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Abstract

For some years now, the use of humanoid social robots in various situations has been
on the rise. These are robots developed to interact with humans and are equipped
with corresponding extremities. They already support human users in various industries,
such as retail, gastronomy, hotels, education and healthcare. During such Human-Robot
Interaction (HRI) scenarios, physical touch plays a central role in the various applications
of social robots as interactive non-verbal behaviour is a key factor in making the interaction
more natural. Shaking hands is a simple, natural interaction used commonly in many
social contexts and is seen as a symbol of greeting, farewell and congratulations. Moreover,
the act of handshaking, given its extended phase of physical contact allows one to convey
complex emotions via the sense of touch. Giving an appropriate response, therefore, plays
an important role in improving the naturalness of the interaction. Furthermore, having a
timely response also yields a more natural interaction, where the robot is able to predict
the human partner’s movements and adapt its motion accordingly. Modelling the dynamics
of such interactions is a key aspect of Human-Robot Interaction.
In this context, the main focus of this thesis is to understand how such a physically

interactive behaviour affects an interaction with a social robot. The contributions of this
thesis are as follows. We first perform a thorough analysis of existing works related to
Human-Robot Handshaking exploring the modelling aspects for realising an effective
handshakes and social aspects such as the acceptance of such behaviours, auxiliary el-
ements, such as gaze or approach motions, human-likeness etc. We then incorporate
these findings in a novel frameworks to realise a timely, adaptive and socially acceptable
handshake on a humanoid social robot. We then explore how to extend this modularised
form of learning towards a general framework for learning coordinated Human-Robot
Interaction. We validate the effectiveness of the proposed frameworks through extensive
experimental evaluations with human users who interact with a humanoid social robot
equipped with our approaches.
As a first step, the existing state of Human-Robot Handshaking research is looked

at and the works are categorised based on their focus areas. Following this, the major
findings of these areas are drawn out and their pitfalls are analysed. It is mainly seen that
synchronisation is key during the different phases of the interaction. Additional factors
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like gaze, voice facial expressions etc. can affect the perception of a robotic handshake
along with internal factors like personality and mood which can affect the way in which
handshaking behaviours are executed by humans. Based on the findings and insights,
possible ways forward for future research on such physically interactive behaviours are
discussed.
In the case of handshaking and other similar physically interactive behaviours, having a

timely response yields a more natural interaction, where the robot is able to predict the
human partner’s movements and adapt its motion accordingly. Modelling the dynamics of
such interactions is a key aspect of Human-Robot Interaction. In this work, a framework is
developed for robots to learn such interactions directly from human-human interactions,
modular fashion by breaking down the interactions into their underlying segments and
learning the sequencing between them. We do so using Hidden Markov Models to model
the interaction dynamics via the latent embeddings learned by a Variational Autoencoder.
We show how the interaction dynamics learned from Human-Human Interactions can help
regularize the learning of robot trajectories and we explore the conditional generation of
robot motions from human observations to enable learning suitable and accurate Human-
Robot Interactions. We further explore how to adapt the generated motions for a spatially
accurate and compliant handshaking behaviour, leading to a higher degree of acceptance
by human users.
We further explore how the performance of the reactive motion generation can be

improved by bridging the gap in the proposed framework by integrating the conditioning
of the HMMs into the VAEs in a more principled manner. To this end, we demonstrate
how Mixture Density Networks yield themselves as an extension of the underlying HMM
conditioning. Such a structure inherently allows the model to capture the complex and
multimodal nature of human behavior. We demonstrate how the proposed framework
can enhance the prediction of the reactive motion generation by learning multiple latent
policies which when combined enable the generation of more accurate interactions.
To summarise, the goals of this thesis are: (i) to further investigate the act of handshak-

ing in the scope of physical Human-Robot Interactions, (ii) to develop a framework that
can learn a library of such physically interactive behaviours to widen the social skills of a
robot and (iii) to explore how the accuracy of generating realistic and natural interactive
behaviors can be improved.
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Zusammenfassung

Seit einigen Jahren nimmt der Einsatz humanoider sozialer Roboter in verschiedenen
Situationen zu. Dabei handelt es sich um Roboter, die für die Interaktion mit Menschen
entwickelt wurden und mit entsprechenden Extremitäten ausgestattet sind. Sie unterstüt-
zen bereits menschliche Nutzer in verschiedenen Branchen, wie z. B. im Einzelhandel,
in der Gastronomie, in Hotels, im Bildungswesen und im Gesundheitswesen. Bei solchen
Szenarien der Mensch-Roboter-Interaktion (HRI) spielt die körperliche Berührung eine
zentrale Rolle in den verschiedenen Anwendungen sozialer Roboter, da interaktives non-
verbales Verhalten ein Schlüsselfaktor ist, um die Interaktion natürlicher zu gestalten.
Händeschütteln ist eine einfache, natürliche Interaktion, die in vielen sozialen Kontexten
üblich ist und als Symbol für Begrüßung, Verabschiedung und Glückwünsche gilt. Darüber
hinaus ermöglicht das Händeschütteln aufgrund der langen Phase des Körperkontakts die
Vermittlung komplexer Emotionen über den Tastsinn. Eine angemessene Antwort spielt
daher eine wichtige Rolle bei der Verbesserung der Natürlichkeit der Interaktion. Darüber
hinaus führt eine rechtzeitige Reaktion auch zu einer natürlicheren Interaktion, bei der der
Roboter die Bewegungen des menschlichen Partners vorhersagen und seine Bewegungen
entsprechend anpassen kann. Die Modellierung der Dynamik solcher Interaktionen ist ein
Schlüsselaspekt der Mensch-Roboter-Interaktion.
In diesem Zusammenhang liegt der Schwerpunkt dieser Arbeit darauf, zu verstehen, wie

ein solches physisches Interaktionsverhalten eine Interaktion mit einem sozialen Roboter
beeinflusst. Die Beiträge dieser Arbeit sind wie folgt. Zunächst führen wir eine gründliche
Analyse bestehender Arbeiten zum Thema Mensch-Roboter-Handshake durch und unter-
suchen die Modellierungsaspekte für die Realisierung eines effektiven Handshakes sowie
soziale Aspekte wie die Akzeptanz solcher Verhaltensweisen, Hilfselemente wie Blick- oder
Annäherungsbewegungen, Menschenähnlichkeit usw. Diese Erkenntnisse fließen dann
in ein neuartiges Framework ein, um einen zeitnahen, adaptiven und sozial akzeptablen
Händedruck auf einem humanoiden sozialen Roboter zu realisieren. Anschließend unter-
suchen wir, wie diese modularisierte Form des Lernens zu einem allgemeinen Rahmen für
das Lernen koordinierter Mensch-Roboter-Interaktion erweitert werden kann. Wir validie-
ren die Wirksamkeit des vorgeschlagenen Rahmens durch umfangreiche experimentelle
Auswertungen mit menschlichen Benutzern, die mit einem humanoiden sozialen Roboter
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interagieren, der mit unseren Ansätzen ausgestattet ist.
In einem ersten Schritt wird der aktuelle Stand der Mensch-Roboter-Handshaking-

Forschung untersucht und die Arbeiten werden nach ihren Schwerpunkten kategorisiert.
Anschließend werden die wichtigsten Erkenntnisse aus diesen Bereichen herausgearbeitet
und ihre Fallstricke analysiert. Es zeigt sich vor allem, dass die Synchronisation in den
verschiedenen Phasen der Interaktion entscheidend ist. Zusätzliche Faktoren wie Blicke,
Stimme, Mimik usw. können die Wahrnehmung eines Roboter-Handschlags beeinflussen,
ebenso wie interne Faktoren wie Persönlichkeit und Stimmung, die sich auf die Art und
Weise auswirken können, wie das Handshake-Verhalten von Menschen ausgeführt wird.
Basierend auf den Erkenntnissen und Einsichten werden mögliche Wege für die zukünftige
Forschung zu solchen physisch interaktiven Verhaltensweisen diskutiert.
Im Falle des Händeschüttelns und anderer ähnlicher physisch interaktiver Verhaltenswei-

sen führt eine rechtzeitige Reaktion zu einer natürlicheren Interaktion, bei der der Roboter
in der Lage ist, die Bewegungen des menschlichen Partners vorherzusagen und seine Bewe-
gung entsprechend anzupassen. Die Modellierung der Dynamik solcher Interaktionen ist
ein Schlüsselaspekt der Mensch-Roboter-Interaktion. In dieser Arbeit wird ein Rahmen für
Roboter entwickelt, um solche Interaktionen direkt von Mensch-Mensch-Interaktionen zu
lernen, und zwar auf modulare Weise, indem die Interaktionen in ihre zugrundeliegenden
Segmente zerlegt werden und die Abfolge zwischen ihnen gelernt wird. Dazu verwenden
wir Hidden Markov Modelle, um die Interaktionsdynamik über die latenten Einbettungen
zu modellieren, die von einem Variational Autoencoder gelernt werden. Wir zeigen, wie
die aus Mensch-Mensch-Interaktionen gelernte Interaktionsdynamik dazu beitragen kann,
das Lernen von Robotertrajektorien zu regulieren, und wir untersuchen die bedingte
Generierung von Roboterbewegungen aus menschlichen Beobachtungen, um das Lernen
geeigneter und genauer Mensch-Roboter-Interaktionen zu ermöglichen. Darüber hinaus
untersuchen wir, wie die generierten Bewegungen für ein räumlich genaues und nachgie-
biges Handshaking-Verhalten angepasst werden können, was zu einem höheren Grad an
Akzeptanz durch menschliche Benutzer führt.
Wir untersuchen weiter, wie die Leistung der reaktiven Bewegungsgenerierung ver-

bessert werden kann, indem wir die Lücke im vorgeschlagenen Rahmenwerk schließen,
indem wir die Konditionierung der HMMs auf prinzipiellere Weise in die VAEs integrieren.
Zu diesem Zweck zeigen wir, wie sich Mixture Density Networks als eine Erweiterung
der zugrunde liegenden HMM-Konditionierung ergeben. Eine solche Struktur ermöglicht
es dem Modell, die komplexe und multimodale Natur des menschlichen Verhaltens zu
erfassen. Wir zeigen, wie der vorgeschlagene Rahmen die Vorhersage der reaktiven Be-
wegungserzeugung verbessern kann, indem er mehrere latente Strategien erlernt, die in
Kombination die Erzeugung genauerer Interaktionen ermöglichen.
Zusammenfassend kann man sagen, dass die Ziele dieser Arbeit folgende sind: (i) den
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Akt des Händeschüttelns im Rahmen der physischen Mensch-Roboter-Interaktion weiter
zu untersuchen, (ii) einen Rahmen zu entwickeln, der eine Bibliothek solcher physisch
interaktiven Verhaltensweisen erlernen kann, um die sozialen Fähigkeiten eines Roboters
zu erweitern und (iii) zu untersuchen, wie die Genauigkeit der Erzeugung realistischer
und natürlicher interaktiver Verhaltensweisen verbessert werden kann.
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1. Introduction

“The hands of those I meet are dumbly eloquent to me. The touch of some hands is an impertinence. I
have met people so empty of joy, that when I clasped their frosty finger-tips, it seemed as if I were
shaking hands with a northeast storm. Others there are whose hands have sunbeams in them, so that
their grasp warms my heart. It may be only the clinging touch of a child’s hand; but there is as much
potential sunshine in it for me as there is in a loving glance for others. A hearty handshake or a
friendly letter gives me genuine pleasure”

Helen Keller, The Story of My Life

1.1. Motivation

In the context of Social Robots and Human-Robot Interaction (HRI), there has been
an increase in the use of robots in social settings, and they already support human
users in various industries, such as retail, gastronomy, hotels, education, and healthcare
services [56, 68, 78, 211]. In HRI, physical presence plays an important role as it can
influence the image of a robot as compared to a virtual presence [108]. According to the
Computer-As-Social-Actor (CASA) paradigm [135], physical presence is also an important
predictor of the mindless social response to robots by which humans put a robot in the
same category as humans. These responses are supposedly triggered by social human-like
cues as well, such as voice [137], face [134], and language style [136]. Additionally,
the appearance of the robot, as opposed to just the physical presence, can also have an
impact on the perception of robots. As the Uncanny Valley [127] hypothesises, uncanny
feelings are triggered by highly human-like robots (androids) but not as realistic as a
human being as compared to robots that are less human-like in appearance (humanoids).
These uncanny feelings are hypothesised to get exaggerated even more in the case of
movements. The affinity, of both appearance and movement, rises again only when the
human-likeness becomes very close to that of a human being.
In the context of HRI, physical contact plays a central role in the various applications

of social robots. One of the key reasons for this is that non-verbal behaviour, especially
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touch, can be used to convey information about the emotional state of a person [70,
141, 208]. This enables a special kind of emotional connection to human users during
the interaction [68, 185]. If, for example, one considers a future scenario in which an
accompanying robot shares the habitat with humans, a key requirement for the robot
would be its ability to physically interact with humans [201]. In such a case, it would be
advantageous that humans feel more welcoming and be willing to interact and help a
social robot with its task like they would help other humans. Among such interactions,
handshaking is a common natural physical interaction and an important social behaviour
between two people [173], that is used in different social contexts [36, 184, 66]. The
importance of touch in HRI and the prolonged nature of the contact additionally make
handshaking a more important interaction as compared to other interactions, like high
fives, fist bumps or other Asian greeting behaviours which do not involve physical contact.
Handshaking can, therefore, represent an important social cue according to the CASA
paradigm for several reasons:

• It is one of the first and foremost non-verbal interactions which takes place and
should, therefore, be part of the repertoire of a social robot.

• It plays an important role in shaping the impressions of others [36, 184, 22], which
is used to develop an initial personality judgement of a person [11, 10].

• The shaking of hands is seen as a symbol of greeting, farewell, agreement, or congrat-
ulation. Socially, it symbolises acceptance and respect for another person [150]. The
most common of these settings is "greeting" where it is usually the first non-verbal
interaction taking place in a social context.

• The shaking of hands may help set the tone of any interaction, especially since the
sense of touch can convey distinct emotions [70].

• A good robot handshake may lead to future cooperation and coexistence [150].

Such interactions can also be further enriched, such as in the possible scenario wherein
a robot can monitor the biological attributes of a person (such as stress levels from blood
flow) and thereby infer social information about a person from just a single handshake [51].
Having human-like body movements plays an important role in the acceptance of HRI
wherein humans tend to look at robots more as social interaction partners [104]. In the
case of humanoid robots, having realistic motions enable similar responses as humans [35].
Thus, having a good handshake can not only widen the expressive abilities of a social
robot but also provide a strong first impression for further interactions to take place. Robot
handshaking can additionally help improve the perception of the robot and enable humans
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Figure 1.1.: Publications on Human-Robot Handshaking

to be more willing to help a robot [12] allowing for better integration of the robot into
human spaces. To perform proper handshaking motions, a social robot should be able
to detect and predict the movements of the human and react naturally. Therefore, for
better acceptance and improved expressiveness, effective handshaking behaviours need to
be present to make social robots feel more acceptable. This importance can be seen in
Figure 1.1, in the rising trend of works on human-robot handshaking.
Finally, handshaking is just one kind of physically interactive behaviour that humans

perform. It is therefore of additional interest to be able to generalise learnt behaviours to
similar interactions, like fist-bumps, high fives among others, thereby building a library of
such physical interactions. Such interaction libraries have been explored in the past [99,
98, 112] for learning robotic skills, which can additionally be combined with the ability
to generate new physically interactive behaviours by sequencing learnt skills [109, 111,
110]. Such capabilities of being able to adapt to new interactions and potentially create
new ones could improve the sociability of a robot.
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1.2. Research Questions

Physically interactive behaviours can help yield a new dimension to social robots through
the sense of touch. In this regard, the act of handshaking, due to the prolonged nature
of the physical contact, can have a stronger impact compared to other interactions with
a nearly instantaneous phase of contact. In addition to the emotions associated with
such an interaction, the motions and the synchronisation also play an important role, not
just in handshaking but for other similar physically interactive behaviours as well. It is
therefore important for a social robot to understand both the motions and emotions of
such interactions. Keeping these points in mind, this section presents the key research
question aimed to be answered by this thesis.

What can we learn from existing Handshaking interactions?

As seen in Figure 1.1, there is a rising trend in works exploring the act of handshaking
within the context of HRI. These works cover various approaches to craft different kinds
of robotic behaviours and the personality traits portrayed by them, the acceptance of such
an interaction with a robot, the specifics of the motions in different contexts and so on.
Therefore it is important to first understand what these various works explore, obtain an
overall classification of the works and draw insights from these works in order to develop
socially acceptable robotic handshaking behaviours.

How can we learn seamless end-to-end Robot Handshaking behaviors?

Handshaking can be naturally divided into multiple segments. Once an intent to handshake
has been established between the partners, they initially start moving in a timely manner
towards a common point while adapting to the motions of one another. Once the hands
are grasped, they begin an oscillatory movement after which the partners terminate the
interaction and go back to a neutral pose. At each step of the interaction, the partners
respond to one another and move in a timely, adaptive and mutually synchronoized
manner. Understanding these segments and learning to move in a coordinated manner
while progressing through the different segments is an important aspect for realizing a
smooth and acceptable handshake behaviour.
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How easily can a social robot generalise to other physical interactions beyond
handshaking?

Many physically interactive behaviours have a similar progression and semantics as hand-
shaking. Typically, there is a reaching phase where both partners bring their hands
together, a contact phase which contains the core of the interaction and a receding phase
which marks the end of the interaction. Therefore, an important skill for a social robot
would be the ability to generalise to different physically interactive behaviours, like fist-
bumps, hand waves, object handovers etc. For such social abilities, it is important that
the robot recognises the interaction to perform, follows the motion of the human partner
and reacts in a timely manner in order to ensure that the interaction is natural and well
perceived.

1.3. Contributions

This section summarises the main contributions of this thesis aimed at tackling the research
questions raised above in Section 1.2, an overview of which is shown in Figure 1.2.
Specifically, this thesis contributes towards establishing a taxonomy of existing works on
Human-Robot Handshaking, from which insights are drawn to (i) learn the underlying
segments of such physically interactive behaviors and their subsequent adaptation for
ensuring a natural interaction with a robot and (ii) exploring how to such a learning
approach can be leveraged for blendingmultiple different underlying strategies for enabling
more accurate Human-Robot Interactions.
In order to answer the first research question, an extensive review of existing Human-

Robot Handshaking works is performed, in which, the following contributions are devel-
oped.

• A taxonomy over existing works on Human-Robot Handshaking.

• Understanding the different kinds of algorithms developed and how they affect the
interaction.

• Extracting insights regarding the social and emotional aspects of handshaking.

• Proposals for future research based on open questions from existing works.

Coming to the second and third research questions, we explore the use of latent state
space models for the learning and segmentation of physically interactive behaviors in
an unsupervised manner from demonstrations. Specifically, in Chapter 3, we study the
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Figure 1.2.: An overview of the contributions and outline of this thesis. First, insights into Human-
Robot Handshaking are drawn from an extensive review of existing works to better
shape robotic handshaking behaviours (Chapter 2). Using these insights, developing
an end-to-end handshaking behavior that captures all the segments of handshaking is
explored as a general approach for additionally segmenting and learning other such
physically interactive behaviours (Chapter 3). This modular learning approach is further
extended to learn different interactions in a more principled manner (Chapter 4).
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use of Hidden Markov Models (HMMs) which naturally yield themselves as a method for
learning a joint distribution over a set of interaction trajectories [156, 31, 52]. We propose
a method for learning Multimodal Interactive Latent Dynamics, “MILD” wherein we learn
to segment the interaction demonstrations by training HMMs in the latent space learned
by a Variational Autoencoder (VAE) trained to reconstruct the demonstrated trajectories.
The VAE in turn uses the learned HMMs as an informative prior distribution, which we
show helps improve the learning. We do so by first training on Human-Human Interaction
data, which is then used to further regularize and improve the predictions of robot actions
for enabling accurate reactive motion generation. We further explore the incorporation
of Inverse Kinematics to ensure spatially accurate interactive behaviors. Specifically for
handshaking, ensuring a compliant motion is key for realizing a natural interaction.
Therefore, we perform stiffness modulation using the HMM segment predictions to enable
a compliant and natural handshake motion during the segments involving physical contact.
We validate our proposed approach via a user study where participants interact with a
Humanoid Social Robot controlled by MILD. Our user study shows that MILD is able to
generalize well to multiple interaction partners despite being trained on data from just
two humans interacting with each other.
Taking a step further into the third research question, We aim to bridge the gap in the

framework presented in Chapter 3 by incorporating the underlying mixture distribution
learned by the HMMs into the learning process in a more principled manner. To this
end, in Chapter 4, we propose “MoVEInt”, a method for learning a Mixture of Variational
Experts for learning Interaction dynamics through a shared representation of a human
and a robot. We show how the underlying reactive motion generation using HMMs can be
approximated using Mixture Density Networks (MDNs) [24] by learning a set of latent
policies which when blended, enable learning accurate Human-Robot Interactions.

1.4. Outline

After the introductory chapter (Chapter 1), the rest of the thesis is organised as follow.
Chapter 2 consists of a systematic review of Human-Robot Handshaking in order to

extract insights that can be used for developing new robotic handshaking behaviours. A
taxonomy of existing works is developed, and the works in each category are analysed
and the major findings are discussed. The chapter concludes with suggestions for future
works based on open problems in robotic handshaking. This chapter is based on the works
in [160, 161].
Chapter 3 aims to examine how the underlying segments inherent to physical inter-

actions like handshaking can be learned and how such a modular structure can be used
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to generate acceptable Human-Robot Interactions. A framework is be developed which
uses Hidden Markov Models (HMMs) for unsupervised segmentation of the interactions
in the latent space learned by a Variational Autoencoder (VAE). We further demonstrate
the ability of our approach to generate acceptable robot behaviors via a user study where
participants interact with a Humanoid Social Robot controlled by our approach. This
chapter is based on the works in [158, 157].

Chapter 4 extends the framework presented in Chapter 3 by exploring how to incorpo-
rate the reactive motion generation into the training in a more principled manner. We
demonstrate how a formulation using Mixture Density Networks (MDNs) yields itself nat-
urally for learning a latent mixture of policies that enable learning physical Human-Robot
Interactions in a more accurate manner. This chapter is based on the work in [159].

Chapter 5 provides a conclusive summary of the work that has been done in this thesis
and provides an outlook on future research directions.
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2. Human-Robot Handshaking: A Review

Now that the importance of handshaking from a robotic standpoint has been established
in Chapter 1.1, we first delve into works that tackle various aspects of Human-Robot Hand-
shaking. This chapter aims to provide an extensive review of Human-Robot Handshaking,
develop a taxonomy over existing works, analyse the findings of each of the categories
and in the end provide some ways forward for future research in this area.

2.1. Prologue

We propose the following framework for categorising the different works, shown in Figure
2.1. We first discuss works that aim to model handshakes from human-human interactions.
Along with that, we discuss the evaluation criteria used for analysing participants’ feedback
in experiments with humans interacting with the robot. This can be seen in Section 2.2.
Following this, we go through each of the stages of handshaking, as depicted in [122,
198], namely reaching (Section 2.3), grasping (Section 2.4) and shaking (Section 2.5).
We then explore more into the responses of participants to different handshaking methods
along with various factors, such as their acceptability, their degree of preference, how
external factors like voice and gaze affect the perception of robot handshakes and so on in
Section 2.6. Finally, we discuss some of the shortcomings of existing works and propose
some areas for future research in Section 2.7 and present some concluding remarks in
Section 2.8. This was done as a broad categorisation of the works obtained after a search
of digital libraries, Google Scholar, IEEE Xplore and ACM Digital Library using keywords
that included "human-robot handshaking", ”robotic handshaking” and ”handshaking AND
human-robot interaction / HRI” followed by a depth-first search-styled approach among
the references and citations of the papers found. Of these, we included all the articles
that were published in conferences or journals.The different works that model human
handshaking interactions are looked into, in addition to the works in the different stages
of the handshaking exchange and some social responses of participants. In this chapter,
we dig deeper into these aspects and provide key findings and insights into the different
areas of work in regards to Human-Robot Handshaking. In the end, we propose some
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Figure 2.1.: Conceptual Framework for categorising works on Human-Robot Handshaking
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ways forward based on aspects that still need to be worked on in order to realise a social
robot that can truly capture the intricacies of such a physically interactive action.

2.2. Insights and Evaluation of Handshakes

Before going into robotic handshakes, we first discuss a few works that draw insights from
human handshakes and some evaluation mechanisms used to measure the parameters
related to human acceptance of robotic handshakes. Regarding the insights drawn, the
main parameters looked at include trajectory profiles (mainly acceleration, velocity, contact
forces) between participants when they shake hands and the mutual synchronisation of
their movements while doing so. Regarding the evaluation criteria, they mainly relate to
how human-like the handshake is and how the handshakes are perceived by humans who
interact with the robot.

2.2.1. Insights from Human-Human Handshake Interactions

A group of researchers from Okayama Prefectural University, Japan conducted a series
of studies [79, 80, 84, 81, 82, 83, 85, 207, 146, 147] to study handshaking interactions
between humans and analyse how participants respond to different behaviours applied on
a custom robotic arm. They use a VICON motion capture system to track markers placed
on both shoulders, right elbow wrists and hands of both participants. Initially, Jindai et
al. [85] observed that the motion of the responder was seen to be similar to that of the
requester with a lag between their velocity profiles, which was found to be similar to
a minimum jerk trajectory profile. Hence they applied a lag-based transfer function for
generating the robot’s reaching trajectory based on the human’s reaching motion. It was
previously shown that this type of "motion transfer" was emotionally acceptable to humans
in an object-handover scenario [206]. Subsequently, the oscillatory motion profiles of
the observed shaking behaviours were modelled as a spring and damper system [81,
207]. Following this, the interactiveness was studied by modelling the requester[83, 79]
and responder[146, 147] behaviours with respect to delays in the motions and auxiliary
behaviours like gaze and speech. The result of applying the key findings from the above
works on their robot is explored in Section 2.6. Their main findings of the modelling can
be summarised as follows.

• The reaching trajectories of the requestor and responder are similar in their trajectory
profiles, which follow a minimum jerk trajectory model in [83], and the motion of
one can be used to mimic the other, such as by using a transfer function [85].
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• As expected, the shaking behaviour and the transition from reaching to shaking is
modelled as a spring-damper system, given the oscillatory nature of the behaviour
[207].

• Leading handshake behaviours were preferred over a non-leading one [207] and
a small delay (0.2s - 0.4s) between responding to a handshake request was better
perceived.

• In terms of auxiliary behaviours, using voice with a small or no delay was preferred
and having the gaze shift steadily from the hand to the face was well perceived.

