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Abstract: The small-system method (SSM) exploits the unique feature of finite-sized open systems,
whose thermodynamic quantities scale with the inverse system size. This scaling enables the
calculation of properties in the thermodynamic limit of macroscopic systems based on computer
simulations of finite-sized systems. We herein extend the SSM to characterize the hydration shell
compressibility of a generic hydrophobic polymer in water. By systematically increasing the
strength of polymer-water repulsion, we find that the excess inverse thermodynamic correction
factor (A1/I%°) and compressibility (Ays) of the first hydration shell change sign from negative to
positive. This occurs with a concurrent decrease in water hydrogen bonding and local tetrahedral
order of the hydration shell water. The crossover lengthscale corresponds to an effective polymer bead
diameter of 0.7 nm and is consistent with previous works on hydration of small and large hydrophobic
solutes. The crossover lengthscale in polymer hydration shell compressibility, herein identified with
the SSM approach, relates to hydrophobic interactions and macromolecular conformational equilibria
in aqueous solution. The SSM approach may further be applied to study thermodynamic properties
of polymer solvation shells in mixed solvents.

Keywords: small system method; thermodynamics of small systems; hydration shell
thermodynamics; finite size correction

1. Introduction

Although the laws of statistical mechanics are customarily used in computer simulations to relate
thermodynamical properties of a broad range of systems to interactions between their constituent
components, there remains a caveat: computer simulations are performed on finite-sized systems
in which the thermodynamic properties may deviate from the corresponding properties in the
thermodynamic limit (TL) of large systems [1,2]. An example is the incorrect asymptotic behavior
of the radial distribution function (RDF), g(r), obtained by computer simulation of a closed system
with a finite number of particles. Routes for calculating thermodynamic properties from integrals
that involve the RDF are sensitive to subtle changes in the asymptotic tail behavior of the RDF and,
therefore, show size dependencies in practical calculations. This issue is well known [3-5] and has
received renewed attention in recent years, in particular, in applications of the Kirkwood-Buff theory
of solutions and the calculation of Kirkwood-Buff integrals (KBI) [4-9].

The small-system method (SSM) by Schnell et al. [10,11] provides another route for computing
thermodynamic properties in the TL from small scale fluctuations. This method uses a small-system
scaling relation, derived based on the thermodynamics of small systems by Hill [12,13], to obtain
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thermodynamic properties corresponding to the TL. For example, the scaling relation for the
thermodynamic correction factor, I', of a single-component small system is given by [10]

1/T(L) = 1/T® + % )
where L is the linear dimension of a small system with volume V = L3, ¢ is a constant that does not
depend on L, and I'® is the thermodynamic correction factor in the TL where V' — oo, (N) — oo,
and the particle number density p = (N)/V is constant. I'* is related to the isothermal compressibility
(xT) according to

1/T% = pkgTxT. )

The inverse thermodynamic correction factor in Equation (1) follows from density fluctuations in
the grand-canonical ensemble
(N?) — (N)?

(N) 7
where N is the number of particles and (-) indicates ensemble averages. In practice, 1/T(L) is
calculated for small open systems of varying linear dimension L embedded in a large particle
reservoir (closed simulation box of volume V;, >> L3). The scaling relation (Equation (1)) is then
observed for small-system sizes that obey Vbl/ 3 > L > & (where  is the correlation length). The SSM
has been successfully applied to pure component systems as well as binary and multicomponent
systems [5,11,14-16]. Very recently, the method has been further employed to study the thermodynamic
properties of confined fluids in nanopores [17,18]. In a spirit similar to the SSM, Jamali et al. [19]
exploited the scaling of the elements of the diffusivity matrix, which depends on I', with system size to
estimate their TL value for ternary molecular and model mixtures.

