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Abstract
We consider the initial value problem ẋ(t) = v(t, x(t)) for t ∈ (a, b), x(t0) = x0

which determines the pathlines of a two-phase flow, i.e. v = v(t, x) is a given

velocity field of the type v(t, x) =

{
v+(t, x) if x ∈ Ω+(t)
v−(t, x) if x ∈ Ω−(t)

with Ω±(t) denoting

the bulk phases of the two-phase fluid system under consideration. The bulk
phases are separated by a moving and deforming interface Σ(t) at which v
can have jump discontinuities. Since flows with phase change are included,
the pathlines are allowed to cross or touch the interface. Imposing a kind of
transversality condition at Σ(t), which is intimately related to the mass balance
in such systems, we show existence and uniqueness of absolutely continuous
solutions of the above ODE in case the one-sided velocity fields v± are contin-
uous in (t, x) and locally Lipschitz continuous in x on their respective domain
of definition. A main step in proving this result, also interesting in itself, is to
freeze the interface movement by means of a particular coordinate transform
which requires a tailor-made extension of the intrinsic velocity field underlying
a C1,2-family of moving hypersurfaces.
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1. Introduction

We consider a specific class of discontinuous ODE-systems which appear naturally in the study
of two-phase flows, where the underlying situation is as follows: a domainΩ ⊂ IRn is occupied
by two immiscible fluid phases, denoted as Ω±. These so-called bulk phases are separated by
a sharp interface Σ and this interface is allowed to move and deform as time evolves. Hence

Ω = Ω+(t) ∪ Ω−(t) ∪ Σ(t) for all t ∈ J

with a family of moving hypersurfaces {Σ(t)}t∈J and J = (a, b) ⊂ IR. While n = 3 in concrete
physical applications, we consider the general case n � 2.

We will always assume the Σ(t) to be C2-hypersurfaces in IRn. Moreover, the graph of the
set-valued map t �−→ Σ(t), i.e.

gr(Σ) := {(t, x) : x ∈ Σ(t), t ∈ J} ⊂ J × IRn

is an oriented C1-hypersurface in IRn+1 such that the field nΣ = nΣ(t, x) of (unit) normals to
Σ(t) ⊂ IRn is continuously differentiable on gr(Σ). These assumptions assure that the Σ(t) are
interrelated by advection with an associated flow field as is explained in detail below. We call
this a C1,2-family of moving hypersurfaces; see [21, 23, 25] as well as section 3 below.

In this setting, continuous velocity fields v± = v±(t, x) are given in the respective bulk
phases Ω±(t), where we assume them to have continuous extensions onto

G± := gr(Ω±) = {(t, x) : x ∈ Ω±(t), t ∈ J}.

Moreover, we assume the v±(t, ·) to be locally Lipschitz continuous in Ω±(t) for all t ∈ J. We
then let

v(t, x) =

{
v+(t, x) if x ∈ Ω+(t), t ∈ J

v−(t, x) if x ∈ Ω−(t), t ∈ J
(1)

be the corresponding two-phase velocity field. Note that (1) does not define v on gr(Σ). For
t ∈ J and x ∈ Σ(t), both one-sided limits v±(t, x) exist by assumption, but they will not coin-
cide in the case of a two-phase flow with phase change (like evaporation from or condensation
to a droplet) for which the interface is not a material interface. Indeed, a phase change pro-
cess is—by definition—a process in which a material point can move from one phase to the
other, thus crossing the interface. Since the mass density differs between the adjacent phase,
while the mass flux is continuous due to mass conservation, the velocity then has a jump dis-
continuity at the interface. Hence, whatever definition we give for v on gr(Σ), the resulting
function will, in general, be discontinuous at gr(Σ). Consequently, the problem of determining
the pathlines of general two-phase flows requires to find physically meaningful assumptions
on the discontinuous field v : J × Ω→ IRn such that the initial value problems

ẋ(t) = v(t, x(t)) for t ∈ J, x(t0) = x0 (2)

are uniquely solvable. Of course, this also requires an appropriate notion for solutions of (2).
Let us note in passing that the question of uniquely defined pathlines for two-phase flows is

intimately related to the concept of co-moving control volumes in the two-phase setting. The
latter is a very helpful tool already for the mathematical modelling of such systems.

There are a few fundamentally different approaches to the study of problem (2) for dis-
continuous right-hand sides. The most classical approach employs ODE-techniques, typically
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trying to obtain a solution from pieces which solve standard ODEs. A second method of investi-
gation replaces the discontinuous single-valued right-hand side v by an appropriate set-valued
regularization and studies a differential inclusions instead of an equation. Finally, there is a
PDE-based approach due to DiPerna and Lions for (2) with right-hand sides of low regularity.
Instead of studying the advection of a fluid particle, governed by the initial value problems
(2), the transport of a passive scalar φ by the flow field v is considered. The advection of φ is
governed by the transport equation

∂tφ+ v · ∇φ = 0, t ∈ J, x ∈ Ω. (3)

Then φ(·, x(·; t0, x0)) ≡ φ(t0, x0), where x(·, t0, x0) is the solution of (2), hence the method of
characteristics can be applied if (2) is uniquely solvable backwards in time. In their seminal
paper [15], DiPerna and Lions initiated the investigation of how the intimate relation between
the ODE (2) and the scalar transport equation (3) can be employed to obtain a flow map asso-
ciated with (2) for velocity fields of low regularity; see [1] for a rather recent overview. But the
latter approach does not aim at providing solvability of (2) for every initial value; rather, results
on the induced flow in the sense of a set-to-set map (for almost all elements) are obtained.

We are going to employ the approach via differential inclusions in order to obtain exis-
tence of solutions and we will briefly explain the concept of set-valued regularization below.
The hard part then is to show their uniqueness. Before going into the details, let us provide
a brief overview about known uniqueness criteria which apply to certain discontinuous ODE-
systems, where we also add information why these approached do not apply to the ODE-system
associated with two-phase flows.

Given an open interval J = (a, b) in IR, an open set Ω ⊂ IRn and a function f : J × Ω→ IRn,
we consider the initial value problem (IVP for short)

ẋ(t) = f (t, x(t)) for t ∈ J, x(t0) = x0 (4)

for t0 ∈ J and x0 ∈ Ω. By the classical result of Peano [24], problem (4) has a local C1-solution
if f is continuous. If f is discontinuous in t, solutions will typically not be C1, but absolutely
continuous (a.c. for short) such that

x(t) = x0 +

∫ t

t0

f (s, x(s)) ds for all t ∈ J. (5)

We call such a function x(·) an a.c. solution and, again by a classical result named after
C. Carathéodory, existence of local solutions still holds true if f is Lebesgue measurable in
t and continuous in x with local integrable bounds, say |f(t, x)| � k(t) on J × Ω with some
k ∈ L1(J); see for instance [22] for a proof. The solution is also called a Carathéodory solution
of (4).

The situation is more involved if f is discontinuous in x, as it happens if f denotes the veloc-
ity field in a two-phase flow, i.e. in the case considered in the present paper. More generally,
discontinuous ODEs appear in several situations, and possible applications which lead to such
cases can be found in [8, 13, 14, 17, 20] and the references given there. If f is discontinuous,
possible solutions will not be C1. Instead, we again look for an absolutely continuous (a.c. for
short) function x(·) such that (5) is satisfied. Equivalently, x(·) is a.c. with x(t0) = x0 and satis-
fies ẋ(t) = f(t, x(t)) almost everywhere (a.e.) on J. We call such a function x(·) an a.c. solution
of the IVP (4).

There are simple one-dimensional examples which show that (4) may have no solution, a
single solution or infinitely many ones. Let sgn(r) := r/|r| for r 	= 0, sgn(0) := 0 denote the
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standard sign function and consider the discontinuous IVP

ẋ(t) = sgn(x(t)) a.e. on J = IR, x(0) = 0.

Evidently, x(t) ≡ 0 is a solution, but also x(t) = (t − τ )+ :=max{0, t − τ} is a solution for
any τ > 0 as are the functions −(t − τ )+ for τ > 0. This resembles the classroom example of
ẋ =

√
|x|, x(0) = 0 for non-uniqueness. Now define the modified sign-function

sgnα(r) := sgn(r) for r 	= 0 but sgnα(0) :=α with α ∈ IR and consider the IVP

ẋ(t) = − sgnα(x(t)) a.e. on J = IR, x(0) = 0. (6)

Assume that x(·) is an a.c. solution of (6). Then

d
dt
|x(t)| = ẋ(t) sgn(x(t)) a.e. on {t ∈ J : x(t) 	= 0}

and

d
dt
|x(t)| = 0 a.e. on N := {t ∈ J : x(t) = 0}.

For the latter note that almost all t ∈ N are simultaneously points of Lebesgue density of N and
such that |x(·)| is differentiable at t, hence d

dt |x(t)| = 0 in these points. Exploiting (6) yields

d
dt
|x(t)| � 0 a.e. on J,

hence x(t) = 0 for all t ∈ [0,∞) since x(0) = 0. Consequently, forward uniqueness holds in
case α = 0, while any choice of α 	= 0 leads to a discontinuous ODE without a.c. solution
(forward in time).

In order to still build a fruitful theory for discontinuous ODEs, a fundamental step is to relax
the concept of a solution in such a way that at least existence of solutions can be guaranteed in
appropriate cases. One way to proceed in this direction is to define the set-valued regularization
F : J × Ω→ 2IRn\{∅} of f : J × Ω→ IRn according to

F(t, x) :=
⋂
δ>0

conv f (t, Bδ(x) ∩ Ω) for t ∈ J, x ∈ Ω (7)

and to consider the differential inclusion

ẋ ∈ F(t, x(t)) for t ∈ J, x(t0) = x0 (8)

instead of (4). In (7), conv A denotes the closed convex hull of the set A. In analogy to the single-
valued ODE, we call x(·) an a.c. solution of (8) if x(·) is an absolutely continuous function such
that x(t0) = x0 and the inclusion in (8) holds a.e. on J.

It is well known (see [14]) that, given any locally bounded, measurable function f, the
map F has the following properties: F(·, x) has a measurable selection for every x ∈ Ω, F(t, ·)
is upper semicontinuous (i.e. if A is closed and F(t, xn) ∩ A 	= ∅ for some xn with xn → x0,
then F(t, x0) ∩ A 	= ∅) for every t ∈ J and F is locally bounded with closed bounded convex
values. Due to theorem 5.2 in [14], this is sufficient for the local-in-time existence of a.c.
solutions of the differential inclusion (8) for every t0 ∈ J and x0 ∈ Ω. If F stems from a dis-
continuous function f via (7), an a.c. solution of (8) is also called a Krasovskii solution of the
discontinuous ODE (4).
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A variant of the above concept was introduced by Filippov, considering the more restrictive
regularization

F(t, x) :=
⋂
δ>0

⋂
λn(N)=0

conv f
(
t, Bδ(x) ∩ (Ω\N)

)
for t ∈ J, x ∈ Ω, (9)

where λn denotes the n-dimensional Lebesgue measure. In this case, an a.c. solution of (8) is
called a Filippov solution of (4) and theorem 8 in chapter 2, section 7 of [17] assures that a
(local) a.c. solution of (8) exists for measurable, integrably bounded f.

