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Abstract

Cross-docking, a relatively new warehouse strategy that has its roots in the industry, can improve

the efficiency of a company’s logistics and distribution processes. Specifically, it can minimize the

costly storage and order picking function of traditional warehouses by efficiently coordinating

(i.e., synchronizing) incoming freight flows and outgoing freight flows. Companies from various

industries such as the retailing industry, the less-than-truckload logistics service industry, the

express and small parcel delivery industry, and the automotive industry operate cross-docking

terminals in their transportation networks and benefit from improved service levels, reduced

transportation costs, reduced inventory holding costs, reduced handling costs, etc.

Besides its practical relevance, cross-docking has also received a lot of academic attention in the

last 30 years. Many academic studies have addressed a wide range of strategic, tactical, and

operational cross-docking decision problems. Most studies, however, have neglected resource

planning aspects and hence failed to address two major concerns of cross-docking practitioners:

• Determining the number of resources needed;

• Scheduling internal resources in an efficient way.

This thesis sets out to bridge this theory-practice gap in the cross-docking domain by proposing

new models that combine two interdependent operational problems faced by cross-docking

practitioners, namely the scheduling of internal resources and the scheduling of trucks.

Three novel problems are introduced in this thesis. First, the resource and truck scheduling

problem, denoted as TSFD-RC-F, is proposed. It allows scheduling both resources and trucks

when the resource requirements of trucks are given and known in advance. The TSFD-RC-F

aims to determine a truck schedule that can be executed with a minimum number of resources.

Then, the multi-mode resource and truck scheduling problem (TSFD-RC-V) is proposed. It is a

model extension of the TSFD-RC-F and offers the additional flexibility of adapting the number

of resources for processing trucks. While deploying more operators accelerates truck processing,
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deploying fewer operators prolongs the processing time. The model aims to determine how

many resources should be deployed for truck processing and at what time trucks should be

serviced in order to minimize the maximum number of required resources. Lastly, the shift

and truck scheduling problem (ISTSFD) is proposed. It considers different operator types (e.g.,

temporary and regular workers), shift patterns, and work breaks. The ISTSFD seeks to find a

truck schedule and employee timetable with minimum labor costs. Two variants of the ISTSFD

are presented: a single-mode problem (ISTSFD-F) and a multi-mode problem (ISTSFD-V).

As the proposed models’ complexity statuses make it challenging to solve large-sized instances

with a default solver, tailored column generation-based solution procedures for all three problems

are developed.

Extensive computational experiments are conducted in order to assess the computational perfor-

mance of both the mixed-integer programs and the proposed solution procedures. In addition,

managerial insights are derived by benchmarking the proposed models against frequently used

truck scheduling models. It is shown that the proposed discrete-time MIP formulations clearly

outperform the proposed continuous-time MIP formulations in terms of both solution quality

and computational time. Moreover, the solution time can be reduced by using the proposed

preprocessing parameters for calculating the number of delayed freight units and compelling the

service level. While a default solver can solve the discrete-time MIPs for small and medium-sized

instances in a reasonable time, it often fails to provide good solutions for very large problem

instances with a fine time granularity. The proposed heuristics solution procedures, on the other

hand, can provide high-quality solutions for very large problem instances in a short time and

clearly outperform commercial solvers. In addition, the following key take-home managerial

insights could be derived:

• By using the internal resource requirements instead of the frequently used makespan

or processing time as the primary performance metrics, the cross-docking platform’s

operational efficiency can be significantly increased.

• By integrating the decision of how many resources should be deployed for truck processing

(i.e., considering multi-mode processing), further operational efficiency gains can be

realized.

• The defined service level has a significant impact on the operator demand. Lowering the

required service level can be a reasonable means to improve a cross-docking facility’s

operational efficiency further.

• The work break patterns have a significant impact on the operator requirements. Too low
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a number of work break patterns may result in a strong surge in operator demand.
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Zusammenfassung

Cross-Docking ist eine besondere Form des Warenumschlags. Im Gegensatz zur traditionellen

Lagerhaltung zielt das Cross-Docking auf einen bestandslosen Warenumschlag ab. Die beim

Cross-Docking angestrebte zeitliche und mengenmąßige Koordination von ankommenden und

ausgehenden Warenlieferung ermöglicht unter anderem eine Reduzierung der Lagerhaltungs-

und Kommissionierkosten. Zudem können im Idealfall kürzere Durchlaufzeiten und eine besse-

re Auslastung von Transportkapazitąten realisiert werden. Cross-Docking-Zentren haben sich

in der Praxis vielfach bewąhrt. Sie sind z. B. elementarer Bestandteil in Distributionsnetz-

werken von Groß- und Einzelhandelsunternehmen, Kurier-, Express-, und Paketdienstleistern,

Automobilunternehmen sowie Transportdienstleistern.

Cross-Docking und die damit einhergehenden strategischen, taktischen und operativen Pla-

nungsprobleme wurden auch in einer Vielzahl von wissenschaftlichen Beitrągen untersucht. Bei

der Analyse der Literatur ląsst sich überwiegend jedoch die Vernachląssigung von Ressourcen-

und Personalbedarfen zur Durchführung der internen Transport- und Kommissionierprozesse

konstatieren. Die wissenschaftliche Literatur hat es bis heute weitestgehend versąumt, Entschei-

dungstrąger bei der Ermittlung von Personal- und Ressourcenbedarfen in Cross-Docking-Zentren

zu unterstützen.

Die vorliegende Arbeit leistet einen Beitrag zur Schließung dieser Forschungslücke, indem neue

operative Planungsansątze entwickelt werden, die explizit die Personal- und Ressourcenbedarfe

berücksichtigen.

Hierfür wird zunąchst ein Basismodell zur integrierten Ressourcen- und Torbelegungsplanung

(TSFD-RC-F) in Cross-Docking-Zentren entwickelt. Das TSFD-RC-F zielt auf die Ermittlung

eines Torbelegungsplans ab, der mit einer minimalen Anzahl an Ressourcen ausgeführt werden

kann. Dabei wird die Annahme getroffen, dass der Ressourcenbedarf zur Bearbeitung eines jeden

LKWs bekannt ist. In der anschließend entwickelten Modellerweiterung (TSFD-RC-V) wird

diese Annahme des Basismodells verworfen. Das TSFD-RC-V trifft hingegen die Annahme, dass
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die Ressourcenanzahl zur Bearbeitung von LKWs durch den Entscheidungstrąger variiert werden

kann. Das TSFD-RC-V ermittelt demnach für jeden LKW den optimalen Ressourceneinsatz.

Des Weiteren wird ein mathematisches Modell zur integrierten Schicht- und Torbelegungspla-

nung (ISTSFD) entwickelt. Im ISTSFD können verschiedene Personalarten und Schichtmuster

berücksichtigt werden.

Die im Rahmen dieser Arbeit entwickelten gemischt-ganzzahligen Optimierungsmodelle sind

nachweislich NP-schwer. Es kann deshalb nicht garantiert werden, dass große Probleminstanzen

mit Hilfe von Standardsolvern (z. B. CPLEX oder Gurobi) gelöst werden können. Zur Lösung

großer Probleminstanzen werden deshalb Spaltengenerierungsverfahren entwickelt.

Die Eignung der vorgestellten Modelle und Lösungsverfahren wird durch umfangreiche Tests

bewertet. Es wird beispielsweise gezeigt, dass die zeitdiskreten Modellformulierungen den

zeitkontinuierlichen Modellformulierungen im Hinblick auf die Lösungszeit und Lösungsqualitąt

überlegen sind. Mit Hilfe von Standardsolvern können kleine und mittelgroße Probleminstan-

zen effizient gelöst werden. Bei der Lösung großer Probleminstanzen stoßen kommerzielle

Standardsolver allerdings oftmals an ihre Grenzen. Die entwickelten heuristischen Lösungs-

verfahren sind hingegen in der Lage sehr gute – oftmals sogar optimale – Lösungen für große

Probleminstanzen zu ermitteln. Des Weiteren werden durch die numerischen Tests eine Vielzahl

von betriebswirtschaftlichen Erkenntnissen gewonnen, z. B.:

• Verglichen mit herkömmlichen Modellen zur Torbelegungsplanung generiert das Basismo-

dell zur integrierten Ressourcen- und Torbelegungsplanung (TSFD-RC-F) Arbeitspląne

die sich durch einen deutlich geringeren Personalbedarf auszeichnen.

• Der im TSFD-RC-V integrierte zusątzliche Freiheitsgrad zur Auswahl des optimalen Res-

sourceneinsatzes für jeden LKW ermöglicht weitere Effizienzsteigerungen von ca. 15%.

• Der Personalbedarf wird maßgeblich durch das vorgegebene Lieferserviceniveau beein-

flusst. Bereits geringfügige Senkungen des Lieferserviceniveaus können zu signifikanten

Personaleinsparungen führen.

• Die Pausenregelungen haben einen erheblichen Einfluss auf den untertągigen Personal-

bedarf. Gestaffelte Mittagspausen sind gemeinsamen Mittagspausen vorzuziehen, da

letztgenannte mit einem erhöhten Mitarbeiterbedarf einhergehen können.
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Abstract

越库作业是一种源于产业、较为新颖的仓库策略，可以提高公司物流和配送流程的效率。具

体地说，它可以通过有效地协调(即同步)进站货物流和出站货物流来最大限度地减少传统仓

库高昂的储存费率，并提高仓库的订单分拣能力。来自各种行业如零售业、零担货运物流服

务行业,快递和小包裹递送行业和汽车行业的公司，在它们的运输体系中运行着越库终端，并

且受益于改善的服务水平,减少运输成本,减少库存持有成本,降低处理成本等。

在过去的30年里，越库除了具有现实意义外，也受到了学术界的广泛关注。许多学术研究已

经解决了广泛的战略性、策略性和运营性的越库决策问题。然而，大多数研究都忽视了资源

规划方面的问题，因此未能解决越库实践者的两个主要关注点:

• 确定所需资源的数量;

• 高效调度内部资源。

本文提出了一个新的模型，将越库实践者所面临的两个相互依赖的操作问题，即内部资源的

调度和车辆的调度结合起来，以弥合越库领域的理论与实践的鸿沟。

本文介绍了三个新问题。首先，提出资源与车辆调度问题，记为TSFD-RC-F。在卡车资源要

求已知时，它允许同时调度资源和卡车。TSFD-RC-F的目标是确定一个用最少资源执行的卡

车调度。然后，提出了多模式资源与货车调度问题(TSFD-RC-V)。它是TSFD-RC-F的一个模型

扩展，并提供了调节处理卡车的资源数量的额外灵活性。配置更多的操作者可以加快卡车处

理速度，配置更少的操作者会延长处理时间。该模型的目的是确定应该为卡车处理配置多少

资源，以及应该在什么时间对卡车进行服务，以最小化所需资源的最大数量。最后，提出了

轮班和车辆调度问题(ISTSFD)。它考虑了不同的操作者类型(例如，临时和正式工人)、轮班

模式和工作休息时间。ISTSFD寻求找到最低的劳动力成本的卡车时间表和员工时间表。它提

出了ISTSFD的两种变体，即单模问题(ISTSFD- F)和多模问题(ISTSFD- V)。

由于所提出模型的复杂性状态使得使用默认求解器难以求解大型实例，因此针对这三个问题

开发了基于列生成的定制求解过程。
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此外，为了评估混合整数程序和所提出的解决程序的计算性能，进行了大量的计算实验。管

理洞见是通过对所提出的模型与经常使用的卡车调度模型进行基准测试而得到的。

结果表明，在求解质量和计算时间上，所提出的离散MIP公式明显优于连续MIP公式。此外，

利用所提出的预处理参数计算延迟货运单元数和强制服务水平可以缩短求解时间。虽然默认

求解器可以在合理的时间内解决小型和中型实例的离散时间MIPs，但它通常无法为具有良好

时间粒度的大型问题实例提供良好的解决方案。另一方面，提出的启发式解决程序可以在短

时间内为非常大的问题实例提供高质量的解决方案，并且明显优于商业解决方案。此外，可

以得出以下关键管理洞见:

• 通过使用内部资源需求而不是经常使用的最大完工时间或处理时间作为主要性能指标，

可以显著越库平台的运行效率。

• 通过整合卡车处理需要配置多少资源的决策(即考虑多模式处理)，可以进一步提高运营

效率。

• 定义的服务水平对运营商的需求有重大影响。降低所需的服务水平是进一步提高越库运

行效率的合理手段。

• 工作休息模式对操作人员的要求有重大影响。过低的工作休息模式可能会导致操作者需

求的强劲增长。
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1 Introduction

1.1 Research background and objective

Cross-docking is a relatively new warehouse strategy that can improve the efficiency of a com-

pany’s logistics and distribution processes. The basic idea of cross-docking is to transfer incoming

cargo directly to outgoing trailers. Through this synchronization of in- and outbound flows, the

costly storing and order picking functions of traditional warehouses can be minimized1). Since

the cargo usually spends less than 24h in the cross-docking terminal, reduced inventory holding

costs, required storage space, and handling costs, as well as faster inventory turnover, can be

realized2). Companies from various industries such as retailing3), express and small parcel

delivery4), automotive industry5), and less-than-truckload (LTL) logistics service industry6)

operate cross-docking terminals in their distributions networks.

Besides its increasing practical relevance, cross-docking also received a lot of academic attention,

especially in the last two decades. Scholars have studied manifold strategic (e.g., location

and design of a cross-dock), tactical (e.g., material flow through cross-docking distribution

networks), and operational (e.g., assigning trucks to dock-doors, determining times at which

trucks are processed) decision problems related to cross-docking terminals. A vast number of

publications have dealt with the so-called truck scheduling problem7). It aims to compute

feasible and appropriate truck schedules by determining where, i.e., at which dock-door, and

1) Vahdani and Zandieh (2010, p. 12), Wen et al. (2009, p. 1708).
2) Apte and Viswanathan (2000, p. 292), Cook et al. (2005, p. 55).
3) E.g., Wal-Mart (Stalk et al., 1992).
4) E.g., DHL (Boysen et al., 2013) and UPS (Forger, 1995).
5) E.g., Renault (Serrano et al., 2017) and Toyota (Witt, 1998).
6) Gue (1999).
7) Ladier and Alpan use the term “truck-to-door scheduling problem”, cf. Ladier and Alpan (2016).
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when trucks should be processed.