A group of researchers from the University of Lorraine, France explicitly study the
mutual synchronisation (MS in short) between participants while shaking hands along
with the forces exerted on the palms [122, 124, 125, 126, 189]. They firstly study the
hand motions by having the participants wear a glove with an Intertial Measurement Unit
(IMU) and 6 force sensors placed around the palm [125]. Tagne et al. [189] further
investigate the joint motions as well (elbow and shoulder) with IMUs placed at each
joint. The influences of a few different social settings, such as greeting, congratulating
or sympathy, are then explored as well [124, 189]. The MS between participants is
analysed using the Fourier analysis of the input signals (mainly accelerations). However,
wavelet transforms are shown to qualitatively estimate the different stages of a handshake
interaction as well [126].
Initially, the MS between participants was explored in a context-less setting along with

the contact strength of the interaction [122]. The mean duration of a handshake was
around 2.67 ± 0.87 seconds during which the average duration of grasping was similar
across pairs ( 0.5 s) whereas the duration of shaking had a larger variation, from just
below 1 s to almost 2.5 s. The frequency of shaking during MS peaked at around 4Hz.
The average strength of the contact, which is the average of the forces measured by the
sensors was 2.5N (no standard deviation was reported). This framework was extended to
analyse differences in a few social contexts [124, 189] and gender-based differences[124].
Tagne et al. [189] observe the differences between 3 scenarios namely greeting, sympathy
and congratulating. Melnyk and Hénaff [124] analyse similar social settings, namely
greeting and consolation, and additionally analyse the trends across different gender-based
pairings.
As seen in Table 2.1, a shorter duration was observed in greeting contexts. The duration

in cases of sympathy and congratulations were similar. The grip strength shows contradic-
tory results. Tagne et al. [189] saw the lowest grip strength in case of sympathy, followed
by greeting and then, congratulations. Melnyk and Hénaff [124] found that it was slightly
higher in consolation case although not significantly. In terms of gender-based pairings, it
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Study Setting Duration Wrist Frequency Grip Strength
(s) during MS (Hz) (N)

Melnyk et al. [122] None 2.67± 0.86 4.20± 1.00 2.50

Tagne et al. [189]
Greeting 0.90± 0.26 2.43± 0.62 4.37± 2.4
Sympathy 1.30± 0.49 2.44± 0.69 3.12± 2.1

Congratulation 1.24± 0.40 2.66± 0.72 5.88± 3.2

Melnyk and Hénaff [124]

Greeting
MM 0.73± 0.08

3.6 (median 3.5)
6.02± 0.99

MF 1.48± 0.40 5.68± 0.8
FF 1.95± 0.26 5.53± 1.17

Consolation
MM 2.40± 0.23

3.7 (median 3.5)
6.08± 1.04

MF 2.54± 0.42 6.18± 0.97
FF 4.05± 0.53 6.29± 0.85

Table 2.1.: Summary of Results of [122, 124, 189] (M - Male, F - Female. Values are reported as
mean ± standard deviation and only mean is reported when standard deviation is not
available.)

is seen that MM pairs shook for a lesser duration as compared to mixed pairings. Female
pairs shook hands the longest. This is consistent with another study [144] as well. No
conclusive correlations were found between gender and grip strength, contrary to previous
studies[36, 144].
Unlike the above works that explicitly measure the stiffness and forces of the interactions,

Dai et al. [47] indirectly model the stiffness of the elbow joint as a spring-damper system,
like few other works described in Section 2.5. They measure the expansion/contractions
of the muscles in the upper arm and forearm using EMG signals and thereby estimate
the stiffness of the elbow using the biceps and triceps and use the forearm muscle mea-
surements to observe indications of the grasping forces. Data was collected from 10
handshakes of which 5 were weak and 5 were strong. It was very evidently seen that
muscle activation in the case of the strong handshake was higher than the weak condition.
The above works mainly study human-human handshaking to gain insights into the

motion and forces involved in handshaking. However, works looking into how well robotic
interfaces are suited for such haptic-heavy interactions are limited in number. In this
regard, Knoop et al. [97] perform experiments to understand the contact area, contact
pressure and grasping forces exerted by participants during handshaking and test out
how a few robotic hands and custom finger designs comply with their observations from
human-human handshaking interactions. Participants were asked to perform 3 handshakes
of different strengths, namely, weak, normal and strong. A large variation was seen in the
final contact positions of the fingers at the back of the hand. In the front, there is little
variation across different handshakes as almost the whole palm is held during the contact.
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This would imply that there is possibly no fixed grasping location for a handshake and that
the palms should be sufficiently covered. during the interaction. A positive correlation was
found between contact pressure and grasping force, which is a straightforward implication
since the contact area doesn’t vary during the interaction. They test out how a few robotic
hands and custom finger designs compare with a human hand and argue that this study
is useful for optimising robotic hand designs at a coarse level.
Major Findings. Handshaking is inherently a synchronous process, which is observed

in the reaching motions by [85, 84] and the shaking by [122, 124, 189]. This would imply
that both parties involved in a handshake try to achieve a common motion during the
action. This kind of inherent similarity in the motions and the subsequent synchronisation
can therefore be treated as an important aspect of making a handshaking behaviour more
acceptable. The context of a handshake along with additional factors, like speech and
gaze, play a role in the interaction as well. The factors studied and the measurements
obtained (in terms of duration, frequency, relative grip strength etc.) can further be used
to explicitly model robotic handshake behaviours to give them a "personality" of sorts or
provide appropriate responses based on detected interaction contexts improving the social
understanding of the robot.

2.2.2. Handshake Evaluation Methods

Given the differences in hardware and the evaluation criteria used by different works, it is
difficult to converge on a single metric or scale for the task at hand. Moreover, different
works evaluate different aspects of handshaking, using different robots. It is therefore
difficult to come up with a common comparison baseline, although some studies evaluate
their methods similarly. To this end, we collate some of the common evaluation metrics
and methods used among different works in Table 2.2 and broadly categorise some of the
different robotic interfaces in Table 2.3. Some common aspects are the aim to rate the
acceptability of the handshaking interactions and the human-likeness or the naturalness
of the handshaking. Moreover, most of the works that use a human-like end effector
mainly have an inactive one, which could cause the interaction to seem more unnatural.
For example, in the works of Wang et al. [203] and Giannopoulos et al.[60] who use a
rod-like end-effector, the case when the robot arm is operated by a human, the handshake
gets an average human-likeness rating of only 6.8/10 which is far from the maximum
score.
The common metrics used, like in most psychological and human studies, are the seven-

point or the five-point Likert scales, which is a bipolar scale that has a negative valued
sentiment on one end and a positive valued one on the other, which allows for a nice
representation, especially when averaging over the data. For example, an overall negative
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Evaluation Method Works Evaluation Parameters

Bradley Terry Model Jindai et al.[79, 80, 84,
81, 82, 83, 85], Ota et al.
[146, 147], Yamato et al.

[207]

Participant’s preferences
of handshakes

Kasuga and Hashimoto
[91]

Flexibility, naturalness,
kindness, affinity

Seven point scale
Jindai et al.[79, 80, 84,
81, 82, 83, 85], Ota et al.
[146, 147], Yamato et al.

[207]

Handshake motion,
Security,

Velocity/comfort,
politeness/Vitality

Avelino et al. [12] RoSaS (Warmth,
competence, discomfort),

Godspeed
(anthropomorphism,
animacy, likeability),
closeness, willingness to

help robot
Mura et al. [129], Vigni

et al. [197]
Quality, human-likeness,

responsiveness,
perceived leader,
personality

Five point scale
Ammi et al. [5],

Tsamalal et al. [194]
Valence, Arousal,
Dominance of Visual,
haptic and visuohaptic

interactions
Arns et al. [8] Compliance, force

feedback, overall haptics
Christen et al. [41] Naturalness of video of

different simulated
interactions

Score (out of 10) Wang et al. [205, 204],
Giannopoulos et al. [60]

Human likeness rating of
Robot handshakes

Dai et al. [47] Naturalness
Model Human Likeness Grade Avraham et al. [15],

Karniel et al. [90], Nisky
et al.[140]

Human likeness of
proposed handshake

models

Table 2.2.:Methods and Parameters used by different works to evaluate robotic handshaking.
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With force feedback Without force feedback

Human-like
hand (4/5
finger model)

Inactive Dai et al.[48]

Campbell et al. [33],
Jindai et al.[79, 80, 84,
81, 82, 83, 85], Kasuga
and Hasimoto [91],

Knoop et al. [97], Melnyk
and Henaff [123],

Nakanishi et al. [132],
Orefice et al. [145], Ota
et al. [146, 147],
Stock-Homburg et al.
[186], Vanello [196],

Vinayavekhin et al. [198],
Yamato et al. [207]

Passively
controlled

Arns et al. [8], Beaudoin
et al. [20], Ouchi and
Hashimoto [148],

Pedemonte et al. [155,
154]

Actively
controlled

Avelino et al. [12, 14],
Ammi et al. [5], Christen
et al.[41]*, Mura et
al.[129], Tsamalal et

al.[194], Vigni et al.[197]

Gripper

Bevan and Fraser [23],
Falahi et al. [55], Jouaiti
et al.[88]*, Sato et

al.[171]*

Rod-like end-effector

Avraham et al.[15],
Giannopoulos et al.[60],
Karniel et al.[90], Nisky
et al.[140], Papageorgiou
and Doulgeri[150], Wang

et al.[204, 203]

Table 2.3.: Different types of Robot End Effectors used for Human-Robot Handshaking. *-simulated
robot
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average indicates an inclination towards the negative sentiment and a positive average
indicates an inclination towards the positive sentiment. This, in contrast to comparing an
absolute score (rating out of ten for example), can help indicate the sentiments of the
participants better.
To use a more traditional test of computational intelligence, Karniel et al. [90] propose

a Turing test for motor intelligence and come up with a metric called the Modern Human
Likeness Grade (MHLG) which is used to indicate the human-likeness of different shaking
behaviours in this kind of a mechanical Turing Test. This is based on the perceived
probability by a participant of the model being a human shaking the stylus or the algorithm.
Nisky et al. [140] propose different ways to perform this Turing test for motor intelligence.
These are described in further detail in Section 2.5.3.

2.3. Reaching phase of Handshaking

We have already described the work of Jindai et al. [79, 83, 85] and Ota et al. [146,
147] above. To the best of our knowledge, these were the first works to model the hand
reaching aspect and deploy it on a robot. As mentioned above they propose two models.
One with a transfer function based on the human hand’s trajectory with a lag element and
the other is a minimum jerk trajectory model, which fits the velocity profiles and provides
smooth trajectories by definition. These modelling choices imply that a smooth motion
similar to the interaction partner is preferred with a small amount of delay between them.
However, they do not have any study showing how these two models compare with each
other.
More recent works model reaching using machine learning. Campbell et al. [33] use

imitation learning to learn a joint distribution over the actions of the human and the
robot. During testing time, the posterior distribution is inferred from the human’s initial
motion from which the robot’s trajectory is sampled. Their framework estimates the speed
of the interaction as well, to match the speed of the human. Christen et al. [41] use
Deep Reinforcement Learning (RL) to learn physical interactions from human-human
interactions. They use an imitation reward which helps in learning the intricacies of the
interaction. Falahi et al. [55] use one-shot imitation learning to kinesthetically teach
reaching and shaking behaviours based on gender and familiarity detected using facial
recognition. However, it cannot be generalised due to the extremely low sample size.
Vinayavekhin et al. [198] model hand reaching with an LSTM trained using skeleton data.
They predict the human hand’s final pose and devise a simple controller for the robot
arm to reach the predicted location. In terms of smoothness, timeliness and efficiency,
their method performs better than following the intermediate hand locations. However, it
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performs worse than using the true final pose due to inaccuracies in the prediction.
Major Findings. Modelling of reaching behaviours draws heavily on learning from

human interactions, unlike other robotic grasping/manipulation tasks, where a lot of it
can be learnt from scratch. This provides a strong prior to help make the motions more
human-like and can also be used to initialise [33] or guide [41] the learning.

2.4. Controlling Hand Grasps in Handshaking

One of the first remote handshaking systems, proposed by Ouchi and Hashimoto [148],
was aimed at two people performing a handshake while on a telephone call with each other
using a custom-made silicone-rubber based robotic soft hand. They measured the pressure
exerted on the hand using a pneumatic force sensor which relays the force information
over to the other user, who has a robotic hand as well. With this type of active haptic
mechanism, they show that users better perceive the partner’s existence during the call
and that they were able to shake hands without feeling any transmission delay. This shows
the effect that such haptic interactions have on the perception of the interaction partner.
Pedemonte et al. [155] design an anthropomorphic haptic interface for handshaking.

It is an under-actuated robot hand with a passive thumb that is controlled based on the
amount of force that is applied to it. It is a sensor-less model with a deformable palm
that controls the closure of the fingers. A variable admittance controller is used to set the
reference position for fingers based on the degree of deformation of the palm. Therefore
the amount of force exerted by the robot hand on the human hand depends on the force
exerted by the human, leading to a partial synchronisation in the grasping. It takes
approximately 0.6s to close the fingers. Arns et al. [8] build upon this design using lower
gear ratios and more powerful actuators to obtain a stronger grasping force and a faster
interaction speed. They argue that the use of impedance control as opposed to admittance
control helps improve responsiveness as well. A similar synchronisation is observed as
in the previous work as the mechanisms are the same, in theory. The main difference is
the speed of the interaction which is almost instantaneous in this case (less than 0.05s),
making the interaction more realtime and natural.
Avelino et al. [13, 14] propose two models to develop a pleasant grasp for handshaking.

This is extended to three different grasping models with different degrees of hand closure,
corresponding to strong, medium and weak handshakes [13]. Force sensors present on
the robots finger joints measure the interaction forces during grasping. It was found that
female participants mainly preferred strong handshakes (85.7%). There was a larger
variability among male participants. Since a simple position based control is employed,
the force perceived depends on the hand sizes of the participants, which could be the
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cause of the variability. This is addressed in [14], where an initial study is carried out
where participants have to adjust their hand and the robot’s grip until a preferable grasp is
reached. This is done to find a suitable reference force distribution among the sensors on
the robot hand. The finger joint positions are recorded as well. With this distribution, they
compare a fixed handshake to a force control method. The force control is done with a PID
controller whose set points are the average of the forces per sensor on each finger obtained
from the previous data. Moreover, they combine this with a shaking motion presented
in [205] that is described in Section 2.5. Participants had to rate the two handshakes
based on various factors like scariness, arousal (boring/interesting), meaningfulness,
excitement, strength/firmness, perceived enjoyment and safety, all on 7-point scales for
each variable. Although both handshakes were evaluated positively overall, no significant
differences were observed between them.
Vigni et al. [197] model the force exerted by the robot hand during handshaking

based on the force exerted by the human, measured using force-sensitive resistors on the
robot hand. The robot force is approximated from the degree of hand closure using a
calibration experiment where participants are asked to mimic the force felt on their hand
by a few open-loop handshakes of the robot. The human force is estimated by fitting
a cubic polynomial to the sum of forces applied on the individual sensors. This is also
done with a calibration experiment where participants were made to grasp a sensorised
palm fitted with a load cell to measure the exerted force. They compare three different
controllers based on the relationships between the exerted forces of the human and the
robot namely linear, constant and combined (constant+linear). The latter two are used
with two values of the constant force, weak and strong. Since humans have a small delay
in reaction time, a controller delay of 120ms was observed to be more natural and was
added to the behaviour.
The mean duration of handshakes was 2.2s with 24.8N as the mean sum of forces

measured on the robot hand exerted by the humans. The participants (n=15) filled out
a survey after interacting, rating the quality, human-likeness, responsiveness, perceived
leader, and the perceived personality of the robot on a 7 point scale. The combined
controllers were perceived better than the constant ones in terms of quality, human-
likeness and responsiveness, with a significant difference between the weak variants.
There was no significant effect in terms of who the perceived leader or follower was.
However, it was observed that in the constant force cases, humans would adjust their force
based on the robot’s, showing that humans tend to follow the force exerted on their hands.
These findings further emphasise the effect of mutual synchronisation in handshaking.
In terms of personality, the stronger variants of the constant and combined controllers
were perceived as more confident/extroverted, with a significant effect seen between the
variants of the constant controller.
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Major Findings. The main commonality among the above-mentioned works is that a
force feedback mechanism is necessary to ensure good grasping since it enables a mutual
synchronisation between the participants. To this end, although there is no force sensing
mechanism as such in the hand designed by Pedemonte et al. [155] and Arns et al. [8],
they still passively control the closure of the hand based on the deformation, thereby
producing a similar synchronous behaviour. Vigni et al. [197] observed that the grip
strength had an effect on the perception of the robot’s personality, which is consistent
with the findings of Orefice et al. [144], from human-human handshakes. This can help in
crafting behaviours to explicitly yield a personality to the robot, rather than observing such
a personality passively. Additionally, encoding different types of such explicit behaviours
can help the robot switch to adapt to the human interaction partner if necessary.

2.5. Shaking Motions and Synchronisation between Partners

In terms of shaking, one can easily say that there is a synchronisation that takes place
between the participants while shaking. This is observed by the studies mentioned above
in Section 2.2 as well and is one of the aims of most works that study the shaking aspect.
They also look at reducing the interaction forces between the robot end-effector and the
human hand, which is modelled using impedance/admittance control by some works.
We divide the works into 3 main categories: Central Pattern Generator (CPG) and

Related Models, Harmonic Oscillator Systems and Miscellaneous Shaking Systems, as
shown below in Table 2.4.

Central Pattern Generators
and Related Models

Harmonic Oscillator
Systems

Miscellaneous Shaking
Systems

Jouaiti et al.[88] Beaudoin et al.[20] Avraham et al. [15]
Kasuga and Hashimoto[91] Chua et al.[43] Karniel et al.[90]

Melnyk et al.[9] Dai et al. [47] Nisky et al.[140]
Melnyk and Henaff[123] Mura et al.[129] Pedemonte et al.[154]
Papageorgio and Doulgeri

[150] Wang et al.[205, 204]

Sato et al. [171] Yamato et al. [207]
Zeng et al.[209]

Table 2.4.: Division of works studying the shaking motion.
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2.5.1. Central Pattern Generators (CPGs) and Related Models

Central Pattern Generators (CPGs) [76] are biologically inspired neuronal circuits that
generate rhythmic output signals. One of the first works to develop an algorithm for the
shaking phase proposed the idea of using a CPG-like neural oscillator to model the motion
of the shoulder and elbow joints of a robot. They use the torque exerted on the joints
as input and generate an oscillatory trajectory, that can be tuned by adjusting gains to
amplify the input signal to go from active (high gain) to passive (low gain) [91].
One drawback of this method, as pointed out by Sato et al. [171] is that there are quite

a few hand-tuned parameters. Therefore, they propose a polynomial approximation for
the attractor model of the CPG and subsequently, a model for updating these parameters
in an online fashion. A similar on-the-fly parameter update of the oscillator is done
by Papageorgiou and Doulgeri [150], who use an impedance model to help tune the
parameters of an internal motion generator modelled as a Hopf Oscillator [77]. Although
this is not a CPG model, it shows similar synchronisation properties to produce rhythmic
outputs like a CPG. The output of the impedance model and oscillators are used to update
the oscillator parameters using Direct Least Squares in each iteration using n previous
samples of the trajectory. This is unlike previous approaches where the adaptability of the
CPG was an inherent trait.
In contrast, some works directly learn the CPG frequencies to enable a more online

real-time approach. Melnyk et al. [9] build the CPG around an online learning mechanism
that helps it sync with the human’s motions directly. Their method dynamically adjusts
to changes in the human’s shaking frequency and synchronise with the human. Like
the above-mentioned works, they too use the joint forces as an input to generate the
motions. However, they only work on controlling a single degree of freedom. A similar
model is proposed again by Melnyk and Henaff [123] using two different modes, joint
positions and accelerations respectively as the inputs. Like their previous work, they
control only one degree of freedom. Along similar lines, Jouaiti et al. [88] use a similar
CPG model and incorporate dynamic plasticity [167] in it, making it easier to synchronise
with the handshaking frequency. Moreover, they also propose learning the amplitude
of the oscillations along with the frequency, thereby being more adaptive than previous
approaches.
Major Findings. Overall, CPGs and oscillatory mechanisms synchronise well with the

human’s motion especially those that are dynamically learnt. They can also fare better
than a conventional impedance control approach in terms of flexibility, naturalness, affinity
and kindness of the perceived handshake [91]. Additionally, Jouaiti et al. [88] observed
that incorporating plasticity in the CPG can help decrease the energy spent by the robot
as well. One major drawback is the ability of such oscillatory mechanisms to converge
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quickly to the required frequency, taking more than a few seconds even in the fastest cases.
This would lead to unnatural handshaking behaviours that take too long to synchronise.
Further research is required to increase the convergence speed of such mechanisms.

2.5.2. Harmonic Oscillator Systems

Harmonic oscillator models are those that employ harmonic systems, like spring-damper
systems [48, 129, 207] or simpler sinusoidal motions [20, 204, 205, 209] to model the
motion during shaking. Some works use both types of harmonic oscillator models in a
two-step predictive and reactive system [43, 209]. Most works that employ harmonic
oscillator models use them as reference motions for an impedance controller used to
control the joint motions.
Beaudoin et al. [20] incorporate an impedance controller with different stiffness values

using a sinusoidal reference trajectory with different frequencies and amplitudes along
with the grasping model proposed by Arns et al. [8]. Dai et al. [48] develop a controller for
a custom-made hand that controls the stiffness, viscosity and joint angles independently.
Mura et al. [129] explore different shaking strategies w.r.t. robotic arm stiffness and their
synchronisation with the human during handshaking. The parameters of the oscillations
are estimated quickly in an online fashion using an Extended Kalman Filter from a fixed
number of preceding frames. They compare three models of varying stiffness, namely
high, low and variable based on the pressure exerted by the human, similar to Vigni et al.
[197].
Wang et al. [205] propose an impedance control mechanism to model the handshaking

mechanism and show how this can be learnt from human handshakes using least-squares
minimisation. The reference trajectory for the model is generated using an amplitude of
10cm and mixed frequency components from 0 - 25Hz. Based on the human’s response,
the model parameters are fine-tuned when the human is being passive. When the human
is being active, the model is used to estimate the interaction forces between the human
and the robot and carry out the handshake while being passive. This low-level controller
is expanded on in [204] where a high-level controller is used to generate reference
trajectories for it. They first propose a new method using recursive least squares for a
fast online estimation of the impedance parameters which are fed into an HMM that
predicts the intention of the human i.e. active or passive from haptic data. The impedance
parameters are used, rather than raw force inputs since they convey the state of the
system.

Major Findings. The use of active impedance control was found to be more compliant
to human motions as compared to simple position-based control [205]. Such active
behaviours were rated better in terms of responsiveness than passive ones which also
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had a significant effect on the perceived synchronisation [129]. Additionally, it was
observed that the human partners would adapt their handshake to the robot’s behaviour,
even when a change was not explicitly mentioned [48]. This further shows the inherent
synchronisation that takes place during handshaking, and that we as humans infer it from
the interaction itself. There are still no studies that compare the perception of CPG-based
shaking motions with harmonic oscillator motions. For a fair comparison, user studies
with the same interface would be needed to analyse the perceptual differences between
these methods.

2.5.3. Miscellaneous Shaking Systems

Karniel et al. [90] describe an experimental framework for a Turing test of motor intel-
ligence for shaking behaviours. They do so on a 1D force-controlled haptic stylus, that
is presented to a participant. In their test, the forces driving the participant’s stylus is a
linear combination of forces exerted by an experimenter and different proposed models.
They develop a Model Human-Likeness Grade (MHLG) which measure how human-like
the motions are from the participants’ feedback. Nisky et al. [140] extend this to three
different versions of the test. The first is a computer vs human test, where the participant
is presented wither with a purely algorithmic handshake or a purely human handshake.
However, this was not sensitive enough as the participants could almost always guess
correctly when a human was shaking their hand. The second version is where the partici-
pants have to compare an algorithmic handshake with a noisy human one. The third is the
weighted linear combination test proposed by Karniel et al. [90]. Unlike the "pure" test,
the authors claim that the latter two variants are said to be better suited for this purpose.
Avraham et al. [15] make use of this "noise"-based Turing Test to compare 3 different

shaking behaviours. The first is a tit-for-tat model that initially records the human’s
motion passively and then keeps replaying the same motion, assuming that the human’s
motion stays the same again. The second is a biologically inspired model that simulates
a movement that could be generated by extensor and flexor muscles to ensure a low
amount of overall interaction force. The final is a simple machine learning model that uses
linear regression to learn the parameters of a linear combination of state variables with
corresponding Gaussian kernels. It was found that the tit-for-tat model and the machine
learning model fare similar to each other. They both fare much better than the biologically
inspired model, which the authors argue can be improved by tuning the hyperparameters.
While the proposed Handshaking Turing tests work for shaking a simple 1D stylus, it still
needs to be seen how well these tests would fare on more complex robotic hardware.
Pedemonte et al. [154] introduce a mechanism for remote handshaking using the hand

developed in [155]. They develop a vertical rail mechanism that the hand is mounted on to
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support a vertical shaking motion that is passively controlled. The same mechanism is used
by both the participants. This shaking motion along with the forces exerted on the hand is
relayed to the opponent’s hand and rail mechanism to allow a bilateral handshake to take
place remotely. They show that their mechanism allows for realistic haptic interaction to
take place remotely where the participants can adequately perceive each other’s motions
and forces.

2.6. Human Responses to Social Aspects of Robotic Handshaking

In previous sections, we have already talked about how some of the different works were
perceived in HRI experiments. In this section, we expand further along similar lines and
discuss works whose main aim was analysing the responses in such HRI experiments.

2.6.1. External Factors in Handshaking

While the sense of touch can convey emotional information, there are additional factors
that enhance the perception of these feelings and the acceptance of the interaction. Below,
we discuss some works that explore different external factors and present their findings
to show the importance of fine-tuning these external factors, which although are subtle,
have an impact on the way a handshake is perceived.
Ammi et al. [5] and Tsalamlal et al. [194] performed studies to explore how touch

influences the perception of facial emotions. They used two haptic behaviours (strong
and soft) combined with three visual behaviours namely happy (smiling), neutral and
sad (frowning) which were displayed by the robot’s lips. They test the interactions in
three conditions, haptic-only, visual-only and visuo-haptic. The combination of visual
expressions with a strong handshake showed higher arousal and dominance over all visual
expressions, showing that a sense of touch can enhance robotic expressions. The majority
of the comparisons between visuo-haptic and haptic-only cases were insignificant, which
the authors argue could be due to the simplistic nature of the facial expression rendering.
Vanello et al. [196] explore similar correlations between participant’s perceptions while
shaking hands with an artificial hand made of a plastic material while being presented
with a visual stimulus of either a human or a robot face. While their experimental design
to use fMRI data to understand such correlations is a useful one, their results cannot be
deemed as conclusive since only three participants take part in their study.
Nakanishi et al. [132] explore social telepresence with a video screen equipped with a

robot hand below it. They try out different visibility settings of the participant’s hand in
the frame and a robotic hand and compare one-way and two-way teleoperated handshake
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settings. They build a hand that resembles a human hand using a soft sponge and gel-like
covering and an artificial skin layer to make the appearance more human-like. It is also
equipped with resistive wires that heat the fingers. The closure of the fingers is controlled
by an external motor with wires connected to the fingertip that are pulled to extend or
close the fingers. First, they look at different hand settings of the presenter where their
hand would either be visible or out of the video frame (invisible) while shaking. They
find that in the invisible case, the interaction was perceived better. Participants not only
strongly felt that the presenter was in the same room but also had a strong feeling that
they were shaking hands with the presenter in real life. The authors argue that though the
visibility of synchronisation might be perceived as better, the visibility of the presenter’s
hand led to this effect getting cancelled out, which some subjects reported was due to the
duplication of the hand i.e. seeing two hands at the same time, both the presenter’s and
the robot hand. After establishing the results of one-way handshaking, they tested out
how participants felt when the presented had a robot hand that was controlled by the
participants (two-way handshake). This was tested in two settings where the presenter’s
interaction was either visible or invisible to the participants. It was seen that the same
feelings of physical closeness to the presenter and of shaking hands in real life were rated
higher for the invisible two-way case, where participants knew that their handshake was
being felt by the presenter. This could possibly be attributed to a perceived synchronisation
of sorts which arises from the participant knowing that their actions are being perceived
by their partner rather than the interaction being just in a one-way direction.
Jindai et al. [85] analyse various handshake motions generated by their model in two

ways. They first fit a Bradley Terry Model [28] on paired comparisons of their interactions.
Following that, they use a 7 point bipolar scale to test the participant’s preferences w.r.t. the
handshaking motion, velocity, relief, easiness, politeness and security. They additionally
see how participants respond to voice [84] and gaze behaviours [83]. The study showed
that a delay of 0.1 seconds between the voice and handshake motion of the robot was
found acceptable. It was found that the most preferred behaviour was when the gaze
shifts steadily from the hand while reaching out to the face after contact is established.
The response models [146, 147] were tested based on the delay between the request and
response motions and it was seen that starting the response a fraction of a second (0.2s to
0.4s) after the response was preferred. However, a larger delay of 0.6s was less preferable.
The request model in [79] was additionally tried out with a human approaching the
robot from a distance. They experimented with starting the request at different distances
of the human from the robot. Apart from this, both the request and response models
were combined with a similar transfer function as in [85] such that the robot requests a
motion if the human doesn’t. This type of behaviour was well perceived by humans as
well (positive feedback on a 7-point bipolar scale).
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2.6.2. Influence on the Perceived Image of the Robot

As mentioned in the introduction (Section 2.1), handshaking can impact first impressions.
Therefore in the context of HRI, this can possibly help strengthen the perception of a robot
for further interactions that take place. This is explored by the works described below,
wherein the effect of robotic handshaking is studied on the specific tasks that a robot has
to accomplish.
Avelino et al. [12] use their previously proposed handshaking model [13] to see

how a handshake affects a subsequent interaction wherein the robot needs to perform a
navigation task during which, it would need some assistance by the human. They found
that participants who shook hands with the robot found it to be warmer and more likeable
and were more willing to help the robot with its task. However, they argue that if the
robot had an extremely human-like handshake, participants would not anticipate it to get
stuck in a simple navigational task due to a mismatch between the behaviour during the
experiment and the perceived behaviour according to the handshake.
Bevan and Fraser [23] perform an experiment to see the effect of handshaking on

negotiations between participants, where one participant interacts with the other via
telepresence on a Nao robot. It was seen that handshaking improved mutual cooperation,
leading to a more favourable negotiation result for both parties. Haptic feedback for the
telepresent negotiator didn’t have a significant impact. They also found that handshaking
did not affect the degree to which negotiators considered their opponent trustworthy,
which they argue is possibly due to the childlike nature of the Nao robot.

