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Abstract

The massive growth in the demand of wireless communication data rates and services
require new technologies to grant broader bandwidths to end users. This work is
encompassed in the European project CELTA (Convergence of Electronics and
Photonics Technologies for Enabling Terahertz Applications) within the beamformer
demonstrator, which aims to develop a transmitter and a receiver capable of providing
high bitrate wireless indoor communications operating at W-band (75 GHz to
110 GHz).

This dissertation presents the design of five Schottky diode based balanced
Envelope Detectors (ED). The first two detectors, UWB1 and UWB2, operate
in the Ultra-WideBand (UWB) frequency range from 3.1 GHz to 10.6 GHz and are
used to compare different architectures at low complexity and cost. The other three,
ED1, ED2 and ED3, work in the W-band for the final goal of the beamformer
demonstrator.

UWRBL1 is composed of a balun that splits the input signal into two 180° out of
phase signals and a single balanced detector circuit. It demodulates in real time
and error free up to 4 Gbit/s Amplitude Shift Keying (ASK) signals with carrier
frequencies between 4 GHz and 8 GHz. It reaches a World record in the State of The
Art in terms of bitrate to carrier frequency ratio, Ab, of 100 % for the 4 GHz carrier
frequency.

UWB2 introduces a novel architecture, combining the functionality of a balun
and, at the same time rectification of the input signal, providing a more compact
configuration and featuring a higher sensitivity than UWBI1. As a consequence of
its lower phase balance bandwidth, it demodulates in real time and error free up to
2.5 Gbit/s ASK signals modulated onto a 8 GHz carrier, providing a Ab of 31.25 %.

In the three W-band EDs, UWB2’s architecture is chosen, prioritising sensitivity,
size, weight, complexity and cost over demodulated bitrate and phase balance
bandwidth. The W-band EDs are built in microstrip line technology, and provide a
WR-10 waveguide interface through a microstrip line to WR~10 waveguide transition.

ED1’s prototype features an input RF bandwidth of 20 GHz within the W-band,
6 GHz of videobandwidth and demodulates in real time and error free up to 12 Gbit/s
ASK signals.

When tested in a wireless system it demodulates up to 7 Gbit/s ASK signals with
a 82 GHz carrier transmitted through 1 m. These results not only fulfil the goals set
for this dissertation and the CELTA’s beamformer requirements, but in addition, it
improves the state of the art, since the prior envelope detector using the same diodes
and substrate demodulated 3 Gbit/s through 0.5 m.

Moreover, two additional W-band EDs designs are presented. According to simulation
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results, both detectors widen the input bandwidth, ED2 up to 35 GHz, i.e. the full
W-band, and ED3 up to 29 GHz. Although both envelope detectors have been
manufactured, their experimental characterization remains as future work, since due
to time constraints it could not be performed.
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Kurzfassung

Die immer wachsende Zunahme der Nachfrage nach Datenraten und Diensten
fiir die drahtlose Kommunikation erfordert neue Technologien, um Endbenutzern
breitere Bandbreiten zu gewihren. Diese Arbeit ist ein Teil vom das européische
Projekt CELTA (Convergence of Electronics and Photonics Technologies for Enabling
Terahertz Applications) im Rahmen des Beamformer-Demonstrators, mit dem ein
Sender und ein Empfinger entwickelt werden sollen, die eine drahtlose Innen-
kommunikation mit hoher Bitrate im W-Band (75 GHz bis 110 GHz) ermdglichen.

In dieser Arbeit werden fiinf Schottky Dioden als Envelopendetektoren (ED)
vorgestellt. Die ersten Detektoren, UWB1 und UWB2, arbeiten im Ultra-WideBand
Frequenz- bereich (UWB), d.h.von 3.1 GHz bis 10.6 GHz und werden verwendet,
um verschiedene Architekturen bei geringer Komplexitéit und geringen Kosten zu
vergleichen. Die anderen drei, ED1, ED2 und ED3, arbeiten im W-Band und sollen
fiir das Endziel des Beamformer-Demonstrators eingesetzt werden.

UWRBI besteht aus einem Balun, der das Eingangssignal in zwei phasenverschobene
180° Signale und eine einzige symmetrische Detektorschaltung aufteilt. Er demoduliert
in Echtzeit und fehlerfrei bis zu 4 Gbit/s Amplitude Shift Keying (ASK) Signale mit
Tragerfrequenzen zwischen 4 GHz und 8 GHz. Es erreicht eine Weltbestmarke im
Stand der Technik in Bezug auf das Verhéltnis von Bitrate zu Trégerfrequenz Ab
von 100 % fiir die Tragerfrequenz 4 GHz.

UWRBS2 stellt eine neuartige Architektur dar, die die Funktionalitit eines Baluns
besitzt und gleichzeitig das Eingangssignal gleichrichtet, eine kompaktere Kon-
figuration bietet und eine héhere Empfindlichkeit als UWB1 aufweist. Infolge seiner
geringeren Phasenausgleichsbandbreite demoduliert es in Echtzeit und fehlerfrei
ASK-Signale mit bis zu 2.5 Gbit/s, die auf einen 8 GHz Triger moduliert sind. Dies
entspricht einem Ab von 31.25 % entspricht.

In den drei W-Band-EDs wird die Architektur von UWB2 ausgewé&hlt, wobei
Empfindlichkeit, Grofle, Gewicht, Komplexitit und Kosten Vorrang vor demodulierter
Bitrate und Phasenausgleichsbandbreite haben. Die W-Band-EDs sind in Mikro-
streifenleitungstechnologie aufgebaut und bieten eine WR-10 Hohlleiter iiber eine
Mikro- streifenleitung zum WR-10 Hohlleiterriibergang.

Der Prototyp von ED1 verfiigt {iber eine HF-Eingangsbandbreite von 20 GHz im
W-Band, eine Videobandbreite von 6 GHz und demoduliert in Echtzeit und fehlerfrei
bis zu 12 Gbit/s ASK-Signalen.

Die Uberpriifung in einem drahtlosen System zeigte, dass es demoduliert es
ASK-Signale mit bis zu 7 Gbit/s mit einem 82 GHz Tréger, der iiber 1 m iibertragen
wird. Diese Ergebnisse erfiillen nicht nur die fiir diese Dissertation festgelegten Ziele
und die Anforderungen des CELTA Strahlformers, sondern sie verbessern auch den



Stand der Technik, da der bisherige Hiillkurvendetektor mit denselben Dioden und
Substrat 3 Gbit/s iiber 0.5 m demoduliert.

Dariiber hinaus werden zwei zusétzliche Designs von W-Band-EDs vorgestellt.
Geméfl den Simulations- ergebnissen erweitern beide Detektoren die Eingangs-
bandbreite, ED2 auf 35 GHz, d. h. auf das gesamte W-Band, und ED3 29 GHz.
Obwohl beide Hiillkurvendetektoren hergestellt wurden, stellt ihre experimentelle
Charakterisierung eine wichtige Aufgabe fiir zukiinftige Vorhaben dar, da sie aus
zeitlichen Griinden nicht durchgefiihrt werden konnte.

vi



Contents

Abstract

1 Introduction

1.1
1.2
1.3

Beamformer demonstrator . . ... .. ... ... ..
State of the art envelope detectors . . . . .. ... ... .........
Content of the dissertation . . . . . .. .. ... ... .. .. .......

2 Fundamentals of Schottky Diode Detection

2.1
2.2
2.3
24

2.5

Schottky diode model . . . . ... ... Lo
Small signal analysis . . . . . ... ... ... .. L o
Single-ended and balanced Schottky diode detection . . . . . ... ...
Balanced output signals with Rat Race and high-pass compensation

architecture . . . . . . ...
Bode-Fano criterion for broadband envelope detectors . . . . . ... ..

3 Envelope Detectors for Ultra-Wide Band (UWB)

3.1
3.2

3.3
3.4
3.5

Envelope detection principles and benchmarks . .. ... ... ... ..
Balanced envelope detectors for UWB . . . .. ... ... ... .. ...
3.2.1 UWBI1 with an external balun . . ... ..............
3.2.2 UWB2 with high-pass compensation principle . . . ... .. ..
Simulation results . . . . ... ... ...
Bit Error Rate (BER) measurements . . . . ... ... ... .......
Comparison and discussion . . . . . . . ... ... ... ...

4 Envelope Detectors (EDs) for W-band

4.1

4.2

4.3
4.4
4.5
4.6
4.7

ED1 with Printed Circuit Board (PCB) substrate . . ... .......
4.1.1  WR-10 rectangular waveguide to microstrip line transition

4.1.2 Envelope detector circuit . . . . .. ... ... ...
4.1.3 Simulation and experimental results mismatch for ED1 ..
ED2 with fused silica substrate . . . .. ... ... .. ... ... ...
4.2.1  WR-10 rectangular waveguide to microstrip line transition

4.2.2 Envelope detector circuit . . . . ... ... ... ...
ED3 improved detector with Printed Circuit Board (PCB) substrate .
Simulation results . . . . .. ... L
Envelope detection benchmark measurements . . . . .. ... ... ...
Wireless communication experiment . . . ... ... ... ... .....
Analysis and comparison . . . . ... ...

iii

11
12
13
14

19
22

27
27
29
30
31
34
40
46

47
47
47
93
56
o7
o8
66
69
71
79
90
93

vil



5 Conclusions and Outlook

99

5.1 Conclusions . . . . . . . . e 99
5.2 0Outlook . . . . . 103
Bibliography 105
Own Publications 121

viii



List of Figures

1.1
1.2

1.3

14

1.5
1.6

1.7

2.1
2.2
2.3
24

2.5
2.6
2.7
2.8
2.9

2.10

2.11

2.12

2.13

Beamforming demonstrator schematic. . . . . . ... ... ... ... .. 2
Schematic of a dielectric rod waveguide (DRW) antenna array integrated
with four photomixers for sub-THz beam steering [Mor+19]. . .. .. 3
Simulated radiation pattern in the horizontal plane at 85 GHz of the
DRW antenna array [Mor+19]. . .. .. ... ... ........... 3

Cross section of the proposed rod antenna array. a) (A) Cascaded
E-plane power divider. (B) Dielectric taper. (C) Horn-like transition
from metallic waveguide to dielectric waveguide. (D) Phase shifter
section. (E) Rod antennas. b) Detailed view of the phase shifter section

including the electrodes. All dimensions are given in mm. [Ree+19]. . 4
Manufactured LC antenna [Ree+19]. . . . ... ... ... ... ..... 4
Measured E-plane antenna pattern at three frequencies for three

different angle of radiations [Ree+19] . . . . . .. .. ... ... ... .. 5
UWB and W-band envelope detectors state of the art. References in

table 1.1 . . . . . . 8
Equivalent AC circuit of a Schottky diode. . . . . ... ... ...... 12
Rectifying process using a Schottky diode. . . .. ... ... ... ... 14
Skyworks SMS7621 I-V curve in double logarithmic scale. . . ... .. 15

Frequency spectrum of an ASK input signal fed to the Schottky diode.
The arrows represent equation (2.8), while the dotted line represents

the spectrum of the data signal with data at fg bit/s. . .. ... ... 16
Frequency spectrum of the Schottky diode’s output signal. . . . . . .. 17
Schottky diode’s demodulated output signal using a balance architecture. 18
Schottky diodes used in this project. . . . ... ... ... .. ... 18
DC simulation analysis of the Schottky diodes used in the project. . . 20
I-V curves of the Schottky diodes used in this project in double

logarithmic scale. . . . . . . . ... . L 21
Rat Race schematic. . . . . ... ... .. .. ... 21

Schematic of the high pass phase compensation network which replaces
the long arm of the Rat Race: (a) original 3\/4 transmission line; (b)

using inductors; (c) using transmission lines. . . ... ... ... .. .. 22
Schematic of (a) one conventional Rat Race; (b) the Rat Race that
uses the high-pass compensation; (c) this work [Bla+18a]. . . ... .. 23

Bode-Fano limits for RC and RL loads matched with passive and
lossless networks: (a) Parallel RC; (b) Series RC; (c) Parallel RL; (d)
Series RL. . . . . . . . . . e 25

ix



3.1

3.2
3.3
3.4

3.5
3.6

3.7
3.8
3.9

3.10

3.11

3.12
3.13

3.14

3.15

4.1
4.2
4.3
4.4

4.5

4.6

4.7

Benchmarks used to test the EDs: frequency response (FR) for: (a)
UWB EDs, (b) W-Band EDs; (c) conversion loss (CL); (d) data

detection (DD). . . . . .. .. 28
Circuit schematic of UWBI: electrical lengths are given at 7GHz. . . 31
Layout of UWB1. . . .. .. . . . 32
Manufactured detector circuit UWB1 with external balun Marki

Bal-0010 [Bla+17]. . . . . . o 32
UWB2’s circuit schematic: electrical lengths are given at 8 GHz. . . . 33
Phase balance bandwidth comparison between a Rat Race, UWB2

and the Marki Bal-0010 [Mara]. . . . ... ... ... ........... 34
Layout of UWB2. . . . .. . . ... . .. 35
Manufactured detector UWB2 [Bla+18a. . . ... ... ... ... ... 35
Frequency response simulation results of the envelope detectors UWB1

[Bla+17] and UWB2 [Bla+18a]. . ... ... ... ... .. ....... 36

Conversion loss simulation results comparison of the UWB envelope
detectors:(a) UWBI1, (b) UWB1 3dB video bandwidth, ¢) UWB2, (d)

UWB2 3dB video bandwidth. . . . . ... ... ... .. ......... 37
Data detection simulation results of the UWB envelope detectors: eye

diagram, height and Level 1 (L1). . ... ... ... ... ... ..... 39
BER experimental setup used with UWB EDs. . . . . .. ... ... .. 41

BER results of UWB1: (a) Experimental BER curves for ASK signals
with bitrate = 2.5 Gbit/s and eye diagrams of the demodulated signal
with an input power of -7 dBm and carrier frequency at (b) 6 GHz,
(¢c) 7TGHz, (d) 8 GHz and (e) 9GHz. . .. ... ... ... ... ...... 42
BER results of UWB1: (a) Experimental BER curves for ASK signals
with bitrate = 4 Gbit/s and eye diagrams of the demodulated signal
with an input power of -7 dBm and carrier frequency at (b) 4 GHz,
(c) 5GHz, (d) 6 GHz, (e) 7GHz and (f) 8GHz [Bla+17]. . .. ... .. 43
BER results of UWB2: (a) Experimental BER curves for ASK signals
with bitrate = 2.5 Gbit/s and eye diagrams of the demodulated signal
with an input power of -7 dBm and carrier frequency at (b) 6 GHz,

(¢c) 7TGHz, (d) 8GHz and (e) 9GHz. . .. ... ... ... ... .... 45
Design of the WR-10 to MSL transition for ED1. Dimensions are in mm. 49
Simulated ED1’s WR-10 to MSL transition S-parameters. . . ... .. 50
Manufactured back to back transition of ED1. . . .. ... ... .. .. 51
Experimental back to back S-parameters from the WR-10 to MSL

transition. . . . . . ..o 52

Full WR-10 to MSL to WR-10 transition back to back S-parameters
comparison between experimental (solid) and simulation (dashed)

results. . . .o L e 52
Circuit schematic of ED1: electrical lengths are measured at 92.5 GHz
(W-band’s central frequency). . . ... .. ... ... .. .. ... ... 53

Output filter of ED1. Simulation results. . . . . . ... ... ... .... 54



4.8
4.9
4.10
4.11

4.12

4.13
4.14
4.15

4.16

4.17
4.18

4.19

4.20

4.21
4.22
4.23
4.24
4.25
4.26
4.27

4.28
4.28
4.29
4.30
4.31
4.32

4.33

4.34

4.35

4.36

4.37

Phase balance bandwidth of ED1. . .. ... ... ... ......... 55
Layout of ED1. . . . . . . 55
Manufactured ED1. . . . . ... ... 56
ED1’s microstrip transmission line simulation results. Comparison
between CST Microwave Studio and ADS Momentum. . . . ... ... 57
Design of the tapered waveguide to microstrip transition for ED2.
Dimensions are inmm. . . .. ... ... ... ... 59
Simulated WR-10 waveguide to microstrip line transition S-parameters. 60
Manufactured back to back transition for ED2. . ... ... ... ... 61
Experimental back to back S-parameters from the WR-10 waveguide

to microstrip line to WR~10 waveguide transition for ED2. . . . . . .. 62
Full ED2 transition back to back S-parameters comparison between
experimental (solid) and simulation (dashed) results. . ... ... ... 63
Microstrip line mounted on the back to back transition. . .. ... .. 63
Full ED2 transition back to back S-parameters comparison between
simulation and experimental results, before and after applying glue. . 64
Full ED2 transition back to back S-parameters test run using two
different transition PCBs and after applying glue several times. . . . . 65
Circuit schematic of ED2: electrical lengths are measured at 92.5 GHz
(W-band’s central frequency). . . ... ... ... ... ... ...... 66
Output filter of ED2. Simulation results. . . . . . .. ... ... ..... 67
ED2’s and ED1’s phase balance bandwidth comparison. . .. ... .. 68
ED2’s Layout. . . . . . .. .. 68
Fused silica manufactured substrate of ED2. . . ... ... ... .... 69
ED2’s fused silica in-house manufactured substrate by ACST GmbH. 70
Layouts of the two ED’s versions using Rogers 5880 substrate. . ... 71
Frequency response simulation results of the W-band envelope detectors.

72

Simulated conversion loss results of the W-band detectors. . ... .. 75
Simulated conversion loss results of the W-band detectors. . ... .. 76
Simulated frequency response and eye diagram of the W-band EDs. . 77
W-band frequency response experimental setup at DTU. . . ... ... 80
W-band frequency response experimental setup at TU Darmstadt. . . 81
Frequency response simulation (solid) and experimental (dashed)
results from P;,= -6dBm to -18dBm. . .. ... ... ... ...... 83
Experimental setup schematic used for measuring the conversion loss

(a) and the data detection (b) from ED1. . ... ... ... ... .... 84
Experimental setup used for conversion loss and data detection benchmarks
from ED1. . . . . . . . 85
ED1 experimental Conversion Loss. . . . . . ... ... ... ... .... 87
Experimental BER results for carrier frequencies between 78 GHz and

92 GHz, data rates between 2 Gbit/s to 14 Gbit/s and input powers
-27dBm and -7dBm [Bla+19]. . . ... ... ... oo 89
Experimental wireless setup and link budget. . . . ... ... ... ... 90

xi



xii

4.38
4.39
4.40

4.41

4.42

5.1

Experimental wireless setup schematic. . . . . .. ... ... ... ... ..
Experimental BER results the wireless experiment with ED1. . . . . .
Frequency response of EDI1: simulation (solid) and experimental
(dashed) results measured at TU Darmstadt from P;,=-6dBm to

Comparison of conversion loss of ED1. Input transmission line simulated
with CST Microwave Studio or ADS Momentum. . ... ........
Conversion loss simulation results comparison. . . . .. ... ... ...

UWB and W-band envelope detectors state of the art. References in
table 5.3 . . . .. e



List of Tables

1.1

2.1

4.1
4.2

4.3

4.4

5.1
0.2

5.3

UWB and W-band envelope detectors state of the art. . . . ... ...
Schottky diodes used in this project. . . . ... ... ... .. ...

WR-10 to MSL transitions state of theart. . . ... ... ... ... ..
Transmission line S-parameters used in the W-band envelope detectors’
design: electrical lengths are measured at 92.5GHz. . . . ... ... ..
Design features and simulation results from the W-band detectors
presented in this dissertation. . . .. ... ... ... ... .. .. ...,
Relation between PD’s output and ED1’s input powers. . ... .. ..

UWB and W-band envelope detectors state of the art. . .. ... ...
Design features, simulation (sim) and experimental (exp) results
(frequency response and conversion loss) from the EDs presented
in this dissertation. . . . . . . ... ...
Data detection experimental results from the envelope detectors
described in this dissertation. . . . .. ... ... .. L.

19

66

xiii






Acronyms

ADS
ASK
BER
BERT

BW

DD
DRW
DTU
ECL
ED
EDFA
EM

fe
FR

Advance Design System’s

Amplitude Modulated Signals

Bit Error Ratio

Bit Error Rate Tester

Bandwidth

Backward Wave Oscillator
Capacitance Related with the Schottky diode Pads
Schottky diode Junction Capacitance
Conversion Loss

Schottky diode Parallel Capacitance
Co-Propagating Tone

Continuous Wave’s

Data Detection

Dielectric Rod Waveguide

Technical University Of Denmark
External Cavity Laser

Envelope Detector

Erbium Doped Fibre Amplifier
Electromagnetic

Carrier Frequency

Frequency Response

XV



HW
ITN
L1
LC
LNA
LO
LPF
LPF

MPA
MSL
MZM
0S
PC
PCB

Xvi

Hollow Waveguide

International Training Network
Level Of “1” Bits

Liquid Crystal

Low Noise Amplifier

Local Oscillator

Low Pass Filter’s

Low-Pass Filter

Schottky diode Series Inductance
Medium Power Amplifier
Microstrip Line

Mach-Zehnder Modulator

Optical Signal

Polarisation Controller

Printed Circuit Board

Photodiode

Pulse Pattern Generator
Pseudo-Random Bit Sequence
Photonic Vector Network Analyser
Schottky diode Junction Resistance
Schottky diode Series Resistance
Surface Mounting Device

State Of The Art

Single Sideband Demodulation
University Of Technology
Technical University Of Darmstadt

Ultra-Wideband



VOA Variable Attenuator
VSG Vector Signal Generator

WSS Wavelength Selective Switch

xvii






1 Introduction

This doctoral (PhD) dissertation stems from the author’s work over the last four
years, where he was involved within an European project named CELTA [CEL]
and completed secondments in the Eindhoven University of Technology (TU/e), the
Technical University of Denmark (DTU) and in Bifrost Communications [Com].

This first chapter starts describing CELTA, follows listing the goals which have
been pursued during the PhD and ends explaining this dissertation’s structure.

CELTA is the acronym for Convergence of Electronics and Photonics Technologies
for Enabling Terahertz Applications. It is an European International Training Network
(ITN) project, led by the Eindhoven University of Technology (TU/e) and concentrates
the work of 15 PhD students from 12 partners located in 9 different countries [CEL].
CELTA'’s spirit is to introduce the strategy of converged electronics and photonics
co-design and establish a common engineering language in its training programme
across the electronics, photonics and applications disciplines. In CELTA the research
is structured in three subprojects, named demonstrators, in which PhDs collaborate
and join efforts to develop a solution to a challenge or an application.

The first demonstrator is a free space photonic vector network analyser (PVNA)
based on homodyne photomixing. Its frequency is ultra-wide tunable and can be
used in mmW characterization, spectroscopy and material characterization.

The second demonstrator is an imager based on a GaN plasmonic FET camera,
used in non destructive material testing, biomedical diagnoses and safety inspection.

The third demonstrator, named the beamformer demonstrator, aims to develop
a transmitter and a receiver capable of providing high bitrate wireless indoor
communications using high directive antennas and beamforming to align the beam
from the transmitter antenna with the receiver. The author’s work contributes
exclusively to the beamformer demonstrator.

1.1 Beamformer demonstrator

In the last years there has been a steady increment in the demand of wireless
communication bandwidth which will rise even faster in the future [Cis20]. This
growth in the demand motivates the research of new spectrum allocations in the
THz range, in order to provide broad bandwidth for signal transmission [NDR16].
Migrating to higher frequencies implies increasing the attenuation due to higher free
space losses [Rap+13].

The beamformer demonstrator operates at W-band (75 GHz to 110 GHz) and is
designed for high speed short range wireless communication. It takes advantage
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Figure 1.1: Beamforming demonstrator schematic.

of high directive antennas that counteract attenuation and low achievable power
levels at THz frequencies [UK16; Rap+13]. By applying beamsteering, the usage of
future portable devices with high data rate becomes possible. Figure 1.1 shows the
beamformer demonstrator’s schematic, which is divided into a transmitter and a
receiver.

The beamformer transmitter is composed by a 1x4 optical true time delay
beamforming network integrated into a SisN4 photonic chip [MM18] and a dielectric
rod waveguide antenna array which uses photoconductive antennas as antenna
elements [Mor+19].

The beamforming network is fed with an optical signal containing two optical
carriers, which are separated by the frequency of the desired output electrical signal,
which in this project is within the W-band (75 GHz to 110 GHz). One carrier is
modulated with the desired data signal. The delay of the four branches can be tuned
by using thermo-optic modulators at the desired wavelength, which leads to the
change in the beam direction [MM18]. For each branch, the optical beam, composed
of the two optical signals is focused onto a semiconductor region with a photomixer
on each one, where the electrical current is generated.

The photomixer substrate is glued on a high-resistivity silicon rod antenna (DRW)
as shown in figure 1.2. The transmitter antenna array is composed by four elements,
spaced by A\/4. The simulated radiation pattern at 85 GHz when the phase difference
(A®) between the adjacent antenna elements is shifted is depicted in figure 1.3 . The
maximum spatial beam steering is 25°, obtained with a A®= 90°.

Alvaro Morales Vicente from the Eindhoven University of Technology (TU/e)
[Teca] and Serguei Smirnov from KTH Royal Institute of Technology [Tecb] are in
charge of the design of the photonic chip and the DRW antenna respectively. At
the time when the dissertation was finished, the transmitter antenna was still under
fabrication, therefore, it is not possible to show experimental results. A more detailed
discussion about both elements can be found in [Mor+19],[MM18] and in their PhD
dissertations.
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Figure 1.2: Schematic of a dielectric rod waveguide (DRW) antenna array integrated
with four photomixers for sub-THz beam steering [Mor+19].
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Figure 1.3: Simulated radiation pattern in the horizontal plane at 85 GHz of the
DRW antenna array [Mor+19].

Two different receiver architectures are designed within the CELTA’s beamformer
demonstrator: one by the Warsaw University of Technology, presented in [NY19]
and another one by the TU Darmstadt (TUDa), which is the one discussed in this
dissertation. The receiver designed at TUDa consists of two blocks: A liquid crystal
(LC) antenna array and a Schottky diode based envelope detector (ED) built in
planar technology. The interface connection between both blocks is realized as a
WR-10 waveguide to microstrip line transition.

Liquid crystal antenna array

The beamforming receiver antenna consists of a 1 x 4 rod antenna array and a liquid
crystal (LC) based phase shifter. The LC mixture GT7-29001 provided by Merck
KGaA is specifically synthesised for microwave applications [Ree+19].

The phase shifter design was first presented in [Jos+16], and its fabrication process
is described in detail in [Ree+19]. The phase shifter is made of a cross-linked plastic
Rexolite with €,=2.53 and tand = 0.0006 at 100GHz, filled with the GT7-29001 LC
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Figure 1.4: Cross section of the proposed rod antenna array. a) (A) Cascaded E-plane
power divider. (B) Dielectric taper. (C) Horn-like transition from metallic
waveguide to dielectric waveguide. (D) Phase shifter section. (E) Rod
antennas. b) Detailed view of the phase shifter section including the
electrodes. All dimensions are given in mm. [Ree+19].

[FBI7; Ree+19].

The phased array antenna follows the schematic from figure 1.4. It is composed
of a cascaded E-plane power divider (A), a dielectric taper (B) inserted into the
waveguide, horn-like transitions from waveguide to dielectric waveguides (DW) (C),
the phase shifter section (D) and the rod antenna elements (E). Figure 1.5 shows
the manufactured LC antenna. More details about the design and fabrication can be
found in [Ree+17; Ree+19].