When comparing truck scheduling in academia and industry, it can be seen that ongoing research

is detached from industry practice. Ladier and Alpan recently observed that academic research

on truck scheduling often incorporates unrealistic assumptions1). For instance, the majority of

reviewed truck scheduling models assume that an infinite number of internal resources, such

as workers and material handling equipment, is available. This assumption clearly does not

reflect reality, where both workforce and material handling equipment are usually limited. By

neglecting resource scarcity, these models are not suitable to address two major concerns of

cross-docking practitioners: (i) determining the number of resources needed, and (ii) scheduling

the resources in an efficient way2). In addition, a discrepancy in terms of applied performance

measures can be observed between truck scheduling in practice and theory. Practitioners usually

strive for efficient truck schedules, i.e., plans which deploy a minimum number of resources

and finish the workload “in time”. Therefore, practitioners usually use performance measures

directly related to the resource requirements and utilization to steer cross-docking operations.

These metrics, however, are rarely used by academic researchers. Instead, the makespan,

defined as the time that elapses from the start of the first operation until the completion of

the last operation, followed by the travel distance, defined as the total distance traveled by

the cargo inside the facility, are the two most frequently used performance metrics in truck

scheduling models3). It is often argued that minimizing the travel distance results in a minimum

workload and ultimately minimizes the working time since it requires a shorter time for a

worker to complete the task4). The following simplified example, however, shows that neither

of the two metrics necessarily leads to a truck schedule that deploys a minimum amount of

resources. For the sake of simplicity, the total processing time is used as a surrogate objective

function5) for the total travel distance.

Example 1: Consider a situation with five inbound trucks. The trucks’ arrival and departure

times are given in Table 1.1 and must not be violated. It is further assumed that loading

operations of outbound trucks start at 10:00. In order to ensure a smooth loading process,

all inbound trucks must be processed by 10:00. A total of three dock-doors can be used for

unloading operations. Travel distance differences between them are reflected by door-dependent

1) Ladier and Alpan (2016).
2) Ladier and Alpan (2016, p. 156).
3) Ladier and Alpan (2016, p. 158).
4) Chmielewski et al. (2009, p. 202).
5) A surrogate objective is defined as “a function that is correlated to the true objective, but is less computationally

demanding”, cf. Gendreau and Potvin (2019, p. 47).
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processing times. Unloading an inbound truck requires exactly one worker equipped with a

forklift (denoted as an operator in the following).

Truck processing times
at different dock-doors

Truck Arrival time Departure time d = 1 d = 2 d = 3

1 08:00 09:00 30 35 35
2 08:20 09:20 40 45 50
3 08:20 09:20 60 60 50
4 08:50 09:50 35 30 35
5 09:15 10:15 30 25 30

Processing times in minutes.

Table 1.1 Truck information for the example.
Source: Own table.

Based on the truck information for the example, Figure 1.1 shows truck schedules for various

performance measures. When aiming to minimize the makespan, it can be observed from Figure

1.1a that unloading operations start relatively late and finish early, that is, before 10:00. This

leads to a compact truck schedule and expedites parallel processing on all available dock-doors.

Therefore, three operators are necessary for executing the plan. When applying the total travel

distance (or total processing time) as the objective (or surrogate objective) in the example,

each truck is assigned to the dock-door with the shortest processing time. Different from the

makespan minimization, the whole 2h horizon is used for unloading operations. Figure 1.1b

shows that for most of the time, two operators are sufficient to handle the workload. Due to the

5 minutes overlap of trucks 2, 3, and 4 from 09:05-09:10, however, three operators must be

deployed to execute the plan. Lastly, Figure 1.1c shows a feasible truck schedule that can be

executed with a minimum number of operators. The workload is distributed evenly over the

planning horizon in order to avoid large peak workloads. It requires at most two operators

at a time to handle the workload, which is ca. 33% less than when applying the makespan or

travel distance as the key performance measure. Since the “manpower is very often the first cost

center of a logistic platform where the operations are done manually”1), this decrease helps to

reduce the operational costs and increase the efficiency significantly. The example suggests that

when using the makespan or travel distance as the performance metrics in a truck scheduling

model, the generated plan is not inevitably efficient. The most frequently used performance

measures, hence, seem to fail to support cross-docking practitioners in efficiently scheduling

the internal resources.

1) Ladier and Alpan (2016, p. 147).
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b) A truck schedule with minimum travel distance (minimum processing time).
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c) A truck schedule with minimum resource (operator) requirements.

Figure 1.1 Comparison of truck schedules for different objective functions.
Source: Own figure.

This thesis sets out to bridge the identified theory-practice gap in the cross-docking operations

planning domain. Its overall research objective can be summarized as follows:

Develop novel planning tools that allow cross-docking managers to allocate and schedule

internal resources more efficiently.

More specifically, this study proposes new models that combine two interdependent operational

problems faced by cross-docking managers, namely the scheduling of internal resources and

the scheduling of trucks. Van Belle et al. also identified the integration of both planning

4



problems as an important research task, which may improve cross-docking operations1).

The course of the study will be outlined in the next section.

1.2 Thesis structure

This section describes the general structure of this thesis. It is also illustrated in Figure 1.2.
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Figure 1.2 Study outline.
Source: Own figure.

This introduction is followed by Chapter 2, establishing the research context and setting of

the thesis. Based on the explanation of the cross-docking concept and its practical relevance,

different types of cross-docking facilities are described. Furthermore, the literature on the major

decision problems faced by managers of cross-docking terminals is summarized.

1) Van Belle et al. (2012, p. 844).
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Chapter 3 presents different mathematical models which aim to support decision-makers in

scheduling resources in cross-docking facilities. First, a basic model for scheduling resources and

trucks in cross-docking platforms is proposed. The model can help to identify a truck schedule

which requires a minimum number of resources. Subsequently, two extensions of the basic

model are presented. The first extension, which considers variable resource requirements for

truck processing, can determine how many resources should be deployed for truck processing

and at what time each truck should be processed in order to minimize the total number of

required resources. Lastly, a model for integrated shift and truck scheduling is described. It can

distinguish between different operator types (e.g., regular employees and temporary employees)

and can be used to develop shift plans for workers and timetables for truck processing.

Unfortunately, the complexity status of the proposed models may hinder large-sized instances

from being solvable to optimality by simply feeding the mixed-integer programs (MIPs) into

an off-the-shelf solver. Therefore, Chapter 4 presents heuristic solution procedures that can be

used to tackle instances of real-world size.

Chapter 5 contains the computational experiments. First, the performance of the different mixed-

integer programming formulations from Chapter 3 is benchmarked. Then, the performance

of the heuristic solution procedures is evaluated. In addition to exploring the computational

performance of the mathematical programs and solution procedures, the chapter also includes

a large numerical study for deriving managerial insights.

Finally, in Chapter 6, the results of this whole thesis are summarized, and an outlook on future

research opportunities is presented.
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2 Cross-docking

2.1 Concept

Manufacturers of consumer goods, which often produce their products in big batches, usually

prefer to ship their products in full truckloads to benefit from economies of scale in transportation.

Retailers, however, usually need considerably smaller quantities of a single product. In order

to overcome this problem, consumer goods can be transshipped through a storage location,

e.g., a warehouse. This allows manufacturers to push the production quantities to the storage

location and to realize economies of scale in transportation, while the retailers can pull the

quantities they really need from the storage location. This approach, however, may result in

high inventory levels and hence high inventory costs at the storage location.1) Cross-docking, a

distribution system that has its roots in the industry, can help to reduce the inventory levels at

the storage location by synchronizing (full truckload) inbound flows and (less-than-truckload)

outbound flows. When implemented correctly, the costly storing and order picking functions of

traditional warehouse locations can be significantly reduced.2) Figure 2.1 depicts the schematic

representation of a cross-docking terminal with three inbound trucks and four outbound trucks.

Wal-mart is a famous example of how cross-docking may help to increase a company’s profit.

Stalk et al., who analyzed Wal-Mart’s success, noticed that Wal-Mart ran ca. 85% of its

goods through cross-docking terminals in the early 1990s. By doing so, Wal-Mart was able

to reduce the costs of sales by ca. 2-3% compared to the industry average. This, in turn,

contributed to Wal-Mart’s success, which became the highest profit retailer at that time.3)

Another example for the successful transition from a traditional stockholding supply chain

1) Ladier (2014, p. 6).
2) Vahdani et al. (2010, p. 12), Wen et al. (2009, p. 1708).
3) Stalk et al. (1992, p. 58), Ladier and Alpan (2016, p. 146).
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Figure 2.1 Schematic representation of a cross-docking terminal.
Source: Own figure after Boysen and Fliedner (2010, p. 414).

operation to a cross-docking system is Goodyear GB Ltd. By implementing a cross-docking

system, Goodyear achieved an inventory reduction of 16%, released more than 12,500 square

meters of warehousing space, improved the next day delivery in the United Kingdom from

87% to 96%, and reduced the operating costs by more than 12%1). Many of these benefits

were also identified in a survey conducted among 219 practitioners with a logistics and supply

chain management background. Table 2.1 reports the major benefits of cross-docking from the

respondents’ perspective. According to the survey respondents, an improved service level and

reduced transportation costs are the two most important benefits of cross-docking.

1) Kinnear (1997, pp. 51-52).
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Description % of respondents

Improved service level 19.4%
Reduced transportation costs 14.3%
Consolidated shipments to destination 13.1%
Get Products to market more quickly 10.2%
Reduced need for warehouse space 8.5%
Improved inventory management 8.0%
Savings from reduced inventory carrying costs 5.7%
Increased demand for just-in-time service 4.5%
Shipments/consignee customization 4.0%
Reduced labor costs 4.0%
Other 8.3%

Table 2.1 Main benefits of cross-docking.
Source: Own table after Saddle Creek Corporation (2011, p. 5).

According to Van Belle et al., cross-docking has the following advantages compared to

traditional distribution centers:1)

• Reduced warehousing, inventory holding, handling, and labor costs;

• Shorter delivery lead times from suppliers to customers;

• Improved customer service;

• Reduced storage space;

• Faster turnover of the inventory;

• Fewer overstocks;

• Reduced risk for damage and loss.

In light of all the potential benefits that can be achieved through cross-docking, it is not surprising

that cross-docking terminals can be found in many supply chains. In the survey conducted

by Saddle Creek Corporation, 68.5% of the respondents already used cross-docking, and

another 15.1% of the respondents had plans to use cross-docking within the next two years2).

Stephan and Boysen propose a classification scheme to structure the diversity of cross-docking

applications that can be found in practice. Figure 2.2 depicts the classification scheme.

1) Van Belle et al. (2012, p. 828).
2) Saddle Creek Corporation (2011, p. 4), Rijal et al. (2019, p. 752).
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Figure 2.2 Classification of cross-docking terminals and typical cross-docking settings in different
industries.

Source: Own figure after Stephan and Boysen (2011, p. 131).

The scheme uses the following three attributes to distinguish cross-docking platforms:

• Location of the cross-docking platform in the supply chain;

• Mode of product movement within the cross-docking platform;

• Value adding services within the cross-docking platform.

Based on that, Stephan and Boysen identify four important cross-docking settings in different

industries:1)

• LTL logistics providers: LTL logistics providers transport shipments between 30 kilograms

and 2 tons for many shippers and recipients. They are usually dependent on an efficient

freight consolidation in the hub-and-spoke network of multiple cross-docking terminals.

Inside the cross-docking terminals, forklifts are usually used to move (palletized) cargo.

LTL logistics providers often offer various value-added services such as relabeling or final

assembly processes.

1) Stephan and Boysen (2011, p. 132).
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• Retail chains: In retail supply chains, a cross-docking terminal often serves multiple

retail stores. Hence, deliveries received by large suppliers can be broken down at the

cross-docking terminal according to the actual demand of the store. Sometimes value

adding services such as price labeling services can be found.

• Postal service providers: Postal service providers consolidate freight units of up to 30

kilograms within a multi-stage hub-and-spoke system. The relatively small freight units,

which do not require any additional services, can be moved through the cross-docking

facility with a conveyor belt system.

• Automobile industry: Original equipment manufacturers (OEMs) in the automotive

industry store parts delivered by remote suppliers in cross-docking terminals located

close to multiple final assembly lines. The parts are usually of small size and temporarily

stored in an automated storage and retrieval system (AS/RS) until the exact demand for

parts is known. Oftentimes, value adding services such as arranging the parts in bins

just-in-sequence are provided.

Other classifications to structure the wide range of cross-docking applications can be found

in the literature. For instance, Van Belle et al. distinguish cross-docking terminals based

on physical characteristics (shape of the cross-docking platform, number of dock-doors, and

mode of internal transportation), operational characteristics (service mode and pre-emption),

and flow characteristics (arrival and departure patterns of cargo, product interchangeability,

and temporary storage).1)

2.2 Decision problems

In order to successfully implement a cross-docking system, multiple interdependent decision

problems need to be solved2). A vast number of academic studies have addressed a wide range

of cross-docking related problems in the last three decades. Moreover, various surveys and

classifications of the existing literature have been proposed. Van Belle et al., for instance,

provide a broad overview of the cross-docking literature. They use a rather general classification

and categorize the literature based on the problem type into strategic decisions (e.g., location

of cross-docks in the distribution network and layout of cross-docks), tactical decisions (e.g.,

1) Van Belle et al. (2012, pp. 831-832).
2) Stephan and Boysen (2011, p. 132).
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material flows in distribution networks with cross-docking terminals), and operational decisions

(e.g., dock-door assignment, truck scheduling, and size of temporary storage locations)1). Buijs

et al. provide another recent overview of the cross-docking literature. The authors identify

24 individual decision problems, cluster them based on their decision-making level (strategic,

tactical, and operational problems) and problem scope (whether the problem originates locally

at the cross-docking terminal or elsewhere in the cross-docking network), and identify inter-

dependencies between the individual problem classes2). Other surveys have a tighter scope.

Ladier and Alpan review the literature on the most common operational decision problems in

cross-docking facilities, namely the problem of assigning trucks to dock-doors and the problem

of scheduling/sequencing trucks3). The scheduling of trucks is a common problem at many plat-

forms and has received a lot of academic attention. Boysen and Fliedner provide an in-depth

survey on the truck scheduling problem and classify the literature based on the door environ-

ment (number of dock-doors and service mode), operational characteristics (e.g., processing

times, arrival times, deadlines, availability of intermediate storage space, interchangeability of

products, etc.), and the objective function.

