situ
measurement [G = (237±3)Pa] with the result of simulation [G = (2.9±0.1) kPa] and rheometer
measurement [G = (2.59± 0.01) kPa] Fig. 4.11 a), one notices an absolute value that is 10 times
smaller. Still, the values of the shear modulus for the various PDMS mixing ratios show good
agreement with the percolation law. Hence, one can assume a scaling error. The scaling error can
not be explained by fluctuations in the PDMS mixture or variation in the fabrication process as the
PDMS stock solution and fabrication process was identical for all three measurements. The values
for simulation and rheometer measurement show good agreement. Therefore, it is valid to assume
that the scaling error lies within the in-situ measurement. As previously mentioned the model
used to evaluate the in-situ measurement uses assumptions such as stiff particle chain, linear
elasticity, and nearest magnetic particle interaction. The linear elasticity was taken into account as
only values for small chain rotations were considered to calculate the shear moduli. During those
small chain rotations, the ending particles showed no movement relative to each other and thus,
the assumption of a stiff particle chain should hold. Due to the small particle amount considering
only nearest magnetic particle interaction should not lead to such large deviations. Furthermore,
the particle magnetization and the angle β between the magnetic field and chain orientation
was determined quite precisely compared to the geometrical elastic rotation factor κe (see Eq.
4.8. Thus, one explanation for the observed strong discrepancy could be the geometrical elastic
rotation factor κe ≈ 35.8 that was taken from [172]. The data of the rheometer measurement is
hence used to calibrate the experiment and a geometrical elastic rotation factor κe of 3.26 was
determined. This geometrical elastic rotation factor was then used to determine the shear moduli
of PDMS of various mixing ratios.
Measurements were executed with a mixing ratio of 8 to 23wt% . The mean values of the Young’s
modulus were calculated from the values of the shear moduli in the magnetic field orientation
range of θ = 5 to 25◦ and are listed in Tab. 4.2.
To determine the dependence of the Young’s modulus on the mixing ratio, the data was plotted
and fitted by a power law similar to Eq. 2.3, Fig. 4.13. The power law is given by:

G = G0
(x− rc)

v

rc
. (4.10)
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Figure 4.13: Young’s modulus dependence on the wt% of prepolymer mixture. A power law (see Eq. 4.10) was
fitted at the data set. It is given by the red. Error bars are the standard deviation of the mean values. The standard
deviation of the power law fit was extracted with ±301Pa.[Adapted from [151], 2021, ©Springer Nature, CC BY
4.0, [151]]

A power law dependency between the Young’s modulus and the PDMS mixing ratio is visible for
rc = 7.9 ± 0.2, G0 = (8.5 ± 1.5) kPa and v = 0.73 ± 0.06 and small deviations from the fit are

PDMS ratio in % Mean E in kPa Statistical error of the mean values in kPa
8 0.36 0.01
9 0.97 0.04
10 1.76 0.02
12 2.83 0.06
14 4.5 1.1
16 5.3 0.4
19 6.1 0.2
23 7.9 0.1
PDMS mixing ratio used for measurements presented in chapter 5.2

PDMS ratio in % Mean E in kPa for article Statistical error of the mean values in kPa
10 1.8 0.1
12 2.1 0.1
12.5 3.29 0.05
14 3.5 0.1

Table 4.2: Young’s modulus dependence on the PDMS solution mixing ratio. The shear moduli G were measured and
the Young’s moduli calculated. The mean values were determined from the measured values for the magnetic field
orientation of θ = 5 to 25◦. The error of the mean values is given by the statistical error.
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explainable by small deviations in the prepolymer mixing ratio as well as the mixing ratio of PDMS
and prepolymer solution. For PDMS mixing ratios where the Young’s modulus was experimentally
determined (see Tab. 4.2) the errors in computing the Young’s modulus mean values are given by
the statistical errors of the mean values. For PDMS mixing ratios where the Young’s modulus was
not experimentally determined the absolute value is extracted from the power law fit. The error
in the Young’s modulus can then be calculated with Gaussian error propagation by considering
the errors of the fit parameters rc, G0 and v. For example, the absolute value and the error of the
Young’s modulus of a 15% PDMS matrix is determined with (4.6± 0.8) kPa. The power law fit
is in the following used as calibration curve and gives the Young’s modulus of the cross-linked
PDMS matrices.
For the matrices used for the measurement in chapter 5.2 the Young’s modulus was again deter-
mined with the above in-situ method (blue stars in Fig 4.13). While for the 10%, 12.5%, and 14%
mixtures the values match the fit quite well for the 12% a strong discrepancy is observed. Looking
at the images of the rotating chain this can be related to the initial chain structure. During the
preparation, the particles slightly separated. Only the induced magnetic force pulls the particles
together to form a connected chain. Apparently, this causes the model of a rotating chain to be
not valid anymore. With help of the power law fit the Young’s modulus can be calculated for all
PDMS layers created after the procedure explained in the preceding sections.
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5 Magneto rheological elastomers with
discrete particle distribution

5.1 Field induced interactions in MREs

To get an idea of MRE’s macroscopic behaviour, an understanding of the underlying microscopic
processes is essential. To this end, it is inevitable to validate simulations via comparison with
experimental data. In the following a short summary of the work of Metsch et al. [116], for which
I conducted the experiments is given. A continuum approach (section 3.3.2), proposed in [112],
was used and local magnetic and mechanical fields were accounted. Systems with arbitrary
particles distances, shapes and volume fractions can be simulated. To keep the influencing
variables at a manageable level and facilitate comparison between simulation and experiment,
the samples contained particle configurations of only two, three and four particles, Fig. 5.1.
Sample preparation was done as described in 4.1.1. Nickel particles, as characterized in 2.1,
were used. Some distinct features of these measurements and the results are mentioned in the
following. Particle detection was done with a transmitted light microscope, section 4.3. To ensure
a similar magnetic field at the particle positions, it was of utter importance that particle were

Figure 5.1: Particles in the a) two, b) three and c) four particle configuration without magnetic field. Pictures served
to determine particle diameter and initial position. Axes were depicted to show the direction of y- and x-axis but the
origin of the coordinate system was defined to be in the center of particle number 1. [Reused from [116], 2020,
©IOP Publishing, CC BY 4.0, [116]]
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placed in the same height. As simulations were computed with spherical particles of identical size,
particles were selected to show a very good roundness and a similar size. In contrast to Puljiz et
al. [134] the initial particle distance was decreased to one particle diameter or less and hence
an inhomogeneous magnetization occurs. Particles should be prevented from touching, as the
simulation can not reliably compute a matrix that strongly deformed. Therefore, the preparation
process had to be adapted compared to the previous work of Puljiz et al. [134], where particles
were prevented from touching by a relative large initial inter-particle distance of more than three
particle diameters. To this end, the elastic stability of the surrounding PDMS matrix was increased
by adding 20wt% prepolymer mixture to the low molecular PDMS. Rheology measurements using
a plate-to-plate rheometer (section 4.3.3) determined a Young’s modulus of ≈ (5.20± 0.01) kPa

for the PDMS matrix. Though due to two reasons, some uncertainties on this value remain: The
first reason resulted from the used sample preparation. For the PDMS matrix two PDMS layer
were cast and the first PDMS layer was completely crosslinked before the second PDMS layer was
cast on top. As a result, these two PDMS layers did not cross-link among each other but were only
attached by adhesion. The second reason was the contact of the upper plate in the rheometer
measurement. The upper plate did not have perfect contact with the sample due to ridges at
the sample edges. Hence for comparison between experimental and simulation data the Young’s
modulus was determined during simulation to be ≈ 7.2 kPa [116].
Samples were positioned in the setup (see section 4.3) and illuminated from below. For every
particle configuration a picture without external magnetic field was taken Fig. 5.1. Thereby,
the particle’s initial positions and diameters could be determined, see table 5.1, and used as
input for the simulations. The origin of the system of coordinates was defined to coincide with
the center of the particle number 1. The diameter of each particle was calculated via their
projected area by assuming them to be spherical. The numeric simulations required magnetic
boundary conditions at the surface of the particles. Considering the experimental realization,
a 32-magnet Halbach-array (described in chapter 4.2) was used to create a homogeneous and
clearly defined magnetic field with flux density of ≈ 180mT . The Halbach-array consists of
permanent magnets and the measurements were quasi static as magnetic relaxation inside the
particle occurs significantly faster as field variations. Bearings allow to vary the magnetic field
orientation in the sample plane and a step size of ∆θ = 5◦ was chosen. Prior to the actual
measurements the Halbach-array was rotated a few cycles to guarantee reproducibility of the
particle movements and exclude the Mullins effect (section 4.3.1). Particle movement recording
and center tracking is described in chapters 4.3 and 4.3.1. As the magnetic field orientation was
rotated stepwise in the particle plane, a change in the inter-particle distance was observe. The
values of the inter-particle distance were calculated by Eq. 4.2 after the particle positions were
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Particle i xi inµm yi inµm zi inµm di inµm
two particle system

1 0 0 0 208
2 329 -29 0 223

three particle system
1 0 0 0 180
2 104 -279 0 182
3 269 -14 0 188

four particle system
1 0 0 0 200
2 303 -27 0 208
3 -25 -309 0 189
4 275 -344 0 211

Table 5.1: Particles initial position defined by their centers. Values for the two, three and four particle configurations
depicted in figure Fig. 5.1. The diameter of each particle was calculated via the area and assumption of spherical
shape. Point of origin was positioned in particle number one. As all particles lie on the same layer z-position was
taken as equal for all particles. Error in center detection due to optical resolution was estimated with an upper limit
of ±4µm. [Reused from [116], 2020, ©IOP Publishing, CC BY 4.0, [116]]

extracted, Fig. 5.2. Experimental measurements showed particle attraction, ∆d12 < 0, over a wide
angle range Fig. 5.2. In agreement with Biller et al. [17] in the angle region from 65◦ ≤ θ ≤ 125◦

Figure 5.2: Inter-particle distance over the magnetic field angle relative to the x-axis for the two particle configuration
depicted in Fig. 5.1. A magnetic attraction is observed except for the angle range of 65◦ ≤ θ ≤ 125◦. In this angle
region the particles magnetically repel each other. Particle movement determined by the simulation shows good
qualitative and quantitative agreement with the experimental data. [Adapted from [116], 2020, ©IOP Publishing,
CC BY 4.0, [116]]
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the particles feel magnetic repulsion.
Apart from a maximum deviation of 2.5µm at the transition of attraction to repulsion simulated
inter-particle distance accorded qualitatively and quantitatively with the experimental values
Fig. 5.2. A 3D simulation was used as a 2D simulation considers only particle motion in the
particle plane and would overvalue as out of plane motions were suppressed (see Fig. 6b in [116]).
Obviously, apart frommaterial parameters, the particle configurations govern the MRE´s behaviour
as the amount of mutual interactions is increased. To identify influences of additional particles on
the particle motion and to get an indication about the numerical simulation sensitivity, samples
with three and four particle configurations were produced, Fig. 5.1 b) and c). The initial position
of the three particle system used as input for simulations are listed in Tab. 5.1. The optimal
value for the Young’s modulus for the three particle system was determined to be ≈ 6.8 kPa.
For the three particle system a good match between experiment and simulations for distance of
particle 1-3 and 2-3 was observed. But simulation lacked to reproduce the distance of particles 1-2
accurately, Fig. 5.3. However, comparison of experimental and simulation showed a non-negligible
effect caused by the initial particle position. A vertical shift in the initial position of particle 2
by −5µm improved the agreement to the simulation, Fig. 5.3 dashed black line, even though,
this represents only a slight modification of 2.7%. Adapting the initial position improved the
numerical results, which can be explained by the fact that the real particles are not spherical.
Thus, determining their center in the out of particle plane direction (z-direction) experimentally

Figure 5.3: Inter-particle distance over the magnetic field orientation in relation to the x-axis for the three particle
configuration depicted in Fig. 5.1 b). The experimental data points are depicted for the inter-particle distance of
particle pair 1-2, 1-3 and 2-3. Results of the numerical simulation are given by the lines in the identical color as the
experiment. The simulation results are more consistent with the experiment if the initial position of particle 2 is
vertically shifted by −5µm (dashed lines). [Adapted from [116], 2020, ©IOP Publishing, CC BY 4.0, [116]]
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was only accurate to a certain point. For example, tomographic sample analysis could clear these
uncertainties by providing a 3D image of the particles and thus, a more precise particle initial
position.
Considering the four particle samples numerical results fit again quantitative and qualitative very
well, Fig. 5.4. The Young’s modulus was calculated with ≈ 7.3 kPa. Most discrepancy shows the
inter-particle distance of particle 1 and 4. Whether the deviation of the simulation results to the
experimental data can be traced back to the initial particle position or not can only be determined
by a full sample analysis e.g. X-ray tomographic imaging. With every particle added, uncertainties
increase, as the simulations assume e.g. particle sphericity. Even though, the accuracy of the
simulations of the four particle system is comparable to the two and three particle system.
Within the above section, simplified MRE samples comprising two, three and four particles were
subjected to a homogeneous magnetic field. The field orientation was rotated in the particle plane
and the particle movement optically detected. Using a microscopically continuum model, the
magnetic field induced interactions were simulated. Simulations agreed well with the experiments
even though, the simulation assume e.g. sphericity of all particles. Hence, the above introduced
simulation is a powerful tool to predict the microstructural interactions and thus, the particle
movement in MREs.

Figure 5.4: Inter-particle distance over the magnetic field orientation in relation to the x-axis for the four particle
configuration depicted in Fig. 5.1 c). Simulations show good qualitative and quantitative with the experimental data.
The accuracy is comparable to the two and three particle configuration. Whether the slight deviations are due to
inaccuracy in the assumed initial particle position only 3D images of the particles can prove. [Adapted from [116],
2020, ©IOP Publishing, CC BY 4.0, [116]]
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5.2 New strong magneto-active state

In previous section it was of utter importance to prevent particle from colliding. This was achieved
by creating PDMS matrices with a Young’s modulus of ≈7 kPa. Also for colliding particles exist
quite a few theoretical and experimental results [16,17,56,135,160]. To my knowledge, particle
collision was accomplished by either high magnetic field strength or by increasing the external
magnetic field to a certain value at which particles are able to get into contact. In the following a
new strong magneto-active state which is switchable by tiny alternations in the magnetic field
orientation will be shown. Compared to states switchable with the external magnetic field strength
this new magneto-active state is beneficial as a rotation of a constant magnetic field of this strength
is more easily to realize. The new strong magneto-active state is investigated with special focus on
system parameters like altered initial particle distance, Young’s modulus, magnetic field strength
and particle configuration.

5.2.1 Two particle system

In order to eliminate as many influencing variables as possible MRE´s including only two magnetic
particles were produced. To this end, two nickel particles (section 2.1) were carefully selected
to have a high sphericity and very similar size. The selection was carried out under an optical
microscope and using tweezers. The selected particles were then placed in the middle between
two PDMS layers as described in section 4.1.1. In a first step the initial particle distance was
altered while the Young’s modulus of the surrounding matrix was kept identical by using the
same PDMS solution batch. In order to exclude influences by the particle size experiments were
conducted with the exact same particles. Therefore, I extracted them from used samples and
cleaned the particles mechanically with tissues before reuse.

Deformation behaviour under alternated initial particle distance

Particles with diameter 186µm and 188µm were deposited in a cross-linked PDMS matrix with
mixing ration of 12.5%. A bulksystem was used (section 4.1.1) to eliminate matrix boundary
influences. Determining the Young’s modulus with the method described in section 4.3.3 resulted
in a Young’s modulus of (3.29±0.05) kPa. Pictures without magnetic field were taken to identify
the initial inter-particle distance. By the help of a micromanipulating device the initial inter-
particle distance was varied from (230± 5)µm to (259±5)µm. Particles with initial inter-particle
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distance well outside this range did not show the new magneto-active state. Therefore the
experiments are not reported here. Based on three representative samples the influences of the
initial distance on the particle movement under an applied homogeneous magnetic field will be
discussed.
Starting with the smallest initial distance the sample was positioned in the experimental optical
setup and the Halbach-array placed around the sample. As a result, the samples were exerted to a
homogeneous magnetic field with a flux density of ≈ 180mT . The difference to the maximum flux
density of 216mT was due to the fact that the sample was not perfectly centered inside the Halbach-
array but slightly shifted upwards in the z direction. Prior to the actual measurements at least
forty consecutive, full loading 360◦ cycles were applied with the Halbach-array as preconditioning
step. This made the experiments better reproducible as e.g. the Mullins effect was excluded.
At the beginning of the experiment, the magnetic field was orientated along the particle axis, i.e.
in x direction, if not remarked otherwise. Clockwise and couter-clockwise rotations produced
consistent results. Therefore, only the results for clockwise rotating magnetic field are depicted,
Fig. 5.5 a). The initial inter-particle distance is marked by the dashed lines. The magnetic
field orientation is altered in 5◦ steps in clockwise direction. In each step, a picture was taken.
Dynamical influence can be neglected as between every rotation step of the Halbach-array enough
time elapsed so that the particles could assume a steady state, i.e. elastic and magnetic torque

Figure 5.5: Exact same particles with different initial distance (dashed lines, 230, 241, 259µm). Matrix composition
was kept the same for the three samples [Young’s modulus of PDMS: (3.29±0.05) kPa]. Orange vertical line indicates
the magic angle of 54.7◦. For smaller initial distance particles stay in contact for higher angle difference β. Orange
arrows indicate the direction of the experiment. Starting position was β = 0◦. [Reused from [151], 2021, ©Springer
Nature, CC BY 4.0, [151]]
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matched. Particle tracking was performed with the ImageJ plugin Trackmate [165].
Two main particle configurations were observed: Particles are separated or in contact [Fig.5.5 b)].
Obviously, the particle configuration depends on the angle β between particle axis and magnetic
field orientation, Fig.5.5 b). Analyzing the particle movement step by step, starting with the
smallest initial inter-particle distance of 230µm at the magnetic field orientation θ = 0 → β = 0