The phased array was manufactured and evaluated at TU Darmstadt facilities
obtaining 11.5dBi of antenna gain at 85 GHz for the non-steered radiation towards
0°and 9.1 dBi when steering towards -25°[Ree+19]. The radiation patterns for each

Figure 1.5: Manufactured LC antenna [Ree+19).
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Figure 1.6: Measured E-plane antenna pattern at three frequencies for three different
angle of radiations [Ree+19]

steering angle are displayed in figure 1.6.

The LC phased array antenna was designed and measured by Roland Reese, PhD at
the Institute for Microwave Engineering and Photonics at TU Darmstadt. Similarly,
as with the transmitter, a more thorough description and discussion about the LC
phase shifters and the antenna can be found in [Ree+17; Ree+19] and in Roland
Reese’s PhD dissertation [Ree20].

Schottky diode based envelope detector

The receiver circuit used in the CELTA beamformer demonstrator includes a zero
bias Schottky diode based envelope detector.

Envelope Detectors (ED) are able to rectify an input signal obtaining its baseband
harmonic, which can be used to demodulate high data rate Amplitude Shift Keying
(ASK) modulated signals. At high frequencies (f > 100 GHz), they provide a less
complex and cost effective solution to build receivers in comparison with heterodyne
architectures, which need of a LO [St6+16; Rom-+16a] that has to be fed and cooled
down [Hoe+13]. Moreover, the receiver’s weight, volume and power consumption are
reduced when using envelope detectors, which can be an interesting feature [Coj+19]
depending on the application, e.g. space systems [Hoe+15]. On the other hand,
heterodyne architectures feature a higher sensitivity and are able to demodulate
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phase modulated signals [Rom+16b; St6+16; Bla+419].

New telecommunication technologies, such as 5G, reduce the cell size, which
is cheaper and more power efficient than macrocells [And+14]. In this scenario,
sensitivity is no longer such a big limitation as with macrocells, and envelope
detectors can play a key role, providing high data rate receivers at lower cost and
complexity.

The original objective agreed in the CELTA project proposal was to build a
Schottky detector with 20 GHz videobandwidth, using a target frequency of 240 GHz.

The requirements of this dissertation, reduced from the original objective in CELTA
due to practical project goals, aimed with this envelope detector were:

e The wireless transmitted ASK signal is modulated using a 90 GHz - 95 GHz
carrier frequency.

e The envelope detector should be built in planar technology, using Schottky
diodes provided by ACST GmbH [ACS].

e The ED’s input interface is a WR-10 waveguide, because the LC beamforming
antenna and the W-band equipment available at our partners facilities is WR-10
rectangular waveguide based. A waveguide to microstrip transition is needed
to provide this interface.

The last goal was the experimental validation of the beamformer receiver by joining
this work to the LC antenna designed by Roland Reese [Ree+19].

During the mid term review which took place in December 2017 at TU/e in
Eindhoven, the beamformer demonstrator requirements were specified in more detail,
being the following;:

e The wireless transmitted ASK signal is modulated using a carrier frequency in
the range of 80 GHz - 85 GHz.

e The envelope detector should provide 5 GHz to 10 GHz input bandwidth, being
able to demodulate up to 5 Gbit/s ASK signals.

These specifications are relaxed from the initial envelope detector requirements,
to meet the updated features from the beamformer transmitter. They were agreed
after the design phase of the first W-band ED, ED1, which was optimised for a
target frequency of 92.5 GHz, and operates in the full W-band, therefore the project
requirements were met. A summary of all these requirements is summarised in the
state of the art in figure 1.7.

This dissertation presents the design of five envelope detectors used to demodulate
high data rate ASK signals. The first two work in the Ultra-WideBand (UWB)
frequency range (3.1 GHz to 10.6 GHz), are used as an initial approach to envelope
detector design, allowing to test different configurations and architecture designs,
handling a lower complexity and without having some manufacturing constraints
and costs for higher frequency prototypes. They were designed during the internship
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at Bifrost Communications and presented within the author’s master thesis. The
three other envelope detectors operate in the W-band (75 GHz to 110 GHz) and are
the final goal of this dissertation.

During the PhD the author accomplished two secondments or external stays, one
at the Technical University of Denmark (DTU) for two months in the beginning
of 2018 and one at Eindhoven University of Technology (TU/e) for three months
between October 2018 and January 2019. The purpose of these secondments was to
test the manufactured envelope detector prototypes, learn from the expertise of each
team’s knowledge and attending to technical specialised courses, such as JePPIX
[JeP].

1.2 State of the art envelope detectors

Table 1.1 and figure 1.7 summarise the state of the art of envelope detectors when
demodulating ASK signals. They compare the signal’s bitrate in [Gbit/s], which
equals the video or baseband bandwidth in [GHz] for ASK modulated signals and
carrier frequency, f.. In addition, table 1.1 presents the figure of merit Ab, introduced
in [TMA15; Cim+16; Bla+17], which depicts the demodulated ASK signal’s bitrate
normalised to its carrier frequency (f.), also addressed fractional bandwidth [Sac12;
Poz12]. The state of the art is divided into two groups: those envelope detectors with
a carrier frequency comprised in the ultrawideband (UWB) (3.1 GHz - 10.6 GHz);
and those working at W-band (75 GHz - 110 GHz). The envelope detectors are
sorted according to their architecture, which can be single ended or balance and
the connection used when they were tested. More W-band detectors were studied
during this dissertation, e.g. [Yao+15; Hoe+14; ZYW15; Hro+13; Xie+10; Tsa+10;
Moy+08; Ali+18], but are not added in table 1.1 since they were not used in a
communication system.

Single ended architectures have a theoretical Ab limit of 50 % due to the presence of
an output spurious at the fundamental harmonic frequency [Poz12]. The mathematical
calculation of the demodulated ASK signal can be found within this dissertation
in section 2.3. The best experimental Ab value in this architecture family is 41.7%
[Cim+18].

It will be mathematically justified in sections 2.3 that introducing a balanced
architecture presents the advantage of cancelling the fundamental harmonic at the
envelope detector’s output [Poz12; Bla+17]; hence relaxing the output low pass
filter’s (LPF) requirements, which only needs to reject the second harmonic spurious.
Ab can be therefore boosted to 100%, as shown in [Bla+17]. Moreover, the use of a
balanced architecture reduces the common mode noise at the ED’s output [Poz12].
As drawback, balanced envelope detectors present higher conversion loss and lower
sensitivity than single ended ones. Additionally, if a behaviour mismatch between
the two diodes exists, designing the ED’s matching network becomes more complex.

This dissertation’s goal is to design a W-band envelope detector with the re-
quirements listed in the previous section. Its connections, in contrast with the other
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Figure 1.7: UWB and W-band envelope detectors state of the art. References in table
1.1

W-band envelope detectors of the state of the art, should be a WR-10 waveguide at
its input, to be able to connect it to the beamformer receiver antenna, and a coaxial
at its output. These interfaces allow to use the envelope detector in several systems,
just plugging it to the antenna’s waveguide, without the need of using expensive
probe tips or adapter. In addition, when used in a wireless system, the transmission
distance should be of at least 1 m, instead of just a few centimetres.

Ultrawideband (UWB) wireless communication is a technology that allows the
transmission high data rates in the unlicensed spectrum from 3.1 GHz to 10.6 GHz
[PHO3]. The transmitted signal occupies 20 % or more of the relative bandwidth from
the central frequency [ECCO04] in Europe, or an absolute bandwidth of 500 MHz or
more in the USA [FCO02].

The advantage of using this frequency range is that UWB communication can
operate together with existing wireless systems without assigning new spectrum
[Sac12; Rom+17]. Due to the low power spectral density from UWB communication,
the other wireless applications will see their interference with UWB signals to behave
as noise [OHI04; TEO05; Int04]. Since it employs low power emission, it is only suitable
for short range radio transmissions [SM04].

The low manufacturing costs convert UWB communication to an attractive
technology to be implemented in several applications related to short range wireless
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Table 1.1: UWB and W-band envelope detectors state of the art.
fe Bitrate Ab

# Ref [GHz]  [Gbit/s] [%] Connection Architecture
1 [Cim+16] 7 2.5 35.7 Coaxial Single Ended
2 [Sil+17] 7 2.5 35.7 Coaxial Single Ended
3 [Cim+-18] 6 2.5 41.7 Coaxial Single Ended
4 [SO0T] 5.5 1 18.2  Probe tip on chip  Single Ended
5 [TMA15] 101 26 25.7  Probe tip on chip Balanced

6 [Kuo+12] 93 25 26.9  Wireless (0.3m) n/a

7 [Tho+14] 108 24 22.2  Probe tip on chip n/a

8 [Pan+11] 93 20 21.5  Wireless (20 cm) n/a

9 [Lee+16] 84 20 23.8 Probe tip on chip  Single Ended
10 [Lee+15] 80 12 15 Wireless (1.2c¢cm)  Single Ended
11 [Nak+09] 85.5 10 11.7  Probe tip on chip  Single Ended
12 [Nak+14] 80 12.5 15.6  Wireless (2cm) Balanced
13 [Nak+14] 100 7.6 7.6 Wireless (2cm) Balanced
14 [Guz+19; Ali+18] 81 3 3.7 Wireless (0.5m)  Single Ended

transmission [PHO03], e.g. in-home data networks [Cab+09]; short distance data buses
in relation to the ”Internet of things” [Ham+13; Rom+15a]; medical, or automotive
applications [ECC04; OHIO4].

Future wireless communication networks require a large bandwidth increment
related with several intensive services and applications, such as mobile communication,
8k video streaming, cloud computing, e-health, holographic conferences, smart devices
connection, 5G applications, or point to point data transmission [Wel09; Koe+13;
Rom+15b; And+14]. Consequently, new spectrum assignments in the W-band
(75 GHz - 110 GHz) are currently being considered to achieve peak user data rates in
the Gbit/s range [St6+16; Xia+17; Dah+14], for this reason, the CELTA beamformer
demonstrator’s working frequency was chosen in this range.

1.3 Content of the dissertation

The remainder of this dissertation is organised in 4 chapters as follows:
e Chapter 2 presents an overview of the Schottky diodes detection theory.

e Chapter 3 describes the design process and simulation results of the five envelope
detectors, dividing them into UWB and W-band envelope detectors.

e Chapter 4 shows and analyses the experimental results of all detectors, and the
integration of the W-band envelope detectors into the CELTA demonstrator.

e Chapter 5 summarises the dissertation, shows its conclusions and suggests the
outlook of this project.
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2 Fundamentals of Schottky Diode
Detection

In 1923 Walter Schottky proposed the first model for the junction layer in metal
semiconductors, experimentally confirmed in 1929. In his honour, Schottky diode is
used to name those diodes which are composed by a junction between a metal and a
p- or n- type semiconductor.

By placing the metal and n-type semiconductor together some of the free electrons
move to the metal. As a result, the area of the semiconductor near the metal becomes
positively charged due to a lack of electrons, giving it the name of depletion region.
An electric field is then set between the metal and the semiconductor that opposes
to the migration of electrons to the metal. The junction state of equilibrium provides
a potential difference, called diffusion potential or built-in voltage [SMS95]. If the
semiconductor is p- type, the analysis is similar: the holes from the semiconductor
attract electrons from the metal, and the depletion region is negative charged.

Forward biasing the diode narrows the depletion region and decreases the charge,
reducing the junction’s electric field and the barrier seen by the electron. Hence the
diffusion potential becomes weaker and the energy required for an electron to move
to the metal decreases, allowing the electrons to cross the barrier resulting into a
current between the terminals of the diode.

When reverse biased, the Schottky diode’s depletion region wideness until a
certain voltage, called breakdown voltage, where the equilibrium is no longer possible,
allowing that the current goes through the diode. Shockley’s equation (equation (2.1))
models the diode only in the forward bias region.

Schottky diodes, both p- or n- doped, are considered majority carrier devices
because the conduction occurs mostly from the emission of majority carriers over a
barrier as opposite to junction diodes whose properties are determined by minority
carriers, therefore suffering from carrier storage effects [Maa03; VPRO05]. Moreover,
when removing the forward voltage from a Schottky diode the current stops almost
instantly, allowing Schottky diodes to provide a much higher switching speed in
comparison with junction diodes [Inc].

The current travelling through an ideal Schottky diode is expressed with the
exponential function from equation (2.1), known as Shockley’s equation [SB10],

I=Ig- (Y1 -1)=1Ig (ennT Ve 1) (2.1)

where ¢ is the electron charge, k is Boltzmann’s constant, T is temperature, n is the
diode ideality factor, ranging from 1 to 2, and I is the saturation current [Poz12].
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1
Cg Gl eak —_— Cg
1 1

Figure 2.1: Equivalent AC circuit of a Schottky diode.

Equation (2.1) describes the Schottky diode’s I-V characteristic and is proportional
to the number of electrons having energy greater than the barrier’s [SMS95; Maa03].

The threshold voltage or ”knee”, which is the voltage at which the conduction
of current forward current begins is lower for Schottky diodes than for p-n diodes
[VPRO5]. Furthermore, the reverse leakage current is higher for a Schottky diode than
those of p-n ones which are manufactured using the same semiconductor material
[BP03], while the reverse breakdown voltage of a p-n diode is larger [Inc].

A thorough discussion about the physics of the different types of diodes, and
specially Schottky diodes can be found in [SMS95; Maa03; VPR05; Rho82; Inc| and
will not be discussed further in this dissertation.

2.1 Schottky diode model

Simulation software needs of an accurate estimation of how the Schottky diodes
used in this project perform. The Schottky diode model used in this dissertation was
presented in [Hoe+11], where the diodes provided by ACST GmbH were characterised.
Figure 2.1 depicts the equivalent AC circuit model of these Schottky diodes [Hoe+11],
that will be used in the frame of ADS simulations in chapter 3, and can be discomposed
into:

e (y: The pad capacitance is caused when connecting the diode’s pads with the
substrate where it is mounted.

e (Cp: The parallel capacitance arises from the couplings beside the anode.
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e (: the junction capacitance is due to the charge accumulated in the depletion
region.

e L,: The series inductance is related to the anode finger.

e R;: The junction or differential resistance (Rg;f¢), is the inverse of the Schottky
diode’s I-V curve’s first derivative defined in equation (2.3).

e R,: The series resistance accounts for ohmic losses in the contacts and substrate.
n-type semiconductors provide a lower R4 than p-type semiconductors [Coj07;
Hof14].

e (;: The diffusion capacitance is caused by minority carriers diffusion, and is
present in p-n diodes, where it is placed in parallel with Rg;r¢. Since Schottky
diodes are majority carrier devices, this capacitance is negligible, and therefore
is not plotted in figure 2.1. The lack of Cy is the reason why Schottky diodes
switching speed is much higher than p-n junction diodes [BP03; RCN13].

2.2 Small signal analysis

In the envelope detectors designed in this project, Schottky diodes rectify the RF
signal which carries information or data using Amplitude Shift Keying (ASK) as
modulation format. Figure 2.2 graphically illustrates the rectification of a sinusoidal
signal using a Schottky diode. The variation of voltage at the diode’s input leads
to a current going through it, the Schottky diode will conduct current when the
voltage is greater than the threshold voltage while the reverse current is negligible in
comparison during the negative cycles.

The process described in figure 2.2 can be mathematically explained starting from
equation (2.1) to show the diode’s output current under the assumption that it
operates in the square-law region, presenting a quadratic response.

As shown in figure 2.3, a Schottky diode can operate in two regions attending to its
input power: square-law and saturation. The square-law behaviour can be obtained
only over a limited range of input power. Once this limit is exceeded, the output
signal will be saturated and the relation between input power and output voltage
will approach a linear, and then a constant, characteristic [Poz12].

We will consider an input voltage Vip, =Vjiqs +vin (t), where Vi;qs is the DC voltage
applied to the diode, and v;,(t) is the small signal input.

Assuming that the amplitude oscillation from v, (t) is small compared with V.,
we can approximate equation (2.1) through a Taylor expansion with a three term
approximation [Poz12; Spi], obtaining that:

dI (V)
v

+%v2-2n D LAL0] B (2.2)

2
Vbias dV Vbius
where ¢ are the higher order terms used in the mathematical definition of the
Taylor expansion. Furthermore, by expanding the current’s first derivative, we obtain

I (V) = Ipigs + Vin (t)

Angel Blanco Granja 13



Chapter 2. Fundamentals of Schottky Diode Detection

[ I, Output current

o3eyjoA nduy

Figure 2.2: Rectifying process using a Schottky diode.

G4, the dynamic conductance of the diode, which equals to ﬁ, where Rgig is the
diode’s differential resistance. G4 can then be described by:

1

diff

di (V)
av
Similarly, the second current derivative can be evaluated as:

I
Is-a-eo‘vbias:Is-a-(I—+1)=a(I+IS):Gd:R (2.3)

s

d?1 (V) Cd(Iy - o e@Voias)

dV2 Vbias dV

= I,-a%-eVoies = 02 (Vs + I,) = a-Gg = G} (2.4)

Combining the results from equations (2.2), (2.3) and (2.4), we obtain the second
order Taylor’s approximation from the diode’s output current:

T(V) = Iysas + 0 (1) G + 202, ()G +¢ (2.5)

2.3 Single-ended and balanced Schottky diode detection

If we assume that the signal fed into the Schottky diode is a sinusoidal, described as:
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Figure 2.3: Skyworks SMS7621 I-V curve in double logarithmic scale.

Vin (t) = Viias + VRF - COS(27T : fc : t) (26)

and insert equation (2.6) into equation (2.5), we obtain equation (2.7), which
depicts the diode’s output current with three frequency components: one at DC or
downconverted signal; one at a frequency f., called first or fundamental harmonic,
and one with a frequency 2 - f., which is the second harmonic.

I (V) = Ipias + VrE (t) Ggcos (27 - fe-t) + % (VRF)2 Gl(cos2m - f, - 75)2 +e=

Dyias + Vrr (t) Ggcos (27 - fo-t) + %G; + %G& cos (2-2m- f.-t) +e¢

Single-ended detection

The final goal of every envelope detector designed in this project is to rectify or
demodulate an RF signal which carries information or data using amplitude shift
keying (ASK) as modulation format, not just a single tone as the one shown in
equation (2.6).

ASK signals’ baseband bandwidth equals the non return to zero (NRZ) data pattern
bitrate. In order to simplify the mathematical calculations, we can approximate the
ED’s input signal with a sinusoidal with frequency fs,, which modulates the carrier
at f. instead of using data pattern with a baseband bandwidth from 0 to f,, where
fsb represents the bitrate of the data signal [Raz].

The ASK signal fed to the diode can then be mathematically expressed by
equation (2.8) [Poz12], which has a spectrum shown in figure 2.4.

Vin (t) =Vrp - (L +m-cos(2m - fg - t)) cos (2w - fe - t) (2.8)

where fg is the modulating tone frequency, f. is the carrier frequency and m is the
modulation index [OWH96; Poz12].
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Figure 2.4: Frequency spectrum of an ASK input signal fed to the Schottky diode.
The arrows represent equation (2.8), while the dotted line represents the
spectrum of the data signal with data at fg bit/s.

Feeding the signal from equation (2.8) to the Schottky diode, i.e. inserting
equation (2.8) into equation (2.5), provides an output current which is mathematically
expressed in equation (2.9) and a spectrum depicted in figure 2.5. Similar as with
equation (2.7), the output signal is composed by the same three main frequency
components. Now the beatings of the modulated signal with the carrier at f.+ fg,
2 fox fop and 2 fex 2 fg appear. If the input signal’s bitrate (which is directly related
with fg) increases, there is a point where f.- fg < fs, leading to an overlap of the
downconverted signal and the fundamental harmonic at the ED’s output. For this
reason, single ended envelope detectors using one Schottky diode are limited to a
maximum bitrate up to half of the carrier frequency f. in the best case scenario
[Bla+18a]. In practice, this value is smaller as shown in state of the art from table 1.1.
This limitation in terms of demodulated bitrate can be overcome if the fundamental
harmonic is cancelled using a balanced envelope detector.

1
I (V) = Ipias + Vin (t) Gg+ §Uz'2n (t)G& +e
= Ipias + VRr - (1 +m-cos (2w fopt)) - cos (2m fot)Gy
1
+ 3 (Vrr - (1+m-cos (2w fept)) cos (27rfct))2 G+ € = Ipjgs+

 VierGa (cos (2mfot) + 5 cos (2 + ) + 5 cos (2m(f - 1)

V2 2 2 2
+ %G&(l + m? +2m - cos(2m fspt) + m? cos(2-2-mfgpt) + m7cos (2-27fet)

+cos(2-2mf.t) + mTQcos (2-27 (fe+ fap)t) + %2008(2-27r(fc—f8b)t)

+m (cos (2m (2fc — fsp) t) +cos (27 (2fc + fsp) 1)) ) +e
(2.9)
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Figure 2.5: Frequency spectrum of the Schottky diode’s output signal.

Balanced detection

In section 2.3, we have addressed the use of one Schottky diode to demodulate an
ASK modulated signal. In this section we will mathematically and qualitatively
discuss the use of a balance architecture, where two diodes are fed with the same
signal delayed with a phase difference of 180°between both diodes. The output current
for each diode, I1(V) and I3(-V), are calculated using equation (2.5). The common
current obtained after combining the two diodes’ output can be mathematically
expressed in equation (2.10).

1
L (V) = Ipjas + Vin (t) Gg+ 5’()@'” (t)ZGId +¢€
1
Iy (_V) = Ipias — Vin (t) Gg+ §Uin (t)2G2l +¢e (210)
Iout(v) = Il (V) + 12 (—V) = 2Ibias + Vin (t)QGZl + £

Considering the input voltage to be the same ASK modulated signal as in the
single ended version, described in equation (2.8), the combined output current from
the two diodes results to equation (2.11).

1% m? m?
Tout (V) = Ipigs + %G&(l tot 2m - cos(27 fgpt) + - cos (2-2m fapt)

2
+ m7 cos (2- 2w fet) + cos(2- 2w fot)+

m2 m2
oS (2-27(fe + fap)t) + 7 cos (2-27(fe = fau)t)

+m (cos (2 (2fc — fsp) t) + cos (27 (2fc + fsp) t)) ) +e
(2.11)

Angel Blanco Granja 17



Chapter 2. Fundamentals of Schottky Diode Detection

I

(1+m—2) (1+m2
VEGS VERGy

2 / m m
ViepGam y;%p%i VarGy%
m2 m
VirGy't VirGa's ‘[ VERGLm
T 1

0 fsb 2fsb 2fc_2fsb 2fc 2fc+2fsb

2fc_f8b 2fc+fsb

Figure 2.6: Schottky diode’s demodulated output signal using a balance architecture.
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Figure 2.7: Schottky diodes used in this project.

The demodulated signal’s spectrum is depicted in figure 2.6, where the main
difference from figure 2.5 is the absence of the frequency components centred at the
fundamental harmonic: f. and f. + fs, which are only cancelled in the frequency
region where the phase difference between V; and Vs is 180°. A balance detector will
only deliver the even harmonics, cancelling the odd ones.

Schottky diodes for implementation

This project covers two frequency ranges as explained in chapter 1. In the UWB
frequency range, we used the Skyworks SMS7621 and SMS7630 with a SC-79 package,
provided as a surface mounting device (SMD), shown in figure 2.7a [Sky15]. In the
W-band, ACST GmbH provided and mounted their Zero-Bias Schottky diodes from
the 3DSF serie [ACS; HPC11] similar to the one depicted in figure 2.7b. The three
diodes’ features are summarised in table 2.1.

Figures 2.8a and 2.8b show the I-V curves of the UWB and W-band diodes
and their differential resistance, defined as the first derivative from the I-V curve.
Figure 2.8a is obtained using the parameters from the Skyworks’ datasheet [Sky15],
while figure 2.8b is depicted using the data provided by [HPC11], where the physical
parameters of the diode are experimentally extracted.
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2.4. Balanced output signals with Rat Race and high-pass compensation
architecture

Table 2.1: Schottky diodes used in this project.
Diode Is Rs Cj Ls Cp V] Rdiff

SMS7621  400pA 120 100fF  700pH 150fF 0.51V  0Q
SMS7630  5pA 200 140fF 700pH 150fF 0.34V ~ 0Q
3DSF 54pA 550 14.56fF 41pH 34fF 0.22V 402Q

Figure 2.9 shows the I-V curves from the three diodes using a logarithmic scale.
Besides, it compares the 3DSF and SMS7630 diodes’ I-V curves with equation (2.5),
which depicts the Schottky diode three term series Taylor expansion. It shows a
thoroughly approximation of equation (2.5) for an input voltage below 100 mV, or
—-10dBm (maximum input power a diode from ACST GmbH can handle), validating
it for further calculations. When the input voltage increases above 1V, the I-V curves
tend to a piecewise-linear function [SB10], corresponding with the saturation region
depicted in figure 2.3.

2.4 Balanced output signals with Rat Race and
high-pass compensation architecture

The 180°phase delay to the diodes’ inputs can be provided either by the interface
from the device connected to the envelope detector’s input, e.g. an amplifier with a
differential output, or with an external device, a Balun, that transforms its input
signal from single ended into a balanced output.

There are several types of Baluns that can be used in planar technology either built
with transmission lines [Mar68; Zha+05a; Liu+07; Zha+05b; Ang+00] or lumped
components[JK08; CC13; Kim+09; Sla]. A state of the art review can be found in
[Poz12; JM14; Marb|, where several trade-offs between the Baluns’ features must be
assessed: bandwidth or frequency coverage, phase and amplitude balance, common
mode rejection ratio, insertion loss, etc. Since this topic is too broad, we will focus
on the Rat Race 180°coupler [Pozl2|, and its variation that uses the high-pass
compensation principle presented in [Sla].

Rat Race

The Rat Race, whose schematic is depicted in figure 2.10, is a four-port network
device where each port is placed one quarter wavelength away from each other,
while the transmission line between ports 2 and 4 is three quarter wavelengths in
length. It splits into two 180°-phase components at ports 2 and 3, while port 1 is
isolated when the input is port 4. Additionally, it can add the two input signals from
ports 2 and 3 into port 1 or evenly splits the input from port 1 into two in-phase
components at ports 2 and 3, while port 4 is isolated [Poz12; SB10]. These operations
are summarised in the scattering matrix for an ideal Rat Race from equation (2.12).
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Figure 2.8: DC simulation analysis of the Schottky diodes used in the project.
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We must take into account that introducing a traditional Rat Race in an UWB ED
increases its size considerably, which, for some applications can be an issue. Moreover,
in the substrates used in this dissertation within the W-band EDs’ design, it is not
possible to use a Rat Race in this frequency region [JM14] due to the Rat Race
transmission lines size’s constraints, where the transmission lines’ widths and lenghts
become comparable.

In order to overcome these limitations, there are several approaches to design a
Balun with a broad bandwidth and compact size. A thorough study of the different
architectures that the author has studied can be found in [Mar68; Sla; CC99; Zha+05a;
Zha+05b; Zha+14; CC13; JK08; Wal97; ZAM16; Liu+07; Ang+00; Kim-+09].
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Figure 2.10: Rat Race schematic.

In this dissertation a modification of the architecture presented in [Sla] is used,
which exploits the high-pass compensation principle, allowing us to have the benefits

of a Rat Race without increasing the envelope detector’s size from a single ended
version.

High-pass compensation architecture

In [Sla], the long 3\/4 arm section of the conventional Rat Race is replaced with a
semi-lumped LC network using a high-pass configuration, consisting in substituting
the 3\ /4 transmission line from the conventional Rat Race hybrid coupler with its
equivalent LC circuit and the inductors by transmission lines as shown in figure 2.11
[GG84; Par89; SFW14]. With this technique, [Sla] achieves a size reduction of about
75% over the traditional Rat Race.