This section sets out to provide a brief overview of the existing literature dealing with decision

problems in the life cycle of a cross-docking terminal. It is structured into strategic, tactical,

and operational planning problems. Decision problems related to the first two areas are briefly

described. As the study at hand aims to propose new models for short-term resource planning,

the operational planning problems will be reviewed in more detail.

2.2.1 Strategic decisions

On a strategic level, cross-docking practitioners are mainly confronted with two major decisions:

1. Determine the location of a cross-docking terminal in the supply or distribution network;

2. Determine the layout of the cross-docking terminal.

The majority of studies that aim to identify the optimal locations for cross-docking terminals

optimize the freight flows through this network of facilities simultaneously4). Many scholars have

1) Van Belle et al. (2012, p. 832).
2) Buijs et al. (2014, p. 595).
3) Ladier and Alpan (2016).
4) Buijs et al. (2014, p. 599).
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studied this so-called location-allocation problem over the past three decades1). Bhaskaran was

among the first authors who investigated the problem. The paper presents a heuristic approach

which can be used to determine the appropriate number and location of the cross-docking

terminals. Moreover, a case study from General Motors is presented.2)

A few studies have dealt with the design of a cross-docking terminal. The facility design, which

has a significant impact on the operations, aims to enable a fast transshipment of cargo and

to ensure sufficient capacity. In this context, the physical characteristics of the cross-docking

terminal, such as the facility shape, number of dock-doors, the size and layout of the temporary

storage area, and internal transportation mode are fixed. Bartholdi and Gue, for instance,

investigate the optimal shape of a cross-docking terminal for different settings3). They consider

various cross-docking shapes, including I-, L-, T-, H-, and X-shape. According to their study,

the optimal shape depends on the size of the facility and the freight flow patterns inside the

facility. For smaller facilities, an I-shaped terminal is beneficial, whereas, for facilities with ca.

150 dock-doors, a T-shaped terminal is beneficial. If more than 200 dock-doors are required,

the authors recommend an X-shaped facility.4) For rectangular-shaped cross-docking facilities,

Carlo and Bozer show that if a cross-docking terminal’s perimeter (i.e., the number of dock-

doors) is fixed, a narrow-shaped terminal minimizes the expected travel distance of forklifts or

operators in the facility. However, if a cross-docking terminal’s required area is fixed, a square

ground plan is the best shape5). Other papers deal with the design of the temporary storage

area in a cross-docking platform. Vis and Roodbergen, for instance, propose an algorithm

that helps to compute the optimal number of storage rows and their lengths6).

2.2.2 Tactical decisions

Once the decisions on the locations and layouts of cross-docking facilities have been made,

decision-makers must decide how to route the cargo through the transportation network such

that the costs are minimized7). On a tactical level, decision-makers are dealing with the following

1) E.g., Bhaskaran (1992), Gümüş and Bookbinder (2004), Mousavi and Tavakkoli-Moghaddam (2013), Ross and
Jayaraman (2008), Sung and Song (2003), and Sung and Yang (2008).

2) Bhaskaran (1992, p. 141).
3) Bartholdi and Gue (2004).
4) Bartholdi and Gue (2004, p. 243).
5) Carlo and Bozer (2011, p. 162).
6) Vis and Roodbergen (2008).
7) Van Belle et al. (2012, p. 832).
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network planning problems:1)

1. Capacity planning for network routes;

2. Freight flow allocation;

3. Shipment to destination assignment.

Only a few papers that address cross-docking network planning aspects have been published.

For instance, Musa et al. propose a model for assigning capacity to network routes and

allocating freight flows to these routes2). Furthermore, the truck-to-door assignment problem

can be tackled on a tactical level. However, due to its operational characteristics, and since

many authors classify this problem as an operational cross-docking problem, it will be discussed

in the next section.

2.2.3 Operational decisions

On the operational level, scholars have studied various cross-docking related problems. Most

operational cross-docking problems aim to determine where (i.e., at which dock-doors) and/or

when (i.e., at which time), inbound trucks should be unloaded and outbound trucks should

be loaded in a cross-docking terminal. Models that solely address the spatial dimension and

ignore time aspects, decide to which dock-doors arriving inbound and outbound trucks should

be assigned3). Models that solely address the temporal dimension and ignore the spatial

dimension (i.e., the location of dock-doors), on the other hand, aim to either sequence trucks or

schedule trucks. Sequencing models aim to determine the optimal order in which trucks should

be processed. These models take the time aspect implicitly into account. Scheduling models,

on the other hand, explicitly consider the temporal dimension. Instead of determining a truck

sequence in time, these models explicitly determine the exact start and end time for processing

each truck.

Decisions on the spatial and temporal dimensions could be further made one after another.

For instance, a decision-maker could first determine where to (un-)load trucks by solving the

assignment problem. Based on the obtained truck-to-door assignment, the decision-maker could

then solve a sequencing or scheduling model to compute at what time each truck should be

1) Buijs et al. (2014, p. 603).
2) Musa et al. (2010).
3) Van Belle et al. (2012, p. 835)
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processed1). However, this sequential two-stage approach does not necessarily result in an

optimal solution for the integrated problem2). Therefore, scholars have considered to integrating

both decisions, i.e., they have aimed to assign a set of trucks to dock-doors and determine the

times at which every truck should be processed simultaneously. Table 2.2 summarizes the main

operational cross-docking planning problems that can be found in the literature. Each problem

category and its related literature will be described in more detail below.

Spatial dimension Temporal dimension

Problem description Which door? What time? In which order?

Assignment of trucks ✓

Sequencing of trucks ✓

Scheduling of trucks ✓

Assignment and sequencing of trucks ✓ ✓

Assignment and scheduling of trucks ✓ ✓

Table 2.2 Overview of different operational cross-docking decision problems.
Source: Own table after Ladier and Alpan (2016, p. 149).

Assignment of trucks

Once inbound and outbound trucks arrive at the cross-dock, it must be decided at which dock-

doors inbound trucks and outbound trucks should be unloaded and loaded, respectively. These

assignment patterns can have a huge impact on the cross-dock performance since they affect the

traveling distance of material handling equipment and traveling time to transship inbound trucks’

cargo from inbound dock-doors to outbound dock-doors3). A good truck-to-door assignment

can help to increase productivity and reduce the (handling) costs4). The assignment of trucks

to dock-doors can be done on a mid-term or short-term horizon5). In the former case, inbound

trucks from the same origin (or outbound trucks with the same destination, respectively) are

clustered and assigned to dock-doors. In other words, every dock-door is used to serve a group

of trucks coming from the same origin or going to the same destination. Once the assignment

has been made, it is used for a longer time period (e.g., 4-6 months). In the latter case, instead

1) It may also be possible to make the temporal decision before making the spatial decision.
2) Ladier and Alpan (2016, p. 148)
3) Nassief et al. (2016, p. 495)
4) Van Belle et al. (2012, p. 834).
5) Boysen and Fliedner (2010, p. 415).
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of having a fixed assignment based on a truck’s origin or destination, an individual truck is

assigned to a dock-door based on its actual freight volume on a short-term horizon (e.g., daily).

Peck and Tsui and Chang are among the first authors investigating the assignment of trucks to

dock-doors. Peck tries to minimize the total travel time, i.e., the time required for transshipping

cargo from inbound dock-doors to outbound dock-doors, in a less-than-truckload terminal with

the help of a simulation model1). Tsui and Chang consider the assignment problem on a

mid-term horizon and formulate a mathematical program to assign origins and destinations

to dock-doors. They minimize the travel distance of forklifts in the cross-docking terminal

and propose a heuristic solution method2) and a branch-and-bound procedure3) to solve the

problem. Other authors such as Bermúdez and Cole and Cohen and Keren build on the early

work of Tsui and Chang and develop model extensions as well as solution methods4). Bozer

and Carlo study the assignment of inbound and outbound trucks to dock-doors in a rectangular

cross-docking platform and develop a simulated annealing algorithm to minimize the total

travel distance5). In a recent study, Nassief et al. develop a mixed-integer programming

formulation for the truck-to-door assignment problem and embed it into a Lagrangian relaxation.

The efficiency of the algorithm is proven through a numerical study6). Gelareh et al. recently

proposed a total of eight new mixed-integer programming formulations for the assignment of

trucks to dock-doors7). In a large computational study on benchmark instances from literature,

the authors show that their best model formulation outperforms existing model formulations

for the truck-to-door assignment problem8).

Other studies focus on the assignment of outbound trucks (or destinations) to outbound

dock-doors and ignore the assignment of inbound trucks (or origins) to inbound dock-doors.

Bartholdi and Gue, for instance, aim to find an optimal assignment of destinations to out-

bound doors and to specify for each dock-door whether it is used for unloading inbound trucks

or loading outbound trucks. They do not deal with the assignment of inbound trucks to inbound

doors, as this is usually done in real-time according to their argumentation9). Jarrah et al.

1) Peck (1983).
2) Tsui and Chang (1990).
3) Tsui and Chang (1992).
4) Bermůdez and Cole (2001), Cohen and Keren (2009).
5) Bozer and Carlo (2008).
6) Nassief et al. (2016).
7) Gelareh et al. use the term “cross-dock door assignment problem”, cf. Gelareh et al. (2020).
8) Gelareh et al. (2020, p. 1).
9) Bartholdi and Gue (2000, p. 825).
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study the door assignment problem for the configuration of an automated package sorting

center. The authors develop a multi-objective model that hierarchically deals with the following

objectives:1)

1. Minimization of the number of changes in destination-to-door assignments between shifts;

2. Minimization of the number of required workers;

3. Balancing the workload among workers.

Oh et al. consider a Korean mail distribution center and develop a mathematical model for

improving the operations in the facility. Their model helps to cluster destinations and to assign

the clusters to outbound doors2).

Sequencing of trucks

Models that focus on sequencing a set of trucks neglect the spatial dimension. That is, the

location of dock-doors and the distance between pairs of dock-doors is not considered. Hence,

a truck is not assigned to a specific door, but any door as long as the total number of doors is

not exceeded3). Such sequencing models aim to determine an optimal order in which inbound

trucks should be unloaded, and outbound trucks should be loaded.

A considerably large number of papers investigate a simplified version of a cross-docking terminal

with one inbound and one outbound dock-door. The overall goal of these papers can be seen in

the identification of structural characteristics that could be transferred to the generalized case

with multiple inbound and outbound dock-doors. Many of these papers try to minimize the

makespan4). Further optimization objectives are:

• Minimization of the required storage area;5)

• Minimization of the mean completion time of outbound trucks;6)

1) Jarrah et al. (2016, p. 1323).
2) Oh et al. (2006, p. 288).
3) Ladier and Alpan (2016, p. 150).
4) E.g., Chen and Lee (2009), Chiarello et al. (2018), Ghobadian et al. (2012), Liao et al. (2012), Romanova

(2015), Yu and Egbelu (2008).
5) E.g., Sadykov (2012).
6) E.g., Amini et al. (2014).
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• Minimization of the maximum lateness;1)

• Minimization of the total penalized tardiness, earliness, and the number of preemption

for the outbound trucks;2)

• Minimization of product movements.3)

Larbi et al. study the value of order arrival and truck loading information and develop exact

and heuristic solution methods to solve the model4). Other studies focus on developing solution

methods for the truck sequencing problem in a cross-docking platform with one inbound and

one outbound dock-door5).

In addition, various authors study the truck sequencing problem in a more generalized case

with multiple inbound and outbound dock-doors. The makespan has also been widely applied

as the performance indicator in this setting6). Moreover, sequencing models for minimizing the

inventory level7), for maximizing the total number of directly transferred product units8), and

for minimizing the earliness and tardiness of trucks9) have been proposed.

Scheduling of trucks

While models for sequencing of trucks implicitly consider time aspects, models for the scheduling

of trucks explicitly consider the temporal dimension. Similar to the sequencing literature, both

minimizing the makespan and minimizing the earliness and tardiness are among the most

popular objectives in studies for scheduling trucks.

Some authors research a simplified scheduling problem with one inbound and one outbound

door. Boysen et al., for instance, aim to derive insights into the underlying problem structure

and therefore study the impact of truck arrival times and due dates, truck-specific processing

1) E.g., Briskorn et al. (2010).
2) E.g., Fazel Zarandi et al. (2016).
3) E.g., Forouharfard and Zandieh (2010), Maknoon and Baptiste (2009).
4) Larbi et al. (2011).
5) E.g., Shiguemoto et al. (2014), Soltani and Sadjadi (2010), Vahdani and Zandieh (2010), Vahdani et al. (2010).
6) E.g., Chen and Song (2009), Joo and Kim (2013), Yazdani et al. (2015).
7) E.g., Alpan et al. (2011a), Alpan et al. (2011b).
8) E.g., Maknoon et al. (2014).
9) E.g., Li et al. (2004).
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times, and service modes in a setting with one inbound and one outbound dock-door1). Boloori

Arabani, together with changing co-authors, also considers a setting with one inbound and

one outbound dock-door and proposes different heuristic solution methods2).

Furthermore, several studies focus on scheduling trucks in multi-door cross-docking platforms.

Álvarez-Pérez et al., for instance, use a machine scheduling notation and formulate a model

for scheduling trucks such that the transit storage time of cargo is minimized. As the problem

turns out to be NP-hard, the authors develop ametaheuristic that combines a Greedy Randomized

Adaptive Search Procedure (GRASP) with a Tabu Search.3) Ladier and Alpan propose a model

for planning the material handling in the cross-docking terminal and inbound/outbound trucks’

arrival and departure times. For this purpose, the authors seek to balance two objectives: (i)

maximize the number of pallets directly transshipped from inbound doors to outbound doors,

and (ii) minimize the dissatisfaction of the transportation providers4). Fanti et al. schedule the

internal operations (namely deconsolidation, sortation, and consolidation of cargo units) in a

post-distribution cross-docking terminal. The authors seek to determine a schedule for internal

operations that has a minimum makespan.5) Bellanger et al. also consider sorting operations

and aim to find a schedule with a minimum makespan6). The makespan minimization is once

again among the most frequently used objective functions for scheduling trucks in multi-door

cross-docking terminals.