[Fig. 5.5 a), red curve]: In this configuration the magnetic dipole-dipole force is strongest
and attractive as the induced particle magnetic moments point in the same direction along
the connecting vector, the particle axis. The magnetic force is strong enough to overcome the
counteracting elastic force that arises by particle movement such as particle displacement or
rotation out of the initial position. Consequently, particles collide and get into contact. This
collision is associated with a large deformation of the matrix between the particles, i.e. the
deformation field diverges locally. Small, locally limited matrix damages are the result. However,
as Fig. 4.9 a) showed, these small damages do not affect the particle movement for a large amount
of Halbach-array rotation cycles (magnetic field rotation cycles).
Rotating the magnetic field orientation relative to the particle axis increased the angle β as the
rotation of the particle pair was counteracted by the elastic matrix, Fig. 5.5 b). Though, the
coupled particle rotation was not completely prevented and the magnetic torque acting on the
particles leads to a rotation of the particle axis in the direction of the magnetic field orientation,
Fig. 5.5 b). Apart from the coupled rotation small variations in the inter-particle distance indicate
individual particle rotation around their center, Fig. 5.5 a). This originates from the particle
surface roughness. By individual rotation they are able to minimize their center to center distance
(inter-particle distance) and thus their magnetic energy.
Disregarding the small changes caused by the individual rotation, the inter-particle distance stays
constant for a wide angle range β from 0◦ to at least (60± 2)◦ (red curve), Fig. 5.5 a). The used
nickel particles are paramagnetic and thus, their magnetic moments are orientated along the
magnetic field direction. Hence, an increase of β equals a decrease in the magnetic dipole-dipole
force, Eq. 3.33, i.e. in a decrease of the attraction between the particle pair. Finally, the elastic
forces overcome the attraction and particles separate. Even a repulsion is observable as the
inter-particle distance increases beyond the initial distance, Fig. 5.5 a), dashed line. Continuing
the cycle, as β decreases particle attraction increases until it was strong enough and particles
collided again. A bistability effect between magnetic and elastic force leads to the hysteretic trend
in the inter-particle distance, Fig. 5.5 a), which is comparable to Fig. 5 in [17] and Fig. 3 in [135].
This makes the particle configuration strongly magneto-active because two points exist where a
tiny alternation in the magnetic field orientation changes the inter-particle distance strongly.
Additionally, the effects of inhomogeneous, nonlinear magnetization is experimentally detectable.
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It was already shown by simulations that particles in contact have an increased magnetization at
the contact point [135] and theoretical described that the dipole-dipole approximation does not
hold [16,19]. The experiments conducted in this thesis give experimental prove, as particles stay
in contact even for angles βm ≥ 54.7◦. This magic angle of 54.7◦ marks the point of sign change
in the magnetic dipole-dipole-force, Eq. 3.34, and hence a switch from attraction to repulsion,
Fig. 5.5 a), orange vertical line. Errors in specifying the magnetic orientation (see chapter 4.2) or
the particle position (see chapter 4.3.1) are systematic and thus, only depicted once in Fig. 5.5 a).
To identify how a varied initial inter-particle distance manifest itself in the particle movement,
exactly the same particles and matrix solution were used as concurrently the initial inter-particle
distance was altered.
Let me start this discussion with the initial distance of 241µm, Fig. 5.5 a), black curve. In
comparison to the sample with initial inter-particle distance of 230µm the inter-particle distance
for the particle couple in contact was smaller. This is a result of the particle surface roughness
and even though the identical particles were used the inter-particle distance in contact can vary.
Next apparent difference is the angle β = (47± 2)◦ at which the particles separated. The change
in the angle β can be interpreted in the following way: Since particles were positioned initially
further apart their displacement is larger, when jumping into contact, compared to the 230µm
particle pair. As a result the elastic force is increased while the magnetic force is in the starting
configuration decreased. Particles with highest initial inter-particle distance, Fig. 5.5 a), blue
curve, confirm this analysis and separated at an even smaller β = (42± 2)◦.
Additionally, the shape of the hysteresis changed. It was energetically preferable for the system to
increase the elastic energy and to decrease the magnetic energy, i.e, the inter-particle distance
became larger than the initial inter-particle distance before it decreased again. The second change
was observed at the point just before jumping into contact. The inter-particle distance was smaller
than the initial distance and the angle β smaller than for the separation. Those changes indicate
the increased elastic forces and thus, the changed ratio between magnetic and elastic forces
throughout the measurement. Similar for all three systems was the inter-particle distance just
before jumping into contact. This was also validated by Puljiz et al. [135] as mentioned in chapter
3.3.1. Their dipole approximation produced a good agreement with the experiments as long as
particles were separated.
Overall, for higher initial inter-particle distance, particles stayed apart for a wider range of
magnetic field orientations. At an even larger initial inter-particle distance the elastic forces is so
strong that the new strong magneto-active state vanishes. Non colliding particle pairs comparable
to [116, 134] are observed. For small initial inter-particle distance, particles stayed apart for
a smaller range of magnetic field orientations. At even smaller initial inter-particle distance,
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particles were not able to separate for any magnetic field orientation. Hence, for particles in the
new magneto-active state, a strong inter-particle distance change induced by tiny changes in the
magnetic field orientation, is characteristic.
Those changes in the particle displacement are crucial for application in actuators and will be
quantified in the following: With increasing initial distance (from 230 to 259µm) the inter-particle
distance changes after particles separate from 68µm (for 230µm) to 56µm (for 241µm) to 60µm
(for 259µm) and respectively from 53µm (for 230µm) to 47µm (for 241µm) to 42µm (for
259µm) for particles getting into contact. Setting the change in distance equal with the degree
of macroscopic deformation, tendency points to the fact that positioning the particles at a certain
initial inter-particle distances leads to a maximum deformation. Hereby, a smaller initial distance
seems to be preferable.
Finally, as mentioned, the inter-particle distance always depends on the ratio of elastic to magnetic
energy because the magnetic force displaces the particles while the elastic force tries to restore
the initial configuration. Biller et al. [16, 17] could show, that a bistability in the total energy
(sum of magnetic and elastic energy) exists, meaning that the collided and separated particles are
minima of the total energy. The transition from one minimum to another happens in a hysteretic
manner when the external magnetic field strength along the particle axis is increased or decreased.
With the experiments presented, it could be shown that this hysteretic transition happens also
when varying the angle β between external field and particle axis. Furthermore, it was proven
with the presented experiments that only a range rb for the initial particle distance exists with
rmin < rb < rmax where the bistability occurs. This was also predicted by Biller et al. [16]. The
bistability effect also explains why the distance change for particles separating is larger than
for colliding. In contrast to Biller et al. a significant shape change in the hysteretic transition
was observed. Additionally, the collision occurred roughly at the same distance and seems to be
independent of the initial inter-particle distance.

Deformation behaviour under alternated Young’s modulus

In order for MREs to be used as actuators the mechanical stability plays an important role as
well. To this end the Young’s modulus of the PDMS matrix was varied by adapting the mixing
ration of the PDMS solution from 10 wt%, 12 wt% to 14 wt%. The three samples include
exactly the same particles. Under the assumption of spherical shape, the particle diameters were
209µm, respectively 201µm. Using the method from chapter 4.3.3 the shear modulus G was
determined in the magnetic field orientation range from 5 to 25◦. Calculating the mean value of the
corresponding data points and using Eq. 3.9 the Young’s modulus of the matrices was determined
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to be ≈ (1.8± 0.1) kPa, (2.1± 0.1) kPa, (3.5± 0.1) kPa. In order to eliminate influences due to
deviations in the initial inter-particle distance it was kept roughly equal: 302µm, 304µm and
309µm. In contrast to the previous measurement with varying initial inter-particle distance the
stepsize of the Halbach-array was decreased to 2◦. This allowed to depict the inter-particle distance
dependence on the angle β more accurately, Fig 5.6.
Beginning with a qualitative analysis: For all three matrices a clear hysteresis is depicted with
nearly identical shape compared to the previous measurement, Fig. 5.5. Particles separate at the
angle β = (55, 42, 28)◦, Fig. 5.6. In this case the increase of the Young’s modulus has a similar
effect on the hysteresis shape like an increased initial inter-particle distance in the previous
measurement. A transition to non-colliding particle pairs [116,134] is observed. This transition
starts in the way that the particles do not jump into contact but get into contact by small, step
wise decrease of the inter-particle distance (Fig. 5.6 red curve). Concerning the changes of the
inter-particle distance provoked by particle separation respectively collision, they were extracted
to be 47µm, 42µm, 25µm for collision respectively 110µm, 90µm, 76µm for separation. It is
quite apparent that a smaller Young’s modulus provokes a greater distance change during particle
separate or collision when the magnetic orientation is slightly altered. Similar to the alternating
distance measurement an asymmetry in the distance changes between particle collision and
separation is seen.

Figure 5.6: Same particles for the three measurements while matrix composition differs. Young’s modulus varies
from 1.8 to 3.5 kPa. The equilibrium distance is marked with dashed lines and was nearly equal for the three
measurements as it ranges from 302 to 309µm. Orange arrows indicate the direction of the experiment. Orange
vertical line indicates the magic angle of 54.7◦. Starting position was β = 0. [Reused from [151], 2021, ©Springer
Nature, CC BY 4.0, [151]]
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Deformation behaviour under alternated magnetic field strength

To investigate the influence of the magnetic field strength on the new strong magneto-active
state, the MRE sample containing two particles was moved in z-direction out of the center of the
Halbach-array. The sample size was such that particles still feel a homogeneous magnetic field in
the x-y plane. Due to an increased gradient in z direction particles might be pulled downwards
thought. As this force acts on both particles equally, they were still positioned in the same plain. A
PDMS solution with mixing ration of 10% was poured for the matrix and particles with diameter of
209µm, respectively 199µm, were placed with initial inter-particle distance of 302µm. Decreasing
the magnetic flux density from 180mT to 40mT the system transitions to non-colliding particles
and the hysteresis vanishes, Fig. 5.7. Compared to the previous measurements as function of
the Young’s modulus or initial inter-particle distance, the decrease of the magnetic flux density
had not much influence on the angle at which particles separate. For 180mT to 100mT the angle
diminished from 54.9◦ to 54.1◦ so the change is smaller than the tolerance in the angle resolution.
The independence of the separation angle on the magnetic flux density from 180mT to 100mT
can be explained as a change of the magnetic flux density, i.e. in the magnetization of the particles,
only affects the magnetic dipoe-dipole force with the second power. Also the distance changes
induced by particle separation or collision differs only slightly (see table Tab. 5.2). Consequently,
the new strong magneto-active state is not as strongly affected by a change in initial distance or
external magnetic field strength like it is by a change of the Young’s modulus. This new state is
strongly dependent on the ratio between elastic and magnetic force and thus, only stable for a

Figure 5.7: Same MRE sample containing two particles while the magnetic flux density was decreased from 180mT
to 40mT . At 40mT the new strong magneto-active state does not exist anymore.

74



defined range of initial inter-particle distance, Young’s moduli of the PDMS matrices and magnetic
field strength.

B in mT ∆d inµm (separation) ∆d inµm (colliding)
180 110 94
160 112 100
100 111 92
80 106 82

Table 5.2: An exemplary two particle MRE sample was subjected to various magnetic flux densities by shifting
the sample out of the Halbach-array center. The distance changes induced by particles separating or colliding are
extracted from Fig. 5.7.

5.2.2 Three particle system

In the previous section, two particle MREs showed a new strong magneto-active state. It is
characterized by a strong change in the inter-particle distance by a few degree alternation of
the external magnetic field orientation. At larger initial inter-particle distance, higher Young’s
moduli and/or weaker magnetic field strength the new strong magneto-active state transitions
to non-touching particles. In contrast, for smaller initial distances and/or lower Young’s moduli
particles never separate. In order for MREs to be used in applications they need to contain
a notable volume amount of magnetic filler particles. To gain more insight in the effects of
increasing particle numbers, the system was expanded by a third particle, Fig. 5.8 a). This enables
to investigate the mutual interactions between elasticity and magnetization and how the new
strong magneto-active state is influenced by the presence of a third particle.
Therefore, three particles with roughly the same diameter (Tab. 5.3) were embedded in a 12.5%
PDMS matrix with Young’s modulus of ≈ (3.29 ± 0.05) kPa. In order to eliminate symmetry
influences, it was the aim to achieve the same initial distances between particle 1&2 and 2&3
(Tab. 5.3). The used sample preparation method facilitates particle positioning but still, due to
particle roughness, same initial inter-particle distances were only achievable to a certain degree.
The sample was subjected to a homogeneous magnetic field of 180mT by placing it in the center
of the Halbach-array. The particle axis is in the following defined as the center-to-center vector
between two adjacent particles, i.e. for the three particle system, Fig. 5.8 a), between particles
1&2 and 2&3.
Starting with the magnetic orientation aligned along both particle axis all three particles formed
a contacting particle chain. Beginning at β = 0◦ and continuing the rotation cycles separation

75



Figure 5.8: a) Three particles in a row. Magnetic field direction is indicated by the black arrow. b) Particle distance
over angle difference. Dashed lines mark the equilibrium distance of the two respectively three particle system. The
samples had the same Young’s modulus of 3.29± 0.05 kPa. [Reused from [151], 2021, ©Springer Nature, CC BY
4.0, [151]]

Particle i Diameter inµm Initial ∆r to i particle inµm
1 161 i=2 ∆r=256 ; i=3 ∆r=494
2 165 i=1 ∆r=256 ; i=3 ∆r=238
3 158 i=1 ∆r=494 ; i=2 ∆r=238

Table 5.3: Particles numeration, their diameter and the initial inter-particle distance to the neighbor particles. The
inter-particle distance is defined from particle center to particle center. Values are for the three particle in line
configurations depicted in figure 5.8 a). The diameter of each particle was calculated via the area and assumption of
spherical shape. Error in the inter-particle distance determination due to optical resolution was estimated with an
upper limit of ±4.68µm.

and collision events occur comparable to the two particle system Fig. 5.8 a). Minor deviation in
particle size and initial distance cause systematically the particle pair with higher initial distance
to separate first. Even though the angle β ≈ (57± 2)◦ at which separation takes place is equal for
both particle pairs within the limits of the error. While the hysteresis shape of the closer particle
pair 2&3 is nearly identical to the two particle system, the hysteresis for 1&2 shows some distinct
new features Fig. 5.8 b).
First of all, a comparison between particle pair 2&3 with the two particle system with initial
distance of 230µm, Fig. 5.8 b) black dots, was done. This is possible, as parameters such as
Young’s modulus (12,5% PDMS mixture), initial inter-particle distance etc. were nearly identical.
Only a slight difference in the initial inter-particle distance (two particle system: 230µm) has to
be considered. Based on the dependence of the hysteresis shape on parameters such as Young’s
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modulus or initial inter-particle distance, section 5.2.1, the observed shape changes are mostly in
agreement. As expected the angle at separation was smaller for the 2&3 particle pair β = 57◦

compared to the two particle system β = 60◦. Then again, the distance changes for particle collision
and separation of 61 & 74µm were higher compared to the two particle system (54 & 71µm).
These higher distance changes differ from previous observed tendency as the measurement with
varying initial inter-particle distance showed decrease for larger initial inter-particle distance.
This differences could be connected to the influence of the third particle. If so, the influence of
the third particle seems beneficial and consequently the new strong magneto-active state exists in
the three particle system as well.
Comparing the hysteresis shape of 1&2, Fig. 5.8 b), with the two particle system with initial
distance of 259µm, clear significant changes are depicted. The area the hysteresis encloses is much
larger for the particle pair 1&2 and after separation particles attain their highest inter-particle
distance. At an angle β = (57± 2)◦ particles separated. Regarding the shape and separation angle
β, the hysteresis of particle pair 1&2 shows much more similarities with the hysteresis of particle
pairs with smaller initial inter-particle distance. Three data points show a sudden and significantly
distance decrease, Fig. 5.8 b). This decrease can be related to the behaviour of particle 2&3 and
occurs when 2&3 are in the separated state. Hence, this proves that the inter-particle distance of
particle pair 1&2 is strongly affected by the movement of the neighboring particle pair which is in
good agreement with the theoretical prediction of matrix mediated interaction [133,135]. Also
the magneto-active state is enhanced and distance changes of 122µm (separation) respectively
84µm (collision) were extracted. Those exceed by far the distance changes of the particle pair
2&3 (74µm and 61µm) and of the two particle system with similar initial distance (60µm and
42µm).
To get a better understanding of the particle movements, a more detailed analysis of the acting
forces will be performed. All quantities to calculate the magnetic dipole-dipole force were given,
i.e. the magnetic moment of the particles was obtained from their volume and the SQUID
magnetization curve (section 2.1) and the position for every magnetic field orientation by the
particle tracking. While particles lie along the x-axis, the magnetic field was orientated along
the y-axis in the starting configuration. Thus, all particles were separated and magnetic forces
minimized. When starting to rotate the magnetic orientation, the magnetic force changes from
repulsive to attractive. Once the attraction is stronger than the restoring elastic force, particles
jumped into contact and a jump in the magnetic net force was observed, Fig. 5.9 a) (marked,
e.g. once with a purple arrow). For the separation of the particles similar jumps in the magnetic
net force are visible, Fig. 5.9 a) (marked, e.g. once with a dark red arrow). Furthermore, forces
on particle 1 and 3 show a similar trend, Fig. 5.9 b). They differ mainly due to the fact that
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Figure 5.9: a) Magnetic dipole-dipole force over the magnetic field orientation for each oft the particles in the three
particle system and for the particles in the two particle system with initial inter-particle distance of 230 and 259µm.
The purple arrow marks a point just before collision. The dark red arrow a point just before separation. Clear jumps in
the magnetic net force are visible. b) The magnetic dipole-dipole force dependence on the magnetic field orientation
for each oft the particles in the three particle system. Blue arrows mark rotations of particle 1 and 3 around their
center.

particle 2 collides, for symmetry reasons, first with particle 3. The force curve of particle 2 shows
huge deviations. Here the collision with particle 1 minimizes the net force as it is directed in
the opposite direction of the force particle 3 exerts, Fig. 5.9 b). Small symmetrically reoccurring
jumps marked in Fig. 5.9 b) with blue arrows occur because once particle 3 and then particle 1
rotate around their center creating a sudden distance change. Comparison with the two particle
systems of nearly equal initial distance reveals also a qualitative similar trend. Magnetic force is
mostly altered for particle 2 while particles were in contact. Maximum values were larger for the
two particle system. This can be connected to the larger particles used in the two particle system.
Comparing the increase, respectively decrease, of the magnetic net force at the collision and
separation points of the two and three particle system, no clear trend could be determined. Hence,
considering only the change in the magnetic force when the inter-particle distance changes can
not explain the enhanced magneto activity of particle 1&2. Unfortunately, the elastic interaction
is much more complex to calculate and is not included in this discussion.
Finally, the distance between particle 1 and 3 indicates if a long range new magneto-active
state exists, Fig. 5.10. Here, also the new magneto-active state is visible and a distance change
of 174µm respectively 160µm is achieved. But it occurs stepwise as not all particles collide or
separate at once. Such the overall distance can only be stepwise adapted but also empowers to
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Figure 5.10: Three particle system. The particle distance between particle 1 and 3 for corresponding angles β
between particle axis and magnetic field orientation. Particle 1 and 3 had an initial inter-particle distance of 494µm,
marked with a dashed line. For three angles β all three particles are separate.

assume an intermediate contraction.

5.2.3 14 particle system

The previous analyzed three particle system showed major changes in the inter-particle distance
caused by tiny magnetic field orientation alternation. This relation is characteristic for the
new strong magneto-active state. The particle pair with the smaller initial distance was nearly
unaffected in its movement by the third particle. In contrast the particle pair with higher initial
distance revealed an enhancedmagneto-active configuration, i.e. the inter-particle distance change
for separating and colliding particles was enhanced. Locally the system acted according to a two
particle system, global distance changes, i.e. distance change between the edge particles, were
only reached over an intermediate particle distance step. For actuators especially global distance
changes are essential to create an overall deformation. To investigate how the overall kinetics
of colliding and separating particles is influenced by further magnetic and elastic interactions,
the system was expanded to fourteen particles, Fig. 5.11 a). In order to link particle distance
changes to macroscopic matrix deformation the system is thinned as described in section 4.1.2.
The thinning increases the matrix flexibility and thus, might makes the deformations surface
accessible.
Samples were centered in the Halbach-array with particles aligned along the x-axis and the
magnetic field was orientated in y-direction for starting configuration. Here already two particle
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Figure 5.11: a) fourteen particles in a row. Particles 8 to 12 are highlighted. The image was taken under zero
magnetic field. b) Particle formation of particle 8 to 14 for different magnetic field orientations (black arrow). In the
top image starting from the left particle 8 to 12 is visible. In the middle image particle 13 and in the lower image
also particle 14 appear. [Reused from [151], 2021, ©Springer Nature, CC BY 4.0, [151]]

pairs have collided. They did not separate for any magnetic field orientation hence were not in
a magneto-active state. When the magnetic field was orientated along the x-axis the attractive
magnetic force between the particles was strongest and more particles were able to get into
contact. Particle groups of two, three and four particles evolved. Apparently, for no magnetic
field orientation a chain forms that contains all particles. Instead particles formed well separated
particle groups with varying particle number, exemplarily shown for particle 8 to 14 for different
magnetic field orientations, Fig. 5.11 b).
In section 5.2.1, the sensitivity of the new magneto-active state to the initial inter-particle distance
was shown. Analyzing the initial distances between neighboring particles provides hence first
indication which particle pairs could be in the magneto-active state. Prior to the actual magnetic
measurements a picture under zero magnetic field was taken. Their initial position is determined
and depicted as colored circles in Fig. 5.12. Particles that were able to get in contact are marked
in identical color. The field-free distances with the next neighbor particle were calculated and
are plotted as data points in the middle between the particle positions, Fig. 5.12 black squares.
When linking the initial inter-particle distance with the particle group formation, it was observed
that small initial inter-particle distance lead particles to collide first, Fig. 5.12 black arrows.
Additionally, particle groups that stay well separated show a high initial particle distance indicated
by the peaks in Fig. 5.12. At the example of the three particle group (Fig. 5.12 magenta) and four
particle group (Fig. 5.12 red) it was observed, that an initial distance smaller than at least one
neighbor particle pair was crucial for particles to get into contact. To get a better understanding
of the particle movement a closer analysis of the kinetics is carried out.

80



Figure 5.12: Initital inter-particle distance of the fourteen particles in row configuration. The initial inter-particle
position between adjacent particles is shown by the black dots connected with a black line. The initial position of the
particles is indicated by the colored circles. Circles of the same color are used for particles that were able to get into
contact.