Recently, Trinh et al. [20,21] have extended the SSM to study the thermodynamic properties of
adsorbed CO, and CHy layers on graphite and activated carbon surfaces. Motivated by these studies,
we herein extend the SSM to investigate the compressibility of polymer hydration shells. The TL
(1/L — 0) of an extended hydration shell will be considered for a fully stretched linear chain with L
defined along the direction of the chain. The hydration shell compressibility of hydrophobic polymers
relates to hydrophobic interactions and pressure dependencies of polymer (coil-to-globule) collapse
equibria in water. We are, in particular, interested in the role of a crossover length scale in hydrophobic
hydration of macromolecules. While hydration thermodynamics of small hydrophobic solutes is
governed by density fluctuations in pure water, hydration of large hydrophobic solutes is governed
by the (de)wetting of their surfaces [22,23]. The crossover length scale, above which a macroscopic
thermodynamic description applies, has been investigated based on computer simulations that studied

1/T(L) = ®)

the hydration thermodynamics of small and large hydrophobic solutes [23-26]. Susceptibilities of
extended hydration shells to external perturbations have been characterized more recently [27,28]
and further demonstrates the role of dewetting of hydrophobic surfaces in the thermodynamics of
biomolecular interactions such as protein-protein and ligand-protein interactions.

We will herein ask if a small-to-large crossover can be observed in the polymer hydration shell
compressibility by systematically increasing the range of the repulsive interaction between beads
of a generic polymer and water. Our results demonstrate that A1/I';” and Ay, i.e., the inverse
thermodynamic correction factor and the compressibility of the first hydration shell in excess to
the corresponding properties of a shell of exactly the same radial and lateral dimensions in pure
water, exhibit a crossover from negative to positive values at intermediate strengths of the polymer
bead-water repulsion. The observed crossover corresponds to an effective polymer bead Lennard-Jones
diameter of approximately 0.7 nm. This crossover length scale in hydrophobic hydration agrees with
earlier work on hydrophobic hydration of spherical solutes in which a relation to the Egelstaff-Widom
lengthscale, i.e., the product of the surface tension and compressibility, of water was demonstrated [29].
In the present work, we observe this small-to-large crossover for all lateral dimensions L of the small
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system (first hydration shell). However, A1/Ts(L) is independent of L for effective polymer bead
sizes below 0.7 nm, while it increases with L for hydrophobic polymers with larger effective bead
sizes. This indicates that only for effective polymer bead sizes larger than 0.7 nm, the overall exposed
hydrophobic polymer surface area impacts the excess thermodynamic properties of hydrophobic
polymer hydration shells and causes a dependence of these properties on the linear polymer dimension
whose limiting values can be determined with the small system method.

The remainder of this paper is structured as follows. In Section 2, we discuss the details of
the simulations. In Section 3, we discuss the methodology used to estimate the compressibility of
individual hydration shells and the results we obtain. We comment on the scope and limitations of the
SSM approach in Section 4 and conclude in Section 5 with our main results and future directions.

2. Methods

In this work, a generic hydrophobic polymer model, developed by Zangi et al.[30], was used to
simulate aqueous polymer systems at various strengths of the polymer-water repulsive interaction. The
polymer chain consisted of 40 uncharged Lennard-Jones (L]) beads (0, = 0.4 nm and €, = 1.0 k] mol 1)
connected via rigid bonds of length of 0.153 nm. The simulation system was composed of the 40-mer
chain, which was periodically replicated in the Z-direction to obtain an infinitely long polymer
chain [31], along with 5000 TIP4P /2005 water [32] molecules. The box size along the Z-direction,
I, was equal to the end-to-end distance Ree of the 40-mer chain, which was fixed at 6.11 nm in all
simulations to ensure a fully stretched polymer conformation. Thus, unlike in the original model [30],
the equilibrium bond angles were kept at 180°. Additionally, position restraints, involving a harmonic
potential with a force constant of 10° k] mol~!'nm~2, were applied on each polymer bead to keep the
chain conformation fixed.