Assignment and sequencing of trucks

With the increasing computational power, more and more scholars have studied operational

cross-docking problems which integrate the spatial and temporal dimension. A vast number

of studies simultaneously determine the processing sequence of trucks and the assignment of

trucks to dock-doors. As the case with one inbound and one outbound dock-door would reduce

the problem to a pure sequencing problem and make the door allocation trivial, only multi-door

cross-docking terminals have been considered. In order to simplify the problem, some authors

only schedule inbound trucks and assume that the outbound truck departures are known and

1) Boysen et al. (2010).
2) Boloori Arabani et al. (2010), Boloori Arabani et al. (2011a), Boloori Arabani et al. (2011b), Boloori Arabani

et al. (2012).
3) Álvarez-Pęrez et al. (2009, p. 554).
4) Ladier and Alpan (2018, p. 569).
5) Fanti et al. (2014, p. 1).
6) Bellanger et al. (2013, p. 1109).
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given in advance.1)

When dealing with the assignment and sequencing of trucks, the makespan is again a frequently

used performance measure. For instance, it is used by Madani-Isfahani et al., who study the

problem of assigning and sequencing trucks in a multi-door cross-docking facility. Moreover,

the authors develop two metaheuristics to solve the problem2). McWilliams and McWilliams

et al., who study the assignment and sequencing of inbound trucks in parcel hubs, also apply the

makespan as the performance metric3). Moreover, objective functions such as the minimization

of inbound trucks’ unloading times4), the minimization of the total number of delayed product

units5), the minimization of the total travel distance within the cross-docking facility6), and the

minimization of the inventory holding costs7) can also be found in studies that deal with the

assignment and sequencing of trucks.

Assignment and scheduling of trucks

Similar to assigning and sequencing trucks, the problem of assigning and scheduling trucks also

determines at which dock-doors and at what times trucks should be processed. However, it

explicitly determines the exact start and end time for processing each truck instead of deriving

this information from the processing order.

Existing research either assigns and schedules both in- and outbound trucks or inbound trucks

only. The majority of existing papers assume that outbound trucks can only leave the cross-

docking terminal once all freight units have been loaded. Acar et al., for instance, propose

a mixed-integer program that aims to generate schedules that equally distribute idle times at

dock-doors. By doing so, the authors seek to increase the robustness of the obtained schedules

in order to encounter delayed truck arrivals.8) Other studies use the makespan9), the total travel

1) Ladier and Alpan (2016, p. 149).
2) Madani-Isfahani et al. (2014).
3) McWilliams (2009), McWilliams et al. (2005).
4) E.g., Golias et al. (2013), Golias et al. (2012).
5) E.g., Boysen et al. (2013), Boysen and Fliedner (2010) Liao et al. (2013).
6) E.g., Zhang et al. (2010). Moreover, Rosales et al. (2009) include the forklift operation costs, which are

proportional to the forklifts’ total travel distance, in their objective function.
7) E.g., Rahmanzadeh Tootkaleh et al. (2016).
8) Acar et al. (2012, p. 729).
9) E.g., Shakeri et al. (2012).
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distance within the facility1), and the waiting time of trucks2) as performance measures.

These constraint-free truck departures, however, are often not applicable in practice. Instead,

fixed outbound departures are used in many cross-docking platforms3). For instance, express

and small parcel delivery and less-than-truckload logistics service companies, which usually

strive for reliable and steady material flows in their transportation networks, often apply fixed

outbound schedules4). Defining the departure times of outbound trucks prior to the scheduling

task reduces the problem to scheduling inbound trucks only. Chmielewski et al., for instance,

consider fixed departure times for both inbound and outbound trucks. The authors study

the problem of assigning and scheduling inbound trucks and also include the assignment of

destinations to outbound doors on a mid-term horizon. They aim to find a truck schedule that

leads to a minimum total travel distance and minimum truck waiting times.5) Other authors

also apply weighted objective functions. Van Belle et al., for instance, propose an assignment

and scheduling model which aims to minimize the weighted sum of the total travel time and

the total tardiness6). Bodnar et al. also consider the tardiness of trucks in their objective

function. Specifically, they aim to minimize the sum of handling and tardiness costs7). Rijal

et al. consider an objective function with three cost components: (i) The transportation costs

for direct shipments between inbound and outbound dock-doors, (ii) the costs for temporarily

storing freight units in the terminal, and (iii) the total tardiness costs of outbound trucks8).

2.3 Chapter summary

This chapter introduced the cross-docking system, a widely used logistics concept that can

improve the efficiency of logistics and distribution processes. Section 2.1 described the cross-

docking concept. Furthermore, the wide range of potential benefits of cross-docking was

presented. For instance, cross-docking can result in an improved service level and lower

transportation, inventory holding, and handling costs if appropriately implemented. Finally,

1) E.g., Hermel et al. (2016), who propose a hierarchical framework in which they consider the makespan.
2) E.g., Bartz-Beielstein et al. (2006), who propose a multi-objective approach which also includes the total travel

distance.
3) Ladier and Alpan (2016, p. 158).
4) Boysen et al. (2013, p. 480).
5) Chmielewski et al. (2009, pp. 200-202).
6) Van Belle et al. (2013, p. 820).
7) Bodnar et al. (2017, p. 117).
8) Rijal et al. (2019, p. 758).

21



classifications for structuring the wide range of cross-docking applications were presented.

Moreover, Section 2.2 provided an overview of the existing literature dealing with decision

problems in the life cycle of a cross-docking terminal. While the strategic and tactical decision

problems were briefly explained, the operational decision problems were described in more

detail. Specifically, the operational cross-docking problems of assigning trucks to dock-doors

and scheduling/sequencing trucks were explained. The most challenging decision problems are

those which integrate both the spatial and temporal dimension. In the following, these decision

problems are referred to as the truck scheduling problem, a commonly used term for decision

problems that aim to determine both at which dock-door and at which time trucks should be

processed.
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3 Models for resource planning in

cross-docking platforms

This chapter sets out to develop mathematical models for short-term resource planning in

cross-docking platforms. Section 3.1 presents a basic model which allows to schedule both

operators and trucks when the operator requirements of each truck are given and known in

advance. Moreover, Section 3.2 proposes a model that allows to adapt the number of deployed

operators for truck processing instead of assuming that the operator requirements are given.

Finally, Section 3.3 presents a mathematical model which allows to consider different operator

types and shift patterns.

3.1 Resource and truck scheduling problem

3.1.1 Introduction

3.1.1.1 Problem description

In the resource and truck scheduling problem (TSFD-RC-F), a cross-docking terminal with

multiple inbound and outbound dock-doors and an exclusive service mode is considered. That

is, in-/outbound trucks can only be processed at in-/outbound doors, respectively. It is assumed

that the set of outbound trucks has already been scheduled, i.e., the truck-to-door assignment

and the start times of outbound trucks is known. Hence, the problem reduces to a scheduling

problem for inbound trucks which carry cargo to be loaded into various outbound trucks.

Unloading of inbound trucks must start within their presupposed time windows. The time

window of an inbound truck is defined through its release time and due time. It is assumed

that the cargo is shipped in standardized freight units, e.g., pallets, and that a sort-at-receiving

protocol is applied. Under this protocol, which requires incoming freight units to be labelled
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with the final destination, operators unload the cargo from inbound trucks and directly transfer

it to the associated outbound dock-doors1). Hence, the processing time of an inbound truck,

which includes the required time for unloading all freight units and transshipping them to

the associated outbound dock-doors, is directly proportional to the number of freight units

and depends on the distance between unloading and loading docks2). At most one truck can

be processed at a dock-door at a time and preemption is not allowed, that is a truck cannot

leave the dock-door before it has been processed completely. Upon arrival, the cargo can

temporarily be stored in front of the outbound dock-door until loading of the outbound truck

starts. Moreover, it is assumed that the intermediate storage space in front of each outbound

dock-door is infinite. Cargo that arrives at the outbound dock-door after loading of the outbound

truck starts is regarded as delayed freight units and postponed until the next departure to the

same destination3). In addition, it is assumed that the required service level and hence the

allowed number of delayed freight units are defined and known.

In this setting, inbound trucks are processed by operators, i.e., workers equipped with material

handling equipment such as forklifts or pallets jacks. It is presupposed that an operator cannot

process multiple trucks at the same time and must not start a new task prior to finishing her

current task. The required number of operators for processing a truck is given and known in

advance. Specifically, potential differences in operator requirements due to different truck sizes,

are permitted. A couple of simplifying assumptions are made with respect to the availability of

operators. A shift with a shift length equal to the planning horizon length and without breaks is

considered as the standard shift type for operators. Therefore, it follows that operators on duty

are available throughout the entire planning horizon (e.g., eight hours shift).

The described operating mode is widely used in practice, e.g., in unit-load cross-docking

platforms of logistics service providers and retail companies. Recall that the labor cost and

manpower, “very often the first cost center of a logistic platform”4), are a main component of the

total operational cost in such facilities and appear to be the dominant key performance indicator.

The number of operators, which is correlated to the labor costs in the described setting with

one standard shift type, is used as a surrogate objective function for the TSFD-RC- F. Hence,

the TSFD-RC-F problem boils down to finding an efficient and feasible truck schedule, that is,

a schedule with minimum operator requirements that complies with the truck time windows

1) Bartholdi et al. (2008, p. 8).
2) Van Belle et al. (2013, p. 819).
3) Van Belle et al. (2012, p. 831).
4) Ladier and Alpan (2016, p. 147).

24



and service level, and prevents potential conflicts regarding the usage of the shared resources

(inbound dock-doors and operators). The following section presents different ways to formulate

the TSFD-RC-F in optimization models.

3.1.1.2 Related literature

An overview of the relevant truck scheduling literature for the TSFD-RC-F is provided in Table

3.1.

Less than a dozen research papers consider internal resources for (un-)loading and transferring

cargo. This gap in the literature is also identified in recent survey papers of Ladier and

Alpan and Van Belle et al., who consider the integration of resource scheduling as an

important future research task1). The limited number of papers that attempt to consider resource

scarcity usually do that by simply introducing an upper bound. Scarcity of material handling

equipment2), workforce3), or unspecified internal resources4) has been recently considered. In

this context, the makespan and travel distance – the two dominant performance measures in

current academic truck scheduling models5) – are frequently applied performance measures.

Furthermore, objectives such as minimizing the number of delayed product shipments and the

earliness/tardiness of shipments have been discussed. To the best of the author’s knowledge,

Rosales et al., who aim to minimize the operational costs consisting of the cost of forklift

operations and labor cost, are the only authors who apply an objective function that is directly

related to the internal resource requirements6). The study, however, assumes that the unloading

start times for each trailer are given in advance and hence is rather an assignment problem

than a scheduling problem.

Another research stream closely related to the TSFD-RC-F is the parallel machine scheduling

problem (PMSP)7). In this case, inbound trucks correspond to jobs and dock-doors correspond to

machines. Specifically, the PMSPwith unrelatedmachines and additional resources comes closest

to the TSFD-RC-F. Unrelated parallel machines consider machine-dependent job processing

1) Ladier and Alpan (2016, p. 159), Van Belle et al. (2012, p. 844).
2) E.g., Shakeri et al. (2012), McWilliams (2009).
3) E.g., Tadumadze et al. (2019), Serrano et al. (2017), Li et al. (2004), Ladier and Alpan (2015).
4) E.g., Hermel et al. (2016), Chmielewski et al. (2009).
5) Ladier and Alpan (2016, p. 158).
6) Rosales et al. (2009).
7) For an overview on machine scheduling in general, see Pinedo (2016).
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Publications Problem characteristics Objective function

Oper. Arrival Departure Processing Internal Service

focus times times times resources level target

Boysen et al.
(2013)

I - O DD ∞ No Delayed product
shipments

Tadumadze et al.
(2019)

I I I+O DD lim. No Delayed product
shipments

Rosales et al.
(2009)

I - - DD ∞ No Labor cost, forklift
operations cost

McWilliams
(2009)

I - - NDD lim. No Makespan

Rahmanzadeh
Tootkaleh et al.
(2016)

I - O NDD ∞ No Inventory holding
cost

Shakeri et al.
(2012)

I+O - - DD lim. No Makespan

Li et al. (2004) I+O I I+O NDD lim. No Earliness, tardi-
ness

Serrano et al.
(2017)

I+O I - NDD lim. No Time window vio-
lations

Chmielewski et al.
(2009)

I+O I+O I+O DD lim. No Travel distance,
truck waiting
times

Hermel et al.
(2016)

I+O - - NDD lim. No Travel distance,
makespan

Ladier and Alpan
(2015)

I+O I I+O NDD lim. No LSP satisfaction,
temporary stor-
age, shift changes,
etc.)

Molavi et al.
(2018)

I+O I I+O DD ∞ No Delayed product
shipments

TSFD-RC-F I I+O I+O DD lim. Yes Internal resource
requirements

I: Inbound; O: Outbound; I+O: In- and outbound.

DD: Door-dependent processing times; NDD: Door-independent processing times.

∞: Unlimited internal resources; lim.: Limited internal resources.

Table 3.1 Summary of the related literature on truck scheduling in cross-docking platforms.
Source: Own table.

times. This is an essential characteristic of the TSFD-RC-F in which the truck processing times

depend on the internal travel distances between the inbound and outbound dock-doors. A vast

number of publications also include renewable or non-renewable resources in the PMSP. Since

the TSFD-RC-F includes a discrete and renewable internal resource (e.g., workers equipped
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with material handling equipment), that is a resource that cannot be used up and is available

throughout the entire planning horizon, the PMSP with renewable resources is relevant to this

study. Edis et al. provide an in-depth survey on this field of research1). More recently, Fanjul-

Peyro et al. analyze a PMSP with scarce renewable resources and propose matheuristics

to tackle the problem2). Fleszar and Hindi propose different mixed-integer programming

formulations and a constraint programming formulation for a PMSP with a resource constraint3).

These machine scheduling models, however, are not immediately applicable to the TSFD-RC-F as

they aim to minimize the makespan of the truck schedule, whereas the problem at hand utilizes

a resource-leveling objective. Moreover, they do not consider the synchronization between

inbound and outbound doors.

The TSFD-RC-F is also somewhat similar to the resource-constrained project scheduling problem

(RCPSP). In this case, inbound trucks correspond to activities, which have a certain processing

time and consume various renewable resources, namely dock-doors and internal resources.

Brucker et al. and Hartmann and Briskorn provide a survey of the RCPSP literature4). The

traditional RCPSP usually aims to minimize the makespan while a certain capacity level of each

resource must be observed. Hence, it is not immediately applicable to this study. Moreover,

the RCPSP typically considers precedence relations between activities. In a cross-docking

facility, tasks such as unloading operations are rather constrained by time windows instead.