To this end, the five particles marked in Fig. 5.11 a) are investigated more closely. Concerning the
particle configuration for different magnetic field orientations, groups consisting of three and even
four particles were observed, Fig. 5.11 b). Particles of both groups were in the magneto-active
state comparable to the two and three particle systems which were previously characterized,
section 5.2.1 and 5.2.2. In order to get an idea why these particle groups stayed well separated,
especially the edge particles 10 and 11 need to be investigated. This is done in regards to their
inter-particle distance and the magnetic force acting on either of them. As the matrix mediates the
particle displacements, the particle movement of the adjacent particles 9 and 12 were considered
as well, Fig. 5.13.
Taking a closer look at the inter-particle distance of particle pairs 9&10, 10&11 and 11&12,
some significant distance changes are visible. The distance changes marked with a orange arrow
occurred due to collisions or separations of adjacent particles (8 or 13), the distance changes
marked with blue and red arrows were the particle collision of the addressed particle pairs, Fig.
5.13. The particle pairs 8&9 and 12&13 did not significantly matrix mediate their distance
changes to the particle pair 10&11. Quite the contrary was observed for the distance changes
between particle pairs 9&10 and 11&12. Their distance changes are clearly depicted in the
distance between particle pair 10&11, Fig. 5.13 black arrows. The distance changes marked
with purple arrows indicate rotations of particle 10 or 11. How those distance changes between
particle 10 and 11 affect their magnetic interaction will be discussed in the following.
By means of Eq. 3.32 the magnetic net force and its direction acting on the particles 10 and 11
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Figure 5.13: Particle distance between particle pairs 9&10, 10&11 and 11&12. Clear jumps are visible. Jumps
induced by adjacent particle 8 or 13 are marked with an orange arrow. Separation and collision of particle pair 9&10
and 11&12, marked with blue and red arrows, induced a significant distance change between particle 10 and 11,
marked with black arrows. Smaller distance changes between particle 10 and 11, marked with purple arrows, are
caused by particle rotations of particle 10 and 11. [Adapted from [151], 2021, ©Springer Nature, CC BY 4.0, [151]]

was calculated for every magnetic field orientation. Only the interaction with the two nearest
neighbor particles was considered. Using the particle position as starting point, the magnetic force
was plotted for every position the particles occupied during one full 360◦ cycle of the magnetic
field, Fig. 5.14. Only small attractive magnetic forces along the particle axis between 10&11
were observed. On the one hand, these small magnetic forces were due to the large particle
distance between particle 10 and 11. On the other hand by the strong magnetic force from their
neighboring particles acting in the opposing direction, i.e. the net force along the particle axis
between 10&11, was small in comparison to the surrounding particles. The strongest attractive
force occurs when particle 10 was in contact with particle 9, opposing the force between particle
10 and 11. Same counts for particle pair 11&12. Hence, the splitting into particle groups can
be described as follows: The particle distance 10&11 was initially slightly larger than between
9&10 and 11&12. This was sufficient that particles 9&10 and 11&12 collide primarily. Those
collision increase the distance between particle 10 and 11. As a result the attractive magnetic
force between particle 10 and 11 was small compared to the surrounding particles and particle
pair 10&11 was not in the magneto-active state. Thus, the particle groups stayed separated for
every magnetic field orientation.
The fourteen particle system has some similarities with the model and simulation of Goh et al. [56].
A comparison will be carried out though. For a detailed description can be found in [56]. Goh,
et al., used a dipole-spring model to simulate the particle dynamic of a particle chain consisting
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Figure 5.14: Particle position of particle 10 and 11 during a full 360◦ cycle of the external magnetic field. The particle
positions of particle 10 are marked with blue points and the positions of particle 11 are marked with red points.
Black arrows indicate the strength and direction of the acting magnetic force.

of N spherical particles. The total energy of the chain is given as follows: Harmonic springs
with stiffness k and length a account for the elastic interactions. The magnetic dipole–dipole
interaction was calculated taking nearest neighbor interaction into account and assuming identical
magnetic moments for each particle. Finally, to prohibit a collapse of the chain a steric repulsion
was introduce. All those contributions were summed up to obtain the total energy of the system.
Since only the contributions of adjacent particles were considered the total energy was written in
form of a pairwise energy e(r), where the individual contributions only depend on the distance r
to the nearest neighbors.
Different scenarios for the touching/separation dynamics along the chain were presented for
various regimes of the pairwise energy e of the chain system. Using two independent control
parameters, the particle’s magnetic moment m⃗ and the initial distance between adjacent particles,
the pairwise energy landscape could be adapted (one minimum, two minima etc. see Fig. 2
in [56]). The energy landscape could be divided according to the value and sign of the first
derivative e1 and second derivative e2 of the pairwise energy function with respect to r. Equilibrium
particle configurations correspond thereby to e1(r) = 0 and the relaxation dynamics was governed
by the second derivative. In contrast to the simulations the experimental measurements were
quasi static. Hence, the immediate particle dynamics such as simple relaxation or shock-wave
propagation after an instantaneous magnetic field was applied could experimentally not be
observed [56]. Experimentally, the equilibrium configuration of the particles were investigated
and not the relaxation dynamics of the particle chain.
Out of the emerging scenarios of Goh, et al. [56], one, where particle pair building is a stable
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condition, is used to make a comparison to my fourteen-particle system. In the article of Goh, et
al. [56], the authors observed particle pair formations for a moderate magnetic moment and an
initial distance between adjacent particles where e(2) < 0. Beside the two particle configuration
near e(2) = 0 also particle configurations with more particles per group were observed during the
simulations. These heterogeneous states were stable and no uniform equilibrium configuration
was observed. Similarly, the fourteen particle system formed particle groups and not an overall
connected particle chain. Observed particle groups consist of two particles to four particles. This
would indicated, that the experimental system was in the parameter range leading to these
heterogeneous state, i.e. in the pairwise energy regime of e(2) ≤ 0 [56].
Concerning the relaxation dynamics, the results of the fourteen particle system is difficult to
compare to the simulations as the magnetic field is not instantaneous applied and the particle
motion is not time resolved. During the stepwise rotation of the magnetic field orientation, pair
formation does not necessarily start at the edge particles as shown in the simulation. But as a no
homogeneous particle distribution existed in the experimental system, Fig. 5.12, particle group
formation starts with particles with smallest initial inter-particle distance. This was mentioned
in [56] as well. They stated, that heterogeneity in the initial particle distance leads to different
initiation spots of the formation processes. Considering the results, the experimental fourteen
particle system seem to be, regarding the dynamics and equilibrium state, in the bistable energy
regime, i.e. e(2) ≤ 0, described by Goh et al. [56].
Finally, scenarios described in [56] were strongly governed by the pairwise energy. Since the
pairwise energy depended on the magnetic moment m⃗ of the particles and the initial particle
distance between adjacent particles the fourteen particle system can be adapted. The initial
particle distance remains identical but by shifting the sample to a higher z position in the Halbach-
array the magnetic moment m⃗, was varied. By varying the magnetic field strength between 170
and 45mT , i.e. decreasing the magnetic moments m⃗ of the particles, the particle group size was
analyzed. To this end, the magnetic orientation was altered from 0 to 360◦ in 5◦ steps and an
image was taken after each step. Afterwards, the number of particle groups with n particles
per group was counted for every magnetic field orientation and summed up, Fig. 5.15. For the
small magnetic fields, magnetic moments were small and the system transitions to the uniform
equilibrium state described in [56]. In this scenario, no particle pairs formed because elasticity
forces predominate. Increasing the magnetic field up to it´s maximum of 170mT a clear tendency
to building particle pairs was observed. In summation over all magnetic field orientations, still
a group size of two particles is preferred but also groups with higher particle numbers form.
Maximum group size was four particles. Therefore, for even higher magnetic moments a transition
to the uniform case where all particles form a chain is assumed.
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Figure 5.15: Group amount of particle groups with n particles for all corresponding magnetic field directions. For
small magnetic flux densities the particles stayed separated. With increasing magnetic flux density the particle
number per group increased. At a magnetic flux density of 170mT particle groups of four particles formed. [Adapted
from [151], 2021, ©Springer Nature, CC BY 4.0, [151]]

As describe at the beginning of this section, locally particles were still in the magneto-active
configuration, similar to the two and three particle system. But as shown for particles 10 and 11,
interaction with adjacent particles prevents a collision. This also affected the distance change
between the ending particles 1 and 14. Apart from small distance jumps that only alternated
the overall distance by ≈1%, a smooth sinus-like change is shown, Fig. 5.16 a). Maximum
and minimum distance between particle 1 and 14 differ by ≈4.5%. The transition from the
minimum to the maximum can not be generated by a small alternation in the external magnetic
field orientation, Fig. 5.16 a).
Compared to the two and three particle samples, where matrix thickness was significantly higher
than the particle movements, the samples used for the fourteen particle system was much thinner
and showed some macroscopic deformations. In the resulting particle images clear dark and
bright areas were visible for different particle configurations, Fig. 5.16 b). Particle collision pushes
the incompressible matrix between the particles out. This deformed also the surface and thus,
causing light to diffract differently compared to zero magnetic field configuration, leading to
bright and dark areas in the images, Fig. 5.16 b). But unfortunately a quantification of the surface
deformation could not be achieved so far.
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Figure 5.16: a) Particle distance of the ending particles 1 and 14 for the corresponding magnetic field orientations.
Only small jumps in the distance are visible. The difference between maximum and minimum distance is ≈ 4.5%. b)
Real images of the fourteen-particle system. The upper image was taken at zero field. The lower image was taken
with the magnetic field orientated along the particle axes. Clear dark and bright areas are visible in the magnetic
field image.

5.3 Particle lattices

In numerous theoretical as well as experimental investigations of MREs it was shown, that the
spatial particle distribution effects strongly the magnetically created deformations (magnetostric-
tion) [34,38,72–74,82,113,148,181]. Theory approaches are in most cases based on either the
macroscopic continuum-mechanics or microscopic dynamics. While the macroscopic approach
neglects the discrete particle position and instead uses a demagnetization shape factor the micro-
scopic approach considers the exact local particle allocation. With the microscopic theoretical
approach it was calculated that the magnetic field inside a MRE depends on the local particle
distribution and thus, the behaviour of MREs. Experiments revealed various reactions of MREs
which depended on the internal particle structure. Particle formations such as chains inside the
MRE caused a contraction of the system along the field while an isotropic particle distribution
on the contrary leads to an elongation [34,38,82,181]. In previous studies it was shown that
particles in MREs with isotropic particle distribution rearrange into chain-like formation when
subjected to a magnetic field [160]. Additionally, the wavy-chain model of Han et al. [66] showed
that it is important to consider the particle alignment in order to describe the mechanical response
of a MRE accurate.
In the previous sections system with well defined particle distribution of up to fourteen particles
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were evaluated. They showed vast particle movements and particle distance could be change
by tiny alternation of the external magnetic field orientation. Apart from the initial distance
also the number of particles influenced the behaviour of their movement. Thus particles in the
fourteen particle samples resided only locally in the magneto-active configuration. But for large
systems, no sudden distance changes were observed. How the spatial distribution influences the
magneto-active configuration and particle group formations, shall be investigated in the following.
To this end, the systems were expanded to a five by five lattices. Focus was on the particle
group formation process. Particle group formation was analyzed regarding symmetry aspects and
number of particles per particle groups. Finally, the group formation was connected to changes in
the area the edge particles surround.

5.3.1 Particle groups formation

In order to create vast matrix deformation, particles need to be displaced over large distances.
In the previous sections, a promising magneto-active particle state with particles changing their
distance due to a tiny alternation of the magnetic field orientation was observed. Fourteen particles
positioned in a line revealed only locally deformation as groups of particles form. This inhibited a
large global deformation and the end-to-end distance changed only slightly (≈4.5%) in a sinus
like form as a function of the magnetic field orientation. In the following the system was expanded
to a two dimensional three by three, four by four and five by five particle lattice and particle
group formation was analyzed in respect to the lattice regularity.
All samples were produced according to chapter 4.1. In the following only specifications like
mixing ratio, sample thickness etc. are mentioned. I will compare lattices prepared in the same
way and discuss their differences and variability. Starting with the smallest system, a thin PDMS
layer was cast with mixing ratio of 12.5%, Young’s modulus of (3.29± 0.05) kPa and nine particles
were positioned in a three on three square (compare, e.g., the lattice in Fig. 5.17 a)). After
particles were encapsulated with yet another layer the sample was exposed to a homogeneous
magnetic field of 180mT by placing it in the center of the Halbach-array. Beginning with the field
orientated along the x axis, particle groups with three particles orientated along the field direction
form. While rotating the field orientation clockwise in 5◦ steps, particle groups first follow this
rotation, but with a diminished amplitude compared to the external magnetic field. At around 55◦,
the interaction of magnetic and elastic force causes the particles to rearrange. The former particle
groups decay, building new groups with up to five particles. When the field is orientated initially
in y direction, a similar picture arises. Particle groups of three particles form with direction in y.
But due to an irregularity in the initial particle distance along the y direction, as will be shown
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Figure 5.17: a) Exemplary three on three particle lattice. The PDMS matrix had a mixing ratio of 12.5%. b) Particle
group amount detected for all corresponding magnetic field orientations in relation to the particle number per group.
A clear tendency to form particle groups with three particles is shown.

later, only two of the three rows are fully connected. One row splits into one single particle and a
particle pair. Similar to the fourteen-particle sample, the jump in contact of the particles caused a
deformation of the matrix that induced darker and brighter areas around the particles. Particle
rearrangement happens instantaneous and changes the location of the darker and brighter areas
of the image. It shows that the particle group formation deforms the matrix. Comparison of a zero
field picture before and after exertion to the magnetic field showed unchanged particle positions.
In conclusion, the matrix seems to stay intact in spite of the multitude of particle displacements.
After describing the particle group formation qualitatively, the particle group distribution will
be analyzed in relation to the magnetic field orientation and group size. Therefore, particle
positions were tracked and particle center to center distances calculated. Whether particles could
be regarded as touching or not was identified by setting a limit value for the inter-particle distance
in the size of the particle diameter. As a result, the number of particles per particle group could be
assigned and the particle groups with exact same number of particles could be counted. This gives
the dependence of particle group size on the external magnetic field orientation. Summing up the
number of groups over all magnetic field orientations, a tendency is depicted. Apparently, the three
by three particle lattice forms in average groups with three particles per groups. This is depicted
through the peak in Fig. 5.17 b) black squares and even better when the number of groups is
weighted with the particle number per group Fig. 5.17 b) black open squares. Additionally, a
maximum group of five particles is forming for a field orientation of 145 to 160◦ and 325 to 340◦.
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As it is not observed for a magnetic field orientation of 55◦ or 235◦ relative to the x-axis, the
irregularity in the initial inter-particle distance along the lattice diagonal could play a roll.
In order to get any indication whether the irregularity in the initial inter-particle distance influences
the number of particles per particle group, the lattice was separate in particle squares of four
particles Fig. 5.18 a). Hence, only nearest neighbor particles were taken into account. For a
perfect square of identical particles, particles would be positioned in a 90◦ angel on the axis and
with identical inter-particle distance. This would imply particles positioned on the diagonal to
have an angle of 45◦ to the corners and a distance of

√
2 times the particle distance on the axis.

By extracting the particle coordinates, all angles and distances in each of the divided four particle
squares could be determined. In Fig. 5.18 b)-e) an exemplary four particle square is depicted and
all calculated particle distances and angles to identify the regularity of the lattice were marked.
Proceeding systematically, the lattice was first analyzed along the x direction. To this end, all left
upper angles of the square, marked with φ in Fig. 5.18 c), were computed and set in correlation
to the adjacent particle distance marked in Fig. 5.18 b) with x1. The mean value and standard
derivation were calculated from all four particle squares the lattice was divided in Fig. 5.18. For a
full characterization, also the facing angle marked with θ in Fig. 5.18 c) was taken into account.
In that case it was correlated with the distance x2, Fig. 5.18 b). Hence for the x direction two
mean values were determined. Subsequent for the diagonal and y direction the mean values were
calculated in similar manner. In y direction the angles φ an δ were assigned with distances y1 and
y2, Fig. 5.18 b), c). Respectively for the diagonal the angles β and ε with the distances dia1 and
dia2, Fig. 5.18 b), d), e).
Plotting the mean angles over the mean distances, Fig. 5.19, the deviation from a perfect square
lattice can be analyzed. The orange line marks the angle of 90◦ degree and the magenta line of
45◦. In the case of a perfect lattice, data points would lie on those lines. At first sight it is apparent
that particles have a greater overall initial distance in the y direction as in x direction. In addition,

Figure 5.18: a) The particle lattice was divided in squares of four particles in order to determine the initial inter-
particle distances and angles. b) Definition of the initial inter-particle distances in x, y and the diagonal direction
dia1,2. c) Definition of the angles between particles in the x and y direction. d) and e) Definition of the angles for
particles positioned on the lattice diagonal.
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Figure 5.19: Mean initial inter-particle distances and angles of the three by three lattice. Therefore, the mean initial
distances in x, y and diagonal direction were connected to the corresponding angles, 5.18. The orange line marks the
angle of 90◦ and the magenta line marks the angle of 45◦. For a perfect square data points would lie on those lines.

particles in y direction lie closer to a rectangular position than in x direction. Concerning the
diagonals, the plot shows that along one diagonal direction the particles are further apart as along
the other. For both diagonal direction particles along one axis lie in a nearly 45◦ angle, while for
the other axis the angle is smaller respectively larger.
When the lattice was orientated with its edges along the x and y direction particles exert strongest
magnetic interaction for magnetic field orientation along these axes and thus, it was observed
that chains of three particles form in the same direction. As the dipole force scales with 1

|r|4 (Eq.
3.34), in y-direction one particle row is interrupted due to the high initial inter-particle distance.
Considering the initial mean inter-particle distance along the axes, a small difference is observed.
This small difference cause particles along the x-direction x1,2 to stay in contact for more magnetic
field orientations as along the y-direction y1,2. A result, already observed for the three particle
system in the line configuration. Due to the larger particle number an increased number of mutual
magnetic and elastic interactions is generated. This, though, does not affect the particle group
formation along the axes.
Analyzing the particle group formation for magnetic field orientations along the diagonal direction
dia2 of the lattice, a chain size of up to five particles was observed. These chain sizes were observed
for field orientations of 145 to 160◦ and 325 to 340◦. However, for the other diagonal direction
dia1, i.e., orientations of 55◦ or 235◦ a chain size of maximum four particles was detected. Linking
the chain size to the initial inter-particle distance along the diagonal direction, an inverse relation
than along the axes was observed. Along the diagonal dia1 with the smaller initial inter-particle
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distance the chain size of maximum four particles was formed. Hence, for chain formation along
the diagonal the initial inter-particle distance seems not to be the regulating factor. This is
supported by the observation, that a direct connection of the diagonal particles did not occur
but via a particle positioned on one of the axes. Hence, ε and β, the angle between the particle
positioned on the diagonal and the particle positioned on one of the axes [Fig. 5.18 d), e)], could
be a determining factor for the particle group size along the diagonal direction. β was (45± 6)◦

respectively (49± 3)◦ and ε was (44± 4)◦ respectively (39± 4)◦. In the diagonal direction dia2
particles positioned on one of the axis were positioned in a smaller angle to the diagonal direction.
This creates a particle configuration in which the particles on the diagonal direction and on the
axes are more likely to magnetically attract each other and thus, more likely to form a chain.
Before continuing with larger lattices a short recapitulation: For the particle group formation along
the axes x1,2 and y1,2 the mean initial inter-particle distance is the determining factor. A smaller
initial inter-particle distance was beneficial and particles stayed in contact for more magnetic field
orientations. For particle group formation along the diagonal directions dia1,2 an inverse relation
to the initial inter-particle distance was observed. Particles along the diagonal with larger initial
inter-particle distance dia2 formed a larger chain than along the diagonal dia1 with smaller initial
inter-particle distance. Here, ε1,2 and β1,2, the angle between a particle positioned on the axis and
the diagonal particle were significant. A smaller angle creates a particle configuration where it is
more likely that particles simultaneously attract each other. In order to investigate the influence
of both parameters in systems with more mutual magnetic and elastic interaction, a four by four
and five by five particle lattice was prepared and analyzed identical to the three by three lattice.

Four by Four particle lattice

The samples were prepared as described in chapter 4.1 and the identical PDMS batch as for the
three by three lattice used. On the interface between the PDMS layers, a sixteen particle lattice
was configured. The sample was centered in the Halbach-array. The Halbach-array was rotated a
full 360◦ turn and the chain size analyzed, Fig. 5.20 a). In contrast to the three by three particle
lattice, no peak is observed at the lateral size of the lattice. The chain with maximum particle
number contained five particles and though more particles were present, maximum particle
number did not increase compared to the three by three lattice.
In order to link the initial inter-particle distance and the inter-particle angles to the group for-
mation process, the lattice regularity was analyzed as for the three by three lattice, Fig. 5.20 b).
Beginning with the magnetic field orientated along the x or y lattice direction, instead of chains
with four particles smaller particle cluster form. Comparable to the fourteen-particles in a line
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Figure 5.20: a) Particle number per group in relation to the number of groups with same particle number detected
for all corresponding magnetic field orientations. In contrast to the three by three lattice the four by four lattice forms
mostly particle groups of two particles. b) Mean initial inter-particle distances and angles of the three by three and
four by four lattice. The four by four lattice shows larger initial distances.

configuration, section 5.2.3, a splitting into particle groups with one, two or three particles was
observed. Considering the regularity of the lattice, Fig. 5.20 b), blue points, this can be directly
linked to the large mean initial-inter particle distances in x and y direction. It is even larger than
the mean initial inter-particle distance in y-direction of the three by three lattice. The mean initial
inter-particle distance in x- and y-direction was roughly the same and scattered less than the
mean initial inter-particle distance of the three by three lattice. Also the statistic of the group size
was identical, i.e., for the x as well for the y direction same number of groups with particle number
of one, two and three were identified. Considering the mean angles the lattice differs from a
perfect square. The deviation from the 90◦ is larger than for the three by three lattice. Despite
the angle entering the magnetic dipole-dipole force, this influence can be neglected compared to
the impact of a variation in the inter-particle distance, which scales with inverse fourth power.
Though, it locally might result in larger elastic restoring forces.
For field orientations along the diagonal direction, the highest particle number per chain was
extracted as previous for the three by three particle lattice. This time the higher particle number
was identified along the diagonal dia1 with smaller mean initial inter-particle distance and higher
angle between the diagonal and axes particles. Since for the three by three lattice quite the inverse
dependence between chain size and mean initial inter-particle distance respectively angles along
the diagonals was observed, local variations in the initial inter-particle distance, particle size and
inter-particle angles need to be considered. These three parameters can be determining whether
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the magnetic force is large enough to overcome the restoring elastic forces and thus, whether the
particle chain is a state of minimal energy comparable to the two particles in contact (section
5.2.1 and [17]].