2.6.3. Distinguishing Ability of Handshakes

In Section 2.2, it was shown that there were observable differences of gender and context
on handshaking. In this section, we discuss some works that aim to model certain aspects
of the participant, like their gender, personality and mood based on handshakes.
Orefice et al. [144] propose a model for making distinctions along the lines of gender

and personality (introversion/extroversion), using a set of 20 parameters relating to
acceleration, velocity, duration, pressure etc. They find that in male-male pairs, more
pressure is applied than in male-female ones. Moreover, they found that female pairs
have a longer duration and a lower frequency but the maximum speed of the oscillations
is higher. They argue that some results could also be due to the hand sizes rather than
gender since most of the females in their study had smaller hands. Coming to personality,
they found that introverts reached a higher speed while shaking hands and extroverts
would exert more pressure. Though they performed similar experiments in a human-robot
handshaking scenario as well, the small number of participants (n = 8) makes their
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results in this aspect inconclusive. Garg et al. [59] similarly aimed to classify people’s
personalities into weak and dominant. They use similar information extracted using a
custom-made glove to measure accelerations, Euler angles and polar orientations. The
features are ranked based on the Mutual Information followed by classification using K
Nearest Neighbours, achieving a 75% accuracy. Orefice et al. [145] perform another
longitudinal study with 11 participants over 16 non-consecutive days, that looks at how
pressure variations while shaking hands reflect the mood of the participants. They use a
custom-made glove with various pressure sensors and an accelerometer worn by both the
participant and a Pepper robot. Before shaking hands, participants had to declare which
mood (Calm, Relaxed, Cheerful, Excited, Tense, Irritated, Sad, and Bored) best described
their current mood. Consistency in the mood was seen when participants shook hands
with a human subject and with pepper, which was unexpected as one would expect an
interaction with a robot to seem unrealistic or not as human-like. Overall, no significant
results were found for most positive moods, except between "Calm" and "Cheerful" where
the former had less pressure observed. In the case of negative moods, "Bored" handshakes
had lower pressure than "Excited" and "Tense", which have more arousal than "Bored".
In general, lower pressures were found with moods with lower arousal. This shows how
handshaking can be used as an affective interaction to further increase the emotional
understanding of robots.

2.6.4. Human-likeness of Robotic Handshakes

In the introduction (Section 2.1), we mentioned the importance of having human-like body
movements, which plays an important role in HRI acceptance [35, 104, 127]. Therefore
we analyse works that look at the human-likeness of robotic handshakes and draw insights
that can help shape future experiments.
The social responses to the shaking models proposed by Wang et al. [205, 204] were

analysed further in [203, 60]. Both studies perform their experiment on a robot with a rod
as its end effector, in a bar like setting wherein participants have noise-cancelling head-
phones playing bar music and having ambient conversations. In both studies, participants
had to perform around 6-7 handshakes in each of the three different handshake settings.
First was the basic algorithm proposed in [205], the second was the interactive model
proposed in [204] and third was a human operating the robot. After the handshakes,
participants had to rate the human-likeness of the handshake from 1 (resembling a robotic
handshake) and 10 (resembling a human handshake). In neither of the studies did the
participants see the robot. In the study by Giannopoulos et al. [60], participants were first
blindfolded and led to the robot whereas, in the study by Wang et al. [203], participants
had a VR headset on which had a graphical rendering of a bar with a human model
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rendered for the robot, who would walk up and request for a handshake with the virtual
hand in the same position as the robot end effector in the real world. In both the studies,
the human-operated handshake was rated the highest (6.8/10 in both), followed by the
HMM-based handshake (5.9/10 in [60] and 5.3/10 in [205]). The least was the basic
handshake proposed in [205] which was rated much lower than the other 2 alternatives
(3.3/10 in [60] and 3.0/10 in [205]). Although the HMM-based handshake was rated
closely as the human-operated one, they both were far from the maximum human-likeness
score (10/10), which could be due to the rod-like end effector used. Having a similar
experiment with a more sophisticated robot hand could yield the results to be more
human-like. However, their studies conclude that having an adaptive handshake that
matches the behaviour of the human ends up being perceived closer to human behaviour.
Stock-Homburg et al. [186] study whether a realistic android robot, that is modelled

after a human, with soft silicone skin and pneumatically controlled joints can pass a
hardware version of the Turing test. They have 15 participants blindfolded who have to
interact with a human and the robot with their hand stretched out twice in a random order,
leading to a total of 4 trials each. Although the robot is built to be as realistic as possible,
the majority of the humans (11/15) correctly guessed the hand in the first attempt itself
and by the last handshake, they were all able to guess the hand correctly. However,
they only test a static interaction with the robot. For a better evaluation, comparing a
handshake behaviour rather than just a static interaction could show better insights into
the modelling of a human-like handshake.

2.7. Discussion

Overall, we have talked about the various works that look into human-robot handshaking,
however, due to the differences in hardware and metrics used across different studies, it is
difficult to come up with a common benchmark to evaluate these studies. Having said
that, some qualitative conclusions can be drawn from analysing these studies. In general,
over the different stages of handshaking, an element of synchronisation is present. In the
reaching phase, this is seen in terms of the similarity of the requestor’s and responder’s
motions, which is why most works modelling the reaching behaviour draw from human-
human interactions. Although such behaviours can be learnt using Reinforcement Learning,
human trajectories provide a strong prior to enable the learnt motions to be human-like.
Following this, synchronisation in the grasping phase can be observed by matching the
strength of the partner and can additionally affect the perceived personality of the robot,
which highlights the affective nature of the interaction. Finally, the shaking phase is where
the main element of synchronisation can be explicitly measured with the interaction forces
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between the hands. This depends directly on how well the shaking motion adapts to that
of the partner, leading to low levels of interaction forces as the synchronisation gets better.
Though synchronisation is a major element of handshaking, in reality, it is difficult to be
completely in sync, due to differences in hand shape and size, mental states etc. Therefore,
a leader-follower situation can arise in the different stages as well, which could reflect on
various personal attributes of the interaction partners.
Although there is a considerable amount of work on the topic, there are still some gaps

in the current state of Human-Robot Handshaking research. Based on what we have
already discussed above and their pitfalls, we propose the following suggestions/open
areas for further research on Human-Robot handshaking.
Suggestion 1: One important, yet relatively difficult task is that of combining the

different phases. For a more human-like perception, a proper transitioning would be
required between each of the different phases. Only a few studies [41, 81, 129, 154, 207]
look into combining pairs of different phases but still do not implement an end-to-end
behaviour. There is still work that needs to be done to achieve a complete handshaking
behaviour. Along with this, the termination of a handshake is an equally important criterion
to make the interaction more socially acceptable. Current works neither take a smooth
separation into account nor do they analyse the effects of it. A prolonged handshake or an
untimely termination can possibly be perceived as unnatural and can affect the subsequent
interaction [131]. Therefore an end-to-end handshaking behaviour should take this into
account as well.
Suggestion 2: From the perspective of a robotic handshake, making use of contextual

cues would be effective in having a successful impact on the handshake. As described
in Section 2.2 and 2.6.3, different social contexts and moods have an effect on the
handshake. Being able to detect such cues additionally requires further research in other
fields like emotion recognition, intent recognition, etc. Some works try and estimate
the mood/personality via the handshake [145, 204], but there is no explicit context
detection in place, say for example by detecting it from facial expressions, or possibly from
physiological data, and correspondingly using the insights from Section 2.2 for fine-tuning
the handshake.
Suggestion 3: Developing better social robotic interfaces that have a force-sensing

mechanism and performing closed-loop control can be more expressive, as seen in [5,
194, 197]. Currently, most works do not implement proper grasping control (as shown in
Table 2.3), which is key for capturing the expressive ability of handshakes to its maximum.
Additionally, the human-likeness of an interface is just as important for its perception.
This can be seen in [60, 205] where even though a human was controlling the robot
having a rod-like end effector, this mode of shaking only got a human-likeness score of
6.8/10 by the participants. Even sophisticated mechanisms, like the Android robot used
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Context-based Handshake Adaptation

Context
Modelling

Reaching

Deciding whether to follow the human or to lead the
interaction, if not initiated. 

Grasping

Adapting the contact force/pressure based on the
context (such as based on valence and arousal). 

Shaking 

Executing a timely shaking motion, such that it is
synchronised with the motion of the interaction
partner. 

Accurate hand detection
and correctly grasping  

the partner's hand 

Starting a timely shaking motion 
after adequate grip strength

is applied 

Contextual  
parameter  
adaptation

Figure 2.2.:Modified Conceptual Framework for Human-Robot Handshaking. (The proposed
suggestions are shaded in grey.)
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in [186] which has a soft skin-like layer and heated palms, are still easily distinguished
from a human’s hand. One workaround could be to use sensing gloves, like by Orefice et
al. [145], which could help bridge the gap between a sophisticated interface and social
robots.
Suggestion 4: Given that one of the main use-cases of handshakes in shaping first

impressions is in business cases, the effect of robotic handshaking in such cases hasn’t been
properly explored. This is especially important given the use of social robots as front-line
employees [78]. Bevan and Fraser [23] study a part in a negotiation context. They look
at the impact of robotic handshaking on the impression of the negotiation partner who
teleoperated the robot. Moreover, they conduct their study with a Nao robot, which can
come across as very childlike and not be taken as seriously in such settings.
While suggestions 2 and 4 are still subjective, suggestions 1 and 3 are areas that can be

objectively improved and incorporated to improve existing methods not just for Human-
Robot handshaking but would be applicable towards other similar physically interactive
behaviours as well. With these two suggestions, a modified framework of Human-Robot
handshaking is shown in Figure 2.2 (the suggested aspects are shaded in grey). Here
the main importance is given to contextual modelling, which influences parameters like
strength, speed etc. by adapting them accordingly.

2.8. Conclusion

Handshaking is a versatile non-verbal interaction that plays an important role in social
settings. In this chapter, we first draw insights from human-human handshaking regarding
timing, trends in the grip strength and the synchronisation of shaking. We then explore the
different phases of handshaking, namely reaching, grasping and shaking, while observing
a common aspect of synchronisation between the phases. We finally discuss how hand-
shaking affects the way the robot is perceived and propose some directions for future work.
However, one thing to keep in mind is that handshaking is just one in so many physical
interactions all of which vary over different cultures, age groups, geographic locations,
contextual settings etc. To this end, learning different physically interactive behaviours,
such as hand-claps/high-fives, fist bumps, or a combination of different touch-based inter-
actions, would help improve the perception of the robot. Being able to distinguish and
learn such new physically interactive behaviours on the go, building a skill library of sorts,
rather than just a single one like handshaking, could improve the sociability of a robot.
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3. MILD: Multimodal Interactive Latent
Dynamics

Among the suggestions proposed in Chapter 2, the first suggestion for extracting, combin-
ing, and transitioning between the different phases of an interaction is key for enabling a
synchronized behavior for not just Handshaking but other physical interactive behaviors
in general. To enable seamless physical Human-Robot Interaction (HRI), a robot needs to
react in a timely manner to a human’s actions and should accurately maintain physical
proximity with the human in a coordinated manner. This chapter presents a method for
learning interaction dynamics to enable well-coordinated HRI with a Humanoid Social
Robot directly from Human-Human Interactions (HHI). A hybrid model is devised a hybrid
model that uses Hidden Markov Models (HMMs) as latent space priors for a Variational
Autoencoder (VAE) to learn a joint distribution over the dynamics of the interacting agents.
We leverage the interaction dynamics learned from HHI demonstrations to regularize the
learning of robot trajectories and to improve the predictions by incorporating the condi-
tional generation of robot motions from human observations into the training. To improve
the accuracy of the interaction, the generated robot motions are further adapted with
Inverse Kinematics for achieving the desired physical proximity with the human partner.
This helps mitigate issues arising from the mismatch in motion retargeting to the robot by
combining the best of joint space learning and task space reachability. For a contact-rich
interaction, we further use the HMM predictions to modulate the robot’s stiffness to enable
a smooth, compliant, and realistic interaction. Our experimental evaluations show that
our method captures the interaction dynamics well, with our human-conditioned reactive
motion generation significantly improving the performance. We verify the effectiveness of
our approach deployed on a Humanoid robot via a user study. Our method generalizes
well to various humans despite being trained on data from just two humans. We find
that users perceive our method as more human-like, timely, and accurate and rank our
method with a higher degree of preference over other baselines. We additionally show
the ability of our approach to generate successful interactions in a more complex scenario
of Bimanual Robot-to-Human Handovers.
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3.1. Prologue

Ensuring a synchronized and accurate reaction is an important aspect in Human-Robot
Interaction (HRI) [4]. To do so, a human and a robot need to spatiotemporally coordinate
their movements to reach a common target or perform a common task, that can be denoted
as a joint action [175]. For realizing such coordinated jointly performed actions, spatial
and temporal adaptation of motions in the shared physical space to accurately perform the
action are key factors [176]. Such interpersonal coordination can enable a connection to
one’s interaction partner [119]. Therefore, well-executed and well-coordinated interactive
behaviors can improve the perception of a social robot.
The paradigm of Learning from Demonstrations (LfD) is promising for HRI by learning

joint distributions over human and robot trajectories in a modular, multimodal manner [52,
31, 156, 53, 99]. However, LfD approaches scale poorly with higher dimensions, which
can be circumvented by incorporating Deep Learning for learning latent-space dynamics.
Such Deep State-Space Models have shown good performance in capturing temporal
dependencies of latent space trajectories, either using some kind of a forward propagation
model [21, 46, 44, 29], learning the parameters for a dynamics model with LfD [89, 39,
37] or fitting parameterized LfD models to the underlying latent trajectories [50, 130].
In this chapter, we further explore this direction of latent space dynamics in the context
of Human-Robot Interaction.
Furthermore, when learning trajectories in the joint configuration space of a robot,

minor deviations in the joint space can cause a perceivable deviation in the robot’s task
space. While learning task space trajectories can mitigate problems from errors in the
joint space, to do so, the demonstrated trajectories need to fall within the reachability of
the robot. When this reachability assumption is violated, the task space proximity in HRI
scenarios may not be effectively learned. Moreover, learning purely task space trajectories
doesn’t necessarily ensure human-like joint configurations, which is especially relevant
for Humanoid robots. To this end, the combination of joint space learning and task space
reachability can be achieved using Inverse Kinematics to supplement the learned behaviors
[63, 162, 34].
In this chapter, as shown in Figure 3.1, we are interested in learning and adapting Deep

LfD policies for spatiotemporally coherent interactive behaviors. We learn the interaction
dynamics from HHI demonstrations using latent space Hidden Markov Models (HMMs).
We show the efficacy of the learnt dynamics in real-world HRI scenarios. We do so in
a manner that ensures spatially accurate physical proximity to the human partner and
additionally enable compliant robot motions in contact-rich interactions like a handshake,
thereby improving the perceived quality of the HRI behaviors.
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Figure 3.1.: In this chapter, we explore learning coordinated HRI behaviors using Hidden Markov
Models (HMMs) to learn the interaction dynamics over a representation space spanned
by a Variational Autoencoder (VAE). The VAEs are trained with the HMMs as a prior to
better incorporate the understanding of the dynamics. Moreover, we learn directly from
Human-Human interactions by leveraging the kinematic similarities of Humans and
Humanoid robots. During testing, the predicted trajectories are adapted with Inverse
Kinematics to mitigate errors in the spatial accuracy arising either from prediction
errors or from shortcomings in transferring the human’s actions to the robot.
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3.1.1. Related Work

Learning HRI from Demonstrations

Early approaches for learning modular HRI policies modeled the interaction as a joint
distribution with a Gaussian Mixture Model (GMM) learned over demonstrated trajectories
of a human and a robot in a collaborative task [31]. The correlations between the human
and the robot degrees of freedom (DoFs) can then be leveraged to generate the robot’s
trajectory given observations of the human for learning both proactive and reactive
controllers [169, 30, 156]. Segmenting HRI demonstrations has also been shown using
Graphical Models with Markov chain Monte Carlo [182, 181].
Along the lines of leveraging Gaussian approximations for LfD, Movement Primi-

tives [152], which learn a distribution over underlying linear regression weight vectors,
were extended for HRI by similarly learning a joint distribution over the weights of inter-
acting agents [6, 116, 32]. Movement Primitive approaches can further be combined with
GMMs for learning multiple task sequences seamlessly [53, 117, 99, 143, 112]. One draw-
back of the aforementioned primitive-based approaches is that they do not perform well
on out-of-distribution data [213]. Additionally, for tasks that are loosely coupled in time,
Movement Primitives can underperform [151]. These drawbacks therefore make them an
unviable option for being able to generalize spatiotemporally in interactive behaviors. For
a more extensive overview of Movement Primitive approaches for robot learning, we refer
the reader to [191].
Vogt et al. [200] are similar in theory to our approach where they learn the interac-

tion dynamics of Human-Human Interactions using an HMM over a low dimensional
representation space of the human skeletons. In our approach, we show further perfor-
mance improvements by incorporating human-conditioned reactive motion generation
into the training pipeline.Additionally, Vogt et al. [200] train Interaction Meshes [74]
for transferring the learned trajectories to a robot whose prediction is optimized during
runtime to adapt to the human user’s movements. As we work with Humanoid Robots, we
follow a simpler approach by leveraging the structural similarity between a human and a
humanoid. This allows us to map the joint motions directly [57] and adapt the motions to
the interaction partner using Inverse Kinematics [162]. Through our user study, we find
that our approach, while being simplistic, provides acceptable interactions with various
human partners.
To make the learned distribution more robust, LfD methods are often learned via

kinesthetic teaching which can be tedious for HRI tasks where one would need a variety
of human partners. The need for extensive training data can potentially be circumvented
by learning how humans adapt to a robot’s trajectory [33]. A more general way, especially
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in the context of Humanoid robots, is by learning from human-human demonstrations
by leveraging the kinematic similarities between humans and robots [57]. While such
approaches of motion retargeting leave some room for error due to minor differences
between human and robot geometries, adapting the trajectories in the robot’s task space
via Inverse Kinematics can improve the accuracy of such interactive behaviors [162, 198].

Integrating LfD with Deep Learning

Techniques at the intersection of LfD coupled with the use of Neural Network representa-
tions for higher dimensional data have grown in popularity for learning latent trajectory
dynamics from demonstrations. Typically, an autoencoding approach, like VAEs, is used to
encode latent trajectories over which a latent dynamics model is trained. In their simplest
form, the latent dynamics can be modeled either with linear Gaussian models [89] or
Kalman filters [21]. Other approaches learn stable dynamical systems, like Dynamic Move-
ment Primitives [172] over VAE latent spaces [25, 38, 39, 37, 45]. Instead of learning a
feedforward dynamics model, Dermy et al. [50] model the entire trajectory’s dynamics at
once using Probabilistic Movement Primitives [152] achieving better results than [37].
Nagano et al. [130] demonstrated the use of Hidden Semi-Markov Models (HSMMs)

as latent priors in a VAE for temporal action segmentation of motions involving a single
human. They model each latent dimension independently, which is not favorable when
learning interaction dynamics. To extend such an approach for learning HRI, one needs to
consider the interdependence between dimensions. We extend this idea of using HSMMs
as VAE priors for interactive tasks by exploiting the full rank of HSMM covariance matrices
thereby capturing the dependencies between both agents by learning a joint distribution
over the latent trajectories of interacting partners.

Interaction Modeling with Recurrent Neural Networks

When large datasets are available, Recurrent latent space models are powerful tools in
approximating latent dynamics with some form of a forward propagating distribution [44,
67, 100, 113, 54]. Given their power of modeling temporal sequences, they yield them-
selves naturally for learning interactive/collaborative tasks in HRI [142, 212, 177]. To
simplify the various scenarios of interaction tasks Oguz et al. [142] develop an ontology
to categorize interaction scenarios and train an LSTM network for each case in a simple
Imitation Learning paradigm. Similarly, Zhao et al. [212] explore using such LSTM-based
policies for learning HRI in a simple collaboration scenario. Rather than simply regressing
robot actions to human inputs, Bütepage et al. [29] explore the idea of learning shared
latent dynamics in HRI in a systematic way. Bütepage et al. [29] initially learn latent em-
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beddings of the human and robot motions individually using a VAE. Once the embeddings
are learned, the latent interaction dynamics model of Human-Human Interactions (HHI) is
learned using LSTMs. The learned HHI dynamics are used in conjunction with the learned
robot embeddings to subsequently learn the robot dynamics from HRI demonstrations.
However, we find in our experiments that the autoregressive nature of their approach,
unfortunately, leads to a divergence in the performance since they only train it using
ground truth demonstrations and not in an autoregressive manner. In contrast, rather
than having an implicit shared representation, such as with an LSTM, the LfD approaches
can be explicitly conditioned on the interaction partner’s observations [6, 52] which we
find leads to improved predictive performance.

Unsupervised Skill Discovery

While skill discovery is not the main focus of our approach, there are some parallels
between our approach and works on unsupervised skill discovery which we discuss below.
In general, such approaches aim to partition a latent space into different skills which can
then be sequenced for learning a variety of different tasks either from demonstrations or
using Reinforcement Learning (an overview can be found in Sec. III-B in [128]). The works
closest to our approach [190, 133, 165] explore this key idea of learning how to segment
demonstrations into underlying recurring segments or “skills” by decomposing a latent
representation of the trajectories and subsequently learning the temporal relations between
these skills to compose the observed trajectories. Similar approaches are further explored
in literature using different skill representations such as the Options framework [180]
or Autoregressive HMMs [139, 102]. While the main focus of such approaches is the
decomposition of demonstrations to learn re-usable atomic “skills”, our main aim is to
explore how to do so in HRI settings via a joint distribution over the actions of interacting
partners and subsequently how the learned skills/segments can be inferred during test
time based on the dynamic observations of a human, rather than reproducing a given task
or based on a static goal.

3.1.2. Objectives and Contributions

In this chapter, we first explore how Deep LfD can be used for learning spatiotemporally
coherent interaction dynamics. Rather than using an uninformed, stationary prior for
learning HRI [29], we show the use of Hidden Markov Models (HMMs) to model the
latent space prior of a VAE as a joint distribution over the trajectories of both interacting
agents. During test time, the robot trajectories can be conditionally generated based on the
observed human trajectories in the latent space, showing that such an approach can capture
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the latent interaction dynamics suitably well. We further explore how to systematically
improve the predictive abilities of our model by incorporating reactive motion generation
into the training process. We do so by exploring two different sampling approaches to
incorporate the conditional distribution of the HMM into the training, rather than using
the HMM just as a VAE prior. Furthermore, to deploy the proposed approach on the
Humanoid Social Robot Pepper [149], we leverage the similarity between the kinematic
structures of Pepper and a Human to effectively learn HRI behaviors from Human-Human
Interactions. We further show how the predictions from the latent space HMMs can help
supplement the robot controller by modulating the target motions via Inverse Kinematics
for a more accurate interaction and modulating the joint stiffnesses for ensuring compliant
motions during a contact-rich interaction like a handshake (Figure 3.2).
Specifically, the contributions of this chapter are as follows:

(i) We demonstrate the use of Hidden Markov Models as informative latent space priors
for a VAE thereby learning the interaction dynamics from demonstrations.

(ii) We systematically explore how to incorporate human-conditioned reactive motion
generation of the robot trajectories in the training process to improve the predictive
abilities of our model.

(iii) We integrate Inverse Kinematics in our pipeline to spatially adapt the predicted robot
motions to the interaction partner, thereby ensuring suitable physical proximity and
improved spatial accuracy of the learned behaviors.

(iv) For contact-rich interactions like handshaking, we further perform stiffness modula-
tion using the segment predictions from the HMM to enable realistic and compliant
robot motions.

(v) We validate our approach via a user study in a real-world HRI scenario where
participants interact with a Pepper robot controlled by our approach. We find that
our method ranks highly compared to other baselines and provides a perceivably
more human-like, natural, timely, and accurate interaction, thereby showcasing its
effectiveness. We further show to applicability of our approach on a more complex
task of Bimanual Robot-to-Human Handovers.

The rest of the chapter is organized as follows. In Section 3.2, we explain the foundations
needed to understand our work. We then explain our approach in Section 3.3. We highlight
our experiments and results in Section 3.4 and present some concluding remarks and
directions for future work in Section 3.5.
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latent space trajectories p(zh
1:t, z

r
1:t) of the interacting agents. During test time, the

observed agent’s latent trajectory conditions the HMM to infer the robot agent’s latent
trajectory p(zr

t |zh
1:t) which is decoded to generate the robot agent’s joint trajectory

x̂r
t . To ensure the proximity of a robot’s hand to the human’s hand during test time,
we additionally adapt the predicted trajectory using Inverse Kinematics to fulfill the
contact-based nature of the interaction.

3.2. Foundations

We first explain Variational Autoencoders (VAEs) (Section 3.2.1) which is the main back-
bone of our approach, followed by Hidden Markov Models (HMMs) (Section 3.2.2), which
are key for learning the interaction dynamics, and finally, we give an introduction to
Inverse Kinematics (IK) (Sec 3.2.3) which is essential for improving the overall acceptance
of our approach.

3.2.1. Variational Autoencoders

Variational Autoencoders (VAEs) [96, 166] are a type of neural network architecture
that learns the identity function in an unsupervised, probabilistic way. The inputs “x”
are encoded into lower dimensional latent space embeddings “z” that a decoder uses to
reconstruct the original input. A prior distribution is enforced over the latent space during
the learning, which is typically a standard normal distribution p(z) = N (z;0, I). The
goal is to estimate the true posterior p(z|x), using a neural network q(z|x) and is trained
by minimizing the Kullback-Leibler (KL) divergence between them

KL(q(z|x)||p(z|x)) = Eq[log
q(z|x)
p(x, z)

] + log p(x) (3.1)
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which can be re-written as

log p(x) = KL(q(z|x)||p(z|x)) + Eq[log
p(x, z)

q(z|x) ]. (3.2)

The KL divergence is always non-negative, therefore the second term in Eq. 3.2 acts as
a lower bound. Maximizing it would effectively maximize the log-likelihood of the data
distribution or evidence, and is hence called the Evidence Lower Bound (ELBO), which
can be written as

Eq[log
p(x, z)

q(z|x) ] = Eq[log p(x|z)]− βKL(q(z|x)||p(z)). (3.3)

The first term aims to reconstruct the input via samples decoded from the posterior. The
second term is the KL divergence between the prior and the posterior, which regularizes
the learning. To prevent over-regularization, the KL divergence term is also weighted
down with a factor β. Further information can be found in [96, 166, 71].

3.2.2. Hidden Markov Models

A Hidden Markov Model (HMM) is used to model a sequence of observations z1:T (robot
joint angles, human skeletons, etc.) as a sequence of underlying hidden states such that
they can “emit” the observations with a given probability. In mathematical terms, an
HMM is characterized by a set of hidden states i ∈ {1, 2 . . . N}, each of which denotes a
probability distribution, in our case a Gaussian with mean µi and covariance Σi, which
characterize the emission probabilities of observations N (zt;µi,Σi). An initial state
distribution πi denotes the initial probabilities of being in each state, and the state transition
probabilities Ti,j describe the probability of the model going from the ith state to the
jth state. The sequential progression via the probability of each hidden state given an
observed sequence z1:t is denoted by the forward variable of the HMM αi(zt)

αi(zt) =
α̂i(zt)∑︁N
j=1 α̂j(zt)

α̂i(zt) = N (zt;µi,Σi)
N∑︂
j=1

αj(zt−1)Tj,i

α̂i(z0) = πiN (z0;µi,Σi)

(3.4)

where α̂i(zt) represents the non-normalized forward variable and πi is the initial state
distribution. The HMM is trained using Expectation-Maximization over the parameters
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(πi,µi,Σi, Tj,i) with the trajectory data. We refer the reader to [30, 156] for further
details on HMMs in the context of robot learning.
In HRI scenarios, to encode the joint distribution between the human and the robot,

we concatenate the Degrees of Freedom (DoFs) of both the human and the robot [31, 52]
allowing the distribution to be decomposed as

µi =

[︃
µh
i

µr
i

]︃
;Σi =

[︃
Σhh

i Σhr
i

Σrh
i Σrr

i

]︃
(3.5)

where the superscript indicates the different agents (h-human, r-robot). Once the distri-
butions are learned, given some observations of the human agent zh

t , the robot’s trajectory
can be conditionally generated using Gaussian Mixture Regression as

Ki = Σrh
i (Σhh

i )−1 (3.6)
µ̂r
i = µr

i +Ki(z
h
t − µh

i ) (3.7)

Σ̂
r
i = Σrr

i −KiΣ
hr
i + µ̂r

i (µ̂
r
i )

T (3.8)

µ̂r
t =

N∑︂
i=1

αi(z
h
t )µ̂

r
i (3.9)

Σ̂
r
t =

N∑︂
i=1

αi(z
h
t )Σ̂

r
i − µ̂r

t (µ̂
r
t )

T (3.10)

p(zr
t |zh

t ) = N (zr
t |µ̂r

t , Σ̂
r
t ) (3.11)

where αi(z
h
t ) is the forward variable calculated using the marginal distribution of the

observed human agent.