Figure 2.12 shows the schematic comparison between a conventional Rat Race,
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Figure 2.11: Schematic of the high pass phase compensation network which replaces
the long arm of the Rat Race: (a) original 3\/4 transmission line; (b)
using inductors; (c) using transmission lines.

described in section 2.4 (figure 2.12a); the Rat Race presented in [Sla] (figure 2.12b);
and the architecture proposed in [Bla+18a] (figure 2.12¢). The latter is composed
of a transmission line with an electrical length of 180°at the central frequency,
two shorted-stubs and two Schottky diodes, which provide the capacitance for the
high-pass network while at the same time demodulate the input signal. It has one
input and one output in comparison with the four interfaces from the conventional Rat
Race and its modified version from figures 2.12a and 2.12b. The 180°transmission line
impedance is 50 €2 in the UWB version [Bla+18a] and around 100 €2 for the W-band
versions [Bla+18b)] instead of the /27y (702) from the standard and modified Rat
Race [Poz12; Sla] due to physical and manufacturing constraints.

At the ED’s output we obtain the rectified signal, which due to the balance ED
architecture, does not present the fundamental harmonic which has been cancelled.

The novelty of this detector relies on the combination of two features: the ED
rectifies the input signal, while simultaneously works as a Rat Race hybrid coupler
inspired Balun without an isolation port. Furthermore, this architecture shows a
5x size reduction when compared to a balanced detector which uses a Rat Race as
Balun [Bla+18a].

2.5 Bode-Fano criterion for broadband envelope
detectors

Since the goal of this project is to provide high demodulation bitrates, a broadband
matching is needed, simultaneously, at the input and output of the envelope detector.

The Bode-Fano criterion presents a theoretical limit on the minimum reflection
coefficient, p (w), that can be obtained with a matching network [Bod45; Fan61]. Its
derivation and analysis applied to Schottky diodes can be found in [HG98; Ker95].
Nevertheless, the criterion outcome is summarised in figure 2.13 for the four RC and
RL possible configurations, where p (w) is the reflection coefficient at the matching
network’s input.

Assuming |p(w)| = pm constant within a range Aw, and having a parallel RC
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\/5207%

Figure 2.12: Schematic of (a) one conventional Rat Race; (b) the Rat Race that uses
the high-pass compensation; (c¢) this work [Bla+18a].
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load impedance, we could simplify the integral from the RC parallel load impedance
([0°° In (m) dw < %) into equation (2.13), concluding that:

1. Increasing R or C decreases the quality of the matching, therefore, diodes with
low parasitics are required.

2. A perfect match can only be achieved at a single frequency (Aw=0).

3. Widening the matching bandwidth comes with at the cost of increasing |p (w)].
This is particularly important in this project. Since the target at W-band is a
10 GHz to 18 GHz and 5 GHz input and output bandwidth respectively, we will
need a broad input and output matching. It will exist a trade-off between power
transfer and matched bandwidth, which will penalise the detector sensitivity
and the output power it delivers in comparison with its narrowband version.

o0 1 1 1 s
In dw :f ln(—)dw:Awln— < — 2.13
I A om “mC 1

An analogous analysis can be performed with any of the other three loads from
figure 2.13.
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Figure 2.13: Bode—Fano limits for RC and RL loads matched with passive and lossless
networks: (a) Parallel RC; (b) Series RC; (c) Parallel RL; (d) Series RL.
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3 Envelope Detectors for Ultra-Wide
Band (UWB)

In this dissertation we will show the design and simulation results of five EDs in
two frequency ranges: The first two EDs which work in the Ultra-Wideband (UWB)
frequency range (3.1 GHz to 10.6 GHz), are used as an initial approach to ED design,
allowing to test different configurations and architecture designs handling a lower
complexity and without having some manufacturing constraints and costs from higher
frequency prototypes, while the three other EDs operate in the W-band (75 GHz to
110 GHz).

3.1 Envelope detection principles and benchmarks

The EDs presented in this dissertation should provide a broad input bandwidth,
ideally from 3.1 GHz to 10.6 GHz for UWB and 75 GHz to 110 GHz for W-band; low
conversion loss; wide video bandwidth, to deliver high data rate demodulated signals
at their outputs; high sensitivity, which can be boosted through an external low
noise amplifier stage at their input high output power and a high ratio between the
demodulated signal’s bitrate and its carrier frequency, defined as Ab.

Although the input- and video-bandwidths depend on the technology and ED
design, we need to consider that broadening them loosens the ED input’s and output’s
matching quality according to the Bode-Fano Criterion [Bod45; Fan61], which entails
a deterioration of the ED’s sensitivity and the output power it delivers. The trade-off
between sensitivity, power delivery and bandwidth will be constant in this chapter.

The figure-of-merit Ab plays a key roll in UWB envelope detectors. Ab must
be maximised since employing an ED limits the use of phase information when
transmitting a signal. In W-band EDs, Ab is not critical due to the broad available
bandwidth (75 GHz to 110 GHz).

Section 1.2 described the current ED state of the art, where the maximum measured
single-ended ED’s Ab is 41.7% [Cim+18|. Theoretically, Ab can be boosted up
to 50 %, since the bitrate the ED can demodulate is limited to half of the carrier
frequency (f.) in the best case scenario as demonstrated in section 2.3. This limitation
is due to the presence of a fundamental harmonic spurious at f. in the ED’s output,
which overlaps with the baseband downconverted signal. This overlapping introduces
distortion to the output signal which cannot be removed by filtering [Poz12; Bla+18a].

In contrast, balanced EDs provide a fundamental harmonic spurious cancellation
at their output as shown in section 2.3, reducing common mode noise and allowing to
boost experimentally Ab up to 100 % [Bla+17]. In addition, providing a broad phase
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Figure 3.1: Benchmarks used to test the EDs: frequency response (FR) for: (a) UWB
EDs, (b) W-Band EDs; (c) conversion loss (CL); (d) data detection (DD).

balance allows shifting the input f. within the working frequency range while keeping
the ED’s performance. As a trade-off, balanced EDs provide a lower sensitivity and
conversion loss with respect to single ended EDs, since the need of a balun to provide
the balance signal between both diodes can introduce losses. Similarly, a behaviour
mismatch between the two diodes makes the ED’s matching more complex. Knowing
this trade-off and prioritising to provide a high Ab (UWB) and demodulation bitrate
(W-band) over sensitivity we decided to use balanced EDs.

The design and simulations from the planar EDs presented in this dissertation have
been conducted with Keysight’s Advance Design System’s (ADS) circuit simulations
through harmonic balance and transient analysis. The transitions’ metallic blocks
were designed using CST Microwave Studio simulations. This section describes the
benchmarks used to measure and evaluate the five EDs’ performance that will be
described within this dissertation. Sections 3.2, 4.1, 4.2 and 4.3 present the design
and simulation results of the UWB and W-band EDs.

The EDs features and performance are evaluated using three benchmark schemes
which are summarised in the schematics from figure 3.1: frequency response (FR),
conversion loss (CL) and data detection (DD).

An envelope detector’s frequency response is directly linked with the input
frequency range that it can demodulate, and depicts its operational bandwidth,
since a broadband frequency response is needed to avoid distortion [PS08].

In this dissertation, the frequency response is obtained using two methods. In
figure 3.1b we measure the envelope detector’s DC output when it is excited with a
sinusoidal tone with frequency f., which is swept within the desired frequency range.
This approach will be used with the W-band EDs that use Zero bias Schottky diodes
and do not have a built-in bias tee. The UWB EDs shown in this dissertation use
Non Zero bias Schottky diodes which need to be biased to optimise their performance.
For this reason, their frequency response must be measured in their optimum bias
point, hence, it is not possible to measure directly their DC output, which leads us
to the second method to measure the UWB EDs frequency response. We excite the
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ED with a low frequency tone at fg in the range of MHz modulated onto a carrier
with frequency f. which is swept within the desired frequency range. The frequency
response is calculated by measuring the ED’s output power at fg,, as depicted in
figure 3.1a.

While the frequency response defines the ED’s input bandwidth, the conversion
loss depicts its video bandwidth. In this benchmark, the ED is fed with the same
signal as the one used in the UWB ED’s frequency response benchmark (figure 3.1a),
the difference is that now fg, is in the range of GHz, and is swept as well as f..
The conversion loss is calculated through the difference between the downconverted
signal’s at fg, and the input signal’s powers at f.+ fs as shown in figure 3.1c. The
video bandwidth or output bandwidth is measured using the conversion loss results.
The video bandwidth is associated with the maximum bitrate an ED can demodulate,
since an ASK modulated signal’s bitrate | equals its video or baseband bandwidth,
which is directly represented with fg.

The frequency response and conversion loss are used to qualitatively verify if the
ED under test will be able to demodulate an ASK modulated signal at a certain
bitrate (CL), at which carrier frequency the sensitivity of the detector is optimal
(FR) and which is the ED’s range of operation (CL and FR). Demodulating high
data rate ASK signals without introducing distortions can be only achieved with
both a broad frequency response and a large video bandwidth. At the same time, a
low conversion loss is desired. In ADS these two benchmarks are calculated using
harmonic balance analysis.

Eventually, we substitute the modulating tone with frequency fs from the
conversion loss setup with a data signal which carries bits with information. The
ED’s performance can be quantitatively measured through its Bit Error Ratio (BER),
or qualitatively, through the analysis of the demodulated signal eye diagram’s height
and its Level of “1” bits (L1) [Bla+18b]. The BER is the ratio between the number of
error bits detected and the number of transmitted bits during a selected time interval
[PS08]. Similarly, in order to achieve a successful demodulation we need an open eye
diagram to decide whether a “1” or a “0” was received. The eye diagram’s height
and Level of “1” are directly related with the ED’s video bandwidth and frequency
response respectively. The eye diagram parameters will be measured in simulations
within this chapter, while the BER will be experimentally evaluated in chapter 3.4.

In ADS, harmonic balance uses steady state waves as input signals which does not
allow to simulate the ED’s behaviour during time and to plot its demodulated eye
diagram. Using a transient analysis allows to overcome this limitation, and allows us
to measure the signal at different points of the circuit as a function of time, and to
analyse the resulting eye diagram.

3.2 Balanced envelope detectors for UWB

In the UWB frequency range, Ab together with the sensitivity are the main ED’s
features to focus. Achieving a high Ab optimises the use of the frequency spectrum
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[PHO3] and is our main concern in the UWB EDs design, because while the sensitivity
can be boosted introducing amplifiers, Ab is a design parameter from the ED.
[Cim+16] and [Sil+17] present two UWB single ended EDs able to demodulate
up to 2.5 Gbit/s ASK modulated signals in the UWB frequency region. Their best
Ab is 35.7% and have a sensitivity of —11dBm. As demonstrated in chapter 2, the
theoretical Ab maximum for a single ended ED is 50 % due to the harmonics present
at the EDs’ output. Therefore, we investigated the use of a balanced architecture to
boost Ab.

This section discusses two different balanced EDs’ designs, which use the same
technology as [Cim+16] and [Sil4-17]. The first one, UWBI1, was introduced in
[Bla+17] and is presented in section 3.2.1. It uses an external balun to produce the
balanced signal fed to a single balanced ED. The second one, UWB2, is presented
in section 3.2.2 and introduced in [Bla+18a|, combines the functionality of a balun
while at the same time detects the input signal. Their design central frequencies
are 7GHz for UWBI1 and 8 GHz for UWB2, since the requirements from Bifrost
Communications were updated in between both designs.

3.2.1 UWBI1 with an external balun

The first UWB detector circuit’s schematic is depicted in figure 3.2. It consists of a
balun (Marki Bal-0010 [Maral), and a balanced envelope detector, comprised of two
Schottky diodes with a matching network at their input and low pass filter and bias
tee at their output. It is implemented in microstrip technology on a Rogers 4003
substrate (e, = 3.55, height = 32 mil and 35 pm copper layer [Rog]) and uses surface
mounting devices (SMD) for the diodes, resistor, capacitor and inductor.

The Schottky diode chosen for this works was the Skyworks SMS7630, analyzed in
section 2.3, which presents the features summarised in table 2.1.

The balun splits its input signal into two 180° out of phase signals, providing a
phase balance bandwidth from 0.02 GHz to 10 GHz between the two diodes’ inputs,
which, according to equation 2.11 is needed to cancel the fundamental harmonic
spurious. As a drawback, the balun introduces 8 dB insertion loss in each branch.

The output low-pass filter (LPF), placed at the two diodes’ output, is a 6t order
Butterworth stepped impedance filter implemented in microstrip technology with a
3.2GHz 3 dB cut-off frequency. The filter’s cut-off frequency is set to 3.2 GHz as a
compromise to use the same filter in the two UWB EDs described in section 3.2.1
(UWB1) and 3.2.2 (UWB2), which can demodulate up to 4 Gbit/s and 2.5 Gbit/s
ASK signals respectively. With this filter it is possible to fulfil the requirements to let
going through at least 94.3 % of the signal power of a 4 Gbit/s ASK signal [Max08;
TS86], which is the highest bitrate that the UWB1 can demodulate according to
simulations. At the same time, reducing the filter’s bandwidth to 75 % - 80 % of the
bitrate reduces the output noise.

When comparing the UWB1 with its equivalent in single ended [Cim+16], the
single ended’s output butterfly stub is removed in UWBI1 because filter requirements
can be relaxed when using a balanced detector, reducing the total output filter size
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Figure 3.2: Circuit schematic of UWBI1: electrical lengths are given at 7 GHz.

considerably, at the cost of introducing an external balun.

After the LPF, a bias network is placed. Setting the diodes’ bias to its threshold
voltage allows to optimise their rectification point, getting a better sensitivity and
performance. Furthermore, it provides a DC path at the diodes’ output, in order to
work in their non linear region to produce the baseband harmonic.

The bias network is implemented with SMD components: one 390 nH inductor in
series with a 300 €2 resistor prevent the video signal to flow to ground through the
bias tee. In parallel to the inductor and resistor a 1 nF capacitor was placed. The
resistor, inductor and capacitor are implemented using SMDs components soldered
on transmission lines. There is no need to design an additional DC return path at
the diodes’ input, since it is already provided by the matching network with the
short stubs.

Finally, the input matching network, placed between the balun and the diodes
adapts the diode’s input to the balun’s output. It is composed of two transmission
lines and a shorted-stub to provide a broadband matching. The diodes’ matching
network must be identical to preserve the 180° Balun’s phase shift.

Figure 3.3 depicts the detector circuit layout, highlighting the different elements
described in this section, while figure 3.4 shows the manufactured prototype of the
detector and the Marki balun Bal-0010.

3.2.2 UWB2 with high-pass compensation principle

The previous ED, UWBI, uses an external balun to obtain a balanced signal, which
increases size and cost of the overall circuit and introduces some losses, which decrease
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Figure 3.5: UWB2’s circuit schematic: electrical lengths are given at 8 GHz.

its sensitivity. This drawback is addressed with the second UWB detector, UWB2.

The UWB2’s goal is to demodulate single-ended signals adopting a balanced
configuration without using an external balun. This design combines the Rat-Race
hybrid coupler functionality of a balun and, simultaneously, obtains the rectified
signal at the ED’s output [Bla+18a]. The ED is designed following the high-pass
compensation principle described in section 2.4.

The schematic of the UWB2 detector is illustrated in figure 3.5. It is composed of
two Schottky diodes, two shorted-stubs, a transmission line with a 180° electrical
length at 8 GHz (the central working frequency was updated in the requirement list),
i.e. the ED’s design frequency, where it provides the optimum phase balance, and a
transmission line that delivers the downconverted signal. The same low pass filter
and bias tee used in UWBI1 from section 3.2.1 are placed at the ED’s output, in
order to be able to compare both designs without the influence of external elements
aside from the ED circuits and external balun. UWB2 is implemented in microstrip
technology on a Rogers 4003 substrate (€, = 3.55, height = 32 mil and 35 um copper
layer [Rog]) and uses surface mounting devices (SMD). The Schottky diode chosen for
this works was the Skyworks SMS7621 because it provides a broader phase balance
bandwidth than the SMS7630. Both diodes’ I-V curves and equivalent circuit have
been compared and analyzed in section 2.3.

The phase balance bandwidth is measured by using harmonic balance analysis in
ADS. Figure 3.6 depicts the ED’s phase balance bandwidth and compares it with
its equivalent Rat-Race hybrid coupler using the same microstrip technology. It

Angel Blanco Granja 33



Chapter 3. Envelope Detectors for Ultra-Wide Band (UWB)

shows that both architectures provide a similar phase balance bandwidth (£6°) of
1.5 GHz, centred at 8 GHz. This narrowed phase balance bandwidth, in comparison
with UWBLI is the price to pay for having a cost effective and more compact detector
circuit with a less lossy balun. The insertion loss is close to 3dB per line [Sla], which
boosts the detector sensitivity when compared with UWB1.

190 T T T T T T T T T T T T
188 |+ Rat Race — UWB2 =
186 | Marki Bal-0010 N

184 | i

182 |
180 | /
178 P~ |

176 .
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Frequency [GHz]

Phase [°]

Figure 3.6: Phase balance bandwidth comparison between a Rat Race, UWB2 and
the Marki Bal-0010 [Mara].

Figure 3.7 shows the detector circuit’s layout and figure 3.8 displays the detector
manufactured prototype. When comparing figures 3.8 and 3.4 the size comparison is
evident, getting a reduction factor of 5 [Bla+18a].

3.3 Simulation results

This section shows the simulation results that evaluate the two UWB envelope
detectors using the three benchmarks described in section 3.1 and comparing their
performance. It must be considered that their design central frequency differs, being
7GHz for UWB1, and 8 GHz for UWB2 because the central working frequency was
updated in the requirement ED’s list for UWB2.

Frequency response

This benchmark follows the schematic depicted in figure 3.1a, where the carrier’s
power was set to 0 dBm and the two sideband tones, separated 100 MHz from the
carrier to —10dBm.

Figure 3.9 shows the frequency response simulation results of UWB1 and UWB2,
which provide an operational bandwidth from 2.4 GHz to 10.2 GHz and 3.6 GHz
to 10.5 GHz respectively with an average output power of —17.5dBm for UWB1
and -13.5dBm for UWB2. The latter’s central frequency is higher because it is
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Figure 3.7: Layout of UWB2.

Figure 3.8: Manufactured detector UWB2 [Bla+18a].
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designed with an 8 GHz central frequency, in comparison with the 7 GHz of UWBI.
Furthermore, UWB2’s output power is 4 dB higher than UWB1’s because it does not
need of an external balun, which in the case of the Marki BAL0010 model accounts
for 8dB .
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Figure 3.9: Frequency response simulation results of the envelope detectors UWB1
[Bla+17] and UWB2 [Bla+18a].

Conversion loss

The ED is fed with an ASK signal, composed of a 0dBm carrier with frequency
fe, which is swept from 3 GHz to 10 GHz, modulated by two —10 dBm sidebands
swept from fg, = 0.1 GHz to 4 GHz, placed at f.+ fg. The ED’s conversion loss is
calculated by measuring the difference between the obtained downconverted signal
at fs and the input power at f.£ fqp.

Figure 3.10 depicts the conversion loss simulation results from UWBI (figure 3.10a)
and UWB2 (figure 3.10c). UWB1’s and UWB2’s 3dB bandwidth matrices are
sketched in figures 3.10b and d, where each element of the f. - fs matrix is painted
on white if that f, is within the 3dB bandwidth or black if it is not.

Both envelope detectors provide a a 3dB video bandwidth up to 2 GHz in their
design frequency and adjacent frequencies (7 GHz and 8 GHz for UWB1 and UWB2
respectively). At the same time, the two detectors are able to keep a broad video
bandwidth within the UWB frequency range. Similar to the frequency response,
UWRBI1 provides a higher conversion loss with respect to UWB2 due to the insertion
loss of the external balun.

Data detection Measurement

Figure 3.11 shows the demodulated eye diagram’s height and Level 1 (L1) when the
EDs are fed with a 0 dBm ASK signal at 2.5 Gbit/s (a) and 4 Gbit/s (b), with a
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Figure 3.10: Conversion loss simulation results comparison of the UWB envelope
detectors:(a) UWBI1, (b) UWBI1 3dB video bandwidth, ¢) UWB2, (d)
UWB2 3dB video bandwidth.
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carrier frequency swept from 1 GHz to 15 GHz.

UWBL1’s outcome is depicted in figure 3.11a. When demodulating a 2.5 Gbit/s ASK
signal, its best performance is achieved when f, is 3.5 GHz and 7 GHz (its design
frequency), where the frequency response reaches two of its maximum peaks. In
addition, the eye is opened for every f. between 2.5 GHz and 9.5 GHz. Increasing
the bitrate to 4 Gbit/s broadens the input ASK signal’s spectrum. Since the L1 is
directly related to the FR, the L1 lines for 2.5 Gbit/s and 4 Gbit/s almost overlap.
On the other hand, the eye’s height is directly proportional to the detector’s video
bandwidth, therefore, the carrier frequencies where the ED can operate are reduced to
those with broader video bandwidth shown in figure 3.10a (f, = 4.5 GHz - 9.5 GHz).
According to simulation results, this ED will be able to demodulate ASK signal at
bitrates up to 4 Gbit/s.

Figure 3.11b describes UWB2’s DD simulation results. Its design frequency is
8 GHz, therefore, the UWB2 provides its best performance in the range for f. between
6.5 GHz and 9 GHz when the ASK signal’s bitrate is set to 2.5 Gbit/s, obtaining a
higher and more open eye diagram than with UWB1. When the bitrate increases
to 4 Gbit/s, the demodulated signal’s eye diagram is closed for every f. outside the
6 GHz - 8.5 GHz region, where the eye is only slightly open. Similarly as with UWBI1,
the L1 lines for 2.5 Gbit/s and 4 Gbit/s almost overlap when the eye diagram is
not distorted (f. = 6 GHz - 8.5 GHz). Even if the UBWB2’s Level 1 is higher than
UWBL1'’s due to the lower insertion losses of the UWB2’s balun, the eye diagram’s
height is lower due to its narrower phase balance bandwidth, and therefore a 4 Gbit/s
ASK signal demodulation will not be successful, allowing the demodulation of ASK
signals up to 2.5 Gbit/s.

Summary and discussion

Section 3.2 has presented the design of the two UWB balanced envelope detectors.
They have been characterised through simulations, using the three benchmarks in
section 3.1.

UWBI1 employs an external balun to obtain the balanced signal fed into the ED,
while UWB2 uses the detector circuit as a balun, taking advantage of the high-pass
compensation principle, while simultaneously provides the demodulated input signal
at its output.

Using a balanced architecture in UWB1, allowed us to increment the demodulated
bitrate from 2.5 Gbit/s to 4 Gbit/s when compared with its equivalent single ended
version from [Cim+16] and [Sil+17], at the cost of reducing the ED’s sensitivity. The
UWB2 provides a higher sensitivity than UWB1, lower size and reduces the cost of
the detector circuit (the Marki BAL-0010 costs $735 in [Mic]). As drawback, UWB2
is only able to demodulate up to 2.5 Gbit/s signals in comparison with the 4 Gbit/s
from UWBI1 due to its lower phase balance bandwidth. As a result of its balanced
architecture, UWB2’s output LPF requirements are reduced when compared with
[Cim+16] and [Sil417], allowing a more compact LPF with less elements. For all
these reasons, after evaluating the trade-offs, the architecture presented with UWB2
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Figure 3.11: Data detection simulation results of the UWB envelope detectors: eye
diagram, height and Level 1 (L1).
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is the one chosen to design the W-band envelope detectors from next section.
The experimental results for both UWB EDs are shown and compared in the next
section.

3.4 Bit Error Rate (BER) measurements

This section shows the experiments used to evaluate UWB1 and UWB2 using the
data detection benchmark. Instead of measuring the height and Level 1 from the
demodulated signal, we measured the Bit Error Ratio (BER) which is the ratio
between the number of bit errors and the number of transferred bits. The BER
result can be classified into three regions: the first one, referred as error free, befalls
when there is less than 1 error in 109 transmitted bits (-Log(BER) > 9), meaning
that the demodulation has been successful. The second region occurs when there
is 1 error in between 10% to 10° transmitted bits (3 < -Log(BER)< 9); the BER is
below the limit of 7% overhead forward error correction (FEC) [CC81; ITU04], where
the information can still be retrieved. When we find more than 1 error per 1000
transmitted bits (-Log(BER) < 3), we assume that the demodulation contains too
many errors and has failed.

This section will not experimentally evaluate UWB1’s and UWB2’s frequency
response and conversion loss, because they could not measured due to time constraints.
Moreover, the frequency response and conversion loss are used to qualitatively verify
if the ED under test will be able to demodulate an ASK modulated signal at a certain
bitrate (conversion loss), at which carrier frequency the sensitivity of the detector is
optimal (frequency response) and which is the ED’s range of operation (conversion
loss and frequency response). The BER gives a quantitative measurement of these
parameters, and will be the benchmark used to evaluate the two EDs.

In the UWB frequency region, the BER is measured in real time using the setup
depicted in figure 3.12. The Pulse Pattern Generator (PPG) generates a NRZ coded
231.1 PRBS signal which is mixed with a Local Oscillator (LO). The LO sets the
ASK signal’s carrier frequency, f., which is directly fed into the ED. The EDs’
output power is boosted with a baseband amplifier due to the low sensitivity of the
Error Detector to which is connected. The Error Detector measures the BER of the
demodulated signal.

The ASK’s carrier frequency was swept from 4 GHz to 8 GHz for UWBI1 and from
7 GHz to 9 GHz for UWB2, while the ASK’s power was set from —16 dBm to -3 dBm
in steps of 1 GHz and 1dB respectively for both EDs.

Figures 3.13 and 3.14 show the -Log(BER) versus the ASK input power to UWB1
at six carrier frequencies from 4 GHz to 9 GHz, and a bitrate of 2.5 Gbit/s and
4 Gbit /s respectively; together with the demodulated ASK signals’ eye diagrams. The
external balun provides 10 GHz phase balance bandwidth [Maral, hence ASK signals
with higher frequency carriers are not considered in this experiment, since there is an
uncertainty if the ED’s performance would be limited by the balun or by the ED’s
architecture or design.
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(b) Experimental setup [Bla+17].

Figure 3.12: BER experimental setup used with UWB EDs.

When demodulating 2.5 Gbit/s ASK signals, the best performance is obtained at
7 GHz and 8 GHz carrier frequencies, i.e. the ED’s design frequency, achieving error
free with a sensitivity of —6dBm and -3 dBm respectively. At 6 GHz and 9 GHz
carrier frequencies the BER is below the limit of 7% overhead FEC, but error free
demodulation was not possible due to an error floor.

When setting the bitrate to 4 Gbit/s, error free demodulation is achieved at all
tested carrier frequencies, providing a sensitivity between —9dBm and —5dBm. The
external balun’s broad bandwidth allows having a similar performance at the five
carrier frequency, suffering only from a small power penalty. Demodulating a 4 Gbit/s
ASK signal with a 4 GHz carrier frequency yields to a Ab = 100 %, which as shown
in table 1.1, is to the author’s knowledge, this parameter’s World Record.