The MD simulations were performed using the Gromacs 2019.3 [33] package. All bonds were
constrained using the LINCS algorithm [34]. For the van der Waals interaction, a cutoff of 1.4 nm
was used without long range dispersion corrections. Long range electrostatic interactions were
calculated using the particle mesh Ewald method [35] with a real space cutoff of 1.4 nm, a grid
space of 0.12 nm, and an interpolation order of 10~*. The pressure and temperature were fixed at
1 bar and 300 K, respectively. The simulation systems were energy minimized using the steepest
descent method until convergence and subsequently equilibrated in the NVT ensemble for 1 ns
using the velocity-rescale thermostat [36]. This was followed by a 1 ns simulation run under NPT
conditions using the Node-Hoover thermostat [37], with 71 =1.0 ps, and the Berendsen barostat [38],
with p = 2.0 ps. In the NPT simulations, the end-to-end distance of the chain (Ree = I;) was kept
constant by applying a semi-isotropic pressure coupling, which allowed box fluctuations only in the X-
and Y-directions. Subsequently, a 2 ns NPT run was performed using the Nose-Hoover thermostat [37]
(tr = 1.0 ps) and the Parinello-Rahman barostat [39] (7p = 2.0 ps). This NPT run was followed by
5 cycles of NPT (using Nose-Hoover thermostat and Parinello-Rahman barostat) and NVT (using
Nose-Hoover thermostat) runs of 1 ns duration each in order to ensure that the pressure in the NVT
simulations fluctuates around 1 bar. The last NVT simulation was extended by 10 ns to generate the
production trajectory, which was used for subsequent analysis. For all simulations, an integration
time-step of 2 fs was used, and the system snapshots were collected every 1 ps.

The polymer-water interaction was modeled using an L] 12-6 potential with the form,

ClZ,pw C6,pw
7 Pw 2 pw

where Cippw (= 4epwa}%%\,) and Cepw (= 4€pWU'SW) are, respectively, the repulsive and attractive
contributions to the potential and « is a scaling factor for the repulsive interaction. The polymer-
water interaction parameters, €pw and opw, were calculated using Lorenz-Bertholet mixing rules.
The repulsive part of the potential was systematically tuned such that at low repulsion (low «) the
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polymer resembles an infinite string of overlapping small hydrophobic beads while at high repulsion
(high «) it resembles an extended hydrophobic surface. The simulations were performed with o =1,
2,4,6,8,10,12,15, and 20. As shown in Figure 1, an increase in « led to an increase in the minimal
distance of approach between the polymer and water, and a corresponding decrease in their attractive
interaction strength. It is, therefore, possible to calculate the effective size of the polymer beads ((ff,ff)
in terms of the interaction parameters and «a:

eff eff
C12,pw . C'6,pw _ ClZ,pw . C6,pw

Upw = a—33 6 1 6
"pw "pw Tpw Tpw )
ff 1/6
U’SW =/ Tpw,
agff = ZUgff, — Oww-

The inset in Figure 1 shows the change in (Tsff as a function of «a. algff increased with increasing «,
approaching a value of 1 nm at « = 40.
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Figure 1. The polymer-water interaction potential, Upyw, at various repulsive interaction strength, a.
The inset shows the relation between the effective size of the polymer beads, olﬁff, and «.

A pure water system, which was used as the reference for the analysis of hydration shell properties,
consisted of 8000 TIP4P /2005 water molecules in a cubic simulation box. This system was equilibrated
following the same protocol that we used for the aqueous polymer system, using repeated NPT-NVT
equilibration cycles. This was done to ensure that the density of the system in the NPT ensemble
equilibrates and the pressure in the NVT production trajectory fluctuates around 1 bar and well
represents the ambient conditions. Unless and otherwise specified, all reference analyses for hydration
shell properties were performed using this simulation.