3.2.3. Inverse Kinematics

Given a joint angle configuration y, the end effector position can be calculated as xee =
f(y)where f(y) denotes the forward kinematics of the robot, which is based on the robot’s
geometry and calculates the end effector position through the hierarchy of intermediate
transformations of each of the individual joints. For example, given the geometry of one’s
arm sizes, and the angles of the shoulder, elbow, and wrist joints, the position of the hand
can be calculated through the position of the shoulder to the elbow to the hand.
Given a list of n joints y = {y1, y2 . . . yn} and the corresponding relative transformations

that the joints represent in the robot geometry T 0
1(y1),T

1
2(y2) . . .T

n−1
n (yn) where T i

j ∈
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SE(3) is the relative transformation between links i and j, the end effector pose T ee can
be calculated as

T ee =

[︃
Ree xee

0 1

]︃
= T 0

n =
n∏︂

i=1

T i−1
i (yi) (3.12)

where xee,Ree are the end effector position and rotation.
As the name suggests, Inverse Kinematics (IK) is the reverse process of estimating the

robot’s joint angles from a given end effector pose, which can be solved via optimization.
We aim to estimate y = f−1(xee), which can be solved by finding the optimal joint
configuration that minimizes the distance between the expected and predicted positions

y∗ = argmin
y

∥f(y)− xee∥2. (3.13)

3.3. Multimodal Interactive Latent Dynamics

In this section, we introduce our overall approach, “MILD” for learning Multimodal
Interactive Latent Dynamics which can be seen in Figure 3.3. We model the interaction
dynamics in the latent space of a VAE using HMMs to model a joint distribution over the
latent trajectories of both agents. The use of HMMs for the prior, as opposed to a unimodal
Gaussian, enforces a multimodal modularized latent space with the HMM forward variable
incorporating the learned transitions between the multiple modes. Once the underlying
interaction dynamics is learned from Human-Human Interactions, the model is then
used not just to regularize learning the robot motions but subsequently for reactively
generating the response motions of the robot during training. This further incorporates
the interdependence between the human and the robot during training thereby improving
the predicted robot trajectories.
We start by explaining the key idea of MILD [158] which enhances the representation

learning abilities of VAEs with HMMs as the prior distribution for modeling the interaction
dynamics (Section 3.3.1). We then go through our key improvements on incorporating the
human-conditioned HMM distribution into the training process in Section 3.3.2 and then
explain the Inverse Kinematics adaptation for the generated robot motions in Section 3.3.3.
For HRI scenarios, we use the superscripts h and r to denote the human and the robot
variables respectively. For consistency, in the HHI scenarios, we use h and r to denote the
variables of the first and second human partners respectively.
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Agent 1

Agent 2

Weight
Sharing

Weight
Sharing

Agent 1
Reconstruction

Agent 2
ReconstructionAgent 2

Latent space HMM Priors

(a) Learning Interaction Models from Human-Human Interactions.

Pre-trained Human VAE and HMM

Human

Robot Reconstruction

(b) Using Human-Human Interaction models for Human-Robot Interaction models.

Figure 3.3.: Overview of our training approach. (a) We first learn the interaction dynamics from
Human-Human Interactions by training both the VAEs and HMMs alternatively by
using the HMM as the VAE prior and then by using the VAE embeddings to train the
HMM. (b) We subsequently use the model learned from Human-Human Interactions
for learning the latent dynamics for HRI. We do so by regularizing the robot VAEs
with the learned HMMs and additionally, by training the robot decoder to reconstruct
samples from the HMM’s conditional distribution after observing the human partner.
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3.3.1. Learning Interaction Dynamics using HMMs as VAE priors

Typically in VAEs, the prior p(z) is modeled as a stationary distribution. When it comes to
learning trajectory dynamics, having meaningful priors can help learn temporally coherent
latent spaces [39]. To this end, we explore using HMMs to learn latent-space dynamics in
a modular manner by breaking down the trajectories into multiple phases and learning
the sequencing between them. Since the HMMs learn a joint distribution over the latent
trajectories of both interacting agents, we can conditionally generate the motion of the
robot after observing the human agent. We do so by using the HMM distribution as
the prior for the VAE. We then update the HMM at the end of each epoch by running
expectation-maximization on the VAE embeddings, alternating between training the VAE
and then subsequently updating the HMM.
The VAE prior at each time-step is calculated as the respective marginal distribution of the

most likely HMM component at that timestep, given by the HMM forward variable (Eq. 3.4).
However, the recurrent nature of estimating the forward variable, and consequently its
gradients, leads to numerical instabilities from backpropagation through time. Hence,
we use an approximation in the form of an unobserved forward variable by setting the
likelihood term in Eq. 3.4 to unity. This unobserved forward variable provides a good
approximation of the sequential progression of the hidden states based on the learned
transitions which can be written as

ᾱt
i =

α̂t
i∑︁N

j=1 α̂
t
j

α̂t
i =

N∑︂
j=1

ᾱt−1
j Tj,i α̂0

i = πi

i∗t = argmax
i

ᾱt
i

KLh
t = KL(q(zh

t |xh
t )||N (zh

t ;µ
h
i∗t
,Σhh

i∗t
))

KLr
t = KL(q(zr

t |xr
t )||N (zr

t ;µ
r
i∗t
,Σrr

i∗t
))

(3.14)

where N (zh
t ;µ

h
i∗t
,Σhh

i∗t
)) and N (zr

t ;µ
r
i∗t
,Σrr

i∗t
) are the marginal distributions of the most

likely HMM component i∗t at the given timestep t for each agent. The ELBO can then be
reformulated as

Eq[log
p(xh

t ,x
r
t , z

h
t , z

r
t )

q(zh
t , z

r
t |xh

t ,x
r
t )

] = Eq[log p(x
h
t |zh

t )]

+ Eq[log p(x
r
t |zr

t )]

− β(KLh
t +KLr

t ).

(3.15)

The overall training procedure, shown in Algorithm 1 and Figure 3.3a, is as follows.
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We train the VAE to reconstruct the input trajectory and use the marginal distributions
of each agent from the HMM (Eq. 3.14) to regularize the latent posterior distribution.
During a given epoch in the VAE training, the HMM parameters are fixed. After an
epoch, the new HMM parameters are estimated using the learned encodings zh

1:T , z
r
1:T

of the training trajectories. The HMMs are then fixed as the VAE prior for the next
epoch. Currently, we learn a separate HMM per interaction. We defer learning the HMM
selection via activity recognition to future work. For further details on training HMMs
with expectation-maximization, or the use of HMMs in robot learning, we refer the reader
to [49, 30].

Algorithm 1: Learning Latent Dynamics from Human-Human Interactions
Data: A set of trajectories with action labelsX = {Xh

1:T ,X
r
1:T , c} for |C| interactions

Result: VAE weights and |C| HMM parameters
Initialize VAE weights randomly
for c ∈ [1, |C|] do

for i ∈ [1, N ] do
µc

i ← 0
Σc

i ← I
end

end
while not converged do

for xh
1:T ,x

r
1:T , c ∈X do

Compute VAE Posterior q(zh
t |xh

t ) and q(zr
t |xr

t )
Reconstruct posterior samples
Maximize ELBO (Eq. 3.15) to update VAE weights

end
for c ∈ [1, |C|] do

Xc ← set of demonstrations of Interaction c
Zc ← ∅
for xh

1:T ,x
r
1:T , c ∈Xc do

zh
1:T ∼ q(·|xh

1:T ); z
r
1:T ∼ q(·|xr

1:T )

Zc ← Zc ∪
[︃
zh
1:T

zr
1:T

]︃
end
Train the cth HMM with Zc

end
end

45



3.3.2. Conditional Training of HRI Dynamics from HHI

The HMMs learned from Human-Human demonstrations capture the overall latent interac-
tion dynamics between two agents. These HMMs can, therefore, be used as an informative
prior to learn robot motions to perform the given interaction. Hence, we use the marginal
distribution of the second agent from the HMMs trained on the HHI demonstrations as
the latent space prior for the robot VAE.
Although we regularize the VAEs with the HMM marginals (Eq. 3.14), during test

time the decoder would see samples from the conditional distribution of the HMM after
observing the human agent (Eq. 3.6-3.11) which would be finitely divergent from what
the decoder would be trained to reconstruct in a normal autoencoding approach.
When the output spaces of both interaction partners are similar, such as in the HHI

scenarios sharing the weights of the VAEs for can enable the decoder to learn to reconstruct
the target distribution. However, given the difference in output spaces of the human and
the robot in HRI scenarios, we instead train the robot decoder to additionally reconstruct
samples from conditional distribution (Figure 3.3b).
Moreover, the VAE provides a confidence estimate of the posterior probability which

can additionally be incorporated into the conditional distribution p(zr
t |zh

t ) as

Ki = Σrh
i (Σhh

i +Σz(x
h
t ))

−1 (3.16)
µ̂r
i = µr

i +Ki(µz(x
h
t )− µh

i ) (3.17)

Σ̂
r
i = Σrr

i −KiΣ
hr
i + µ̂r

i (µ̂
r
i )

T (3.18)

µ̂r
t =

N∑︂
i=1

ᾱt
i µ̂

r
i (3.19)

Σ̂
r
t =

[︄
N∑︂
i=1

ᾱt
i Σ̂

r
i

]︄
− µ̂r

t (µ̂
r
t )

T (3.20)

p(zr
t |qht ) = N (zr

t ; µ̂
r
t , Σ̂

r
t ) (3.21)

where the terms in magenta are from the human VAE posterior qht = q(zh
t |xh

t ) and the
terms in orange are from the HMM.
Our modified ELBO at each timestep for training the robot VAE in the HRI scenario

(Algorithm 2) can be written as
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Eq[log
p(xh

t ,x
r
t , z

r
t )

q(zr
t |xh

t ,x
r
t )

] = Eqr log p(x
r
t |zr

t )

− βKLr
t

+ Ezr
t∼p(zr

t |qht )
log p(xr

t |zr
t )

(3.22)

where the first term is the reconstruction term,KLr
t is the regularization term calculated

according to Eq. 3.14, and the third term denotes the reconstruction of the conditional
samples drawn from p(zr

t |qht ) (Eq. 3.21). Both the reconstruction term and the condi-
tional reconstruction are estimated in a Monte Carlo fashion by averaging the loss after
reconstructing multiple samples from the corresponding latent distributions.

Algorithm 2: Learning HRI Dynamics
Data: A set of trajectories with action labelsX = {Xh

1:T ,X
r
1:T , c} for |C| actions, Human

VAE and HMMs
Result: Robot VAE weights
Initialize VAE weights randomly
while not converged do

for xh
1:T ,x

r
1:T , c ∈X do

Compute VAE Posterior q(zr
t |xr

t )
Compute Latent Conditional p(zr

t |qht ) (Eq. 3.16-3.21)
Reconstruct posterior and conditional samples
Maximize ELBO (Eq. 3.22) to update VAE weights

end
end

During testing, we first encode the observations of the human agent xh
t and then

condition the HMM p(zr
t |qht ) to generate the latent trajectory of the second agent ẑr

t

using Eq. 3.16 - 3.21, which is then decoded to obtain the actions of the second agent
x̂r
t ∼ p(·|zr

t ).

3.3.3. Inverse Kinematics Adaptation and Stiffness Modulation

In typical LfD approaches, robot motions are learned via kinesthetic teaching [152, 172].
In HRI scenarios, kinesthetic teaching gives good results [52, 6, 32, 29] but can become
tedious when trying to generalize to multiple human interaction partners. One way to
circumvent this could be to execute randomized open-loop trajectories for the robot and
learn how the human adapts to the robot motions [33].
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Since we are dealing with a Humanoid robot, we learn the robot motions using the
kinematic similarities between the human and the robot [57]. From the 3D positions
of an arm, we extract the shoulder angles (yaw, pitch, and roll) and the bending of the
elbow by using the geometry of the tracked skeleton, as seen in Figure 3.4. We defer the
calculation of the wrist angle to our future work and instead use a fixed value for the
wrist for each interaction.
Since we extract joint angles from the human demonstrations, some inaccuracies are

present due to slight differences between the kinematic structure of the human skeleton
and the robot. Given the difference in the arm dimensions of the Pepper robot and a
human, the spatial accuracy of the learned behaviors is quite limited. Additionally, given
the smaller size of the Pepper robot, its reachability is also limited, thereby limiting the
ability to learn task space trajectories.
To bridge the mismatch in motion retargeting, we adapt the predicted motions during

test time with Inverse Kinematics to reach the human partner’s hand while using the
predicted motions as a prior. The use of Inverse Kinematics enables the physical proximity
needed by the interaction while keeping the robot configuration close to the demonstrated
behaviors [63]. Moreover, we do not need to use Inverse Kinematics all the time, but only
in the segments involved in physical contact. We therefore inspect the underlying segments
of the HMM manually to see which segments comprise of the contact-based portion of the
trajectory and which ones do not, and subsequently perform the IK adaptation only in the
contact-based segments.

Right LeftUpper
Arm

Lower
Arm

Back Front
Right Left

Figure 3.4.: Geometric similarities between the degrees of freedom of a human’s upper body and
the humanoid robot Pepper. The shoulder roll, pitch, yaw, and elbow angle of a human
can be directly mapped to Pepper’s joint angles.

Given an initial prediction of the robot’s joint angle distribution (µq,Σq) and a task
space goal in 3D space (µx,Σx) (which in this case is the human partner’s hand position),
we aim to find a joint angle configuration q∗ that reaches µx, but does not stray too far
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from µq [63] which boils down to the following optimization problem

q∗ = argmax
q

N (f(q)|µx,Σx)N (q|µq,Σq)

= argmin
q

λx(µx − f(q))TΣ−1
x (µx − f(q))+

λq(µq − q)TΣ−1
q (µq − q)

(3.23)

where f(q) is the forward kinematics model of the robot to estimate the end-effector
location given the joint angles q, and λx, λq are relative weights balancing whether it is
more important to stay close to the initial distribution or to reach the task space goal. In
practice, the joint configuration prior µq comes from the VAE decoder p(xr

t |zr
t ) and µx

comes from the human observation xh
t , and we set Σq and Σx to identity. We can then

simplify Eq. 3.23 to

q∗ = argmin
q

λx∥µx − f(q)∥2 + λq∥µq − q∥2 (3.24)

where ∥·∥ denotes the Euclidean norm.
Moreover, we do not need to employ IK during every segment of the interaction. Once the

training converges, we identify the segments from the underlying HMM that correspond
to the contact-based phases of the interaction. Based on the HMM’s forward variable
prediction from the human observation, we adapt the human-conditioned robot motions
using IK if the current segment is contact-based. The incorporation of IK is further detailed
in Algorithm 3.
In a contact-rich interaction like handshaking, along with moving in a coordinated

manner, the robot must be compliant with the human’s motion when in contact. When
executing handshaking trajectories on the robot, we use the forward variable not just for
calculating the target pose of the robot, but also to detect when to lower the target joint
stiffness once the robot enters the contact-based segments of the interaction.Without such
as mechanism, the Pepper robot’s arm would not comply with the human’s hand, and the
human would be unable to displace Pepper’s hand for executing a proper handshake.

3.4. Experiments and Results

In this section, we first provide our implementation details (Section 3.4.1) and the datasets
used (Section 3.4.2). We then present the results of predicting the controlled agent’s
trajectories after conditioning on the observed agent in Section 3.4.3 and finally, we
discuss our user-study in Section 3.4.4 and show some additional results for a Bimanual
Robot-to-Human Handover scenario in Section 3.4.5.
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Algorithm 3: Conditioning on Human Observations and IK Adaptation
Data: An observation of the human agent xh

1:t, trained VAE and HMM Models, a set of
contact-based HMM states I for the given interaction

Result: Conditioned Trajectory for the second agent x̂r
1:t

for t ∈ [1, T ] do
Encode the human observation q(zh

t |xh
t )

Compute Latent Conditional p(zr
t |qht ) (Eq. 3.16-3.21)

Decode the conditioned prediction µq = p(x̂r
t |ẑr

t )

if argmaxi αi(z
h
t ) is a contact-based segment then

q̂t = argminq λx∥µx − f(q̂t)∥2 + λq∥µq − q∥2
else

q̂t = µq

end
Send q̂t to the robot controller.

end

3.4.1. Experimental Setup

The VAEs are implemented using PyTorch [153] with 2 hidden layers in the encoder
and decoder each with sizes (40, 20) and (20, 40) respectively and a 5-dimensional
latent space with Leaky ReLU activations [115] at all layers except the output layer. The
weights are initialized using Xavier’s initialization [61]. The networks are trained with
β = 5 × 10−3, 10 Monte Carlo samples per input data and using the Adam optimizer
with weight decay [114] with a learning rate of 5× 10−4. In the HHI scenarios, we share
the parameters of the VAEs for both human agents as the inputs are structurally similar.
The networks were trained for 400 epochs. The best out of 4 seeds were used to report
the results.
A separate HMM is trained for each interaction. The HMMs are implemented using

a custom PyTorch version of PbDLib1 [156]. Each HMM has 6 hidden states, which we
found as the most numerically stable. The HMMs are initialized by splitting each of the
latent trajectories in the training set into equally sized segments over time. To prevent
numerical instabilities arising from vanishing values in the HMM covariance matrices,
we add a small positive regularization constant of 10−4 to the diagonal elements. When
sampling from the conditional distribution, due to numerical errors in computing the
Cholesky decomposition of the covariance matrices, rather than adding a constant value
to all elements, we add linearly increasing regularization based on the dimensions, going
from 9.1× 10−5 for the first dimension to 10−4 for the last dimension. Additionally, we
1https://gitlab.idiap.ch/rli/pbdlib-python
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adapt the covariance matrices of the conditional distribution by iteratively adding an even
smaller constant that is proportional to the absolute value of the smallest eigenvalue of
the covariance matrix to the diagonal elements [72].
We implement our approach on the Pepper robot [149], which is a 1.2m tall humanoid

robot that has the same degrees of freedom in its arm as a human. For Inverse Kinematics,
we use a modified version of the IKPy library [118]2 which uses the least squares min-
imization in SciPy [199] for the IK optimization. We set λx = 1 and λq = 0.01 for the
objective function in Eq. 3.24.
To prevent sudden changes in stiffness arising from misclassification of the segment,

we disable back-transitions into the initial reaching segment. Additionally, during test
time, since the forward variable is calculated using only the human partner’s latent state,
there is a mismatch that arises in the segment prediction compared to using the full
joint human-robot states for timesteps near the transition boundary between the initial
reaching segment and the subsequent segments. Therefore, taking a leaf out of Transition
State Clustering [101, 65], we learn an additional distribution over the states at the
transition boundary that get misclassified. We then use this transition state distribution to
detect when the interaction proceeds into the contact-based segments. Doing so gives
a better indication of when to lower the robot’s stiffness and provides a more suitable
interaction. Without such a scheme, due to the misclassification of the active segment,
the joint stiffness would not always be lowered correctly, thereby resulting in a rigid and
non-compliant handshake.

3.4.2. Datasets

Bütepage et al. [29]

The authors of [29] record HHI and HRI demonstrations of 4 interactions: Waving,
Handshaking, and two kinds of fist bumps3. The first fistbump called “Rocket Fistbump”,
involves bumping fists at a low level and then raising them upwards while maintaining
contact with each other. The second is called “Parachute Fistbump” in which partners
bump their fists at a high level and bring them down while simultaneously oscillating
the hands sideways, while in contact with each other. Since our testing scenario involves
the humanoid robot Pepper [149], we additionally extract the joint angles from one of
the human partner’s skeletons from the above-mentioned HHI data for the Pepper robot
using the similarities in DoFs between a human and Pepper [57, 162] (Figure 3.4), which
we denote this as “HRI-Pepper”. Bütepage et al. [29] additionally record demonstrations

2https://github.com/souljaboy764/ikpy
3https://github.com/jbutepage/human_robot_interaction_data
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of these actions with a human partner interacting with an ABB YuMi-IRB 14000 robot
controlled via kinesthetic teaching. We call this scenario as “HRI-Yumi”.
In the HHI scenario (and the HRI-Pepper scenario), there are 181 trajectories (32 -

Waving, 38 - Handshake, 70 - Rocket Fistbump, 49 - Parachute Fistbump) of which 80%
of the trajectories (149 trajectories) are used for training and the rest (32 trajectories)
for testing. In the HRI-Yumi scenario, there are 41 trajectories (10 each for Waving,
Handshaking, and Rocket Fistbump and 11 for Parachute Fistbump) of which we use a
similar split with 32 trajectories for training and 9 for testing. We use a time window of 5
observations as the input for a given timestep as done in [29]. We downsample the data
to 20Hz to match our testing scenario.
We use the 3D positions and the velocities (represented as position deltas) of the right

arm joints (shoulder, elbow, and wrist), with the origin at the shoulder, leading to an input
size of 90 dimensions (5x3x6: 5 timesteps, 3 joints, 6 dimensions) for a human partner.
For the HRI-Pepper and HRI-Yumi scenarios, we use a similar window of joint angles,
leading to an input size of 20 dimensions (5x4) for the 4 joint angles of Pepper’s right
arm and an input size of 35 dimensions (5x7) for the 7 joint angles of Yumi’s right arm.

Nuitrack Skeleton Interaction Dataset (NuiSI)

The Nuitrack Skeleton Interaction Dataset (NuiSI) 4 is a dataset which we collected
ourselves of the same 4 interactions as in [29]. While the dataset in Bütepage et al. [29]
has clean motions of the interaction partners, they require high-accuracy inertial sensors
in whole-body suits. Therefore, for a more realistic setting, we capture the interaction
partners using low-cost hardware.
While other datasets exist that perform skeleton tracking with a Kinect Camera [179,

195, 183], the participants in these datasets are recorded from the side. Therefore, due
to partial occlusions, there is a high degree of noise in skeleton tracking, which made it
difficult to train a suitable model for the interactions. Therefore, we record two human
partners interacting with one another using one Intel Realsense D435 camera per partner
(two in total), such that each camera captures a full frontal view of the interaction. We
use Nuitrack [1] for tracking the upper body skeleton joints in each frame at 30Hz.
The data is first inspected manually to remove any trajectories where the tracking

deteriorates. Finally, we have 44 trajectories (12 - Waving, 11 - Handshaking, 12 - Rocket
Fistbump, 9 - Parachute Fistbump) of which we similarly use 80% of the trajectories for
training (33 trajectories) and the rest (11 trajectories) for testing.
The skeletons are then rotated such that they follow the orientation shown in Figure 3.4

4https://github.com/souljaboy764/nuisi-dataset
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with the x-axis in the forward direction, the y-axis going from right to left, and the z-axis
in the upward direction. For training, the data is processed similarly as mentioned above
with a window size of 5 time steps. Given the relatively low amount of samples, we
finetune the network trained on the aforementioned dataset of [29]. As done with [29],
we extract the joint angles for the Pepper robot from the skeleton trajectories for the
HRI-Pepper scenario.

3.4.3. Conditioned Prediction Results

We test the conditioning ability of our approach compared to [29]5 to evaluate the accuracy
of the generated motions of the controlled agent after observing the human interaction-
partner. We evaluate the approaches over the four interactions of the dataset in [29] and
our collected data (NuiSI). We calculate the Mean Squared Error (MSE) averaged over
each joint and the 5-time step window.

Dataset Action MILD v1 [29]

[29]

Hand Wave 0.788 ± 1.226∗∗ 4.121 ± 2.252
Handshake 1.654 ± 1.549∗ 1.181 ± 0.859

Rocket Fistbump 0.370 ± 0.682 0.544 ± 1.249
Parachute Fistbump 0.537 ± 0.579∗∗ 0.977 ± 1.141

NuiSI

Hand Wave 0.408 ± 0.538∗∗ 3.168 ± 3.392
Handshake 0.311 ± 0.259∗∗ 1.489 ± 3.327

Rocket Fistbump 1.142 ± 1.375∗∗ 3.576 ± 3.082
Parachute Fistbump 0.453 ± 0.578∗∗ 2.008 ± 2.024

Table 3.1.: Prediction MSE (in cm) for the second human partner’s trajectories after observing the
first human partner averaged over all joints and timesteps. (* – p < 0.05, ** – p < 0.01,
Lower is better)

We do not train with the conditional loss in the Human-Human scenarios since we
use shared weights, the decoder already learns to reconstruct the ground truth samples
for the conditional distribution. Additionally, we found that the interplay between the
shared weights and the conditional training discussed in Section 3.3.2 would cause the
HMM posterior to collapse into a single unimodal distribution. Therefore, we only show
comparisons of our vanilla approach presented in Section 3.3.1, which we denote as
“MILD v1”.

5Results reported using our implementation of [29].
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The results of MILD v1 in predicting the interaction partner’s trajectories in the HHI
scenarios can be seen in Table 3.1. It can be seen that MILD v1 with its simplistic nature
of using an HMM for the latent dynamics performs significantly better (as verified with
a Mann-Whitney U Test) than [29] where the VAEs are trained with an uninformative
standard normal distribution as a prior. Although additional LSTMs are employed in [29]
to learn the latent dynamics, since the VAEs are trained with an uninformative prior, their
approach fails to accurately reconstruct motions the learnt latent dynamics. In contrast,
the latent dynamics of each segment of the interaction is captured well by the HMM which
therefore acts as an informative prior for the VAEs which is reflected in the improved
prediction accuracy of MILD v1.
Coming to HRI scenarios, starting from the initial incorporation of the HMM prior

as shown in Section 3.3.1 (denoted as “MILD v1”), we explore two variants of the last
conditional training term in Eq. 3.22. The first is with reconstructing the conditional latent
predictions (i.e. the mean in Eq. 3.19) of samples drawn from the posterior distribution
both with and without the use of the VAE posterior covariance (in Eq. 3.16). This can be
summarized mathematically as Eq(zh

t |xh
t )
log p(xr

t |µr
t ) where µr

t is calculated using Eq. 3.9
with samples drawn from q(zh

t |xh
t ). We explore this variant both without and with the

posterior covariance in Eq. 3.16, denoted as “MILD v2.1” and “MILD v2.2” respectively
The second variant uses the posterior mean and covariance to calculate the conditional

distribution and subsequently reconstruct samples drawn from the conditional distribution.
This can be summarized mathematically as Ep(zr

t |qht )
log p(xr

t |zr
t ) where p(zr

t |qht ) is calcu-
lated using Eq. 3.16 - 3.21 and the samples drawn from this distribution are reconstructed.
We explore this variant both without and with the posterior covariance in Eq. 3.16, which
we denote as “MILD v3.1” and “MILD v3.2” respectively.
The key differences between the different variants are highlighted in Table 3.2. To

summarize, the prior means and covariances from the HMMare used by both variants in the
conditioning, denoted by the orange terms in Eq. 3.16 - 3.21. The key difference between
the variants is how the posterior distribution terms (denoted in magenta in Eq. 3.16 - 3.21)
are used. In MILD v3.1 and MILD v3.2, we directly use the posterior mean and covariance
as shown in Eq. 3.16 - 3.21. In the case of MILD v2.1 and MILD v2.2, we do not directly use
the posterior mean and covariance, but first draw samples from the posterior distribution
zh
t ∼ N (µz(x

h
t ),Σz(x

h
t )) which are then used in the conditioning in Eq. 3.17 instead of

the posterior mean µz(x
h
t ) which can be written as µ̂r

i = µr
i +Ki(z

h
t − µh

i ) to directly
get the conditional samples that then get reconstructed.
As seen in Table 3.3, reconstructing samples from the conditional distribution (MILD v3.1

and v3.2) provides much better results as compared to conditioning samples drawn from
the posterior (MILD v2.1 and v2.2), both of which perform better than MILD v1 that
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Variant Conditional Training Inputs Samples given to Decoder
MILD v1 None Only Posterior Samples
MILD v2.1 Posterior Samples Posterior Samples and their
MILD v2.2 Posterior Samples and Covariance corresponding conditioned outputs
MILD v3.1 Posterior Mean Posterior Samples as well as
MILD v3.2 Posterior Mean and Covariance Conditional Samples

Table 3.2.: Differences in conditioning and sampling strategies of the variants of MILD.