If we compare figures 3.13 and 3.14, we can appreciate that the performance is
worse for 2.5 Gbit/s than for 4 Gbit/s, while it should be the opposite as shown
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Figure 3.13: BER results of UWBI: (a) Experimental BER curves for ASK signals
with bitrate = 2.5 Gbit/s and eye diagrams of the demodulated signal

with an input power of -7 dBm and carrier frequency at (b) 6 GHz, (c)
7GHz, (d) 8 GHz and (e) 9 GHz.
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Figure 3.14: BER results of UWBI1: (a) Experimental BER curves for ASK signals
with bitrate = 4 Gbit/s and eye diagrams of the demodulated signal

with an input power of -7 dBm and carrier frequency at (b) 4 GHz, (c)
5GHz, (d) 6 GHz, (e) 7GHz and (f) 8 GHz [Bla+17].
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in figure 3.11. This difference is the result of conducting the two measurements
in different places and time, changing part of the equipment, e.g. the mixer and
baseband amplifiers are not the same, both results should not be directly compared.
Better results are expected for the 2.5 Gbit/s curves when using the new setup used
to measure the 4 Gbit/s curves of UWBL. Nevertheless, the 2.5 Gbit/s measurements
were performed in the same procedure and equipment for UWB1 and UWB2, allowing
us to compare both architectures in equal conditions in section 3.5.

A BER measurement was performed as well for UWB2 using the setup from
figure 3.12. The equipment and settings used in this experiment are the same one
as in the 2.5 Gbit/s BER measurement from UWBI1 to be able to compare both
architectures in equal conditions. The ASK signal’s input power was swept from
—17dBm to -3 dBm while its carrier frequency was set at 7 GHz, 8 GHz and 9 GHz.

The experimental results are depicted in figure 3.15. Error free demodulation is only
achieved for the 8 GHz carrier, providing a sensitivity of —12dBm and Ab = 31.75%.
Although using the carrier frequencies of 6 GHz, 7 GHz and 9 GHz does not provide
an error free demodulation, UWB2 can produce an open eye diagram, as shown in
figure 3.15, being able to retrieve the received information when introducing forward
error correction coding.

These results agree with the simulations from figure 3.6, where the phase balance
bandwidth, centred at f. = 8 GHz, was reduced to 1.5 GHz, contrasting with the
external balun’s 10 GHz phase balance bandwidth. A poor fundamental harmonic
cancellation for f. = 6 GHz, 7GHz and 9 GHz, results into some eye diagram
distortion that can be appreciated in the eye diagrams from figure 3.15, and provoke
more errors, avoiding that the UWB2 reaches error free demodulation at the these
carrier frequencies.

It must be mentioned that UWB2’s single ended equivalent version presented in
[Cim+16] features —12 dBm of sensitivity as well as UWB2 when demodulating a
2.5 Gbit/s ASK signal. Considering that UWB2 needs of a smaller and less complex
output low pass filter, and that UWB2’s balanced architecture cancels part of
the fundamental harmonic and common mode noise; strengthens and supports the
decision of choosing this architecture when designing the W-band EDs over using a
single ended one.

When the ASK signal’s bitrate was increased to 4 Gbit/s using the same setup as
with 2.5 Gbit/s, the obtained results were poor and are not worth to be mentioned,
in accordance with the simulation results shown in figure 3.11b.

We expect that using the new BER setup used with UWBI1 to measure the 4 Gbit/s
BER curves will improve the UWB2’s results at 2.5 Gbit/s and 4 Gbit/s as well, being
able to get error free demodulation at other carrier frequencies and improving UWB2’s
sensitivity, since the new setup improved the results from UWBI.
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Figure 3.15: BER results of UWB2: (a) Experimental BER curves for ASK signals
with bitrate = 2.5 Gbit/s and eye diagrams of the demodulated signal
with an input power of -7 dBm and carrier frequency at (b) 6 GHz, (c)
7GHz, (d) 8 GHz and (e) 9 GHz.
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3.5 Comparison and discussion

Section 3.2 explained the design of the two UWB EDs designed in this dissertation.
Their experimental results has been shown in detail in section 3.4.

UWRBI uses an external balun to provide the 180° out of phase signals to the two
Schottky diodes, needed to suppress the fundamental harmonic at the ED’s output.
It shows a consistent performance for carrier frequencies from 4 GHz to 8 GHz when
demodulating a 4 Gbit/s ASK signal, achieving a maximum Ab = 100 % for f. =
4 GHz (Ab =50 % - 100 % for f. = 8 GHz - 4 GHz), which is the current world record
in the state of the art to the author’s knowledge.

UWB2 combines the functionality of a balun while, simultaneously, rectifies the
input signal, providing the suppression of the fundamental harmonic as well as
UWBL. In comparison with UWBI, it provides a more cost effective solution and
a size reduction; and introduces less insertion loss, which translates into a 6dB -
8 dB better sensitivity than UWBI1. As a drawback, it has a narrower phase balance
bandwidth, which reduces the carrier frequency range which the UWB2 is able to
demodulate error free.
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4 Envelope Detectors (EDs) for
W-band

This chapter presents three W-Band (75 GHz - 110 GHz) Schottky diode based
balanced envelope detectors built in planar microstrip topology providing a WR-10
waveguide input interface through a WR-10 waveguide to microstrip line (MSL)
transition. To connect the planar envelope detector with the waveguide feeding
network output, a WR-10 to microstrip line (MSL) transition is needed.

In the W-band it is not possible to keep Ab as high as in the UWB, where the
best Ab value found in the SoTA accounts to 26.9 % [Kuo+12]. Due to the broad
bandwidth from high data rate signals in this frequency region, it is crucial that
the ED demodulates all the input signal’s frequency components with a similar
conversion loss, in order to prevent from distortions in the output signal [Bla+18a;
Poz12]. Sensitivity is also important, since free space losses are higher and amplifiers
are more costly and complex than in lower frequency ranges, therefore, the WR-10
waveguide to microstrip transition insertion losses must be minimised.

Table 4.1 summarizes the state of the art of W-band WR-10 waveguide to microstrip
transitions. The Bode-Fano criterion [Bod45; Fan61] establishes the existing trade off
between the transitions’ S-parameters (return and insertion losses) and operational
bandwidth, defined as the portion of the W-band where the transition works. In the
transitions that we will present in the next section, we prioritised the operational
bandwidth over S-parameters optimization, keeping low losses and manufacturing
complexity, since the project’s goal is designing an envelope detector operating within
the whole W-band.

4.1 ED1 with Printed Circuit Board (PCB) substrate

The first W-band ED is composed of a W-band Schottky diode based balanced
detector circuit, designed in microstrip technology on a 10 mil Rogers RT-Duroid
5880 substrate with 35 pm copper layer, presented in [Bla+18b; Bla+19] and a WR-10
waveguide WR-10 to microstrip transition described in [BJP17].

4.1.1 WR-10 rectangular waveguide to microstrip line transition

This section describes the design, manufacturing and testing of an E-plane WR-10
waveguide to microstrip transition covering the full W-band as presented in [BJP17].

Figure 4.1 shows the transition CAD drawings, which can be divided into a
waveguide and a microstrip section. The microstrip is placed inside the waveguide
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Table 4.1: WR-10 to MSL transitions state of the art.

Insertion Return Operational

Ref loss loss Bandwidth Results Measured
[dB] [dB] [2]

[LW99] 1.15 20 n/a Experiment  Back to Back
[LTN13] 1 20 170 Simulation ~ Back to Back
[LTN13] 1.8 15 > 100 Experiment  Back to Back
[Reb+14] 0.55 15 100 Simulation ~ MSL to WR-10
[RGE15] 2.5 15 100 Experiment  Back to Back
[Zam+16] 3.26 12.7 65.7 Experiment  Back to Back
[Per+16] 0.55 15 100 Simulation ~ MSL to WR-10
[Zam+17) 0.8 13.5 85.7 Experiment ~ Back to Back
[Pér+18] <1 15 100 Simulation ~ WR-10 to MSL
[Pér+18] 0.63 8 100 Experiment WR-10 to MSL

metallic block, resulting on a dielectric filled rectangular waveguide (DFRW) as
intermediate step between the WR-10 waveguide and the microstrip. The microstrip
section of the transition and the envelope detector use Rogers RT-Duroid 5880
(€, = 2.2, height = 0.254 mm and 35 pm copper layer [Rog]) as substrate.

The metallic block feeds the TE;g mode from the WR-10 waveguide into the DFRW
through a multisection waveguide quarter wavelength Chebyshev transformer. The
waveguide Chebyshev transformer matches the 1.27 mm height WR-10 waveguide
with the 0.324 mm from the microstrip’s height. After a mathematical analysis using
Matlab applying the formulas described in [OS03; Per+16] and software simulations
in CST Microwave Studio, it was concluded that a 5% order transformer was the
best trade-off between performance (obtaining a flat insertion loss within the full
W-band) and manufacture complexity.

The impedance needed at each section of the transformer is computed using the
equivalent electric waveguide impedance, Zy r-19, from equation (4.1) [Esh+05].

b n
Zwh10 =2~
WR-10 a\/a

where a and b are the width and height of the waveguide respectively, 7 is the free
space wave impedance (1207) and e, is the relative permitivity of the waveguide
filling medium, equal to 1 in the WR-~10 waveguide and to 2.2 in the DFRW.

For the standard air filled WR-10 waveguide (a = 2.54mm, b= 1.27mm) the
impedance accounts for Zyyr_190 = 376.7€2. When the waveguide is filled with the
Rogers substrate, leading to a DFRW (a = 2.54mm, b= 0.254 mm, ¢, =2.2), the
impedance Zprrw = 67§ From equation (4.1), we know that the impedance is
inversely proportional to the waveguide width and e,, therefore, in order to decrease
the abrupt impedance change from the air filled waveguide to the DFRW, we decided
to include a substrate taper at the DFRW to increase the section impedance as
shown in figure 4.1.

(4.1)
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4.1. EDI1 with Printed Circuit Board (PCB) substrate
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Figure 4.1: Design of the WR-10 to MSL transition for ED1. Dimensions are in mm.
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At this point we can calculate each section’s height using equation (4.2), derived
from equation (4.1), which relates the section height with its impedance and the
sections length which is 810 um, since \/4 equals to for the central W-band frequency,
92.5 GHz.

_ ZwR-100\/€r
= —277

Later, the TE19 mode from the DFRW is coupled into the quasi-TEM mode of
the microstrip line keeping the same field propagation direction [Sim+18; Bou+009;
Pér+18|.

A microstrip line taper matches the DEFRW to the 50 €2 microstrip line. The reason
for choosing a taper over a Chebyshev impedance transformer was that simulation
results and bibliography, [Pér+18], proved a slightly better performance of the taper
line, without increasing the manufacturing complexity.

The final dimensions of both sections, summarised in figure 4.1, were calculated
through software optimization using CST Microwave Studio.
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Figure 4.2: Simulated ED1’s WR-10 to MSL transition S-parameters.

Figure 4.2 depicts the return and insertion loss results for the WR-10 waveguide
to DFRW, DFRW to microstrip and WR-10 waveguide to microstrip transitions,
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4.1. EDI1 with Printed Circuit Board (PCB) substrate

Figure 4.3: Manufactured back to back transition of ED1.

considering the waveguide interface as port 1 and the microstrip as port 2.

From these results we conclude that insertion and return loss from the WR-10
waveguide to DFRW transition are negligible, having almost no influence in the final
result. The DFRW to MSL transition provides more than 15dB return loss and less
than 0.4dB insertion loss, which is the main contribution to the full transition’s
insertion and return losses. Furthermore, the insertion loss is flat within the full
W-band, avoiding distortion in the signal. These results outperformed in [BJP17]
the state of the art simulation results from table 4.1.

Transition manufacturing and experimental validation

The transition was manufactured in brass at the TU Darmstadt in the Hans Busch
Institut’s facilities, at the Werkstatt fiir Feinmechanik. The metallic blocks were
fabricated through micro-machining and the microstrip using a photolithographic
process. WR-10 flanges and screws were added to the CAD drawing from figure 4.1.

The waveguide blocks were cut in the H-plane in order to reduce the possible field
leakages since the electromagnetic field is confined in the central region of the wide
WR-10 waveguide section. The slit between the blocks is negligible after introducing
surface walls at the border of the inner waveguide, and having several screws which
tighten firmly the upper and lower blocks. Four dowel pins are used to guarantee the
alignment of the metallic blocks with respect to each other and the microstrip line
held in their inside.

We tested the transition performance using the Agilent PNA N5222A with W-band
waveguide extensions, which provides WR~10 waveguide interfaces. In order to connect
the transition to the PNA, we needed to manufacture one back to back transition,
i.e. WR-10 waveguide to microstrip to WR-10 waveguide, depicted in figure 4.3.
This back to back transition is the result of joining two of the transitions depicted
in figure 4.1, having a 9.6 mm 502 microstrip line in the middle. The transition
S-parameters results are depicted in figure 4.4.
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Figure 4.4: Experimental back to back S-parameters from the WR-10 to MSL
transition.
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Figure 4.5: Full WR-~10 to MSL to WR-10 transition back to back S-parameters
comparison between experimental (solid) and simulation (dashed) results.

Figure 4.5 compares the experimental results with the simulations of the back
to back transition. The measured return loss follows a similar trend as in the
simulation within the lower half of the W-band. In the upper half, only the notch at
96 GHz is shifted to 99 GHz. The average return loss decreases from 18.2dB in the
simulation results to 11.6 dB on the lower W-band half and to 15.9dB in the upper
one, presenting a total average difference of 4.4 dB when comparing the experimental
results with the simulation.

The insertion loss increases as well to the range between —-2.3dB and -5.7dB
within the W-band, having an average insertion loss of 3.96 dB which is slightly
below the performance of the state of the art experimental results from table 4.1.
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4.1. ED1 with Printed Circuit Board (PCB) substrate

The average difference between the experimental characterization and the simulation
results is 3.3dB .

It has been experimentally demonstrated that the Rogers RT-Duroid 5880 presents
a dielectric loss tangent of 0.01 within the W-band, with the ¢, remaining at
2.22 [Rebl15]. Applying equation (4.3) [Poz12], we can calculate that the substrate
introduces 0.13 dB/mm of losses, which are not considered by the CST Microwave
Studio within the simulation results. Considering that, the losses in the microstrip
account to 1.25dB on average in the 9.6 mm microstrip line and having two transition
blocks, we can estimate the insertion loss of one manufactured WR-10 waveguide to
microstrip transition is 0.5dB to 2.2 dB within the W-band, with an average loss of
1.4 dB, which is only 1dB more than calculated in simulations:

o= 27.3- \/acf -tan(J) (4.3)

4.1.2 Envelope detector circuit

The first W-band envelope detector, ED1, is based on the architecture described
in section 3.2.2, which exploited the high-pass compensation principle to rectify a
single ended ASK signal using a balanced demodulation scheme through its Rat-Race
hybrid coupler balun functionality, allowing to cancel the fundamental harmonic at
the ED1’s output and hence, relaxing the ED1’s output filter.

11780,179°

oUT 1170,136°
~ T
(SMA) oV A O ey

11790,179°

Transition

IN (WR-10)

LPF  Butterfly filter 500 T

Figure 4.6: Circuit schematic of ED1: electrical lengths are measured at 92.5 GHz
(W-band’s central frequency).

Figure 4.6 describes the ED1’s schematic, which is composed of two Schottky diodes
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Figure 4.7: Output filter of ED1. Simulation results.

with two shorted stubs placed at their anodes, a semicircular shaped transmission
line with an electrical length of 180° at 92.5 GHz. The diodes’ cathodes are connected
through a transmission line to a butterfly filter and a 6 order 45 GHz cut-off
frequency stepped impedance low pass filter (LPF). Figure 4.7 shows the filter layout
and its S-parameters. The two filters reject the fundamental harmonic spurious
frequency components, which were not cancelled using the balanced architecture
principle. At the LPF’s output an SMA connector is placed to provide the output
interface. In order to provide a DC path at the diodes’ output, an external bias tee
can be connected when necessary. Being able to place an external bias tee presents
the advantage of enabling to experimentally measure the ED1’s DC output in the
frequency response benchmark in section 4.5, following the schematic depicted in
figure 3.1b.

The detector circuit is built using the same microstrip technology as in the WR-10
to MSL transition, i.e., on a 10 mil Rogers RT-Duroid 5880 substrate [Rog] with
35nm copper layer. The Schottky diodes from the 3DSF serie were provided by
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4.1. EDI1 with Printed Circuit Board (PCB) substrate

ACST GmbH [ACS], analyzed in section 2.3 presents the features summarised in
table 2.1.
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Figure 4.8: Phase balance bandwidth of ED1.

Similar to section 3.2.2, the phase balance bandwidth is measured using harmonic
balance analysis in ADS. Figure 4.8 depicts ED1’s phase balance bandwidth (£6°)
which accounts of 5.2 GHz (89.6 GHz - 94.8 GHz). At the W-band central frequency,
92.5 GHz, the phase balance bandwidth is 180°.

-~ Filter | RatRace |
| & Detector |

Detector Circuit

Figure 4.9: Layout of ED1.
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L %

(a) Envelope detector [Bla+19]. (b) Mounted diodes.

Figure 4.10: Manufactured ED1.

Figure 4.9 depicts the layout of the detector circuit, while figure 4.10 shows
the manufactured ED mounted on the metallic blocks, obtained from cutting the
transition block from figure 4.3 in half and the mounted diodes. A new metallic block
was fabricated to hold the detector circuit when it is inserted into the transition.

4.1.3 Simulation and experimental results mismatch for ED1

ED1’s experimental characterization is thoroughly analyzed in section 4.5. It will show
that the manufactured ED1 presents outstanding results in terms of conversion loss
and is able to demodulate up to 14 Gbit/s ASK signals. Nonetheless, its performance
is limited due to its frequency response (it will be shown in figure 4.40), which is
lower on the upper W-band half region than calculated in simulations. This roll-off,
which appears at 100 GHz in simulations, experimentally shows up at 92.5 GHz.

Three causes were investigated to explain this frequency shift in the roll-off: a
possible mismatch in the diode model when using the Rogers 5880 substrate, since
the diode was modelled mounted on fused silica [HPC11]; manufacturing tolerances
either in the PCB or in the metallic block production; and the wrong substrate
characterization in the simulation software, either CST Microwave Studio or ADS
Momentum.

In order to check if the mismatch comes from the Rogers 5880 substrate, we decided
to build a new W-band ED version, ED2, presented in section 4.2, using fused silica
quartz Corning 7980 [Corl4].

After checking the PCB in detail under the microscope, we could only find
small manufacturing deviations, which could not influence the observed behaviour.
Regarding the metallic blocks, figure 4.5 shows that the transition insertion loss is
flat in the W-band, and the difference between simulation and experimental results
is only 1.6 dB on average, therefore, they cannot cause such a pronounced roll-off.

In section 4.1, the metallic block together with the 6.3 mm 50 2 transmission line
used as input interface to ED1 were simulated using CST Microwave Studio, while
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Figure 4.11: ED1’s microstrip transmission line simulation results. Comparison
between CST Microwave Studio and ADS Momentum.

the ED1’s planar structure was simulated using ADS Momentum. In order to check
if the mismatch between simulation and experimental results from figure 4.32 arises
from the software, we compared the results when simulating the transmission line
depicted in figure 4.11a in CST Microwave Studio and ADS Momentum, obtaining
the results depicted in figure 4.11b. This transmission line is the input to the ED1’s
input shown in figure 4.9, and was simulated in CST Microwave Studio during the
design of ED1.

According to the results depicted in figure 4.11b, CST does not consider some
frequency dependant losses occurring in the 1.5 mm taper and in the 6.3 mm 50 2
transmission line, which account up to 10dB in the upper W-band. Although this
loss value is higher than what it was calculated in section 4.1.1, where we assumed
tan(d) constant and equal to 0.01 in the full W-band, [Reb15] shows that tan(d)
increases up to 0.03-0.05 in the higher W-band region, therefore, we believe that the
results obtained with CST in figure 4.11b are too optimistic in terms of losses, and
that ADS provides a better estimation. We decided to construct a third W-band
envelope detector, ED3, using the Rogers 5880 substrate, and correcting the ED1’s
experimental frequency response roll-off by reducing ED1’s input transmission line.

We checked if this same issue happened with the ED2, and verified that the fused
silica model provided within CST Microwave Studio was more consistent and agreed
with the ADS Momentum simulations, therefore, we did not need to modify ED2’s
design.

4.2 ED2 with fused silica substrate

The second W-band ED presented in this dissertation, ED2, counts with a W-band
Schottky diode based balanced detector circuit, and a new designed WR-10 waveguide
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WR-10 to microstrip transition. In this second ED, we chose a new substrate, fused
silica quartz Corning 7980 with a thickness of 150 nm, €, = 3.75 and tan(d) = 0.0001
at 1 GHz [Corl4], which is well known within the author’s research group at TU
Darmstadt. Furthermore, this substrate has already been tested in this frequency
range with the diodes provided by ACST [Hoe+13; Hoe+14; Hoe+15] and was used
to obtain the diode model included in the simulations [HPC11]. Although the PCB
fabrication process is more complex in comparison when using the Rogers RO5880,
the manufacturing tolerances decrease, allowing to design a more precise circuit.
Moreover, with the microstrip manufacturing process performed in the clean room,
we can also fabricate thinner transmission lines if needed.

The first goal of this ED2 will be flattening the upper W-band region’s frequency
response from ED1 by increasing the input bandwidth. In addition, we pursue to
have the optimum performance for carrier frequencies around 85 GHz, which is the
working frequency within the CELTA beamformer demonstrator.

This section will follow the same structure as section 4.1. It will start with a WR-10
waveguide to microstrip transition and then show the ED’s design.

4.2.1 WR-10 rectangular waveguide to microstrip line transition

ED2 provides a WR-10waveguide input interface similarly as the ED1. In order to
connect the planar detector with the waveguide interface, a WR-10 waveguide to
microstrip line transition is needed. This section describes the design, manufacturing
and testing of an E-plane WR~10 waveguide to microstrip line transition covering
the full W-band.

In the previous version a quarter wavelength Chebyshev transformer matched
the WR-10 waveguide and the substrate heights, which showed a slightly better
performance in simulations as using a linear taper. After measuring the manufactured
back to back prototype, simulation and experimental results differed in 3.3dB
on average in the |S9; |. In the transition from WR-10 waveguide to microstrip,
section 4.1.1 justifies that this difference is reduced to 1dB on average in the
manufactured ED circuit, after considering the losses in the microstrip line.

In this version we decided to use a double linear taper to match the 1.27 mm
WR-10 waveguide to the 0.156 mm substrate. By doing this, we are able to check if
the previous 1 dB mismatch can be reduced, since the manufacturing tolerances are
reduced when using a taper in comparison with the Chebyshev transformer.

Figure 4.12 depicts the transition CAD drawing, divided into two sections: the
metallic block encompassing the waveguide and its taper and the microstrip. The
latter is placed inside the waveguide block as shown in figure 4.12a. Now, due
to constraints in the microstrip fabrication process, the transition occurs directly
by coupling the TE;g mode from the WR-10waveguide into the microstrip line
quasi-TEM mode, without having a DFRW intermediate step, since the microstrip
peak is metallize on the top and ground layers. In addition, the substrate height is
now (.16 mm instead of the 0.32 mm from ED1, which makes the design a little more
challenging.
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Figure 4.12: Design of the tapered waveguide to microstrip transition for ED2.

Dimensions are in mm.
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Figure 4.13: Simulated WR-10 waveguide to microstrip line transition S-parameters.

As an advantage, using a linear taper instead of the Chebyshev transformer reduces
the mathematical complexity in the metallic block design. In this transition, the
only parameter to optimise is the taper length, since the heights are fixed. We
optimised this length through CST Microwave Studio software, in order to have a
height transition as smooth as possible to feature low and flat insertion loss, while
keeping the length short to have a compact block.

The microstrip section is composed of a 0.87mm taper that confines the TEqg
mode into the microstrip and a quarter wavelength transformer, which matches
the taper impedance to a 502 microstrip line. The trade-off between the taper
width and length (1.1 mm and 0.87 mm respectively), the number of elements in the
transformer and the total length from the microstrip tip to the 50 {2 transmission
line was calculated using CST Microwave Studio.

The microstrip presents an arrow shape due to the substrate-cutting limitations
arising from using fused silica, which is cut using a dicing saw. The final PCB cannot
have inside corners because once the saw starts dicing, it cannot stop in the middle
of the cut, hence the only design shapes that can be used are using straight lines.

Figure 4.13 shows the return and insertion loss simulation results for the WR-10
waveguide to microstrip transition depicted in figure 4.12, considering the waveguide
interface as port 1 and the microstrip as port 2. The transition introduces between
0.5dB and 0.8 dB insertion loss in the full W-band, while keeping the return loss
above 11 dB, which are acceptable features for this project. When compared with
the previous transition’s results from figure 4.2, it can be noticed that the lack of
the intermediate transition from WR-10 waveguide to DFRW, the larger height
difference and the design constraints in the microstrip cutting reduce the transition
performance (in the previous version, the return and insertion losses were above
15dB and below 0.4 dB respectively).
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4.2. ED2 with fused silica substrate

(a) Metallic blocks. (b) Microstrip line.

Figure 4.14: Manufactured back to back transition for ED2.

Transition manufacturing and experimental validation

The transition was manufactured in brass at the TU Darmstadt in the Hans Busch
Institute’s facilities, at the Werkstatt fiir Feinmechanik, adding WR-10 flanges and
screws to the CAD drawing from figure 4.12. The microstrip was manufactured by
the author, using a photolithographic process in the Institute’s clean room obtaining
the result shown in figure 4.14b.

The waveguide blocks were cut in the H-plane in order to reduce the possible field
leakages, because the electromagnetic field is confined in the middle of the wide
WR-10 waveguide section. The slit between the blocks is negligible after introducing
surface walls at the border of the inner waveguide, and having several screws which
tighten firmly the upper and lower blocks. Eight dowel pins are used to guarantee
the alignment of the metallic blocks with respect to each other. The microstrip is
aligned using a slot dug into the lower metallic block as shown in figure 4.14b.

Instead of building the back to back transition and later cutting it as we did with
ED1, we decided to build the transition separated into blocks: two transitions (which
can be placed back to back when evaluated in the VNA) and two ED blocks, where
the ED2 detector circuit will be mounted. The main reasons to separate the blocks
from the beginning are to be able to reassemble the transition again if needed, even
after having mounted the ED, and to increase the manufactured prototype accuracy.
In the previous transition the back to back prototype was cut after measuring it,
which could provide some inaccuracies in the resulting metallic blocks dimensions.
This tolerances are acceptable when using the Rogers RO 5880 substrate because it
can be slightly deformed applying pressure, or cut quite easily if necessary. If a fused
silica substrate is pressed, it will break due to its fragility, and it is not possible to
cut it as easily once the diodes are mounted, since the dicing saw may damage the
diodes.

We used an Agilent PNA N5222A with W-band waveguide extensions to measure
the S-parameters of the back to back transition, where we placed a 4mm 50
microstrip, as shown in figure 4.14b, obtaining the results depicted in figure 4.15.

Figure 4.16 compares these experimental results, with the back to back simulation
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Figure 4.15: Experimental back to back S-parameters from the WR-10 waveguide to
microstrip line to WR-10 waveguide transition for ED2.

results. The return loss follows a similar trend in both simulation and experimental
results, being below —6 dB in the full W-band in both cases. The mean return loss
difference between simulation and experimental results accounts only for 1.13dB,
compared with the 4.4dB in ED1.