As we are interested in the properties of the first few polymer hydration shells, the small systems
were chosen to be cylindrical shells around the linearly extended polymer chain. This way, only the
direct effect of polymer-water interaction is included in the analysis while avoiding any effect of
polymer conformational fluctuations. There have been previous studies where small systems of various
shapes were used to sample thermodynamic properties, which were found to scale identically with the
surface to volume ratio of the small systems [15]. For all these shapes (sphere, cube, and polygons),
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the size of the small system was measured in terms of the diameter or edge length. On the other hand,
a cylindrical shape of the small system involves two length parameters, the radius and the height.
Therefore, to test our current approach involving cylindrical observation volumes, we first used it
to estimate the bulk isothermal compressibility of SPC/E water [40]. The details of the analyses on
bulk SPC/E water and aqueous polymer systems are discussed in the next section along with the
corresponding results.

In addition to A1/T'$° and Ay of the polymer hydration shells, changes in the structural order of
the water molecules in the first hydration shell of the hydrophobic polymer were quantified in terms of
the tetrahedral order parameter giet. For a central oxygen atom i surrounded by the nearest neighbor
oxygen atoms {j, k}, gt of the central oxygen was calculated as [41,42]:

3 3 4
Jreti = 1 — 3 2 Z (cos Pijk + 1/3)2, (6)
j=1k=j+1

where ;. is the angle between the bond vectors r;; and rj. As the water molecules on the outer surface
of the first hydration shell can have hydrogen bond neighbors in the second shell, those instances were
included in the calculations to compute get for the first shell as a function of «. For comparison, gyt for
shells in pure water were also computed using the polymer hydration shell widths corresponding to
various « values.

In all cases, the 10 ns long production trajectory was divided into four windows of 2.5 ns each and
the thermodynamic properties were calculated over the windows. The resulting data was averaged to
get the mean values of the quantities along with the corresponding standard error.

3. Results and Discussion

3.1. Isothermal Compressibility of SPC/E Water: Sampling Fluctuations in Cylindrical Observation Volumes

A system of 8000 SPC/E water molecules was simulated (following the protocol discussed above)
at 300 K and 360 K to benchmark the small box method using cylindrical shapes of the subvolumes.
A point close to the center of the simulation box (with box size ~ 6.23 nm) was identified through
which the reference axis was fixed along the Z-direction. Around this reference axis, particle number
fluctuations were sampled in cylindrical observation volumes using the oxygen centers of the water
molecules (Figure 2a). The radius of the cylinder (r.) was varied between 0.25 nm to 2.5 nm. For a
fixed value of r., the height of the cylinder (L) was varied in steps of 0.1 nm, starting from L = 0.1 nm
(the smallest subvolume). Here, r. and L together represented a small subvolume. For a given r,
the observation cylinder was translated along the fixed axis, also in steps of 0.1 nm, for a given value
of L and fluctuations were sampled. This led to improved statistics, especially for the values of L,
which are less than half the box size. For a given r., 1/T(L,r.) was obtained from the observed
particle number fluctuations (Equation (3)). In the resulting data for 1/T(L,.) vs. 1/L (Figure 3a),
a linear regime was identified between L=1 nm and 2 nm across all values of r.. This linear regime
was extrapolated to 1/L — 0, following Equation (1), to obtain 1/T (), which characterizes particle
number fluctuations in an infinitely long cylinder of radius r. in bulk water. It should be noted that
the simulation box behaves like a particle bath for the open small subvolumes. As the size of the
subvolume becomes comparable to that of the simulation box, this assumption breaks down. Thus,
data for large L values suffer from finite size effects and insufficient statistics. On the other hand,
for very small values of L corresponding to a few particle diameters, 1/T(L, r.) deviates from the
scaling relation (Equation (1)) as well. Therefore, the data for intermediate values of L were considered
for estimating the limiting bulk properties.