Dataset Action MILD v1 MILD v2.1 MILD v2.2 MILD v3.1 MILD v3.2 Bütepage et al. [29]

HRI-Yumi [29]

Hand Wave 1.705 ± 0.521 1.349 ± 1.972 1.641 ± 1.968 1.033 ± 1.204 1.143 ± 1.330 0.225 ± 0.302
Handshake 0.290 ± 0.148 0.073 ± 0.040 0.068 ± 0.052 0.104 ± 0.056 0.123 ± 0.069 0.133 ± 0.214

Rocket Fistbump 0.428 ± 0.175 0.236 ± 0.167 0.183 ± 0.122 0.130 ± 0.074 0.128 ± 0.071 0.147 ± 0.119
Parachute Fistbump 0.425 ± 0.150 0.028 ± 0.042 0.033 ± 0.034 0.028 ± 0.034 0.028 ± 0.035 0.181 ± 0.155

HRI-Pepper [29]

Hand Wave 0.267 ± 0.152 0.161 ± 0.228 0.165 ± 0.189 0.103 ± 0.103 0.106 ± 0.105 0.664 ± 0.277
Handshake 0.327 ± 0.253 0.111 ± 0.092 0.153 ± 0.154 0.061 ± 0.048 0.056 ± 0.041 0.184 ± 0.141

Rocket Fistbump 0.161 ± 0.095 0.035 ± 0.068 0.035 ± 0.068 0.021 ± 0.037 0.018 ± 0.035 0.033 ± 0.045
Parachute Fistbump 0.265 ± 0.178 0.116 ± 0.176 0.112 ± 0.181 0.095 ± 0.151 0.088 ± 0.148 0.189 ± 0.196

HRI-Pepper (NuiSI)

Hand Wave 0.760 ± 0.325 0.050 ± 0.084 0.060 ± 0.087 0.046 ± 0.059 0.049 ± 0.059 0.057 ± 0.093
Handshake 0.225 ± 0.114 0.025 ± 0.022 0.025 ± 0.020 0.021 ± 0.015 0.020 ± 0.014 0.083 ± 0.075

Rocket Fistbump 0.354 ± 0.238 0.077 ± 0.095 0.080 ± 0.088 0.077 ± 0.067 0.079 ± 0.072 0.101 ± 0.086
Parachute Fistbump 0.201 ± 0.072 0.032 ± 0.038 0.028 ± 0.040 0.025 ± 0.028 0.022 ± 0.027 0.049 ± 0.040

Table 3.3.: Prediction MSE (in radians) for robot trajectories after observing the human interac-
tion partner averaged over all joints and timesteps. (Lower is better, Lowest MSE is
highlighted, Significance Values shown in Tables 3.4, 3.5, and 3.6)

does not use conditional training. The samples drawn from the conditional distribution
would be more representative of the type of samples that the decoder would see during
run time. While in theory, enough samples from the posterior, when conditioned, can
also estimate this distribution, empirically, this fails to match up to sampling from the
conditional distribution. One argument for this is that reconstructing conditional samples
enables learning a joint latent space more susceptible to the HMM conditioning.
Furthermore, the overall improvement in performance compared to MILD v1 and [29]

highlights the advantage of incorporating conditional prediction into the training process
for reactivemotion generation. The importance of incorporating reactivemotion generation
into the training can also be seen in the improved performance of [29] over MILD v1 in
the HRI scenarios as compared to the HHI scenarios.This improvement comes from the
fact that MILD uses the HMMs just as a latent prior, whereas in [29], the authors explicitly
train a separate HRI dynamics model for predicting the robot motions from the latent
trajectories of both the human and the robot. During testing, however, the HRI dynamics
network does not have access to the ground truth target of the robot which is used to train
the network. Therefore, the HRI dynamics is predicted in an autoregressive manner, which
deteriorates the performance due to out-of-distribution data. In this regard, it can be seen
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Version of MILD
v1 v2.1 v2.2 v3.1 v3.2

HRI-Yumi [29]

Waving

[29] 0. 0. 0. 0. 0.
MILD v1 – 0. 0. 0. 0.
MILD v2.1 – – 0. 0.284 0.337
MILD v2.2 – – – 0. 0.
MILD v3.1 – – – – 0.675

Handshake

[29] 0. 0. 0.397 0. 0.
MILD v1 – 0. 0. 0. 0.
MILD v2.1 – – 0.018 0. 0.
MILD v2.2 – – – 0. 0.
MILD v3.1 – – – – 0.008

Rocket
Fistbump

[29] 0. 0. 0. 0.976 0.999
MILD v1 – 0. 0. 0. 0.
MILD v2.1 – – 0. 0. 0.
MILD v2.2 – – – 0. 0.
MILD v3.1 – – – – 0.909

Parachute
Fistbump

[29] 0. 0.136 0.098 0. 0.
MILD v1 – 0. 0. 0.055 0.
MILD v2.1 – – 0.785 0. 0.
MILD v2.2 – – – 0. 0.
MILD v3.1 – – – – 0.003

Table 3.4.: p-values for pairwise MSE comparisons of the results reported on the HRI-Yumi scenario
from the dataset of [29] in Table 3.3. For p < 0.001, we report zeros.
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Version of MILD
v1 v2.1 v2.2 v3.1 v3.2

HRI-Pepper [29]

Waving

[29] 0. 0. 0. 0. 0.
MILD v1 – 0. 0. 0. 0.
MILD v2.1 – – 0. 0. 0.
MILD v2.2 – – – 0. 0.
MILD v3.1 – – – – 0.119

Handshake

[29] 0. 0. 0. 0. 0.
MILD v1 – 0. 0. 0. 0.
MILD v2.1 – – 0. 0. 0.
MILD v2.2 – – – 0. 0.
MILD v3.1 – – – – 0.041

Rocket
Fistbump

[29] 0. 0.291 0.838 0. 0.
MILD v1 – 0. 0. 0. 0.
MILD v2.1 – – 0. 0. 0.
MILD v2.2 – – – 0. 0.
MILD v3.1 – – – – 0.

Parachute
Fistbump

[29] 0. 0. 0. 0. 0.
MILD v1 – 0. 0. 0. 0.
MILD v2.1 – – 0.016 0. 0.
MILD v2.2 – – – 0. 0.
MILD v3.1 – – – – 0.018

Table 3.5.: p-values for pairwise MSE comparisons of the results reported on the HRI-Pepper
scenario from the dataset of [29] in Table 3.3. For p < 0.001, we report zeros.
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Version of MILD
v1 v2.1 v2.2 v3.1 v3.2

HRI-Pepper (NuiSI)

Waving

[29] 0. 0. 0.139 0.158 0.309
MILD v1 – 0. 0. 0. 0.
MILD v2.1 – – 0. 0. 0.
MILD v2.2 – – – 0.004 0.530
MILD v3.1 – – – – 0.014

Handshake

[29] 0. 0. 0. 0. 0.
MILD v1 – 0. 0. 0. 0.
MILD v2.1 – – 0.862 0.095 0.003
MILD v2.2 – – – 0.104 0.007
MILD v3.1 – – – – 0.065

Rocket
Fistbump

[29] 0. 0. 0. 0. 0.
MILD v1 – 0. 0. 0. 0.
MILD v2.1 – – 0.036 0. 0.
MILD v2.2 – – – 0.050 0.023
MILD v3.1 – – – – 0.685

Parachute
Fistbump

[29] 0. 0. 0. 0. 0.
MILD v1 – 0. 0. 0. 0.
MILD v2.1 – – 0.026 0.017 0.
MILD v2.2 – – – 0.808 0.018
MILD v3.1 – – – – 0.023

Table 3.6.: p-values for pairwise MSE comparisons of the results reported on the HRI-Pepper
scenario from the NuiSI dataset in Table 3.3. For p < 0.001, we report zeros.
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that explicitly incorporating such conditional out-of-distribution samples can lead to better
results, as seen in the improved performance of the variants of MILD (v2.1 - v3.2).
We show a sample interaction of the learned behaviors, along with the progression of

the HMM in the latent space for handshake (Figure 3.5) and rocket fistbump (Figure 3.6)
on the Pepper robot. As it can be seen, the HMM captures the sequencing between
the multiple modes of the latent space to generate suitable motions for real-world HRI
scenarios. This is additionally validated via a user study (Section 3.4.4) which shows
the ability of our approach to generalize well to various users, despite being trained on
demonstrations of just two partners.

Figure 3.5.: Sample Handshake HRI on the Pepper robot. The top row shows the result of the
generated reactive motion after observing the human partner’s skeleton. The middle
row shows the latent trajectories and the HMM segments over the first 3 dimensions
of the latent space (Red - Human, Blue - Robot). The opacity of each cluster is the
corresponding cluster probability, given by the HMM forward variable. The progression
of the HMM forward variable is shown in the bottom row, with different colors denoting
the different segments.
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Figure 3.6.: Sample Rocket HRI on the Pepper robot. The top row shows the result of the generated
reactive motion after observing the human partner’s skeleton. The middle row shows
the latent trajectories and the HMM segments over the first 3 dimensions of the latent
space (Red - Human, Blue - Robot). The opacity of each cluster is the corresponding
cluster probability, given by the HMM forward variable. The progression of the HMM
forward variable is shown in the bottom row, with different colors denoting the different
segments.

3.4.4. HRI User Study

To see the effectiveness of our approach in producing acceptable physical behaviors, we
conducted a user study where participants interacted with the robot. We evaluate our
proposed approach both with and without IK adaptation, denoted as “MILD-IK” and
“MILD” (while we use “MILD v3.2”, for ease of notation, we shorten it to “MILD”) against
a baseline IK algorithm (Eq. 3.13) that uses the human’s hand pose as the target location
(“Base-IK”). We run this study for two interactions, handshake and rocket fistbump.
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Figure 3.7.: Setup of the User Study for interacting with the Pepper robot. As Pepper is quite short
(1.2m), it is placed on a pedestal to match the height of a human partner. The camera
behind Pepper tracks the human partner’s motion, which is used to generate Pepper’s
motions.

Procedure

The study took place in a laboratory setting (Figure 3.7) where participants were ini-
tially guided to a desk to fill out a consent form followed by a pre-questionnaire which
included demographic information, prior experiences with robots, their attitude towards
robots [188], attitude towards physical interactions, and some personality questions to
gauge extroversion [164]. We assessed these measures to gain additional information
about our sample. Participants were then shown an instruction video of two humans
performing an interaction (either a handshake or a rocket fistbump). Participants were
then given the experiment protocol to read wherein they were instructed that they had to
lead the interaction with the robot. Additionally, some general instructions were provided
regarding the limits of the robot and how they should position themselves.
Participants were then guided behind a barrier where they would see the robot for the

first time and would then stand at an adequate distance from the robot. When they were
ready, an initial interaction was performed with a hard-coded motion. This is to get the
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participant habituated to the way the robot moves and counter any novelty effects that
may occur and to have the participant better understand how to perform the interaction
with the robot. After the initial run, the participant was informed that the experimental
trials would begin. The sequence of each trial was as follows:

1. Before each trial, the participant would see a video stream of the skeleton tracker to
better position themselves.

2. Once the position was set and the tracking was stable, the experimenter would signal
them to start the trial.

3. The participant would start the interaction and the robot would respond reactively.

4. Once the participant goes back to a neutral position with their hands by their side,
the robot arm would go back to a neutral position, marking the end of the trial.

5. This process would then repeat once again after which the participant was asked to
fill out a questionnaire.

This process constitutes a single session and was repeated 3 times (3 sessions in total)
wherein the robot was controlled by one of the three aforementioned algorithms (Base-IK,
MILD, MILD-IK). The algorithms were shown in randomized order to all participants to
avoid sequence effects. The participant was neither informed of the randomization nor
the algorithm they were interacting with. After all 3 sessions, the participant was asked to
fill out a final questionnaire where they had to rank the sessions based on their preference
and answer some open-ended questions about the sessions.

Participant Sample

A total of 20 users (8 female, 12 male) participated in our study and were recruited
through the university environment. Of the 20 participants, 10 performed the Rocket
fistbump (4 female, 6 male) and the rest performed a handshake. The mean age of the
participants was 27.85 years (SD: 3.51). Participants had an average level of experience
with robots overall on a scale from 1 (no experience at all) to 5 (a lot of experience)
with a mean of 2.90 (SD: 1.45). They had quite a positive attitude towards robots on a
scale from 1 (very negative) to 7 (very positive) with a mean of 5.90 (SD: 1.16). This is
also consistent with the ratings regarding the attitudes towards robots for the following
items on a scale of 1 (Strongly Agree) to 7 (Strongly Disagree). Participants largely had a
high agreement towards feeling relaxed when interacting with robots (Mean: 5.60, SD:
1.05) and high levels of disagreement towards being paranoid when interacting with a
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robot (Mean: 1.85, SD: 0.93) and towards feeling nervous standing in front of a robot
(Mean: 1.80, SD:1 .06). Participants had a positive outlook towards physical interactions
in general on a scale from 1 (distant) to 7 (open) with a mean of 6.10 (SD: 0.84). This
was also confirmed with the Big 5 extroversion scale [164] with a mean extroversion of
4.75 (SD: 1.34) out of 7.

Methodology

The study followed a within-subject design where participants interacted with a Pepper
robot controlled by each of the algorithms (Base-IK, MILD and MILD-IK) twice in a
randomized order, leading to 6 HRIs per participant. Since humans perceive different
types of physical touch differently [58], we aimed to remove any influence the type of
interaction (handshake or fistbump) might have on how participants view the robot during
different interactions. We wanted to keep the focus on understanding how our proposed
algorithm is perceived by users. Therefore, each participant had to either perform a
handshake or a fistbump, not both. Additionally, to prevent any sudden jumps in the
motion of the robot, a weighted moving average filter was used to smoothen out the
predicted motions of the robot.
We break the 6 trials into 3 sessions, where each session corresponds to two trials of a

given algorithm. Each session was evaluated with 16 different items adapted from the
Godspeed [17] and the SASSI [75] questionnaires, each rated on a 5-Point scale (1 -
Strongly disagree, 5 - Strongly agree):

• The interaction with the robot was pleasant.

• The interaction with the robot was exciting.

• The interaction with the robot was human-like.

• The interaction with the robot was natural.

• The interaction with the robot was friendly.

• The interaction with the robot was comfortable.

• The interaction with the robot was well-timed.

• The interaction with the robot was accurate.

• The interaction with the robot was annoying.

• The interaction with the robot was awkward.
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• The interaction with the robot was scary.

• The robot interacted in an aggressive way.

• I am satisfied with the way the robot interacted with me.

• The second trial in the session was more effortless than the first.

At the end of the experiment, we asked the participants to rank the 3 sessions (algo-
rithms) in their order of preference. We run a one-way Repeated Measures ANOVA to
compare the responses of the different algorithms followed by paired sample t-tests for a
post hoc analysis (Table 3.7).
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Figure 3.8.: Participant’s ranking of the algorithms. (MILD-IK - yellow stars, MILD - green lines,
Base-IK - purple dots). Most participants ranked MILD-IK first, better than both Base-IK
and MILD.
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Survey Item Anova Results Base-IK MILD MILD-IK
∆µ1,2 ∆µ3,2 ∆µ3,1F2,38 p-value Mean SD Mean SD Mean SD

Pleasantness 0.86 0.43 3.50 1.07 3.40 1.07 3.75 0.89 0.10 0.35 0.25
Excitement 1.32 0.28 3.85 0.85 3.45 1.02 3.75 0.89 0.40 0.30 -0.10

Human-likeness 4.89 0.01 2.60 1.20 2.45 1.16 3.25 1.22 0.15 0.80* 0.65*
Naturalness 3.46 0.04 2.95 1.24 2.55 1.20 3.25 1.18 0.40 0.70* 0.30
Friendliness 0.56 0.58 3.75 1.04 3.75 0.83 3.95 0.86 0.00 0.20 0.20
Comfort 2.79 0.07 3.35 1.06 3.35 0.96 3.85 0.96 0.00 0.50* 0.50
Timing 5.77 0.01 3.60 1.07 3.45 1.16 4.15 0.96 0.15 0.70** 0.55*
Accuracy 10.15 0.00 3.15 1.28 2.55 1.24 3.95 0.86 0.60 1.40 0.80
Annoyance 2.08 0.14 1.60 0.80 1.95 1.20 1.50 0.81 -0.35 -0.45* -0.10
Aggression 0.77 0.47 1.15 0.48 1.30 0.64 1.25 0.62 -0.15 -0.05 0.10
Awkwardness 2.29 0.12 2.30 1.05 2.75 1.34 2.35 1.24 -0.45 -0.40 0.05
Scariness 0.59 0.56 1.15 0.48 1.25 0.54 1.20 0.51 -0.10 -0.05 0.05
Satisfaction 2.54 0.09 3.30 1.14 3.15 0.96 3.80 0.87 0.15 0.65* 0.50
Effortlessness
between

the two trials
4.15 0.02 3.35 1.19 3.40 1.16 4.05 1.24 -0.05 0.65* 0.70*

Table 3.7.: Results of a one-way Repeated Measures ANOVA for each of the survey items. Values
less than 0.01 are reported as 0. The last three columns show the mean differences
between the different algorithms (1 - Base-IK, 2 - MILD, 3 - MILD-IK) which were
analyzed using paired sample t-tests (* - p < 0.05, ** - p < 0.01).

65



1 2 3 4 5
Likert Scale Score

Effortlessness
between

the two trials

Satisfaction

Scariness

Awkwardness

Aggression

Annoyance

Accuracy

Timing

Comfort

Friendliness

Naturalness

Human-likeness

Excitement

Pleasantness

* *

*

*

** **

** *

*

*

* *

Base-IK MILD MILD-IK

Figure 3.9.: Boxplot of the user study responses. (* - p < 0.05, ** - p < 0.01)
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Figure 3.10.: Barplot of the user study responses. (* - p < 0.05, ** - p < 0.01)
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Base-IK MILD MILD-IK

Figure 3.11.: Peculiarities of the different algorithms. The “Base-IK” approach reaches the human’s
hand but awkwardly with the robot hand rotated inwards and the elbow pointing out.
MILD maintains a human-like posture but falls short of reaching the partner’s hand
due to the mismatch in motion retargeting. However, MILD-IK accurately reaches the
human’s hand while maintaining a human-like posture.

Study Results

As seen in Figure 3.8, MILD-IK was by far ranked in the first place much more than MILD
which was by far the least ranked, and Base-IK which was mostly ranked second. Just
using MILD without IK was the least preferred among the algorithms, even though it
was programmed keeping the interactiveness in mind, but due to the motion retargeting
issues mentioned in Section 3.3.3, it is unable to reach the participant’s hand accurately,
leading to a low acceptance by the participants which can further be seen in the results in
Figures 3.9 and 3.10.
All approaches have similarly high levels of pleasantness, excitement, and friendliness

and similarly low levels of annoyance, aggression, and scariness. This goes to show that
the overall interaction scenario was well perceived by the participants and can additionally
be attributed to an overall positive attitude toward robots.
Since the Base-IK approach does not have any prior over the IK solutions, it would lead

to poses where the elbow is pointed outwards and the hand is turned sideways, which
participants remarked was unnatural and awkward. Even though it was able to reach
the human’s hand location, this unnatural pose of the robot hand prevented the Base-IK
approach from being able to reach the human hand in a graspable manner, due to the
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orientation of the end-effector. This is also reflected via a significantly lower accuracy
rating for Base-IK and can further be seen in relatively lower (although non-significant)
trends for naturalness, comfort, and satisfaction.
Participants foundMILD awkward at times since the predicted motions would sometimes

fall short of the partner’s hand and the robot would thereby not reach the participants’
hand correctly. This can especially be seen in the low accuracy that is given to MILD.
This reachability issue gets mitigated with MILD-IK as it generates more natural poses.
However, with MILD-IK, since the prediction of when to start the IK adaptation comes
from the HMM, there would be a distinct moment when the robot hand would reach the
human’s hand, which we attribute as a possible reason for a relatively higher awkwardness
rating.
Overall, the high acceptability of MILD-IK is also reflected via significantly better ratings

of the human-likeness, timing, and perceived accuracy. The effortlessness between two
trials in an interaction was also rated significantly higher for MILD-IK showing that it
was easier for participants to get habituated to the movements of the robot. MILD-IK
also achieves a higher rating for timing, which is attributed to the ability of the HMM to
generate the receding motion in a reactive manner, unlike Base-IK which would still try
to reach the hand until the participant would go back to a neutral pose. Some of these
peculiarities can be seen in Figure 3.11.

3.4.5. Bimanual Robot-to-Human Handovers

To further test the effectiveness of MILD on a more complex task, we showcase the ability
of MILD to reactively predict motions for a Bimanual Robot in a Robot-to-Human handover
scenario, wherein the robot has to hand over an object to the human partner. For this
handover experiment, we use a Bimanual Franka Emika Panda robot setup, “Kobo” that
runs a dual arm cartesian impedance controller to command each arm in the 3D task
space. Therefore, we train MILD directly using task space trajectories from the Bimanual
Handovers dataset in [103]. We re-scale the hand trajectories of the giver in the training
data to fit the robot’s task space limits and train a model using the hand trajectories of
both the giver and the receiver. Since we directly predict task space trajectories from
Human-Human Interactions and do not need the inverse kinematics adaptation as done
with Pepper, we use MILD v1 to learn the robot motions as the giver, with the human as
the receiver. We find that MILD generates suitable response motions for various objects,
an example of which can be seen in Figure 3.12. However, some failures still occur, mainly
from the lack of incorporating object-specific information, such as the dimensions, object
type, geometry, visual information, etc. While some failures can be mitigated with some
post-processing optimization [62], this is currently out of the scope of our work.
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Figure 3.12.: Example of a Bimanual Robot-to-Human Handover Interaction generated by MILD.
The top row shows the observed trajectory of the human in red, and the generated
trajectory of the robot in blue. The progression of the interaction can be seen in the
bottom row.

3.5. Conclusion and Future Work

In this chapter, we proposed a system for the adaptation and learning of real-world
HRI from demonstrations of Human-Human Interactions (HHI). We first learned latent
interaction dynamics from the HHI demonstrations in a modular manner using Hidden
Markov Models (HMMs) which were then used to train models for HRI. We further
improved the performance in HRI scenarios by exploring two strategies for incorporating
the conditional distribution of the HMM into the training process for learning reactive
motion generation which we found is an important aspect of achieving a competitive
performance. We then showed the adaptation of the reactively generated robot trajectories
during test time with Inverse Kinematics to enhance the task space performance of the
predicted motions that are learned in joint space. For contact rich tasks like handshaking,
we additionally showed how the HMM segment predictions can be used for stiffness
modulation which improved the quality of the interaction. Through a user study, we found
that our method is perceived better by human users in terms of human-likeness, timing,
accuracy, and effortlessness. Our user study further validates the effectiveness of our
approach in generalizing well to multiple users despite being trained on data from just
two interaction partners. We additionally show the effectiveness of MILD in successfully
generating Bimanual Robot-to-Human Handovers for different objects in a timely and
reactive manner, which shows the usefulness of our approach even on more complex
interaction scenarios.
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3.5.1. Limitations

While the current approach generated acceptable and accurate response trajectories that,
there are still some limitations to our approach which we highlight below. Currently, while
training the VAE and HMM together as in the HHI scenario with the conditional loss as in
the HRI scenario, we frequently encountered mode collapse of the HMM hidden states.
This is why we resort to freezing the learned HMM and Human VAE for training on the
HRI scenarios. This could stem from a bad approximation of the forward variable that
does not accurately capture the progression of the hidden states but would rather favor
just a few or a single state, thereby exacerbating the mode collapse. While this might be
solved by propagating gradients through the forward variable, we found that this brings
numerical issues arising from the recurrent nature of the forward variable computation,
which leads to vanishing/exploding gradients (as in typical RNNs). Mitigating this issue
would allow for a mathematically sound learning process.
Although we train the HMMs jointly over the latent spaces of both interacting agents,

during testing, we use only the human observations.This can lead to inaccuracies in pre-
dicting the state of the interaction when solely using human observations as compared to
the joint set of observations of both agents (as highlighted in the appendix). Incorporating
the current state of the robot and the relative geometry between the human and the robot
into the training process could improve the overall predictive performance of the network.

3.5.2. Future Work

On the practical side, coming to the interaction with the robot, we purposely left out
auxiliary behaviors such as speech or gaze that make the robot more “alive” as our focus
was to evaluate the different interaction algorithms. These auxiliary behaviors could help
improve the overall perceived quality of the interaction. The influence of the inherent
personality traits also affects the interaction [36]. Further research into quantifying such
influences, for example, based on the mental states of the human partner [2], to adapt the
robot actions and personalize the interactions leading can subsequently provide a more
natural interaction and improve the perception of the robot. For handshaking, we had to
incorporate our own mechanism to ensure compliance during the contact-based segments
of the interaction. Alternatively, using an underlying Cartesian Impedance Controller can
also help ensure compliance during the interaction. While some works have looked into
such compliance in more static scenarios [27, 26], further research is required to adapt
this to more contact-rich and dynamic tasks like handshaking for the Pepper robot.
From the learning side, the current bottleneck of our approach both in terms of train-

ing times and in achieving accurate predictions is the HMM. Currently, we train the
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HMMs independently from the VAE in a separate step. In this regard, one could look
at incorporating this into the variational framework in a more principled manner [7]
or training the HMMs and VAEs in a more closely coupled manner by propagating the
gradients of the expectation-maximization through the VAE could yield more suitable
representations for the task at hand. Alternatively, we plan to look at going beyond HMMs
by using neural variants for incorporating the multimodality, such as Mixture Density
Networks [24] and additionally handle inputs from multiple sensors, which are important
for functional HRI tasks in settings involving shared autonomy with a human. Additionally,
incorporating a GAN-like discriminator [202] or diffusion-based architectures [138] could
lead to performance improvements over a VAE, especially for more complex tasks.
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4. MoVEInt: Mixture of Variational Experts
for Learning Human-Robot Interactions
from Demonstrations

In Chapter 3, we proposed an approach for learning latent interaction dynamics in a
modular manner, however, as mentioned in Section 3.5.2, the main bottleneck of our
approach is the HMM which is learned independently from the VAEs. One key takeaway
though is that shared dynamics models are important for capturing the complexity and
variability inherent in Human-Robot Interaction (HRI). Therefore, learning such shared
dynamics models can enhance coordination and adaptability to enable successful reactive
interactions with a human partner. Taking a step in the direction of better incorporating the
multimodality into the training process, in this work, we propose “MoVEInt” an approach
for learning a Mixture of Variational Experts for learning Human-Robot Interactions from
demonstrations.
We propose a novel approach for learning a shared latent space representation for HRIs

from demonstrations in a Mixture of Experts fashion for reactively generating robot actions
from human observations. We train a Variational Autoencoder (VAE) to learn robot motions
regularized using an informative latent space prior that captures the multimodality of the
human observations via a Mixture Density Network (MDN). We show how our formulation
derives from a Gaussian Mixture Regression formulation that is typically used approaches
for learning HRI from demonstrations such as using an HMM/GMM for learning a joint
distribution over the actions of the human and the robot. We further incorporate an
additional regularization to prevent “mode collapse”, a common phenomenon when using
latent space mixture models with VAEs. We find that our approach of using an informative
MDN prior from human observations for a VAE generates more accurate robot motions
compared to previous HMM-based or recurrent approaches of learning shared latent
representations, which we validate on various HRI datasets involving interactions such
as handshakes, fistbumps, waving, and handovers. Further experiments in a real-world
human-to-robot handover scenario show the efficacy of our approach for generating
successful interactions with four different human interaction partners.
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4.1. Prologue

Ensuring a timely response while performing an interaction can enable a feeling of
connectedness to one’s partner [119]. Therefore, learning to generate response motions
for a robot in a timely manner for Human-Robot Interaction (HRI) is an important aspect
of the interaction. One way to do so is by learning a shared representation space between
the human and the robot [29, 86, 87, 158, 157, 200, 202]. An important aspect of
such approaches, for learning HRI from demonstrations, is accurately capturing the
multimodality of the underlying data to effectively capture the underlying skills and
accurately generate response motions.
Vogt et al. [200] showed the use of shared latent spaces in an Imitation Learning (IL)

approach by decomposing interactions into multiple segments in a lower dimensional
space with an underlying Gaussian Mixture Model (GMM) and learning the sequence of
key poses using a Hidden Markov Model (HMM) to define the progression of an interaction.
In our previous work, MILD [158, 157], we explore learning a shared latent space model
using a Variational Autoencoder (VAE) wherein we learn a joint distribution over the
trajectories of both the human and the robot using an HMM with underlying Gaussian
States to represent the multimodality of the demonstrations. Rather than extracting key
poses as in [200], we generate the robot’s motion using Gaussian Mixture Regression
(GMR) from the underlying HMM based on the human’s observations in a reactive manner.
In doing so, we achieve better accuracy than using a recurrent representation of the shared
latent dynamics [29].
Generative approaches have been used to jointly learn human and robot policies for

collaborative tasks [202, 193, 178] and discover different underlying latent “strategies” of
the human but only for a given task. In our work, we further explore how underlying latent
strategies can be learned from different tasks in a dataset rather than just a single task by
using a mixture distribution to predict different latent policies, which are then combined
in a Mixture of Experts fashion. An example of this can be seen in Figure 4.1, where we
show a handshake interaction with the Pepper robot. Trained on a dataset of different
physical interactions like waving, handshakes, and fistbumps, we see the different policies
that get predicted (the reconstructions of which are shown by the different colored arms of
Pepper) which are then combined in the latent space yielding a suitable response motion.
To learn multiple latent policies and effectively combine them, we employ Mixture

Density Networks (MDNs) [24] to capture the multimodality of the demonstrations. MDNs
predict a mixture of Gaussians and the corresponding mixture coefficients yielding a
multimodal prediction, rather than a unimodal distribution or a single output. MDN policy
representations have been widely used in Imitation Learning and Reinforcement Learning
(RL) on a variety of tasks such as autonomous driving [16, 105], entropy regularization
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Figure 4.1.: Target poses generated in a reactive manner by the mixture of policies learned by
MoVEInt for a Handshake interaction with the humanoid robot Pepper. MoVEInt
generates multiple policies (shown in green, magenta, and orange) based on human
observations which are combined to generate suitable robot motions.

for imitation learning [107], adapting to multiple goals [214], incorporating human
intentions for robot tasks [192], predicting gaze behaviors for robot manipulation [95] or
more generally as improved attention mechanisms [19, 3] or as forward models of the
environment [64, 174, 210, 163]. With these key ideas for learning shared multimodal
latent policy representations for HRI, the main contributions of this chapter are as follows.
We propose “MoVEInt”, a novel framework that employs a Mixture of Variational

Experts for learning Human-Robot Interactions from demonstrations through a shared
latent representation of a human and a robot. We learn latent space policies in a Mixture
of Experts fashion via a Mixture Density Network (MDN) to encode the latent trajectory
of a human partner, regularize the robot embeddings, and subsequently, predict the
robot motions reactively. We show how our proposed formulation extends from Gaussian
Mixture Regression (GMR) which is typically used in HMM-based approaches for learning
HRI from demonstrations. We leverage the function approximation powers of Neural
Networks to simplify the GMR formulation to a linear Mixture of Gaussian formulation.
Through our experiments, we see that our approach successfully captures the best of

recurrent, multi-modal, and reactive representations for learning short-horizon Human-
Robot Interactions from demonstrations.
We find that MoVEInt generates highly accurate robot behaviors without explicit action
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labels, which is more natural as humans also internally infer what our interaction partner is
doing and adapt to it without explicitly communicating the action being done. We validate
our predictive performance on a variety of physical HRI scenarios such as handshakes,
fistbumps, and robot-to-human handovers. We further demonstrate the efficacy of MoVEInt
in a real-world interaction scenario for bimanual (dual-arm) robot-to-human handovers.