The difference between the two variants can be explained with the sign function: while
the set-valued regularization Sgn(·) of sgnα(·) according to (9) has Sgn(0) = [−1, 1], indepen-
dently of the value of α ∈ R, one always has α ∈ Sgn(0) if the latter is defined via (7).

Applied to the two-phase velocity field f := v under consideration, definition (7) and (9)
yield the same result, namely

F(t, x) =

⎧⎪⎪⎨
⎪⎪⎩
{v+(t, x)} if x ∈ Ω+(t),

conv{v+(t, x), v−(t, x)} if x ∈ Σ(t),

{v−(t, x)} if x ∈ Ω−(t).

(10)

This approach yields a non-empty set of solutions to the differential inclusion (8). In general,
these are not solutions to the original (single-valued) ODE. Hence a natural follow-up question
is, under which conditions at least one of these solutions of (8) is also a solution of (4). This
is related to the question, whether the set-valued map F from (7) or (9) coincides with {f} in
relevant cases.

Employing the concept of directional continuity, which goes back to [12, 27], Bressan
obtained in [9] existence of solutions for the original initial value problem (4) if | f(t, x)| � c
on J × Ω and f is continuous along the cone

Kα := {(t, x) ∈ IRn+1 : |x| � α t} for someα > c. (11)

Let us indicate how directional continuity can help, while we refer to [9, 14] for more details.
First of all, note that the behaviour locally in time is the core point, since continuation of
solutions can be done as in the single-valued continuous case. Under the weak assumption of
local boundedness of f we also obtain that F from (7) or (9) is locally bounded. Hence, for the
local in time existence and uniqueness, it is a harmless restriction to assume that |f(t, x)| � c on
J × Ω, hence the same for F. Then any solution x(·) of (8) is Lipschitz continuous of constant
c. Now let t ∈ J and assume that there is a sequence hn ↘ 0 such that x′(t + hn) → x′(t) and,
of course, such that these derivatives exist. Then, for α > c, there exits δn ↘ 0 such that

Bn :=Bδn ((t + hn, x(t + hn))) ⊂ (t, x(t)) + Kα for all n ∈ IN.

But then, given ε > 0, directional continuity of f along Kα implies

| f (s, y) − f (t, x(t))| � ε for (s, y) ∈ Bn if n is sufficiently large.

This yields F(t, x(t)) = { f(t, x(t))} at such a point t ∈ J. Using the Lusin property of the mea-
surable function ẋ and, again, points of Lebesgue density, it is not hard to show that almost all
t ∈ J are of the type above; see [14]. Hence any a.c. solution of (8) with (7) or (9) is already an
a.c. solution of (4) if f is (locally) bounded and directionally continuous along Kα with large
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enoughα > 0. From the above set inclusion we see that even a joint regularization in (t, x) like

F(t, x) :=
⋂
δ>0

conv f (Bδ((t, x)) ∩ [J × Ω]) for t ∈ J, x ∈ Ω

would work in this situation.
Now, while this approach via directional continuity is very helpful for instance to prove

the existence and study qualitative properties of a.c. solutions for differential inclusions with
lower semicontinuous right-hand side (see [9, 11]), it does not apply to general two-phase flow
velocity fields, since the cone Kα is not related to the discontinuity surface Σ. Note that the
simple one-dimensional example of f (t, x) = a + (b − a)χ[x0,∞)(x) with a, b ∈ IR, in which f
switches from a to b at x = x0, is only continuous along Kα (for any α > 0) if a = b, i.e. here
directional continuity already implies continuity.

Nevertheless, but with a different and more specific proof, it will turn out that solu-
tions of (9) are solutions of (4) in the situation associated with two-phase flows consid-
ered in the present paper. This will be shown in section 6 as part of the proof of the main
result.

If the existence of a.c. solutions of (4) or (8) is guaranteed, the next important step then is to
find applicable uniqueness criteria, especially in cases where the physics of the problem asks
for unique solutions to the initial value problems such as the two-phase flow problem consid-
ered here. For ODEs with discontinuous right-hand sides, this typically is the most difficult
step. Before giving a brief overview of available results, explaining also why they do not cover
the ODE-system associated to two-phase flows, recall that local Lipschitz continuity of f in x
is of course sufficient for local existence of a unique solution to (4) due to the Picard–Lindelöf
theorem. In the latter classical result, f is also assumed to be jointly continuous, which can be
relaxed to mere measurability in t. This gives forward and backward uniqueness, but evidently
does not apply to f being discontinuous in x.

From a physical point of view, at least forward uniqueness is mandatory. Now if two solu-
tions x(·), y(·) of the same IVP (4) are given, one hence needs to show that ‖x(t) − y(t)‖
stays zero, being zero at t = t0. The natural idea is to look for differential inequalities,
say for 1

2‖x(t) − y(t)‖2 which is as regular as the solutions are. For a.c. solutions of (4),
we have

d
dt

1
2
‖x(t) − y(t)‖2 = 〈 f (t, x(t)) − f (t, y(t)), x(t) − y(t)〉 a.e. on J,

where the brackets 〈·, ·〉 denote the standard inner product and ‖ · ‖ is the associated (Euclidean)
norm. Therefore, a reasonable condition to obtain forward uniqueness is the so-called one-sided
Lipschitz continuity, i.e.

〈 f (t, x) − f (t, y), x − y〉 � k(t)‖x − y‖2 for all t ∈ J, x, y ∈ Ω (12)

with k ∈ L1(J). A function f which satisfies (12) is also said to be of dissipative type. Evidently,
forward uniqueness then follows by means of Gronwall’s lemma, since (12) implies

d
dt

1
2
‖x(t) − y(t)‖2 � k(t)‖x(t) − y(t)‖2 for a.e. t ∈ J. (13)

Now note that (12) allows for discontinuous f, but it imposes strong restrictions on possible
jumps of f. For instance, in case n = 1 and if f ∈ C1(R\{0}) has one-sided limits a± at x = 0,
then a+ � a− is necessary. Observe that requesting also backward uniqueness in this simple
example imposes the condition a+ = a−, hence continuity of f.
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Let us now specialize to the setting which corresponds to two-phase flows and check to
what extend one-sided Lipschitz continuity is applicable. The setup is characterized by a right-
hand side, which we now denote as v for velocity, being locally Lipschitz (or better) except at
a (in general moving and deforming) hypersurface Σ, where v has one-sided limits but with
a jump discontinuity across Σ. Lemma 3 in Chapter 2, section 10 of [17] employs one-sided
Lipschitz continuity for (2) with right-hand sides as in (1), but with constant (non-moving)Σ ∈
C1 andΩ±. This yields forward uniqueness of solutions to (2) under the following assumptions:
v± : Ω± → IRn continuous with continuous (up to the boundary) partial derivatives and such
that

v+‖ = v−‖ and
〈
v+ − v−, n−〉 � 0 on Σ, (14)

where v±‖ denotes the tangential components of v± and n− is the outer normal to Ω−. This result
does not apply to the situation found for two-phase flows for the following reason: as explained
above, in a two-phase flow with phase change, the one-sided limits of the normal velocity at
the interface have a jump discontinuity and the difference (v+ − v−) · nΣ has no fixed sign;
e.g., for a droplet surrounded by its vapour there will, in general, simultaneously be regions
of local evaporation as well as regions of local condensation which means that (v+ − v−) · nΣ

changes its sign along the interface. Let us also note that we are actually looking for conditions
guaranteeing forward and backward uniqueness and (14)2 then becomes 〈v+ − v−, n−〉 = 0,
hence continuity of v · nΣ atΣwould then be required, ruling out any phase change phenomena.

Another related result in [17] is theorem 2 in chapter 2, section 10 which goes back to [16].
The setting is again with fixed hypersurfaceΣ and with v± ∈ C1(G±). This time, Σ is assumed
to be of class C2, hence v+|Σ − v−|Σ ∈ C1(Σ). By means of a nonlinear coordinate transformation,
the condition (14)1 can then be avoided, while condition (14)2 is replaced by〈

v−, n−〉 > 0 or
〈
v+, n+

〉
> 0 on Σ, (15)

where n± are the outer normals toΩ±. Under this assumption, theorem 2 in chapter 2, section 10
of [17] estabishes forward uniqueness.

Evidently, condition (15) means that at least one of the one-sided limits of v at Σ points into
the opposite sub-domain, thus avoiding the case in which each of the one-sided limits points
into the sub-domain where it is taken. Note that the latter case would possibly allow for two
different solutions emanating from the same point on Σ. While being an interesting result, it
does not apply to the two-phase flow case we are aiming at: the normal velocity (relative to
the interface) can vanish at Σ, but only simultaneously for both sides due to mass conservation
at the interface, cf condition (18) below. Thus condition (15) would rule out the (physically
possible) case of having zero normal velocity (relative to the interface).

For the sake of completeness, let us mention that a different criterion for forward unique-
ness was established in [10], building on the concept of directional continuity. Theorem 1 in
[10] guarantees the existence of a unique forward solution to (4) if f has locally bounded Kα-
variation, i.e. locally bounded variations which are computed only in increasing (w.r.t. the cone
Kα from (11)) direction; see [10] for details and see paragraph A1 in [14]. As explained above
in the context of existence results for discontinuous ODEs, the concept of directional continu-
ity does not apply to the ODE-system associated with two-phase flows since the cone Kα has
no relation to the hypersurface of discontinuity.

The main result of the present paper is the wellposedness (with forward and backward
uniqueness) of the ODE associated with the velocity field of a two-phase flow under physically
meaningful assumptions, where the latter are motivated by the mass conservation jump condi-
tions. The core idea is to establish an energy-type estimate like (13), but with ‖ · ‖2 replaced
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Figure 1. Sketch of a two-phase flow domain with notations.

by a different functional related to the jump conditions in two-phase flows. This requires to
first transform the system in a particular manner which not only freezes the moving interface
but, in doing so, leaves the jump conditions separated into normal and tangential parts. For this
purpose, we prove that the intrinsic normal velocity of a C1,2-family of moving hypersurfaces
admits a certain extension which generates a specific flow map which then yields the desired
coordinate transform. In order to motivate our assumptions and to state as well as to prove
our main result, some background on the physical model as well as some auxiliary results on
moving hypersurfaces are hence required.

2. Sharp interface two-phase flow model

Consider the continuum mechanical sharp-interface model for two-phase flows with phase
change in a domain Ω ⊂ IRn with bulk phases Ω±(t), separated by a C2-surface Σ(t) such that
Ω+(t) ∪ Ω−(t) ∪ Σ(t) is a disjoint decomposition of Ω. We assume that Σ(t) is an embedded
surface in IRn without boundary; to avoid technical problems with moving contact lines (see
[19] concerning mathematical difficulties with moving contact line modelling), we actually
restrict to closed surfaces. This typical setup is illustrated in figure 1.