Five by Five particle lattice

Next, the system was expanded to a five by five lattice. Sample preparation and characterization
was conducted identical to the three by three and four by four particle lattice. Analyzing the
chain size no peak was observed for five particles per chain, but chains with up to eight particles
were observed. If weighted with the particle number per group, groups containing two or three
particles were mostly represented, Fig. 5.21 a). Starting the discussion with the magnetic field
orientated along the axes, compared to the three by three particle lattice slightly larger mean
initial inter-particle distance, Fig. 5.21 b) red points, caused the particles to disintegrate into
small clusters. The more particles are involved in the group formation process the higher the
generated restoring elastic force and the system becomes more and more sensitive to the mean
initial inter-particle distance and local distance variances.
The mean initial distance along the lattice axes did not differ significantly, even though, the

Figure 5.21: a) Particle number per group in relation to the amount of groups with same particle number detected
for all corresponding magnetic field orientations. The five by five lattice forms mostly particle groups with two and
three particles. A small peak shows that also particle groups of seven particles were formed. b) Comparison of the
mean initial inter-particle distances and angles.
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resulting group formation did. For the magnetic field orientated in the y-direction particle connec-
tion occurred only in this direction. Whereas for the magnetic field orientated in the x-direction
particle connection also occurred in y-direction. This can only be explained by local fluctuations
in the inter-particle distance and inter-particle angles. As the mutual magnetic forces are reduced
on particle positioned at the edge of the lattice, they are more sensitive to local irregularities.
Additionally, for magnetic fields directed along the diagonals of the lattice, different particle
formations were observed. This cannot be explained by variances in the mean initial distances or
mean angles. Hence, local lattice imperfection (variances in angles and inter-particle distances)
as nucleation factor for particle group formations need to be considered. As the magnetic field
orientation was altered while the field was still applied not only the initial particle positions play a
role, but also the magnetic history of the sample. Hence, the more particles a system contains the
less significant the initial particle distances become and the more important the local magnetic and
elastic fields, i.e. the magnetic history of the sample. Therefore, in the following the focus will be
put on the particle group formation process in relation to lattice imperfections andmagnetic history.

5.3.2 Lattice imperfections and magnetic history

For a lattice containing few particles such as the three by three lattice, the system formed particle
chains expanding over the whole system. For lattices with larger particle number, such long chains
are impeded by the multitude of long range elastic and magnetic forces acting on the particles.
So whereas for the three by three particle lattice the mean initial inter-particle distance was still
linkable to the particle group size, for systems containing more particles the influence of local
imperfections and magnetic history increases.
In order to connect local imperfections, such as variances in the initial inter-particle distance,
with the particle chain formation process, distances between nearest neighbor particles were
calculated as in previous sections, Fig. 5.22 a). The solid lines mark the mean initial distance in x
(red line), y (black line) and diagonal (blue line) lattice direction. The dashed lines in the same
color indicate a deviation of 5% from the absolute mean value. All data points lying outside these
dashed lines show a strong deviation in initial inter-particle distance and represent imperfections
of the lattice. Particle pairs with an initial inter-particle distance smaller than the dashed lines
were connected with a blue line and those with a larger initial inter-particle distance with a red
line, Fig. 5.22 b). Both lattice imperfections can function as nucleation points for group formation
processes as follows: Particles with smaller initial inter-particle distance generate in comparison
to their surrounding particles higher magnetic forces, i.e. were more likely to overcome the elastic
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Figure 5.22: a) Initial inter-particle distances of all particle pairs in the five on five lattice. The solid lines mark the
mean value and the dashed lines mark a 5% deviation from the absolute mean value. b) A five on five particle lattice.
Particles that are comparably large are colored orange. Particle pairs that show an initial distance larger than 5% of
the absolute mean value are connected with a red line and particle pairs that show an initial distance smaller than
5% of the absolute mean value are connected with a blue line. c) Real image of the five on five lattice depicted in b).
The red arrow indicates the magnetic field orientation. Nickel particles are the black spots. d) Real image of the five
on five lattice depicted in b). The red arrow indicates the magnetic field orientation. Nickel particles are the black
spots. The red circled particle groups are connected at an angle to the magnetic field.

restoring forces. Particles with higher initial inter-particles distance generate weaker magnetic
forces and thus, were more likely to get in contact with surrounding particles. Therefore, it is
crucial to consider both kind of variances.
With the magnetic field aligned along the y edge of the lattice well separated particle groups of
maximum four particles formed, Fig. 5.22 c). Comparing the lattice imperfections, Fig. 5.22 b),
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with the particle group formation a good agreement was observed. All particle pairs exhibiting an
initial inter-particle distance 5% or more above the average distance, marked with a red line in
Fig. 5.22 b), stayed separated. All particle pairs exhibiting an initial inter-particle distance 5%
or more below the average distance, marked with a blue line in Fig. 5.22 b), got into contact.
Hence, the identification of variances (lattice imperfections) in the initial inter-particle distance
provides a good understanding of the particle group formation for magnetic fields orientated
along the edge of the lattice. For magnetic field orientated along the x edge of the lattice a similar
group formation process was observed. Particle pairs with initial distance 5% or smaller as the
absolute mean value were able to get into contact whereas particle pairs with initial distance 5%
or larger as the absolute mean value stayed separated. For particle pairs that showed no strong
deviation from the mean value a prediction was more difficult. In that case, the initial distance of
the surrounding particles, particle size and angle between the particles decided whether particles
collided or stayed separate. High aberrations of the angle from 90◦ in combination with a small
initial distance in y direction could also be the explanation that particle groups formed at an angle
to the applied field orientation, Fig. 5.22 d) red loops.
As the dark and bright areas in the images, Fig. 5.22 c) and d), indicate the matrix was strongly de-
formed by the particle displacements. Those displacements generate matrix mediated interactions.
Hence, the particle’s current positions need to be considered, i.e. the particle system is in kind of
"preloaded state". The influence of the preloading becomes more significant for magnetic fields
orientated at an angle to the lattice edges as the different particle axes take various orientations
in relation to the magnetic field direction. Tiny alternations in the magnetic field orientation lead
then to local changes in the ratio between elastic and magnetic force, i.e. particle groups separate
and regroup. Depending on the current particle positions, i.e. the current deformation fields and
magnetic forces, the regrouping can lead to particle groups with particle numbers exceeding the
lattice edge length. Thus, it is also difficult to link parameters such as initial inter-particle or
angles to the formation of those larger particle groups. These parameters are less significant and
the magnetic history becomes more important. This is supported when comparing the particle
groups for the same magnetic field orientation but different direction of rotation, Fig.5.23. Even
so the magnetic field orientation is similar different group formations are visible, Fig. 5.23.

5.3.3 Statistic on particle group formation

In order to identify parameters that influence the group size of particles nine PDMS samples
with a five by five particle lattice were prepared as in section 4.1.2. To keep the various possible
influences at a manageable amount, the identical PDMS solution with a mixture of 12%, i.e. a
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Figure 5.23: Image of the identical particle lattice. Ones the field was turned clockwise and ones counterclockwise.
For the same magnetic field orientation, black arrow, different particle groups form.

Young’s modulus of (3.1± 0.6) kPa, was used for every sample. Slight variations in the sample
dimension, i.e. in the sample thickness could not be excluded. The used sample preparation
facilitated a particle positioning, regardless imperfections in the lattice could not be prevented. In
the following the influence of local lattice imperfection on the particle group formation process is
analyzed in more detail.
Samples were centered inside the Halbach-array and the Halbach-array rotated a full 360◦ cycle.
Every 5◦ an image was taken. After detecting the particle position with TrackMate [165] the
particle group size was determined, i.e it was evaluated if particles touch. In this way, the particle
number per particle group was determined for every corresponding magnetic field orientation.
Summing up the number of groups with n particles per group, it could be identified whether
the lattice tends to form large particle groups (particle number n ≥ 4) or not, Fig. 5.24. The
group size was weighted with the number of particles per group. Three clear features could be
distinguished, Fig. 5.24: Lattices 2, 6, 9 showed large particle groups while lattice 7 showed a
shoulder at particle groups consisting of four and five particles and lattice number 4 did not form
large groups at all. Lattice 6 showed the least scattering in the mean initial inter-particle distance
and was taken as reference. In the following, lattices number 2, 4, 7 and 9 were compared with it.
Starting the discussion with lattice 2, the angle and particle distances were determined as in
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Figure 5.24: Amount of particle groups with the particle number of n for the five on five lattices 2, 4, 6, 7, 9. Lattice
2, 6, 9 show particle groups with particle number of more than five particle. Lattice 7 shows a small shoulder at
particle groups of four and five particles. Lattice 4 did not form large particle groups.

section 5.3.1 by dividing the lattice in squares containing four particles. Thereafter, the mean
value of the initial distance and its 5% tolerance was calculated. The mean value was marked
with a solid line, a black line for the y- and a red line for the x-direction of the lattice and the 5%
tolerance with a dashed line of same color, Fig. 5.25. Comparing it with lattice number 6 at first
sight it is apparent that lattice number 2 had a smaller mean initial distance in x- [(271± 21) to
(283± 17)µm] as well as in y-direction [(243± 17) to (281± 21)µm]. For fields directed along the
lattice axes more particle were able to touch in lattice 2, especially in y-direction where the mean
initial distance is much smaller. Overall the lattice 2 shows the tendency to form larger particle
groups. This might be due to the smaller initial distance in lattice 2. Considering the lattice
imperfections, lattice 6 was more regular as the scattering in the initial inter-particle distances
was smaller in lattice 6 compared to lattice 2. Particle pairs with significantly smaller or larger
initial distance than the mean value were less represented in lattice 6. Therefore, lesser nucleation
points for group formation exist for lattice 6 and thus, even so the initial distances are larger
compared to lattice 2 explain the similar group size of both lattices.
Continuing with lattice 4: In contrast to lattice number 6 no groups with particle number of more
than five were formed and also the amount of groups with four and five particles was considerable
lower than for lattice 6, Fig. 5.24. Considering the mean initial distance, only a small differences
in y-direction of 10µ, which was below the typical scattering of this distance, and no significant
difference in x-direction was observed, Fig. 5.26. Also the lattice imperfections were nearly
identical. Counting the particle pairs that show a deviation more or less than 5% from the absolute
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Figure 5.25: On the left side the mean initial inter-particle distances for each particle pair of the lattice 6 is shown.
The solid line mark the mean values. The dashed lines mark a 5% deviation from the absolute mean value. On the
right side the mean initial inter-particle distances for each particle pair of the lattice 2 is shown. The solid line mark
the mean values. The dashed lines mark a 5% deviation from the absolute mean value.

mean value, no difference is obtained, i.e. both particles are similarly irregular. Hence, a closer
look of the lattice imperfection and there position in relation to each other was done, Fig. 5.27 a)

Figure 5.26: On the left side the mean initial inter-particle distances for each particle pair of the lattice 6 is shown.
The solid line mark the mean values. The dashed lines mark a 5% deviation from the absolute mean value. On the
right side the mean initial inter-particle distances for each particle pair of the lattice 4 is shown. The solid line mark
the mean values. The dashed lines mark a 5% deviation from the absolute mean value.
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and c). Initial distances that were 5% or more larger than the mean value were marked with a
red connection line whereas shorter ones were marked with a blue connection line. In order to get
a tendency, how those imperfections influence particle group formation, particle position without
field, Fig. 5.27 a) and c), and particle position at the field direction, Fig. 5.27 b) and d) (the

Figure 5.27: Particle positions of the lattice 4 and 6. a) The particle positions of lattice 4 at zero field. Red respectively
blue lines mark particle pairs that show an initial value deviating of more or less than 5% from the absolute mean
value. b) Lattice 4 subjected to a magnetic field. The field orientation is indicated by a black arrow. Particles that got
into contact are marked with the same color. c) The particle positions of lattice 6 at zero field. Red respectively blue
lines mark particle pairs that show an initial value deviating of more or less than 5% from the absolute mean value.
Particles indicated with an orange arrow have a larger than average diameter. d) Lattice 6 subjected to a magnetic
field. The field orientation is indicated by a black arrow. Particles that got into contact are marked with the same
color.

magnetic field direction is indicated by the black arrows), for which largest group formation was
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observed, were plotted. Particles that touch when the samples were subjected to the magnetic
field were identically colored in the plot with zero field as well as for the plot with magnetic field.
In the case of the lattice number 4, particles with 5% larger initial distance as the mean value
stayed separated unlike particles with 5% smaller initial distance as the absolute mean value that
were able to get into contact. A slight different situation was observed for lattice number 6. Here
also particles with 5% larger initial distance as the absolute mean value were still able to get into
contact. Additionally, more particle pairs that did not show a significant deviation to the mean
initial distance got into contact. That particle pairs that showed an initial distance 5% larger
as the mean value were able to get into contact can be explained with a larger particle size of
some particles [marked with orange arrows in Fig. 5.27 c)]. The particles marked had a larger
diameter of roughly 20µm and therefore stronger magnetic interaction with their surrounding
particles. Even so particle diameter was in average 175µm for lattice 4 and 179µm for lattice 6,
i.e. quite similar for both lattices. Comparing the image before and after a 360◦ rotation cycle
of the magnetic field another aspect that accounts for the larger particles groups formed by the
lattice 6 was observed. In the lattice 6 particles changed their initial position either by a rotation
around their center and by being displaced in the particle plane. Hence, particles of lattice 6 had
a higher mobility than particles of lattice 4 and thus, formed larger particle groups. The multitude
of particle regrouping damage the matrix of sample 6 irreversible.
Proceeding with lattice number 7: The number of groups with more than three particles was less
than for lattice 6, Fig. 5.24. Nevertheless, groups of four and five particles formed resulting in a
small shoulder shape at the right side of the plot in Fig. 5.24 blue line. Analyzing the scattering
plot of the initial particle distances and angles a strong irregularity between x- and y-direction
was observed, Fig. 5.28. In x-direction a mean initial distance was determined with (251± 20)µm

whereas in y-direction it was (302± 22)µm. So while, compared to lattice number 6, the particles
in x-direction lie in closer approximation in y-direction they were positioned further apart. This
explains why unlike for a field orientated along the y-direction in x-direction particles were able
to touch and the group number with four and five particles was increased in contrast to lattice
4. Similar to lattice 4 the lattice imperfections determine mostly which particles were able to
get into contact and which not. Comparing the image before and after a 360◦ rotation cycle of
the magnetic field lattice 7 showed no particle position changes, i.e. no matrix damages. This
explains that unlike lattice 6 no particle groups were formed exceeding the particle number of
five.
Concluding with a comparison to lattice 9: Lattice 9 showed out of all lattice the highest number
and largest particle groups. An determination of the mean initial particle distance for lattice
9 provided values of (286 ± 15)µm in y direction and (315 ± 30)µm in x direction. So in both
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Figure 5.28: On the left side the mean initial inter-particle distances for each particle pair of the lattice 6 is shown.
The solid line mark the mean values. The dashed lines mark a 5% deviation from the absolute mean value. On the
right side the mean initial inter-particle distances for each particle pair of the lattice 7 is shown. The solid line mark
the mean values. The dashed lines mark a 5% deviation from the absolute mean value.

direction larger initial distances than lattice 6,Fig. 5.29. Additionally the discrepancy between x-
and y-direction was greater. So both factors that might facilitate particle group formation did
indicate that lattice 9 should form only small particle groups. An explanation was identified by
looking at the lattice before and after a full loading magnetic field cycle of 360◦. In case of lattice
9 nearly every particle changed its original position. The particle displacement largely damaged
the surrounding matrix leading to a larger particle mobility and hence particle groups with a
high number of particles formed. Such changes in the particle positions was also observed for
lattices embedded in a bulk sample, i.e. the difference in layer thickness was not the cause for
higher particle mobility and/or the large matrix damages. It is more likely that the multitude
of regrouping when particles form large particle groups destroys locally the PDMS matrix. Why
some lattices showed matrix damage while others stayed completely intact might depend on the
particle size, shape and surface roughness.
To sum the section up: Three distinctive particle group formation processes occurred in five by
five particle lattices. First one was that only small groups with particle amount smaller than
five particles formed (lattice number 4). Second scenario was, that also groups with a higher
number of particles formed especially with particle number of the size of the lattice edge length
(lattice number 7). Last formation process distinguished through particle groups with particle
numbers higher than the lattice edge length (lattice 2, 6 , 9). Since the elastic modulus of the
PDMS matrix was identical throughout the samples the interplay of two factors mainly dominated

102



Figure 5.29: On the left side the mean initial inter-particle distances for each particle pair of the lattice 6 is shown.
The solid line mark the mean values. The dashed lines mark a 5% deviation from the absolute mean value. On the
right side the mean initial inter-particle distances for each particle pair of the lattice 9 is shown. The solid line mark
the mean values. The dashed lines mark a 5% deviation from the absolute mean value.

the formation tendency: The initial particle distance and lattice imperfections such as strong
variances in the initial inter-particle distance. The mean initial distance in the x or y direction was
determining the group formation for fields orientated along the lattice edges. For small enough
initial distances groups of five particles formed along the lattice edge direction and produced a
shoulder like shape in the plot of the group amount, Fig. 5.24. Lattice imperfection provided for
all lattices an indication which particle pairs stay separated or got into contact. Nevertheless, the
imperfections could not explain the group formation of large particle groups. This was explained
by an increased particle mobility and matrix destruction. A irreversible particle movement, i.e.
matrix destruction was also reported by Gundermann et al. [61], for iron particles (average
diameter 35µm) randomly distributed in a PDMS matrix, after 4 s respectively 6.5 s exposure to
a field of 270mT . The higher mobility and matrix damage was identified by comparing images
before and after the rotation of the Halbach-array. Samples that showed large particle groups also
showed a change of the particle positions after the rotation of the magnetic field.