When evaluating the insertion loss, the experimental and simulation results
difference becomes larger, obtaining a 5.74 dB average difference within the full
W-band. In addition, the insertion loss is not flat in the experimental results, where
its values are comprised between 4dB and 10dB. Furthermore, the experimental
results do not follow the simulation results shape. This mismatch is due to the soft
or nonexistent contact between the microstrip and the top part of the metallic block.
In ED2, if the contact between the metallic block’s top section and the fused silica
microstrip is too strong, there is the risk that the microstrip breaks. Nevertheless,
if there is an air gap in between, the TE 3 mode cannot be fully confined into the
microstrip, and part of the field is radiated outside. This effect leads to an increment
of the insertion loss while keeping the same return loss as depicted in figure 4.16,
because the input signal is radiated, not reflected.

In order to fill the airgap between the microstrip and the top metallic block, we
added some conductive silver glue at the microstrip’s bottom as shown in figure 4.17b.
This glue should not modify the microstrip behaviour, since it is placed below its
ground plane, lifting the microstrip to provide a contact and close the airgap.

Figure 4.18 compares the experimental S-parameter results when applying the
glue with the previous ones without glue from figure 4.16. The return loss presents a
similar value as before, but the insertion loss is now flatter in most of the W-band,
getting rid of the previous 91.5 GHz notch.

We tested the structure after using acetone to remove the glue, and applied it
again. We also tried adding more glue on top of the dry one to lift up the microstrip.
Moreover, we changed the microstrip because we had two samples with the same
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Figure 4.16: Full ED2 transition back to back S-parameters comparison between
experimental (solid) and simulation (dashed) results.

(a) Without glue.

Figure 4.17: Microstrip line mounted on the back to back transition.

features available for testing. All this changes and tests lead to the results depicted
in figure 4.19. The best achieved results have been shown in figure 4.18b.

From this experiment, it can be concluded that the ED2 is very sensitive to small
changes when placing the fused silica substrate into the metallic blocks. Furthermore,
the manufacturing tolerances are critical and they reduce the transition performance
significantly in contrast to the previous version where the tolerances were negligible,
e.g. in this transition, if the metallic blocks slightly press the substrate, it would break,
therefore, there is a higher possibility of having an airgap between the substrate and
the metallic blocks. Although this limitation can be compensated using a conductive
glue, figure 4.19 proved that applying the glue must be done carefully and the circuit
must be tested afterwards. The advantage is that if the glue has been applied wrongly,
it can be removed and added it again.
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Figure 4.18: Full ED2 transition back to back S-parameters comparison between
simulation and experimental results, before and after applying glue.
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Figure 4.19: Full ED2 transition back to back S-parameters test run using two
different transition PCBs and after applying glue several times.

Angel Blanco Granja 65



Chapter 4. Envelope Detectors (EDs) for W-band

Table 4.2: Transmission line S-parameters used in the W-band envelope detectors’
design: electrical lengths are measured at 92.5 GHz.

Substrate Z1 L1 Z2 L2 Z3 L3

ED1 Rogers 5880 1009 125° 115Q 60° 1309 220°
ED2 Fused Silica 117Q 179° 92Q  60° 117Q 136°

4.2.2 Envelope detector circuit

Figure 4.20 shows the schematic of ED2, which follows the same architecture as ED1.
The transmission lines have been modified optimising the phase balance bandwidth,
input frequency response and conversion loss, considering that we can introduce
thinner transmission lines than before. The transmission lines values for ED1 and
ED2 are summarised in table 4.2. One big difference between the two EDs yields in
the shorted stubs’ grounds: while in the Rogers substrate it was possible to have via
holes, in the fused silica substrate it is not possible to drill and metalise this holes
with the available technology. Therefore, it was decided to implement the grounds
by connecting two pads to the metallic block housing. Next to the pads we placed a

radial stub, which behaves as an RF choke, avoiding that the input W-band signal
leaks to ground.

117Q,179°
92 Q2,60°
S 117Q,136° !
~, ~o
92,60°
(SMA) X N | ﬁ
LPF  Butterfly filter 500 T 92Q,60°
’ 0 C 0—
— 117Q,179°
Transition
IN (WR-10) -

Figure 4.20: Circuit schematic of ED2: electrical lengths are measured at 92.5 GHz
(W-band’s central frequency).

The output filter shares the same topology as in the previous version. It consists
of a butterfly filter and a 6 order 25 GHz cut-off frequency stepped impedance
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Figure 4.21: Output filter of ED2. Simulation results.

low pass (LPF) filter. The LPF cut-off frequency was reduced in order to filter the
noise from the frequency band between 25 GHz and 45 GHz. The filter layout and its
S-parameters are shown in figure 4.21. At the LPF’s output, an SMA connector is
placed to provide the ED2’s output interface. Similar to ED1, this detector circuit
does not count with a built in bias tee in order to measure the ED2’s DC output in
the frequency response benchmark.

The ED is built in microstrip technology on a 150 pm fused silica quartz Corning
7980 [Corl4]| with 3um top gold layer. The Schottky diodes, provided by ACST
GmbH [ACS], have the same features as in EDI .

Figure 4.22 shows the ED’s phase balance bandwidth measured through ADS
harmonic balance analysis in ADS. In this version, the phase balance bandwidth
(£6°) accounts for 5.9 GHz, between 89.2 GHz and 95.1 GHz. At the W-band central
frequency, 92.5 GHz, which is the design frequency, the phase balance bandwidth is
180°.

When compared with ED1, the phase balance bandwidth has been improved
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by 13.5 %, due to the possibility of shrinking down the shorted stubs, which was
previously not possible due to manufacturing constraints.
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Figure 4.22: ED2’s and ED1’s phase balance bandwidth comparison.

Finally, figure 4.23 depicts the full detector circuit’s layout.

Manufacturing

The substrate of ED2 was first processed by the author in the Hans Busch Institute’s
clean room, obtaining the results shown in figure 4.24.

When mounting the Schottky diodes at ACST GmbH facilities, on figure 4.25c,
the diodes could not be glued to the substrate. Therefore we decided to manufacture
a second version, where ACST GmbH would not only mount the Schottky diodes on
the substrate as they did in ED1, but also process the PCB using photolithography
in order to improve the manufactured ED2’s quality. The resulting prototype is
depicted in figure 4.25. When compared with figure 4.24, it can be noticed that the
manufactured PCB improved considerably.

Filter
GND
pad
ouT
IN P GND
; pad
| RatRace |
| & Detector |

Figure 4.23: ED2’s Layout.
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(a) Substrate input of ED2 (b) Substrate input of ED2 (c) Substrate central area of
before dicing. after dicing. ED2.

Figure 4.24: Fused silica manufactured substrate of ED2.

After gathering the metallic blocks and the substrate with the diodes on them, the
next step is to mount the substrates on the metallic blocks and installing the grounds
for the shorted stubs on the ED’s pads at the Schottky diodes’ inputs through
bonding wires connected to the metallic blocks. Placing the bonding wires was not
possible due to some calibration mismatch with the machine used to place them,
which could break the substrate with the diodes mounted. Not having a ground
means that the experimental results of ED2 would not be those for which it was
designed, since without grounding the diodes’ input, there is no DC path through the
diodes, and the downconverted signal at baseband frequencies cannot be generated.
Moreover, figure 4.19 shows that a small change in the substrate placement leads to
significantly different results in the transition’s S-parameters. For these reasons, we
decided to leave the ED2 mounting and characterization for the future. This tasks
together with solving the issues arising from the metallic blocks transition shown in
figure 4.19 could be addressed in a PhD or Master thesis.

4.3 ED3 improved detector with Printed Circuit Board
(PCB) substrate

As explained in section 4.1.3, we want to address ED1’s experimental roll-off with
a redesign of ED1 to widen the detector’s input bandwidth to 35 GHz, i.e. the
full W-band. Figure 4.11 justified that the reason for this shrinking is the input
transmission line’s length of ED1, which introduces frequency dependant losses.
In order to solve them, in this new version, ED3, the input transmission line was
shortened to just a taper line, and its width was reduced to preserve its input
bandwidth as shown in figure 4.26. This transmission line width-shrink is possible
because most of the electromagnetic TE;qg field is confined in the central region of
the WR-10 waveguide, and with this taper the field is transferred to the microstrip
transmission line. The other ED1’s components, such as filter and detector’s structure
remain the same. Simulations of the planar structure were conducted using ADS
Momentum, including the input transmission line, while CST Microwave Studio was
used exclusively to simulate the metallic blocks and the WR-10 waveguide to DFRW
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(a) ED2.

A%

(b) Mounted diodes. (c) Substrate input of ED2 after dicing.

Figure 4.25: ED2’s fused silica in-house manufactured substrate by ACST GmbH.

transition. Figure 4.26a shows the final layout of the ED and figure 4.26b compares it
with the previous version. Since we had built a backup version of ED1 with the second
half of the back to back WR-10 to MSL transition, the previously manufactured
metallic blocks could be used to build ED3 by applying small adjustments to build
ED3, ending up having one prototype of ED1 and another of ED3.

Manufacturing

Once we received ED3’s PCB, the next step was to mount the Schottky diodes at
ACST GmbH, similar as it was done with ED1. Due to the big work load at the
company, they were not able to mount the diodes before the end of this dissertation,
nonetheless, they offered us generously the unmounted diodes so that we could mount
them at TUDa. As a result of the Coronavirus crisis we were not able to mount the
diodes and characterise ED3, since the recommendation from the authorities was to
remain at home at the time we had booked to mount the diodes. Nevertheless, if in
the period of time between this dissertation’s hand in and its defence we are able
to accomplish the two tasks, the final results will be presented in the defence and

70 Angel Blanco Granja



4.4. Simulation results

) )
Poiet

—4

(b) Redesigned envelope detector (ED3) in
blue together with the original one
(ED1) in yellow.

(a) ED3: Redesign of the Rogers 5880
envelope detector.

Figure 4.26: Layouts of the two ED’s versions using Rogers 5880 substrate.

attached to the dissertation in an appendix.

4.4 Simulation results

This section describes the simulations accomplished to evaluate ED1, ED2 and ED3
using the three benchmarks described in section 3.1: frequency response, conversion
loss and data detection measurement. The simulations were conducted using CST
Microwave Studio for the waveguide section and the transition, including the input
transmission line of each envelope detector (one taper for each detector and a 50 Q2
input transmission line of 6.3 mm for ED1 and of 2 mm for ED2); while ADS harmonic
balance analysis was used for the planar structure, where the transition simulation
results were included.

Frequency response

As explained in figure 3.1, the frequency response in a W-band envelope detector is
calculated by measuring its DC output after being fed with a single tone, which is
swept from 75 GHz to 110 GHz with a power set from 0 dBm to —18 dBm. In contrast,
the UWB detectors were fed with a low frequency modulated ASK signal composed
of a carrier and its two sidebands because they were DC fed.

Figure 4.27a displays the frequency response simulation results of the ED1. It
provides 25 GHz of 3dB bandwidth, from 75 GHz to 100 GHz for a 0dBm input

Angel Blanco Granja 71



Chapter 4. Envelope Detectors (EDs) for W-band

s}

- ‘ |—OdBm——6dBm——10dBm ~14dBm — -18dBm

1
ot
T

| I B |
N — =
o ot O
T T 11
VAN

Output Powerpc [dBm]
i o do 1o
S &3S
T T T T
| | |

1
W
oy

T
I

| | | | | | | | | | |

90 95 100 105 110
Carrier frequency, f. [GHz]

1
(S
[a)

N
ot
0.]
o
oo
ot

(a) Frequency response simulation results of ED1.

- ! |—OdBm——6dBm——10dBm ~14dBm — -18dBm

I 1
—_ =
ol O ot O
T
|

Output Powerpc [dBm]

I O T U
QU B W W NN
OO UtOo Ut O
T
|

| | | | | | | | |

|
90 95 100
Carrier frequency, f. [GHz]

| |

|
105 110

~J
ot
0]
o
(09}
at

(b) Frequency response simulation results of ED2.

=)

I~ — (0dBm — -6dBm — -10dBm -14dBm — -18 dBm

1
ot
T

|
[t
o
T

-15 | .
-20 | d

1
[\)
ot

] 1
B
o Ot
T TT71
1

45 F

T
|

Output Powerpc [dBm]
do
S

T
|

|
[}
o
T

| | | | | | | | |

|
80 85 90 95 100
Carrier frequency, f. [GHz]

|

|
105 110

EN|
(S

(c¢) Frequency response simulation results of ED3.

Figure 4.27: Frequency response simulation results of the W-band envelope detectors.
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power. Moreover, its frequency response in the 100 GHz - 110 GHz range can be used
for communication purposes, since the output power only reduces 5dB - 7dB when
compared with the lower region of the W-band.

When decreasing the input power, the input bandwidth shrinks down as well, and
the frequency response has more ripples.

Figure 4.27b depicts the frequency response results of ED2. It provides 35 GHz of
3 dB input bandwidth for a 0 dBm input power, covering the full W-band, from 75 GHz
to 110 GHz. ED2’s output power is similar to the one from ED1 for frequencies below
105 GHz when they are fed with a 0 dBm input tone. Furthermore, ED2 provides a
higher output power for frequencies above 105 GHz.

When decreasing the input power, the input bandwidth shrinks down and the
frequency response has more ripples than in ED1. Moreover, when fed with an input
tone with power below —10dBm, ED2’s output power is reduced in comparison
with ED1. This agrees with the Bode-Fano criterion explained in section 2.5: the
bandwidth of the ED can be increased using a broader matching, at the cost of
decreasing the power delivered to the Schottky diodes, and hence the output power
of ED2 is lower. In addition, the insertion loss introduced by the ED2’s transition
are slightly higher than ED1’s, which means that the detector circuit receives a lower
input power.

The frequency response results of ED3 are shown in figure 4.27c. ED3 provides
29 GHz (from 75 GHz to 104 GHz) of 3 dB input bandwidth for a 0 dBm input power
tone, which is broader than in ED1, either if ED1’s input transmission line was
simulated in CST or ADS. The roll-off still occurs, but it now starts at 105 GHz
instead of at 92.5 GHz. When decreasing the input power, the input bandwidth
shrinks down as well to 14 GHz for a —18 dBm input power.

The CELTA project’s requirements requested 5 GHz to 10 GHz of input bandwidth,
which is fulfilled at every input power from 0 dBm to —18 dBm by the three detectors:
ED1, ED2 and ED3.

Conversion loss

Similar to the UWB EDs, the W-band envelope detectors are fed with an ASK
signal, composed of a =17 dBm carrier with frequency f., which is swept from 75 GHz
to 110 GHz, modulated by two —37dBm sidebands swept from fg = 0.5 GHz to
30 GHz, placed at f. + fs. The power values are chosen in accordance with the
experimental ones, to be able to compare them in equal conditions. The conversion
loss of each detector is calculated by measuring the difference between the obtained
downconverted signal at fg, and the input power at f.£ fs. The results are plotted
in two graphs for each detector. In the first one, fg is plotted in the x-axis and f. in
the y-axis. The conversion loss value is represented with a colour bar. The second one
shows the 3dB bandwidth of the detector, where each element of the f. - fy matrix
is painted on white if that fg, is within the 3dB bandwidth or black if it is not.
Figure 4.28a depicts the simulated ED1’s conversion loss results, obtaining a
minimum of 5.3dB. The ED1’s 3dB bandwidth results, shown in figure 4.28b, can
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be divided into three areas: the lower, middle and upper side W-Band.

For carrier frequencies up to 81 GHz and fg, < 5 GHz, the conversion loss remains
below 8 dB. When fg, is higher than 6 GHz, the conversion loss increases rapidly.
Moreover, the waveguide cut-off frequency can be reached by the lower sideband
(fe - fsp) for sufficiently high fg, which result into a low conversion loss value.

In the W-band central frequencies the conversion loss is in the range of 5dB
to 12dB for fg frequencies up to 15 GHz, furthermore, the ED’s 3dB bandwidth
increases considerably, up to 20 GHz for f. = 100 GHz. The conversion loss reaches
its lowest values between 91 GHz and 95 GHz, which is the ED’s design frequency.

For carrier frequencies higher than 102 GHz, the conversion loss starts to increase
for all fg, frequencies while remaining flat, therefore, the 3dB video bandwidth is
still broad, but the ED1’s sensitivity is reduced considerably due to the lower ED1’s
frequency response.

From the simulation results displayed in figure 4.28a, we can expect the ED1 to
be able to demodulate ASK signals up to 20 Gbit/s, finding its best sensitivity in the
W-band central frequencies, which is the ED1’s design frequency.

The conversion loss of ED2 is shown in figure 4.28¢, obtaining a minimum of
7.6 dB. Similar as with the frequency response, broadening ED2’s input and output
matching and introducing more losses in its HW to MSL transition increases ED2’s
minimum conversion loss with respect to ED1. The ED2’s 3 dB bandwidth is depicted
in figure 4.28d, where the results can be divided into three areas, attending to f.:
the lower, middle and upper side of the W-Band.

In the lower W-band, the video bandwidth has been increased in comparison to
ED1, up to 13 GHz for f. < 81 GHz. In this region the conversion loss remains below
10dB. The reason for increasing the video bandwidth in this f. range is that in
the CELTA demonstrator meeting held in December 2017, the final requirements
for the demonstrator were agreed, choosing to place the f. in the range of 80 GHz
- 85 GHz. During ED1’s design phase this feature was unknown, and therefore the
video bandwidth was optimized for the central W-band frequencies.

In the W-band central frequencies the conversion loss is in the range of 8 dB to
12dB for fy, < 16 GHz. The ED2’s 3dB video bandwidth increases up to 22 GHz for
fe = 94 GHz, which is an increment of 7 GHz compared to ED1 in this f. range. The
conversion loss value decreases in this f. region because the frequency response has
a valley in this region.

In the range of f. = 98 GHz to 104 GHz, the ED’s 3dB bandwidth is reduced
to 18 GHz, and down to 12 GHz for f. = 110 GHz. Although this 3dB bandwidth
may seem lower than in the ED1, the conversion loss is kept in the range of 9dB to
12dB in the upper W-band carrier frequencies, while in the ED1 the conversion loss
increased to the range of 10 dB to 17 dB. The reason for maintaining this performance
is the broader input bandwidth from the ED2, which, in comparison with the roll-off
found at the upper W-band carrier frequencies in ED1, results on a broader video
bandwidth.

From the simulation results displayed in figure 4.28¢c, we can expect that the ED2
will be able to demodulate ASK signals up to 25 Gbit/s. The ED2’s sensitivity is flat
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Figure 4.28: Simulated conversion loss results of the W-band detectors.
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Figure 4.28: Simulated conversion loss results of the W-band detectors.

and uniform for every f. within the full W-band when fg, < 12 GHz.

The conversion loss of ED3 is shown in figure 4.28e, obtaining a minimum of 6.6 dB.
Figure 4.28f shows the ED’s 3dB bandwidth. The ED3’s 3dB bandwidth results can
be divided into two areas, attending to f.: the lower and the upper W-Band halves.

When fed with ASK signals having carrier frequencies below 91 GHz, ED3 provides
up to 10 GHz of 3 dB-video bandwidth. In this frequency region the conversion loss
remains below 10 dB.

For the upper W-band carrier frequencies up to 108 GHz, the conversion loss
remains in the range of 15dB, while the ED’s 3 dB-video bandwidth increases up
to 18 GHz. For f. above 108 GHz the conversion loss increases considerably, up to
25dB.

Data detection Measurement

In this benchmark, similarly as with the UWB EDs, the detectors are fed with
an ASK modulated signal with 0 dBm input power at carrier frequencies between
75 GHz and 110 GHz, and three bitrates: 15 Gbit/s, 20 Gbit/s and 25 Gbit/s, obtaining
the demodulated signal’s eye diagram, which is then analyzed to check the EDs’
performance. Figure 4.29 shows for each detector its height and Level 1 (L1) at each
bitrate (15 Gbit/s, 20 Gbit/s and 25 Gbit/s) and its frequency response in blue.
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(b) Simulated frequency response, eye diagram, height and Level 1 (L1) of the ED2 for bitrate
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(c) Simulated frequency response, eye diagram, height and Level 1 (L1) of the ED3 for
bitrate (a) 15 Gbit/s; (b) 20 Gbit/s ; (c¢) 25 Gbit/sfor 0 dBm input power.

Figure 4.29: Simulated frequency response and eye diagram of the W-band EDs.
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Figure 4.29a shows that with ED1’s a successful demodulation is possible for
15 Gbit/s, 20 Gbit/s and 25 Gbit/s. The best performance for the three bitrates is
achieved for carrier frequencies between 90 GHz and 95 GHz, i.e. the ED1’s design
frequency, where the phase balance bandwidth is optimal, as shown in figure 4.8.

In the lower W-band half, the eye diagrams’ heights decrease for the three bitrates
when f. is set at a frequency where the frequency response reaches a minimum.
Moreover, below 85 GHz, 90 GHz or 95 GHz carrier frequencies, the lower frequency
region of the 15 Gbit/s, 20 Gbit/s and 25 Gbit/s ASK signals respectively falls outside
the W-band. At a certain point, the ASK signals’ spectrum region falling below the
WR-10 waveguide 59 GHz cut-off frequency [Poz12] is not transmitted through the
waveguide, it will not reach the microstrip and hence, it will not be downconverted,
which shutters the demodulated eye diagram. Since the frequency response gets a
maximum around 75 GHz or 80 GHz, the power loss from not downconverting part of
the ASK signal is slightly compensated, therefore the height and Level 1 for 15 Gbit/s
or 20 Gbit/s is flat in the 75 GHz - 95 GHz frequency region.

Figure 4.29b shows that ED2’s best performance for 15 Gbit/s and 20 Gbit/s is
found when f, is set to 85 GHz, corresponding with a maximum in the frequency
response and CELTA beamformer demonstrator’s goal. In the W-band central
frequencies (90 GHz - 97 GHz), the performance is slightly reduced due to the lower
frequency response in this frequency region. Nonetheless, since the optimum phase
balance bandwidth is found within this frequency region as shown in figure 4.22, the
ED2’s performance in this benchmark does not decay as much as in the frequency
response benchmark. In the upper W-band region, the ED2 is also able to demodulate
15 Gbit/s and 20 Gbit/s ASK signals. When the bitrate is increases to 25 Gbit/s, ED2
offers a flat performance for carrier frequencies between 80 GHz and 110 GHz.

Figure 4.29¢ depicts the results of ED3. The performance is similar for 15 Gbit/s
and 20 Gbit/s bitrates and is uniform up to 105 GHz carrier frequencies, where it
decays due to the lower ED3’s frequency response. Analogous to ED1, the optimum
phase balance bandwidth is found within this frequency region between 89.2 GHz
and 95.1 GHz as shown in figure 4.8, therefore, even if the frequency response decays
in this frequency region, the eye’s height does not shrinks as much, since there are
less distortion coming from the output fundamental harmonic. When increasing the
bitrate to 25 Gbit/s, the working frequency range narrows down and the eye closes
for carrier frequencies below 80 GHz.

If a small part of the ASK signal frequency components are not downconverted
in any of the three detectors, either because they fall below the 59 GHz waveguide
cut-off frequency [Poz12], or above the input bandwidth of the detector (100 GHz for
ED1, 110 GHz for ED2 and 104 GHz for ED3), the eye diagram will be open as long
as most of the ASK signal power is demodulated (94 % of an ASK signal’s power is
contained in the 80 % of its bandwidth centred around the carrier frequency [TS86]).
Besides, since an ASK signal is symmetric with respect to the carrier frequency,
therefore, when following a single sideband demodulation (SSB) scheme, we only
need to downconvert one of the two ASK signal’s halves to obtain a high quality eye
diagram, suffering only from an output power penalty [OWH96].
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Table 4.3: Design features and simulation results from the W-band detectors
presented in this dissertation.
Input BW Video BW Min. CL

Substrate (GHz] [GHz] [dB]
ED1 Rogers 5880 25 20 5.3
ED2 Fused Silica 35 25 7.6
ED3 Rogers 5880 29 18 6.6

Moreover, it must be taken into account that the next mode’s cut-off frequency in a
rectangular WR-10 waveguide is 118 GHz [Poz12]. Frequencies higher than 118 GHz
will excite higher order modes, therefore, we should avoid using frequencies above
118 GHz. When connected to an antenna, the antenna filters the undesired higher
frequencies, therefore frequencies above 118 GHz will not be an issue in the wireless
system.

For 25 Gbit/s, the ASK signal spectrum falls outside either the W-band or the
waveguide’s cut-off frequency much faster than with the other two bitrates in the
three detectors, therefore the eye diagrams close much faster than with the other
two bitrates. Nevertheless the Level 1 is maintained in the three detectors since it is
directly related with the frequency response.

Summary and discussion

This section has described the design of three envelope detectors. It has also shown
their simulation results, summarised in table 4.3, following the three benchmarks
described in 3.1 to test their performance. The detectors prove the scalability
in frequency of the architecture presented in section 3.2.2, which combines the
functionality of a Balun and, simultaneously, rectifies the input ASK signal [Bla+17].
The simulation results prove that the three detectors fulfil all the CELTA project’s
requirements.

4.5 Envelope detection benchmark measurements

This section presents the experiments accomplished to evaluate the performance from
ED1, which will be tested using the three benchmarks. Since it was not possible to
finish the manufacture of ED2 and ED3, experimental results can not be presented.
In this section, the data detection benchmark is performed through a Bit Error
Ratio (BER) measurement, instead of measuring the height and Level 1 from the
demodulated signal, analogous to the UWB envelope detectors.

Frequency response

When evaluating ED1, the frequency response was measured using two setups.
Figure 4.30 depicts the one used at the Technical University of Denmark (DTU) and
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figure 4.31 the one from the TU Darmstadt (TUDa).

Power calibration (Pj,)

Harmonic | | Spectrum
Mixer Analyzer

Figure 4.30: W-band frequency response experimental setup at DTU.

In the setup from DTU, an RF tone at lower frequency (12 GHz to 18.33 GHz)
produced by a continuous wave’s (CW), is upconverted to W-band with a 6x multiplier
and fed into the ED1. A power calibration at the attenuator’s output was needed to
verify the fed power to the ED1. At the ED1’s output, a low pass filter terminated in
a 502 load is placed in order to measure the ED’s output voltage without damaging
neither the ED’s PCB board, nor the Schottky diodes when the connectors contact
the filter’s microstrip. The ED’s input signal’s power was set to —6 dBm and —18 dBm
in 4dB steps. The reason for not reaching 0 dBm as in simulations is that ACST
recommended not to feed the diodes with more than —10dBm input power. This
setup from DTU was only used to test ED1

The simulation results plotted in this section are the ones that use ADS Momentum
to model the ED’s input transmission line. In [Bla+19], we compared the experimental
results with the ones where the transmission line is simulated using CST Microwave
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Studio, which section 4.1.3 claimed that it was the wrong approach.

Figure 4.32a depicts the frequency response experimental results measured at DTU.
ED1 provides 15 GHz of 3 dB bandwidth, from 75 GHz to 90 GHz for a —6 dBm input
power. When fed with lower input powers, the ED1’s input bandwidth is narrowed
to 5 GHz - 10 GHz. The CELTA beamformer demonstrator’s requirements requested
5 GHz to 10 GHz of input bandwidth, which is fulfilled experimentally at every input
power from —6dBm to —14 dBm. For a —18 dBm input power the input bandwidth
accounts for 4 GHz.

From 75 GHz to 90 GHz, experimental results provide 7dB more output power
than simulations for every frequency. Above 92.5 GHz, both results match for every
frequency and input power. In the full W-band, the frequency response features the
same shape for every input signal’s power in simulation and experimental results,
suffering only of a power penalty in the ED’s output power in the lower W-band,
with no other effects deteriorating the demodulated signal. The manufactured ED1
provides 20 GHz of input bandwidth within W-band [Bla+19].