The balances of mass and momentum read

∂tρ+ div (ρv) = 0 in Ω\Σ, (16)

∂t(ρv) + div (ρv ⊗ v − S) = ρb in Ω\Σ, (17)

where ρ is the mass density, v the velocity, S the stress tensor and b denotes body forces. At
Σ, the transmission conditions

[[ρ(v − vΣ)]] · nΣ = 0 on Σ, (18)

[[[ρv ⊗ (v − vΣ) − S]] · nΣ = divΣ SΣ on Σ (19)

are valid, where vΣ is the interface velocity, nΣ the interface normal field, SΣ denotes the
interface stress tensor and divΣ is the surface divergence. For the sake of completeness recall
that the surface divergence of a surface field like SΣ is given as divΣSΣ = trace∇ΣSΣ. Here
∇Σ is the surface gradient which is most directly defined via∇ΣSΣ :=PΣ∇SΣ

ext with PΣ := I −
nΣ ⊗ nΣ the projector onto the (local) tangent hyperplane and SΣ

ext a differentiable extension of
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SΣ to some neighbourhood ofΣ, for example the one which is constant along normal segments.
The jump bracket [[·]] is defined as

[[[ψ]](t, x) := lim
h→0+

(ψ(t, x + hnΣ(t, x)) − ψ(t, x − hnΣ(t, x))) (20)

for t ∈ J, x ∈ Σ(t). Observe that only the so-called speed of normal displacement VΣ := vΣ · nΣ

of Σ(·) enters in (18), (19); cf (27) below for a purely kinematic definition of VΣ.
The system (16)–(19) requires several constitutive relations to arrive at a closed model,

i.e. a system of PDEs for the unknown variables ρ, v; see [28] for more details. Here, we
are only interested in the flow generated by the two-phase velocity field. For this purpose
we need to add an information on the tangential part, where we impose the standard no-slip
condition, i.e.

[[[PΣv]] = 0 on Σ. (21)

We also use v‖ as a shorthand notation for PΣv. Note also that we use ‘on Σ’ to mean ‘for all
(t, x) ∈ gr(Σ)’; recall that

gr(Σ) = {(t, x) : x ∈ Σ(t), t ∈ J} =
⋃
t∈J

(
{t} × Σ(t)

)
(22)

denotes the graph of the (set-valued) map Σ : J ⊂ IR → 2IRn\{∅}.

3. Moving hypersurfaces and consistent velocity fields

Motivated by the physical background, we employ the following definition of a C1,2-family
of moving hypersurfaces which can also be found in [23, 25] and in a similar form in [21].
Let us note that divΣ SΣ in (19) contains the term κΣ = divΣ(−nΣ), which is n − 1 times
the mean curvature of Σ. This explains the requirement that all Σ(t) are C2-hypersurfaces
in IRn.

Definition 1. Let J = (a, b) ⊂ IR be an open interval. A family {Σ(t)}t∈J with Σ(t) ⊂ IRn is
called a C1,2-family of moving hypersurfaces if

(a) each Σ(t) is an orientable C2-hypersurface in IRn with unit normal field denoted as nΣ(t, ·);
(b) the graph M of Σ is a C1-hypersurface in IR × IRn;
(c) the unit normal field is continuously differentiable on M, i.e.

nΣ ∈ C1(M).

We also need the notion of consistent velocity fields vΣ : M→ IRn.

Definition 2. Let J = (a, b) ⊂ IR and {Σ(t)}t∈J a C1,2-family of moving hypersurfaces in
IRn with graph M. Let vΣ : M→ IRn be a continuous velocity field such that the vΣ(t, ·) are
locally Lipschitz continuous on Σ(t) for all t ∈ J. We say that vΣ and M are consistent (or that
vΣ is consistent to M), if the initial value problems

ẋΣ(t) = vΣ
(
t, xΣ(t)

)
on J, xΣ(t0) = x0 (23)

have unique a.c. solutions on J (locally in time, forward and backward) for every (t0, x0)
∈ M.
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Note that vΣ is only given on M = gr(Σ) in definition 2 above. Hence solvability of (23)
on I ⊂ J implicitly includes the constraint

xΣ(t) ∈ Σ(t) on I. (24)

To characterize consistency, we employ the so-called intermediate cone toM (see [3]), defined
for (t, x) ∈ M by

TM(t, x) :=

{
(τ , v) : lim

h→0+
h−1 dist (x + hv,Σ(t + hτ )) = 0

}
. (25)

Elements of TM(t, x) are, in general, subtangential to M. At inner points of M (in the sense of
inner points of a surface), the intermediate cone reduces to the set of tangential vectors. Now,
as a direct consequence of corollary 5.3 in [14] or theorem 13.2.1 in [26] (see also [5] and the
appendix in [7]), the following holds.

Lemma 1. Let J = (a, b) ⊂ IR and {Σ(t)}t∈J be a C1,2-family of moving hypersurfaces in
IRn with graph M. Let vΣ : M→ IRn be a continuous velocity field such that the vΣ(t, ·) are
locally Lipschitz continuous on Σ(t) for all t ∈ J. Then vΣ is consistent to M iff (if and only
if ) vΣ is tangential to M in the sense that(

1, vΣ(t, x)
)
∈ TM(t, x) onM. (26)

For a C1,2-family {Σ(t)}t∈J of moving hypersurfaces, VΣ denotes the speed of normal displace-
ment of Σ(·) and is defined via the relation

lim
h→0+

1
h

dist(x + hVΣ(t, x)nΣ(t, x),Σ(t + h)) = 0 for t ∈ J, x ∈ Σ(t). (27)

More precisely, VΣ should be named ‘speed of normal forward displacement’ due to ‘h →
0+’ in (27). But in all cases considered in the present paper, the speed of normal dis-
placement will be the same in forward and in backward direction. Let us note in pass-
ing that the definition via (27) is equivalent to the common one which employs curves.
Indeed,

VΣ(t, x) = 〈γ ′(t), nΣ(t, γ(t))〉

for any C1-curve γ with γ(t) = x and gr(γ) ⊂ M, and the value does not depend on the choice
of a particular curve; see chapter 2.5 in [25]. In the literature, VΣ is often called normal velocity
ofΣ(·), but we prefer to call it the speed of normal displacement since VΣ is not a velocity field.
The definition via (27) clearly shows that VΣ is a purely kinematic quantity, determined only
by the family {Σ(t)}t∈J of moving interfaces. Its computation is especially simple if {Σ(t)}t∈J

is given by a level set description, i.e.

Σ(t) = {x ∈ IRn : φ(t, x) = 0} (28)

with φ ∈ C1,2(N ) for some open neighbourhoodN ⊂ IR × IRn of M such that ∇φ 	= 0 on M.
Then

VΣ(t, x) = − ∂tφ(t, x)
‖∇xφ(t, x)‖ for t ∈ J, x ∈ Σ(t). (29)

With this notation, the following characterization of consistency holds.
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Lemma 2. Let J = (a, b) ⊂ IR and {Σ(t)}t∈J be a C1,2-family of moving hypersurfaces
in IRn with graph M. Let vΣ : M→ IRn be a continuous velocity field such that the
vΣ(t, ·) are locally Lipschitz continuous on Σ(t) for all t ∈ J. Then vΣ is consistent to
M iff

vΣ(t, x) · nΣ(t, x) = VΣ(t, x) onM. (30)

Proof. We first show that (26) implies (30). Fix (t0, x0) ∈ M and let (hk) ⊂ IR with 0 	=
hk → 0+ be given. Then there are zk ∈ IRn with zk → 0 such that

xk := x0 − hkv
Σ
‖ (t0, x0) + hkzk ∈ Σ(t0),

since vΣ‖ (t0, x0) is tangent to Σ(t0) in x0. By (26) and lemma 1, the solutions of (23) starting in
xk stay in M, i.e.

xΣ(t0 + hk; t0, xk) ∈ Σ(t0 + hk) for all k � 1.

Hence, with vΣn :=
〈
vΣ, nΣ

〉
nΣ, we obtain

dist(x0 + hkv
Σ
n (t0, x0),Σ(t0 + hk)) � ‖x0 + hkv

Σ
n (t0, x0) − xΣ(t0 + hk; t0, xk)‖

� ‖x0 + hkv
Σ
n (t0, x0) − (xk + hkv

Σ(t0, xk))‖+ hkδk

with some δk → 0+. Therefore,

1
hk

dist(x0 + hkv
Σ
n (t0, x0),Σ(t0 + hk))

� ‖vΣn (t0, x0) + vΣ‖ (t0, x0) − vΣ(t0, xk) − zk‖+ δk → 0 as k →∞.

This shows that (30) holds at the arbitrarily chosen (t0, x0) ∈ M.
Now we assume (30) to hold. Since VΣnΣ satisfies (27), the velocity field vΣn :=

〈
vΣ, nΣ

〉
nΣ

is consistent to M due to lemma 1. Hence, with obvious modifications, we can exchange the
role of vΣ and vΣn in the arguments from above to see that

1
hk

dist(x0 + hkv
Σ(t0, x0),Σ(t0 + hk)) → 0 as k →∞,

hence (1, vΣ(t0, x0)) ∈ TM(t0, x0). �

The following result is a slight extension of lemma 12 in [19] and provides the existence of
a local level set representation of M = gr(Σ) via a signed distance function.

Lemma 3. Let J = (a, b) ⊂ IR, {Σ(t)}t∈J be a C1,2-family of moving hypersurfaces in IRn and
(t0, x0) be an inner point of M = gr(Σ). Then there exists an open neighbourhood U ⊂ IRn+1

of (t0, x0) and ε > 0 such that the map

X : (M∩ U) × (−ε, ε) → IRn+1, X(t, x, h) := (t, x + h nΣ(t, x))

is a diffeomorphism onto its image

5435



Nonlinearity 33 (2020) 5425 D Bothe

N ε :=X((M∩ U) × (−ε, ε)) ⊂ IRn+1,

i.e. X is invertible there and both X and X−1 are C1. The inverse function has the form

X−1(t, x) = (πΣ(t, x), dΣ(t, x)) (31)

with C1-functions πΣ and dΣ on N ε. Moreover, ∇xdΣ ∈ C1(N ε; IRn) and ∇xdΣ 	= 0.

Proof. The only point not covered by the proof to lemma 12 in [19] is the additional reg-
ularity of ∇xdΣ, which follows by an argument taken from [25], where it is used for a fixed
hypersurface: given a fixed t ∈ J, we have

x = πΣ(t, x) + dΣ(t, x) nΣ(t, πΣ(t, x)) on Σ(t),

hence

dΣ(t, x) = 〈x − πΣ(t, x), nΣ(t, πΣ(t, x))〉

by taking inner products with nΣ(t, πΣ(t, x)). Differentiation as in the time-independent case
(see [25]) yields

∇xdΣ = nΣ(t, πΣ(t, x)), (32)

hence the desired regularity of ∇xdΣ as well as ‖∇xdΣ‖ ≡ 1 	= 0 on N ε. �

The latter result is useful to show that any C1,2-family of moving hypersurfaces has an
intrinsic consistent velocity field, allowing for unique solutions.