Nanomaterials 2020, 10, 1460 6 of 14

(a)

Figure 2. Observation volumes used in this work to estimate thermodynamic properties. (a) The
isothermal compressibility of SPC/E water is estimated using cylindrical observation volumes, where
the TL corresponds to both 1/L — 0 and 1/r. — 0. (b) The thermodynamical quantities pertaining to
polymer hydration shells are estimated using concentric cylinders as observation volume. Here, the TL
corresponds to 1/L — 0.
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Figure 3. (a) 1/T (L, r¢) profiles for the cylindrical shells with radius r. in SPC/E water at T = 300 K,
as a function of 1/L. The lines are linear fits to the data in the range L =1 - 2 nm. (b) 1/T(r.) for the
cylindrical shells as a function of 1/7. at T = 300 K, 360 K. The lines are linear fits to the data in the
range 1. < 1.5 nm.

The data for 1/T(r.) vs. 1/r. presented a linear regime for r. < 1.5 nm (Figure 3b). This linear
regime was extrapolated to obtain 1/I'°, which is the thermodynamic limiting value of 1/T
corresponding to both 1/L and 1/r. — 0. The values of 1/T (at 300 K and 360 K) were then
used to estimate the bulk isothermal compressibility of SPC/E water, using Equation (2). We estimated
the values of xt for SPC/E water to be 43.3x1070 bar~! and 56.0x107° bar~! at 300 K and 360 K,
respectively. These values are comparable to those reported by Heidari et al. [43], who used the
finite size correction approach to estimate the compressibility of SPC/E water in the TL using the
scaling of particle number fluctuations with system size in cubical subvolumes. The values are also
in agreement with those estimated using volume fluctuation methods [44—46]: 46.1 x 10~® bar~! and
57.7x107% bar~! at 298.15 K and 360 K, respectively. The agreement confirms the validity of the
current implementation of the SSM. In principle, one can also calculate the compressibility for each
small subvolume x (L, r.) and use the same 1/L scaling to extrapolate it to the compressibility of the
infinite cylindrical shell x(r.), which in the limit 1/r. — 0 will give the bulk isothermal compressibility
Xt [47]. Thus, with the height of the shell L — oo, one can assign 1/T'() and x(7c) to be the properties
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of the particular shell with radius .. This observation asserts the rationale behind choosing cylindrical
observation shells to study the thermodynamic properties of the hydration shells of a polymer.

3.2. Thermodynamic Properties of Polymer Hydration Shells

Thermodynamic properties for the individual hydration shells of the hydrophobic polymer
were estimated from the fluctuations in number of water molecules therein. Unlike the cylindrical
observation volumes in the SPC/E water case, the subvolumes were now concentric cylindrical shells
around the linearly stretched polymer chain (Figure 2b). The boundaries of these shells were identified
based on the local water number density around the polymer. At any value of «, this density was
characterized by the proximal radial distribution function (pRDF), g, (7). Unlike the radial distribution
function, g(r), where particles are identified and binned in spherical shells, the particles in this case
were binned in cylindrical shells around the polymer.

Figure 4 shows the polymer-water pRDFs for different values of the repulsive interaction strength,
«. As expected, the curves shifted to larger values of r while the peak heights decreased, indicating
that polymer-water density correlations decreased with increasing values of a. Correspondingly,
the shell widths also increased with increasing a (Figure S1 in the Supplementary). Similar to the
dependence of the effective polymer bead size, Ugff (inset of Figure 1), on «, the pRDFs changed
significantly upon increasing « between « = 1 and « = 8, while the changes were smaller for larger
values of a. The thermodynamic properties of interest were sampled in the first two hydration
shells. The inner boundary of the first hydration shell was identified as the distance r; at which
p Jo! 2mrl,drgp(r) > 1. The subsequent minima in the gp(r) curves were identified as the boundaries
of the respective hydration shells.

| | | 1
0.2 0.4 0.6 0.8 1.0 1.2 1.4
r (nm)

Figure 4. Proximal polymer-water RDFs for various strengths of repulsive interaction parameter «.