Power calibration (P;,)

s b Powermeter

500 T. Line

;o
/)

Figure 4.31: W-band frequency response experimental setup at TU Darmstadt.

We wanted to replicate the results using the equipment available at TUDa using
the setup depicted in figure 4.31, where ED2 and ED3 would be tested as well. In this
new setup we employed a powermeter to measure the input power to the ED instead
of the harmonic mixer and spectrum analyser combination. Moreover, the W-band
signal was directly generated with a Backward Wave Oscillator (BWO) instead of
using a CW source connected to a multiplier. The setup also has a voltage controlled
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variable attenuator [ELV] which sets the ED’s input power. This time we decided to
use a 50 ) microstrip transmission line terminated in a 50 €2 load with a small pin to
connect the voltmeter, instead of a filter, which for DC measurements is equivalent.

The ED1’s input signal’s power was set to -6 dBm and —18 dBm in 4 dB steps, to be
able to compare these results with the ones obtained at DTU. Figure 4.32b compares
the measured DC output power in dashed lines with the simulation results in solid
lines for each signal power. From 80 GHz to 107.5 GHz simulation and experimental
results match thoroughly slightly differing only at some frequency for the —18 dBm
input power tone. From 75 GHz to 80 GHz experimental results are 5dB - 10dB
lower than simulations, but they shape a flatter frequency response. At 110 GHz the
experimental output power is 5dB higher than in simulations.

According to these new measurements, the manufactured ED1 provides 20 GHz
of input bandwidth within W-band as well, and fulfils the CELTA beamformer
demonstrator’s requirements. Moreover, the frequency response is flatter than in the
experiment performed at DTU.

The two measurement results presented in figure 4.32 agree in the upper W-band
half, presenting a mismatch only in the lower half. We believe that the experiment
accomplished at TUDa is more accurate than the one from DTU. Instead of using
an harmonic mixer and a spectrum analyser, which can introduce more uncertainty
when calculating the input power, we used a digital power meter. In addition, we
expect the TUDa’s source output power to be more stable than the one from DTU,
even though in [Bla+19] we presented the results from DTU.

In section 3.4, the signal was generated by mixing a data signal from a PPG with a
carrier using a mixer. The resulting signal was fed into the UWB envelope detectors
to perform the data detection benchmark.

When transmitting ASK signals with carriers at W-band, there are several ways
to generate the RF signal. Three of the most used are: electronic generation or
upconversion using multiplieres, which has been used in the frequency response setup
at DTU or with mixers and oscillators, which is the approach followed in section 3.4
[Kob+99; Xu+15; CAZ15; San+10]; using non-linear optics [ZX10]; and employing
photomixing [Mor+17; Rom+16b; Wun-+14]. Since this dissertation’s focus is not
the W-band signal generation, but the design, manufacture and test of a W-band
envelope detector; we decided to use the photomixing approach in the conversion loss
and data detection experiments, since the equipment we needed for the experiments
was available at TU/e during the author’s secondment in 2018.

Figures 4.33 and 4.34 show the experimental setup that has been used to perform
the conversion loss and the data detection experiments, consisting of optical and
electrical components.

The output of an External Cavity Laser (ECL) is modulated using a Mach-Zehnder
Modulator (MZM) driven with a tone with a f./2 frequency from a Vector Signal
Generator (VSG) while it is biased at its minimum transmission point, obtaining two
optical tones with a suppressed carrier, which are separated by a frequency distance
of f.. Both tones are cranked up and separated by an Erbium Doped Fibre Amplifier
(EDFA) and Wavelength Selective Switch (WSS) respectively. One of the tones is
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Figure 4.32: Frequency response simulation (solid) and experimental (dashed) results
from P;,= -6dBm to —18 dBm.
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Figure 4.34: Experimental setup used for conversion loss and data detection
benchmarks from ED1.

modulated with a second vector signal generator when evaluating the conversion loss
benchmark or with a Pulse Pattern Generator’s (PPG) output, which provides a
Non-Return-to-Zero (NRZ) signal for the data detection benchmark. The NRZ signal
is based on a Pseudo-Random Bit Sequence (PRBS 31) that has a length equal to
231_1 bits. At the output of the PPG a driver amplifier is connected providing a
boost to the electrical signal in order to achieve enough voltage swing to drive the
MZM [Bla+19].

Between the wavelength selective switch’s output branch and the second MZM,
a Polarisation Controller (PC) is responsible for the polarisation stability of the
optical signal at the input and the optical power maximisation at the output of the
MZM. One Variable Attenuator (VOA), connected to the second wavelength selective
switch’s output through a polarisation controlled fibre, regulates the power of the
Co-Propagating Tone (CT), that is combined with the Optical Signal (OS) from
the MZM’s output using a 3dB coupler. The second polarisation controller ensured
the polarisation coherence between the Optical Signal and Co-Propagating Tone
maximising the PhotoDiode’s (PD) output power. The combination of both signals is
fed into a second EDFA which computer-controls the signal power at the 2 km optical
fibre span’s input. The fibre’s termination is connected to a high-speed photodiode
[Fin14], featuring 90 GHz of bandwidth, generates the electrical RF signal at W-band
through heterodyne beating. The generated RF power, Py, is directly proportional
to Popt and depends on the PD’s responsivity (0.5 A/W).

The photodiode’s output is then connected through a coax to waveguide adaptor
to the envelope detector. At a next step, the downconverted signal goes through a
bias tee which removes its DC component and provides a DC path at the envelope
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detector’s output. Finally, the demodulated baseband signal is fed into a spectrum
analyser in the conversion loss benchmark or in the data detection to a Bit Error
Ratio Tester (BERT) that measures the BER through a 29 dB power amplifier due
to the low BERT sensitivity. The clock is directly synchronised to the BERT from
the PPG because the goal of the data detection benchmark is to characterise the
ED1 in a communication system.

Conversion loss

The Conversion Loss, CL, is measured using the setup from figure 4.33. The ASK
modulated electrical signal that is fed to the ED1 is composed of a —17dBm carrier
with frequency f., which is swept from 75 GHz to 88 GHz, modulated by two —37 dBm
sidebands swept from fy = 0.5GHz to 19 GHz, placed at f. + fg, similar to
section 4.4. The carrier frequency, f., was swept from 75 GHz to 88 GHz because the
first MZM placed after the ECL features a 40 GHz bandwidth, which produces the
two optical tones separated f. GHz, as shown in figure 4.33. As shown in chapter 3, an
ED’s conversion loss accounts for the difference between the obtained downconverted
signal at fg, and the input power at f.4 fq.

Figure 4.35a depicts the experimental conversion loss results from ED1 and
figure 4.35b its 3dB bandwidth. The y- and x-axis represent the ASK input signal’s
carrier frequency, f., and its sideband frequency, fg respectively. The conversion
loss value is quantified with a colour bar, and each element from the 3 dB bandwidth
matrix is painted on white if that fg, is within the 3dB bandwidth or black if it is
not.

In figure 4.35a we can distinguish three well limited regions: f. below 78 GHz, the
central region for f. between 78 GHz and 83 GHz, and f. above 83 GHz.

ED1’s minimum conversion loss value is 11.1 dB, achieved for the carrier frequency
range from 78 GHz to 83 GHz, obtaining 2 GHz of 3dB video bandwidth within this
fe range, due to the low conversion loss for fy, < 2 GHz. For carrier frequencies below
78 GHz, the video bandwidth increases up to 4 GHz because the ED1 provides a higher
conversion loss than in the 78 GHz to 83 GHz f, range for low f, frequencies. When
fc is above 83 GHz, the 3dB video bandwidth increases up to 6 GHz for f. = 86 GHz,
since the conversion loss at fg < 2 GHz increases as well. The main reason for this
conversion loss increment can be found in figure 4.32, where the ED’s experimental
frequency response presents a bigger roll-off than expected for frequencies higher than
90 GHz, which leads to a loss of output power and an increment of the conversion
loss when the ASK carrier or any of the sidebands fall above 90 GHz.

In summary, ED1 features a conversion loss below 24 dB for fy, below 16 GHz in
the full measured f. range (75 GHz - 88 GHz), except for fg, = 7GHz and 8 GHz at
fe = 81 GHz and 82 GHz [Bla+19]. The experimental strict 3dB video bandwidth is
between 2 GHz and 6 GHz, finding a maximum at f. = 86 GHz.
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Figure 4.35: ED1 experimental Conversion Loss.

Data detection

Section 4.4 analyzed the ED1’s performance through simulations when demodulating
an input signal at 15 Gbit/s, 20 Gbit/s and 25 Gbit/s at carrier frequencies between
75 GHz and 110 GHz measuring the eye openness and its Level 1. In this section,
similar to section 3.4, we measure the Bit Error Ratio (BER) of the demodulated
signal, instead of analysing the eye diagram, which is the ratio between the number
of bit errors and the number of transferred bits. The BER result can be classified
into three regions: error free (-Log(BER) > 9), meaning that the demodulation has
been successful; error free with 7% overhead forward error correction (FEC) [CC81;
ITU04] (3 < -Log(BER)< 9), where the information can still be retrieved; and failure
(-Log(BER) < 3).

Figures 4.34 and 4.33 show the setup used to measure the BER in real time, which
is similar to the one used to measure the conversion loss in the previous section.
When measuring the BER, we substituted the second Vector Signal Generator with
a Pulse Pattern Generator (PPG) and the spectrum analyser with a BER tester
(BERT), allowing to run real-time BER measurements. The ASK input signal’s
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carrier frequency was swept from 78 GHz to 92 GHz and its power (Ppg; in figure 4.33)
from -27dBm to -7 dBm.

The results are depicted in figure 4.36 showing the BER vs electrical input power to
the ED1 (Pg;) and bitrate. On the right side of the figure, the colorbar sorts the BER
into error free, with BER > 107 coloured in green; in orange and yellow when error
free demodulation is possible using a 7 % overhead Forward Error Correction (FEC)
[ITUO04], i.e. BER > 1073 and a detection with errors when BER < 1073 painted in
red.

The ED1 demodulates ASK signals up to 14 Gbit/s with f. = 90 GHz and 92 GHz
at a BER of 2:107° and 8.4-107" respectively. Moreover, error free demodulation is
possible for bitrates up to 12 Gbit/s with f. = 82 GHz, which is the f. that offers
the best sensitivity. For every other carrier frequency, demodulation is possible up to
10 Gbit/s using FEC.

These results agree with the previous ones from figures 4.32 and 4.35. The 82 GHz
carrier frequency provides the flattest and broadest video bandwidth in figure 4.35,
therefore the ED1 is able to demodulate error free the highest bitrate at this carrier
frequency. Likewise, carrier frequencies with lower video bandwidth lead to lower
demodulation bitrates.

Similarly, the frequency response results from figure 4.32 are directly related with
the ED1’s sensitivity from figure 4.36. For f. = 78 GHz and 80 GHz, ED1 features
its highest FR, therefore, it also achieves the best sensitivity at these f.’s when
demodulating 4 Gbit/s ASK signals as shown in figure 4.36. Nevertheless, due to
ED1’s lower video bandwidth at these f.’s, the maximum demodulated bitrate is
limited.

Although error free transmission is not reached for f. = 90 GHz and 92 GHz due
to the lower output power that ED1 delivers as depicted in the frequency response
results from figure 4.32, the ED1 achieved its highest demodulation bitrates for
these two carrier frequencies because it is design to offer its best performance in
the W-band central frequencies [Bla+18b]. At these f.’s, the ED1’s phase balance
bandwidth is optimal, leading to a cancellation of the fundamental harmonic spurious
at its output. Section 4.1.3 justified why ED1 provides a lower output power when f.
is within the central W-band, and therefore error free cannot be reached. Boosting
the ED1’s frequency response would lead to error free demodulation for these f.’s,
and could allow to increase the maximum demodulated bitrate.

In contrast, lower f.’s without an adequate phase balance bandwidth work following
a single ended architecture, and therefore they are only able to demodulate lower
bitrates. Since these f.’s have a greater FR, error free demodulation is possible.
These results confirm the statements from section 2.4 proving experimentally the
benefits of this architecture in comparison with a single ended one.

The PD used in this experiment provides 90 GHz of 3dB bandwidth [Finl4],
therefore, it should be considered that this setup’s restriction may limit the quality
of the W-band signal fed into the ED1 for the higher f.’s, since the upper half of
the signal will present lower power at ED1’s input than the lower half due to the
photodiode’s roll-off.
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Figure 4.36: Experimental BER results for carrier frequencies between 78 GHz and
92 GHz, data rates between 2Gbit/s to 14 Gbit/s and input powers
-27dBm and -7dBm [Bla+19].
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Figure 4.37: Experimental wireless setup and link budget.

4.6 Wireless communication experiment

Once we have tested the stand alone ED1’s performance, we wanted to evaluate
its behaviour in the proposed wireless communication scenario, which is the final
goal of the beamformer CELTA demonstrator. ED2 and ED3 were not tested within
the CELTA demonstrator because they had not been manufactured during the
experiment performed during TU/e secondment.

Wireless transmission with horn antennas

We tested ED1’s performance in a point to point wireless communication system
using the setup shown in figure 4.37 with the schematic depicted in figure 4.38. We
decided to perform only the data detection benchmark through a real time signal
transmission, since due to time constraints, the frequency response and conversion loss
benchmarks could not be tested. The transmitter schematic used in this experiment
is the same one from figure 4.34 for the data detection benchmark, i.e. using the PPG.
The W-band signal is generated at the PD’s output through heterodyne beating and
transmitted after being amplified with a 10dB gain medium power amplifier (MPA)
through a pair of horn antennas with 24 dBi gain each.

At the receiver side the signal is amplified with a 22 dB gain Low Noise Amplifier
(LNA) before feeding the W-band ASK signal to the ED1. Similarly as in the back
to back experiment, the ED1’s output is connected to the BERT through a bias tee
and a baseband amplifier.

Since the wireless experiment is exclusively a validation before using beamformer
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Figure 4.39: Experimental BER results the wireless experiment with ED1.

antennas, which were not available at the moment of the experiment, and due to the
time constraints to perform all the W-band experiments from this chapter, we decided
to test the ED1 with only one carrier frequency. Considering that the beamformer
demonstrator carrier frequency was agreed to be in the range of 80 GHz - 85 GHz, and
after evaluating the best compromise between sensitivity and demodulated bitrate
from figure 4.36, we decided to test ED1 with an ASK signal with f. = 82 GHz,
transmitted through 1 m wireless distance. Testing more carrier frequencies could
have been possible with more time, but due to equipment availability, it was not
possible. Nonetheless, the results would not provide a better understanding of the
ED1’s performance, thoroughly analyzed in section 4.5, which is the goal of this
dissertation.

Figure 4.39 shows the BER vs the electrical power at the photodiode’s output
(Pg;) and table 4.4 shows Ppg;’s relation with the ED1’s input power. Error free
demodulation is achieved for bitrates up to 7 Gbit/s. Moreover, it is possible to
demodulate ASK signals up to 9 Gbit/s with a BER of 2.4-107%. In addition, it can
be presumed that increasing the signal’s power at the transmitter would allow to
reach error free for 9 Gbit/s.

With this experiment, we conclude the suitability of the ED1 to work in the

Table 4.4: Relation between PD’s output and ED1’s input powers.
Pg; [dBm] 27 1 -26 | -25 | 24 | -23 | -22 | -21 | -20 | -19 | -18
ED’s Input power [dBm] | -15 | -14 | -13 | -12 | -11 | -10 | -9 | -8 | -7 | -6
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CELTA beamformer demonstrator. Further tests can be accomplished to introduce
the beamforming scheme in the wireless system described in chapter 1, e.g. introducing
the LC antenna in the receiver instead of the current horn antenna or substituting
the current transmitter with the beamformer photonic chip. These modifications
will not change the ED1’s performance, nonetheless they have not been introduced
because the LC antenna and photonic chip had not been manufactured during the
author’s secondment at TUE.

4.7 Analysis and comparison

This chapter has described the design of three W-band envelope detectors and has
shown the simulation results following the three benchmarks described in 3.1 to
test their performance. Moreover, ED1 has been experimentally characterised in
section 4.5. This section compares the simulation and experimental results of ED1
and analyses the statements from section 4.1.3.

Frequency response

Figure 4.40 compares the frequency response simulation results when the input
transmission line is simulated either using CST Microwave Studio (a) or ADS
Momentum (b) with the experimental results obtained at TU Darmstadt, presented
in figure 4.32. The ED’s input signal’s power was set between —6 dBm and —18 dBm
in 4dB steps. The experimentally measured DC output power is depicted using
dashed lines in figure 4.40 and compared with the simulation results in solid lines for
each signal power. The WR-10 waveguide to dielectric filled rectangular waveguide
(DFRW) transition was simulated in CST for both scenarios.

When using the input transmission line model from CST Microwave Studio, there is
a big difference between simulation and experimental results as shown in figure 4.40a.
However, simulating the input transmission line model in ADS Momentum leads to
the simulation results displayed in figure 4.40b, which match thoroughly with the
experimental results within the full W-band.

Conversion loss

Figure 4.41a shows a zoom of figure 4.28a, which depicts the simulated conversion
loss using harmonic balance analysis in ADS, where the input transmission line is
simulated using CST Microwave Studio. Figure 4.41b results from comparing the
simulation (figure 4.41a) and experimental results (figure 4.35a), by subtracting both
conversion loss value matrices. Figure 4.41b’s analysis can be found in [Bla+19] and
is skipped in this dissertation since section 4.1.3 concluded that CST provided wrong
simulation results to the ED1’s input transmission line.

Figure 4.41c depicts the simulated conversion loss of ED1 when modelling the
input transmission line with ADS Momentum, as presented in section 4.1.3. Similarly
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Figure 4.40: Frequency response of ED1: simulation (solid) and experimental (dashed)
results measured at TU Darmstadt from P;,=-6 dBm to —18 dBm.
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Figure 4.41: Comparison of conversion loss of ED1. Input transmission line simulated
with CST Microwave Studio or ADS Momentum.
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Figure 4.42: Conversion loss simulation results comparison.

as before, figure 4.41d compares these simulation results with the experimental from
figure 4.35a by subtracting both conversion loss value matrices.

The results can be divided into two regions separated at f. 81 GHz. For f. =75 GHz
- 81 GHz and low fg, simulation and experimental results match thoroughly. For
fe = 81 GHz - 88 GHz, experimental results show a slightly lower conversion loss
than simulation’s. When the lower sideband tone falls outside the W-band, i.e.
fsv > 4GHz for f. < 79GHz, the simulation results from figure 4.41c are not
an accurate estimation, therefore, the difference in figure 4.41d increases for those
matrix elements. This mismatch is not relevant, since the frequency range outside
the W-band will not be used.

While in figure 4.41b the average difference between simulation and results accounts
to 11.4dB, when using the ADS Momentum input transition line simulated model,
this difference reduces to only 0.4 dB in figure 4.41d, confirming the conclusions from
section 4.1.3, which stated that simulating the input transmission line to ED1 with
CST instead of ADS was the wrong approach when designing ED1.

Figure 4.42a shows ED1’s simulated Conversion Loss performance when its input
transmission line is simulated in ADS Momentum. When comparing figures 4.42a
(ED1) and 4.42b (ED3), it can be seen that the redesign version does not only
provide a higher video bandwidth at the upper W-band half, but also improves the
Conversion Loss in its lower half. In the previous simulation results from ED1 and
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ED2, the Conversion Loss colorbar minimum was set at —25dB. Due to the higher
Conversion Loss values found in 4.42a, the colorbar range needed to be increased up
to —40dB.
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5 Conclusions and Outlook

5.1 Conclusions

The growth in the demand of wireless communication services and data rates requires
the research and development of novel RF systems, leading into a migration to higher
frequencies to grant broader bandwidths to end users. The beamformer demonstrator
conceived in the EU CELTA project operates at W-band (75 GHz to 110 GHz) and
enables high bitrate wireless indoor communications using high directive antennas
and beamforming to align the antennas beams between the transmitter and receiver.
Within this EU project, one transmitter and two receiver blocks are developed. The
second receiver block, produced fully at TU Darmstadt is composed of a liquid crystal
(LC) antenna array and a zero bias Schottky diode based envelope detector (ED)
built in planar technology.

This PhD dissertation has reviewed five Schottky Diode based envelope detectors.
Two of them are designed for UWB (3.1 GHz - 10.6 GHz) which use the Skyworks
SMS7630 and SMS7621 Schottky diodes [Sky15], and three for W-band (75 GHz -
110 GHz) which use the 3DSF Schottky diodes from ACST GmbH [ACS].

The UWB detectors have been used to test and compare different Schottky diode
based ED architectures, to later apply that knowledge to this dissertation final
goal: building a W-band ED for the CELTA beamformer demonstrator. These two
detectors use a balanced architecture, and they mainly differ in the method they use
to obtain the balanced signal which is fed into the ED circuit. UWBI1 uses an external
Balun to produce the balanced signal and UWB2 combines the functionality of a
Rat Race hybrid coupler Balun to obtain the balanced signal, while at the same time
rectifies the input signal, suppressing the output fundamental harmonic. UWB1’s
and UWB2’s single ended version, presented in [Cim+16], is able to demodulate up
to 2.5 Gbit/s ASK modulated signals. Despite of using a bigger and more complex
output low pass filter than UWB1 and UWB2, [Cim+16] does not cancel common
mode noise due to its single ended architecture. UWBI is able to demodulate up to
4 Gbit/s ASK modulated signals and provides a broad phase balance bandwidth at
the cost of introducing higher losses and increasing the ED’s size and cost. On the
other hand, UWB2 demodulates up to 2.5 Gbit/s ASK modulated signals, provides a
better sensitivity and offers a less complex, more compact, and better cost effective
architecture than UWBI, therefore, we decided to use UWB2’s architecture to design
three W-band EDs: ED1, ED2 and ED3.

ED1 has been designed using the Rogers 5880 substrate. According to the results
presented in chapter 4, ED1 experimentally provides 20 GHz of input bandwidth,
a minimum conversion loss of 11dB, and features up to 6 GHz video bandwidth.
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Moreover, ED1 achieves real time error free demodulation of signals up to 12 Gbit/s
using a 82 GHz carrier. Besides, for 90 GHz to 92 GHz carriers a BER below the limit
for 7% overhead FEC for 14 Gbit/s signals was measured [Bla+19]. Section 4.5 shows
that ED1 suffers from a roll-off in its experimental frequency response for frequencies
above 92.5 GHz, which in simulation results appeared at 100 GHz. For this reason,
we decided to design two additional W-band EDs. ED2 pursues to shift up the roll-of
by substituting the Rogers substrate with a fused silica one, which has been tested
for long time when using the 3DSF ACST Schottky diodes, and was the substrate
use for their characterisation. ED3 attempts to check the roll-off’s origin and shift it
to higher frequencies.

ED2 uses fused silica quartz Corning 7980 as substrate. It provides 35 GHz of input
and 22 GHz of video bandwidth, introducing a minimum conversion loss of 7.6 dB.
These results could only be calculated in simulations, since its assembly could not be
finished due to technical issues at TU Darmstadt facilities’ equipment to install the
connect the grounds to the detector’s package.

In section 4.1.3 we proved that ED1’s roll-off arises from a simulation inaccuracy
from CST Microwave Studio, which has been the software used to simulate the
WR-10 waveguide to microstrip transition, the microstrip taper and the 50 Q) input
transmission line to ED1 and ED2. We observed, using ADS Momentum, that
ED1’s microstrip taper and its 502 input transmission line provide higher frequency
dependent losses than what CST Microwave Studio calculated. For this reason, we
decided to design ED3, a redesigned version of ED1, where its input transmission
line was shortened and shrunk with respect to ED1’s, reducing the high frequency
losses. We checked that CST Microwave Studio’s miscalculation is negligible in ED2.

ED3 is built in Rogers 5880 and features 29 GHz of input and 18 GHz of video
bandwidth, improving ED1’s simulation results depicted in section 4.1.3. ED3 could
be assembled, but the diodes could not be mounted, therefore, only simulation results
are presented.

Recalling the state of the art analysed in the introduction, table 5.1 and figure 5.1
add the experimental results from the envelope detectors presented in this dissertation,
and compares them with the previous state of the art and the goals pursued in the
CELTA’s beamformer demonstrator and in this dissertation. Tables 5.2 and 5.3
summarise the five envelope detectors’ features, their simulation and experimental
results. Comparing UWB1 and UWB2 in table 5.1 with its single ended version,
[Cim—+16], justifies the use of a balanced architecture for this project. Only ED1 was
experimentally tested, using the frequency response and conversion loss benchmarks
due to time constraints for UWB1 and UWB2, and because ED2 and ED3 were not
fully mounted. Nevertheless, UWB1, UWB2 and ED1 were measured using real time
data transmission measurements, i.e. the data detection benchmark.

UWBI outperforms considerably the state of the art of UWB envelope detectors,
increasing Ab and the demodulated bitrate. UWB2 provides the same performance
as the previous best result, while it proves the feasibility of a new ED architecture
introduced in [Bla+18a].

As confirmed in section 4.5, ED1 experimentally fulfils all the goals set for this
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Table 5.1: UWB and W-band envelope detectors state of the art.

# Ref [ G];jlz] ]F(;E?;;T [%%? Connection Architecture
1 [Cim+16] 7 2.5 35.7 Coaxial Single Ended
2 [Sil+17] 7 2.5 35.7 Coaxial Single Ended
3 [Cim+18] 6 2.5 41.7 Coaxial Single Ended
4 [SO07) 5.5 1 18.2  Probe tip on chip  Single Ended
5 UWBI1 4-8 4 100-50 Coaxial Balanced

6 UWB2 8 2.5 31.3 Coaxial Balanced

7 [TMA15] 101 26 25.7  Probe tip on chip Balanced

8 [Kuo+12] 93 25 26.9 Wireless (0.3 m) n/a

9 [Tho+14] 108 24 22.2  Probe tip on chip n/a

10 [Pan+11] 93 20 21.5 Wireless (20 cm) n/a

11 [Lee+16] 84 20 23.8  Probe tip on chip  Single Ended
12 [Lee+15] 80 12 15 Wireless (1.2cm)  Single Ended
13 [Nak+09] 85.5 10 11.7  Probe tip on chip  Single Ended
14 [Nak+14] 80 12.5 15.6 Wireless (2 cm) Balanced
15 [Nak+14] 100 7.6 7.6 Wireless (2cm) Balanced
16 [Guz+19; Ali+18] 81 3 3.7 Wireless (0.5m)  Single Ended

WR-10 (IN)

17 ED1 75-92 14 15.5 Coaxial (OUT) Balanced
18 82 7 20.7 Wireless (1m) Balanced

Table 5.2: Design features, simulation (sim) and experimental (exp) results (frequency
response and conversion loss) from the EDs presented in this dissertation.

Input BW Video BW Min. CL

Architecture Substrate (GHZ] (GHZ] [dB]

UWBI (Sim) Eg‘;l'agiuél])& Rogers 4003 7.8 2 3.2
UWB2 (Sim) RZ; ggce Rogers 4003 6.9 2 1.2
ED1 (Sim) Rogers 5880 20 20 13.2
ED1 (Exp) Rat &?ace Rogers 5380 20 6 11.1
ED2 (Sim) ED Fused Silica 35 25 7.6
ED3 (Sim) Rogers 5880 29 18 6.6

Table 5.3: Data detection experimental results from the envelope detectors described

in this dissertation.