Corollary 1. Let J = (a, b) ⊂ IR and {Σ(t)}t∈J be a C1,2-family of moving hypersurfaces in
IRn with graphM. Then its speed of normal displacement VΣ is well-defined with VΣ ∈ C(M),
∇ΣVΣ ∈ C(M; IRn). Furthermore, the intrinsic velocity field

wΣ(t, x) :=VΣ(t, x) nΣ(t, x) for (t, x) ∈ M (33)

satisfies wΣ ∈ C(M; IRn), ∇Σw
Σ ∈ C(M; IRn×n) and is consistent to M.

Proof. Since only local properties are considered, it suffices to consider a fixed (t0, x0) ∈
M and arbitrarily small neighbourhoods (in M) thereof. Locally, the C1,2-family {Σ(t)}t∈J of
moving hypersurfaces is given as

Σ(t) ∩ Bε(x0) = {x ∈ Bε(x0) : dΣ(t, x) = 0}

with dΣ from (31) due to lemma 3. Hence, by (29) and (32), the speed of normal displacement
is given as

VΣ(t, x) = − ∂tdΣ(t, x)

in a neighbourhood of (t0, x0) in M. Evidently, ∂tdΣ ∈ C(M) by lemma 3, hence VΣ ∈ C(M).
Since nΣ ∈ C1(M) by assumption on {Σ(t)}t∈J, this also yields wΣ ∈ C(M; IRn). To see
the additional regularity, note that ∇xdΣ is C1 by lemma 3, hence the mixed second order
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derivatives ∂t∂xk dΣ exist and are continuous. In this case, the order of differentiation can be
exchanged due to the theorem of Schwarz1, thus∇x∂tdΣ exists and is continuous onN ε. Hence

∇ΣVΣ = −PΣ∇x∂tdΣ ∈ C(M; IRn).

Consequently,

∇Σw
Σ = nΣ ⊗∇ΣVΣ + VΣ∇ΣnΣ ∈ C(M; IRn×n).

Finally, by definition of VΣ, the intrinsic velocity field wΣ = VΣnΣ satisfies

(1,wΣ(t, x)) ∈ TM(t, x) on M.

Hence wΣ is consistent to M due to lemma 1; note that the wΣ(t, ·) are locally Lipschitz
continuous on Σ(t) for t ∈ J. �

4. Extension of consistent interface velocities

The proof of wellposedness for the initial value problem (4) in the specific two-phase situation
employs a reduction to fixed Σ0 instead of moving Σ(t). This reduction is based on the flow
map associated to (4). Recall that if the initial value problems (4) are wellposed, the associated
flow map (or, simply, flow) is the map Φt

t0
: IRn → IRn, defined by

Φt
t0

(x0) := x(t; t0, x0), (34)

where x(·; t0, x0) is the unique solution of (4). Of course, this concept can also be defined locally
if (4) only has local (in time) solutions. We call this the flow map associated with the right-hand
side f. Below, if the initial time t0 is fixed, we denote the flow map as Φt for better readability.
Now, if a C1,2-family of moving hypersurfaces in IRn is given, there is the intrinsic interface
velocity field wΣ given by (33) and wΣ is consistent with the regularity as stated in corollary
1. If w denotes a continuous extension of wΣ from M := gr(Σ) to some open neighbourhood
U of M, being locally Lipschitz continuous in x, say, then the flow map Φt

t0
associated with

w can be used as a nonlinear coordinate transform which fixes Σ(t), since Σ(t) = Φt
t0

(Σ(t0)).
But this alone is not sufficient for our purpose, since a curve γ(·) which passes through Σ(t0)
in normal direction, i.e. γ(s0)=: x0 ∈ Σ(t0) and (w.l.o.g.) γ ′(s0) = nΣ(t0)(x0), is mapped into
a curve which, while crossing Σ(t) in the point x(t) = Φt

t0
(x0), does not pass through Σ(t) in

normal direction, in general. In other words, the coordinate transform mediated by the flow
leaves the interface invariant, but rotates the direction of vector fields, thus mixing tangential
and normal parts. To avoid this difficulty, we are going to construct a particular extension of a
given consistent interface velocity field which leads to a flow map Φt

t0
such that

nΣ(t)(Φ
t
t0

(y)) =
[
DyΦ

t
t0

(y)
]

nΣ(t0)(y) ∀ t0 ∈ J, y ∈ Σ(t0), t ∈ Jt0,y, (35)

where Jt0,y denotes the interval of existence of the solution to (23) for initial value (t0, y).

1 In the following refined version: if f : Bε(x0) ⊂ IR2 → IR is continuous with continuous first partial derivatives such
that ∂1∂2f(x) exists in Bε(x0) and is continuous in x0, then ∂2∂1f(x0) exists and ∂1∂2f(x0) = ∂2∂1f(x0); see section 3.3
in [29] for a proof.
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A key step of this extension relies on the following auxiliary result, where V(r) = ωn|r|n
and A(r) = nωn|r|n−1 with ωn the volume of B1(0) ⊂ IRn. Below, Hn−1 denotes the (n − 1)-
dimensional Hausdorff measure.

Proposition 1. LetΣ be a C2-hypersurface in IRn without boundary with normal field n. Due
to lemma 3, there exists an open neighbourhood U ⊂ IRn of Σ such that Σ = {x ∈ U : d(x) =
0} with d ∈ C2(U) the signed distance to Σ. Let π ∈ C1(U) denote the associated projection2,
i.e. x = π(x) + d(x)n(x). Given fΣ ∈ C1(Σ) and g ∈ C(U), let Ũ = {x ∈ U : B|d(x)|(x) ⊂ U}
which is an open neighbourhood of Σ. Define f : Ũ → IR via

f (x) = fΣ(π(x)) − d(x)
V(d(x))

∫
‖x−y‖�|d(x)|

g(y) dy for x ∈ Ũ. (36)

Then f satisfies

∂k f (x) = ∂k( fΣ ◦ π)(x) + ∂kd(x)
n − 1

V(d(x))

∫
‖x−y‖�|d(x)|

g(y) dy

− ∂kd(x)
n

A(d(x))

∫
‖x−y‖=|d(x)|

g(y) dHn−1 +
n

A(d(x))

∫
‖x−y‖=|d(x)|

g(y)
xk − yk

d(x)
dHn−1

(37)

for all x ∈ Ũ\Σ, i.e. all x ∈ Ũ with d(x) 	= 0. Furthermore,

∇ f (x) = ∇Σ fΣ(x) − g(x) nΣ(x) for x ∈ Σ. (38)

Finally, it holds that f ∈ C1(Ũ).

Proof. We consider only the case x ∈ Ũ
+

:= {x ∈ Ũ : d(x) > 0}, since this allows for better
readability, avoiding the use of |d(x)| instead of d(x); the other case can be treated by the same
arguments with obvious modifications. Evidently,

f (x) = ( fΣ ◦ π)(x) − 1
ωnd(x)n−1

G(x) for x ∈ Ũ+\Σ (39)

with

G(x) =
∫
‖x−y‖�d(x)

g(y) dy.

We have

∂kG(x) =
d
ds

G(x + s ek)|s=0 =

(
d
ds

∫
Ω(s)

g(y) dy

)
|s=0

and employ the Reynolds’ transport theorem to compute ∂kG(x). For this purpose note that
Γ(s) := ∂Ω(s) has the level set representation

Γ(s) = {y : φ(s, y) = 0} with φ(s, y) = ‖x + s ek − y‖2 − d(x + s ek)2.

2 Actually, π is the metric projection onto Σ, i.e. π(x) ∈ Σ with ‖x − π(x)‖ = d(x).
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Using (29), a simple calculation shows that Γ(·) has normal speed of displacement VΓ given
by

VΓ(s, y) =
−∂sφ(s, y)
‖∇yφ(s, y)‖ =

d(x + s ek) d
ds d(x + s ek) − xk + yk − s

‖x − y + s ek‖
.

Hence

∂kG(x) =
∫
Γ(0)

g(y)
d(x)∂kd(x) + yk − xk

‖x − y‖ dHn−1(y),

and therefore

∂kG(x) = ∂kd(x)
∫
‖x−y‖=d(x)

g(y)dHn−1(y) −
∫
‖x−y‖=d(x)

g(y)
xk−yk

d(x)
dHn−1(y).

(40)

Differentiating (39), using (40), yields (37) for all x ∈ Ũ
+\Σ.

At x ∈ Σ we have f(x) = f Σ(π(x)) = f Σ(x). Hence, for s > 0,

f (x + s n) = f (x) − s
V(s)

∫
‖x+s n−y‖�s

g(y) dy

with n := nΣ(x). Thus,∥∥∥∥ f (x + s n) − f (x)
s

+ g(x)

∥∥∥∥ � 1
V(s)

∫
‖x+s n−y‖�s

‖g(x) − g(y)‖ dy

� sup{‖g(x) − g(y)‖ : ‖x + sn − y‖ � s} → 0 as s → 0 + .

It is easy to check (replacing s by |s| at a few places) that the same conclusion holds for s → 0−,
hence

∂ f
∂n

(x) = −g(x) at x ∈ Σ. (41)

On Σ, we also have ∇Σf(x) = ∇Σ f Σ(x) since f = f Σ there. Together with (41), this yields
(38).

To finish the proof, notice first that the ∂kf are continuous on Ũ
+\Σ. Indeed, there are two

types of averages involved in (37), namely volume averages

x → 1
V(d(x))

∫
‖x−y‖�d(x)

h(y) dy

and area averages

x → 1
A(d(x))

∫
‖x−y‖=d(x)

h(y) dHn−1

with functions h ∈ C(U). The continuity of these maps follows from continuity of h and d by
the dominated convergence theorem, if the integrals are rewritten via rescaling as
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x → 1
ωn

∫
‖z‖�1

h(x + d(x)z) dz

and

x → n
ωn

∫
‖z‖=1

h(x + d(x)z) dHn−1(z).

It remains to show that

∇ f (x) →∇Σ fΣ(x0) − g(x0) nΣ(x0) for Ũ+\Σ � x → x0 ∈ Σ. (42)

For x ∈ Ũ
+\Σ, we have

∥∥∥∥ 1
V(d(x))

∫
‖x−y‖�d(x)

g(y) dy − g(x)

∥∥∥∥ � sup
‖x−y‖�d(x)

‖g(x) − g(y)‖, (43)

∥∥∥∥ 1
A(d(x))

∫
‖x−y‖=d(x)

g(y) dHn−1(y) − g(x)

∥∥∥∥ � sup
‖x−y‖=d(x)

‖g(x) − g(y)‖ (44)

and ∫
‖x−y‖=d(x)

g(y)
xk − yk

d(x)
dHn−1(y) =

∫
‖x−y‖=d(x)

(g(y) − g(x))
xk−yk

d(x)
dHn−1(y). (45)

For the latter equality, note that

∫
‖x−y‖=d(x)

xk − yk

d(x)
dHn−1(y) =

1
d(x)

∫
‖z‖=d(x)

zk dHn−1(z) = 0.