The particle number fluctuations were sampled and fitted to calculate the thermodynamic limiting
quantities. Only the oxygen centers were used in the calculation. As in the case of SPC/E water, L was
sampled in steps of 0.1 nm, starting from L = 0.1 nm, and the observation volumes were translated
along the polymer axis (also in steps of 0.1 nm) for better statistics. Figure 5 shows the data for 1/T’s(L)
as a function of 1/L for the first hydration shell of the polymer, over the range of « used in this work.
The profiles were found to be linear over the intermediate L range, while the curves shifted upward
with increasing & indicating enhanced density fluctuations with increasing polymer-water repulsion.
The data over the range of L between 1.2 nm and 2.5 nm were fitted to a straight line to estimate
1/T'gy’, which was subsequently used to estimate xs. The values of 1/I's” and x; estimated this way are
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properties of the hydration shells that are essentially infinite along the polymer axis, but finite in the
other two dimensions and thus, do not pertain to a bulk system.
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Figure 5. 1/Ts(L) profiles for the first polymer hydration shell for different values of the repulsive
interaction parameter «. The lines are linear fits to the data in the range L = 1.2-2.5 nm.

To evaluate the net effect of the polymer, the same properties, here denoted as 1/T¢"™ and
Xs, were also evaluated in shells of exactly the same widths in a pure TIP4P /2005 water system
where the polymer was absent. The inverse thermodynamic correction factor, 1/T° +, of these shells
depended on « through the shell widths, which for the first hydration shell, increased with increasing
«a (Figure S1 in the Supplementary). Both 1/T¢** and x¢ were found to decrease with increasing «
(Figures S2a and S3a in the Supplementary). It should be noted that unlike for bulk water where the
TL corresponds to both 1/L and 1/7. — 0, the hydration shell specific thermodynamic quantities were
estimated in the limit to 1/L — 0 alone, and therefore the values of the corresponding thermodynamic
quantities are expected to be different. The respective thermodynamic quantities for polymer hydration
shells and the corresponding shells in pure water were subtracted to estimate the sole effect of the
polymer on the hydration shell thermodynamics for varying «,

AL/TE =1/TL —1/T%,

. )
AXs = Xs — Xs-

Figure 6 presents A1/I'° for the first two hydration shells of the polymer. A1/T'Y° was negative
for a=1 and increased with increasing a. A similar increase in density fluctuations was observed
in hydration shells of molecular sized hydrophobic solutes [24]. In the first hydration shell, A1/T¢’
was negative for # < 8, indicating that particle number fluctuations in the first hydration shell were
lower than those in shells in pure water. Between a = 8 and 12, the difference between the particle
number fluctuations in the first hydration shell and the corresponding shell in pure water almost
vanished. For a > 8, the particle number fluctuations in the first hydration shell of the polymer were
larger than those in the corresponding shell in pure water. The inset in Figure 6 presents A1/I'g as
a function of the effective size of the polymer beads, O‘Sff . The observed dependence indicated that
beyond Ugff = 0.7 nm, particle number fluctuations in the first hydration shell of the polymer suddenly
increased. This observation is similar to the lengthscale crossover observed in the solvation of a
hydrophobic cavity in water, when the radius of the cavity is close to 1 nm [23]. The crossover occurs
as a result of the disruption of the hydrogen-bonded network of water near the surface of sufficiently
large cavities. While water can readily accommodate small solutes without significantly perturbing its
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hydrogen-bonded network, this is no longer possible near extended surfaces of large hydrophobic
solutes. As opposed to a single spherical solute, the hydrophobic polymer in our study resembled a
string of small beads at low a-values, while resembling an extended hydrophobic surface when Ugff
approached 0.7 nm (keeping an equilibrium bond length of 0.153 nm).