4.2. Mixture of Variational Experts for Learning Human-Robot
Interactions from Demonstrations

In this section, we present MoVEInt, a novel framework that learns latent space policies in
a Mixture of Experts fashion for modeling the shared dynamics of a human and a robot
in HRI tasks. This process can be seen in Figure 4.2. We aim to model the dynamics of
HRI tasks via shared latent representations of a human and a robot in a way that captures
the multimodality of the demonstrations and subsequently predicts the robot’s motions
in a reactive manner. To do so, we use an MDN that takes the human observations as
input and predicts multiple latent policies, thereby enabling a multimodal output, and
subsequently, the relative weights for each policy so that they can be effectively combined.
For learning a shared latent representation between the human and the robot, we train a
VAE over the robot motions and regularize the VAE with the predicted policy from the
MDN, thereby learning the robot embeddings and the subsequent human-conditioned
policy predictions in a cohesive manner.
We introduce MDNs in Section 4.2.1 and then motivate their use for HRI in Section 4.2.3

by showing the equivalence of MDNs with Gaussian Mixture Regression (GMR). We then
explain learning the robot motion embeddings (Section 4.2.4), and then show how to
train reactive policies for HRI (Section 4.2.5). We denote the human variables in red with
the superscript h and the robot variables in blue with the superscript r.

4.2.1. Mixture Density Networks

Mixture Density Networks (MDNs) [24] is a probabilistic neural network architecture that
encapsulates the representation powers of neural networks with the modular advantages
that come with Gaussian Mixture Models (GMMs). MDNs parameterize a typical super-
vised regression problem of predicting an output distribution p(y|x) = N (y|µ(x),σ2(x)))
as a multimodal distribution by predicting a set of means and variances (µi(x),σ

2
i (x))

corresponding to the mixture distribution along with the mixture coefficients αi(x) corre-
sponding to the relative weights of the mixture distributions.
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Figure 4.2.: Overview of our approach “MoVEInt”. We train a reactive policy using aMixture Density
Network (MDN) to predict latent space robot actions from human observations. The
MDN policy is used not just for reactively generating the robot’s actions, but also
to regularize a VAE that learns a latent representation of the robot’s actions. This
regularization ensures that the learned robot representation matches the predicted
MDN policy and also ensures that the robot VAE learns to decode samples from the
MDN policy.

4.2.2. Overview

We aim to model the joint latent space dynamics in a Human-Robot Interaction scenario
via a reactive policy. To do so, we train a Mixture Density Network that takes the human
observations and the environment state (for eg. the object pose in a handover scenario)
as input and predicts multiple policies corresponding to the different segments of the
interaction and subsequently the relative weights for each segment. To enable ameaningful
latent representation, we train a VAE over the Robot motions and regularize the VAE
with the predicted policy from the MDN thereby learning the robot embeddings and the
subsequent human-conditioned policy predictions in a cohesive manner. This process can
be seen in Figure 4.2. For an easier understanding, we denote the human variables in red
with the superscript h and the robot variables in blue with the superscript r.
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4.2.3. GMR-based Interaction Dynamics with MDNs

Learning a joint distribution over the degrees of freedom of a human and a robot has
been widely used in learning HRI from demonstrations [30, 52, 31, 116, 53, 158, 157].
With a joint distribution, GMR provides a mathematically sound formulation of predicting
the conditional distribution of the robot actions. When using a Mixture of N Gaussian
components {µi,Σi} that model a joint distribution of the Human and Robot trajectories,
the distribution can be decomposed into the marginals for the human and the robot

µi =

[︃
µh
i

µr
i

]︃
;Σi =

[︃
Σhh

i Σhr
i

Σrh
i Σrr

i

]︃
(4.1)

In such a formulation, during test time, the robot motions can be generated reactively by
conditioning the distribution using Gaussian Mixture Regression (GMR) [30, 187]
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where αi(z
h
t ) is the relative weight of each component.

The covariance in the GMR Formulation in [30], which is derived from [187], can be
obtained by simplifying Eq. 4.2 as
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since
∑︁N

i=1 αi(z
h
t )(µ̂

r
i ) = µ̂r

t and
∑︁N

i=1 αi(z
h
t ) = 1, therefore −µ̂r

t

∑︁N
i=1 αi(z

h
t )(µ̂

r
i )

T +

µ̂r
t (µ̂

r
t )

T
∑︁N

i=1 αi(z
h
t ) becomes 0.

Revisiting Eq. 4.2, given the linear dependence of µ̂r
i on zh

t , we can therefore con-
sider µ̂r

i as a direct output of a neural network. Although the covariance matrix has
a quadratic relationship with zh

t , considering Neural Networks are powerful function
approximations, we assume that our network can adequately approximate a diagonal-
ized form of the covariance matrices Σ̂r

i [120, 214]. To consider the temporal aspect
of learning such trajectories from demonstrations, rather than using the Mixture Model
coefficients, αi(z

h
t ) can be approximated in a temporal manner using Hidden Markov

Models (HMMs) [30] αi(z
h
t ) = N (zh

t ;µi,Σi)
∑︁N

j=1 αj(zt−1)Tj,i where the parameters
(µi,Σi, Tj,i) are the means and covariances of the underlying Gaussian states and the
transition probabilities between the states respectively.
Given that there exist parallels between HMMs and RNNs [18, 73, 40] and to capture

the recurrence in predicting αi(z
h
t ), we use a recurrent layer for predicting the mixing

coefficients. Using the predictions of the mixture model parameters (µr
i (x

h
t ),σ

r
i (x

h
t )

2)
and coefficients αi(x

h
t ) from the MDN 1, we can re-write Eq. 4.2 as

1Since the relation between xh
t and zh

t is deterministic, for ease of notation, we show the prediction of the
MDN components with xh

t
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which is then used as a prior for regularizing the VAE and training the decoder to
reconstruct latent samples obtained after observing the human partner.

4.2.4. Robot Motion Embeddings

To learn a meaningful representation of the robot’s actions, we train a VAE to reconstruct
the robot’s actions at each timestep. Typically, in VAEs, a standard normal distribution
is used as the latent space prior p(z) = N (0, I). Rather than forcing an uninformative
standard normal prior as in Eq. 3.3, we use the reactive policy predicted from the human ob-
servations by the MDN (Eq. 4.4) to regularize the VAE’s posteriorKL(q(zr

t |xr
t )||p(zr

t |xh
t )),

thereby learning a task-oriented latent space that is in line with the interaction dynamics.
Our ELBO for training the robot VAE can be written as

ELBOr
t = Eq(zr

t |xr
t )
[log p(xr

t |zr
t )]

− βKL(q(zr
t |xr

t )||p(zr
t |xh

t ))
(4.5)

Where β is a relative weight used to ensure numerical stability between the KL diver-
gence term and the image reconstruction term [71].

4.2.5. Reactive Motion Generation

We aim to learn a policy for reactively generating the robot’s latent trajectory based
on human observations p(zr

t |xh
t ). We do so in a Behavior Cloning Paradigm by max-

imizing the probability of the observed trajectories w.r.t. the current policy LBC
t =

−Ezr
t∼p(zr

t |xh
t )
p(xr

t |zr
t ) wherein we first draw samples from the current policy zr

t ∼
p(zr

t |xh
t ) which we then reconstruct p(xr

t |zr
t ), thereby enabling the decoder to recon-

struct latent samples obtained after observing the human, as done during test time.
However, as highlighted in [214], MDN policy representations are prone to mode

collapses. Therefore, to ensure adequate separation between the modes so that we
can learn a diverse range of actions, we employ a contrastive loss at each timestep.
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The contrastive loss pushes the means of each mixture component further away, while
maintaining temporal similarity by pushing embeddings that are closer in time nearer to
each other. Further, as done in [214], we add entropy cost to ensure a balanced prediction
of the mixture coefficients. Our separation loss can be written as
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N−1∑︂
i=1

N∑︂
j=i+1
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i (x
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h
t ) lnαi(x
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entropy cost

(4.6)

Our final loss consists of the Behavior Cloning loss, the ELBO of the robot VAE, and the
separation loss

T∑︂
t=1

[︁
LBC
t − ELBOr

t + βLsept

]︁
(4.7)

where β is the same KL weight factor used in Eq. 4.5. Our overall training procedure is
shown in Algorithm 4.

Algorithm 4: Learning a Reactive Latent Policy for Human-Robot Interaction
Data: A set of human and robot trajectoriesX = {Xh,Xr}
Result: MDN Policy Network, Robot VAE
while not converged do

for xh
1:T ,x

r
1:T ∈X do

Compute the MDN policy p(zr
t |xh

t ) (Eq. 4.4)
Compute the robot VAE posterior p(zr

t |xr
t ) (Eq. 4.5)

Reconstruct samples from p(zr
t |xh

t ) and p(zr
t |xr

t )
Minimize the loss in Eq. 4.7 to update the network

end
end
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During test time, given human observations xh
t , we compute the latent policy from the

MDN zr
t = p(zr

t |xh
t ) which is then decoded to obtain the robot action p(xr

t |zr
t ).

4.3. Experiments and Results

In this section, we first explain the datasets we use (Section 4.3.1), then we highlight the
implementation details (Section 4.3.2), and finally present our results (Section 4.3.3).

4.3.1. Datasets

In addition to the datasets presented in Section 3.4.2, we additionally use the Human-
Human Object Handovers Dataset [103], which is a dataset consisting of 12 pairs of
participants performing object handovers with various objects. Each partner takes the
role of the giver and the receiver, leading to 24 pairs of handover partners. The dataset
consists of both Unimanual (single-arm) and Bimanual (dual-arm) handovers tracked
using motion capture at 120Hz, which we downsample to 30Hz. We explore a Robot-to-
Human handover scenario and use the giver’s observations corresponding to the robot
and the receiver’s observations corresponding to the human.

Dataset Downsampled No. of Trajectories
FPS (Hz) Training Testing

HHI, HRI-Pepper [29] 20 149 32
HRI-Yumi [29] 20 32 9

HHI, HRI-Pepper (NuiSI [157]) 30 33 11
HHI-Handovers [103] 30 168 24

Table 4.1.: Statistics of the different datasets used.

4.3.2. Implementation Details

After downsampling the data to the frequencies mentioned in Table 4.1, we use a time
window of observations as the input for a given timestep, similar to [29]. We use the
3D positions and the velocities (represented as position deltas) of the right arm joints
(shoulder, elbow, and wrist), with the origin at the shoulder, leading to an input size of
90 dimensions (5x3x6: 5 timesteps, 3 joints, 6 dimensions) for a human partner. For
the HHI-Handover scenario, we use both the left and right arm data (180 dimensions).
For the HRI-Pepper and HRI-Yumi scenarios, we use a similar window of joint angles,
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Dataset (units) Action MILD [157] Bütepage et al. [29] MoVEInt

HHI
(Bütepage et al. [29])

(cm)

Hand Wave 0.788 ± 1.226 4.121 ± 2.252 0.448 ± 0.630
Handshake 1.654 ± 1.549 1.181 ± 0.859 0.196 ± 0.153

Rocket Fistbump 0.370 ± 0.682 0.544 ± 1.249 0.123 ± 0.175
Parachute Fistbump 0.537 ± 0.579 0.977 ± 1.141 0.314 ± 0.348

HRI-Pepper
(Bütepage et al. [29])

(rad)

Hand Wave 0.103 ± 0.103 0.664 ± 0.277 0.087 ± 0.089
Handshake 0.056 ± 0.041 0.184 ± 0.141 0.015 ± 0.014

Rocket Fistbump 0.018 ± 0.035 0.033 ± 0.045 0.007 ± 0.015
Parachute Fistbump 0.088 ± 0.148 0.189 ± 0.196 0.048 ± 0.112

HRI-Yumi
(Bütepage et al. [29])

(rad)

Hand Wave 1.033 ± 1.204 0.225 ± 0.302 0.147 ± 0.072
Handshake 0.068 ± 0.052 0.133 ± 0.214 0.057 ± 0.044

Rocket Fistbump 0.128 ± 0.071 0.147 ± 0.119 0.093 ± 0.045
Parachute Fistbump 0.028 ± 0.034 0.181 ± 0.155 0.081 ± 0.082

HHI
(NuiSI [157])

(cm)

Hand Wave 0.408 ± 0.538 3.168 ± 3.392 0.298 ± 0.274
Handshake 0.311 ± 0.259 1.489 ± 3.327 0.149 ± 0.120

Rocket Fistbump 1.142 ± 1.375 3.576 ± 3.082 0.673 ± 0.679
Parachute Fistbump 0.453 ± 0.578 2.008 ± 2.024 0.291 ± 0.199

HRI-Pepper
(NuiSI [157])
(rad)

Hand Wave 0.046 ± 0.059 0.057 ± 0.093 0.044 ± 0.048
Handshake 0.020 ± 0.014 0.083 ± 0.075 0.011 ± 0.008

Rocket Fistbump 0.077 ± 0.067 0.101 ± 0.086 0.045 ± 0.045
Parachute Fistbump 0.022 ± 0.027 0.049 ± 0.040 0.017 ± 0.014

HHI-Handovers Unimanual 0.441 ± 0.280 1.133 ± 0.721 0.441 ± 0.221
(Kshirsagar et al. [103]) (cm) Bimanual 0.869 ± 0.964 0.990 ± 0.764 0.685 ± 0.643

Table 4.2.: Prediction MSE for robot trajectories after observing the human partner averaged over
all joints and timesteps. Results for the HHI scenarios are in cm and for the HRI
scenarios are in radians. (Lower is better)

leading to an input size of 20 dimensions (5x4) for the 4 joint angles of Pepper’s right arm
and an input size of 35 dimensions (5x7) for the 7 joint angles of Yumi’s right arm. The
reconstruction loss for the VAE and Behavior Cloning are calculated by decoding samples
drawn from the respective distributions in a Monte Carlo fashion.
For the dataset from [29] and the NuiSI dataset [157], we use a VAE with 2 hidden

layers each in the encoder and decoder with a dimensionality of (40, 20) and (20, 40)
respectively, with Leaky ReLU activations and a 5D latent space. For the VAE posterior and
the MDN outputs, we predict the mean and the log of the standard deviation (logstd). We
add a regularization of 10−6 to the standard deviation. The MDN has a similar structure as
the VAE encoder but predicts 3 different means and logstds. For the mixture coefficients αi,
to enable a recurrent nature of the predictions, the output of the MDN encoder is passed to
a single-layer Gated Recurrent Unit (GRU) whose outputs are then passed through a linear
layer followed by a softmax layer. For the NuiSI dataset, we initialize the model with the
pre-trained weights trained on the dataset in [29]. For the Handover dataset [103], we
use double the number of states in each layer, namely 80 and 40 hidden states and a 10D
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latent space.

4.3.3. Reactive Motion Generation Results

To show the advantage of our approach, we compare MoVEInt with Bütepage et al. [29],
who use an LSTM-based approach as a latent regularization for reactive motion generation,
which is close to a unimodal version of our approach. Further, we compare MoVEInt to
MILD [157] which uses HMMs to capture the multimodal latent dynamics of interactive
tasks. The efficacy of MoVEInt can be seen via the low mean squared error of the predicted
robot motions (Table 4.2).
We perform better than both MILD [157] and Bütepage et al. [29] on almost all

interaction scenarios. We additionally want to highlight that on the HRI-Pepper scenarios,
unlike MILD [157] and Bütepage et al. [29] where the pre-trained model from the HHI
scenario is used, we train our model completely from scratch and still achieve better
performance. Moreover, it is worth noting that both [29] and MILD are trained in a
partially supervised manner using the interaction labels. In [29], a one-hot label denoting
the interaction being performed is given as an input to the network for generalizing to
different interactions, whereas in MILD, a separate HMM is trained for each interaction.
In contrast, MoVEInt is trained on all the tasks in a given dataset without any labels
in a purely unsupervised manner and still achieves competitive results on the different
datasets.
We additionally show some quantitative results of MoVEInt. We train a Handover model

with just the hand trajectories whose predictions are used for reactive motion generation
on a Bimanual Franka Emika Panda robot setup, “Kobo”, as shown in Figure 4.3. Some
additional examples of the trajectories generated by MoVEInt for bimanual and unimanual
handovers from the HHI-Handovers dataset [103] are shown in Figure 4.4a and 4.4b
respectively. Since MoVEInt is trained on all the interactions in a corresponding dataset,
which, when coupled with the separation loss, learns a diverse and widespread set of
components that cover the various demonstrations, as can be seen by the reconstruction of
the individual components. Combining the components in the latent space subsequently
leads to an accurate and suitable motion generated reactively (shown in blue).

4.3.4. User study

To understand the effectiveness of our approach in the real world, we perform a feasi-
bility study as a proof-of-concept with five users who perform bimanual robot-to-human
handovers with the Kobo robot. We evaluate the ability of our approach to successfully
generate a handover motion with three different objects where each participant interacts
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Figure 4.3.: Sample Human-Robot Interactions generated with the reactive motions generated by
MoVEInt for a Bimanual Handover scenario.
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(a) Example of a generated Bimanual Handovers
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(b) Example of a generated Unimanual Handovers

Figure 4.4.: Sample trajectories generated by MoVEInt for the Bimanual and Unimanual Handovers
in the HHI-Handovers dataset in [103]. The 3D plots show the reconstructed trajecto-
ries and the 2D plots show the corresponding progression of αi(x

h
t ) for the different

components of the MDN. In the 3D plots, the observed trajectory of the receiver is
shown in red and the generated trajectory of the giver is shown in blue and the giver’s
corresponding ground truth is shown in black. The reconstruction of the individual
latent components of the MDN are shown in green, magenta, and orange. It can
be seen that the learned components correspond to different parts of the task space.
For example, green denotes the hand locations for a unimanual handover, magenta
denotes the hand locations for a bimanual handover, and orange denotes the static
hand locations for the starting and ending neutral poses. In the 2D plot, it can be
seen how the coefficients for components corresponding to bimanual (magenta) and
unimanual (green) get activated based on the interaction being performed, while the
component corresponding to a neutral pose (orange) gets activated at the beginning
of the interaction while both partners are static.

with the robot five times for each object (a total of 15 runs per participant). To maintain
the object-centric nature of the interaction, we use a controller that tracks the mid-point
of both end-effectors, thereby resembling tracking the object’s trajectory. This study was
approved by the Ethics Commission at TU Darmstadt (Application EK 20/2023). For the
study, we modify the Handovers dataset [103] such that the giver’s trajectories fall within
the task space limits of the Kobo robot. We train a separate model to use only the receiver’s
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hand trajectories and subsequently predict the end-effector trajectory for the robot. This
is given to an Object-centric Inverse Kinematics controller that tracks the motion of the
mid-point between the end-effectors.
As shown in Table 4.3, our approach can generate successful handover trajectories for

different users and different objects. We observed some failure cases due to sudden jumps
in the predicted robot motions resulting from inaccuracies in perceiving the human, which
would overshoot the robot’s dynamic limits. However, this failure could be avoided by
incorporating additional filters over the input and output data to MoVEInt. Some failures
occurred because the object did not reach the exact vicinity of the human’s hand location.
This failure could be avoided by incorporating object-related information such as the size
or weight, allowing the robot to gauge better when the handover is executed. Sometimes,
the robot would retreat before the human could grasp the object if sufficient time had
passed. One reason for this hasty retreating behavior could be that the recurrent network’s
hidden inputs overpower the observational input, causing the robot to follow the general
motion of the handover seen during training and retreat. Such a failure could be mitigated
by incorporating the robot state as part of the input.

ObjectUser ID #1 #2 #3 #4 Total
(per object)

Stool 5 4 5 5 19/20
Box 4 5 4 4 17/20

Bedsheet 4 5 3 3 15/20
Total 13/15 14/15 12/15 12/15 51/60(per user)

Table 4.3.: Number of successful handovers of each object by the Kobo robot to each user (total of
5 per object per user i.e. total of 20 per object and 15 per user).

4.4. Conclusion and Future Work

In this chapter, we presented “MoVEInt”, a novel deep generative Imitation Learning
approach for learning Human-Robot Interaction from demonstrations in a Mixture of
Experts fashion. We demonstrated the use of Mixture Density Networks (MDNs) as a
multimodal policy representation in a shared latent space of the human and the robot. We
showed how MoVEInt stems from the GMR-based formulation of predicting interaction
dynamics used in HMM-based approaches to learning HRI. We showed how our MDN
policy can predict multiple underlying policies and combine them to effectively generate
response motions for the robot. We verified the efficacy of MoVEInt across a variety of
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interactive tasks, where we found that MoVEInt mostly outperformed other baselines that
either use explicitly modular representations like an HMM or simple recurrent policy
representations. Our experimental evaluation showcases the versatility of MoVEInt, which
effectively combines explicitly modular distributions with recurrent policy representations
for learning interaction dynamics.
The main focus of this chapter is to explore the use of MDNs as a latent policy represen-

tation for simplistic short-horizon interactions like handshakes, handovers, etc., and show
the feasibility of our approach in learning various interactive behaviors. One drawback is
that we currently do not explicitly study how robust the approach is to unknown behaviors
of the human, or how it performs on more complicated tasks.
Some next steps would be exploring how MoVEInt scales to longer horizon tasks such as

bi-directional handovers, collaborative sequential manipulation, or proactive tasks where
the robot leads the interaction. Some extensions for extrapolating to such tasks can be
explored by using better Generative models [202, 178, 138] or adding explicit constraints
for combining reactive motion generation and planning [69]. Alternatively, one could
explore incorporating task-related constraints such as object information for handover
grasps [42, 168], force information for enabling natural interactive behaviors [121, 93,
26], and ergonomic and safety constraints for a more user-friendly interaction [106, 170].
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5. Conclusion

Physical non-verbal interactions play a key role in the perceived sociability of social robots.
To this end, in this thesis, we proposed three main contributions towards studying and
developing realistic and acceptable physical Human-Robot Interaction. First, we perform
an extensive review of works on Human-Robot Handshaking to categorize the various
existing works and understand what directions to pursue in the future. Based on this, we
develop a framework for learning the underlying segments of such physical interactions
such that they can be adapted to enable natural and acceptable interactions with a robot.
We then improve upon this framework to incorporate reactive motion generation into
the learning in a more principled manner, leading to the generation of more accurate
interactive behaviors. In this chapter, we summarize the key contributions of this thesis
and propose some directions for future work.

5.1. Summary

In Chapter 2, we performed a study of social robots and their interaction with humans,
particularly focusing on handshaking, which is the key focus of this thesis. The exploration
of handshaking as a fundamental interaction has led to significant insights and contribu-
tions in the field of Human-Robot Interaction (HRI). The research in this thesis began
by conducting an extensive review of existing literature on Human-Robot Handshaking,
which resulted in the development of a comprehensive taxonomy and the identification of
various critical aspects influencing the design and implementation of robotic handshaking
behaviors.
One of the key focus for realizing seamless robotic handshakes is the development

of an end-to-end handshaking behavior, where the robot reacts in a coordinated and
synchronized way to the human’s motion, reaches the human hand accurately, and
performs a compliant shaking motion followed by a timely termination of the interaction.
Like handshaking, other physically interactive behaviors, like fistbumps or handovers,
can also be broken down into similar segments which then need to be sequenced to
realize an accurate interaction with a human. To this end, we develop a framework that
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learns such underlying segments from demonstrations of interactions and subsequently
generates corresponding robot motions in a reactive manner. In Chapter 3, we develop
“MILD”, a framework for learning Multimodal Interactive Latent Dynamics aimed at
learning real-world Human-Robot Interaction (HRI) from demonstrations. We focused
on understanding the underlying dynamics of interactions from human demonstrations
as a joint distribution using Hidden Markov Models (HMMs) in the latent space of a
Variational Autoencoder (VAE). The dynamics learned from human demonstrations were
subsequently utilized to train models for HRI, where we aimed to improve performance
in various HRI scenarios. To achieve this, we explored two strategies for integrating the
HMM’s conditional distribution into the training process, emphasizing the significance
of reactive motion generation in achieving competitive performance. During testing, we
demonstrated how reactively generated robot trajectories could be refined using Inverse
Kinematics, which is particularly beneficial for tasks involving physical contact, such as
handshaking. Our study also highlighted the effective use of HMM segment predictions
for stiffness modulation, significantly enhancing the quality of the interaction. This was
validated via a user study which confirmed the higher acceptance of our approach by
human users in terms of human-likeness, timing, accuracy, and effortlessness. Moreover,
the user study demonstrated the ability of our approach to generalize effectively across
multiple users, despite being trained on data from only two interaction partners.
In Chapter 4, we further improve on the reactive motion generation capabilities by

incorporating the HMM’s conditioning capabilities into the learning process in a more
principled manner. We proposed “MoVEInt”, a novel deep generative Imitation Learn-
ing approach for learning a Mixture of Variational Experts for learning Human-Robot
Interactions from demonstrations. We integrated Recurrent Mixture Density Networks
(MDNs) as a latent policy representation that stems from a GMR-based formulation of
the HMM conditioning for reactively generating robot motions based on the observed
human partner. On a variety of different interactive tasks, we verified the effectiveness
of MoVEInt where we found that MoVEInt largely outperformed other baselines that
either use explicitly modular representations like an HMM or simple recurrent policy
representations, showcasing the versatility of MoVEInt which combines the best of both
worlds for learning interaction dynamics.
The thesis has significantly contributed to the understanding of the dynamics of physical

interactions, emphasizing the importance of synchronized and adaptable motions in
achieving natural and socially acceptable interactions between humans and social robots.
The work done in this thesis contributed to the areas of Physical Human-Robot Interaction,
Robot Learning for HRI, and Representation Learning by successfully developing and
validating these frameworks through experimental evaluations with human participants.
These findings and methodologies not only advance the current understanding of HRI
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but also provide a solid foundation for future research in developing socially acceptable
responsive robotic behaviors.

5.2. Future work

In this section, we outline some potential areas of future work based on the research done
in this thesis. We highlight some key areas for improvement along with some avenues of
extensions for each of the chapters in this thesis and then provide some overarching ideas
in a broader context

Exploring the Role of Haptic Feedback

Haptic Feedback plays an important role in perceiving handshakes, as highlighted in
Chapter 2. However, doing so requires specialized hardware that is capable of sensing the
nuances of an intricate interaction like handshaking. Assuming the hardware barrier can
be crossed, there is a larger need for developing datasets and frameworks to be able to
learn how the emotional aspects of an interaction like a handshake can be learned by tactile
feedback which can improve the social perception of a robot equipped with such a skill. One
straightforward manner would be to apply the frameworks proposed in this thesis to learn
the latent dynamics based on force interactions which can therefore be used to reactively
control the robot grasp and subsequently be optimized with users’ preferences[2]. While
such datasets are not readily available for Handshaking, Handovers have been explored
well in this regard [93, 94, 121], which can be a starting point for such a line of work.
Moreover, in this thesis, the main focus of the developed frameworks was for reactive
motion generation. However, enabling natural physical interactions requires a certain level
of impedance control functionality to make the robot more adaptive and compliant with
the human user [92]. The ability to learn such compliance from demonstrations would be
truly beneficial for improving Human-Robot Interaction and Human-Robot Collaboration
through the haptics of the interaction. This coupled with auxiliary behaviors like speech
and gaze can help improve the overall perception of the interaction.

Extrapolating to Complex Collaborative Tasks

Currently, we found that using a Behavior Cloning approach for the frameworks generated
an acceptable and accurate interaction given the relatively simplistic nature of the tasks.
However, further research and experimentation are required to see how well the proposed
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frameworks fare for more complex tasks such as sequential collaboration tasks, long-
horizon planning, etc. In such cases, using an Adversarial approach like Co-GAIL [202]
could enable learning diverse policies for more complex tasks, or for more proactive
policies where the robot should lead the interaction.

91



Bibliography

[1] 3DiVi. Nuitrack. https://nuitrack.com/. [Online; accessed 19-Oct-2023].
[2] N. Abdulazeem and Y. Hu. “Human Factors Considerations for Quantifiable Human

States in Physical Human-Robot Interaction: A Literature Review”. In: Sensors
(2023).

[3] P. Abolghasemi, A. Mazaheri, M. Shah, and L. Boloni. “Pay attention!-robustifying
a deep visuomotor policy through task-focused visual attention”. In: IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). 2019.