Applying the relations (43)–(45) to (37) immediately yields (42), hence f ∈ C1(Ũ+). Together
with the analogous treatment for x ∈ Ũ

−
and because the limit on Σ is the same for both sides,

we obtain f ∈ C1(Ũ). �

Let us note in passing that, in vector notation, equation (37) means

∇ f (x) = ∇( fΣ ◦ π)(x) + nΣ(x)
n − 1

V(d(x))

∫
‖x−y‖�|d(x)|

g(y) dy

− nΣ(x)
n

A(d(x))

∫
‖x−y‖=|d(x)|

g(y) dHn−1

− n
A(d(x))

∫
‖x−y‖=|d(x)|

g(y)ν(y) dHn−1 for x ∈ Ũ\Σ, (46)

where ν(·) is the outer unit normal to the sphere ∂Bd(x)(x).
Inspection of the above proof in the time-dependent case shows that the following result is

an immediate corollary to proposition 1.
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Corollary 2. Let J = (a, b) ⊂ IR and {Σ(t)}t∈J be a C1,2-family of moving hypersurfaces
without boundary in IRn with graphM. By lemma 3, there exists an open neighbourhood N ⊂
IRn+1 of M such that {Σ(t)}t∈J has a level set representation with signed distance function dΣ

such that dΣ ∈ C1(N ) and ∇xdΣ ∈ C1(N ; IRn). Let πΣ ∈ C1(N ) denote the associated family
of projections onto Σ(·) characterized by

x = πΣ(t, x) + dΣ(t, x) nΣ(t, x) for all (t, x) ∈ N .

Given fΣ ∈ C(M) with ∇Σ fΣ ∈ C(M) and g ∈ C(N ), let U with M ⊂ U ⊂ N be open and
so small that (t, x) ∈ U implies {t} × B|d(t,x)|(x) ⊂ N . Define f : U → IR by means of

f (t, x) = fΣ(t, π(t, x)) − d(t, x)
V(d(t, x))

∫
‖x−y‖�|d(t,x)|

g(t, y) dy on U (47)

with d := dΣ and π := πΣ. Then f ∈ C(U) and f (t, ·) ∈ C1(U t), where U t := {x ∈ IRn : (t, x) ∈
U} is an open neighbourhood of Σ(t). Moreover, the spatial derivatives ∂xk f are given by (37)
on M, and by (38) on U\M with obvious modifications in form of the additional variable t.

We are now able to prove the following key extension result.

Lemma 4. Let J = (a, b) ⊂ IR and {Σ(t)}t∈J be a C1,2-family of moving hypersurfaces with-
out boundary in IRn with M = gr(Σ). Let vΣ ∈ C(M; IRn) be consistent to M with ∇Σv

Σ ∈
C(M; IRn×n). Then there exists a neighbourhood U of M and an extension v̂Σ : U → IRn of vΣ

being jointly continuous and locally Lipschitz continuous in x such that, with Φt
t0

the (local)
flow map associated to v̂Σ, the evolution of the normal field satisfies (35). In particular, the
intrinsic surface velocity vΣ = VΣnΣ admits such an extension.

Proof. Since the statement is about local properties of the desired extension, we may con-
sider a small neighbourhood Uε = (η − ε, η + ε) × Bε(ξ) of a point (η, ξ) ∈ M in which the
moving hypersurfaces are given by means of the signed distance function from lemma 3. We
then extend the given function vΣ from M∩ Uε to a function v̂Σ on Uε by means of

v̂Σ(t, x) := vΣ(t, π(t, x)) − d(t, x)
V(d(t, x))

F(t, x) (48)

with

F(t, x) =
∫

B|d(t,x)|(x)

n−1∑
k=1

〈
∂vΣ

∂τk
(t, π(t, y)), nΣ(t, π(t, y))

〉
τk(t, π(t, y)) dy, (49)

where d := dΣ, π :=πΣ is the projection from lemma 3 and

{τk(t, x) : k = 1, . . . , n − 1} for (t, x) ∈ M∩ Uε (50)

is an orthonormal basis of the tangent space to Σ(t) at the point x, depending continuously
differentiable on (t, x) ∈ M∩ Uε. Note that we obtain such an orthonormal basis with the
desired regularity by applying the Gram–Schmidt orthonormalization procedure to the system

{τ 0
k −

〈
τ 0

k , nΣ(t, x)
〉

nΣ(t, x) : k = 1, . . . , n − 1} (51)
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with {τ 0
k : k = 1, . . . , n − 1} being a basis of the tangent space to Σ(η) at the point ξ. By

choosing ε > 0 sufficiently small, this is a system of linearly independent vectors on M∩ Uε

and the elements depend continuously differentiable on (t, x) since nΣ has this regularity.
Now observe that the components of v̂Σ(t, x) in (48) are precisely of the type as given in (47)

and the integrand in (49) is continuous due to our assumptions on {Σ(t)}t∈J and vΣ. Therefore,
by corollary 2, v̂Σ is continuous in M∩ Uε and the v̂Σ(t, ·) are continuously differentiable in a
neighbourhood of Σ(t). In particular, v̂Σ is jointly continuous and locally Lipschitz continuous
in x and, hence, the initial value problems (4) are uniquely solvable for right-hand side v̂Σ,
at least locally in time. Consequently, the associated flow map Φt

t0
is welldefined. Moreover,

Φt
t0

is invertible with inverse Φt0
t , hence a diffeomorphism due to the regularity of v̂Σ. Thus,

DyΦ
t
t0

(y) is invertible.
Furthermore, by corollary 2, we also know that v̂Σ satisfies

∂v̂Σ

∂nΣ
(t, x) = −

n−1∑
k=1

〈
∂vΣ

∂τk
(t, x), nΣ(t, x)

〉
τk(t, x) for (t, x) ∈ M∩ Uε. (52)

In order to prove (35), we consider the equivalent relation[
DyΦ

t
t0

(y)
]−1

nΣ(t)(Φt
t0

(y)) = nΣ(t0)(y) ∀ t0 ∈ J, y ∈ Σ(t0), t ∈ Jt0,y. (53)

Evidently, equation (53) holds for t = t0. Therefore, it holds for all t ∈ Jt0,y, if we show that
the t-derivative of the left-hand side vanishes. We have

d
dt

[
DyΦ

t
t0

(y)
]−1

nΣ(t)(Φ
t
t0

(y)) =−
[
DyΦ

t
t0

(y)
]−1

∂tDyΦ
t
t0

(y)
[
DyΦ

t
t0

(y)
]−1

nΣ(t)(Φ
t
t0

(y))

+
[
DyΦ

t
t0

(y)
]−1 d

dt
nΣ(t)(Φ

t
t0

(y)).

We now employ Schwarz’ theorem to get

∂tDyΦ
t
t0

(y) = Dy∂tΦ
t
t0

(y) = Dyv̂
Σ(t,Φt

t0
(y)) = ∇x v̂

Σ(t,Φt
t0

(y)) DyΦ
t
t0

(y)

which yields

d
dt

[
DyΦ

t
t0

(y)
]−1

nΣ(t)(Φt
t0

(y))

=
[
DyΦ

t
t0

(y)
]−1

(
d
dt

nΣ(t)(Φ
t
t0

(y)) −∇x v̂
Σ(t,Φt

t0
(y)) nΣ(t)(Φ

t
t0

(y))

)
.

Due to theorem 4 in [19] (extended from hypersurfaces in IR3 to IRn; see [18] for a formal proof
which employs a level set representation of Σ(·)), the Lagrangian derivative of the normal field
satisfies

d
dt

nΣ(t)(Φ
t
t0

(y)) = −
n−1∑
k=1

〈
∂vΣ

∂τk
(t,Φt

t0
(y)), nΣ(t)(Φ

t
t0

(y))

〉
τk(t,Φt

t0
(y)). (54)

This relation, together with the normal derivative of v̂Σ according to (52) shows that

d
dt

[
DyΦ

t
t0

(y)
]−1

nΣ(t)(Φt
t0

(y)) = 0

along the solution of (23), hence (35) holds. �
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5. The ODE-system associated with a two-phase flow

Let us briefly recall the setup. Given the domain Ω ⊂ IRn of a two-phase flow and a time
interval J = (a, b), we consider a C1,2-family of moving closed hypersurfaces {Σ(t)}t∈J which
decomposes Ω into disjoint sets according to Ω = Ω+(t) ∪ Ω−(t) ∪Σ(t). We let G± = gr(Ω±)
and v± : G± → IRn be continuous vector fields which are locally Lipschitz continuous in x,
separately on G+, respectively G−. We also assume at most linear growth of v in x, i.e.

|v±(t, x)| � c (1 + |x|) for all t ∈ J, x ∈ Ω±(t) (55)

with some c > 0. We denote by v without superscript the set-valued map defined by

v(t, x) =

⎧⎪⎪⎨
⎪⎪⎩
{v+(t, x)} if x ∈ Ω+(t),

{v+(t, x), v−(t, x)} if x ∈ Σ(t),

{v−(t, x)} if x ∈ Ω−(t).

(56)

Note that v is not single-valued on M = gr(Σ), but attains two possibly distinct values there,
i.e. v is set-valued on M. We then study the discontinuous differential equation

ẋ(t) = v (t, x(t)) on J, x(t0) = x0 (57)

for t0 ∈ J, x0 ∈ Ω. Let us note that the growth condition (55) implies a priori bounds for pos-
sible solutions which guarantee that any local solution can be continued up to the boundary
of J × Ω, assuming that the moving hypersurfaces are given on all of J. In particular, in case
Ω = IRn the solution exists globally. Let us also mention that uniqueness of solutions, which
is the core point to be proven, is a local property of the ODE-system.

Note that we are slightly abusing notation in (57), since it should actually read

ẋ(t) ∈ v (t, x(t)) on J, x(t0) = x0.

But this is not relevant if, along the solution, the set v(t, x(t)) is a singleton except for t from
a set of Lebesgue measure zero, as it will turn out to be the case here. We hence stick to (57)
and employ the following solution concept.

Definition 3. We call an absolutely continuous function x : J → IRn an a.c. solution of (57),
if x(t0) = x0, N := {t ∈ J : v (t, x(t)) is set − valued} is a set of Lebesgue measure zero and
ẋ(t) = v (t, x(t)) a.e. on J\N.