5.3.4 Field induced changes in the lattice area

In the previous section the tendency of particle lattices to form particle groups and the driving
factors were analyzed. This section aims to connect the mean number of particles per chain to
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the area particles inhabit. The particle area will not be directly connected to the quantity of
macroscopic deformations of the PDMS matrix, but indicates if the matrix was compressed or
elongated. Hence, a trend of the matrix´s magnetostriction can be implied. The lattices number
2, 4, 6, 7, 9 were taken and were analyzed as follows.
From the obtained particle positions, the edge particles were identified. Marking those in the real
image and comparing it with the tracked particle positions provides a good agreement Fig. 5.30
a) and b). Afterward the enclosed polygon area, marked with the yellow line in Fig. 5.30 a) and
b), was calculated. Therefore the areas underneath every edge particle with its adjacent edge
particles were determined and added up:

A =
n−1∑
i=0

Ai,i+1 (5.1)

with

Ai,i+1 =
(xi − xi+1)(yi + yi+1)

2
(5.2)

Hereby, n denotes the number of edge particles, x and y the particle coordinates and Ai,i+1 the
trapeze area between the x axis and two adjacent edge particles. A is the final polygon area
the edge particles encircle, Fig. 5.30. In order to connect the area to the number of particles

Figure 5.30: a) Real image of the particle lattice. The particle lattices was subjected to a magnetic field. With the
yellow line the edge particles are connected and the enclosed polygon area is calculated. b) Tracked particle position
of the edge particles of the lattice in a). The yellow line connects the edge particles and the enclosed polygon area is
calculated.
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per group, the mean particle number of the particle groups for the corresponding magnetic field
orientations was calculated:

x̄mea =
25∑25
n in

(5.3)

Herein, n denotes the particle number per chain and i the incidence of the particle group with n
particles was detected. To determine whether any correlation between average particle group
size and the encircled area exists, both trends were plotted for the five selected lattices, Fig. 5.31.
Thereby, the area was normalized to the area at zero field, i.e. gives the area in percent of the
zero field area.
Apparently, all lattices decrease their area in comparison to the zero field case, Fig. 5.31 blue
curves. The matrix seems to be always compressed by applying a magnetic field. Due to the
in-compressibility of the matrix the compression in the particle plane leads to an expansion in the
perpendicular direction. Furthermore, area variations of up to 10% were created by the rotation
of the external field. A strong dependency on the mean particle number per particle group was
observed. This was validated by comparing the area, Fig. 5.31 blue curves, with the mean particle
number per group, Fig. 5.31 black curves. The more particles in average were connected the
smaller the area the particles enclose. As a result, the lattice number 4, Fig. 5.31 b), with smallest
average particle amount per chain showed also the smallest change in the area for the application
of the field, ≈ 10% variation, as well as for the rotation of the field, ≈ 4% variation. The lattices 6
and 7, Fig. 5.31 c) and d), decreased their area in relation to the zero field case more significantly.
A rotation of the field induced particle group formation and led to area variations of ≈ 6% which
was not significantly higher than for the lattice 4. For lattice 2, Fig. 5.31 a), at least 8% were
reached. For lattice 9 a clear matrix damage is visible as the lattice area continuously decreases,
i.e. the mean particle number continuously increases over the magnetic field rotation cycle. In
contrast, lattices that exhibit no matrix damage (lattice 4 and 7) are symmetrical around 180◦
regarding the magnetic field orientation.
All particle lattices showed a tendency to compression the matrix when subjected to the external
magnetic field. This was indicated by the decreased area the edge particles enclose, Fig. 5.31 blue
curves. Especially if the lattice tends to form large particle groups, the orientation in which the
magnetic field was applied played a significant role as the area particles enclose was directly related
to the geometric mean group size: The more particles were in average connected, the smaller the
area the rim particles enclosed. Except for lattice 9, which showed significant matrix destruction,
all curves were quite symmetric around 180◦ magnetic field orientation. The incompressibility of
the matrix implies that the compression of the matrix in the particle plane leads to an expansion
of the matrix perpendicular to the particle plane.
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Figure 5.31: a)-e) Area of the lattices 2, 4, 6, 7, 9
normalized to the area at zero field, blue curves. For
lattice 4 and 7, a symmetry regarding the magnetic
field orientation is visible. Lattice 2 and 6 show clear
deviation from this symmetry and lattice 9 shows a
strong area decrease. The mean particle number per
particle group for the lattices is shown by the blue
curves. It corresponds inverse to the lattice area, i.e.
the higher the mean particle number the smaller the
area. The same symmetries as for the area are visible.
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5.4 Strategies to prepare larger lattices

In the previous chapter deformations of a five by five particle lattice were investigated. To be
able to study larger particle arrangements particle alignment was performed. This also safes time
and simplifies the particle positioning compared to 5.3. Additionally the influence of particle size
distribution should be eliminated. Thus spherical polystyrene-ironoxide-particles with diameter
of (4.69± 0.20)µm (Microparticles GmbH, PS-MAG-RhB-S2538) were purchased.

5.4.1 Particle alignment

Two main alignment procedures were carried out. One used convective/capillary forces while the
other used magnetic forces in order to align the particles in the designated structures. Structures
were produced either by creating an imprint from a photolitographic structured SU8 surface or a
structured silicon wafer. Therefore, Sylgard® 184 was poured over the structured surfaces. After
the Sylgard® 184 is crosslinked it can be pulled of and has imprinted the negative structure of
the SU8 or silicon wafer. This process is known as "replicated from a master".
The first alignment process used convective/capillary forced to align the particles. This process
was performed in collaboration with Patrick Probst and carried out at the Leibniz institute in
Dresden. Detailed information on the experimental setup can be found in [63] (and its supporting
information: Template-assisted colloidal self-assembly). Here, only the essential steps for the
particle alignment are mentioned. Prior to the alignment procedure particles were washed
to eliminate any stabilizing surfactants and as the contact angle plays an important role the
wettability of the PDMS substrate was increased by plasma activation with a plasma cleaner
for two minutes. Afterwards, a water droplet containing 5 vol% fluorescent labeled, spherical
polystyrene-ironoxide-particles with a diameter of (4.69± 0.20)µm (Microparticles GmbH, PS-
MAG-RhB-S2538) was positioned on the structured substrate. Subsequently, the droplet was
clamped between the substrate and a parallel aligned glass slide by decreasing the gap size
between them (gap≈500µm). The substrate was then moved laterally with a velocity of typically
1mm/s and the droplet was dragged over the surface. By adapting the gap size in combination
with the moving speed of the substrate, forces such as capillary can be adapted in a way that
particles aligned in the structures 5.32 a). For a detailed analysis of the forces acting during the
alignment procedure and how they are affected by parameters like the gap size the reader is
referred to [108,124].
The second process exploited the magnetism of the particles. A permanent magnet was attached
to the bottom of the structured substrate. Particles were not washed and a 5µl droplet from the
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Figure 5.32: a) particle alignment with convective/capillary forces. Exemplary the particle alignment in 10µm broad
lines is depicted. The fluorescent labeled particles are red. b) particle alignment with magnetic force. The particles
were aligned in squares with line thickness of 5µm. Image was taken with a 20× Mitutoyo objective mounted on the
mvBlueCOUGAR-S camera from Matrix Vision GmbH while the sample was illuminated from below.

particle solution purchased from Microparticles GmbH was deposit on the substrate. The droplet
was moved with a glass slide by pulling it manually over the substrate at an angle of ≈ 45◦ to
the substrate. Continuing this procedure until the droplet was dried resulted in nearly perfect
particle selectivity inside the structures 5.32 b). Due to the simplicity and higher efficiency of this
second method it was preferred over the first one to align the magnetic particles.

5.4.2 Transfer process

After the possibility to align the particles in every structure that was available, the obtained
arrangements needed to be transferred to the actual PDMS matrix material. Therefore a layer
of PDMS with mixing ratio of 6wt% was cast over the structured template. After crosslinking
a lift off process was started by pulling the cross-linked PDMS layer of the template. Though,
due to mechanically instability the PDMS layer ruptured during the lift of process. Adapting the
matrix mechanical stability and making it more stable by increasing the Young’s modulus lead
to the point that the lift of process was successfull. The matrix stiffening was accompanied by
suppression of particle movement as the magnetic forces acting on the particles were to small to
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overcome the elastic forces.
To further facilitate the lift-off process a sacrificial layer was used. This sacrifical layer could be
dissolved after the PDMS was crosslinked on top. To this end, master structure was replicated in
PVA by pouring a PVA solution on top of the silicon wafer or SU8. The PVA solution consisted
of 10wt% polyvinylalkohol (PVA, 113000 MW, 90% hydrolysation) solved in water at 80◦C
(compare section 4.1.2). After 24 hours at room temperature the PVA solution solidified and was
peeled off, leading to the negative structure imprinted. Afterwards, particle alignment was carried
out with the previous introduce magnetic alignment process 5.4.1. A nearly perfect selectivity
was observed (see Fig 5.32 b)). The next step included the casting of a layer of PDMS with
mixing ratio of 6wt% on top. After waiting until the PDMS was sufficiently crosslinked at 60◦C
for 24 hours the PVA template was solved in a 80° C water bath. But either the forces crated
during the desolving or the subsequent drying (water evaporation) destroyed the PDMS again.
Even using BREAK-THRU® S 240 (EVONIK) a non-ionic surfactant to reduces the water surface
tension significantly and consequently decreases the capillary forces during the drying process
did not improve the result. One alternative available would be to use stronger magnetic particles.
This would lead to the possibility to use stiffer matrices and thus circumvent described matrix
destruction.
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6 Macroscopic deformable MREs

The particle displacement of the previously measured samples with defined particle positions was
generated by magnetic particle interaction. So far, the particle amount was quite small due to the
micro-structuring process. Nevertheless, the bottom up sample preparation by stacking PDMS
layers consecutively, allows preparing larger samples with defined particle and particle free areas,
i.e. a magnetic texture. To this end, 3D PDMS spheres were created and coated with magnetic
nickel particles. Magnetic membranes containing a mono layer of dense packed magnetic nickel
particles were also produced. In the following both system are analyzed in relation to their
capabilities.

6.1 Magnetically coated PDMS spheres

Previous research on PDMS spheres investigated for example their surface buckling or wrin-
kling [27,78,101,175,180]. Investigated magneto-active spheres consisted of polymer spheres
filled with a certain amount of magnetic filler particles [51,52,57,140,141,184]. In the following,
the production process described in 4.1.3 was used to create novel "magnetically hollow" spheres.
This reduces the number of magnetic particles aiming to facilitate a theoretical description as
the magnetic structure is reduced to a monolayer of magnetic particles. The Young’s modulus
and the size of the spheres could be easily adapted. In order to identify if the spheres can be
used to build heterogeneous, large magneto-active materials or function themselves as actuator,
the deformation of the spheres under the influence of a stepwise rotated magnetic field was
investigated while the spheres were enclosed by different materials such as PDMS or water.
PDMS spheres were produced as described in chapter 4.1.3. Their size was between a couple
hundred micrometers to a few millimeters in diameter. The spheres were coated with nickel
particles with a diameter between 125µm and 160µm. The PDMS solution had a mixing ratio of
14% which corresponds to a Young’s modulus of (4.1± 0.8) kPa extracted from the power law
fit in Fig. 4.13. After the crosslinked PDMS spheres were coated with the magnetic mono layer,
they were included in a two layer bulk matrix. Therefore, a glass vial with diameter of 0.9 cm was
filled with 800µl of a 14% PDMS solution and after the first layer was mechanically stable enough
the PDMS sphere was positioned on top. Yet another PDMS layer with identical mixing ratio and
a volume of 1600µl ensured that the sphere was fully encapsulated. Curing for 24 hours under
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60◦C provides a stable Young’s modulus throughout the measurement.
In order to resolve the particle movement under the influence of a magnetic field x-ray tomo-
graphic measurements were performed [130,152–155,168,173]. The tomographic measurements
were done by Malte Schümann in Dresden (Chair of Magnetofluiddynamics, Measurement and
Automation Technology, Dresden). To this end, the samples were centered in the tomographic
setup [155]. First an image was taken without external magnetic field Fig. 6.1 a). This allowed to
determine the initial particle positions. Apparently, the sphere did not possess a perfect mono layer
of magnetic particles. During the casting of the second PDMS layer some magnetic particles had
been removed from the surface of the sphere and the sphere had been subjected to the magnetic
field of the Halbach-array, prior to the x-ray tomographic measurement. Otherwise the magnetic
layer was densely packed.
In the next step the encapsulated sphere was subjected to a 250mT magnetic field which was ori-
entated along the z axis, Fig. 6.1 b). The spherical caps orthogonal to the magnetic field direction
are the sphere’s poles, while the spherical surface directed along the magnetic field orientation is
defined as the sphere’s equator, Fig. 6.1 b). The tomographic image revealed a deformation of
the sphere along the orientation of the magnetic field. A particle detachment at the poles seems
to have taken place. Comparing the image with and without magnetic field the deformation is
better visible Fig. 6.1 c). In x-direction the sphere decreased its diameter from ≈ 821 to 805 pixels
which was roughly a relative decrease of ≈ 2% compared to the original length. In contrast the
diameter in z direction increased from ≈ 819 to 861 pixels and corresponded with a increase

Figure 6.1: Tomographic images of a PDMS sphere coated with magnetic nickel particles. The PDMS sphere was
embedded in a PDMS matrix of same mixing ratio. a) The particle position at zero field (blue dots). Apart from small
areas the particles form a dense mono layer. b) A magnetic field was applied in z-direction. The particle position is
depicted (red dots). A particle detachment at the sphere poles is visible. c) Comparison of the sphere with (red) and
without field (blue). An elongation in z-direction is visible.
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in length of ≈ 5% compared to the original length. As the PDMS matrix is incompressible the
volume should remain unchanged. Calculating the spheroid volume for zero field and magnetic
field a good agreement was observed. The deviation was only about 1% and thus the changes in
the diameters are considered valid.
Although the particles were not tracked themselves, they clearly formed chains along the z-
direction. Distinguishing between the sphere’s equator and poles, particles at the poles showed
relative strong particle displacement along the x- and y- direction while particles at the equator
formed chains along the magnetic field direction. This chain formation might contribute to the
elongation of the sphere in the direction of the applied magnetic field. In order to determine
the sphere’s elongation and corresponding particle displacement (microscopic view) that can
be induced by the magnetic deformation effect [140,141,161,182,183], i.e. the deformation a
homogenous magnetic spherical shell experiences in an uniform magnetic field, the sphere was
measured at various magnetic field orientations and environments.
Above, the deformation of the sphere could be linked to a particle movement due to the magnetic
field applied. Tomographic imaging is relatively time consuming compared to measurements
with a Halbach-array. For improved efficiency the deformation behaviour at different magnetic
field orientations therefore was run with a Halbach-array. To get an idea how those deformation
proceed with varying magnetic field orientations yet another PDMS sphere with mixing ratio
of 12.5% (3.3± 0.6) kPa was embedded in a PDMS matrix of identical mixing ratio (similar to
Fig. 6.2 a)) and placed in the center of the Halbach-array. Thus, the sphere was subjected to a
magnetic flux density of ≈ 172mT . In contrast to the X-ray tomographic measurement not the
single particles were resolved. Instead, the sphere was illuminated from below and images taken
from above (compare chapter 4.3). Thus, only the whole sphere was depicted as dark circle on
bright background, Fig. 6.2 b).
The diameter of the sphere in the x and y direction was detected as follows: The images were
loaded in ImageJ and converted to black and white images. Subsequently a line profile was drawn
in x-respectively y-direction. Along the line profile the brightness values of the pixels can be
extracted. As the images are black and white pixel can only attain values of 0 or 255. A sudden
change from dark to bright, i.e., change from 255 to 0marked the edges of the sphere. Subtracting
the x- respectively y- coordinates of the two pixels with value 255 before the value changes to 0,
results in the x- respectively y-diameter.
In order to get the initial sphere diameter, prior to the magnetic measurement, a picture from the
sphere at zero field was taken. In the following, all elongation in relation to the initial sphere
diameter are specified as εxi in x and εyi in y direction and the ratio between minimum and
maximum diameter are specified as εxr and εyr , respectively. Fifty full loading cycles, i.e. fifty 360◦
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Figure 6.2: a) Three magnetic coated PDMS spheres embedded in a PDMS matrix. b) Diameter in x and y direction
of a single PDMS sphere embedded in a PDMS matrix with identical mixing ratio. The dashed lines indicate the
initial diameter, i.e., at zero magnetic field. The dots connected by a solid line show the diameter in x and y direction
for the corresponding magnetic field orientations at a magnetic flux density of ≈ 172mT . A real image of a sphere is
shown -in the inset as example. Dashed lines mark the line plots to determine the diameter.

turns of the Halbach-array were carried out before the actual measurement was started. The
measurements always started with the magnetic field orientated in the x direction. Subsequently,
the orientation was turned in 5◦ steps until a 360◦ turn was completed. As described above the
diameter of the sphere was determined for all the magnetic field orientations. Plotting the x and
y diameter of the sphere in relation to the magnetic field orientation, an oscillating curve was
observed, Fig. 6.2 b). Thereby, the largest diameter in x and y direction was achieved when the
field was orientated along the x and y axis, respectively, Fig. 6.2 b).
The diameter in x and y direction behaved anticyclical, i.e., when the x diameter was largest y
diameter was smallest and vice versa. Along the y direction a greater maximum sphere diameter
was determined as along the x direction. This is a consequence of the slight aspherical form of
the sphere, Fig. 6.2 b), dashed lines. Comparing the initial sphere diameter, Fig. 6.2 b), dashed
lines, with the size when subjected to the magnetic field, it is observed that the elongation was
not symmetrical around the initial sphere diameter. This indicates a compression of the sphere in
z direction. The compression was a consequence of the elongation in x- and y direction (magnetic
deformation effect) and of the force generated by the field gradient in z-direction. At the top of
the sphere the gradient of the field was ≈ 4.4mT/mm. Considering the incompressibility of the
PDMS matrix the volume of the sphere remained unchanged during the deformation. Hence, with
the assumption of an unchanged volume the ratio of the sphere’s diameter in z direction before

114



and after the deformation was calculated with ≈ 0.95, i.e. the sphere was compressed 5% in z
direction.
Concerning the diameter at applied magnetic field in relation to the initial sphere diameter
only a reduction of εxi = 1.2% and of εyi = 1.5% occurred while a stretch of 5.4% and 6.5% was
determined. This is a similar deformation as determined with the tomographic measurements
even so a larger magnetic field strength and Young’s modulus was used. As a sine fit did not
provide a good agreement the minima and maxima of the diameter in x and y direction were
read out. In case of the x diameter the maximum at 185◦ was taken. For both direction a change
of εxr = 6.6% or rather εyr = 8.1% between minimum and maximum diameter was calculated.
Comparing the reduction of the z diameter with the reduction of εxi = 1.2% and of εyi = 1.5%
the compression induced by the gradient seems to be larger as the magnetic deformation effect
induced by the homogenous field. The deviation between εxr and εyr indicates a stronger elasticity
in the x direction of the sphere. This could be either caused by a slight difference in the particle
monolayer, i.e. slight difference in the acting magnetic forces, or by the determination of the
sphere diameter as the diameter included the particle monolayer where a rotation or movement
of a particle could lead to such variances. When the sphere was subjected to a magnetic field,
elongations were generated. In the case of the Halbach-array measurement, elongation direction
of the sphere was continuously altered by rotating the external field.
In order to connect the elongation with the alternating particle displacement (microscopic view),
particles needed to be resolved. This was achieved by illuminating the sphere from the top and
taking reflection images Fig. 6.3. As the focus depth was smaller than the sphere dimension once
the sphere at the equator [Fig. 6.3 a), b)] and once the particle at the boundary (poles) [Fig.
6.3 c), d)] were resolved. Still the particles can be clearly distinguished as such. Comparing the
images for the magnetic field orientated along the x and y direction, a clear elongation along the
field direction is visible. Due to the spatial resolution single particle tracking is not possible, but
no clear particle chain formation or movement was visible at the equator of the sphere, Fig. 6.3
a), b) enlarged pictures. Particles at the poles in contrast seem to have moved, Fig. 6.3 c), d)
blue and red boxes. Comparing these qualitative results with the tomographic measurement the
particle movement at the poles was similar but a chain formation process at the equator could
not be observed. This could be due to the dense packing of the particle monolayer. Hence, the
magnetic deformation effect seems, on the microscopic scale, to mostly affect the particles at the
poles and particle interaction plays a minor role.
The deformation of the sphere was impeded by the encapsulation with PDMS. In the following,
free standing spheres were investigated. For following measurements a sphere was used that was
coated with an additional layer of crosslinked PDMS. The extra PDMS layer fixed the magnetic
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Figure 6.3: Reflective images of magnetic coated PDMS spheres. The sample was illuminated at an angle from above.
The nickel particles are distinguishable. a) Focus is on the pole of the sphere. The magnetic field (black arrow) is
orientated in x direction. b) Focus is on the pole of the sphere. The magnetic field (red arrow) is orientated in y
direction. c) Focus is on the boundaries (maximum sphere dimension). The field is orientated in x direction. d) Focus
is on the boundaries (maximum sphere dimension). The field is orientated in y direction.

particles and prevented them from detachment. A sphere with mixing ratio of 12.5% was glued
to the bottom of a glass flask with two component epoxy glue. Hence, the sphere is mainly
surrounded by air. Afterwards, measurement and evaluation were conducted like describe above.
Starting with the magnetic field orientated along x direction an elongation in x direction was
observed with a ratio of x-length/y-length= 1.1 Fig. 6.4 a). During the rotation of the magnetic
field the change in diameter was sinusoidal, similar to the sphere embedded in PDMS. A sine fit
(Fig. 6.4 a) orange line) showed that at the magnetic field angle relative to the x axis of 107◦
y-elongation and at 10◦ x elongation reached its maximum. This can be explained by a starting
configuration where the magnetic field was not exactly orientated in x direction and by a slight
offset from the center when the line plots were used to determine the diameter. Comparing the
initial diameter of the sphere, Fig. 6.4 a) dashed lines, a small asphericality, the ratio of x to y
initial diameter is 1.02, is present. In x direction a maximum elongation εxr = 6.4± 0.1% and in y
direction εyr = 8.0±0.2%was reached, Fig. 6.4 a). These elongations were of the same magnitude
as the one for the sphere encapsulated in PDMS. Thus, the oscillating change in diameter did not
strongly couple to the surrounding matrix, i.e. was not influenced by the sphere’s environment.
This could indicate that the magnetic-deformation effect depends on the particle movement. In
order to fixate the particle monolayer on the sphere surface a thin PDMS layer (≈ one particle
diameter) was cast onto of the sphere. This thin layer seems not to affect the particle movement.
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Figure 6.4: a) Diameter of a magnetic coated PDMS sphere surrounded by air. Dashed lines indicate the initial (zero
magnetic field) diameters. The diameter of the sphere is strongly increased by the subjection to the magnetic field. A
rotation of the magnetic field orientation leads to an alternation of the diameter along the axes. b) Diameter of a
magnetic coated PDMS sphere surrounded by water. Dashed lines indicate the initial (zero magnetic field) diameters.
The diameter of the sphere is strongly increased by the exposure to the magnetic field. A rotation of the magnetic
field orientation leads to an alternation of the diameter along the axes.