As opposed to the first hydration shell, the density fluctuations in the second hydration shell
were found to be smaller than those in the corresponding pure water shells, even at « = 20 (Figure 6b).
An increasing trend in A1/Tg° vs. «, similar to the trend in the first hydration shell, was observed, but
with an order of magnitude difference between the two. As water molecules in the second hydration
shell are not in direct contact with the polymer surface, the effect of increased polymer-water repulsion
is much lower in the second hydration shell as compared to the first hydration shell. This was expected,
as the fluctuations were observed to be maximum at the vicinity of the hydrophobic interface [48].
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Figure 6. A1/T¢° profiles for the first (a) and second (b) polymer hydration shell for various strengths
« of the repulsive interaction. The inset in (a) shows the variation of A1/T¢> as a function of Usff .In (a),
the data points are grouped based on their variation with « (see text). The error bars are calculated
over four distinct windows in the production trajectory. The lines are guide to the eyes.

While we considered the hydration shell to be infinitely long (in the limit 1/L — 0), realistic
polymer hydration shells are strictly finite. In such a case, it is worthwhile to investigate how strongly
A1/Ts(L) of a finite hydration shell deviates from that in the macroscopic limit (A1/T5°). We expect
that this difference is small for small a-values which correspond to stable hydration shells around
small polymer beads with an appreciable bead-water van der Waals attraction. We here consider the
variation of 1/Ts(L),1/T¢(L), and A1/T(L) for finite lengths of the first hydration shell corresponding
to L =0.4,0.8,2.0,and 2.5 nm. While both 1/Ts(L) and 1/T¢ (L) were found to depend on the hydration
shell height (Figure S4 in the Supplementary), A1/T’s(L) was found to be independent of L in the
region & < 8, where it was negative (Figure 7). Interestingly, a dependence on the hydration shell
dimension was observed for the systems with « > 8, corresponding to stronger hydrophobic polymers
with larger effective bead sizes and weaker bead-water van der Waals attractions. For these systems,
A1/Ts(L) increased with L (up to L = 2.0 nm), indicating that an extended hydrophobic surface created
by connected polymer beads caused enhanced water density fluctuations in the first hydration shell.

Figure 8 shows the data for Ax; vs. « for the first and second hydration shell. The compressibility
of both hydration shells increased with increasing a. As in the case of A1/I'g’, the change in Ay for
the second hydration shell was rather small. For the first polymer hydration shell, the compressibility
was smaller than that for the corresponding shells in pure water until « = 8. Between a = 8 and 12,
the hydration shell compressibility was almost identical to the compressibility of the corresponding
shells in pure water. For larger a-values there was a noticeable increase in the hydration shell
compressibility. This is similar to the case of hydration water of hydrophobic solutes [24], where the
local compressibility was found to increase for sufficiently large solutes. Figure 9 shows the tetrahedral
order parameter gyt of the first hydration shell of the polymer corresponding to various values of «
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and those calculated for shells in pure water. For shells in pure water, gt remained almost constant
around 0.66, which corresponds to the optimal hydrogen bonding capacity for TIP4P /2005 water [49].
In contrast, the tetrahedral order in the polymer hydration shell decreased by 15% upon increasing «
up to a=8, at which point Ay became positive. The number of hydrogen bonds per water molecule in
the first hydration shell showed a similar dependence (Figure S5).

0.10
0.05
= 0.00-
SN
— —0.05
1
~0.107]
—0.157
| | | | |
0 4 8 12 16 20

Figure 7. A1/Ts(L)(=1/Ts(L) —1/T2(L)) profiles for finite-sized first hydration shells with heights
L=04,08,2.0,and 2.5 nm as a function of the strength « of the repulsive interaction. The data points
are grouped based on their variation with « (as in Figure 6). The error bars are calculated over four
distinct windows in the production trajectory. The lines are guide to the eyes.
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Figure 8. Ax; profiles for the first (a) and second (b) polymer hydration shell for various values of
the repulsive interaction parameter a. The inset in (a) shows Ayxs as a function of algff. In (a), the data
points are grouped based on their variation with « (see text). The error bars are calculated over four
distinct windows in the production trajectory. The lines are guide to the eyes.