[4] A. Ajoudani, A. M. Zanchettin, S. Ivaldi, A. Albu-Schäffer, K. Kosuge, and O. Khatib.
“Progress and prospects of the human–robot collaboration”. In: Autonomous Robots
(2018).

[5] M. Ammi, V. Demulier, S. Caillou, Y. Gaffary, Y. Tsalamlal, J.-C. Martin, and A.
Tapus. “Haptic human-robot affective interaction in a handshaking social protocol”.
In: Proceedings of the Tenth Annual ACM/IEEE International Conference on Human-
Robot Interaction. 2015.

[6] H. B. Amor, G. Neumann, S. Kamthe, O. Kroemer, and J. Peters. “Interaction prim-
itives for human-robot cooperation tasks”. In: 2014 IEEE international conference
on robotics and automation (ICRA). IEEE. 2014.

[7] O. Arenz, P. Dahlinger, Z. Ye, M. Volpp, and G. Neumann. “A Unified Perspective
on Natural Gradient Variational Inference with Gaussian Mixture Models”. In:
Transactions on Machine Learning Research (2023).

[8] M. Arns, T. Laliberté, and C. Gosselin. “Design, control and experimental validation
of a haptic robotic hand performing human-robot handshake with human-like
agility”. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE. 2017, pp. 4626–4633.

[9] M. A. Artem, K. M. Viacheslav, B. P. Volodymyr, and H. Patrick. “Physical human–
robot interaction in the handshaking case: learning of rhythmicity using oscillators
neurons”. In: IFAC Proceedings Volumes (2013).

92

https://nuitrack.com/


[10] J. Åström. “Introductory greeting behaviour: A laboratory investigation of ap-
proaching and closing salutation phases”. In: Perceptual and Motor Skills (1994).

[11] J. Åström and L.-H. Thorell. “Greeting behaviour and psychogenic need: Interviews
on experiences of therapists, clergymen, and car salesmen”. In: Perceptual and
motor skills (1996).

[12] J. Avelino, F. Correia, J. Catarino, P. Ribeiro, P. Moreno, A. Bernardino, and
A. Paiva. “The power of a hand-shake in human-robot interactions”. In: 2018
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE.
2018.

[13] J. Avelino, T. Paulino, C. Cardoso, P. Moreno, and A. Bernardino. “Human-aware
natural handshaking using tactile sensors for vizzy a social robot”. In: Workshop
on Behavior Adaptation, Interaction and Learning for Assistive Robotics at RO-MAN.
2017.

[14] J. Avelino, T. Paulino, C. Cardoso, R. Nunes, P. Moreno, and A. Bernardino. “To-
wards natural handshakes for social robots: human-aware hand grasps using
tactile sensors”. In: Paladyn, Journal of Behavioral Robotics (2018).

[15] G. Avraham, I. Nisky, H. L. Fernandes, D. E. Acuna, K. P. Kording, G. E. Loeb,
and A. Karniel. “Toward perceiving robots as humans: Three handshake models
face the turing-like handshake test”. In: IEEE Transactions on Haptics 5.3 (2012),
pp. 196–207.

[16] A. Baheri. “Safe reinforcement learning with mixture density network, with
application to autonomous driving”. In: Results in Control and Optimization (2022).

[17] C. Bartneck, D. Kulić, E. Croft, and S. Zoghbi. “Godspeed Questionnaire Series”.
In: International Journal of Social Robotics (2008).

[18] M. Baucum, A. Khojandi, and T. Papamarkou. “Hidden Markov models as recurrent
neural networks: An application to Alzheimer’s disease”. In: IEEE International
Conference on Bioinformatics and Bioengineering (BIBE). 2021.

[19] L. Bazzani, H. Larochelle, and L. Torresani. “Recurrent Mixture Density Network
for Spatiotemporal Visual Attention”. In: International Conference on Learning
Representations (ICLR). 2016.

[20] J. Beaudoin, T. Laliberté, and C. Gosselin. “Haptic Interface for Handshake Emu-
lation”. In: IEEE Robotics and Automation Letters (2019).

93



[21] P. Becker, H. Pandya, G. Gebhardt, C. Zhao, C. J. Taylor, and G. Neumann. “Re-
current kalman networks: Factorized inference in high-dimensional deep feature
spaces”. In: International Conference on Machine Learning. PMLR. 2019, pp. 544–
552.

[22] F. J. Bernieri and K. N. Petty. “The influence of handshakes on first impression
accuracy”. In: Social Influence (2011).

[23] C. Bevan and D. S. Fraser. “Shaking hands and cooperation in tele-present human-
robot negotiation”. In: 2015 10th ACM/IEEE International Conference on Human-
Robot Interaction (HRI). IEEE. 2015.

[24] C. M. Bishop. “Mixture density networks”. In: (1994).
[25] S. Bitzer and S. Vijayakumar. “Latent spaces for dynamic movement primitives”.

In: IEEE-RAS International Conference on Humanoid Robots. 2009.
[26] A. Bolotnikova, S. Courtois, and A. Kheddar. “Compliant robot motion regulated

via proprioceptive sensor based contact observer”. In: IEEE-RAS International
Conference on Humanoid Robots (Humanoids). 2018.

[27] A. Bolotnikova, S. Courtois, and A. Kheddar. “Contact observer for humanoid
robot pepper based on tracking joint position discrepancies”. In: IEEE International
Symposium on Robot and Human Interactive Communication (RO-MAN). 2018.

[28] R. A. Bradley and M. E. Terry. “Rank analysis of incomplete block designs: I. The
method of paired comparisons”. In: Biometrika (1952).

[29] J. Bütepage, A. Ghadirzadeh, Ö. Ö. Karadag, M. Björkman, and D. Kragic. “Imitat-
ing by Generating: Deep Generative Models for Imitation of Interactive Tasks”. In:
Frontiers in Robotics and AI 7 (2020), p. 47.

[30] S. Calinon. “A tutorial on task-parameterized movement learning and retrieval”.
In: Intelligent Service Robotics (2016).

[31] S. Calinon, P. Evrard, E. Gribovskaya, A. Billard, and A. Kheddar. “Learning
collaborative manipulation tasks by demonstration using a haptic interface”. In:
International Conference on Advanced Robotics (ICAR). 2009.

[32] J. Campbell and H. B. Amor. “Bayesian interaction primitives: A slam approach to
human-robot interaction”. In: Conference on Robot Learning. 2017, pp. 379–387.

[33] J. Campbell, A. Hitzmann, S. Stepputtis, S. Ikemoto, K. Hosoda, and H. B. Amor.
“Learning Interactive Behaviors for Musculoskeletal Robots Using Bayesian In-
teraction Primitives”. In: 2019 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). 2019.

94



[34] P. Capdepuy, S. Bock, W. Benyaala, and J. Laplace. “Improving Human-Robot
Physical Interaction with Inverse Kinematics Learning”. In: International Conference
on Social Robotics (ICSR). Springer. 2015.

[35] T. Chaminade, D. W. Franklin, E. Oztop, and G. Cheng. “Motor interference
between humans and humanoid robots: Effect of biological and artificial motion”.
In: Proceedings. The 4th International Conference on Development and Learning,
2005. IEEE. 2005, pp. 96–101.

[36] W. F. Chaplin, J. B. Phillips, J. D. Brown, N. R. Clanton, and J. L. Stein. “Hand-
shaking, gender, personality, and first impressions.” In: Journal of personality and
social psychology 79.1 (2000), p. 110.

[37] M. Chaveroche, A. Malaisé, F. Colas, F. Charpillet, and S. Ivaldi. “A Variational Time
Series Feature Extractor for Action Prediction”. In: arXiv preprint arXiv:1807.02350
(2018).

[38] N. Chen, J. Bayer, S. Urban, and P. Van Der Smagt. “Efficient movement represen-
tation by embedding dynamic movement primitives in deep autoencoders”. In:
IEEE-RAS International Conference on Humanoid Robots (Humanoids). 2015.

[39] N. Chen, M. Karl, and P. Van Der Smagt. “Dynamic movement primitives in
latent space of time-dependent variational autoencoders”. In: 2016 IEEE-RAS 16th
International Conference on Humanoid Robots (Humanoids). IEEE. 2016, pp. 629–
636.

[40] J. Chiu and A. M. Rush. “Scaling Hidden Markov Language Models”. In: Conference
on Empirical Methods in Natural Language Processing (EMNLP). 2020.

[41] S. Christen, S. Stevsic, and O. Hilliges. “Guided Deep Reinforcement Learning
of Control Policies for Dexterous Human-Robot Interaction”. In: 2019 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). 2019.

[42] S. Christen, W. Yang, C. Pérez-D’Arpino, O. Hilliges, D. Fox, and Y.-W. Chao. “Learn-
ing Human-to-Robot Handovers from Point Clouds”. In: IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR). 2023.

[43] Y. Chua, K. P. Tee, and R. Yan. “Human-robot motion synchronization using
reactive and predictive controllers”. In: 2010 IEEE International Conference on
Robotics and Biomimetics. IEEE. 2010.

[44] J. Chung, K. Kastner, L. Dinh, K. Goel, A. C. Courville, and Y. Bengio. “A recurrent
latent variable model for sequential data”. In: Advances in neural information
processing systems. 2015, pp. 2980–2988.

95



[45] A. Colomé, G. Neumann, J. Peters, and C. Torras. “Dimensionality reduction for
probabilistic movement primitives”. In: 2014 IEEE-RAS International Conference
on Humanoid Robots. IEEE. 2014, pp. 794–800.

[46] H. Dai, B. Dai, Y.-M. Zhang, S. Li, and L. Song. “Recurrent hidden semi-markov
model”. In: International Conference on Learning Representations (ICLR). 2016.

[47] K. Dai, Y. Liu, M. Okui, R. Nishihama, and T. Nakamura. “Research of human-robot
handshakes under variable stiffness conditions”. In: 2019 IEEE 4th International
Conference on Advanced Robotics and Mechatronics (ICARM). IEEE. 2019.

[48] K. Dai, Y. Liu, M. Okui, Y. Yamada, and T. Nakamura. “Variable viscoelasticity
handshake manipulator for physical human–robot interaction using artificial
muscle and MR brake”. In: Smart Materials and Structures 28.6 (2019), p. 064002.

[49] A. P. Dempster, N. M. Laird, and D. B. Rubin. “Maximum likelihood from incom-
plete data via the EM algorithm”. In: Journal of the royal statistical society: series
B (methodological) (1977).

[50] O. Dermy, M. Chaveroche, F. Colas, F. Charpillet, and S. Ivaldi. “Prediction of
Human Whole-Body Movements with AE-ProMPs”. In: 2018 IEEE-RAS 18th In-
ternational Conference on Humanoid Robots (Humanoids). IEEE. 2018, pp. 572–
579.

[51] B. R. Duffy. “Anthropomorphism and the social robot”. In: Robotics and autonomous
systems 42.3-4 (2003), pp. 177–190.

[52] P. Evrard, E. Gribovskaya, S. Calinon, A. Billard, and A. Kheddar. “Teaching
physical collaborative tasks: object-lifting case study with a humanoid”. In: IEEE-
RAS International Conference on Humanoid Robots (Humanoids). 2009.

[53] M. Ewerton, G. Neumann, R. Lioutikov, H. B. Amor, J. Peters, and G. Maeda.
“Learning multiple collaborative tasks with a mixture of interaction primitives”.
In: 2015 IEEE International Conference on Robotics and Automation (ICRA). IEEE.
2015, pp. 1535–1542.

[54] O. Fabius, J. R. van Amersfoort, and D. P. Kingma. “Variational Recurrent Auto-
Encoders”. In: ICLR (Workshop). 2015.

[55] M. Falahi, T. A. Shangari, A. Sheikhjafari, S. Gharghabi, A. Ahmadi, and S. S.
Ghidary. “Adaptive handshaking between humans and robots, using imitation:
Based on gender-detection and person recognition”. In: 2014 Second RSI/ISM
International Conference on Robotics and Mechatronics (ICRoM). IEEE. 2014.

96



[56] D. Feil-Seifer and M. J. Mataric. “Defining socially assistive robotics”. In: 9th
International Conference on Rehabilitation Robotics, 2005. ICORR 2005. IEEE.
2005.

[57] L. Fritsche, F. Unverzag, J. Peters, and R. Calandra. “First-person tele-operation of
a humanoid robot”. In: 2015 IEEE-RAS 15th International Conference on Humanoid
Robots (Humanoids). IEEE. 2015, pp. 997–1002.

[58] A. Gallace and C. Spence. “The science of interpersonal touch: an overview”. In:
Neuroscience & Biobehavioral Reviews 34.2 (2010), pp. 246–259.

[59] V. Garg, A. Mukherjee, and B. Rajaram. “Classifying human-robot interaction
using handshake data”. In: 2017 IEEE International Conference on Systems, Man,
and Cybernetics (SMC). IEEE. 2017.

[60] E. Giannopoulos, Z. Wang, A. Peer, M. Buss, andM. Slater. “Comparison of people’s
responses to real and virtual handshakes within a virtual environment”. In: Brain
research bulletin (2011).

[61] X. Glorot and Y. Bengio. “Understanding the difficulty of training deep feedforward
neural networks”. In: Proceedings of the thirteenth international conference on
artificial intelligence and statistics. JMLR Workshop and Conference Proceedings.
2010, pp. 249–256.

[62] Y. Göksu, A. De Almeida Correia, V. Prasad, A. Kshirsagar, D. Koert, J. Peters, and G.
Chalvatzaki. “Kinematically Constrained Human-like Bimanual Robot-to-Human
Handovers”. In: Companion of the 2024 ACM/IEEE International Conference on
Human-Robot Interaction. 2024, pp. 497–501.

[63] S. Gomez-Gonzalez, G. Neumann, B. Schölkopf, and J. Peters. “Adaptation and
robust learning of probabilistic movement primitives”. In: IEEE Transactions on
Robotics 36.2 (2020), pp. 366–379.

[64] D. Ha and J. Schmidhuber. “Recurrent world models facilitate policy evolution”.
In: Advances in Neural Information Processing Systems (NeurIPS) (2018).

[65] F. Hahne, V. Prasad, A. Kshirsagar, D. Koert, R. M. Stock-Homburg, J. Peters,
and G. Chalvatzaki. “Transition State Clustering for Interaction Segmentation
and Learning”. In: Companion of the 2024 ACM/IEEE International Conference on
Human-Robot Interaction. 2024, pp. 512–516.

[66] P. M. Hall and D. A. S. Hall. “The handshake as interaction”. In: Semiotica (1983).
[67] J. Han, M. R. Min, L. Han, L. E. Li, and X. Zhang. “Disentangled Recurrent

Wasserstein Autoencoder”. In: International Conference on Learning Representations
(ICLR). 2021.

97



[68] M.-J. Han, C.-H. Lin, and K.-T. Song. “Robotic emotional expression generation
based on mood transition and personality model”. In: IEEE transactions on cyber-
netics 43.4 (2012), pp. 1290–1303.

[69] K. Hansel, J. Urain, J. Peters, and G. Chalvatzaki. “Hierarchical policy blending as
inference for reactive robot control”. In: IEEE International Conference on Robotics
and Automation (ICRA). 2023.

[70] M. J. Hertenstein, J. M. Verkamp, A. M. Kerestes, and R. M. Holmes. “The com-
municative functions of touch in humans, nonhuman primates, and rats: a review
and synthesis of the empirical research”. In: Genetic, social, and general psychology
monographs (2006).

[71] I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot, M. Botvinick, S. Mohamed,
and A. Lerchner. “beta-vae: Learning basic visual concepts with a constrained
variational framework”. In: International Conference on Learning Representations
(ICLR). 2016.

[72] N. J. Higham. “Computing a nearest symmetric positive semidefinite matrix”. In:
Linear algebra and its applications 103 (1988), pp. 103–118.

[73] T. Hiraoka, S. Takase, K. Uchiumi, A. Keyaki, and N. Okazaki. “Recurrent neural
hidden Markov model for high-order transition”. In: Transactions on Asian and
Low-Resource Language Information Processing (2021).

[74] E. S. Ho, T. Komura, and C.-L. Tai. “Spatial relationship preserving character motion
adaptation”. In: ACM Special Interest Group on Computer Graphics (SIGGRAPH).
2010.

[75] K. S. Hone and R. Graham. “Towards a tool for the subjective assessment of speech
system interfaces (SASSI)”. In: Natural Language Engineering (2000).

[76] S. L. Hooper. “Central pattern generators”. In: e LS (2001).
[77] E. Hopf. “Abzweigung einer periodischen Lösung von einer stationären Lösung

eines Differentialsystems”. In: Ber. Math.-Phys. Kl Sächs. Akad. Wiss. Leipzig 94
(1942), pp. 1–22.

[78] S Jeffrey and T DeSocio. “Meet Wally. The Room Service Robot of the Residence
Inn Marriott at LAX”. In: Fox11 (2016).

[79] M. Jindai, S. Ota, Y. Ikemoto, and T. Sasaki. “Handshake request motion model
with an approaching human for a handshake robot system”. In: 2015 IEEE 7th
International Conference on Cybernetics and Intelligent Systems (CIS) and IEEE
Conference on Robotics, Automation and Mechatronics (RAM). IEEE. 2015, pp. 265–
270.

98



[80] M. Jindai, S. Ota, H. Yamauchi, and T. Watanabe. “A small-size handshake robot
system for a generation of handshake approaching motion”. In: 2012 IEEE Inter-
national Conference on Cyber Technology in Automation, Control, and Intelligent
Systems (CYBER). IEEE. 2012.

[81] M. Jindai and T. Watanabe. “A handshake robot system based on a shake-motion
leading model”. In: 2008 IEEE/RSJ International Conference on Intelligent Robots
and Systems. IEEE. 2008.

[82] M. Jindai and T. Watanabe. “A small-size handshake robot system based on a
handshake approaching motion model with a voice greeting”. In: 2010 IEEE/ASME
International Conference on Advanced Intelligent Mechatronics. IEEE. 2010.

[83] M. Jindai and T. Watanabe. “Development of a handshake request motion model
based on analysis of handshake motion between humans”. In: 2011 IEEE/ASME
International Conference on Advanced Intelligent Mechatronics (AIM). IEEE. 2011.

[84] M. Jindai and T. Watanabe. “Development of a handshake robot system based
on a handshake approaching motion model”. In: 2007 IEEE/ASME international
conference on advanced intelligent mechatronics. IEEE. 2007, pp. 1–6.

[85] M. Jindai, T. Watanabe, S. Shibata, and T. Yamamoto. “Development of a hand-
shake robot system for embodied interaction with humans”. In: ROMAN 2006-The
15th IEEE International Symposium on Robot and Human Interactive Communica-
tion. IEEE. 2006.

[86] A. Jonnavittula and D. P. Losey. “Learning to share autonomy across repeated in-
teraction”. In: IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). 2021.

[87] R. P. Joshi, J. P. Tarapure, and T. Shibata. “Electric wheelchair-humanoid robot col-
laboration for clothing assistance of the elderly”. In: IEEE International Conference
on Human System Interaction (HSI). 2020.

[88] M. Jouaiti, L. Caron, and P. Hénaff. “Hebbian plasticity in cpg controllers facilitates
self-synchronization for human-robot handshaking”. In: Frontiers in neurorobotics
(2018).

[89] M. Karl, M. Soelch, J. Bayer, and P. Van der Smagt. “Deep variational bayes filters:
Unsupervised learning of state space models from raw data”. In: International
Conference on Learning Representations (ICLR). 2017.

99



[90] A. Karniel, I. Nisky, G. Avraham, B.-C. Peles, and S. Levy-Tzedek. “A Turing-like
handshake test for motor intelligence”. In: International Conference on Human
Haptic Sensing and Touch Enabled Computer Applications. Springer. 2010, pp. 197–
204.

[91] T. Kasuga and M. Hashimoto. “Human-robot handshaking using neural oscilla-
tors”. In: Proceedings of the 2005 IEEE International Conference on Robotics and
Automation. IEEE. 2005, pp. 3802–3807.

[92] S. G. Khan, G. Herrmann, M. Al Grafi, T. Pipe, and C. Melhuish. “Compliance
control and human–robot interaction: Part 1—Survey”. In: International journal
of humanoid robotics 11.03 (2014), p. 1430001.

[93] P. Khanna, M. Björkman, and C. Smith. “Human inspired grip-release technique
for robot-human handovers”. In: IEEE-RAS International Conference on Humanoid
Robots (Humanoids). 2022.

[94] P. Khanna, M. Björkman, and C. Smith. “A Multimodal Data Set of Human Han-
dovers with Design Implications for Human-Robot Handovers”. In: arXiv preprint
arXiv:2304.02154 (2023).

[95] H. Kim, Y. Ohmura, and Y. Kuniyoshi. “Memory-based gaze prediction in deep
imitation learning for robot manipulation”. In: IEEE International Conference on
Robotics and Automation (ICRA). 2022.

[96] D. P. Kingma and M. Welling. “Auto-encoding variational bayes”. In: arXiv preprint
arXiv:1312.6114 (2013).

[97] E. Knoop, M. Bächer, V. Wall, R. Deimel, O. Brock, and P. Beardsley. “Handshak-
iness: Benchmarking for human-robot hand interactions”. In: 2017 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). IEEE. 2017,
pp. 4982–4989.

[98] D. Koert, S. Trick, M. Ewerton, M. Lutter, and J. Peters. “Incremental learning of
an open-ended collaborative skill library”. In: International Journal of Humanoid
Robotics 17.01 (2020), p. 2050001.

[99] D. Koert, S. Trick, M. Ewerton, M. Lutter, and J. Peters. “Online learning of an open-
ended skill library for collaborative tasks”. In: 2018 IEEE-RAS 18th International
Conference on Humanoid Robots (Humanoids). IEEE. 2018, pp. 1–9.

[100] R. Krishnan, U. Shalit, and D. Sontag. “Structured inference networks for nonlinear
state space models”. In: AAAI Conference on Artificial Intelligence (AAAI). 2017.

100



[101] S. Krishnan, A. Garg, S. Patil, C. Lea, G. Hager, P. Abbeel, and K. Goldberg.
“Transition state clustering: Unsupervised surgical trajectory segmentation for
robot learning”. In: The International Journal of Robotics Research (IJRR) (2017).

[102] O. Kroemer, C. Daniel, G. Neumann, H. Van Hoof, and J. Peters. “Towards learning
hierarchical skills for multi-phase manipulation tasks”. In: IEEE international
conference on robotics and automation (ICRA). IEEE. 2015.

[103] A. Kshirsagar, R. Fortuna, Z. Xie, and G. Hoffman. “Dataset of bimanual human-
to-human object handovers”. In: Data in Brief (2023).

[104] A. Kupferberg, S. Glasauer, M. Huber, M. Rickert, A. Knoll, and T. Brandt. “Biolog-
ical movement increases acceptance of humanoid robots as human partners in
motor interaction”. In: AI & society 26.4 (2011), pp. 339–345.

[105] S. Kuutti, S. Fallah, and R. Bowden. “Adversarial mixture density networks: Learn-
ing to drive safely from collision data”. In: IEEE International Intelligent Trans-
portation Systems Conference (ITSC). 2021.

[106] M. Lagomarsino, M. Lorenzini, M. D. Constable, E. De Momi, C. Becchio, and
A. Ajoudani. “Maximising Coefficiency of Human-Robot Handovers through Rein-
forcement Learning”. In: IEEE Robotics and Automation Letters (RA-L) (2023).

[107] K. Lee, S. Choi, and S. Oh. “Maximum causal tsallis entropy imitation learning”.
In: Advances in Neural Information Processing Systems (NeurIPS) (2018).

[108] J. Li. “The benefit of being physically present: A survey of experimental works com-
paring copresent robots, telepresent robots and virtual agents”. In: International
Journal of Human-Computer Studies 77 (2015), pp. 23–37.

[109] R. Lioutikov, O. Kroemer, G. Maeda, and J. Peters. “Learning manipulation by
sequencing motor primitives with a two-armed robot”. In: Intelligent Autonomous
Systems 13. Springer, 2016, pp. 1601–1611.

[110] R. Lioutikov, G. Maeda, F. Veiga, K. Kersting, and J. Peters. “Inducing probabilistic
context-free grammars for the sequencing of movement primitives”. In: 2018
IEEE International Conference on Robotics and Automation (ICRA). IEEE. 2018,
pp. 5651–5658.

[111] R. Lioutikov, G. Maeda, F. Veiga, K. Kersting, and J. Peters. “Learning attribute
grammars for movement primitive sequencing”. In: The International Journal of
Robotics Research 39.1 (2020), pp. 21–38.

[112] R. Lioutikov, G. Neumann, G. Maeda, and J. Peters. “Learning movement primitive
libraries through probabilistic segmentation”. In: The International Journal of
Robotics Research 36.8 (2017), pp. 879–894.

101



[113] D. Liu, A. Honoré, S. Chatterjee, and L. K. Rasmussen. “Powering Hidden Markov
Model by Neural Network Based Generative Models”. In: European Conference on
Artificial Intelligence (ECAI). IOS Press, 2020.

[114] I. Loshchilov and F. Hutter. “Decoupled Weight Decay Regularization”. In: Inter-
national Conference on Learning Representations (ICLR). 2018.

[115] A. L. Maas, A. Y. Hannun, and A. Y. Ng. “Rectifier nonlinearities improve neural
network acoustic models”. In: in ICMLWorkshop on Deep Learning for Audio, Speech
and Language Processing. 2013.

[116] G. Maeda, M. Ewerton, R. Lioutikov, H. B. Amor, J. Peters, and G. Neumann.
“Learning interaction for collaborative tasks with probabilistic movement prim-
itives”. In: 2014 IEEE-RAS International Conference on Humanoid Robots. IEEE.
2014, pp. 527–534.

[117] G. Maeda, M. Ewerton, T. Osa, B. Busch, and J. Peters. “Active incremental learning
of robot movement primitives”. In: Conference on Robot Learning (CoRL). 2017.

[118] P. Manceron. IKPy. 2022. url: https://doi.org/10.5281/zenodo.
6551158.

[119] K. L. Marsh, M. J. Richardson, and R. C. Schmidt. “Social connection through joint
action and interpersonal coordination”. In: Topics in cognitive science (2009).

[120] G. J. McLachlan and K. E. Basford. Mixture models: Inference and applications to
clustering. M. Dekker New York, 1988.

[121] J. R. Medina, F. Duvallet, M. Karnam, and A. Billard. “A human-inspired con-
troller for fluid human-robot handovers”. In: IEEE-RAS International Conference
on Humanoid Robots (Humanoids). 2016.

[122] A. Melnyk, V. P. Borysenko, and P. Henaff. “Analysis of synchrony of a handshake
between humans”. In: 2014 IEEE/ASME International Conference on Advanced
Intelligent Mechatronics. IEEE. 2014.

[123] A. Melnyk and P. Henaff. “Bio-inspired plastic controller for a robot arm to shake
hand with human”. In: 2016 IEEE 36th International Conference on Electronics and
Nanotechnology (ELNANO). IEEE. 2016.

[124] A. Melnyk and P. Henaff. “Physical analysis of handshaking between humans:
mutual synchronisation and social context”. In: International Journal of Social
Robotics (2019).

102

https://doi.org/10.5281/zenodo.6551158
https://doi.org/10.5281/zenodo.6551158


[125] A. Melnyk, P. Henaff, V. Khomenko, and V. Borysenko. “Sensor network archi-
tecture to measure characteristics of a handshake between humans”. In: 2014
IEEE 34th International Scientific Conference on Electronics and Nanotechnology
(ELNANO). IEEE. 2014.

[126] A. Melnyk, P. Hénaff, and A. Popov. “Analysis of a handshake between humans us-
ing wavelet transforms”. In: 2015 IEEE 35th International Conference on Electronics
and Nanotechnology (ELNANO). IEEE. 2015.

[127] M. Mori et al. “The uncanny valley”. In: Energy (1970).
[128] T. Mu and H. Su. “Boosting Reinforcement Learning and Planning with Demon-

strations: A Survey”. In: arXiv preprint arXiv:2303.13489 (2023).
[129] D. Mura, E. Knoop, M. G. Catalano, G. Grioli, M. Bächer, and A. Bicchi. “On

the role of stiffness and synchronization in human–robot handshaking”. In: The
International Journal of Robotics Research (2020).

[130] M. Nagano, T. Nakamura, T. Nagai, D. Mochihashi, I. Kobayashi, and W. Takano.
“HVGH: unsupervised segmentation for high-dimensional time series using deep
neural compression and statistical generative model”. In: Frontiers in Robotics and
AI (2019).

[131] E. Nagy, T. Farkas, F. Guy, and A. Stafylarakis. “Effects of Handshake Duration on
Other Nonverbal Behavior”. In: Perceptual and Motor Skills 127.1 (2020), pp. 52–
74.

[132] H. Nakanishi, K. Tanaka, and Y. Wada. “Remote handshaking: touch enhances
video-mediated social telepresence”. In: Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems. 2014, pp. 2143–2152.

[133] S. Nasiriany, T. Gao, A. Mandlekar, and Y. Zhu. “Learning and Retrieval from Prior
Data for Skill-based Imitation Learning”. In: Conference on Robot Learning (CoRL).
2023.