We are interested in physically relevant conditions on v and Σ such that (57) has unique a.c.
solutions, locally in time, for every initial value. Motivated by (18), we impose the transmission
condition

ρ+(v+ − vΣ) · nΣ = ρ−(v− − vΣ) · nΣ on M (58)

with locally Lipschitz functions ρ± : M→ (0,∞). The main point here is that ρ±(t, x) > 0 on
M. Note also that we can assume w.l.o.g. that ρ± are locally Lipschitz functions ρ± : G± →
(0,∞), since we can extend ρ± from M to G± via ρ±(t, x) := ρ±(t, πΣ(t, x)) such that the
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extension is still locally Lipschitz continuous due to lemma 3. In addition, we assume (21)
to hold, i.e. the tangential parts of v± satisfy

v+‖ = v−‖ onM. (59)

Since vΣ enters our assumptions only via VΣ = vΣ · nΣ, we may assume

vΣ‖ = v±‖ . (60)

Let us explain how the physically motivated assumptions (58) and (59) can be exploited to
obtain uniqueness of solutions to (57). Of course, the only difficulty occurs if a solution reaches
the interface. Now observe that ρ± is strictly positive by assumption, hence (58) implies the
transversality-type condition

sgn0

(
(v+ − vΣ) · nΣ

)
= sgn0

(
(v− − vΣ) · nΣ

)
onM. (61)

This indicates that no problem will occur if a solution hits Σ(t) with non-zero normal velocity
relative to the interface: by (61), the solution cannot stay inside Σ, but continues into the oppo-
site phase; cf. the explanations around (15). Thus the relevant case is when x0 ∈ Σ(t0) and
v±(t0, x0) · nΣ = vΣ(t0, x0) · nΣ. In this case, a solution could follow Σ or tangentially enter
one of the bulk phases.

To treat this case, we shall freeze the moving interface by a suitable nonlinear time-
dependent coordinate transform and, by another nonlinear transform, reduce to the case of
a planar fixed interface.

By the tailor-made transformations developed in section 4, this can be done in such a manner
that Σ is transformed into IRn−1 × {0} and the jump conditions (58) and (59) become

ρ+v+n = ρ−v−n and v±‖ = 0 for t ∈ J, xn = 0. (62)

Observe that under these assumptions, the underlying differential equation is not reduced to
a one-dimensional problem. This is illustrated in figure 2 which refers to the two-dimensional
and autonomous case v± = v±(x). A solution x(·) can cross the interface at isolated times tk ∈ J
and the main question then is whether there can be infinitely many such points tk with a finite
accumulation point, i.e. such that tk ↗ t∞ ∈ J. If this is true than x(tk) → x∞ ∈ Σ(t∞) and,
necessarily, 0 ∈ F(x∞). Hence x(·) can be continued as a solution with x(t) ≡ x∞ for t > t∞,
but there may be another continuation as a solution, say x̄(·), which leaves x∞ at a later time.
Evidently, this cannot happen in such a way that x̄(t) /∈ Σ(t) on some interval (t∞, t∞ + δ) with
δ > 0 since this would contradict the unique solvability inside G+ or G− which holds due to the
separate local Lipschitz continuity of v±. Consequently, such a continuation x̄(·) would cross Σ
at infinitely many times t̄k such that t∞ < · · · < t̄k+1 < t̄k < · · · < t̄1. Then, qualitatively,
the trajectory after t∞ looks like the one in figure 1, but with time reversed. Consequently,
since we aim at both forward and backward uniqueness, this can only be avoided if already
the existence of infinitely many isolated points tk with tk ↗ t∞ cannot occur. Moreover, for the
same reason it suffices to show that for initial value x0 ∈ Σ(t0) such that 0 ∈ F(x0) there is a
unique (forward) solution which is then given by x̄(t) ≡ x0.

It is now instructive to see how this unique solvability can be obtained in the autonomous
case, in which (62) can be employed in a rather direct way. So, after transformation to the
case Σ(t) ≡ IRn−1 × {0}, we assume that the initial value satisfies x0,n = 0 and is such that
0 ∈ F(x0), hence x̄(t) ≡ x0 is one solution of (57). Now suppose that x(·) is another solution of
(57). We are going to rescale time in such a way that the arcs of the trajectory lying in Ω+ or
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Figure 2. Trajectory of a possible solution coming to rest at x∞.

Ω−, respectively, are traversed with differently modified speed in such a way that the velocity
becomes continuous at Σ. For this purpose, let τ be an a.c. solution of

τ ′(t) ∈ R(x(τ (t))) for t ∈ J, τ (t0) = t0 (63)

with the set-valued map R : Ω→ 2IR\{∅} defined as

R(ξ) =

⎧⎪⎪⎨
⎪⎪⎩
{ρ+(ξ)} if ξn > 0,

conv{ρ+(ξ), ρ−(ξ)} if ξn = 0,

{ρ−(ξ)} if ξn < 0.

(64)

Concerning the solvability of the differential inclusion (63) notice that H = R ◦ x is the
multivalued regularization in the sense of (7) or (9) of, say, the discontinuous function
h(τ ) := ρ+(x(τ )) if xn(τ ) � 0 and h(τ ) := ρ−(x(τ )) if xn(τ ) < 0. Hence (63) has an a.c. solution
according to the results mentioned in the introduction. Moreover, the discontinuous func-
tion h : J → IR satisfies condition (15), hence forward uniqueness holds, i.e. there is a unique
a.c. solution τ : J → IR of (63). Consider the a.c. function y(t) := x(τ (t)) for t ∈ J. It follows
immediately that y(·) satisfies

y′(t) ∈ v(y(t))R(y(t)) a.e. on J, y(t0) = x0. (65)

Hence

y′(t) = ρ(y(t))v(y(t)) a.e. on{t ∈ J : yn(t) 	= 0}. (66)

On the other hand, using points of Lebesgue density,

v±n (y(t)) = 0 a.e. on N := {t ∈ J : yn(t) = 0} (67)

since ρ± > 0. Thus v±(y(t)) = 0 for those t ∈ N due to (62) and then v(y(t))R(y(t)) = {0}.
Consequently, the a.c. function y(·) satisfies

y′(t) = ρ(y(t))v(y(t)) a.e. on J, y(t0) = x0. (68)

But the function ρυ is also continuous at {x : xn = 0} due to (62), and one easily checks that
ρυ is locally Lipschitz, also across the interface xn = 0. Furthermore, y(t) 	≡ x0, hence y(·) and
ȳ(t) ≡ x0 are different solutions of (68), a contradiction. Thus a solution x(·) which leaves x0

cannot exits.
This approach does not work in the time-dependent case. To indicate the core idea for

proving uniqueness in the non-autonomous case, let two solutions of (57) be given, where
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the relevant case is when the two solutions, say for t > t0 close to t0, lie in different phases.
We call these solutions x±(·) and assume that x±(t) ∈ Ω±(t) on [t0, t0 + δ]. In order to esti-
mate the growth of |x+(t) − x−(t)|, the (local) Lipschitz continuity of v± is to be exploited.
For estimating |v+(t, x+(t)) − v−(t, x+(t))|, the terms ∓v±(t, xΣ(t)) at an intermediate point
xΣ(t) ∈ Σ(t) need to be added such that separate estimates in Ω±(t) become possible. But
adding ∓v±(t, xΣ(t)) is not a zero addition, while ∓(ρ±v±)(t, xΣ(t)) would be. Therefore,
instead of |x+(t) − x−(t)|, we consider the functional

|ρ+(t, xΣ(t))x+n (t) − ρ−(t, xΣ(t))(t)x−n (t)|+ |x+‖ (t) − x−‖ (t)|

with an appropriate function xΣ(t) in the uniqueness proof below.

6. Wellposedness of the ODE-system from two-phase flows

We now state and prove the main result of this paper.

Theorem 1. Let J = (a, b) ⊂ IR and {Σ(t)}t∈J be a C1,2-family of moving hypersurfaces in
IRn without boundary which divide an open set Ω ⊂ IRn into Ω+(t) ∪ Ω−(t) ∪ Σ(t) for all t ∈ J
with time-dependent bulk phases Ω±(t). Let

v± : gr
(
Ω±(·)

)
→ IRn

be continuous in (t, x) and locally Lipschitz continuous in x such that (58) and (59) are valid,
where vΣ :=VΣnΣ is the consistent intrinsic interface velocity associated to {Σ(t)}t∈J. Then,
for given t0 ∈ J and x0 ∈ Ω, the initial value problem (57) has a unique a.c. solution, locally
in time. This solution is also the unique Filippov solution of (57). If, in addition, the growth
condition (55) is satisfied, this solution exists on all of J.

Proof. The proof is given in several steps, building on the idea explained above for the
uniqueness part.

Step 1. Existence of solutions.
In the specific situation under consideration, one can easily see that F from (7) is given by

(10), i.e.

F(t, x) =

⎧⎪⎪⎨
⎪⎪⎩
{v+(t, x)} if x ∈ Ω+(t),

conv{v+(t, x), v−(t, x)} if x ∈ Σ(t),

{v−(t, x)} if x ∈ Ω−(t).

This set-valued map is even jointly upper semicontinuous such that classical existence results
for differential inclusions apply; see [2, 14]. Therefore, concerning the existence part, it only
remains to show that any a.c. solution x(·) of (8) with F from (10) is actually an a.c. solution
of (57). For this purpose, we will show that

M := {t ∈ J : F(t, x(t)) is set-valued}

is a Lebesgue null set. Evidently, M ⊂ N := {t ∈ J : x(t) ∈ Σ(t)}, since for t ∈ J\N it holds
that F(t, x) = {v(t, x)}, hence ẋ(t) = v (t, x(t)) a.e. on J\N. Since x(·) is a.c., the derivative ẋ(t)
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exists a.e. on J, in particular a.e. on N. Given a (local) level set representation of Σ according
to (28), we have

φ (t, x(t)) = 0 on N,

hence also

0 =
d
dt
φ (t, x(t)) = ∂tφ (t, x(t)) + ẋ(t) · ∇xφ (t, x(t)) a.e. on N.

Note that such a level set representation exists at least locally due to our regularity assumptions
on Σ by lemma 3. Using (29), this implies

ẋ(t) · nΣ (t, x(t)) = VΣ (t, x(t)) a.e. on N.

On the other hand,

PΣ ẋ(t) ∈ PΣF(t, x(t)) = {v±‖ (t, x(t))}

due to (59). Therefore, employing (60), we obtain

ẋ(t) = VΣ (t, x(t)) nΣ (t, x(t)) + v±‖ (t, x(t)) = vΣ (t, x(t)) a.e. on N. (69)

Consequently,

vΣ (t, x(t)) ∈ conv{v+(t, x(t)), v−(t, x(t))} for all t ∈ N0,

where N0 ⊂ N has λ1(N\N0) = 0. Taking inner product with nΣ, this implies (with a slight
abuse of notation)

0 ∈
(
conv{(v+ − vΣ) · nΣ, (v− − vΣ) · nΣ}

)
(t, x(t)) for all t ∈ N0.

For fixed t ∈ N0, two cases are hence possible: either

(
v+ − vΣ

)
· nΣ � 0 �

(
v− − vΣ

)
· nΣ at (t, x(t)) (70)

or the same with v+, v− exchanged. Because of the transversality-type condition (61), a strict
inequality is not possible in (70), hence

v+ · nΣ = vΣ · nΣ = v− · nΣ at (t, x(t)).