The so-called resource investment problem (RIP), a “dual” version of the RCPSP, has been

studied extensively in recent years5). It aims to minimize the costs for providing the resource

capacity level while a project deadline must be met6). Even though it applies a similar objective

as the TSFD-RC-F, it generally fails to consider essential truck scheduling particularities, such

as travel distances between inbound and outbound doors. Emde et al. study the problem of

scheduling personnel for the build-up of unit load devices in an air cargo terminal with space

restrictions7). The authors formulate the model as a special type of multi-mode RCPSP with

two renewable resources, namely workers and space for building up the unit load devices. The

model considers the possibility to speed up processing by assigning multiple workers to a job.

However, it is not capable to model door-dependent truck processing times, which are essential

for the TSFD-RC-F.

1) Edis et al. (2013).
2) Fanjul-Peyro et al. (2017).
3) Fleszar and Hindi (2018).
4) Brucker et al. (1999), Hartmann and Briskorn (2010).
5) E.g., Drexl and Kimms (2001), Neumann and Zimmermann (2000)
6) Hartmann and Briskorn (2010, p. 7)
7) Emde et al. (2020).
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It can be concluded that existing research cannot directly be applied to the problem at hand and

that a new solution concept, which integrates the scheduling of internal resources and trucks,

needs to be developed.

3.1.2 Model formulations

Truck scheduling problems, amongst other scheduling problems such as the above-mentioned

machine scheduling and resource constrained project scheduling problems, are often formulated

as binary integer programs (BIP) or linear mixed-integer programs (MIP). Existing models can

be classified into continuous-time1) and discrete-time2) model formulations. Continuous-time

models (CT) use a set of continuous decision variables to specify when trucks are processed. In

these models, truck processing can start at any time within a truck’s time window. Furthermore,

they often rely on disjunctive (precedence) constraints in combination with precedence-based

(binary) decision variables to express the processing sequence between pairs of trucks that

are assigned to the same dock-door. In order to obtain linear formulations for the disjunctive

constraints, big-M formulations are often used. While big-M formulations are usually fairly

compact, they tend to produce rather weak relaxations and hence large search trees3). Discrete-

time model formulations (DT) were introduced to overcome this major drawback. These

models divide the planning horizon into a finite set of time intervals t ∈ T := {0, ..., |T |} of
equal length, and apply time-indexed binary decision variables to specify at which dock-door

and in which time periods trucks are being processed. Note that processing a truck can only

start at the beginning of a time interval. Discrete-time formulations typically produce a much

stronger relaxation and lower bound than the continuous-time formulations. However, the time-

indexation frequently results in a huge number of decision variables, especially for problems

with long planning horizons and a fine time granularity4). Since the degree of difficulty of

solving an integer program increases exponentially as the number of integer variables increases,

it is often challenging to solve large problem instances with a discrete-time model5). In this

section, both discrete-time and continuous-time model formulations for the TSFD-RC-F are

presented.

1) E.g., Boysen et al. (2017), Van Belle et al. (2013), Shakeri et al. (2012), Li et al. (2004).
2) E.g., Rijal et al. (2019), Shahram fard and Vahdani (2019), Tadumadze et al. (2019), Ladier and Alpan (2018),

Bodnar et al. (2017), Serrano et al. (2017).
3) Lamorgese and Mannino (2019, p. 1586-1587).
4) Lamorgese and Mannino (2019, p. 1587).
5) Chen et al. (2010, p. 80).
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3.1.2.1 Discrete-time model formulations

The first discrete-time formulation for the resource and truck scheduling problem, denoted as

TSFD-RC-F-DT1, applies a set of binary decision variables xidt indexed by truck, dock-door, and

time. This set of decision variables expresses at which dock-doors and times inbound trucks

are unloaded. It is defined so that xidt = 1 if truck i is assigned to dock-door d and processing

starts in time interval t. Applying the notation listed in Tab. 3.2, the TSFD-RC-F-DT1 can be

formulated with the objective function (3.1) and the constraints (3.2) to (3.9).

TSFD-RC-F-DT1:

Minimize W (3.1)

subject to
∑︂

i∈I

∑︂

d∈D

t
∑︂

t′=max{0;t−pid+1}
κixidt′ ≤W ∀t ∈ T (3.2)

∑︂

d∈D

di
∑︂

t=ri

xidt = 1 ∀i ∈ I (3.3)

∑︂

i∈I

t
∑︂

t′=max{0;t−pid+1}
xidt′ ≤ 1 ∀t ∈ T , d ∈ D (3.4)

∑︂

d∈D

∑︂

t∈T
(t+ pid − 1)xidt − do ≤ Λyio ∀i ∈ I, o ∈ O : fio > 0 (3.5)

∑︂

i∈I

∑︂

o∈O
fioyio ≤ (1− α)

∑︂

i∈I

∑︂

o∈O
fio (3.6)

W ∈ R
+ (3.7)

xidt ∈ {0; 1} ∀i ∈ I, d ∈ D, t ∈ T (3.8)

yio ∈ {0; 1} ∀i ∈ I, o ∈ O : fio > 0 (3.9)

The objective is to find a feasible truck schedule that can be executed with a minimum number

of operators W (3.1). Constraints (3.2) set a lower bound on the number of operators and

ensure that in each time interval a sufficient number of operators is available. Hence, due

to the combination of (3.1) and (3.2), the objective function is of the minmax type. Every

inbound truck must be processed at exactly one dock-door and processing must start within its

time window (3.3). Note that this set of constraints may be further relaxed and expressed as
∑︁

d∈D
∑︁di

t=ri
xidt ≥ 1 for all i ∈ I. Inequalities (3.4) prevent overlaps, i.e., that multiple trucks

are processed in parallel at a dock-door. The value of the binary variable yio, which express
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Sets:

I Set of inbound trucks.

O Set of outbound trucks.

D Set of inbound doors.

T Set of time intervals.

Indices:

i Index used for inbound trucks, i ∈ I.
o Index used for outbound trucks, o ∈ O.
d Index used for inbound doors, d ∈ D.
t, t′ Indices used for time intervals, t, t′ ∈ T .

Input parameters:

ri Release time, i.e., earliest possible time to start processing inbound truck i ∈ I; ri ∈ T .
di Due time, i.e., latest possible time to start processing inbound truck i ∈ I; di ∈ T .
κi Number of operators required to process inbound truck i ∈ I; κi ∈ Z

+.

do Time when processing of outbound truck o ∈ O starts; do ∈ T .
pid Time for processing inbound truck i ∈ I at inbound dock-door d ∈ D; pid ∈ Z

+.

fio Number of product units to be transferred from inbound truck i ∈ I to outbound truck

o ∈ O; fio ∈ Z
+

0 .

α Required minimum service level; α ∈ [0, 1].

Λ Big number.

Decision variables:

W Continuous variable: Number of operators.

xidt Binary variable: 1, if inbound truck i ∈ I is processed at inbound door d ∈ D and starts

processing in time interval t ∈ T ; 0, otherwise.

yio Binary variable: 1, if processing inbound truck i ∈ I is finished before processing outbound

truck o ∈ O starts; 0, otherwise.

Table 3.2 Notations for the discrete-time model formulations of the TSFD-RC-F.

Source: Own table.

whether the cargo of inbound truck i arrives in the outbound area before loading operations

for outbound truck o start, is determined by inequalities (3.5). The variable yio is set to 1,

if processing of inbound truck i finishes late and its cargo could not arrive at the outbound

dock-door before outbound truck o’s planned departure time. In contrast, yio = 0, if inbound

truck i’s cargo arrives at the outbound dock-door before o’s planned departure time and hence

can be loaded. Furthermore, constraint (3.6) compels that the predefined service level is met,

that is, the total number of delayed product units may not exceed the permitted number of
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delayed product units. For this purpose, the permitted number of delayed product units is

calculated through the term (1− α) ·∑︁i∈I
∑︁

o∈O fio. Lastly, the decision variables are defined

in (3.7) to (3.9). Note that the decision variableW is defined as a continuous variable. Since κi
can only take positive integer values, it is guaranteed thatW ∈ Z

+.

The TSFD-RC-F-DT1 is characterized by a small number of constraints. However, note that it

contains big-M formulation in the form of constraints (3.5). These formulations are required

for determining the values of the decision variables yio and could potentially produce a weak

relaxation and lower bound. Therefore, an alternative discrete-time formulation, denoted as

TSFD-RC-F-DT2, that spares both the decision variables yio and big-M formulations, is proposed

subsequently. Instead, it involves preprocessing parameters aidt that express the number of

delayed product units associated with truck i if it is assigned to dock-door d and processing

starts in time interval t. Given that both the possible truck-to-door assignments and the number

of possible truck start times are finite, the computation of aidt is straightforward. More formally,

the parameters aidt can be calculated as follows:

aidt =
∑︂

o∈O:t+pid−1>do

fio ∀i ∈ I, d ∈ D, t ∈ T (3.10)

The TSFD-RC-F-DT2 can be formulated with the objective function (3.11) and the constraints

(3.12) to (3.17).

TSFD-RC-F-DT2:

Minimize W (3.11)

subject to
∑︂

i∈I

∑︂

d∈D

t
∑︂

t′=max{0;t−pid+1}
κixidt′ ≤W ∀t ∈ T (3.12)

∑︂

d∈D

di
∑︂

t=ri

xidt = 1 ∀i ∈ I (3.13)

∑︂

i∈I

t
∑︂

t′=max{0;t−pid+1}
xidt′ ≤ 1 ∀t ∈ T , d ∈ D (3.14)

∑︂

i∈I

∑︂

d∈D

∑︂

t∈T
aidtxidt ≤ (1− α)

∑︂

i∈I

∑︂

o∈O
fio (3.15)

W ∈ R
+ (3.16)

xidt ∈ {0; 1} ∀i ∈ I, d ∈ D, t ∈ T (3.17)
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The TSFD-RC-F-DT2’s, objective function (3.11), lower bound on the number of operators

(3.12), truck-to-door assignment constraints (3.13), and no overlap constraints (3.14) remain

unchanged compared with the TSFD-RC-F-DT1. Though, the logic to compel that the required

service level is met, is different. It incorporates the preprocessing parameters aidt and does

not require the decision variables yio and the associated big-M formulations. Hence, the TSFD-

RC-F-DT2 gets along with up to |I| · |O| fewer decision variables and constraints than the

TSFD-RC-F-DT1.

3.1.2.2 Continuous-time model formulations

A major drawback of the presented time-discrete model formulations is the time-indexation,

which inevitably results in a huge number of decision variables for big problem instances,

especially when long planning horizons with many time intervals must be considered. To

overcome this disadvantage, continuous-time model formulations are proposed in this section.

Since time is not modeled explicitly in these formulations, they allow to significantly reduce the

number of decision variables.

The first continuous-time model formulation, referred to as TSFD-RC-F-CT1, applies a set

of binary decision variables xid for the assignment of inbound trucks i ∈ I to dock-doors

d ∈ D and a set of continuous variables si to indicate the associated start times of the inbound

trucks. Note that the truck-to-door assignment and the start time of a truck is encoded in

two separate variables. This is a distinguishing characteristic compared to the discrete-time

model formulations, which encoded both information in a single binary variable xidt. Since

the planning horizon is not discretized, continuous-time models must deal with an infinite

number of possible start times for inbound trucks. This makes it impossible to adapt some of

the discrete-time models’ constraints, specifically the calculation of required operatorsW and

preventing multiple trucks from being processed in parallel at a dock-door. While formulating

these constraints in the discrete-time setting with a finite set of time intervals is straightforward,

it becomes more challenging in a continuous-time setting. Moreover, two additional sets of binary

decision variables, φij and ωji, are introduced for the sake of determining the truck sequence

at a dock-door and the operator requirements. Both variables are defined for every truck pair

(i, j) ∈ I2. While φij signals whether truck i starts before truck j (i.e., si < sj ⇒ φij = 1) or

truck j starts before truck i (i.e., sj < si ⇒ φij = 0), variable ωji indicates if processing truck

j finishes before processing of truck i starts (ωji = 1) or not (ωji = 0). When applying the

notation summarized in Table 3.3, the TSFD-RC-F-CT1 can be formulated with the objective

function (3.18) and the constraints (3.19) to (3.33).
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Indices:

j, l Indices used for inbound trucks, j, l ∈ I.

Decision variables:

xid Binary variable: 1, if inbound truck i ∈ I is processed at inbound door d ∈ D; 0, otherwise.

si Continuous variable: Start time of inbound truck i ∈ I.
φij Binary variable: 1, if processing of inbound truck i starts before processing of inbound truck

j starts; 0, otherwise.

ωji Binary variable: 1, if processing of inbound truck j starts before processing of inbound truck

i is finished; 0, otherwise.

Table 3.3 Additional and altered notations for the continuous-time model formulations of the
TSFD-RC-F.

Source: Own table.

TSFD-RC-F-CT1:

Minimize W (3.18)

subject to
∑︂

d∈D
xid = 1 ∀i ∈ I (3.19)

ri ≤ si ≤ di ∀i ∈ I (3.20)

si + pidxid + Λ(xid + xjd + φij − 3) ≤ sj ∀i, j ∈ I : i ̸= j, d ∈ D (3.21)

φij + φji = 1 ∀i, j ∈ I : i ̸= j (3.22)

φij + φjk ≤ 1 + φik ∀i, j, k ∈ I (3.23)

sj − (si +
∑︂

d∈D
pidxid) ≤ Λ(1− ωji) ∀i, j ∈ I : i ̸= j (3.24)

(si +
∑︂

d∈D
pidxid)− sj ≤ Λωji ∀i, j ∈ I : i ̸= j (3.25)

∑︂

i∈I:i ̸=j

κi(φij + ωji − 1) ≤W − κj ∀j ∈ I (3.26)

(si +
∑︂

d∈D
pidxid)− do ≤ Λyio ∀i ∈ I, o ∈ O : fio > 0 (3.27)

∑︂

i∈I

∑︂

o∈O
fioyio ≤ (1− α)

∑︂

i∈I

∑︂

o∈O
fio (3.28)

W ∈ R
+ (3.29)

xid ∈ {0; 1} ∀i ∈ I, d ∈ D (3.30)

si ∈ R
+ ∀i ∈ I (3.31)

φij , ωji ∈ {0; 1} ∀i, j ∈ I (3.32)

yio ∈ {0; 1} ∀i ∈ I, o ∈ O (3.33)
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TSFD-RC-F-CT1 adopts the objective function from the TSFD-RC-F-DT1, that is to minimize

the number of required operatorsW (3.18). Through constraints (3.19), every inbound truck

is assigned to a dock-door, whereas constraints (3.20) guarantee that truck processing starts

within a truck’s time window. Inequalities (3.21) prevent multiple trucks from being processed

simultaneously at the same dock-door. Constraints (3.22) are introduced to compel a well-

defined precedence relation for truck pairs. The values of variables ωji, expressing whether

processing truck j starts before processing of truck i is finished, are determined via the big-M

formulations in (3.24) and (3.25). Furthermore, at any point in time, it must be assured that the

number of operators required for processing trucks does not exceed the number of operators on

duty. Luckily, this does not imply explicit checks for every point in time. Instead, it is sufficient

to assure that whenever the processing of a truck j starts, at most (W − κj) operators are busy

with processing other trucks at that time (3.26). Specifically, this involves determining for every

truck i ∈ I \ {j} whether it is overlapping the start time sj of truck j. By definition, truck i

is overlapping sj if the following two conditions are met: (i) Processing truck i starts before

processing of truck j (i.e., φij = 1), and (ii) processing of truck i ends after processing of truck

j starts (i.e., ωji = 1). Figure 3.1 shows an example to illustrate the overlapping conditions. In

08:00 08:30 09:00 09:30 10:00
Time

1

2

3

4

D
oc

k-
do

or

Truck 1

Truck 2

Truck 3

Truck 4

Truck 5

Truck 6

Figure 3.1 Exemplary truck schedule.
Source: Own figure.

this example, the processing of both trucks five and six overlap the starting time of truck four.