The oscillating change in the sphere diameter was solely generated by the magnetic-deformation
effect as the gradient, i.e. the compression in z-direction was independent from the magnetic field
orientation.
The deformation was significantly stronger when comparing the field-free configuration to the
one under applied field. With a sine fit of the x and y diameter a stretch of the sphere by a
maximum of εxi = 23.2% and by a maximum of εyi = 22.3%, Fig. 6.4 a), was determined. These
huge deformations were not caused by the magnetic-deformation effect and corresponding re-
arrangement of the particles but rather by the gradients of the magnetic field. Considering the
spheres dimension (≈ 2mm) the Halbach-array has a nearly homogeneous magnetic field in x
and y direction. Whereas, considering the particle at the equator of the sphere, the gradient in z
direction generates a force that flattens the sphere by pulling the particle in the direction of the
center. Considering that the gradient leads to an elongation of the sphere diameter in the complete
x-y-plane the deformation induced by the gradient had a higher coupling to the surrounding
matrix as the deformation induced by the magnetic deformation effect. Especially, as the sphere
was only surrounded by air the elastic force opposing the gradient induced deformation was weak
compared to the encapsulated sphere. The magnetic deformation effect leads to an elongation in
the direction of the magnetic field and thus should depend mainly on the elasticity of the PDMS
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sphere. The deformation changes between εxr ≈ 6.4% and εyr ≈ 8.2% show good agreement with
Raikher et al. [140] who predicted an elongation in the range of 10% for a ferroelastic sphere
with a shear modulus of ≈ 1 kPa and a particle volume percentage of 5%.
Both elongation mechanisms enable the spheres to act as an active element for example as a valve.
Thereby a gradient in the magnetic field could be used to deform the sphere on a large scale while
a homogenous field could be used to change the magnetic-deformation effect, i.e. change the
direction of the elongation. In the following the sphere is surrounded by water in order to see the
effect of the surrounding medium on the large deformation.
To this end, the glass flask was filled with distilled water and measurements repeated as described
above. Analysis of the diameter in x and y direction showed again a sinus like change while
the magnetic field orientation was varied Fig. 6.4 b). A εyr of 8.2 ± 0.2% and εxr of 8.5 ± 0.1%
was determined by fitting the curves with a sine function. The values for air and water were
in good agreement and only tiny differences were observed. Those tiny difference were due to
a different initial sphere orientation and show the influence of the magnetic monolayer on the
magnetic-deformation effect. The large elongations were in good agreement, too. An εyi of 23.8%
and an εxi of 21.3% was determined, Fig. 6.4 b). This tested material shows potential for use is
active elements also in fluids. Observed elongations were by a magnitude larger than previously
reported ones [51,57].
Finally, comparing all three situations, spheres encapsulated in PDMS, spheres in water and
spheres in air: All systems confirm unambiguously that the mechanism elongating the spheres
can be generated either in a homogeneous or in a gradient magnetic field. In a homogeneous
magnetic field the magnetic deformation effect occurs and mainly particles at the poles rearranged
on microscopical scale. This resulted in diameter changes between ≈ 6% and 8%. The elongation
was orientated along the magnetic field orientation. Thus, a change in the orientation of the
magnetic field changed the direction of elongation. Compared to the deformations induced by
magnetic-deformation effect large deformations were induced by a field gradient in z direction.
The field gradient generates a force compressing the sphere by pulling the particle on the poles
in direction of the sphere’s center. In these cases the environment of the sphere significantly
influenced the magnitude of the deformations. For a sphere encapsulate in PDMS the compression
in z direction was still observed but compared to the spheres in water and air quite small as for the
encapsulated sphere the surrounding matrix opposes the compression strongly. Some theoretical
models exist to calculate the deformation of a magnetic sphere or ellipsoid when subjected to a
uniform magnetic field [52,140,141,143,161,182,185]. These models use a magnetic particle
distribution inside the sphere. Nevertheless, Raikher et al. [140] predicted an elongation in the
range of 10% for a ferroelastic sphere with a shear modulus of ≈ 1 kPa and a particle volume
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percentage of 5% which is roughly in the same order of the above measured magnetically hollow
spheres. Furthermore, a model to calculate the stress distributions within a spherically isotropic
hollow sphere under compression exists [176]. This model might be adaptable to the magnetically
hollow spheres.

6.2 Membranes with 2D magnetic layer

In the previous chapter the same approach was used to produce PDMS spheres with a dense
packed mono layer of magnetic nickel particles. Subjected to a magnetic gradient field the spheres
largely deformed. Now, the bottom up approach was used to create magneto-active membranes.
Thereby, magnetic membranes consist of a monolayer of dense packed nickel particles embedded
between two thin PDMS layers of identical mixing ratio. The entire structure is free standing
and only supported at its rim, compare section 4.1.4. In the subsequent sections magneto-active
membranes are analyzed regarding their resonance frequency and bending deformation. Using
the Uflyand-Mindlin theory for bending plates an effective Young’s modulus of the membranes
can be determined once by their resonance frequency and once by their maximum deformation.
Finally, a potential application of the membrane to be used as a droplet selector is shown.

6.2.1 Resonance frequency and beam bending theory

Membranes were produce as described in section 4.1.4. In the following the results with mem-
branes with dimension of (19.5 ± 0.1)mm on (38.3 ± 0.1)mm and thickness of (1.0 ± 0.1)mm

are presented. Membranes with various PDMS mixing ratio could be produced. In the following
the determination of the membrane’s resonance frequency will be explained exemplary with a
25% PDMS mixture with an elastic modulus of (8.7± 1.6) kPa for the PDMS gel. As the particle
monolayer is rigid compared to the PDMS layer and enhances the membrane’s stiffness, its effec-
tive Young’s modulus has to be determine. In this section the effective Young’s modulus of the
membrane will be calculated from its resonance frequency.
The membrane had a weight ofmm = (1.3±0.1) g and thus a density of ρ = mm

V
= (1740.6±0.2) kg

m3

wherein V denotes the volume of the membrane. Consequently, the membrane has a density
between pure PDMS (965 kg

m3 ) and pure nickel (8090 kg
m3 ), i.e. a particle volume of ≈ 11%. The

membrane was placed on the plastic sample holder [see Fig. 6.5 a), b)]. The membrane was
supported at its both smaller sides leaving its long ends to be free. Depending on the PDMS
mixing ration the membranes were thus more or less bended in the center due to gravity. To
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Figure 6.5: a) Sketch of the setup used to excite the membrane and determine its resonance frequency. The membrane
is place on a sample holder and only two edges are simply supported. To ensure a good coupling to the exciter, the
sample holder is on the left side fixed to a stable foot and on the right side on a glass slide. The glass slide is fixed on
the permanent magnet of the exciter. Passes an alternating current through the coil of the exciter the permanent
magnet begins to oscillate and with it the membrane. b) Real image of the setup used to excite the membrane. A
NX4-S1 camera was used to detect the motion of the membrane.

excite the membrane, the sample holder was fixed with one end on a solid non-movable foot
and with the other end on a 1.1mm thick glass slide. The glass slide was connected to an exciter
[6.5 a) and b)]. The exciter was purchased from Visaton (BS 130 - 4 Ohm) and consists of a
permanent magnet that is pulled against a spring when a current runs through the coil. On top of
that permanent magnet the glass slide was stably fixed. Using the glass slide as spacer between
membrane and exciter ensured that the magnetic stray fields of the permanent magnet and the
coil did not affect the magnetic membrane.
Similar to the electromagnetic setup, the power supply EX354D (Thurlby Thandar Instruments)
was used to generate a stable voltage of 12V and stable current of 0.4A at an amplifier from
Basetech (AP-2100). The voltage and current at the power supply remained constant throughout
the measurement. With a waveform generator (33220A, Agilent), signals with different frequen-
cies, amplitudes and forms could be generated. The signals were amplified by an amplifier from
Basetech (AP-2100) and transmitted to the exciter. For the resonance measurement, a sinus wave
is set at the waveform generator and the excitation mass moves up and down. From the exciter
the movement was transmitted from one side into the membrane, Fig. 6.5 a). As the glass slide
and sample holder were quite stiff, the exciter and membrane are coupled well and the membrane
starts to oscillate with the set frequency. In order to determine the resonance frequencies of the
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membranes, the input frequencies were varied and the deformation of the membranes tracked as
follows.
The membrane was illuminated at an angle from above and the membrane excite. Images from
the unsupported membrane side were taken with the NX4-S1 camera at 1000 frames per second
Fig. 6.6 a). Using ImageJ, the edges of the membrane were detected with the process "Find
Edges" in ImageJ Fig. 6.6 b). To detect the displacement of the membrane, a line was placed
in the center of the membrane [point with maximum displacement, red line in Fig. 6.6 a), b)]
and the macro plot profile in ImageJ applied. This provides the brightness value of the pixels
along the line. Pixels can obtain values of 0 for white or 255 for black. Defining the lower edge
of the membrane as the sudden transition from white to black a detection of the membrane’s
edge position was possible. Tracking the edge position over a certain period of time depicts the
membrane’s displacement. The detected displacement of the membrane is exemplary depicted
for an excitation frequency of 22Hz, Fig. 6.7 a).
After detecting the displacement it was fitted with a sine function:

y = y0 + AT sin

[
π

(
t− tc
T

)]
. (6.1)

Herein y0 denotes the shift around the central oscillation point, AT the amplitude of the oscillation,
tc the phase shift and T half the oscillation period. From the period the membrane oscillation
frequency can be calculated by fm = 1

2∗T . Comparing the calculated oscillation frequency with
the excitation frequency gives an indication of how well the determination of the membrane
movement worked. The amplitude of the oscillation gives the maximum displacement of the
membrane. y0 and tc are in this case purely fitting parameters and not relevant in the following.
In order to determine the resonance frequency, the excitation frequency was altered from 20 to

Figure 6.6: a) Real image of a magneto-active membrane at an unspecific time t1. On the left and right side the
sample holder is distinguishable. The long sides of the membrane are unsupported and illumination takes place at
an angle from above. The red line marks the point of maximum displacement of the membrane. b) Edge image of
the magneto-active membrane. The image is obtained after processing the real image a) in ImageJ and shows the
edges of the membrane. The red line marks the line profile for determining the brightness values of the pixels along
the line.
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Figure 6.7: a) The membrane was excited with a frequency of 22Hz and its movement detected. As can be seen, the
membrane oscillates around a center point. The oscillation was fitted with a sine function (red line). With the sine fit
the amplitude of the oscillation was determined. b) Amplitude dependency on the excitation frequency. Around
22Hz a clear peak is observed. Due to the asymmetry the curve could not be fitted. The peak marks the first order
resonance frequency of the membrane.

25Hz in 1Hz steps and the displacement of the membrane detected. The extracted oscillation
frequencies fm were in good agreement with the excitation frequencies f , Tab. 6.1, and supports
a good determination of the membrane movement. Uncertainties of the oscillation frequencies
are given by the statistical error of the sine fit, Tab. 6.1. Plotting the amplitude AT over the
excitation frequency f results in Fig. 6.7 b). A clear peak at roughly 22Hz can be identified,
marking the 1. resonance frequency of the membrane. Compared to the amplitude dependence
of a forced damped harmonic oscillator (see Fig. 11.22 of [41], slightly asymmetric around the
resonance), the curve in Fig. 6.7 b) clearly shows a different shape. This might be a result from the

f in Hz T in ms standard error of T in ms fm in Hz
20 25.00 0.02 20.00±0.02
21 23.78 0.04 21.03±0.04
22 22.70 0.03 22.03±0.03
23 21.81 0.04 22.93±0.04
24 20.84 0.01 23.99±0.01
25 20.01 0.01 24.99±0.01

Table 6.1: Applied excitation frequency to determine the resonance frequency of the membrane. The oscillation of
the membrane was detected and fitted. From the fit the half oscillation period T is extracted and listed. The standard
errors of T are given by the fits. Frequencies of the membrane fm are calculated from the half oscillation period T .
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experimental setup.The glass slide and sample holder can be assumed as quite stiff compared to
the membrane, even though, the system presents a coupled oscillator system. Due to the coupling
of different oscillators, the resonance peak is not shaped like an damped harmonic oscillator and
a fitting with a Lorentz or Gauss peak function was not possible.
A system like the membrane can exhibit more than one resonance frequency. Higher resonance
frequencies are in general weaker in amplitude and thus, harder to resolve. In order to determine
the 2. resonance the excitation frequency was altered from 36 to 42Hz in 1Hz steps. Evaluation
was similar to the 1. resonance case. Since the second resonance has the shape of a full sine wave
two lines were used, one at the point of minimum displacement, Fig. 6.8 a), b) blue line, and
one at the point of maximum displacement of the membrane, Fig. 6.8 a), b) red line. Fitting
the displacement of the membrane at both points with the sine fit of Eq. 6.1, Fig. 6.9 a), two
amplitude dependencies were obtained Fig. 6.9 b).The amplitude of the center reduces to nearly
zero at the resonance frequency, while the displacement of the point in the middle between center
and suspension point is at its maximum. Consequently, a 2. resonance at roughly 42Hz was
extracted. Knowing the resonance frequencies of the membrane the effective Young´s modulus of
the membrane can be calculated. Therefore, beam bending theories will be used.
For the bending beam two main models exist: The Euler-Bernoulli beam theory and the Timo-
shenko beam theory [59]. While the Euler-Bernoulli beam theory is used for rigid beams, the
Timoshenko beam theory allows for rotation bending as well as shear deformation. As the Timo-
shenko theory is an extension of the Euler-Bernoulli theory, the Euler-Bernoulli theory will be
introduced first. A detailed derivation of both theories can be found e.g. in Gross et al. [59].

Figure 6.8: a) Real image of a magneto-active membrane at an unspecific time t1. On the left and right side the
sample holder is distinguishable (white arrows). The long sides of the membrane are unsupported and illumination
takes place at an angle from above. The blue line marks the point of maximum displacement and the red line the
point of minimum displacement of the membrane. b) Edge image of the magneto-active membrane. The image is
obtained after processing the real image a) in ImageJ and shows the edges of the membrane. The red and blue line
mark the line profiles for determining the brightness values of the pixels along the line.
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Figure 6.9: a) The membrane was excited with a frequency of 42Hz and its movement detected. As can be seen, the
membrane oscillates around a maximum point and rests nearly in the middle point. Both movements were fitted
with a sine function (red and black line). For both movements an amplitude was extracted b) Amplitude dependency
on the excitation frequency. Around 41Hz a clear peak is observed in the amplitude of the maximum point (black
line). Simultaneously, for this frequency the middle point shows smallest amplitude (red line). The second order
resonance frequency was determined with 41Hz.

To begin with, the equation of motion for a rigid beam is given with [59]:

∂4W

∂x4
− κ4W = 0 with κ4 = ω2 ρA

EI
. (6.2)

Herein W denote a general solution function, ω the angular frequencies, I the axial geometrical
moment of inertia, A the area, ρ the density and E the Young’s modulus. Depending on the
specific initial and boundary conditions, the natural frequencies ωk of the beam can be calculated.
In the experiment setup the edges of the membrane were not clammed. Therefore, it is valid to
assume, as in literature defined [59], simply supported edges. For this type of mounting, the
boundary conditions require a vanish momentum and displacement at the mounted edges of the
membrane. The natural frequencies of the membrane can hence be calculated with [59]:

ωk = κ2

√
EI

ρA
= k2π2

√
EI

ρAl4
with κl = kπ and k = 1, 2, 3..... (6.3)

while κl = kπ follows from the boundary conditions with l the length of the beam [59]. Equation
Eq. 6.3 gives the natural frequencies of a Bernoullie beam with simply supported edges and k
defines the order of the natural frequency.
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To obtain equation Eq. 6.3 the assumption GAs → ∞ (rigid beam, G = shear modulus, As =cross-
sectional area) and ρI → 0 (negligible rotation inertia) have been used but Eq. 6.3 can be
expanded by allowing bending and shear deformation. This gives the natural frequencies of a
Timoshenko beam with:

ωt =

[
1− (1 + τ)

(
kπi

l

)2
]
ωk with τ =

EA

GAs

and i2 =
I

A
. (6.4)

Comparing Eq. 6.4 and Eq. 6.3 shows that the Timoshenko beam theory differs from the Bernoullie
beam theory just by the term in square brackets. The correction by the Timoshenko beam theory
becomes relevant for l/k ≥ tb with tb the height of the beam, i.e. the length is much larger as the
cross sectional area. In the case of the membrane it gives only a correction of 0.3% for the first
resonance frequency. For a detailed derivation of the Timoshenko beam theory the reader is again
referred to Gross et al. [59]. Rearranging the equation Eq. 6.4 to evaluate the Young’s modulus E
gives:

E =
ω2
t ρAl

4

k4π4I
[
1− (1 + τ)

(
kπi
l

)2]2 (6.5)

Considering, the membrane’s rectangular shape As = 5/6 A. Additionally taking the incom-
pressibility of the membrane into account by setting the Poisson ration to 0.5, τ = 18

5
. Above,

the first resonance frequency of the membrane with mixing ration of 25% was determined with
fm = ωt/2π = 22Hz. Inserting the extracted variables such as As, τ , ωt etc. the Young’s modulus
E of the membrane was calculated with equation Eq. 6.5 to be 224 kPa. Extracting the Young’s
modulus for a pure matrix membrane with 25% mixture, a value of (8.7± 1.6) kPa is obtained.
As a result the membrane shows a Young’s modulus more than 25 times larger than its pure PDMS
matrix. The added nickel particles are orders of magnitude stiffer than the PDMS and should
contribute to the larger Young’s modulus of the membrane. In order to determine the order of
magnitude this contribution accounts for, the by Batchelor derived model [12,15] for homogenous
composites was considered. It describes the dependence of the Young’s modulus on the volume
fraction of the filler particles. The altered Young’s modulus can be calculated with:

Es ≈ Em(1 + 2.5ϕ+ 5.2ϕ2), (6.6)

where ϕ denotes the particle volume fraction and Em the modulus of the pure matrix material.
At the beginning of this chapter the density of the membrane was calculated and with it that the
particle volume fraction inside the membrane amounts to ≈ 11%. Inserting this particle volume
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fraction in the Batchelor model results in a Young’s modulus of ≈ 11.6 kPa for the membrane.
This is still small compared to the 224 kPa determined with the beam theory. So, in the case of
the membrane a model that estimates the reinforcement of an elastomer matrix with homogenous
particle distribution does not provide accurate values for the effective Young’s modulus .
Another explanation for the Young’s modulus of 224 kPa could be the limitation of the beam
theory considering the membrane’s geometry. In the following, the membrane’s Young’s modulus
will be calculated by using Kirchhoff and Uflyand-Mindlin plate theories as the plate theories
consider that the membrane is a extended area.