[134] C. Nass, K. Isbister, and E.-J. Lee. “Truth is beauty: researching embodied conver-
sational agents”. In: Embodied conversational agents. MIT Press. 2001, pp. 374–
402.

[135] C. Nass and Y. Moon. “Machines and mindlessness: Social responses to computers”.
In: Journal of social issues 56.1 (2000), pp. 81–103.

[136] C. Nass, Y. Moon, B. J. Fogg, B. Reeves, and C. Dryer. “Can computer personalities
be human personalities?” In: Conference companion on Human factors in computing
systems. ACM. 1995.

103



[137] C. Nass, Y. Moon, and N. Green. “Are machines gender neutral? Gender-stereotypic
responses to computers with voices”. In: Journal of applied social psychology (1997).

[138] E. Ng, Z. Liu, and M. Kennedy. “Diffusion co-policy for synergistic human-robot
collaborative tasks”. In: IEEE Robotics and Automation Letters (2023).

[139] S. Niekum, S. Osentoski, G. Konidaris, and A. G. Barto. “Learning and generaliza-
tion of complex tasks from unstructured demonstrations”. In: IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS). 2012.

[140] I. Nisky, G. Avraham, and A. Karniel. “Three alternatives to measure the human-
likeness of a handshake model in a Turing-like test”. In: Presence: Teleoperators
and Virtual Environments 21.2 (2012), pp. 156–182.

[141] B. Ogden and K. Dautenhahn. “Robotic etiquette: Structured interaction in humans
and robots”. In: Procs SIRS 2000, 8th Symp on Intelligent Robotic Systems. University
of Reading. 2000.

[142] O. S. Oguz, W. Rampeltshammer, S. Paillan, and D. Wollherr. “An ontology for
human-human interactions and learning interaction behavior policies”. In: ACM
Transactions on Human-Robot Interaction (THRI) (2019).

[143] P. Oikonomou, A. Dometios, M. Khamassi, and C. S. Tzafestas. “Reproduction
of human demonstrations with a soft-robotic arm based on a library of learned
probabilistic movement primitives”. In: IEEE International Conference on Robotics
and Automation (ICRA). 2022.

[144] P.-H. Orefice, M. Ammi, M. Hafez, and A. Tapus. “Let’s handshake and i’ll know
who you are: Gender and personality discrimination in human-human and human-
robot handshaking interaction”. In: 2016 IEEE-RAS 16th International Conference
on Humanoid Robots (Humanoids). IEEE. 2016.

[145] P.-H. Orefice, M. Ammi, M. Hafez, and A. Tapus. “Pressure Variation Study in
Human-Human and Human-Robot Handshakes: Impact of the Mood”. In: 2018
27th IEEE International Symposium on Robot and Human Interactive Communication
(RO-MAN). IEEE. 2018.

[146] S. Ota, M. Jindai, T. Fukuta, and T. Watanabe. “A handshake response motion
model during active approach to a human”. In: 2014 IEEE/SICE International
Symposium on System Integration. IEEE. 2014.

[147] S. Ota, M. Jindai, T. Sasaki, and Y. Ikemoto. “Handshake response motion model
with approaching of human based on an analysis of human handshake motions”.
In: 2015 7th International Congress on Ultra Modern Telecommunications and
Control Systems and Workshops (ICUMT). IEEE. 2015.

104



[148] K. Ouchi and S. Hashimoto. “Handshake telephone system to communicate with
voice and force”. In: Proceedings 6th IEEE International Workshop on Robot and
Human Communication. RO-MAN’97 SENDAI. IEEE. 1997, pp. 466–471.

[149] A. K. Pandey and R. Gelin. “A mass-produced sociable humanoid robot: Pepper:
The first machine of its kind”. In: IEEE Robotics & Automation Magazine 25.3
(2018), pp. 40–48.

[150] D. Papageorgiou and Z. Doulgeri. “A kinematic controller for human-robot hand-
shaking using internal motion adaptation”. In: 2015 IEEE International Conference
on Robotics and Automation (ICRA). IEEE. 2015.

[151] A. Paraschos, C. Daniel, J. Peters, and G. Neumann. “Using probabilistic movement
primitives in robotics”. In: Autonomous Robots 42.3 (2018), pp. 529–551.

[152] A. Paraschos, C. Daniel, J. R. Peters, and G. Neumann. “Probabilistic movement
primitives”. In: Advances in neural information processing systems. 2013, pp. 2616–
2624.

[153] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, et al. “Pytorch: An imperative style, high-performance
deep learning library”. In: Advances in neural information processing systems. 2019,
pp. 8026–8037.

[154] N. Pedemonte, T. Laliberté, and C. Gosselin. “A haptic bilateral system for the
remote human–human handshake”. In: Journal of Dynamic Systems, Measurement,
and Control (2017).

[155] N. Pedemonte, T. Laliberté, and C. Gosselin. “Design, control, and experimental
validation of a handshaking reactive robotic interface”. In: Journal of Mechanisms
and Robotics (2016).

[156] E. Pignat and S. Calinon. “Learning adaptive dressing assistance from human
demonstration”. In: Robotics and Autonomous Systems (RAS) (2017).

[157] V. Prasad, L. Heitlinger, D. Koert, R. Stock-Homburg, J. Peters, and G. Chalvatzaki.
“Learning multimodal latent dynamics for human-robot interaction”. In: arXiv
preprint arXiv:2311.16380 (2023).

[158] V. Prasad, D. Koert, R. Stock-Homburg, J. Peters, and G. Chalvatzaki. “MILD:
Multimodal Interactive Latent Dynamics for Learning Human-Robot Interaction”.
In: IEEE-RAS International Conference on Humanoid Robots (Humanoids). 2022.

[159] V. Prasad, A. Kshirsagar, D. Koert, R. Stock-Homburg, J. Peters, and G. Chalvatzaki.
“MoVEInt: Mixture of Variational Experts for Learning Human-Robot Interactions
from Demonstrations”. In: IEEE Robotics and Automation Letters (RA-L) (2024).

105



[160] V. Prasad, R. Stock-Homburg, and J. Peters. “Advances in Human-Robot Hand-
shaking”. In: International Conference on Social Robotics. Springer. 2020.

[161] V. Prasad, R. Stock-Homburg, and J. Peters. “Human-robot handshaking: A review”.
In: International Journal of Social Robotics (2021).

[162] V. Prasad, R. Stock-Homburg, and J. Peters. “Learning Human-like Hand Reaching
for Human-Robot Handshaking”. In: IEEE International Conference on Robotics and
Automation (ICRA). 2021.

[163] R. Rahmatizadeh, P. Abolghasemi, A. Behal, and L. Bölöni. “From virtual demon-
stration to real-world manipulation using LSTM and MDN”. In: AAAI Conference
on Artificial Intelligence (AAAI). 2018.

[164] B. Rammstedt and O. P. John. “Measuring personality in one minute or less: A
10-item short version of the Big Five Inventory in English and German”. In: Journal
of research in Personality (2007).

[165] D. Rao, F. Sadeghi, L. Hasenclever, M. Wulfmeier, M. Zambelli, G. Vezzani, D.
Tirumala, Y. Aytar, J. Merel, N. Heess, et al. “Learning transferable motor skills
with hierarchical latent mixture policies”. In: International Conference on Learning
Representations (ICLR). 2021.

[166] D. J. Rezende, S. Mohamed, and D. Wierstra. “Stochastic Backpropagation and Ap-
proximate Inference in Deep Generative Models”. In: 31st International Conference
on Machine Learning (ICML). Vol. 32. 2. PMLR, 2014, pp. 1278–1286.

[167] L. Righetti, J. Buchli, and A. J. Ijspeert. “Dynamic hebbian learning in adaptive
frequency oscillators”. In: Physica D: Nonlinear Phenomena 216.2 (2006), pp. 269–
281.

[168] P. Rosenberger, A. Cosgun, R. Newbury, J. Kwan, V. Ortenzi, P. Corke, and M.
Grafinger. “Object-independent human-to-robot handovers using real time robotic
vision”. In: IEEE Robotics and Automation Letters (RA-L) (2020).

[169] L. Rozo, J. Silverio, S. Calinon, and D. G. Caldwell. “Learning controllers for
reactive and proactive behaviors in human–robot collaboration”. In: Frontiers in
Robotics and AI (2016).

[170] M. Rubagotti, I. Tusseyeva, S. Baltabayeva, D. Summers, and A. Sandygulova.
“Perceived safety in physical human–robot interaction—A survey”. In: Robotics
and Autonomous Systems (2022).

106



[171] T. Sato, M. Hashimoto, and M. Tsukahara. “Synchronization based control using
online design of dynamics and its application to human-robot interaction”. In:
2007 IEEE International Conference on Robotics and Biomimetics (ROBIO). IEEE.
2007, pp. 652–657.

[172] S. Schaal. “Dynamic movement primitives-a framework for motor control in hu-
mans and humanoid robotics”. In: Adaptive motion of animals and machines.
Springer, 2006, pp. 261–280.

[173] D. Schiffrin. “Handwork as ceremony: The case of the handshake”. In: Semiotica
(1974).

[174] O. C. Schrempf and U. D. Hanebeck. “A generic model for estimating user inten-
tions in human-robot cooperation”. In: International Conference on Informatics in
Control, Automation and Robotics. SCITEPRESS. 2005.

[175] N. Sebanz, H. Bekkering, and G. Knoblich. “Joint action: bodies and minds moving
together”. In: Trends in cognitive sciences (2006).

[176] N. Sebanz and G. Knoblich. “Prediction in joint action: What, when, and where”.
In: Topics in cognitive science (2009).

[177] F. Semeraro, A. Griffiths, and A. Cangelosi. “Human–robot collaboration and ma-
chine learning: A systematic review of recent research”. In: Robotics and Computer-
Integrated Manufacturing (2023).

[178] P. Sengadu Suresh, Y. Gui, and P. Doshi. “Dec-AIRL: Decentralized Adversarial IRL
for Human-Robot Teaming”. In: International Conference on Autonomous Agents
and Multiagent Systems (AAMAS). 2023.

[179] A. Shahroudy, J. Liu, T.-T. Ng, and G. Wang. “Ntu rgb+ d: A large scale dataset
for 3d human activity analysis”. In: Proceedings of the IEEE conference on computer
vision and pattern recognition. 2016, pp. 1010–1019.

[180] T. Shankar and A. Gupta. “Learning robot skills with temporal variational infer-
ence”. In: International Conference on Machine Learning (ICML). 2020.

[181] T. Shu, X. Gao, M. S. Ryoo, and S.-C. Zhu. “Learning Social Affordance Grammar
from Videos: Transferring Human Interactions to Human-Robot Interactions”. In:
IEEE International Conference on Robotics and Automation (ICRA). 2017.

[182] T. Shu, M. S. Ryoo, and S.-C. Zhu. “Learning Social Affordance for Human-Robot
Interaction”. In: International Joint Conference on Artificial Intelligence (IJCAI).
2016.

107



[183] T. Shu, M. S. Ryoo, and S.-C. Zhu. “Learning social affordance for human-robot
interaction”. In: arXiv preprint arXiv:1604.03692 (2016).

[184] G. L. Stewart, S. L. Dustin, M. R. Barrick, and T. C. Darnold. “Exploring the
handshake in employment interviews.” In: Journal of Applied Psychology 93.5
(2008), p. 1139.

[185] R. Stock-Homburg. “Negative interaction spirals during service encounters : in-
sights from human-human and human-robot interactions”. PhD thesis. University
of Hagen, 2018.

[186] R. Stock-Homburg, J. Peters, K. Schneider, V. Prasad, and L. Nukovic. “Evaluation
of the handshake turing test for anthropomorphic robots”. In: Companion of the
2020 ACM/IEEE International Conference on Human-Robot Interaction (HRI). 2020.

[187] H. G. Sung. “Gaussian Mixture Regression and Classification”. PhD thesis. RICE
UNIVERSITY, 2004.

[188] D. S. Syrdal, K. Dautenhahn, K. L. Koay, and M. L. Walters. “The negative attitudes
towards robots scale and reactions to robot behaviour in a live human-robot inter-
action study”. In: Adaptive and emergent behaviour and complex systems (2009).

[189] G. Tagne, P. Hénaff, and N. Gregori. “Measurement and analysis of physical
parameters of the handshake between two persons according to simple social
contexts”. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE. 2016, pp. 674–679.

[190] D. Tanneberg, K. Ploeger, E. Rueckert, and J. Peters. “SKID RAW: Skill Discovery
from Raw Trajectories”. In: IEEE Robotics and Automation Letters 6.3 (2021),
pp. 4696–4703.

[191] M. Tavassoli, S. Katyara, M. Pozzi, N. Deshpande, D. G. Caldwell, and D. Prat-
tichizzo. “Learning Skills from Demonstrations: A Trend from Motion Primitives
to Experience Abstraction”. In: IEEE Transactions on Cognitive and Developmental
Systems (2023).

[192] M. Thabet, M. Patacchiola, and A. Cangelosi. “Sample-efficient deep reinforcement
learning with imaginary rollouts for human-robot interaction”. In: IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). 2019.

[193] A. Tormos Llorente, V. Giménez Ábalos, M. Domènech Vila, D. Gnatyshak, S.
Álvarez Napagao, and J. Vázquez Salceda. “Explainable agents adapt to human
behaviour”. In: International Workshop on Citizen-Centric Multi-Agent Systems
(CMAS). 2023.

108



[194] M. Y. Tsalamlal, J.-C. Martin, M. Ammi, A. Tapus, and M.-A. Amorim. “Affective
handshake with a humanoid robot: How do participants perceive and combine
its facial and haptic expressions?” In: 2015 International Conference on Affective
Computing and Intelligent Interaction (ACII). IEEE. 2015.

[195] C. Van Gemeren, R. Poppe, and R. C. Veltkamp. “Spatio-temporal detection of
fine-grained dyadic human interactions”. In: Human Behavior Understanding: 7th
International Workshop, HBU 2016, Amsterdam, The Netherlands, October 16, 2016,
Proceedings 7. Springer. 2016, pp. 116–133.

[196] N. Vanello, D. Bonino, E. Ricciardi, M. Tesconi, E. P. Scilingo, V. Hartwig, A.
Tognetti, G. Zupone, F. Cutolo, G. Giovannetti, P. Pietrini, D. De Rossi, and L.
Landini. “Neural correlates of human-robot handshaking”. In: 19th International
Symposium in Robot and Human Interactive Communication. 2010, pp. 555–561.

[197] F. Vigni, E. Knoop, D. Prattichizzo, and M. Malvezzi. “The Role of Closed-Loop
Hand Control in Handshaking Interactions”. In: IEEE Robotics and Automation
Letters 4.2 (2019), pp. 878–885.

[198] P. Vinayavekhin, M. Tatsubori, D. Kimura, Y. Huang, G. De Magistris, A. Munawar,
and R. Tachibana. “Human-like hand reaching by motion prediction using long
short-term memory”. In: International Conference on Social Robotics. Springer.
2017, pp. 156–166.

[199] P. Virtanen et al. “SciPy 1.0–Fundamental Algorithms for Scientific Computing in
Python”. In: arXiv e-prints, arXiv:1907.10121 (2019), arXiv:1907.10121. arXiv:
1907.10121 [cs.MS].

[200] D. Vogt, S. Stepputtis, S. Grehl, B. Jung, and H. B. Amor. “A system for learning
continuous human-robot interactions from human-human demonstrations”. In:
IEEE International Conference on Robotics and Automation (ICRA). 2017.

[201] B. Wang and M. Hoai. “Predicting body movement and recognizing actions: an
integrated framework for mutual benefits”. In: 2018 13th IEEE International
Conference on Automatic Face & Gesture Recognition (FG 2018). IEEE. 2018.

[202] C. Wang, C. Pérez-D’Arpino, D. Xu, L. Fei-Fei, K. Liu, and S. Savarese. “Co-gail:
Learning diverse strategies for human-robot collaboration”. In: Conference on
Robot Learning. PMLR. 2022.

[203] Z. Wang, E. Giannopoulos, M. Slater, A. Peer, and M. Buss. “Handshake: Real-
istic human-robot interaction in haptic enhanced virtual reality”. In: Presence:
Teleoperators and Virtual Environments (2011).

109

https://arxiv.org/abs/1907.10121


[204] Z. Wang, A. Peer, and M. Buss. “An HMM approach to realistic haptic human-
robot interaction”. In: World Haptics 2009-Third Joint EuroHaptics conference and
Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems.
IEEE. 2009.

[205] Z. Wang, J. Yuan, and M. Buss. “Modelling of human haptic skill: A framework and
preliminary results”. In: IFAC Proceedings Volumes 41.2 (2008), pp. 14761–14766.

[206] T Yamamoto, S Shibata, and M Jindai. “An Application of “KAN-SEI” Transfer
Function to a Robot’s Handing Motion Over to a Human”. In: Proceedings of The
9th World Multi-Conference on Systemics, Cvbernetics and Informatics. 2005.

[207] Y. Yamato, M. Jindai, and T. Watanabe. “Development of a shake-motion leading
model for human-robot handshaking”. In: 2008 SICE Annual Conference. IEEE.
2008.

[208] S. Yohanan and K. E. MacLean. “The role of affective touch in human-robot
interaction: Human intent and expectations in touching the haptic creature”. In:
International Journal of Social Robotics 4.2 (2012), pp. 163–180.

[209] Y. Zeng, Y. Li, P. Xu, and S. S. Ge. “Human-robot handshaking: A hybrid delib-
erate/reactive model”. In: International Conference on Social Robotics. Springer.
2012, pp. 258–267.

[210] H. Zhang, E. Heiden, S. Nikolaidis, J. J. Lim, and G. S. Sukhatme. “Auto-conditioned
recurrent mixture density networks for learning generalizable robot skills”. In:
arXiv preprint arXiv:1810.00146 (2018).

[211] T. Zhang, B. Zhu, L. Lee, and D. Kaber. “Service robot anthropomorphism and
interface design for emotion in human-robot interaction”. In: 2008 IEEE Interna-
tional Conference on Automation Science and Engineering. IEEE. 2008.

[212] X. Zhao, S. Chumkamon, S. Duan, J. Rojas, and J. Pan. “Collaborative human-robot
motion generation using LSTM-RNN”. In: IEEE-RAS International Conference on
Humanoid Robots (Humanoids). 2018.

[213] Y. Zhou, J. Gao, and T. Asfour. “Learning via-point movement primitives with
inter-and extrapolation capabilities”. In: IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). 2019.

[214] Y. Zhou, J. Gao, and T. Asfour. “Movement primitive learning and generalization:
Using mixture density networks”. In: IEEE Robotics & Automation Magazine (2020).

110



Appendices

111



A. Publication List
A.1. Under Review

V. Prasad, L. Heitlinger, D. Koert, R. Stock-Homburg, J. Peters, and G. Chalvatzaki. “Learn-
ing Multimodal Latent Dynamics for Human-Robot Interaction”. In: IEEE Transactions on
Robotics (T-RO) (Under Review)

A.2. Journal Papers

V. Prasad, A. Kshirsagar, D. Koert, R. Stock-Homburg, J. Peters, and G. Chalvatzaki.
“MoVEInt: Mixture of Variational Experts for Learning Human-Robot Interactions from
Demonstrations”. In: IEEE Robotics and Automation Letters (RA-L) (2024)

V. Prasad, R. Stock-Homburg, and J. Peters. “Human-robot handshaking: A review”. In:
International Journal of Social Robotics (2021)

A.3. Conference Papers

M. Gassen, F. Metzler, E. Prescher, V Prasad, L Scherf, F. Kaiser, et al. “I3: Interactive Iter-
ative Improvement for Few-Shot Action Segmentation”. In: IEEE International Conference
on Robot and Human Interactive Communication (RO-MAN). 2023

V. Prasad, D. Koert, R. Stock-Homburg, J. Peters, and G. Chalvatzaki. “MILD: Multimodal
Interactive Latent Dynamics for Learning Human-Robot Interaction”. In: IEEE-RAS Inter-
national Conference on Humanoid Robots (Humanoids). 2022

V. Prasad, R. Stock-Homburg, and J. Peters. “Learning Human-like Hand Reaching for
Human-Robot Handshaking”. In: IEEE International Conference on Robotics and Automation
(ICRA). 2021

112



V. Prasad, R. Stock-Homburg, and J. Peters. “Advances in Human-Robot Handshaking”.
In: International Conference on Social Robotics. Springer. 2020

V. Prasad*, D. Das*, and B. Bhowmick. “Variational clustering: Leveraging variational
autoencoders for image clustering”. In: IEEE International Joint Conference on Neural
Networks (IJCNN). 2020

V. Prasad and B. Bhowmick. “Sfmlearner++: Learning monocular depth & ego-motion
using meaningful geometric constraints”. In: IEEE Winter Conference on Applications of
Computer Vision (WACV). 2019

V. Prasad, D. Das, and B. Bhowmick. “Epipolar geometry based learning of multi-view
depth and ego-motion from monocular sequences”. In: Indian Conference on Computer
Vision, Graphics and Image Processing (ICVGIP). 2018

V. Prasad*, K. Yadav*, R. S. Saurabh, S. Daga, N. Pareekutty, K. M. Krishna, B. Ravindran,
and B. Bhowmick. “Learning to Prevent Monocular SLAM Failure using Reinforcement
Learning”. In: Indian Conference on Computer Vision, Graphics and Image Processing
(ICVGIP). 2018

M. Kaushik, V. Prasad, K. M. Krishna, and B. Ravindran. “Overtaking maneuvers in
simulated highway driving using deep reinforcement learning”. In: IEEE Intelligent Vehicles
Symposium (IV). 2018

A.4. Short Papers/Extended Abstracts

Y. Göksu, A. De Almeida Correia, V. Prasad, A. Kshirsagar, D. Koert, J. Peters, and G. Chal-
vatzaki. “Kinematically Constrained Human-like Bimanual Robot-to-Human Handovers”.
In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction.
2024, pp. 497–501

F. Hahne, V. Prasad, A. Kshirsagar, D. Koert, R. M. Stock-Homburg, J. Peters, and G.
Chalvatzaki. “Transition State Clustering for Interaction Segmentation and Learning”. In:
Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction.
2024, pp. 512–516

R. Stock-Homburg, J. Peters, K. Schneider, V. Prasad, and L. Nukovic. “Evaluation of the

113



handshake turing test for anthropomorphic robots”. In: Companion of the 2020 ACM/IEEE
International Conference on Human-Robot Interaction (HRI). 2020

V. Prasad, R. Jangir, R. Balaraman, and K. M. Krishna. “Data Driven Strategies for Active
Monocular SLAM using Inverse Reinforcement Learning”. In: International Conference on
Autonomous Agents and MultiAgent Systems (AAMAS). 2017

114



B. Curriculum Vitae

Google Scholar GitHub LinkedIn Personal Web

Education
July 2019 – Technische Universität Darmstadt, Germany
Dec. 2023 Ph.D. Computer Science

Aug. 2016 – International Institute of Information Technology, Hyderabad, India
Aug. 2017 M. Sc. Computer Science and Engineering

Dec. 2015 Smart Robotics Lab, Hiroshima University, Higashihiroshima, Japan
Exchange Student under the Sakura Science Program

Aug. 2012 – International Institute of Information Technology, Hyderabad, India
Aug. 2017 B. Tech. (Honours) Computer Science and Engineering

Honours and Awards
Dec. 2018 Best Paper Award

Indian Conference on Computer Vision, Graphics and Image Processing

Aug. 2015 – Dean’s Merit List Award for Academic Excellence
Dec. 2015 (top 15% in the batch)

115

https://scholar.google.de/citations?user=h4DSY8MAAAAJ
https://github.com/souljaboy764/
https://www.linkedin.com/in/vigneshprasad141/
https://sites.google.com/view/vignesh-prasad/


Work Experience

July 2019 – Technische Universität Darmstadt, Germany
Present Research Assistant

Aug. 2017 – Embedded System & Robotics Dept., TCS Research & Innovation,
June 2019 Kolkata, India

Researcher in the Machine Vision Group

International Institute of Information Technology, Hyderabad, India
July 2016 – Research Assistant at the Robotics Research Center
June 2017
July 2016 – Teaching Assistant for Multi-Agent Systems
Dec. 2016
July 2014 – Teaching Assistant for Structured Systems Analysis and Design
Dec. 2014

May 2015 – Google Summer of Code
July 2015 Android Developer for the Organization "BuildmLearn"

Reviewing

Journals

IEEE Transactions on Robotics (T-RO)
IEEE Robotics and Automation Letters (RA-L)
International Journal of Social Robotics, Springer (IJSR)
Journal of Mathematical Imaging and Vision, Springer

Conferences

IEEE International Conference on Robotics and Automation (ICRA)
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
IEEE-RAS International Conference on Humanoid Robots (Humanoids)
Conference on Robot Learning (CoRL)
ACM/IEEE International Conference on Human-Robot Interaction (HRI)

116



IEEE International Conference on Robot and Human Interactive Communication (RO-
MAN)
International Conference on Social Robotics (ICSR)
IEEE Intelligent Vehicles Symposium (IV)
IEEE Conference on Decision and Control (CDC)
Hawaii International Conference on System Sciences (HICSS)

Workshops

ACM ICMI Workshop on Interactive Multimodal Learning

Student Supervision

Master Theses
2023 Pi, R., Bluetooth Low Enery Localization for the Social Robot Zenbo

2023 Xu, R., Improving Markerless Hand Tracking using
Software-Synchronized Visual-Inertial Odometry

2022 Comellas, O. H., Multi-modal Speaker Identification for
Human-Robot Interaction

2022 Frisch, Y., Analysis of Self-supervised Keypoint Detection Methods
for Robot Learning

2022 Yang, Z., Exploring Gripping Behaviours and Haptic Emotions for
Human-Robot Handshaking

2021 Redkin, M., Personalizing Customer Interactions with Service Robots
using Hand Gestures

2021 Kohl, M., Learning Latent Interaction Models using Interaction Primitives

117



Bachelor Theses
2023 Hahne, F., Hierarchical Hidden Markov Models for Interaction

Segmentation and Learning

2023 Backstein, A., InteractionFlows: Learning Shared Latent Dynamics for
Human-Robot Interaction

2023 Gao, H., Understanding Haptic Emotions for Human-Robot Handshaking

2022 Prescher, E., Visual Hierarchical Interaction Recognition and Segmentation

2022 Sterker, L., Social Affordance Segmentation and Learning using Hidden
semi-Markov Models

2021 Gassen, M., Learning a library of Physical Interactions for Social Robots

2021 Scherbring, L., Analyzing the role of Physical Interactions on Service Robot
Acceptance

2021 Ajmera, Y., Combining multiple ProMPs for end-to-end human-robot
handshaking

2020 Baierl, M., Learning Action Representations For Primitives-Based Motion
Generation

Integrated Projects

2023 Göksu, Y., Correia, A. D. A., Kinematically Constrained Humanlike Bimanual
Robot Motion

2023 Gassen, M., Prescher, E., Metzler, F., I3: Interactive Iterative Improvement for
Few-Shot Action Segmentation

118


	Introduction
	Motivation
	Research Questions
	Contributions
	Outline

	Human-Robot Handshaking: A Review
	Prologue
	Insights and Evaluation of Handshakes
	Insights from Human-Human Handshake Interactions
	Handshake Evaluation Methods

	Reaching phase of Handshaking
	Controlling Hand Grasps in Handshaking
	Shaking Motions and Synchronisation between Partners
	Central Pattern Generators (CPGs) and Related Models
	Harmonic Oscillator Systems
	Miscellaneous Shaking Systems

	Human Responses to Social Aspects of Robotic Handshaking
	External Factors in Handshaking
	Influence on the Perceived Image of the Robot
	Distinguishing Ability of Handshakes
	Human-likeness of Robotic Handshakes

	Discussion
	Conclusion

	MILD: Multimodal Interactive Latent Dynamics
	Prologue
	Related Work
	Objectives and Contributions

	Foundations
	Variational Autoencoders
	Hidden Markov Models
	Inverse Kinematics

	Multimodal Interactive Latent Dynamics
	Learning Interaction Dynamics using HMMs as VAE priors
	Conditional Training of HRI Dynamics from HHI
	Inverse Kinematics Adaptation and Stiffness Modulation

	Experiments and Results
	Experimental Setup
	Datasets
	Conditioned Prediction Results
	HRI User Study
	Bimanual Robot-to-Human Handovers

	Conclusion and Future Work
	Limitations
	Future Work


	MoVEInt: Mixture of Variational Experts for Learning Human-Robot Interactions from Demonstrations
	Prologue
	Mixture of Variational Experts for Learning Human-Robot Interactions from Demonstrations
	Mixture Density Networks
	Overview
	GMR-based Interaction Dynamics with MDNs
	Robot Motion Embeddings
	Reactive Motion Generation

	Experiments and Results
	Datasets
	Implementation Details
	Reactive Motion Generation Results
	User study

	Conclusion and Future Work

	Conclusion
	Summary
	Future work

	Publication List
	Under Review
	Journal Papers
	Conference Papers
	Short Papers/Extended Abstracts

	Curriculum Vitae