Furthermore, neither truck four nor truck six overlap the starting time of truck five. The starting

time of truck six is overlapped by truck five. The example also includes a situation in which

three trucks, namely truck one, two, and three, start at the same time. While constraints (3.22)

break ties between truck pairs, they do not necessarily break ties between more than two trucks

in a logically correct way. For instance, consider the three inbound trucks i ∈ {1, 2, 3} with

identical start times in Figure 3.1. The model could break ties for truck pairs (1, 2) and (2, 3) by

setting φ12 = φ23 = 1. In other words, the model defines that truck one starts before truck two
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and that truck two starts before truck three. However, note that constraints (3.22) then do not

guarantee to set φ13 = 1, i.e., truck one is not necessarily defined to start before truck three. In

fact, constraints (3.26) incentivize the model to set φ13 = 0 instead, since this would result in a

lower (and hence wrong) number of required operators. To assure both a correct definition of

φij and calculation of the required operators when more than two trucks share an identical start

time, therefore, so-called transitivity constraints (3.23) are introduced. In the example, these

constraints set φ13 to one. Figure 3.2 illustrates this example. Moreover, constraints (3.27) and

(3.28) determine the number of delayed product units which must not exceed the permitted

maximum shortage quantity. Lastly, the decision variables are defined in (3.29) to (3.33).

Without transitivity constraints With transitivity constraints

1 2 3 1 2 3

𝑠1 = 𝑠2 = 𝑠3 ∧ 𝜙12 = 𝜙23 = 1 ⇏ 𝜙13 = 1. 𝑠1 = 𝑠2 = 𝑠3 ∧ 𝜙12 = 𝜙23 = 1 ⇒ 𝜙13 = 1. 

Possible outcomes Possible outcomes

1 2 3

or

𝜙13 = 1

𝜙31 = 1

𝜙13 = 1

Figure 3.2 The effect of transitivity constraints.
Source: Own figure.

While the TSFD-RC-F-CT1 involves fewer decision variables than the presented discrete-time

model formulations, it comes along with a huge number of constraints. Especially the transitivity

constraints, which are required for every triple (i, j, k) of trucks, constitute a major part of the

constraints. Therefore, an alternative continuous-time formulation, denoted as TSFD-RC-F-CT2,

that allows to reduce the number of constraints, is proposed. The TSFD-RC-F-CT2 can be

formulated with the objective function (3.34) and the constraints (3.35) to (3.49).
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TSFD-RC-F-CT2:

Minimize W (3.34)

subject to
∑︂

d∈D
xid = 1 ∀i ∈ I (3.35)

ri ≤ si ≤ di ∀i ∈ I (3.36)

si + pidxid + Λ(xid + xjd + φij − 3) ≤ sj ∀i, j ∈ I : i ̸= j, d ∈ D (3.37)

φij + φji = 1 ∀i, j ∈ I : i ̸= j (3.38)

si + λ ≤ sj + Λφji ∀i, j ∈ I (3.39)

sj − (si +
∑︂

d∈D
pidxid) ≤ Λ(1− ωji) ∀i, j ∈ I : i ̸= j (3.40)

(si +
∑︂

d∈D
pidxid)− sj ≤ Λωji ∀i, j ∈ I : i ̸= j (3.41)

∑︂

i∈I:i ̸=j

κi(φij + ωji − 1) ≤W − κj ∀j ∈ I (3.42)

(si +
∑︂

d∈D
pidxid)− do ≤ Λyio ∀i ∈ I, o ∈ O : fio > 0 (3.43)

∑︂

i∈I

∑︂

o∈O
fioyio ≤ (1− α)

∑︂

i∈I

∑︂

o∈O
fio (3.44)

W ∈ R
+ (3.45)

xid ∈ {0; 1} ∀i ∈ I, d ∈ D (3.46)

si ∈ R
+ ∀i ∈ I (3.47)

φij , ωji ∈ {0; 1} ∀i, j ∈ I (3.48)

yio ∈ {0; 1} ∀i ∈ I, o ∈ O (3.49)

The TSFD-RC-F-CT2 replaces TSFD-RC-F-CT1’s transitivity constraints (3.23) with constraints

(3.39). This constraint set, which is defined for every truck pair (i, j) and uses a very small

constant λ (e.g., λ = 0.01), breaks ties between trucks with the same start time. Whenever

two trucks i and j have the same start time, it sets φji = 1. This approach gets along with

(|I|3 − |I|2) fewer constraints than the TSFD-RC-F-CT1. Besides that, both model formulations

are identical with respect to the objective function and remaining constraints.
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Moreover, the search space can be further tightened by introducing the valid inequalities (3.50)

and (3.51) on the decision variables φij . According to preliminary tests, these inequalities help

to reduce the solution time.

si − sj ≤ Λ(1− φij) ∀i, j ∈ I : i ̸= j (3.50)

sj − si ≤ Λφij ∀i, j ∈ I : i ̸= j (3.51)

3.1.3 Boundaries

Developing good lower and upper bounds is essential when solving an integer program, since

they may help with fathoming and testing for optimality and hence reduce the solution time1).

Therefore, both generic upper and lower bounds for the number of operators W that are

intuitively appealing and computationally trivial are proposed in this section. These boundaries

can be plugged into the mixed-integer programming formulations of the TSFD-RC-F. A lower

bound for the objective function of the TSFD-RC-F, denoted asWLB , is given in equation (3.52).

It is defined by the minimum resource requirement of a truck (mini∈I{κi}), the minimum total

processing time of all trucks (
∑︁

i∈I mind∈D{pid}), and the maximum time span that is available

for processing trucks, i.e., the difference between the latest possible time an inbound truck

could be finished and the earliest release time (maxi∈I,d∈D{di + pid − 1} −mini∈I{ri}). Note
that ⌈∗⌉ in 3.52 denotes the upper integer part of ∗.

WLB =

⎡

⎢

⎢

⎢

min
i∈I
{κi} ·

∑︁

i∈I
min
d∈D
{pid}

max
i∈I,d∈D

{di + pid − 1} −min
i∈I
{ri}

⎤

⎥

⎥

⎥

(3.52)

For the calculation of a valid upper bound on the objective value, denoted as WUB, first

κ̃it is defined as the number of workers truck i would require if it was processed in time

interval t. Note that a truck i ∈ I could potentially be processed in every time interval

t ∈ [ri, di +maxd∈D{ pid } − 1] ∩ Z, i.e., between its release time and the sum of its due time

and maximum processing time. This leads to

κ̃it =

⎧

⎨

⎩

κi if ri ≤ t ≤ di +maxd∈D{pid} − 1

0 else.
∀i ∈ I, t ∈ T . (3.53)

1) Cruz-Reyes et al. (2015, p. 42).
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Based on this, for every t ∈ T a multisetKt = { κ̃it | i ∈ I }b which contains all values κ̃it can be

defined. Note that Kt is a multiset, i.e., it allows for multiple instances for each of its elements.

IntroducingWUB
t for the maximum number of workers that could possibly be needed in parallel

in time interval t,WUB
t , hence, appears to be the sum of the |D| biggest elements in the multiset

Kt. This can be written as

WUB
t = argmax

K
′

t⊂Kt,|K′

t |=|D|

∑︂

k∈K′

t

k ∀t ∈ T . (3.54)

Lastly, the upper boundWUB, which can be plugged into the discrete-time formulations of the

TSFD-RC-F, is the maximum of allWUB
t :

WUB = max
t∈T

{︁

WUB
t

}︁

. (3.55)

3.1.4 Complexity

Large cross-docking platforms, which can easily have tens of thousands of square meters and

dozens of dock-doors, often process several hundreds of trucks on a daily basis. Ladier and

Alpan, for instance, report on a cross-docking platform of a less-than-truckload logistics service

provider handling ca. 320 trucks every day1). Similar numbers can be observed in the postal

service industry2), whereas even bigger numbers of up to 480 trucks per day are reported in the

automotive industry3). For such large-sized problem instances, it can be very difficult to solve

the TSFD-RC-F. Specifically, the number of inbound trucks |I|, the number of dock-doors |D|,
the number of outbound trucks |O|, and the number of time intervals |T | are critical factors that
make a problem instance of the TSFD-RC-F either harder or easier to solve. They are the main

complexity drivers of the TSFD-RC-F and have a strong impact on the model dimensions, that is

the number of decision variables and number of constraints. Table 3.4 shows the mathematical

expressions for calculating the number of decision variables and constraints for the different

model formulations of the TSFD-RC-F. Moreover, Table 3.5 compares the model dimensions of

the formulations for exemplary instances of various size.

1) Ladier and Alpan (2016, p. 156).
2) Boysen et al. (2017).
3) Battini et al. (2013, p. 210), Berghman and Leus (2015, p. 791).
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Model formulation #DV #C

TSFD-RC-F-DT1 |I| · (|D| · |T |+ |O|) + 1 |T | · (|D|+ 1) + |I| · (|O|+ 1) + 1

TSFD-RC-F-DT2 |I| · |D| · |T |+ 1 |T | · (|D|+ 1) + |I|+ 1

TSFD-RC-F-CT1 |I| · (2 · |I|+ |D|+ |O|+ 1) + 1 |I|3 + |I| · (|I| − 1) · (|D| + 5) + |I| ·
(|O|+ 4) + 1

TSFD-RC-F-CT2 |I| · (2 · |I|+ |D|+ |O|+ 1) + 1 |I| · (|I| − 1) · (|D| + 5) + |I| · (|I| +
|O|+ 4) + 1

#DV and #C denote the number of decision variables and the number of constraints, respectively.

For the continuous-time models, #C includes the valid inequalities (3.50) and (3.51).

Table 3.4 Number of decision variables and constraints for different model formulations of the
TSFD-RC-F.

Source: Own table.

The tables indicate that the number of decision variables in the case of discrete-time models

and the number of (big-M) constraints in the case of continuous-time models, can easily grow

into the millions. The examples show that the continuous-time models deal with a considerably

lower number of decision variables than the discrete-time models. If a fine time granularity is

compulsory, continuous-time models get along with up to 94% fewer decision variables than the

discrete-timemodels. However, this comes at the cost of an increasing number of constraints. The

TSFD-RC-F-CT1, for instance, handles up to ca. 1,200 and 6,100 times more constraints than

the TSFD-RC-F-DT1 and TSFD-RC-F-DT2, respectively. The TSFD-RC-F-CT2, which spares out

the transitivity constraints, on the other hand, requires ca. 80% less constraints than the TSFD-

RC-F-CT1. It can be summarized that the huge complexity likely prevents real-world instances

from being solved in a reasonable time by simply feeding the TSFD-RC-F into an off-the-shelf

solver such as CPLEX or Gurobi. Even identifying a feasible solution to the TSFD-RC-F turns out

to be very challenging. In fact, it is a strongly NP-complete task, as described in the following

theorems.

Theorem 3.1.1. Finding a feasible solution for the TSFD-RC-F is strongly NP-complete for |D| ≥ 1.

Even without the service level constraint (α = 0), i.e., for the special case that all product units

could be delayed, finding a feasible solution remains NP-complete in the strong sense. This

directly follows from the TSFD-RC-F without service level constraint being a generalization of

the single machine scheduling problem with time windows, which is well known to be strongly

NP-complete. Note that the feasibility of a given solution to the TSFD-RC-F can be tested in

polynomial time.

39



Instances
T
S
F
D
-R
C
-F
-D

T
1

T
S
F
D
-R
C
-F
-D

T
2

T
S
F
D
-R
C
-F
-C
T
1

T
S
F
D
-R
C
-F
-C
T
2

|I|
|D
|
|O
|
|T
|

#
D
V

#
C

#
D
V

#
C

#
D
V

#
C

#
D
V

#
C

50
8

20
48

20,201
1,483

19,201
483

6,451
158,051

6,451
35,551

50
8

20
96

39,401
1,915

38,401
915

6,451
158,051

6,451
35,551

50
8

20
240

97,001
3,211

96,001
2,211

6,451
158,051

6,451
35,551

100
15

40
48

76,001
4,869

72,001
869

25,601
1,202,401

25,601
212,401

100
15

40
96

148,001
5,637

144,001
1,637

25,601
1,202,401

25,601
212,401

100
15

40
240

364,001
7,941

360,001
3,941

25,601
1,202,401

25,601
212,401

200
30

60
48

300,001
13,689

288,001
1,689

98,201
9,405,801

98,201
1,445,801

200
30

60
96

588,001
15,177

576,001
3,177

98,201
9,405,801

98,201
1,445,801

200
30

60
240

1,452,001
19,641

1,440,001
7,641

98,201
9,405,801

98,201
1,445,801

300
50

80
48

744,001
26,749

720,001
2,749

219,301
31,958,701

219,301
5,048,701

300
50

80
96

1,464,001
29,197

1,440,001
5,197

219,301
31,958,701

219,301
5,048,701

300
50

80
240

3,624,001
36,541

3,600,001
12,541

219,301
31,958,701

219,301
5,048,701

#
D
V
and

#
C
denote

the
num

ber
of

decision
variables

and
the

num
ber

of
constraints,respectively.