To sum up, it therefore holds that

v+(t, x(t)) = v−(t, x(t)) for all t ∈ N0,

hence t ∈ N0 implies t /∈ M, i.e. M ⊂ N\N0 and thus M is a null set. Note that, up to here, less
regularity of v± would be sufficient, say measurability in t and local Lipschitz continuity in x.

It remains to show uniqueness of a.c. solutions, where we start with forward uniqueness.
For this purpose, let x(·) and x(·) be two (distinct) a.c. solutions of (57) with common initial
value x0. Local-in-time (forward and backward) uniqueness is clear in case x0 /∈ Σ(t0). So, we
may assume x0 ∈ Σ(t0) and have to show that x(t) = x(t) on [t0, t0 + δ] for some δ > 0.
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Step 2. Reduction to fixed Σ and vanishing tangential part of v.
Let v̂Σ be the extension of vΣ : M→ IRn provided by lemma 4. Considering only local

wellposedness, we may assume that vΣ and then also v̂Σ are bounded and that v̂Σ is given on
all of J × IRn. Hence v̂Σ generates a global flow Φt

t0
: IRn → IRn via Φt

t0
(y0) := y(t; t0, y0), where

y(·, t0, y0) is the unique global solution of

ẏ(t) = v̂Σ (t, y(t)) on J, y(t0) = y0. (71)

Note that the flow Φt
t0

leaves Σ(·) invariant, which means that

Σ(t) = Φt
t0

(Σ(t0)) for all t, t0 ∈ J. (72)

This follows by lemma 2, since the vector field vΣ is consistent toM. Moreover,Φt
t0

also leaves
Ω+(·), respectively Ω−(·) invariant since solutions cannot cross Σ(·) due to unique solvability.
Now x(·) is a a.c. solution of (57) iff the a.c. function y(·), implicitly defined by

x(t) = Φt
t0

(y(t)), (73)

solves the initial value problem

ẏ(t) = f (t, y(t)) a.e. on J, y(t0) = x0 (74)

with right-hand side f given by

f (t, y) :=
[
DyΦ

t
t0

(y)
]−1 ·

(
v(t,Φt

t0
(y)) − v̂Σ(t,Φt

t0
(y))

)
. (75)

Note that f is discontinuous at (Φt
t0

)−1 (Σ(t)) = Σ(t0) = :Σ0, but the f ± given by the right-hand
side of (75) on Ω±(t0) have the same regularity as the v±, with continuous extensions onto the
closure of Ω±(t0). To rewrite the transmission condition (58), let

ρ̂±(t, y) :=ρ±(t,Φt
t0

(y)), n(y) := nΣ0 (y)

and note that the ρ̂± have the same regularity as the ρ±. Then, for y ∈ Σ0,

ρ̂+(t, y) f+(t, y) · n(y) = ρ+(t, x)
[
DyΦ

t
t0

(y)
]−1

(v+(t, x) − v̂Σ(t, x)) · n(y)

with x = Φt
t0

(y) ∈ Σ(t). Due to (60), we have

v+(t, x) − v̂Σ(t, x) =
〈
v+(t, x) − v̂Σ(t, x), nΣ(t, x)

〉
nΣ(t, x),

hence (with shorthand notation)

(
ρ̂+ f+

)
(t, y) · n(y) =

(
ρ+

〈
v+ − v̂Σ, nΣ

〉)
(t, x)

[
DyΦ

t
t0

(y)
]−1

nΣ(t, x) · n(y).

Rewriting
(
ρ̂− f−

)
(t, y) · n(y) in an analogous way, we see that (58) becomes
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ρ̂+ f+ · n = ρ̂− f− · n on Σ0, (76)

and the transversality condition (61) becomes

sgn0( f+ · n) = sgn0( f− · n) onΣ0. (77)

We did not need the specific form of the extension v̂Σ for the normal part, but it is required for
treating the tangential parts. In fact, with

f±(t, y) =
[
DyΦ

t
t0

(y)
]−1 (

υ±(t, x) − vΣ(t, x)
)

for y ∈ Σ0 and x = Φt
t0

(y) ∈ Σ(t), condition (60) implies

f±(t, y) =
[
DyΦ

t
t0

(y)
]−1 〈

υ±(t, x) − vΣ(t, x), nΣ(t, x)
〉

nΣ(t, x)

=
〈
υ±(t, x) − vΣ(t, x), nΣ(t, x)

〉 [
DyΦ

t
t0

(y)
]−1

nΣ(t, x)

=
〈
υ±(t, x) − vΣ(t, x), nΣ(t, x)

〉
nΣ(t0)(y)

by (35). Consequently, condition (59) becomes

f+‖ = f−‖ = 0 onΣ0. (78)

Step 3. Reduction to Σ ≡ IRn−1 × {0}.
By a translation and a rotation, we may assume x0 = 0 and n(0) = en, the nth Cartesian

base vector. We are only interested in a local result, hence may assume that Σ0 is a graph over
IRn−1 for a height function h, i.e.

Σ0 = {x = (x′, xn) : xn = h(x′)} (79)

with the notation x′ = (x1, . . . , xn−1). Consider the nonlinear transformation

x =

[
x′

xn

]
→ H(x) =

[
x′ − xn∇x′h(x′)/

(
1 + ‖∇x′h(x′)‖2

)1/2

h(x′) + xn/
(
1 + ‖∇x′h(x′)‖2

)1/2

]
. (80)

For sufficiently small ε, r > 0, H is a diffeomorphism from

[IRn−1 × (−ε, ε)] ∩ Br(0)

onto its image

N :=H([IRn−1 × (−ε, ε)] ∩ Br(0)),

which is a neighbourhood of 0 ∈ IRn. Given any solution y(·) of (74) starting at x0 = 0 ∈ Σ0,
this solution stays inside N for t ∈ (−δ, δ), where δ > 0 can be chosen independently of the
solution due to the local boundedness of f. The coordinate transformation induced by H yields
an a.c. function x(·) via

y(t) = H(x(t)), (81)

which is an a.c. solution of

ẋ(t) = g (t, x(t)) on Jδ := (−δ, δ), x(0) = 0, (82)

5449



Nonlinearity 33 (2020) 5425 D Bothe

where g : Jδ ×
(
[IRn−1 × (−ε, ε)] ∩ Br(0)

)
→ IRn is given as

g(t, x) =

{
g+(t, x) if xn � 0

g−(t, x) if xn < 0
(83)

with g± given by

g±(t, x) = H′(x)−1 f±(t, H(x)) for x ∈ IRn
±.

Note that the specific definition of g as g+ for xn = 0 in (83) is arbitrary and the concrete choice
of the values there plays no role. Note also that g+ : Jδ × IRn

+ → IRn and g− : Jδ × IRn
− → IRn

are jointly continuous and locally Lipschitz continuous in x, where IRn
± denote the closed

halfspaces {xn � 0} and {xn � 0}, respectively.
Evidently, y ∈ Σ0 iff xn = 0 and for such y = (x′, h(x′)) we have

n(y) =
1

(1 + ‖∇x′h(x′)‖2)1/2

[
−∇x′h(x′)

1

]
for y = (x′, h(x′)). (84)

Given t ∈ Jδ, x = (x′, 0) and y = H(x) ∈ Σ0, it holds that

ρ̂±(t, y) f ±(t, y) · n(y) = ρ̂±(t, H(x))

〈
H′(x)g±(t, x),

[
−∇x′h(x′)

1

]〉
(1 + ‖∇x′h(x′)‖2)−1/2

= ρ̂±(t, H(x))

〈
g±(t, x), H′(x)T

[
−∇x′h(x′)

1

]〉
(1 + ‖∇x′h(x′)‖2)−1/2.

Now note that

(85)

with n(x′, h(x′)) = n(y) from (84), hence

H′(x)T

[
−∇x′h(x′)

1

]
= (1 + ‖∇x′h(x′)‖2)1/2 en.

Consequently,

ρ̂±(t, y) f ±(t, y) · n(y) = ρ̃±(t, x)
〈
g±(t, x), en

〉
= ρ̃±(t, x) g±

n (t, x)

with

ρ̃±(t, x) := ρ̂±(t, H(x)) for t ∈ Jδ, x ∈ [IRn−1 × (−ε, ε)] ∩ Br(0). (86)

This shows that the transmission condition (76) becomes

ρ̃+(t, x)g+
n (t, x) = ρ̃−(t, x)g−

n (t, x) for t ∈ Jδ , xn = 0 (87)

with locally Lipschitz continuous ρ̃± : Jδ × IRn
± → (0,∞).
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Concerning the transformed version of (78), observe that, for x = (x′, 0),

g±(t, x) = H′(x)−1 f±(t, H(x)) = H′(x)−1
(
λ±(t, x) n(H(x))

)
with certain λ±(t, x) ∈ IR due to (78). Hence

g±(t, x) = λ±(t, x)H′(x)−1n(H(x)).

Now note that

H′(x′, 0)en = n(x′, h(x′))

by (85) with n(x′, h(x′)) = n(y) from (84). Therefore,

g±(t, x) = λ±(t, x)en,

which implies

g±
k (t, x) = 0 for t ∈ J, xn = 0, k = 1, . . . , n − 1. (88)

As the result of this step, we may assume that Σ(t) ≡ IRn−1 × {0} and the new (discontinuous)
right-hand side g has the same regularity as v, i.e. the g± are continuous on J × IRn

± and the
g±(t, ·) are locally Lipschitz continuous on IRn

±. Furthermore, g satisfies the conditions (87)
and (88).

It remains to show that (82) is uniquely solvable to the right on [t0, t0 + δ] for some δ > 0.
Step 4. Local forward uniqueness for (82).
The next argument exploits the physically motivated transmission condition (58), respec-

tively (87). Let x(·) and x(·) be two solutions of (82). We then let

φ(t) = |ρ(t)xn(t) − ρ(t)xn(t)|+ ‖x‖(t) − x‖(t)‖ on J, (89)

where ‖ · ‖ denotes the Euclidean norm, x‖ = (x1, . . . , xn−1, 0) is the tangential part of x,

ρ(t) =

{
ρ̃+

(
t, xΣ(t)

)
if xn(t) � 0

ρ̃−
(
t, xΣ(t)

)
if xn(t) < 0

(90)

with ρ̃± from (86) and

xΣ(t) =
1
2

(
x‖(t) + x‖(t)

)
. (91)

Let ρ(t) be defined analogously, i.e.

ρ(t) =

{
ρ̃+

(
t, xΣ(t)

)
if xn(t) � 0

ρ̃−
(
t, xΣ(t)

)
if xn(t) < 0.