6.2.2 Resonance frequency and plate theory

Similar to the bending beam, a description of rigid (GAs → ∞) and non-rigid plates exists. The
theory that describes rigid plates is called Kirchhoff theory and the theory that describes non-rigid
Uflyand-Mindlin theory. Similar to the Timoshenko beam theory, the Uflyand-Mindlin theory is an
expansion of the Kirchhoff theory by considering shear deformation. Since the solution of the
Uflyand-Mindlin theory are just a small extension of the Kirchhoff theory, the Kirchhoff theory
will be induced first.
To begin with, the equation of motion of a two dimensional plate with size a and b is given
with [59]:

∆∆W − κ4W = 0 with κ4 =
ρtpω

2

K
and K =

Et3p
12(1− ν2)

. (6.7)

W denotes a general solution function, ρ the plate density, tp the plate thickness, ω the angular
frequency,K the plate stiffness, ν the Poisson ratio and E the Young’s modulus. Using a separation
approach, it can be shown, that [59]:

W (x, y) = F sin(αx)sin(βy), (6.8)

is a solution of the motion equation Eq. 6.7 with F a dimensionless parameter. α and β denote
the eigenvalue which have yet to be determined using the boundary conditions. Implementing
Navier boundary conditions, W = 0 and ∆W = 0 at the membrane edges, the natural angular
frequencies become [59]:

ωm,n = κ2

√
K

ρtp
=
(
α2 + β2

)√ Et2p
12ρ (1− ν2)

with α =
mπ

a
, β =

nπ

b
, (6.9)
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with m,n=1,2,... giving the order of the resonance frequencies in x respectively y direction. The
solutions of equation Eq. 6.9 give the resonance frequencies of a Kirchhoff plate simply supported
on all edges.
Expanding the model to include rotary inertia and shear deformation one obtains the Uflyand-
Mindlin theory. The exact derivation can be found in [4,47,98,117]. Here, just the expansion
coefficient λ for the natural frequencies is given [4]:

λ =

√
1 + ς2r + ς2s ±

√
(1 + ς2r + ς2s )

2 − 4ς2r ς
2
s

√
2ςrςs

. (6.10)

ςr, ςs denote the correction coefficient for including the effect of rotary inertia respectively shear
deformation and are given by:

ς2r =
t3p
12

(α2 + β2) and ς2s =
t2p

5 (1− ν)

(
α2 + β2

)
. (6.11)

Consequently, the natural frequencies become:

ωum,n = ωm,nλ. (6.12)

Inserting Eq. 6.9 in Eq. 6.12, after rearranging the Young’s modulus is defined by:

E =
9 ω2

um,n
ρ

λ2(α2 + β2)2t2p
(6.13)

Coming back to the resonance frequency measurement of the membrane. As stated in the
beginning of this chapter the membrane’s dimension were a = 38.3mm, b = 19.5mm and
thickness tp = 1.0mm. To facilitate a calculation of the Young’s modulus by using the Uflyand-
Mindlin theory the boundary conditions of the experimental setup had to be adapted. Instead of
only supporting two membrane edges the membrane was placed on a sample holder where all
four edges were simply supported. Thus the membrane’s active area reduced to 14.5 on 24.5mm.
Otherwise the experimental setup did not change to previous resonance frequency measurement.
Images of the membrane’s center were taken while the excitation frequency was varied in 1Hz
steps from 29 to 42Hz Fig. 6.10 a). By inverting the images and using the process "Find Edges" in
ImageJ, an edge image is obtained, Fig. 6.10 b). In the edge image the membrane’s edges are well
distinguishable from the background. Inserting a vertical line at the center of the membrane [red
line Fig. 6.10 a), b)] the brightness values of the pixels along the line can be evaluated. Hereby, a
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Figure 6.10: a) Real image of a membrane place on the sample holder with all four edges simply supported.
Illumination was done at an angle from above. A dashed orange line marks the sample holder. Along the vertical red
line the brightness values of the pixels were extracted. b) Edge image of the real image in a). It was obtained by
using the process "Find Edges" in imageJ. A dashed orange line marks the sample holder. Along the vertical red line
the brightness values of the pixels were extracted.

change from dark to white pixel marks the position of the membrane’s edge. The membrane’s
edge position was tracked, mirroring the membrane’s movement and a sine fitting (Eq. 6.1)
was conducted Fig. 6.11 a). The fitted frequency was in good agreement with the excitation
frequency. Subsequently, the amplitudes of the membrane oscillation are determined for the
various frequencies. Plotting the maximum amplitude over the applied excitation frequencies a
resonance is extracted for (33.3± 0.3)Hz Fig. 6.11 b). A two peak Gauss fit can be applied giving
a second peak at (39.2 ± 0.9)Hz Fig. 6.11 b). The 33.3Hz belong to the first order resonance
frequency in both direction (m=1, n=1). Calculating the Young’s modulus by using the Uflyand-
Mindlin theory Eq. 6.13 a value of E = 154 kPa is obtained. Inserting the Young’s modulus of
154 kPa into Eq. 6.13 and solving it for the next higher order resonance frequency (m=2, n=1) a
resonance frequency of 58Hz is determined. This frequency significantly deviates from the second
fit peak at 39.6Hz. Therefore, the second peak does not give the second resonance but is probably
an effect of the asymmetry in the resonance of the coupled system.
To summarize: The membrane with a PDMS mixture of 25% was excite from the right edge with
defined frequencies. The experimentally setup only supported the two shorter membrane edges
leaving the long edges free. Tracking the membrane movement a first order resonance frequency
of 22Hz could be determined. Using the Timoshenko beam theory with the boundary conditions in
form of two simply supported edges, a Young’s modulus of 224 kPa could be calculated. Comparing
this value with the Young’s modulus of a the sole PDMS matrix (8.7 ± 1.6 kPa) the membrane
shows a significantly increased Young’s modulus. Considering the reinforcement of the elastomer
by particle addition, the by Batchelor derived model gives an estimation for the membrane’s
Young’s modulus in relation to the particle volume fraction.But the value calculated with this
model was still of orders smaller, i.e. a model assuming a homogeneous particle distribution
could not give accurate values for the membrane’s Young’s modulus. In order to account for the
membrane’s geometry more precise the Young’s modulus was calculated by using the Uflyand-
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Figure 6.11: a) The membrane was excited with a frequency of 37Hz and its movement detected. As can be seen, the
membrane oscillates around a center point. The oscillation was fitted with a sine function (red line). An amplitude
of 0.19mm was extracted. b) Amplitude dependency on the excitation frequency. Around 32Hz a clear peak is
observed. Fitting the curve with two Gauss peaks (red, orange lines) results in the depicted cumulative fit (blue
line). The Gauss peaks are positioned at 33.3 and 39.2Hz. The Gauss peak at 33.3Hz marks the firs order resonance
frequency of the membrane.

Mindlin plate theory. Therefore, the experimental boundary conditions needed to be adapted and
the membrane was placed on a sample holder with all four edges simply supported. Repeating
the resonance frequency measurement a first order resonance frequency of (33.3± 0.3)Hz could
be identified. Inserting the resonance frequency into Eq. 6.13 a Young’s modulus of 154 kPa was
calculated. Compared to the Timoshenko beam theory this is a ≈ 30% smaller value showing that
the approximation of the membrane as a beam leads to large deviations of the calculated Young’s
modulus. Hence, the particle arrangement in a monolayer strongly stiffens the membrane.

6.2.3 Deformation and plate bending theory

In order to verify the Young’s modulus determined by the resonance frequency measurement
and corresponding plate theory, another way to determine the effective elastic modulus of the
membrane was used. Therefore, the membrane needed to be actively deformed. As the membrane
is magneto-active the deformation can be induced by a magnetic field, i.e. the membrane was
placed orthogonally between the poles of the electromagnet, compare Fig. 4.10. The acting
magnetic force causes the membrane to deflect until the elastic force equals the magnetic force.
Assuming a rectangular load of area Al, applied at the center (a/2, b/2) of the membrane, the
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deflection can be represented by the double Fourier series as follows [77]:
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Herein, dnm denote the deflection coefficients and tp the plate thickness. The deflection coefficients
are defined by the boundary conditions and become [77]:
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for a plate with all edges simple supported. Λ0 is the applied load andK is the plate stiffness which
was already defined in Eq. 6.7. Substituting Eq. 6.15 into Eq. 6.14 the deflection dependency on
the Young’s modulus is obtained. Rearranging Eq. 6.14 after E gives the Young’s modulus of the
plate with:
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In this case the summation in Eq. 6.14 was cut off after m,n = 1 since terms of higher order are
much smaller and converge fast against zero [59]. Consequently, by measuring the deflection the
Young’s modulus can be calculated.
Getting back to the experimental realization: The membrane (25%) with length a = (38.3 ±
0.1)mm, width (b = 19.5± 0.1)mm and thickness tp = (1.0± 0.1)mm was place on the sample
holder with all four sides supported. Subsequently, the pole shoes of the electro magnet were
placed orthogonally to the membrane’s plane, Fig. 4.10. A rectangular signal of 2V and 100mHz
was applied to the electro magnet (maximum voltage and current at the power supply). For this
setting, the magnetic field and its gradient had been measured with the gaussmeter Lakeshore
410 (section 4.2.2).
Subjecting the membrane to the magnetic field a magnetic force acts on the magnetic nickel
particles due to the field gradient. This magnetic force deflects the membrane. To optically detect
the deflection, the illumination was done at an angle from above, images were taken with the
camera NX4-S1 (1000 frames per second). Evaluation of the membrane deflection was conducted
similar to the resonance measurement, i.e., the real image was inverted in Image J and the edges
detected with the process "Find Edges". A vertical line was plotted through the center of the
membrane and the pixel’s brightness values along this line extracted [compare Fig. 6.10 a), b)].
A change from white to black determines the position of the membrane’s edge. By additionally
detecting the pole shoe surface the distance between membrane and pole shoe surface can be
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extracted Fig. 6.12 a). In Fig. 6.12 a) the onset of the magnetic field is clearly visible in form of
the sudden distance change. It took the membrane ≈ 75ms to reach the displaced state. The
membrane remained in the displaced state as long as the magnetic force was applied. In this
state the magnetic and elastic forces were equal. The deflection of the membrane is given by Eq.
6.14. In the case of the experiment the load Λ0 is defined by the magnetic force acting on the
membrane. The acting magnetic force was calculated as follows.
The magnetic force on one particle is given by:

Fm =
1

µ0

∆χVp(B · ∇)B. (6.17)

∆χ denotes the difference between particle susceptibility and surrounding medium, Vp the particle
Volume, µo the vacuum permeability andB,∇B the magnetic flux density respectively the gradient
of the magnetic flux density at the particle position. Assuming a homogeneous field in x-y-direction
over the area of the pole shoe the scalar product (B · ∇)B simplifies to Bz

∂B
∂z
. Inhomogeneous

fields outside the pole shoe area will be neglected as gradients were comparably small and forces
generated were directed either to the membrane’s center or along the z-direction.

Figure 6.12: a) Displacement measurement of the membranes with PDMS mixing ratio of 15, 20 and 25%. The
membranes were placed horizontally between the pole shoes of the electromagnet. A magnetic force displaces the
membranes. Optical detection allowed to extract the distance between the pole shoe and the membrane’s edge. The
onset of the magnetic force is clearly depicted by the distance change. b) Particles are assumed to form a hexagonal
lattice. The particle size is assumed to be 250µm. A center particle is surrounded by six neighbor particles. All
neighbor particles have the same distance of r = 250µm to the center particle.
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As a magnetic field was applied to deform the membrane, the particles inside the membrane were
magnetized and generated a magnetic dipole field. This dipole field counteracts the external
magnetic field, decreasing the effective magnetic field acting on the particles. Hence, the stray
fields of the particles need to be considered. Assuming a hexagonal dense packed particle layer
and only treating nearest neighbor interaction, the fields of six surrounding particles act on the
center particle [Fig. 6.12 b)]. Particles were positioned in the same plane as the central particle
and due to the symmetry of the hexagonal positioning had the same distance r of one particle
diameter d = 250µm to the central particle. Thus the stray field of the nearest neighbor particles
at the center particle becomes:

B(d) = −6
µ0MpVp
4πd3

. (6.18)

Mp and Vp denote the magnetization respectively the volume of the particle and µ0 the vacuum
permeability. Comparable to section 3.3.1, Eq. 3.35, the demagnetization field of Eq. 6.18 needs
to be solved iteratively.
This iteration procedure starts with the undisturbed external magnetic flux density at the position
of the deflected membrane. From the deformation measurement Fig. 6.12 a), a distance of
2.9mm to the pole shoe is extracted for the 25% membrane. Adding half the thickness of the
membrane (0.5mm) in order to obtain the particle position, the particles rest at a distance of
3.4mm from the pole shoe surface. At this distance the electromagnet generates a magnetic flux
density of 38.3mT (section 4.2.2). At this flux density the nickel particles have a magnetization
Mp of ≈ 62 kA/m (SQUID measurement, section 2.1). Subsequently, using equation Eq. 6.18,
the magnetic flux density of the 6 surrounding particles at the center of the center particle was
calculated and subtracted from the external applied flux density. Consequently, the particles are
subjected to a reducedmagnetic flux density and their magnetization reduces as well. The resulting
magnetization at the reduced magnetic flux density is extracted and the previous calculation is
repeated. After several iteration steps the effective magnetic flux density of 26.7mT is obtained.
Apparent, by taking the magnetization of the neighbor particles into account the particle is only
subjected to approximately 70% of the external flux density and thus, also only to 70% of the
field gradient. The adaption of the magnetic flux density was done equally for the 15% and 20%
membrane.
In order to assess the magnetic force the number of particles in which the magnetic force is acting
needs to be roughly estimated. Assuming a hexagonal particle arrangement, 211 particles fit in
the area of the pole shoe. With Eq. 6.17 and under consideration of the effective flux density at
the particle position, the magnetic force acting on a single particle can be calculated. Multiplying
Eq. 6.17 with the particle amount gives the overall magnetic force acting on the membrane.
With the extracted membrane displacement and determined magnetic force the Young’s modulus
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for a 15%, 20% and 25% membrane can be calculated using Eq. 6.16. The obtained Young’s
moduli are listed in Tab. 6.2: Comparing the value of the 25% membrane with the value obtained

PDMS ratio in % 15 20 25
Young’s modulus in kPa 149 153 158

Table 6.2: Young’s modulus for a 15%, 20% and 25% membrane. The values were obtained by deflecting the
membrane with a magnetic gradient field and using plate bending theory.

by resonance frequency measurement and corresponding plate theory, they are in good agreement.
Considering the various assumption, such as that the magnetic force acts only in the area of the
pole shoe, the deviation between resonance and deflection measurement is negligible small.
Comparing the Young’s modulus of the 15%, 20% and 25% membrane only a small influence of
the matrix stiffness on the membrane’s Young’s modulus shows.
To summarize this section: The membrane was subjected to the magnetic field of the electromagnet
(section 4.2.2). Due to the gradient in the magnetic field a force is acting on the magnetic nickel
particles. This displaces the membrane until elastic and magnetic force are equal. Using plate
deflection theory, the effective Young’s modulus of the membrane could be calculated. Therefore,
the defelction of the membrane was optically determined and the magnetic force calculated
by assuming that the magnetic force only acts in the area of the pole shoe. The stray fields of
nearest neighbor particles were considered. When comparing the obtained Young’s modulus of
the membrane with the value obtained with resonance measurement and corresponding plate
theory a good agreement was observed. The small deviation can be easily explained by the
various assumption used in determining the Young’s modulus. Comparing membranes of different
PDMS mixing ratios only a small influence of the PDMS mixing ration on the membrane’s Young’s
modulus is observed. This was due to the membrane’s stack structure of PDMS layer-particle
monolayer-PDMS layer. The particle monolayer was significantly more rigid than the PDMS layer,
i.e. determined the stiffness of the membrane.

6.2.4 magneto-active valves

In the previous section, the membranes were characterized regarding their Young’s modulus
and resonance frequencies. It was shown that the particle monolayer significantly increases the
membrane’s stiffness. The following section focuses on how membrane deformations (magne-
tostriction) can be used to create a magneto-active valve.
Membranes were produce like described in section 4.1.4 and a PDMS with mixing ration of 20%
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was used for the PDMS layers. After 24 hours at 60◦C the membrane was cut out off the glue rim.
Then a cross (1 cm× 1 cm) was cut in the center of the membrane, Fig. 6.13 a) inset. Placing the
membrane horizontal over the pole shoe of the electromagnet, Fig. 4.10, the magnetostriction
was tested, i.e., whether the cut can be opened and closed with the magnetic field. To this end, a
rectangular signal with 2V peak to peak voltage and a frequency of 100mHz was applied to the
electromagnet (maximum current and voltage at the power supply). The low frequency ensured
a constant magnetic field as the inductive reactance of the electromagnet could be neglected. By
decreasing the distance between membrane and pole the gradient and thus the magnetic force on
the membrane could be increased. In the case of the 20% membrane at a distance of 3.6mm the
magnetic force was sufficient and the cut opened when the magnetic field was applied and was
closed again by the restoring elastic forces at zero field.
In order to test if the cut can control liquid flow and drop motion, water droplets were positioned
on top of the cut. For a drop volume of 16µl at zero magnetic field, it was observed that the
droplet stays on top of the membrane Fig. 6.13 a). So, when the cut was closed, the drop of water
did not pass through. Due to the membrane´s hydrophobic nature the water droplet did not
spread. Applying a 2V peak to peak voltage with a rectangular shape and frequency of 100mHz
to the electromagnet, the cut opened, Fig. 6.13 b). The droplet was already slightly sunken into
the cut. In image Fig. 6.13 c) the fully open cut, framed withe orange, was visible and the droplet

Figure 6.13: 16µl drop placed on a magnetic membrane. The membrane had a cut in the center which could be
opened and closed by a magnetic field. a) Zero field. The drop keeps its shape and size. b) The cut opens and the
drop starts to sink into the cut. c) The drop has passed the cut. The open cut is encircled (orange). d) The drop has
passed the cut and the cut was closed again.
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has vanished. It fully passed through the cut. For zero field the cut was able to close again as can
bee seen in Fig. 6.13 d). Hence, the cut in the membrane can be opened and closed to let water
droplets pass. By placing droplet after droplet on the membrane this process can be repeated.
Though, so far it was unclear if the flow of water can also be stopped by closing the cut.
In order to test a use as a magnetic controllable valve the drop size was increased. Water drops
with volume of 24, 120 and 300µl were positioned on top of the cut. All drop volumes produced
the identical results: Hence, the results are discussed exemplarily for the 120µl drop. At zero field,
the droplet remains its drop shape and did not spread on the membrane Fig. 6.14 a). Neglecting
evaporation, the system was stable for hours and the water droplet did not pass through the
cut. Similar to previous measurement a signal with 2V peak to peak voltage, rectangular shape
and frequency of 100mHz was applied to the electromagnet. The cut opened, marked with the
orange arrow, and the drop sank slightly into the open cut Fig. 6.14 b). But the drop did not pass
through the cut. It remained unchanged regarding shape and volume even after the cut closed
again, Fig. 6.14 c). Shape and size of the drop were, within the scope of the resolution, identical
to the starting drop. Frequently repeating of the opening and closing cycle did not provide a
different result Fig. 6.14 d). So the drop’s surface tension and the membrane´s hydrophobic
nature prevented the water drops with volume of 24 to 300µl to pass through the open cut.