For
the

continuous-tim
e
m
odels,

#
C
includes

the
valid

inequalities
(3.50)

and
(3.51).

T
a
b
le

3
.5

Exem
plary

m
odeldim

ensions
for

diff
erent

m
odelform

ulations
of

the
T
S
F
D
-R
C
-F.

S
o
u
rce

:
O
w
n
table.

40



Theorem 3.1.2. Finding a feasible solution for the TSFD-RC-F is strongly NP-complete for |D| ≥ 1,

0 < α ≤ 1, and (di − ri) = |T | for all i ∈ I.

Proof. To prove theorem 3.1.2, a pseudopolynomial reduction from a single machine scheduling

problem to minimize tardy task weights (SMSP-TTW) which is known to be NP-complete, is

presented1).

SMS-TTW: Given a set J of independent jobs to be scheduled without preemption on a single

machine. Each job j ∈ J has a processing time pj , a weight fj , a deadline dj , and may start

at any time in the planning horizon. Furthermore, a positive integer F is given. Is there a

conflict-free schedule where all jobs j ∈ J are processed such that the sum of fj , taken over all

j ∈ J for which sj + pj > dj , does not exceed F?

Any instance of the SMS-TTW can be transformed into an instance of the TSFD-RC-F. For each

job j, a pair (i, o) with an inbound truck i and an outbound truck o is introduced. The release

time and deadline of inbound truck i are 0 and |T |, respectively. Moreover, outbound truck o

has the deadline do = dj . Inbound truck i holds fj product units and solely supplies outbound

truck o. That is, fio = fj . Hence, the question to be asked is whether there exists a feasible

truck schedule, that is a schedule that has no overlaps and that satisfies α ≥ 1− F∑︁
j∈J

fj
? The

correspondence between the instances (and their solutions) is hence obvious.

Corollary 3.1.3. The TSFD-RC-F is strongly NP-hard.

3.2 Multi-mode resource and truck scheduling problem

3.2.1 Introduction

The TSFD-RC-F assumed that the required number of operators for processing a truck is given

and known in advance. For instance, a terminal manager could make use of rule of thumbs

such as distinguishing between small trucks and big trucks and deploying one operator and

two operators, respectively. In real-world settings, however, terminal managers have the further

flexibility of adapting the resources for certain trucks. If a truck, for instance, is very time critical,

a terminal manager could recede from his rule of thumb and deploy additional operators in

1) Garey and Johnson (1979, p. 236).
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order to speed up truck processing. Tadumadze et al. study this possibility in the context

of cross-docking terminals and distribution centers1). In this section, a model for scheduling

resources and trucks in a cross-docking terminal is presented. The model integrates the decision

of how many resources should be deployed for truck processing.

3.2.1.1 Problem description

Unlike the TSFD-RC-F, the multi-mode resource and truck scheduling problem, referred to as

TSFD-RC-V, does not assume that the number of deployed operators for processing a truck is

given and known in advance. Instead, the TSFD-RC-V integrates the decision of how many

operators should process each inbound truck. While deploying more operators accelerates

truck processing, deploying fewer operators prolongs the processing time span. The remaining

model assumptions of the TSFD-RC-V, which it has in common with the TSFD-RC-F, are briefly

summarized below:

• Fixed outbound departures: Outbound trucks have already been scheduled, i.e., it is

known at which dock-doors and at which times outbound trucks will be processed.

• Exclusive service mode: Inbound trucks can only be processed at inbound dock-doors

and outbound trucks can only be processed at outbound dock-doors.

• Truck time windows: Processing of an inbound trucks must start within the truck’s

presupposed time window, which is defined through a release time and due time.

• Standardized freight units: Cargo is shipped in standardized freight units such as pallets.

• Sort-at-receiving protocol: Cargo is unloaded from inbound trucks and directly trans-

ferred to the associated outbound dock-doors. Upon arrival, the cargo is temporarily

stored in front of the outbound dock-door until loading of the outbound truck starts.

• Truck processing time: The processing time of inbound trucks include the time for

unloading all freight units and transshipping them to the associated outbound dock-doors.

It is hence directly proportional to the number of freight units and depends on the distance

between the unloading dock and the loading docks.

• No preemption: That is, (un-)loading a truck may not be interrupted. Moreover, an

1) Tadumadze et al. (2019).
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operator cannot process multiple trucks at the same time and must not start a new task

prior to finishing her current task.

• Delayed freight units: Delaying cargo is allowed. Cargo that arrives at the outbound

dock-door after loading of the outbound truck starts is regarded as delayed freight units.

It is postponed until the next departure to the same destination.

• Service level: The required service level and hence the allowed number of delayed freight

units is defined and known.

• Operator characteristics and availability: Trucks are processed by operators, i.e., work-

ers equipped with material handling equipment. All operators have identical characteristics

(i.e., identical skills, speed, etc.), are available throughout the whole planning horizon,

and do not take any breaks.

Similar to the TSFD-RC-F, the TSFD-RC-V aims to find an efficient truck schedule, that is, a

schedule that minimizes the number of operators active in the busiest period.

3.2.1.2 Related literature

In the following, the related literature for the TSFD-RC-V will be summarized. In order to avoid

redundancies with the literature described in the context of the TSFD-RC-F, only studies which

consider multi-mode processing will be included in this section.

Truck scheduling publications dealing with multi-mode scheduling are quite rare. To the best

of the author’s knowledge, Tadumadze et al. are the only ones who allow to adapt the

workforce for processing trucks and consider a scarce workforce. Since they do not consider an

objective function that is directly related to the internal resource requirements, their model is

not immediately applicable to the TSFD-RC-V.

Speeding up jobs by assigning additional resources to them is also subject to task scheduling

on processors. Błażewicz et al., for instance, introduced the problem of scheduling so-called

malleable tasks, i.e., tasks which can be executed by multiple processors simultaneously in

order to speed up processing1). However, they do neither consider additional resources nor an

objective function that is related to the resources. Publications dealing with resource related

objective functions are in general comparatively rare. Gorczyca and Janiak are one of the

1) Błażewicz et al. (2004, p. 65).
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few exceptions who consider a resource-leveling objective in the problem of scheduling non-

preemptive tasks on identical parallel processors. In their problem, the processing speed of a

task depends on the amount of a continuously divisible renewable resource assigned to this

task1). Moreover, Chen study the problem of scheduling jobs on identical parallel machines

and allocating non-renewable resources to the jobs2). However, neither of the two studies are

immediately applicable to the TSFD-RC-V which deals with unrelated parallel machines (i.e.,

dock-doors) and considers a discrete renewable resource (i.e., operators).

Moreover, multi-mode processing can also be found in the resource-constrained project schedul-

ing problem literature. Wȩglarz et al. survey the literature on multi-mode project scheduling

problems3). Multi-mode processing and resource leveling objectives, two key characteristics of

the TSFD-RC-V, can be found in the so-called multi-mode resource investment problem, which

was firstly proposed by Hsu and Kim4). Moreover, Gerhards creates a benchmark library and

proposes new lower bounds for this problem. Even though the multi-mode resource investment

problem applies a similar objective as the TSFD-RC-V, it generally fails to consider essential

truck scheduling particularities, such as travel distances between inbound and outbound doors.

Lastly, Emde et al. propose a special type of multi-mode RCPSP with two renewable resources

and a resource leveling objective for building up the unit load devices at an air-cargo terminal5).

Their model, however, also cannot be applied to the TSFD-RC-V as it is not capable to model

door-dependent truck processing times – a key characteristic of the TSFD-RC-V.

As existing research cannot directly be applied to the multi-mode resource and truck scheduling

problem, a new solution concept needs to be developed.

3.2.2 Model formulations

In this section, both discrete-time and continuous-time model formulations for the multi-mode

resource and truck scheduling problem will be presented.

1) Gorczyca and Janiak (2010, p. 32).
2) Chen (2004).
3) Wȩglarz et al. (2011).
4) Hsu and Kim (2005).
5) Emde et al. (2020).
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3.2.2.1 Discrete-time model formulations

Similar to the TSFD-RC-F, the first discrete-time formulation for the multi-mode resource

and truck scheduling problem, referred to as TSFD-RC-V-DT1, applies a set of binary decision

variables xidkt. These variables are indexed by truck, dock-door, operator mode, and time.

They express at which dock-door and time the inbound trucks are unloaded and how many

operators are deployed for processing trucks. The decision variable is defined so that xidkt = 1

if truck i is processed in operator mode k at dock-door d and processing starts in time interval t.

When applying the notation listed in Table 3.6, the TSFD-RC-V-DT1 can be formulated with

the objective function (3.56) and constraints (3.57) to (3.64).

TSFD-RC-V-DT1:

Minimize W (3.56)

subject to
∑︂

i∈I

∑︂

d∈D

∑︂

k∈K

t
∑︂

t′=max{0;t−pidk+1}
κikxidkt′ ≤W ∀t ∈ T (3.57)

∑︂

d∈D

∑︂

k∈K

di
∑︂

t=ri

xidkt = 1 ∀i ∈ I (3.58)

∑︂

i∈I

∑︂

k∈K

t
∑︂

t′=max{0;t−pidk+1}
xidkt′ ≤ 1 ∀t ∈ T , d ∈ D (3.59)

∑︂

d∈D

∑︂

k∈K

∑︂

t∈T
(t+ pidk − 1)xidkt − do ≤ Λyio ∀i ∈ I, o ∈ O : fio > 0 (3.60)

∑︂

i∈I

∑︂

o∈O
fioyio ≤ (1− α)

∑︂

i∈I

∑︂

o∈O
fio (3.61)

W ∈ R
+ (3.62)

xidkt ∈ {0; 1} ∀i ∈ I, d ∈ D,
k ∈ K, t ∈ T

(3.63)

yio ∈ {0; 1} ∀i ∈ I, o ∈ O : fio > 0 (3.64)

The TSFD-RC-V-DT1 seeks to identify a feasible truck schedule which can be executed with a

minimum number of operatorsW (3.56). In this context, a truck schedule is regarded as being

feasible if it satisfies the resource constraints, assignment constraints, no-overlap constraints,

and service level constraint. Specifically, the resource constraints (3.57), which set a lower
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Sets:

I Set of inbound trucks.

O Set of outbound trucks.

D Set of inbound doors.

K Set of operator modes.

T Set of time intervals.

Indices:

i Index used for inbound trucks, i ∈ I.
o Index used for outbound trucks, o ∈ O.
d Index used for inbound doors, d ∈ D.
k Index used for operator modes, k ∈ K.
t, t′ Indices used for time intervals, t, t′ ∈ T .

Input parameters:

ri Release time, i.e., earliest possible time to start processing inbound truck i ∈ I; ri ∈ T .
di Due time, i.e., latest possible time to start processing inbound truck i ∈ I; di ∈ T .
κik Number of operators required when processing inbound truck i ∈ I in operator mode

k ∈ K; κik ∈ Z
+.

do Time when processing of outbound truck o ∈ O starts; do ∈ T .
pidk Time for processing inbound truck i ∈ I at inbound dock-door d ∈ D in operator mode

k ∈ K; pidk ∈ Z
+.

fio Number of product units to be transferred from inbound truck i ∈ I to outbound truck

o ∈ O; fio ∈ Z
+

0 .

α Required minimum service level; α ∈ [0, 1].

Λ Big number.

Decision variables:

W Continuous variable: Number of operators.

xidkt Binary variable: 1, if inbound truck i ∈ I is processed at inbound door d ∈ D in operator

mode k ∈ K and starts processing in time interval t ∈ T ; 0, otherwise.

yio Binary variable: 1, if processing inbound truck i ∈ I is finished before processing outbound

truck o ∈ O starts; 0, otherwise.

Table 3.6 Notations for the discrete-time model formulations of the TSFD-RC-V.

Source: Own table.

bound on the number of operators, assure that in each time interval a sufficient number of

operators is deployed in order to handle the actual workload. Hence, the TSFD-RC-V-DT1

deals with a minmax objective function. Due to the truck assignment constraints (3.58), every
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inbound truck i is assigned to exactly one dock-door and processed in exactly one operator mode.

Moreover, the constraints compel that truck processing starts within a truck’s time window. Note

that this set of constraints may be further relaxed and expressed as
∑︁

d∈D
∑︁

k∈K
∑︁di

t=ri
xidkt ≥ 1

for all i ∈ I. The no-overlap constraints (3.59) prevent multiple trucks from being processed in

parallel at a dock-door. Once again, the binary variable yio is used to express whether inbound

truck i’s cargo arrives in the outbound area before loading of outbound truck o starts. Specifically,

yio is set to 1, if inbound truck i’s cargo arrives in the outbound area after outbound truck o’s

loading operations start, i.e., the cargo misses the deadline and cannot be loaded (3.60). The

decision variables yio are then used in the service level constraint (3.61), which compels that

the number of delayed product units may not exceed the permitted number of delayed product

units. In other words, constraint (3.61) assures that the predefined service level α is met. Lastly,

the domain of the decision variables is defined by (3.62), (3.63), and (3.64). Note thatW is

defined as a continuous variable. Since κik can only take positive integer values, it is guaranteed

thatW ∈ Z
+.