(92)

Evidently, φ(·) is locally Lipschitz continuous, hence φ is a.c. and a.e. differentiable on J.
Let

J0 = {t ∈ J : ρ′(t), ρ′(t), x′(t), x′(t) exist}. (93)

We are going to show that φ′ � Kφ a.e. on J for some K > 0 and it suffices to show this a.e.
on J0. We distinguish four different cases, where we start by considering τ ∈ J0 such that
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xn(τ ) < 0, xn(τ ) < 0. Then xn(t) < 0, xn(t) < 0 in a neighbourhood of τ , hence ρ(t) = ρ(t)
there. This implies

φ(t) = ρ(t)|xn(t) − xn(t)|+ ‖x‖(t) − x‖(t)‖ near τ ,

hence

|φ′(t)| � |ρ′(t)| |xn(t) − xn(t)|+ ρ(t)|gn(t, x(t)) − gn(t, x(t))|+ ‖g‖(t, x(t)) − g‖(t, x(t))‖.

Consequently, using the Lipschitz continuity of g and ‖x‖ � |xn|+ ‖x‖‖,

|φ′(t)| �
(∣∣∣∣ρ′(t)ρ(t)

∣∣∣∣+ L

(
1 +

1
ρ(t)

))
ρ(t)|xn(t) − xn(t)|+ L(1 + ρ(t))‖x‖(t) − x‖(t)‖,

(94)

and therefore

φ′(τ ) � K φ(τ ) (95)

with

K :=max
J

(∣∣∣∣ρ′ρ
∣∣∣∣+ L

(
ρ+ 1 +

1
ρ

))
; (96)

note that ρ(·) is (locally) bounded from below by some α > 0.
Next, we consider τ ∈ A := {t ∈ J0 : xn(t) � 0, xn(t) � 0}, where it suffices to consider

those points τ which are points of Lebesgue density of A. Given such τ , we have

φ′(τ ) = lim
k→∞

φ(tk) − φ(τ )
tk − τ

for every sequence tk → τ with tk 	= τ . Since τ is a point of Lebesgue density of A, we find
such a sequence (tk) in A. Then

φ(tk) = ρ(tk)|xn(tk) − xn(tk)|+ ‖x‖(tk) − x‖(tk)‖,

since ρ(tk) = ρ(tk). Hence φ′(t) can be estimated in the same way as above, i.e. (95) holds also
for such τ .

In the remaining two cases, the two solutions are assumed to run in different phases. Since
both cases can be treated in exactly the same way, we only consider τ ∈ B := {t ∈ J0 : xn(t) �
0, xn(t) < 0}. In fact, it suffices to consider points τ of Lebesgue density of B. In the considered
case, we have

φ(t) = ρ(t)xn(t) − ρ(t)xn(t) + ‖x‖(t) − x‖(t)‖ for t ∈ B. (97)

Hence, since φ′(τ ) exists and can be obtained from difference quotients with tk ∈ B, we obtain

φ′(τ ) =
ρ′(τ )
ρ(τ )

ρ(τ )xn(τ ) − ρ′(τ )
ρ(τ )

ρ(τ )xn(τ )

+ ρ(τ )g+
n (τ , x(τ )) − ρ(τ )g−

n (τ , x(τ )) +
d
dt
‖x‖(τ ) − x‖(τ )‖. (98)
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By means of (87), we have

ρ(τ )g+
n (τ , x(τ )) − ρ(τ )g−

n (τ , x(τ ))

= ρ(τ )
(
g+

n (τ , x(τ )) − g+
n

(
τ , xΣ(τ )

))
− ρ(τ )

(
g−

n (τ , x(τ )) − g−
n

(
τ , xΣ(τ )

))
.

Using the Lipschitz continuity of g as well as ‖x(t) − xΣ(t)‖ � ‖x(t) − x(t)‖ and the corre-
sponding inequality for ‖x(t) − xΣ(t)‖, equation (98) implies

|φ′(τ )| �
(∣∣∣∣ρ′(τ )

ρ(τ )

∣∣∣∣+
∣∣∣∣ρ′(τ )
ρ(τ )

∣∣∣∣
)
|ρ(τ )xn(τ ) − ρ(τ )xn(τ )|+ L(1 + 2|ρ|∞)‖x(τ ) − x(τ )‖;

recall that−xn(τ ) > 0. Splitting x(τ ) and x(τ ) into their normal and tangential parts, this yields
(95) with

K :=max
J

(∣∣∣∣ρ′ρ
∣∣∣∣+

∣∣∣∣ρ′ρ
∣∣∣∣+ L

(
1 + |ρ|∞ + |ρ|∞

)(
1 +

1
ρ
+

1
ρ

))
. (99)

Recall that both ρ(·), ρ(·) are (locally) bounded from below by some α > 0.
Consequently, inequality (95) holds a.e. on J with a common K > 0, thus φ(t) = 0 on J by

Gronwall’s lemma, since φ(0) = 0. This means

ρ(t)xn(t) = ρ(t)xn(t) and x‖(t) = x‖(t) on J. (100)

To finish this step of the proof, consider the energy functional

ψ(t) =
1
2
‖x(t) − x(t)‖2 for t ∈ J.

Evidently, using (100)2, we get

ψ′(t) = (xn(t) − xn(t)) (gn(t, x(t)) − gn(t, x(t))) on J. (101)

By (100)1 and the non-degeneracy of ρ(·) and ρ(·), both xn(·) and xn(·) run either in IRn
+ or in

IRn
−. Hence the second argument of gn in (101) is always in the same halfspace, i.e. gn is either

g+
n or g−

n . By the Lipschitz continuity of g± on J × IRn
±, we obtain ψ′(t) � 2Lψ(t) on J. Hence

ψ(t) = 0 on J, i.e. x(t) = x(t) on J which ends the proof.
Step 5. Local backward uniqueness.
The vector field ṽ := − v satisfies all assumptions of theorem 1 if vΣ is replaced by

−vΣ. Hence (57) with −v instead of v and the backward moving Σ(·) has unique local for-
ward solvability. Reversing time, this yield unique local backward solvability of the original
problem. �

7. Outlook and open problems

It is unclear whether in theorem 1 the condition (58) of mass-conservation type, i.e.

ρ+(v+ − vΣ) · nΣ = ρ−(v− − vΣ) · nΣ on M

with locally Lipschitz functions ρ± : M→ (0,∞), can be replaced by the transversality-type
condition (61), i.e.

sgn0

(
(v+ − vΣ) · nΣ

)
= sgn0

(
(v− − vΣ) · nΣ

)
on M.
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Since ρ± is only needed on M, it is tempting to use the locally Lipschitz function(
(v+ − vΣ) · nΣ

)
|M as a substitute for ρ− and vice versa, exploiting the trivial equality

(v+ − vΣ) · nΣ (v− − vΣ) · nΣ = (v− − vΣ) · nΣ (v+ − vΣ) · nΣ onM.

But (v± − vΣ) · nΣ(t, x) = 0 is possible on M and precisely these points are relevant: at the
remaining points, condition (15) of theorem 2 in chapter 2, section 10 of [17] is satisfied after
transformation to fixed, planar interface IRn−1 × {0}, cf. the introduction and section 5.

Condition (58) contains significantly more information than (61). Note, e.g., that for
differentiable velocity fields v±, vΣ, condition (58) implies

ρ+∇Σ

(
(v+ − vΣ) · nΣ

)
= ρ−∇Σ

(
(v− − vΣ) · nΣ

)
at those (t, x) ∈ M where (v+ − vΣ) · nΣ = (v− − vΣ) · nΣ = 0.

The first open problem therefore is:

• Prove or disprove theorem 1 with (58) replaced by (61), possibly under appropriate
additional assumptions.

In the present paper we consider the ODE-system associated with two-phase flows under
the no-slip condition (21) at the interface, i.e.

[[v‖]] = 0 onΣ.

While this is the standard setting considered in the overwhelming majority of publications, it is
not a necessary model assumption. Indeed, condition (21) is just one possible closure, relating
the difference between the tangential parts of the one-sided bulk and interface velocities with
the respective one-sided bulk stress in such a way that the second law of thermodynamics holds,
i.e. such that a slippage of the two bulk fluids against each other generates a positive entropy
production. If a linear closure is used, the one-sided Navier slip conditions

(v± − vΣ)‖ + α±(S± n±)‖ = 0 with α± � 0

result, where n± are the outer unit normals to Ω±; see [4, 6]. While this requires a proper
definition of the interfacial velocity vΣ, a non-trivial task, it implies the jump condition

(v+ − v−)‖ = α−(S− n−)‖ − α+(S+ n+)‖,

showing that a physically sound condition for a possible tangential velocity jump is required
in order to enforce the second law of thermodynamics. This should lead to indications for
formulating conditions for admissible tangentially discontinuous velocity fields. Let us note
in passing that tangential jumps of the right-hand side of discontinuous ODEs are common
in applications from control theory, where this can lead to solutions which slide tangentially
along the hypersurface of discontinuity with a velocity which is a convex combination of the
two adjacent bulk velocity vectors. More on this topic can be found, e.g., in [13, 17]. Notice,
however, that the approach in [17] to deal with a non-vanishing so-called discontinuity vec-
tor h(t, x) := v+(t, x) − v−(t, x) on M consists in a nonlinear coordinate transformation which
changes h to become aligned with the normal direction. But this transformation mixes normal
and tangential components of v, thus destroying the mass-conservation type condition (58).

The second open problem therefore is:

• Generalize theorem 1, allowing for an appropriate class of two-phase flow velocities v
without imposing v+‖ = v−‖ .
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Figure 3. Sketch of a droplet wetting a solid support (t1 < t2).

In the present paper we consider ODE-systems with moving discontinuity surfaces which
are closed hypersurfaces, i.e. without boundary. While this covers a large class of two-phase
flows, in wetting applications the fluid interface has contact with parts of the boundary of Ω,
typically at a solid wall. Such a situation is illustrated in figure 3, showing a droplet which is
sketched at time t1 shortly after its initial contact with the solid support and at a later instant t2,
already closer to an equilibrium state which would be a spherical cap with material dependent
contact angle in cases without external forces such as gravity.

A generalization of theorem 1 to such a case with moving contact lines requires to extend
the setup to discontinuous ODEs on closed sets. Indeed, one needs to consider the flow on the
closed set Ω, allowing for x0 ∈ ∂Ω. The approach via set-valued regularizations would still
work, since sufficiently general existence results for differential inclusions on closed sets are
available; see [2, 3, 14] as well as [5] in cases with time-dependent flow domain. The velocity
fields then need to obey certain sub-tangentiality constraints which will be fulfilled if ∂Ω (‘the
support’) is non-permeable, since then v is tangential to ∂Ω there. The principle idea to impose
and exploit a jump condition of mass-conservation type still seems applicable, but a proof—if
it works—will be technically even more involved then the one given above. We leave this as
future work, hence close with

The third open problem:

• Extend theorem 1 to cover two-phase flows in which the discontinuity surface touches the
domain boundary.
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Nečas Center for Mathematical Modeling ed M Benes and E Feireisl (Prague: Matfyzpress)
pp 39–93
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