The increase in density fluctuations, decrease in tetrahedral order, and increase in compressibility
in the first hydration shell of the hydrophobic polymer are in line with the trends expected in the case
of solvation of hydrophobic solutes in water [23,24,29,50].
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Figure 9. (a) Tetrahedral order parameter gt for the first polymer hydration shell and
the corresponding shell in pure water for various strengths a of the repulsive interaction.
(b) Aget = gret(polymer shell) — giet(water shell) as a function of Uf,’ff. The error bars are calculated
over four distinct windows in the production trajectory. The lines are guide to the eyes.

4. Scope and Limitations

The polymer analyzed in this work is a generic homo-polymer in a restrained, stretched
conformation, where the monomeric units are represented by simple beads without any side chains.
It is essentially the simplest possible polymer system that could be analyzed in the current framework.
Applying the current approach to study chemically realistic polymer systems requires that several
technical challenges are addressed. Hill’s formalism [12,13] is framed for a large ensemble of equivalent,
independent, and distinguishable small systems. In the present context, this implies that the small
system must be at least the size of a monomeric unit and, therefore, L has to be chosen as an integer
multiple of the monomer length. Therefore, to effectively sample the density fluctuations, very long
chemically realistic polymer chains (much longer than the one considered here) need to be considered
in the simulations. For the generic polymer used in this work, 1/T is insensitive to whether density
fluctuations within the small system L are sampled by shifting it along the polymer backbone in steps
of 0.1 nm or in steps that correspond to a monomeric unit, essentially due to its linearly stretched
configuration. The same will not hold for flexible polymers as the monomeric units themselves
will differ in terms of the volume they occupy and, therefore, static observation volumes can no
longer be used to sample the fluctuations. Therefore, additional methodological progress requires
implementation of dynamical observation volumes.

In addition to the application of the SSM to a generic polymer model in pure water, mixed solvents
may be considered to be well. In this context, the SSM can be used to provide information on excess
chemical potentials and partial molar enthalpies and entropies of solvent components in the solvation
shell of the polymer based on analyses of energy and particle number fluctuations and the calculation
of KBIs. In particular, in systems where cosolvents and small organic molecules preferentially bind to
the polymer, a full characterization of solvation shell properties is needed to address open questions
related to the corresponding changes in aqueous polymer solubility [51-53]. The SSM provides a route
to calculate these properties.

5. Conclusions

We have extended the SSM to study the hydration shell compressibility of a generic hydrophobic
polymer in water. We identified the hydration shells based on the proximal distribution of water
molecules around a linearly extended polymer chain. Water density fluctuations were sampled in
small concentric cylindrical shells around the chain, which in the limit of the shell height L — oo
resulted in thermodynamic quantities that could be assigned to the hydration shells. We systematically
varied the range of the polymer-water repulsion and observed a crossover behavior in the excess
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inverse thermodynamic correction factor (A1/I'S°) and the excess compressibility (Axs) of the
hydration shells, defined relative to the properties of the same shells in pure water (without polymer).
The negative-to-positive crossover observed in A1/I'$® and in Axs happened at an intermediate range
of the polymer-water repulsion, where the effective polymer bead diameter was around 0.7 nm. We also
observed a complementary trend in the tetrahedral order parameter of the shell, which measured
the deviation in the hydrogen bonding coordination of water molecules from the ideal tetrahedrally
hydrogen-bonded structure.

The observations made in this work were in line with those reported for solvation of spherical
hydrophobic solutes in water [23,24,50]. It is well established that small hydrophobic cavities/
solutes are solvated by restructuring of water hydrogen bonds around them, while solvation of
large hydrophobic cavities occurs via breakage of water hydrogen bonds near the solute surface.
The signatures of these two distinct solvation mechanisms were observed in the present work in the
excess polymer hydration shell compressibility.
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