Figure 6.14: 120µl drop placed on a magnetic membrane. The membrane had a cut in the center which could be
opened and closed by a magnetic field. a) Zero field case. The drop keeps its shape and size. b) The cut opens and the
drop starts to sink into the cut. An orange arrow marks the open cut. c) Even though the cut was opened and closed
the drop did not pass. d) After repeated opening and closing cycles the drop still stayed on top of the membrane.
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Finally a water drop of 600µl was used: Without a field gradient the drop rests on top of the
membrane in its equilibrium state, Fig. 6.15 a). Applying the same magnetic field gradient as in
the previous measurements the cut in the membrane opens up. Similar to the other volume sizes
the drop began to sink into the cut Fig. 6.15 b). Unlike for the 16µl drop the cut was not large
enough for the drop to pass with complete integrity of its shape and the drop starts to flow Fig.
6.15 c). This was due to the larger gravity force acting on the droplet and thus, the increased
volume ensured a flow of water through the cut. At the time the gap was closed again, the drop
had completely passed the cut Fig. 6.15 d). This showes, that for a sufficient volume of water the
application of a magnetic field gradient can start a flow of water. Still the stopping of the water
flow was an issue that was more subtle than in the 16µl case.
In order to close the cut while water was still passing through the cut, the frequency was increased
to 1Hz. Thereby it was observed, that even though the cut tried to close the water drop was
not stopped from flowing Fig. 6.16 a-d). One assumption was that the nickel particles at the
cut´s edges form a hydrophilic channel preserving the water flow even for closed cuts. Another
explanation was, that the restoring elastic forces were not strong enough to stop the liquid flow.
To exclude the issue of a hydrophilic channel, the membrane was structured by using a glue
cross (see chapter 4.1.4) and preventing particles to lie at the cut’s edges. Repeating the previous
measurement with a 600µl droplet revealed that the water droplet once in motion still passes

Figure 6.15: 600µl drop placed on a magnetic membrane. The membrane had a cut in the center which could be
opened and closed by a magnetic field. a) Zero field case. The drop keeps its shape and size. b) The cut opens and
the drop starts to sink into the cut. c) The drop flows through the cut. d) The drop has passed the cut and the cut
was closed again.
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Figure 6.16: 600µl drop placed on a magnetic membrane. The membrane had a cut in the center which could be
opened and closed by a magnetic field. a) Zero field case. The drop keeps its shape and size. b) The cut opens and
the drop starts to sink into the cut. c), d) Even though the cut was closed the drop still flows.

after the cut was closed. Hence, the force of the running water (surface tension, capillary force)
was stronger than the restoring elastic force of the membrane.
In order to increase the elastic restoring forces the Young’s modulus of the membrane could be
adapted by using a PDMS with higher mixing ratio. Since this would also increase the required
field strength required to open the cut, another approach was used. The cut’s edges were coated
with lubricating grease in order to increase the hydrophobicity and seal the cut more efficiently
at zero fields, i.e. seal tiny gaps that were created by mechanically cutting the membrane. This
increased the drop volume that could stay on the membrane to 2400µl so for times more as to
previous measurement. Drops exceeding this volume started flowing again once the cut was
opened by the magnetic field and were not stopped from flowing once the cut closed. Hence, the
following mechanism could be determined: The hydrophobicity of the cut influenced the drop
volume that was possible to stay on top of the membrane. Once the drop volume exceeds a limit
the gravity force acting on it was strong enough to overcome the repelling hydrophobicity and the
drop started to flow as soon as the cut in the membrane opened. To stop the liquid flow though,
the hydrophobicity of the cut had no influence. Also tiny gaps that were created by cutting the
membrane and remained for zero fields could be excluded. This supports the assumption that
the restoring elastic forces were to weak to stop the liquid flow. Increasing the Young’s modulus
should clear this uncertainty. Unfortunately, a larger Young’s modulus results in stronger magnetic
fields required to open the cut which could not be realized with the used electromagnetic setup.
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To summarize this section: The magnetic structured membranes can function as a droplet selector.
To show this, a cross (1 cm× 1 cm) was cut into the membrane that opens when the membrane
was subjected to a magnetic field and closes after the field was turned off. Subsequently, water
droplets with volume from 16 to 600µl were placed on top of the membrane. Opening and closing
the cut showed that a certain volume range exists for which the drops are not able to pass the cut.
Droplets with smaller or larger volume could pass. Once the drop had started to flow through the
cut a closing of the cut could not stop the liquid flow. Increasing the hydrophobicity of the cut by
coating the edges with lubricating grease allowed for a higher droplet volume to remain on the
membrane but could not stop the liquid flow as well. So the ratio between hydrophobicity and
gravity force on the droplet determines whether the droplet flows or not. In contrast, to stop the
liquid flow a larger elastic restoring force is required. This could be achieved by a larger Young’s
modulus of the membrane and will be subject of future investigations.
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7 Conclusion

Within this work, MRE samples with defined inter-particle distance and particle arrangement were
analyzed to link their particle motion to the magnetostriction effect, i.e. linking microscopical,
field induce particle movements to macroscopic deformations of the sample. To this end, MRE
samples were prepared similar to [133, 135], i.e. as stacked PDMS layers, section 4.1. This
preparation method allowed to place the particles on a crosslinked PDMS layer and facilitated
a defined particle arrangement with quite precise inter-particle distance. To induce particle
displacement, MRE samples were centered in the Halbach-array, section 4.2.1, and thus subjected
to a homogenous magnetic field of ≈ 180mT . The induced particle movement was optically
detected and evaluated by tracking of the particle position with TrackMate [165]. Thus, also the
inter-particle distance changes could be analyzed.
In a quantitative comparison to simulations, to keep the influencing variables at a manageable
level, MRE sample comprised at first two, in maximum up to four, superparamagnetic nickel
particles with a inter-particle distance of roughly one particle diameter. As a comparison with
simulation was aspired, particles were prevented from getting into contact by using PDMS layers
of a Young’s modulus of 7.2 kPa. Preventing particles from touching was crucial, since touching
particles create a diverging deformation of the elastic matrix between the particles, which is
difficult to simulate. Particle displacement was induce by a homogenous magnetic field and
the inter-particle distance was determined for various magnetic field orientations. In order
to predict the particle movement, Metsch et al. conducted finite element simulations using a
three-dimensional fully coupled continuum model. For all samples, a good agreement between
experiments and simulation was observed. Thus, their novel approach to predict particle move-
ment by modeling the particles magnetization, was validate. Consequently, the three-dimensional
fully coupled continuum model seems to be applicable to even complexer systems. Furthermore,
a high sensitivity to the initial particle position was observed, highlighting the importance of
detailed knowledge of the underlying particle distribution as it determines the actual particle
displacement.
To allow a comparison between simulation and experiments, the particles were prevented from
touching by using a stiff PDMS matrix. Adapting the PDMS mixing ratio, a touching of particles
was enabled. A novel strong magneto-active state was observed in MRE samples comprising two
nickel particles. The strong magneto-active state was characterized by a major change in the
inter-particle distance, i.e. a switch from touching to separated particles or vice versa, which was
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induced with a small change in the magnetic field orientation. The change in the inter-particle
distance ranged up to one particle diameter and showed a hysteresis loop in relation to the angle
β between particle axis and magnetic field orientation. The hysteretic nature of this inter-particle
distance change is a consequence of the bistability in the total energy (sum of elastic and magnetic
energy). A similar bistability effect was theoretically described by Biller, et al. [16,17], for an
increasing magnetic field strength. The presented work showed that the bistability also exists as a
function of the magnetic field orientation.
The sensitivity of the magneto-active configuration on the initial inter-particle distance, matrix
stiffness and magnetic field strength was determined. A range of rmin < rb < rmax, with rb the
initial inter-particle distance, was determined for which the magneto-active state was stable. For
rb < rmin particles never separated while for rb > rmax particles never touched. Furthermore, par-
ticles with small initial inter-particle distance separated at angles β > 54.7◦, which experimentally
supports the assumption that dipole-dipole approximation does not hold for particles in contact.
As the bistability in the total energy can be influenced either by the elastic or by the magnetic
energy, a change in the Young’s modulus of the PDMS matrix leads to a similar change in the
inter-particle distance change as the change in the initial distance. For too stiff PDMS matrices
particles never touched while for too weak PDMS matrices particles never separated. Overall
though, the magneto-active state was more sensitive to the Young’s modulus.
The magnetic force can also been governed by the magnetic field strength and hence, the same
trend was observed with increasing or decreasing magnetic field strength. This new magneto-
active state was strongly dependent on the ratio between elastic and magnetic force and thus, only
stable for a defined range of initial inter-particle distance, Young’s moduli of the PDMS matrices
and magnetic field strength. It endured at least forty 360◦ rotations of the magnetic field. The
magnetic field orientation can be altered more easily than the magnetic field strength. This makes
the novel magneto-active state highly appealing to be used in actuators.
Rarely, a MRE only consists of two particles. To gain more insight in the effects of increasing
particle numbers, the system was expanded by a third particle. Since the used preparation method
only allows to define the initial inter-particle distance and particle size to a certain precision,
some scattering of the particle positions was unavoidable. Therefore, also the magnetic interaction
shows some scattering . This leads to the fact, that systematically the particle pair with higher
initial inter-particle distance was first to separate. Consequently, while the magneto-active config-
uration of the particle pair with smaller initial inter-particle distance resembled the one of a sole
particle pair, the hysteresis for the other particle pair altered. Apparently, the matrix mediated the
displacement of the closer particle pair and changed the inter-particle distance of the neighboring
particle pair. Thus, a third particle altered the over all magneto-active configuration due to arising
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asymmetries in the magnetic interaction.
The samples were thinned to make the generated deformations more accessible and the particle
number was increased to fourteen particles. Under an applied magnetic field, a disintegration into
particle groups was observed, i.e. no continuous particle chain formed. A strong dependence on
the initial inter-particle distance was identified and particles with a smaller initial inter-particle
distance as at least one neighboring particle pair, got into contact. Thereby, the distance to adjacent
particles was increased and inevitable the magnetic force was not strong enough to overcome the
elastic force, i.e. particle groups formed. Therefore, the change in the end-to-end distance of the
particle line was significantly smaller as for the two and three particle system. Furthermore, the
images showed darker and lighter areas while the particles were displaced. This could indicate,
that the surface of the thin layer was deformed and macroscopic deformations emerged. Future
measurements need to be conducted in order to quantize these surface deformations.
Introducing further particles into the system, magneto-activity particle lattices with five by five
particles were prepared. Three characteristic particle group formation process could be identified:

1. Only small particle groups form (up to three particles)

2. A peak at particle groups containing five particles

3. Large particle groups (particle number>five)

Lattice imperfections, such as variations of the initial inter-particle distance from the mean value,
predicted quite precisely the particle group formation for magnetic fields orientated along the
lattice edges. Smaller distances than the mean value lead particle pairs to get into contact. In
contrast, larger distances than the mean value lead in general to separate particle pairs. To show
a peak at particle groups containing five particles, the initial inter particle distance needed to be
small enough so that particle chains along the field direction formed. To form particle groups
comprising more than five particles the field was directed at an angle to the lattice edges. Then
particles connected in a "wavy" chain like structure along the magnetic field. As a consequence of
those various particle displacements, the lattice showed more or less matrix damage. After the
magnetic field rotation, particle rested not at their initial position. The average particle group
size was correlated to the area the rim particles of the lattice enclosed. It applies, the larger
the average group size, the smaller the area was. Furthermore, for all lattices an area decrease
between zero field and magnetic field was observed. Hence, to generate larger matrix deformation
a particle group formation of large groups was beneficial. Thereby though, one has to consider
that the multitude of particle displacements can lead to a matrix damage.
Finally, the preparation method was used to create MRE samples containing a monolayer of dense
packed particles like magnetically hollow PDMS spheres. To this end, the PDMS solution was

141



crosslinked in a density matched solution of water and propan-2-ol and then coated with nickel
particles. Afterwards, the magnetically hollow PDMS spheres were either completely encapsulated
in a PDMS matrix or glued to the bottom of a glass container and surrounded by air or water.
Centering the spheres inside the Halbach-array and varying the field orientation in 5◦ steps lead
to following observations: The spheres elongated along the magnetic field direction while in
orthogonal direction a reduction of the sphere diameter was determined, i.e. the spheres showed
a magnetic deformation effect [52, 140, 141, 143, 161, 182, 185]. This elongation changed its
direction according to the magnetic field orientation and a change in the diameter between
≈ 6% and ≈ 8.5% was extracted. From a microscopic view, a particle movement mostly at the
poles accompanied the magnetic deformation effect. On top of the magnetic deformation effect a
second deformation was observed. It was generated by a magnetic field gradient that effectively
compressed the sphere from the top. Therefore, the second deformation was in contrast to the
magnetic deformation effect strongly influenced by the surrounding media. While the sphere
embedded in PDMS increased its diameter not significantly compared to its initial diameter, the
sphere surrounded by air or water increased its diameter up to ≈ 24%. Combining those two
deformations makes the spheres interesting for application as, on one hand, large deformations
can be created and, on the other hand, the deformation direction can be switched by alternating
the magnetic field direction.
Freestanding magneto-active membranes, i.e. a dense packed particle monolayer positioned in
between two thin PDMS layer were prepared. To determine the effective Young’s modulus of
the membrane, resonance frequency and deformation measurements were conducted. Using the
Uflyand-Mindlin plate theory a Young’s modulus of 154 kPa (resonance frequency measurement)
respectively 158 kPa (deformation measurement) was calculated. Considering the approximations
used for both calculations the values are in good agreement. Hence, with both independent
measurements a Young’s modulus was obtained that exceeds the Young’s modulus of the sole
PDMS layers by far. As the particle monolayer was rigid compared to the PDMS layer the special
arrangement of PDMS layer- particle monolayer -PDMS layer ensured a large stiffening of the
membrane. Thereby only a small influence of the PDMS mixing ratio on the membrane stiffness
was observed.
Cutting a cross of 1 cm × 1 cm into the membrane, its magneto activity could be used to open
and close the cut with an external magnetic gradient field, e.g., to allow drops to pass through.
A correlation between the drop volume and its behaviour at opening and closing of the cut,
was observed. Water droplets smaller than a certain volume passed through the open cut while
keeping their shape integrity. Water droplets larger than a certain volume started flowing once
the cut was opened. Water droplets with volumes in between remained in their drop shape for
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numerous opening and closing cycles of the cut. Hence, whether a water droplet passes through
the cut depended strongly on the ratio between hydrophobicity and gravity acting on the drop.
After the water started flowing it could not be stopped by closing the cut. The restoring elastic
force was not enough to overcome the surface tension and capillary forces of the liquid flow.

7.1 Outlook

The results of the present thesis showed that a precise positioning of the magnetic particles is
important for an optimized magneto activity of the sample. In order to allow for an efficient
preparation of larger samples, I tested different strategies. Particle alignment with magnetic force
and structured template was shown. Future work need to focus on achieving a particle transfer
process between the template and the PDMS matrix. Using spherical particles of identical size in
combination with the alignment them in the MRE samples would further decrease influencing
variables such as lattice imperfection on the particle group formation. This could lead to a more
detailed understanding of particle group formation in microscopically structured MRE samples.
Creating large particle groups which expand over the whole sample can be essential to generate
tailored deformations. Thereby, possible matrix damages need to be considered.
Preparing membranes with larger Young’s modulus can be the key to increase the elastic restoring
force and thus, stopping actively a liquid flow. Therefore, also stronger magnetic field strength are
required to open the cut. The preparation method used in the presented work has huge potential
and can be used to prepare MRE samples with beneficial and novel deformation.
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Glossary

Symbols in chapter 2

Symbol Units Meaning
G Pa Shear modulus
G0 Pa Fitting parameter in the power law fit
H⃗ A/m Magnetic field strength inside the particle
H⃗d A/m Demagnetization field
H⃗e A/m External, i.e., applied Magnetic field strength
m⃗ Am2 Magnetic moment
M⃗s A/m Saturation magnetization
M⃗p A/m Particle magnetization
p % Percentage of reacted bonds
pc % Percentage of reacted bonds at the percolation point
r % Mixing ratio
rc % Critical mixing ratio
t Fitting exponent
Vp m3 Particle volume
µr Relative permeability
ς m/A Fitting parameter
γd Demagnetization factor
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Symbols in chapter 3

Symbol Units Meaning
a m Position of point charges
B⃗ T Magnetic flux density
β ◦ Angle between magnetic field and particle axis
βm

◦ "Magic angle"
Cj,k Material parameter of the hyperelastic material model
χ Magnetic susceptibility
χe Electric susceptibility
d m Thickness of the sheared sample
D As/m2 Electric flux density
Dk Material parameter of the hyperelastic material model
E Pa Young’s modulus (elastic modulus)
E⃗ V/m Electric field strength
E⃗p V/m Electric field strength of electric dipole
η Pa s Viscosity
ϵ0 As/V m Electric vacuum permeability
F⃗m N Magnetic dipole-dipole force
G Pa Shear modulus
G∗ Pa Complex shear modulus
G′ Pa Storage modulus (real part of G∗)
G′′ Pa Loss modulus (imaginary part of G∗)
γ Strain
γ Strain tensor
γ̇ Shear rate
γ0 Strain amplitude
γi,j Components of strain tensor
γd Demagnetization factor
H⃗ A/m Magnetic field strength inside the particle
H⃗p A/m Magnetic field strength of a magnetic dipole
H⃗d A/m Demagnetization field
H⃗e A/m External, i.e., applied Magnetic field strength
I1,2,3 Invariants of the hyperelastic material
Jv Jacobian determinant
Kb Pa Bulk modulus (compression modulus)
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λ Pa Lamé coefficient
λstretch Principal stretches of the hyperelastic material model
m0,1,2,... Coefficient generalized Kelvin-Voigt model
m⃗ Am2 Magnetic moment
m̂ Am2 Unity vector of the magnetic moment
|m| Am2 Norm of the magnetic moment
Mii,i ̸=j Displacability matrices
M⃗ A/m Magnetization
M⃗p A/m Particle magnetization
µ Pa Lamé coefficient
µ0 N/A2 Magnetic vacuum permeability
n0,1,2,... Coefficient generalized Kelvin-Voigt model
ν Poisson ratio
ω Hz Angular frequency
ψ J Free energy
ψmag J Magnetic part of the free energy
ψmech J Mechanical part of the free energy
p⃗ Ams Electric dipole moment
P⃗ As/m2 Electric polarization
q C Electric point charge
r⃗ m Distance
r̂ m Unity vector of the distance
|r| m Norm of the distance
ρ kg/m3 Mass density per unit volume
σ Pa Stress
σ Stress tensor
σ Pa Stress
σi,j Pa Components of stress tensor
t s Time
t0 s Starting time of the applied stress
τ s Viscoelastic relaxation time
Θp V Electrostatic potential
U m Shift of the sheared sample
Ui Deformation fields
V m3 Volume
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Vp m3 Particle volume
W J/m3 Elastic energy density
Wdiss J/m3 Dissipative energy density
Wd J/m3 Deviatoric part of the elastic energy density W
WV J/m3 Volumetric part of the elastic energy density W
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Symbols in chapter 4

Symbol Units Meaning
b Fit parameter
B⃗ T Magnetic flux density
β ◦ Angle between magnetic field and particle axis
βi

◦ Angle between initial and deflected particle axis
χ2 Tolerance of the fit
d m Particle diameter
G Pa Shear modulus
G0 Pa Fit parameter
Γ Nm Elastic torque
Γm Nm Magnetic torque
κe Geometrical elastic rotation factor
m⃗ Am2 Magnetic moment
m̂ Am2 Unity vector of the magnetic moment
|m| Am2 Norm of the magnetic moment
µ0 N/A2 Magnetic vacuum permeability
N Number of particles
P⃗0,i m Particle’s center to center vector
p1,2,3,4 T/m Fit parameters of the exponential fit
r⃗ m Distance
r̂ m Unity vector of the distance
|r| m Norm of the distance
rc % Fit parameter
R Ω Resistance
Round Roundness of the particles
θ ◦ Angle of the magnetic field in respective to x- or y-axis
V m3 Volume
Vp m3 Particle volume
v Fit parameter
x0,i m x-coordinate
y0,i m y-coordinate
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Symbols in chapter 5

Symbol Units Meaning
a Length of the harmonic springs
B⃗ T Magnetic flux density
β ◦ Angle between magnetic field and particle axis
β1,2

◦ Lattice diagonal angle
βm

◦ Magic angle: Magnetic interaction switches from attrac-
tion to repulsion or vice versa

di m Particle diameter
dia1,2 m Diagonal lattice direction
∆d12 m Inter-particle distance change
δ ◦ Lattice angle
ϵ1, 2 ◦ Lattice diagonal angle
e J Pairwise energy
e1 First derivative of the pairwise energy
e2 Second derivative of the pairwise energy
k Stiffness of the harmonic springs
m⃗ Am2 Magnetic moment of the particle
N Number of particles per chain
rb m Range of initial inter-particle distance
rmin m Lower limit of initial inter-particle distance
rmax m Upper limit of initial inter-particle distance
θ ◦ Magnetic field angle relative to the x axis
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Symbols in chapter 6

Symbol Units Meaning
α, β Eigenvalues
a, b m Edge length of the membrane
A m2 Area of the beam or membrane
Al m2 Area of load
As m2 Cross-sectional area of the beam or membrane
AT m Amplitude of the oscillation
B⃗ T Magnetic flux density
χ Magnetic susceptibility
d m Particle diameter
dz m Membrane deflection
dm,n Deflection coefficients
E Pa Young’s modulus
Es Pa Effective Young’s modulus
Em Pa Young’s modulus of pure matrix material
εx,yi % elongation in relation to the initial sphere diameter
εx,yr % ratio between minimum and maximum sphere diameter
f 1/s Excitation frequency
fm 1/s membrane oscillation frequency
Fm kgm/s2 Magnetic force
G Pa Shear modulus
H⃗e A/m External magnetic field strength
I kgm2 Axial geometrical moment of inertia
i kgm2 Rotational inertia
κ, k Order of the natural frequencies
K Pa Plate stiffness (Bulk modulus)
l m Length of the beam or membrane
λ Correction coefficient Uflyand-Mindlin theory
Λ0 kgm/s2 Applied load
mm kg Membrane weight
M⃗p A/m Particle magnetization
µ0 N/A2 Vacuum permeability
ν Poisson ratio
ω 1/s Angular frequency
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ωk 1/s Natural frequencies (resonance frequencies)
ωt 1/s Natural frequencies (resonance frequencies) of a Timo-

shenko beam
ωum,n 1/s Natural frequencies (resonance frequencies) of a

Uflyand-Mindlin plate theory
ρ kg/m3 Membrane density
ςr Correction coefficient for rotation inertia
ςs Correction coefficient for shear deformation
T s Half the oscillation period
t s Time
tb m Height (thickness) of the membrane (plate) or beam
tc Phase shift of the oscillation
θ ◦ Magnetic field orientation relative to the x-direction
Θ % Particle volume fraction
τ Correction factor natural frequencies (resonance fre-

quencies) Timoshenko beam
V m3 Membrane volume
Vp m3 Particle volume
W General solution functions
y Sine fit function
y0 Shift around the central oscillation point
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Abbreviations

Abbreviation Long-name
C3H8O Propan-2-ol
DMS-V25 Difunctional vinyl-terminated polydimethylsiloxane
HMS-151 SiH-containing methylhy-drosiloxane–dimethylsiloxane

crosslinker
MRE Magneto-rheological elastomer
MRF Magnetorheological fluids
MR-effect Magnetorheological effect
PDMS Polydimethylsiloxan
PVA Polyvinylalcohol
SiH Silyl group
SQUID Superconducting quantum interference device
VSM Vibrating sample magnetometer
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