Max. Bitrate Working f Sensitivity Best Ab
(Error Free) [GHZ] (Error Free) (%]
[Gbit/s] [dBm)]
UWB1 4 4-8 -9 100
UWB2 2.5 4-9 -12 31.75
ED1 12 78-92 -9 14.63
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Figure 5.1: UWB and W-band envelope detectors state of the art. References in table
5.3

dissertation in chapter 1 and the CELTA’s beamformer requirements. Moreover, it is
able to demodulate higher bitrates than proposed in chapter 1, despite of its slightly
lower carrier frequency operational range as shown in figure 5.1.

When compared with the state of the art, some detectors measured using probe
tips on chip show a better performance. Nevertheless, when connected to an antenna
featuring a WR-10 interface they would need to add a packaging, adapter or transition
which may limit their performance and increase cost and complexity, while ED1
allows the possibility to be plugged in most of commercial W-band antennas, and in
particular in the LC antenna designed for the CELTA’s demonstrator without the
need of any extra device. Some authors have overcome this limitation introducing
short range antennas (up to 2 cm), which is too limited for the project’s requirements.
[Kuo+12] provides a higher bitrate, 25 Gbit/s at a reasonable distance (0.3m), but
still less than 1 m.

Comparing ED1 and [Guz+19] is more fair because both use the same Schottky
diodes from ACST GmbH and Rogers RT-Duroid 5880 substrate [Ali4+18]. The
comparison proves that ED1 improves the state of the art significantly: while [Guz+19]
demodulates up to 3 Gbit/s with 0.5 m of distance, ED1 boost it up to 7 Gbit/s with
1m.

When experimentally measured, we believe that ED2 and in particular ED3 will
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improve ED1’s performance in terms of bitrate and carrier frequency operational
range due to their broader input and video bandwidths. Moreover, their sensitivity
should improve, since the lossy input transition line has been shortened in both
detectors.

5.2 Outlook

Future work can be addressed from two perspectives: as an improvement of the work
presented in this dissertation; or by using the knowledge obtained from this work to
research new techniques and paths to introduce sub-THz and THz Schottky diode
based envelope detectors in next generation communication systems.

The two UWB envelope detectors can be upgraded in different ways since they
complement to each other. UWB1 has been able to demodulate high data rate signals,
while presenting a lower sensitivity than UWB2. UWB1'’s sensitivity can be boosted
by replacing the Marki Balun Bal-0010 with another Balun. The BAL-0212 from
Marki introduces 4 dB insertion loss instead of 8 dB, nevertheless, it was not used
since in it was out of stock at the purchase moment. UWB2 addresses the loss of
sensitivity with a new envelope detector architecture which reduces the size and cost
of the detector circuit, at the cost of providing a lower phase balance bandwidth.
This bandwidth can be either widened, or optimised for another application with a
redesign of the detector circuit’s shorted stubs or by choosing other Schottky diodes.

Due to their higher design and manufacturing complexity, the W-band envelope
detectors have more room for improvement. The first enhancement has been presented
in section 4.1.3, where we pursued to shift ED1’s frequency response roll-off to
higher frequencies. Although ED2 and ED3 were developed to solve this effect,
a better characterization of the Rogers RO 5880 at W-band through measuring
several transmission lines with different lengths and widths would be interesting.
This experiment can help to correlate its outcome with the simulation software’s
model (CST Microwave Studio and ADS Momentum), investigating which software
estimates the results best and introducing the substrates features into them to obtain
more accurate simulation results. This is the path to follow if it is found that ED3
experimental results do not match simulations.

Fabricating ED2 has been very challenging, and the final prototype suffers from
manufacturing tolerances which are critical in the design. Inaccuracies in the metallic
block prototypes implied obtaining unexpected results in the WR-10 waveguide to
microstrip line transition’s S-parameters. This mismatch in the blocks dimension
could be solved by improving the milling process. Besides, as explained in section 4.2.2,
the ground pads must be connected.

ED3 is the most promising detector in the author’s opinion. It combines the
metallic blocks from ED1, which experimentally proved a good performance; with
the new redesign discussed in sections 4.1.3 and 4.3, which should provide a broader
input bandwidth. Diode mount and ED3’s experimental characterization is the next
step to follow, to compare its performance with ED1 and confirm the assertions
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expounded in section 4.1.3.

Both UWB and W-band EDs can benefit of introducing a low noise amplifier
(LNA) at their input to enhance their sensitivity or at their output to increase the
delivered power.

104 Angel Blanco Granja



Bibliography

[ACS]
[Ali4+18]

[And+14]

[Ang+00]

[BJP17]

[Bla+17]

[Bla+18a]

ACST. ACST. URL: http://acst.de/.

Mubhsin Ali, Robinson Cruzoe Guzman, Alejandro Rivera-Lavado,
Oleg Cojocari, Luis Enrique Garcia-Mufioz, and Guillermo Carpintero.
“Quasi-Optical Schottky Barrier Diode Detector for mmWave/sub-THz
Wireless Communication”. In: 2018 25th International Conference on
Telecommunications, ICT 2018 (2018), pp. 279-282. po1: 10.1109/
ICT.2018.8464871.

J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. K.
Soong, and J. C. Zhang. “What Will 5G Be?” In: IEEE Journal on
Selected Areas in Communications 32.6 (June 2014), pp. 1065-1082.
ISSN: 1558-0008. pOI: 10.1109/JSAC.2014.2328098.

K.S. Ang, 1.D. Robertson, K Elgaid, and I.G. Thayne. “40 to
90 GHz impedance-transforming CPW Marchand balun”. In: 2000
IEEE MTT-S International Microwave Symposium Digest (Cat.
No.00CH37017). Vol. 2. IEEE, 2000. pOI: 10.1109/MWSYM . 2000 .
863559. URL: http://ieeexplore.ieee.org/document/863559/.

Angel Blanco Granja, Rolf Jakoby, and Andreas Penirschke.
“Outright W-Band chebyshev-based hollow waveguide to microstrip
transition”. In: 2017 42nd International Conference on Infrared,
Millimeter, and Terahertz Waves (IRMMW-THz). IEEE, 2017. DOI:
10.1109/IRMMW-THz.2017.8067045. URL: http://ieeexplore.ieee.
org/document/8067045/.

Angel Blanco Granja, Bruno Cimoli, Sebastian Rodriguez, Rolf
Jakoby, Jesper Bevensee Jensen, Andreas Penirschke, Idelfonso Tafur
Monroy, and Tom Keinicke; Johansen. “Ultra-wideband balanced
schottky envelope detector for data communication with high bitrate
to carrier frequency ratio”. In: 2017 IEEE MTT-S International
Microwave Symposium (IMS). IEEE, 2017, pp. 2052-2055. DOI: 10.
1109/MWSYM. 2017 .8059074. URL: http://ieeexplore. ieee.org/
document/8059074/.

Angel Blanco Granja, Bruno Cimoli, Sebastian Rodriguez, Rolf
Jakoby, Jesper Bevensee Jensen, Andreas Penirschke, Idelfonso Tafur
Monroy, and Tom Keinicke Johansen. “Compact high-speed envelope
detector architecture for ultra-wideband communications”. In:
Microwave and Optical Technology Letters 60 (2018), pp. 936-941.

105



Schottky Diode Based Envelope Detectors in Planar Topology for UWB and

W-Band

[Bla+18b]

[Bla+19]

[Bod45]
[Bou-+09]

[BPO3]

[Cab-+09]

[CAZ15]

[CC13]

[CC81]

DOI: 10.1002/mop . 31068. arXiv: 0604155 [physics]. URL: http:
//doi.wiley.com/10.1002/mop.31068.

Angel Blanco Granja, Roland Reese, Rolf Jakoby, and Andreas
Penirschke. “Ultra-Broadband W - Band Balanced Schottky Diode
Envelope Detector for High-Data Rate Communication Systems”. In:
2018Septe(2018) DOI: 10.1109/IRMMW-THz.2018.8510047. URL
https://ieeexplore.ieee.org/document/8510047/.

Angel Blanco Granja, Dimitrios Konstantinou, Simon Rommel,
Bruno Cimoli, Sebastian Rodriguez, Roland Reese, Ulf Johannsen,
Rolf Jakoby, Tom K Johansen, Idelfonso Tafur Monroy, and
Andreas Penirschke. “High Data Rate W-Band Balanced Schottky
Diode Envelope Detector for Broadband Communications”. In:
European Microwave Week 2019. 2019. DOI: 10.23919/EuMIC.2019.
8909428. URL: http://http://ieeexplore. ieee.org/document/
8909428.

H.W Bode. Network analysis and feedback amplifier design. 1945.

Bouraima Boukari, Emilia Moldovan, Sofiene Affes, Ke Wu,
R.G. Bosisio, and S.O. Tatu. “Robust Microstrip-to-Waveguide
Transitions for Millimeter-Wave Radar Sensor Applications”. In: IEEFE
Antennas and Wireless Propagation Letters 8 (2009), pp. 759-762. DOI:
10.1109/LAWP.2009.2016681. URL: http://ieeexplore.ieee.org/
document/4798222/.

Inder 1.J. Bahl and Bhartia P. Microwave Solid State Circuit Design.
2003.

Antonio Caballero, Roberto Rodés, Jesper Bevensee Jensen, and
Idelfonso Tafur Monroy. “Impulse radio ultra wide-band over
multi-mode fiber for in-home signal distribution”. In: International
Topical Meeting on Microwave Photonics (MWP) (2009).

Sona Carpenter, Morteza Abbasi, and Herbert Zirath. “Fully integrated
D-band direct carrier quadrature (I/Q) modulator and demodulator
circuits in InP DHBT technology”. In: IEEE Transactions on
Microwave Theory and Techniques 63 (2015). DOI: 10.1109/TMTT.
2015.2409831.

Kwok Keung M Cheng and Man Chum J Chik. “A
frequency-compensated rat-race coupler with wide bandwidth
and tunable power dividing ratio”. In: IEEE Transactions on
Microwave Theory and Techniques 61 (2013), pp. 2841-2847. DOI:
10.1109/TMTT.2013.2271610.

George Cark JR and J Bibb Cain. Error-Correction Coding for Digital
Communications. 1st ed. Springer, 1981.

106

Angel Blanco Granja



Schottky Diode Based Envelope Detectors in Planar Topology for UWB and

W-Band

[CC99]

[CEL]
[Cim+16]

[Cim+18]

[Cis20]

[Coj+19]

[Coj07]
[Com]
[Cor14]

[Dah+14]

[ECC04]

[ELV]

Chi-Yang Chang and Yang Chu-Chen. “A Novel Broad-Band
Chebyshev-Response”. In: IEEE Transactions On Microwave Theory
And Techniques, 47 (1999), pp. 455-462.

CELTA. CELTA. URL: http://www.celta-itn.eu/.

Bruno Cimoli, Guillermo Silva Valdecasa, Angel Blanco Granja,
Jesper Bevensee Jensen, Idelfonso Tafur Monroy, Tom Keinicke
Johansen, and Juan Jose Vegas Olmos. “An ultra-wideband schottky
diode based envelope detector for 2.5 Gbps signals”. In: 2016 46th
European Microwave Conference (EuMC). IEEE, 2016, pp. 277-280.
DOI: 10.1109/EuMC.2016.7824332. URL: http://ieeexplore.iecee.
org/document/7824332/.

Bruno Cimoli, Juan Sebastian Rodriguez Paez, Arsen Turhaner,
Tom Keinicke Johansen, and Juan Jose Vegas Olmos. “Active HEMT
based Envelope Detector for Ultra-Wideband Wireless Communication
Systems”. In: IEEE MTT-S International Microwave Symposium Digest
2018-June (2018), pp. 923-926. DOI: 10.1109/MWSYM.2018.8439661

Cisco. “Cisco Annual Internet Report (2018-2023)”. In: Cisco (2020).
URL: https://www.cisco.com/c/en/us/solutions/collateral/
executive-perspectives/annual-internet-report/white-paper-
c11-741490.html.

Oleg Cojocari, Matthias Hoefle, DIego Moro-Melgar, Ion Oprea, and
Martin Rickes. “European Schottky-Diode Based Receiver Technology”.
In: 2019 44th International Conference on Infrared, Millimeter, and
Terahertz Waves (IRMMW-THz). IEEE, 2019. por: 10.1109/IRMMW-
THz.2019.8873877.

Oleg Cojocari. “Schottky technology for THz-electronics”. PhD thesis.
TU Darmstadt, 2007.

Bifrost Communications. Bifrost Communications. URL: https://
bifrostcommunications.com/.

Corning Inc. Corning HPFS 7979, 7980, 8652, 8655 Fused Silica Optical
Materials Product Information. 2014.

E. Dahlman, G. Mildh, S. Parkvall, J. Peisa, J. Sachs, Y. Selén, and
J. Skold. “5G wireless access: requirements and realization”. In: IEEFE
Communications Magazine 52.12 (2014), pp. 42-47. 1SSN: 1558-1896.
DOI: 10.1109/MCOM.2014.6979985.

ECC. “Draft {Ecc} Report on the Protection Requirements of
Radiocommunication Systems Below 10.6 Ghz From Generic Uwb
Applications”. In: (2004).

ELVA-1. ELVA-1. URL: http://elva-1.com/products/a40040.

Angel Blanco Granja 107



Schottky Diode Based Envelope Detectors in Planar Topology for UWB and

W-Band

[Esh+05]

[Fan61]

[FB97]

[FC02]

[Finl4]

[GG84]

[Guz+19]

[Ham+13]

[HGIS|

Islam A. Eshrah, Ahmed A. Kishly, Alexander B. Yakovlev, and
Allen W. Glisson. “Rectangular waveguide with dielectric-filled
corrugations supporting backward waves”. In: IEEFE Transactions on
Microwave Theory and Techniques 53 (2005), pp. 3298-3304. DOTI:
10.1109/TMTT.2005.855748.

R.M Fano. “Theoretical Limitations on the Broad-Band Matching of
Arbitrary Impedances”. In: IRE Transactions on Circuit Theory 8
(1961). por: 10.1109/TCT.1961.1086770. URL: http://ieeexplore.
ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1086770.

Gerhard L. Friedsam and Erwin M. Biebl. “Precision free-space
measurements of complex permittivity of polymers in the W-band”.
In: IEEE MTT-S International Microwave Symposium Digest 3 (1997).
DOI: 10.1109/mwsym. 1997 .596579.

Federal and Commission Communications. Revision of Part 15 of the
Commission’s Rules Regarding Ultra- Wideband Transmission Systems.
2002.

Finisar Corporation. In: (2014). URL: https : //www . finisar .
com / sites / default / files / downloads / xpdv412xr % 7B % 5C _
%7Dultrafast % 7B % 5C _ %7D100 % 7B % 5C _ %7Dghz % 7B % 5C _
%7Dphotodetector % 7B % 5C _ %7Drev % 7B % 5C _ %7Dal % 7B % 5C _
%7Dproduct’%7BY%5C_%7Dspecification. pdf.

R.K. Gupta and W.J. Getsinger. “Quasi-Lumped-Element 3- and 4-Port
Networks for MIC and MMIC Applications”. In: MTT-S International
Microwave Symposium Digest. Vol. 84. MTT005, 1984, pp. 409-411.
DOI: 10.1109/MWSYM. 1984.1131810. URL: http://ieeexplore.ieee.
org/document/1131810/.

Robinson Guzman, Muhsin Ali, Alberto Zarzuelo, Jessica Cesar Cuello,
and Guillermo Carpintero. “Compact millimeter-wave wireless link
using photonic-based broadband transmitter and schottky-based
envelope detector”. In: International Conference on Transparent Optical
Networks 2019-July.c (2019), pp. 1-4. 1SSN: 21627339. DOI: 10.1109/
ICTON.2019.88404609.

Shinichiro Hamada, Atsushi Tomiki, Tomoaki Toda, and Takehiko
Kobayashi. “Wireless connections within spacecrafts to replace wired
interface buses”. In: IEEE Aerospace Conference Proceedings (2013).
DOI: 10.1109/AER0.2013.6496961.

Jeffrey Hesler and Boris Gelmont. A Discussion of Power Coupling
Bandwidth Limitations of Planar Schottky Diodes at Submillimeter
Wawvelengths. 1998.

108

Angel Blanco Granja



Schottky Diode Based Envelope Detectors in Planar Topology for UWB and

W-Band

[Hoe+11]

[Hoe+13]

[Hoe+14]

[Hoe+15]

[Hof14]

[HPC11]

[Hro+13]

[Inc]

[Int04]

Matthias Hoefle, Katharina Schneider, Andreas Penirschke, Oleg
Cojocari, and Rolf Jakoby. “Characterization and impedance matching
of new high sensitive planar Schottky detector diodes”. In: 2011 German
Microwave Conference (2011).

Matthias Hoefle, Katharina Haehnsen, Ion Oprea, Oleg Cojocari,
Andreas Penirschke, and Rolf Jakoby. “Highly responsive planar
millimeter wave zero-bias schottky detector with impedance matched
folded dipole antenna”. In: 2013 IEEE MTT-S International Microwave
Symposium Digest (MTT). IEEE, 2013. por: 10.1109/MWSYM. 2013.
6697580. URL: http://ieeexplore.ieee.org/document/6697580/.

Matthias Hoefle, Andreas Penirschke, Oleg Cojocari, T Decoopman,
M Trier, P Piironen, M G Périchaud, and R Jakoby. “89 GHz zero-bias
Schottky detector for direct detection radiometry in European satellite
programme MetOp-SG”. In: Electronics Letters 50 (2014), pp. 606-608.
DOI: 10.1049/e1.2014.0222. URL: http://www.scopus.com/inward/
record.url?eid=2-s2.0-84899658121%7B%5C&}7DpartnerID=40Y%
7BY%5C&,7Dmd5=769d1908f62808b4ead2cf70fe44bf92.

Matthias Hoefle, Oleg Cojocari, Mykola Sobornytskyy, Andrze;
Jankowski, Ion Oprea, Andreas Penirschke, Rolf Jakoby, Thibaut
Decoopman, Marie-Genevieve Perichaud, and Petri Piironen. “Low
noise 89 GHz detector module for MetOp-SG”. In: 2015 European
Microwave Conference (EuMC). IEEE, 2015, pp. 395-398. pOI: 10.
1109/EuMC. 2015 . 7345783. URL: http://ieeexplore. ieee . org/
document/7345783/.

Matthias Hofle. “Concepts and Design of Zero-Bias Schottky Detectors
for Millimetre Wave Applications”. PhD thesis. 2014.

Matthias Hoefle, Andreas Penirschke, and Oleg Cojocari. “Advanced RF
characterization of new planar high sensitive zero-bias Schottky diodes”.
In: Microwave Integrated (2011), pp. 89-92. URL: http://ieeexplore.
ieee.org/xpls/abs7B%5C_%7Dall. jsp?arnumber=6102811.

Michael Hrobak, Michael Sterns, Marcus Schramm, Wadim Stein,
and Lorenz Peter Schmidt. “Planar zero bias schottky diode detector
operating in the E- and W-band”. In: Furopean Microwave Week 20183,
EuMW 2013 - Conference Proceedings; FuMC 2013: 483rd Furopean
Microwave Conference (2013), pp. 179-182.

Macom Technology Solutions Inc. AGS814: Principles, Applications and
Selection of Receiving Diodes.

Intel. “Ultra-Wideband (UWB) Technology Enabling high-speed
wireless personal area networks”. In: Intel White Paper (2004). URL:
http://wuw.usb.org/wusb/docs/Ultra-Wideband.pdf.

Angel Blanco Granja 109



Schottky Diode Based Envelope Detectors in Planar Topology for UWB and

W-Band

[ITU04]

[JeP]
[JKO8]

[IM14]

[Jos+16]

[Ker95]

[Kim+-09]

[Kob+99]

[Koe+13]

ITU-T Recommendation G.975.1. “Forward error correction for high
bit-rate DWDM submarine systems”. In: (2004).

JePPIX. JePPIX. URL: http://www.jeppix.eu/.

Tom Keinicke Johansen and Viktor Krozer. “Analysis and Design of
Lumped Element Marchand Baluns”. In: (2008).

Doug Jorgesen and Christopher Marki. Balun basics primer: A Tutorial
on Baluns, Balun Transformers, Magic-Ts, and 180° Hybrids. 2014.

M. Jost, R. Reese, C. Weickhmann, C. Schuster, O. H. Karabey,
H. Maune, and R. Jakoby. “Tunable dielectric delay line phase shifter
based on liquid crystal technology for a SPDT in a radiometer
calibration scheme at 100 GHz”. In: IEEE MTT-S International
Microwave Symposium Digest 2016-Augus (2016). DOI: 10.1109/MWSYM.
2016.7540007.

A.R. Kerr. “Some fundamental and practical limits on broadband
matching to capacitive devices, and the implications for SIS mixer
design”. In: IEEE Transactions on Microwave Theory and Techniques
43 (1995), pp. 2-13. por: 10 . 1109 /22 . 363015. URL: http://
ieeexplore.ieee.org/document/363015/.

Seung Hwan Kim, Kang Ho Son, Ell Kou Kim, Young Soon Lee,
Young Kim, and Young Chul Yoon. “Size reduction and wide
bandwidth rat-race coupler with shunt capacitors and composite
right /left-handed transmission line”. In: APMC 2009 - Asia Pacific
Microwave Conference 2009 (2009). DOI: 10 . 1109 / APMC . 2009 .
5384491.

Kevin W. Kobayashi, Aaron K. Oki, Liem T. Tran, John C. Cowles,
Augusto Gutierrez-Aitken, Frank Yamada, Thomas R. Block, and
Dwight C. Streit. “A 108-GHz InP-HBT Monolithic Push-Push VCO
with Low Phase Noise and Wide Tuning Bandwidth”. In: IEEE Journal
of Solid-State Circuits 34 (1999). DOI: 10.1109/4.782080.

S. Koenig, F. Boes, D. Lopez-Diaz, J. Antes, R. Henneberger,
R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude,
O. Ambacher, I. Kallfass, and J. Leuthold. “100 Gbit/s Wireless
Link with mm-Wave Photonics”. In: Optical Fiber Communication
Conference/National Fiber Optic Engineers Conference 2013. Optical
Society of America, 2013, PDP5B.4. pDoI: 10.1364/0FC.2013.PDP5B. 4.
URL: http://www.osapublishing. org/abstract.cfm?URI=0FC-
2013-PDP5B. 4.

110

Angel Blanco Granja



Schottky Diode Based Envelope Detectors in Planar Topology for UWB and

W-Band

[Kuo+12]

[Lee+15]

[Lee+16]

[Liu+07]

[LTN13]

[LW99)]

[Maa03]

[Mara]
[Marb]
[Mar68]

F. M. Kuo, J. W. Shi, Nan Wei Chen, Jeffery Hesler, and J. E. Bowers.
“25 Gbit /s error-free wireless on-off-keying data transmission at W-band
using ultra-fast photonic transmitter-mixers and envelop detectors”.
In: Optics InfoBase Conference Papers March (2012). 1SSN: 21622701.
DOI: 10.1364/0fc.2012.0thle.5.

Hae Jin Lee, Joong Geun Lee, Chae Jun Lee, Tae Hwan Jang, Ho Jung
Kim, and Chul Soon Park. “High-speed and low-power OOK CMOS
transmitter and receiver for wireless chip-to-chip communication”. In:
IEEE MTT-S International Microwave Workshop Series on Advanced
Materials and Processes for RF and THz Applications, IEEE MTT-S
IMWS-AMP - Proceedings. 2015. DOI: 10.1109/IMWS - AMP . 2015.
7324964.

Hae Jin Lee, Joong Geun Lee, Chae Jun Lee, Chul Soon Park,
and Ho Jung Kim. “An 20-Gb/s W-Band OOK CMOS Receiver for
High-Speed Wireless Interconnect”. In: IEEE Microwave and Wireless
Components Letters 26 (2016), pp. 840-842. po1: 10.1109/LMWC.2016.
2605402.

J.-X. Liu, C.-Y. Hsu, H.-R. Chuang, and C.-Y. Chen. “A 60-GHz
Millimeter-wave CMOS Marchand Balun”. In: 2007 IEEE Radio
Frequency Integrated Circuits (RFIC) Symposium. Vol. 51. IEEE,
2007, pp. 445-448. DOI: 10.1109/RFIC. 2007 .380920. URL: https:
//ieeexplore.ieee.org/document/4266468/.

Eric S. Li, Gui-Xiang Tong, and Dow Chih Niu. “Full W -band
Waveguide-to-microstrip Transition With New E-plane Probe”. In:
IEEFE Microwave and Wireless Components Letters 23 (2013), pp. 4-6.
DOI: 10.1109/LMWC.2012.2235176. URL: http://ieeexplore.ieece.
org/lpdocs/epic03/wrapper.htm?arnumber=6400266.

Yoke-Choy Leong and S. Weinreb. “Full band waveguide-to-microstrip
probe transitions”. In: Microwave Symposium Digest, 1999 IEEE
MTT-S International 4 (1999). pOI: 10.1109/MWSYM. 1999.780219.
URL: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?
arnumber=780219.

A Maas, Stephen. Nonlinear Microwave and RF Clircuits. 2nd. Vol. 1.
Artech House, 2003. DOI: 10.1017/CB09781107415324 . 004. arXiv:
arXiv:1011.1669v3.

Marki Microwaves. Broadband balun BAL-0010.
Marki Microwaves. Microwave Power Dividers and Couplers Tutorial.

Steven March. “A Wideband Stripline Hybrid Ring (Correspondence)”.
In: IEEE Transactions on Microwave Theory and Techniques 16 (1968),
pp. 361-361. Do1: 10.1109/TMTT . 1968 . 1126693. URL: http://
ieeexplore.ieee.org/document/1126693/.

Angel Blanco Granja 111



Schottky Diode Based Envelope Detectors in Planar Topology for UWB and

W-Band

[Max08]
[Mic]

[MM18]

[Mor+17]

[Mor+19]

[Moy+08]

[Nak+09]

[Nak+14]

Maxim Integrated. HFAN-09.0.1: NRZ Bandwidth - HF Cutoff vs. SNR.
2008.

Marki Microwave. Mark: Microwave. URL: http : / / www .
markimicrowave.com/.

Alvaro Morales and Idelfonso Tafur Monroy. “Silicon Nitride Integrated
Optical Beamforming Network for Millimeter Wave Photonics Systems”.
In: 2018 48th European Microwave Conference, EuMC 2018 (2018),
pp. 785-788. DOI: 10.23919/EuMC.2018.8541583.

Alvaro Morales, Sebastidn Rodriguez, Omar Gallardo, Juan Jose Vegas
Olmos, and Idelfonso Tafur Monroy. “Beam steering application for
W-band data links with moving targets in 5G wireless networks”.
In: Journal of Communications and Information Networks 2 (2017),
pp. 91-100. DOT: 10.1007/s41650-017-0023-9. URL: http://link.
springer.com/10.1007/s41650-017-0023-9.

Alvaro Morales, Serguei Smirnov, Dmitri V Lioubtchenko, and Joachim
Oberhammer. “Photonic-Based Beamforming System for Sub-THz
Wireless Communications”. In: Furopean Microwave Conference in
Central Europe. 2019.

H. P. Moyer, J. N. Schulman, J. J. Lynch, J. H. Schaffner, M. Sokolich,
Y. Royter, R. L. Bowen, C. F. McGuire, M. Hu, and A. Schmitz.
“W-band Sb-diode detector MMICs for passive millimeter wave
imaging”. In: IEEE Microwave and Wireless Components Letters
18.10 (2008), pp. 686-688. 15SN: 15311309. DOI: 10.1109/LMWC.2008.
2003471.

Yasuhiro Nakasha, Masaru Sato, Tatsuhiko Tajima, Yoichi Kawano,
Toshihide Suzuki, Tsuyoshi Takahashi, Kozo Makiyama, Toshihiro Ohki,
and N. Hara. “W-band Transmitter and Receiver for 10-Gb/s Impulse
Radio With an Optical-Fiber Interface”. In: IEEE Transactions on
Microwave Theory and Techniques 57 (2009), pp. 3171-3180. DOI:
10.1109/TMTT.2009.2033242.

Akihiro Nakajima, Jaejin Jeongseok Lee, Shinhee Cho, Kensuke
Nakajima, Akihiro Maruyama, Masato Kohtani, Tsuyoshi Sugiura,
Fiichiro Otobe, Jaejin Jeongseok Lee, Shinhee Cho, Kyusub Kwak,
Jaejin Jeongseok Lee, Toshihiko Yoshimasu, and Minoru Fujishima.
“23Gbps 9.4pJ/bit 80/100GHz band CMOS transceiver with on-board
antenna for short-range communication”. In: IEEE Asian Solid-State
Circuits Conference, A-SSCC (2014). DOI: 10.1109/ASSCC . 2014 .
7008888.

112

Angel Blanco Granja



Schottky Diode Based Envelope Detectors in Planar Topology for UWB and

W-Band

[NDR16]

INY19)

[OHI04]

[0S03]

[OWH96]

[Pan+11]

[Par89]

[Per+16]

[Pér+18]

[PHO3]

[Poz12]

Tadao Nagatsuma, Guillaume Ducournau, and Cyril C. Renaud.
“Advances in terahertz communications accelerated by photonics”. In:
Nature Photonics 10 (2016), pp. 371-379. poI: 10.1038/nphoton.
2016.65.

D. Nyzovets and Y. Yashchyshyn. “A mm-Wave Beam-Steerable
Leaky-Wave Antenna with Ferroelectric Substructure”. In: 2019 13th
European Conference on Antennas and Propagation (EuCAP). Mar.
2019.

Tan Oppermann, Matti Hamalainen, and Jari linatti. UWB Theory
and Applications. Ed. by lan Oppermann, Matti Haméldinen, and
Jari linatti. Wiley, 2004. DOI: 10.1002/0470869194. URL: https:
//onlinelibrary.wiley.com/doi/book/10.1002/0470869194.

Sophocles J Orfanidis and J Orfanidis Sophocles. “Electromagnetic
Waves and Antennas”. In: Media 2 (2003), pp. 313-321. por: 10.
1016/B978-075064947-6/50011-3. arXiv: arXiv:1011.1669v3. URL:
http://wuw.ece.rutgers.edu/%7B~}7Dorfanidi/ewa/.

Allan.V Oppenheim, Allan Willsky, and S Hamid. Signals and Systems.
Ed. by Prentice Hall. Second edi. Pearson, 1996.

C. L. Pan, C. W. Chow, C. H. Yeh, C. B. Huang, and J. W. Shi. “Recent
advances in millimeter-wave photonic wireless links for very high data
rate communication”. In: NPG Asia Materials 3 (2011), pp. 41-48.
DOI: 10.1038/asiamat.2010.193.

S.J. Parisi. “180 degrees lumped element hybrid”. In: IEEE MTT-S
International Microwave Symposium Digest. IEEE, 1989. DOI: 10.1109/
MWSYM. 1989.38951. URL: http://ieeexplore.ieee.org/document/
38951/.

Jose M. Perez, Ainara Rebollo, Ramon Gonzalo, and Inigo Ederra.
“An inline microstrip-to-waveguide transition operating in the full
W-Band based on a Chebyshev multisection transformer”. In: 2016
10th European Conference on Antennas and Propagation, FuCAP 2016
(2016). DOI: 10.1109/EuCAP.2016.7481796.

José Pérez-Escudero, Alicia Torres-Garcia, Ramoén Gonzalo, and
Tnigo Ederra. “A Simplified Design Inline Microstrip-to-Waveguide
Transition”. In: Flectronics 7 (2018), p. 215. por: 10 . 3390 /
electronics7100215. URL: http://www.mdpi.com/2079-9292/7/
10/215.

Domenico Porcino and Walter Hirt. “Ultra-wideband radio technology:
Potential and challenges ahead”. In: IEEE Communications Magazine
41 (2003), pp. 66-74. DOI: 10.1109/MCOM. 2003.1215641.

D.M. Pozar. Microwave Engineering. Wiley, 2012. 1SBN: 9780470631553.

Angel Blanco Granja 113



Schottky Diode Based Envelope Detectors in Planar Topology for UWB and

W-Band

[PSO8]

[Rap+13]

[Reb15]

[Ree+17]

[Ree+19]

[Ree20]

[RGE15)

John G Proakis and Masoud Salehi. Digital Communications. Fifth
edit. Mc Graw Hill, 2008.

T. S. Rappaport, S. Sun, R. Mayzus, H. Zhao, Y. Azar, K. Wang,
G. N. Wong, J. K. Schulz, M. Samimi, and F. Gutierrez. “Millimeter
Wave Mobile Communications for 5G Cellular: It Will Work!” In: IEFEE
Access 1 (2013), pp. 335-349. 1sSN: 2169-3536. DOI: 10.1109/ACCESS.
2013.2260813.

Behzad Razavi. RF Microelectronics. 2nd. Prentice Hall. ISBN:
1580534848.

J.M. Rabaey, Anantha Chandrakasan, and Borivoje Nikolic. Digital
integrated circuits: a design perspective. Ed. by Prentice-Hall. 2nd. 2013.

Ainara Rebollo, Belén Larumbe-Gonzalo, Ramoén Gonzalo, and Inigo
Ederra. “Full W-Band microstrip-to-waveguide inline transition”. In:
8th European Conference on Antennas and Propagation, EuCAP 201/
(2014), pp- 2591-2593. DOI: 10.1109/EuCAP.2014.6902351.

Ainara Rebollo. “Development of an Auto-Calibrated Receiver in Planar
Technology at Millimetre-Wave Frequencies”. In: (2015).

Roland Reese, Matthias Jost, Holger Maune, and Rolf Jakoby. “Design
of a continuously tunable W-band phase shifter in dielectric waveguide
topology”. In: 2017 IEEE MTT-S International Microwave Symposium,
(IMS). IEEE, 2017. DOI: 10.1109/MWSYM.2017.8058991. URL: http:
//ieeexplore.ieee.org/document/8058991/.

Roland Reese, Ersin Polat, Henning Tesmer, Jonathan Strobl, Christian
Schuster, Matthias Nickel, Angel Blanco Granja, Rolf Jakoby, and
Holger Maune. “Liquid Crystal Based Dielectric Waveguide Phase
Shifters for Phased Arrays at W-Band”. In: JEEE Access (2019). DOI:
10.1109/ACCESS.2019.2939648. URL: https://ieeexplore. ieee.
org/document/8825834/.

Roland Reese. “Phasen- und aperturgesteuerte Antennen fiir
Millimeterwellen mit integrierten Fliissigkristallsegmenten : Von
metallischen zu volldielektrischen Strukturen”. PhD thesis. 2020. DOTI:
10.25534/tuprints-00011597.

Ainara Rebollo, Ramon Gonzalo, and Inigo Ederra. “An inline
microstrip-to-waveguide transition operating in the full W-Band based
on a Chebyshev multisection transformer”. In: Journal of Infrared,
Millimeter, and Terahertz Waves (2015), pp. 734-744. DO1: 10.1109/
EuCAP.2016.7481796.

E.H Rhoderick. “Metal-semiconductor contacts”. In: (1982). DOI: 10.
1088/0305-4624/5/4/405.

Rogers. Rogers Corporation. URL: WWw.rogerscorp. Com.

114

Angel Blanco Granja



Schottky Diode Based Envelope Detectors in Planar Topology for UWB and

W-Band

[Rom+15al

[Rom+15b]

[Rom+16a

[Rom+16b]

[Rom+17]

[Sacl2]

[San+10]

[SB10]

Simon Rommel, Lucas Costa Pereira Cavalcante, J. J.Vegas Olmos,
Idelfonso Tafur Monroy, and Alexander Galvis Quintero. “Channel
characterization for high-speed W-band wireless communication links”.
In: 2015 Opto-Electronics and Communications Conference, OECC
2015 (2015). por: 10.1109/0ECC.2015.7340310.

Simon Rommel, Lucas Costa Pereira Cavalcante, Juan José Vegas
Olmos, and Idelfonso Tafur Monroy. “Low RF Complexity Photonically
Enabled Indoor and Building-to-Building W-Band Wireless Link”. In:
Asia Communications and Photonics Conference 2015 (2015), AM1B.7.
DOI: 10.1364/ACPC.2015.AM1B.7. URL: http://www.osapublishing.
org/abstract.cfm?uri=ACPC-2015-AM1B.7.

Simon Rommel, Lucas C. P. Cavalcante, Alexander G. Quintero,
Arvind K. Mishra, J. J. Vegas Olmos, and Idelfonso Tafur Monroy.
“W-band photonic-wireless link with a Schottky diode envelope detector
and bend insensitive fiber”. In: Optics Ezpress 24 (2016). DOI: 10.1364/
0OE.24.011312.

Simon Rommel, Sebastian Rodriguez, Lukasz Chorchos, Elizaveta P.
Grakhova, Albert Kh Sultanov, Jarostaw P. Turkiewicz, Juan José
Vegas Olmos, and Idelfonso Tafur Monroy. “Outdoor W-Band Hybrid
Photonic Wireless Link Based on an Optical SFP+ Module”. In: IEEE
Photonics Technology Letters 28 (2016), pp. 2303-2306. por: 10.1109/
LPT.2016.2592326.

Simon Rommel, Bruno Cimoli, Guillermo Silva Valdecasa, Jesper B.
Jensen, Tom Keinicke Johansen, Juan J. Vegas Olmos, Idelfonso Tafur
Monroy, and Dongho Kim. “Real-time 2.5 Gbit/s ultra-wideband
transmission using a Schottky diode-based envelope detector”. In:
Microwave and Optical Technology Letters 59 (2017), pp. 606-609.
DOI: 10.1002/mop . 30352. arXiv: 0604155 [physics]. URL: http:
//arxiv.org/abs/physics/0604155%20http://doi.wiley.com/10.
1002/mop.30352.

Jirgen Sachs. Handbook of Ultra-Wideband Short-Range Sensing:
Theory, Sensors, Applications. 2012. DOI: 10.1002/9783527651818.

Dan Sandstrom, Mikko Varonen, Mikko Kéarkkainen, and Kari A I
Halonen. “A W-band 65nm CMOS transmitter front-end with 8 GHz if
bandwidth and 20dB IR-ratio”. In: Digest of Technical Papers - IEEE
International Solid-State Circuits Conference 53 (2010), pp. 418-419.
DOI: 10.1109/ISSCC.2010.5433851.

Roberto Sorrentino and Giovanni Bianchi. Microwave and RF
Engineering. Chichester, UK: John Wiley & Sons, Ltd, 2010. DOTI:
10.1002/9780470660201. URL: http://doi.wiley.com/10.1002/
9780470660201.

Angel Blanco Granja 115



Schottky Diode Based Envelope Detectors in Planar Topology for UWB and

W-Band

[SFW14]

[Sil+17]

[Sim+-18]

[Sky15]

[Sla]

[SMO04]

[SMS05]

[S007]

[Spi]
[St6+16]

Iwata  Sakagami, Masafumi  Fujii, and Tuya  Wuren.
“Impedance-Transforming Lumped Element Two-Branch 90 0
Couplers in Case of Type C”. In: 2006 (2014), pp. 271-274.

Guillermo Silva Valdecasa, Bruno Cimoli, Angel Blanco Granja,
Jesper Bevensee Jensen, Idelfonso Tafur Monroy, Tom Keinicke
Johansen, and Juan José Vegas Olmos. “A high-speed Schottky
detector for ultra-wideband communications”. In: Microwave and
Optical Technology Letters 59 (2017), pp. 388-393. DOI: 10.1002/
mop.30300.

Marco Simone, Alessandro Fanti, Giuseppe Valente, Giorgio Montisci,
Riccardo Ghiani, and Giuseppe Mazzarella. “A Compact In-Line
Waveguide-to-Microstrip Transition in the Q-Band for Radio Astronomy
Applications”. In: FElectronics 7 (Feb. 2018), p. 24. pDO1: 10.3390/
electronics7020024. URL: http://www.mdpi.com/2079-9292/7/2/
24.

Skyworks Solutions Inc. SM76XX Datasheet. Surface Mount Mixer
and Detector Schottky Diodes. 2015. URL: http://www.skyworksinc.
com / uploads / documents / Surface % 7B % 5C _ %7DMount % 7B % 5C _
% 7DSchottky%7B45C_%7DDiodes!7B%5C_%7D200041AB . pdf.

Bill Slade. “Reduced-size octave-bandwidth microstrip/lumped-element
rat-race coupler”. In: (). URL: https://www.researchgate .net/
publication / 229009635 _ Reduced - size _ octave - bandwidth _
microstriplumped-element_rat-race_coupler.

Kazimierz Siwiak and Debra McKeown. Ultra-Wideband Radio
Technology. Wiley, Apr. 2004. DOI: 10.1002/0470859334. URL: https:
//onlinelibrary.wiley.com/doi/book/10.1002/0470859334.

KWOK.K.NG S.M.Sze. Physics of Semiconductor Devices Physics of
Semiconductor Devices. Vol. 10. 1995, pp. 739-751. DOIL: 10.1007/978-
3-319-03002-9.

Swaminathan Sankaran and Kenneth K. O. “A Ultra-Wideband
Amplitude Modulation (AM) Detector Using Schottky Barrier Diodes
Fabricated in Foundry CMOS Technology”. In: IEEE Journal of
Solid-State Clircuits 42 (2007). DOI: 10 . 1109/ JSSC . 2007 . 894300
URL: http://ieeexplore.ieee.org/document/4160083/.

Murray R. Spiegel. Mathematical handboook of formulas and tables.

Andreas Stohr, Boris Shih, Solomon Abraha, Andreas Gerhard Steffan,
and Anthony Ng’oma. “High Spectral-Efficient 512-QAM-OFDM 60
GHz CRoF System using a Coherent Photonic Mixer (CPX) and an
RF Envelope Detector”. In: Optical Fiber Communication Conference
(2016). DOTI: 10.1364/0FC.2016.Tu3B. 4.

116

Angel Blanco Granja



Schottky Diode Based Envelope Detectors in Planar Topology for UWB and

W-Band

[TE05]

[Tecal
[Tecb]

[Tho+14]

[TMA15]

[TS86]

[Tsa+10]

[UK16]

[VPRO5]

[Wal97]

[Wel09]

T.K.K. Tsang and M.N. El-Gamal. “Ultra-wideband (UWB)
communications systems: an overview”. In: The 3rd International
IEEE-NEWCAS Conference, 2005. Vol. 2005. IEEE, 2005. DOI: 10.
1109/NEWCAS.2005. 1496688. URL: http://ieeexplore.ieee.org/
document/1496688/.

Eindhoven University of Technology. Alvaro Morales Vicente. URL:
https://research.tue.nl/en/persons/alvaro-morales-vicente.

KTH Royal Institute of Technology. Serquei Smirnov. URL: https:
//www.kth.se/profile/sergueis.

F. Thome, S. Maroldt, M. Schlechtweg, and O. Ambacher. “A
low-power W-band receiver MMIC for amplitude modulated wireless
communication up to 24 Gbit/s”. In: Asia-Pacific Microwave
Conference (2014).

Fabian Thome, Stephan Maroldt, and Oliver Ambacher. “Novel
Destructive-Interference-Envelope Detector for High Data Rate ASK
Demodulation in Wireless Communication Receivers”. In: IEEE MTT-S
International Microwave Symposium, IMS (2015). DOI: 10.1109/MWSYM.
2015.7166805.

Herbert Taub and Donald L. Schilling. Principles of Communication
Systems. 2nd. McGraw-Hill, 1986.

Hsuan Ju Tsai, Nan Wei Chen, Fon Ming Kuo, and Jin Wei Shi.
“Front-end design of W-band integrated photonic transmitter with wide
optical-to-electrical bandwidth for wireless-over-fiber applications”.
In: IEEE MTT-S International Microwave Symposium Digest (2010),
pp. 740-743. 1ssN: 0149645X. DOI: 10.1109/MWSYM.2010.5518048.

Iyemeh Uchendu and James R. Kelly. “Survey of Beam Steering
Techniques Available for Millimeter Wave Applications”. In: Progress
In FElectromagnetics Research B 68 (2016), pp. 35-54. DOI: 10.2528/
PIERB16030703. URL: http://www. jpier.org/PIERB/pier.php?
paper=16030703.

George D. Vendelin, Anthony M. Pavio, and Ulrich L. Rohde. Microwave
Circuit Design Using Linear and Nonlinear Techniques. 2005. DOI:
10.1002/0471715832.

J.L.B. Walker. “Improvements to the design of the0-180° rat race
coupler and its application to the design of balanced mixers with high
LO to RF isolation”. In: (1997).

Jonathan Wells. “Faster than fiber: The future of multi-G/s wireless”.
In: IEEE Microwave Magazine 10 (2009). poI: 10.1109/MMM. 2009.
932081. URL: http://ieeexplore.ieee.org/document/4820807/.

Angel Blanco Granja 117



Schottky Diode Based Envelope Detectors in Planar Topology for UWB and

W-Band

[Wun+14]

[Xia+17]

[Xie+10]

[Xu+15]

[Yao+15]

[Zam+-16]

[Zam+17]

[ZAM16]

Jhih Min Wun, Hao Yun Liu, Cheng Hung Lai, Yi Shiun Chen, Shang Da
Yang, Ci Ling Pan, John E. Bowers, Chen Bin Huang, and Jin Wei Shi.
“Photonic High-Power 160-GHz Signal Generation by Using Ultrafast
Photodiode and a High-Repetition-Rate Femtosecond Optical Pulse
Train Generator”. In: IEEE Journal on Selected Topics in Quantum
Electronics 20 (2014). poI: 10.1109/JSTQE. 2014 . 2329940.

Ming Xiao, Shahid Mumtaz, Yongming Huang, Linglong Dai, Yonghui
Li, Michail Matthaiou, George K. Karagiannidis, Emil Bjornson,
Kai Yang, I. Chih-Lin, and Amitabha Ghosh. “Millimeter Wave
Communications for Future Mobile Networks”. In: IEEE Journal on
Selected Areas in Communications 35 (2017). pOL: 10.1109/ JSAC.
2017.2719924. arXiv: 1705.06072.

Linli Xie, Yonghong Zhang, Yong Fan, Conghai Xu, and Yuanbo Jiao.
“A W-band detector with high tangential signal sensitivity and
voltage sensitivity”. In: 2010 International Conference on Microwave
and Millimeter Wave Technology, ICMMT 2010 60632020 (2010),
pp. 528-531. por: 10.1109/ICMMT.2010.5525220.

Zhengbin Xu, Yinjie Cui, Jie Xu, Jian Guo, and Cheng Qian. “Low
cost W-band sub-harmonic mixer using quasi-MMIC technology”. In:
2015 IEEE International Wireless Symposium, IWS 2015 (2015). DOI:
10.1109/IEEE-IWS.2015.7164619.

Changfei Yao, Ming Zhou, Yunsheng Luo, and Conghai Xu. “Millimeter
wave broadband high sensitivity detectors with zero-bias Schottky
diodes”. In: Journal of Semiconductors 36.6 (2015). 1SSN: 16744926.
DOI: 10.1088/1674-4926/36/6/065002.

Ashraf Uz Zaman, Vessen Vassilev, Per-Simon Kildal, and Herbert
Zirath. “Millimeter Wave E-Plane Transition From Waveguide to
Microstrip Line With Large Substrate Size Related to MMIC
Integration”. In: IEEE Microwave and Wireless Components Letters
26 (2016), pp. 481-483. DOI: 10.1109/LMWC . 2016 . 2574995. URL:
http://ieeexplore.ieee.org/document/7488185/.

A. Uz Zaman, V. Vassilev, H. Zirath, and N. Rorsman. “Novel low-loss
millimeter-wave transition from waveguide-to-microstrip line suitable
for MMIC integration and packaging”. In: IEEE Microwave and
Wireless Components Letters 27 (2017). por: 10.1109/LMWC . 2017 .
2764740.

He Zhu, Amin M Abbosh, and Senior Member. “Modified Wideband
Marchand Balun With Tunable Power Division Ratio and Constant
Phase”. In: (2016), pp- 4-6. DOI: 10.1109/LMWC.2016.2548479.

118

Angel Blanco Granja



Schottky Diode Based Envelope Detectors in Planar Topology for UWB and

W-Band

[Zha+05a]

[Zha+05b)

[Zha+14]

[ZX10]

[ZYW15]

Zhen Yu Zhang, Yong Xin Guo, L. C. Ong, and M. Y W Chia. “A new
planar Marchand balun”. In: IEEE MTT-S International Microwave
Symposium Digest 2005 (2005). DOI: 10.1109/MWSYM. 2005.1516893.

Zhen Yu Zhang, Yong Xin Guo, Ling Chuen Ong, and M. Y W Chia.
“A new wide-band planar balun on a single-layer PCB”. In: IFEE
Microwave and Wireless Components Letters 15 (2005), pp. 416-418.
DOI: 10.1109/LMWC. 2005.850486.

Weiwei Zhang, Yuanan Liu, Yongle Wu, Weimin Wang, Ming Su,
and Jinchun Gao. “A Complex Impedance-Transforming Coupled-Line
Balun”. In: 48 (2014).

Xi-Cheng Zhang and Jingzhou Xu. Generation and Detection of THz
Wawves. Boston, MA: Springer US, 2010, pp. 27-48. DOI: 10.1007/978-
1-4419-0978-7_2. URL: http://link.springer.com/10.1007/978-
1-4419-0978-7%,7B%5C_%7D2.

W. Zhang, F. Yang, and Z. X. Wang. “W-band(90GHz) zero bias
Schottky diode directive detector”. In: 2015 Asia-Pacific Microwave
Conference (APMC). IEEE, Dec. 2015, pp. 1-3. 1SBN: 978-1-4799-8765-8.
DOI: 10.1109/APMC.2015.7412982. URL: http://ieeexplore.iecee.
org/document/7412982/.

Angel Blanco Granja 119






Own Publications

[BJP17]

[Bla+17]

[Bla+18a]

[Bla-+18b]

[Bla+19]

Angel Blanco Granja, Rolf Jakoby, and Andreas Penirschke.
“Outright W-Band chebyshev-based hollow waveguide to microstrip
transition”. In: 2017 42nd International Conference on Infrared,
Millimeter, and Terahertz Waves (IRMMW-THz). IEEE, 2017. DOI:
10.1109/IRMMW-THz.2017.8067045. URL: http://ieeexplore.ieee.
org/document/8067045/.

Angel Blanco Granja, Bruno Cimoli, Sebastian Rodriguez, Rolf
Jakoby, Jesper Bevensee Jensen, Andreas Penirschke, Idelfonso Tafur
Monroy, and Tom Keinicke; Johansen. “Ultra-wideband balanced
schottky envelope detector for data communication with high bitrate
to carrier frequency ratio”. In: 2017 IEEE MTT-S International
Microwave Symposium (IMS). IEEE, 2017, pp. 2052-2055. DOI: 10.
1109/MWSYM. 2017 .8059074. URL: http://ieeexplore. ieee.org/
document/8059074/.

Angel Blanco Granja, Bruno Cimoli, Sebastian Rodriguez, Rolf
Jakoby, Jesper Bevensee Jensen, Andreas Penirschke, Idelfonso Tafur
Monroy, and Tom Keinicke Johansen. “Compact high-speed envelope
detector architecture for ultra-wideband communications”. In:
Microwave and Optical Technology Letters 60 (2018), pp. 936-941.
DOIL: 10.1002/mop . 31068. arXiv: 0604155 [physics]. URL: http:
//doi.wiley.com/10.1002/mop.31068.

Angel Blanco Granja, Roland Reese, Rolf Jakoby, and Andreas
Penirschke. “Ultra-Broadband W - Band Balanced Schottky Diode
Envelope Detector for High-Data Rate Communication Systems”. In:
2018-SepU3(2018) DOI: 10.1109/IRMMW-THz.2018.8510047. URL:
https://ieeexplore.ieee.org/document/8510047/.

Angel Blanco Granja, Dimitrios Konstantinou, Simon Rommel,
Bruno Cimoli, Sebastian Rodriguez, Roland Reese, Ulf Johannsen,
Rolf Jakoby, Tom K Johansen, Idelfonso Tafur Monroy, and
Andreas Penirschke. “High Data Rate W-Band Balanced Schottky
Diode Envelope Detector for Broadband Communications”. In:
Furopean Microwave Week 2019. 2019. pDOI: 10.23919/EuMIC.2019.
8909428. URL: http://http://ieeexplore. ieee.org/document/
8909428.

121



Schottky Diode Based Envelope Detectors in Planar Topology for UWB and

W-Band

[Cim+16]

[Ree+19]

[Sil4+17]

Bruno Cimoli, Guillermo Silva Valdecasa, Angel Blanco Granja,
Jesper Bevensee Jensen, Idelfonso Tafur Monroy, Tom Keinicke
Johansen, and Juan Jose Vegas Olmos. “An ultra-wideband schottky
diode based envelope detector for 2.5 Gbps signals”. In: 2016 46th
European Microwave Conference (EuMC). IEEE, 2016, pp. 277-280.
DOI: 10.1109/EuMC.2016.7824332. URL: http://ieeexplore.ieee.
org/document/7824332/.

Roland Reese, Ersin Polat, Henning Tesmer, Jonathan Strobl, Christian
Schuster, Matthias Nickel, Angel Blanco Granja, Rolf Jakoby, and
Holger Maune. “Liquid Crystal Based Dielectric Waveguide Phase
Shifters for Phased Arrays at W-Band”. In: JEEE Access (2019). DOI:
10.1109/ACCESS.2019.2939648. URL: https://ieeexplore. ieee.
org/document/8825834/.

Guillermo Silva Valdecasa, Bruno Cimoli, Angel Blanco Granja,
Jesper Bevensee Jensen, Idelfonso Tafur Monroy, Tom Keinicke
Johansen, and Juan José Vegas Olmos. “A high-speed Schottky
detector for ultra-wideband communications”. In: Microwave and
Optical Technology Letters 59 (2017), pp. 388-393. DOI: 10.1002/
mop . 30300.

122

Angel Blanco Granja



Erklarungen laut Promotionsordnung

§ 8 Abs. 1 lit. ¢ PromO

Ich versichere hiermit, dass die elektronische Version meiner Dissertation mit der
schriftlichen Version iibereinstimmt.

§ 8 Abs. 1 lit. d PromO

Ich versichere hiermit, dass zu einem vorherigen Zeitpunkt noch keine Promotion
versucht wurde. In diesem Fall sind nédhere Angaben iiber Zeitpunkt, Hochschule,
Dissertationsthema und Ergebnis dieses Versuchs mitzuteilen.

§ 9 Abs. 1 PromO

Ich versichere hiermit, dass die vorliegende Dissertation selbststiandig und nur unter
Verwendung der angegebenen Quellen verfasst wurde.

§ 9 Abs. 2 PromO

Die Arbeit hat bisher noch nicht zu Prifungszwecken gedient

Darmstadt, 30. November 2020