Note that the TSFD-RC-V-DT1’s big-M formulations in constraints (3.60) may produce a weak

relaxation and lower bound. This, in turn, can make it more challenging to solve instances

of the TSFD-RC-V-DT1 with a default solver. Therefore, an alternative discrete-time formu-

lation, denoted as TSFD-RC-V-DT2, is proposed below. Specifically, it contains preprocessing

parameters aidkt which express the delayed product units when truck i is processed in operator

mode k at dock-door d, and processing starts in time interval t. Since the possible truck-to-door

assignments, the number of operator modes, and the number of possible truck start times are

finite, the computation of aidkt is straightforward. More formally, the parameters aidkt can be

calculated as follows:

aidkt =
∑︂

o∈O:t+pidk−1>do

fio ∀i ∈ I, d ∈ D, k ∈ K, t ∈ T (3.65)

When applying the preprocessing parameters aidkt, the TSFD-RC-V-DT2 can be formulated

with the objective function (3.66) and the constraints (3.67) to (3.72). The TSFD-RC-V-DT2’s

objective function (3.66), resource constraints (3.67), truck-to-door assignment constraints

(3.68), and no-overlap constraints (3.69) remain unchanged compared with the TSFD-RC-V-

DT1. Its service level constraint (3.70), on the other hand, differs from the TSFD-RC-V-DT1’s

service level constraint, since it applies the described preprocessing parameters aidkt instead of

the decision variables yio.
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TSFD-RC-V-DT2:

Minimize W (3.66)

subject to
∑︂

i∈I

∑︂

d∈D

∑︂

k∈K

t
∑︂

t′=max{0;t−pidk+1}
κixidkt′ ≤W ∀t ∈ T (3.67)

∑︂

d∈D

∑︂

k∈K

di
∑︂

t=ri

xidkt = 1 ∀i ∈ I (3.68)

∑︂

i∈I

∑︂

k∈K

t
∑︂

t′=max{0;t−pid+1}
xidt′ ≤ 1 ∀t ∈ T , d ∈ D (3.69)

∑︂

i∈I

∑︂

d∈D

∑︂

k∈K

∑︂

t∈T
aidktxidkt ≤ (1− α)

∑︂

i∈I

∑︂

o∈O
fio (3.70)

W ∈ R
+ (3.71)

xidkt ∈ {0; 1} ∀i ∈ I, d ∈ D,
k ∈ K, t ∈ T

(3.72)

3.2.2.2 Continuous-time model formulations

When applying the notations from Table 3.7, the TSFD-RC-V-CT1 can be formulated with the

objective function (3.73) and the constraints (3.74) to (3.90). In light of TSFD-RC-V being a

generalization of the TSFD-RC-F, it is no surprise that the TSFD-RC-V-CT1 is very similar to the

TSFD-RC-F-CT1. Once again, the TSFD-RC-V-CT1 aims to minimize the number of deployed

operators (3.73). Constraints (3.74) assure that each truck is processed in one operator mode

k ∈ K at one dock-door d ∈ D. Moreover, violations of truck time windows are prevented by

constraints (3.75). Constraints (3.76) assure that at most one truck is processed at a dock-door

at a time. Constraints (3.77) and (3.78) are used to compel well-defined precedence relations

between two trucks and more than two trucks with the same start time, respectively. Moreover,

constraints (3.79) and (3.80) determine the values of decision variables ωji, that is, whether

truck j starts before truck i is finished (ωji = 1) or not (ωji = 0). Both φij and ωji are then

used in constraints (3.81) in order to determine the value of the integer decision variable θji.

Recall that θji expresses the number of deployed operators for processing truck i at truck j’s

start time sj . Based on the values of variables θji, constraints (3.82) assure that whenever a

truck j starts, at most (W −∑︁d∈D
∑︁

k∈K κjkxjdk) operators are deployed for processing other

trucks at that time. Moreover, constraints (3.83) and (3.84) allow to determine the number of

delayed product units which must not exceed the permitted maximum shortage quantity. Lastly,
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the domains of the decision variables are defined by (3.85) to (3.90).

TSFD-RC-V-CT1:

Minimize W (3.73)

subject to
∑︂

d∈D

∑︂

k∈K
xidk = 1 ∀i ∈ I (3.74)

ri ≤ si ≤ di ∀i ∈ I (3.75)

si +
∑︂

k∈K
pidkxidk+

Λ(
∑︂

k∈K
[xidk + xjdk] + φij − 3) ≤ sj

∀i, j ∈ I : i ̸= j, d ∈ D (3.76)

φij + φji = 1 ∀i, j ∈ I : i ̸= j (3.77)

φij + φjl ≤ 1 + φil ∀i, j, l ∈ I (3.78)

sj − (si +
∑︂

d∈D

∑︂

k∈K
pidkxidk) ≤ Λ(1− ωji) ∀i, j ∈ I : i ̸= j (3.79)

(si +
∑︂

d∈D

∑︂

k∈K
pidkxidk)− sj ≤ Λωji ∀i, j ∈ I : i ̸= j (3.80)

∑︂

d∈D

∑︂

k∈K
κikxidk − Λ(2− φij − ωji) ≤ θji ∀i, j ∈ I : i ̸= j (3.81)

∑︂

i∈I:i ̸=j

θji ≤W −
∑︂

d∈D

∑︂

k∈K
κjkxjdk ∀j ∈ I (3.82)

(si +
∑︂

d∈D

∑︂

k∈K
pidkxidk)− do ≤ Λyio ∀i ∈ I, o ∈ O : fio > 0 (3.83)

∑︂

i∈I

∑︂

o∈O
fioyio ≤ (1− α)

∑︂

i∈I

∑︂

o∈O
fio (3.84)

W ∈ R
+ (3.85)

xidk ∈ {0; 1} ∀i ∈ I, d ∈ D, k ∈ K (3.86)

si ∈ R
+ ∀i ∈ I (3.87)

φij , ωji ∈ {0; 1} ∀i, j ∈ I (3.88)

θji ∈ Z
+ ∀i, j ∈ I (3.89)

yio ∈ {0; 1} ∀i ∈ I, o ∈ O (3.90)
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Indices:

j, l Indices used for inbound trucks, j, l ∈ I.

Decision variables:

xidk Binary variable: 1, if inbound truck i ∈ I is processed at inbound door d ∈ D in operator

mode k ∈ K; 0, otherwise.

si Continuous variable: Start time of inbound truck i ∈ I.
φij Binary variable: 1, if processing of inbound truck i starts before processing of inbound truck

j starts; 0, otherwise.

ωji Binary variable: 1, if processing of inbound truck j starts before processing of inbound truck

i is finished; 0, otherwise.

θji Integer variable: Number of deployed operators for processing truck i at truck j’s start time

sj .

Table 3.7 Additional and altered notations for the continuous-time model formulations of the of the
TSFD-RC-V.

Source: Own table.

Furthermore, using the identical approach as in the context of the continuous-time resource

and truck scheduling problem allows to reduce the number of constraints. Once again, the

TSFD-RC-V-CT1’s transitivity constraints (3.78) can be replaced constraints (3.39), which

were used in the TSFD-RC-F-CT2. The resulting continuous-time formulation, referred to as

TSFD-RC-V-CT2, can then be formulated with objective function (3.91) and constraints (3.92)

to (3.108). Besides using constraints (3.96) instead of the transitivity constraints, the TSFD-RC-

V-CT2 is identical with the TSFD-RC-V-CT1. Note that the valid inequalities (3.50) and (3.51)

can also be applied in both continuous-time models in order to further tighten the search space.
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TSFD-RC-V-CT2:

Minimize W (3.91)

subject to
∑︂

d∈D

∑︂

k∈K
xidk = 1 ∀i ∈ I (3.92)

ri ≤ si ≤ di ∀i ∈ I (3.93)

si +
∑︂

k∈K
pidkxidk+

Λ(
∑︂

k∈K
[xidk + xjdk] + φij − 3) ≤ sj

∀i, j ∈ I : i ̸= j, d ∈ D (3.94)

φij + φji = 1 ∀i, j ∈ I : i ̸= j (3.95)

si + λ ≤ sj + Λφji ∀i, j ∈ I (3.96)

sj − (si +
∑︂

d∈D

∑︂

k∈K
pidkxidk) ≤ Λ(1− ωji) ∀i, j ∈ I : i ̸= j (3.97)

(si +
∑︂

d∈D

∑︂

k∈K
pidkxidk)− sj ≤ Λωji ∀i, j ∈ I : i ̸= j (3.98)

∑︂

d∈D

∑︂

k∈K
κikxidk − Λ(2− φij − ωji) ≤ θji ∀i, j ∈ I : i ̸= j (3.99)

∑︂

i∈I:i ̸=j

θji ≤W −
∑︂

d∈D

∑︂

k∈K
κjkxjdk ∀j ∈ I (3.100)

(si +
∑︂

d∈D

∑︂

k∈K
pidkxidk)− do ≤ Λyio ∀i ∈ I, o ∈ O : fio > 0 (3.101)

∑︂

i∈I

∑︂

o∈O
fioyio ≤ (1− α)

∑︂

i∈I

∑︂

o∈O
fio (3.102)

W ∈ R
+ (3.103)

xidk ∈ {0; 1} ∀i ∈ I, d ∈ D, k ∈ K (3.104)

si ∈ R
+ ∀i ∈ I (3.105)

φij , ωji ∈ {0; 1} ∀i, j ∈ I (3.106)

θji ∈ Z
+ ∀i, j ∈ I (3.107)

yio ∈ {0; 1} ∀i ∈ I, o ∈ O (3.108)

3.2.3 Complexity

Compared to the TSFD-RC-F, the multi-mode resource and truck scheduling problem (TSFD-

RC-V) comprises an additional complexity driver, namely the operator mode. Its impact on the
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model dimensions, as well as the complexity of the TSFD-RC-V in general, will be explained in

more detail below.

While Table 3.8 provides the equations for calculating the number of decision variables and

constraints in each model formulation, Table 3.9 compares the dimensions of the formulations

for exemplary instances of different size.

Model formulation #DV #C

TSFD-RC-V-DT1 |I| · (|D| · |K| · |T |+ |O|) + 1 |T | · (|D|+ 1) + |I| · (|O|+ 1) + 1

TSFD-RC-V-DT2 |I| · |D| · |K| · |T |+ 1 |T | · (|D|+ 1) + |I|+ 1

TSFD-RC-V-CT1 |I| · (3 · |I|+ |D| · |K|+ |O|+ 1) + 1 |I|3 + |I| · (|I| − 1) · (|D| + 6) + |I| ·
(|O|+ 4) + 1

TSFD-RC-V-CT2 |I| · (3 · |I|+ |D| · |K|+ |O|+ 1) + 1 |I| · (|I| − 1) · (|D| + 6) + |I| · (|I| +
|O|+ 4) + 1

#DV and #C denote the number of decision variables and the number of constraints, respectively.

For the continuous-time models, #C includes the valid inequalities (3.50) and (3.51).

Table 3.8 Number of decision variables and constraints for different model formulations of the
TSFD-RC-V.

Source: Own table.

The tables show that the TSFD-RC-V’s discrete-time formulations deal with a significantly

bigger number of decision variables than its continuous-time formulations. With respect to the

number of constraints, on the other hand, it can be seen that the TSFD-RC-V’s continuous-

time formulations have a disadvantage over their discrete-time counterparts, which involve a

considerably smaller number of constraints. Moreover, the tables illustrate the impact of the

operator mode on the model dimensions. Since both the discrete-time and the continuous-time

formulations use decision variables that are indexed by the operator mode, a positive relationship

between the number of operator modes |K| and the number of decision variables can be observed

for all formulations. The effect of |K| on the number of decision variables appears to be smaller

in the continuous-time formulations compared to the discrete-time formulations. Moreover, it

can be seen that higher values of |K| do not affect the number of constraints in the discrete-time

formulations. In the continuous-time formulations, on the other hand, an increase in |K| leads
to a slightly bigger number of constraints.

It can be summarized that the huge number of decision variables in the case of the discrete-time

models, and the huge number of constraints in the case of the continuous-time models, likely

prevents real-world instances from being solved in a reasonable time with the help of a default

solver. The following theorems and corollary on the complexity status of the TSFD-RC-V verify
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this suspicion.

Theorem 3.2.1. Finding a feasible solution for the TSFD-RC-V is strongly NP-complete for |D| ≥ 1.

Theorem 3.2.1 directly follows from the TSFD-RC-V being a generalization of the resource

and truck scheduling problem (TSFD-RC-F), which was proven to be strongly NP-complete in

Theorem 3.1.1. Note that the feasibility of a given solution to the TSFD-RC-V can be tested in

polynomial time.

Theorem 3.2.2. Finding a feasible solution for the TSFD-RC-V is strongly NP-complete for |D| ≥ 1,

0 < α ≤ 1, and (di − ri) = |T | for all i ∈ I.

The TSFD-RC-V remains NP-complete even without truck time windows (i.e., (di − ri) = |T |
for all i ∈ I). This directly follows from the TSFD-RC-V without time windows being a

generalization of the TSFD-RC-F without time windows, which was proven to be strongly

NP-complete in Theorem 3.1.2.

Corollary 3.2.3. The TSFD-RC-V is strongly NP-hard.

3.3 Shift and truck scheduling problem

3.3.1 Introduction

Both the TSFD-RC-F and the TSFD-RC-V make a couple of simplifying assumptions with

respect to the availability of operators. Specifically, they assume one standard shift type for

operators with a shift length equal to the planning horizon length and without breaks. Therefore,

operators on duty are assumed to be available throughout the entire planning horizon. While

these assumptions may hold when considering short planning horizons (e.g., a 4h planning

horizon), they do not adequately represent the reality in many situations. When considering

longer planning horizons (e.g., an 8h or 12h planning horizon), the labor laws must be taken

into account. Under the German Working Time Act1), for instance, an employee’s working time

is limited to a maximum of 8h per working day and 48h per week. Increasing the working time

1) In German known as “Arbeitszeitgesetz”.
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up to 10h per working day is permitted as long as the average 8h working time per working

day is not exceeded over a six months reference period.1) In addition to the working time, the

German Working Time Act also regulates an employee’s right to rest. The law distinguishes

between two types of rest periods, namely rest breaks and resting times. Rest breaks are breaks

that must be granted during the working time. Employees who work between 6-9h are entitled

to a minimum break of 30 minutes. Resting times, on the other hand, denote the time period

between two working days. Employees are entitled to a minimum resting time of 11 hours

between the end of a work period and the beginning of the next work period.2) Furthermore,

both the TSFD-RC-F and the TSFD-RC-V do not consider different workforce types or shift

patterns. Real-world settings, however, can be far more complex. In the logistics industry, which

is characterized by a highly variable demand, the workload can strongly fluctuate throughout

the week and even over a day. Hence, it might not be sufficient to apply one standardized work

pattern (e.g., a 8h standard shift) when creating the employees’ timetables. Terminal managers

can respond to demand fluctuations by using different shift patterns for workers.3) Moreover,

logistics companies often employ temporary staff in order to increase the flexibility4).

In order to overcome the TSFD-RC-F’s and TSFD-RC-V’s shortcomings, this section sets out to

develop mathematical models which allow to consider different types of workforce and work

shifts.

3.3.1.1 Problem description

The shift and truck scheduling problem, denoted as ISTSFD, provides a framework for operations

planning in cross-docking platforms, which integrates the employee timetabling task and

the truck scheduling task. Especially in manual cross-docking terminals, which are often

characterized by a high proportion of personnel expenses5), efficient employee timetables are

of great importance.

The ISTSFD allows to distinguish between different operator types. Specifically, it assumes that

operators from different operator groups g ∈ G can be deployed. This enables decision-makers

to distinguish between regular and temporary workers, full-time and part-time workers, etc.

1) Goletz (2015).
2) Breitschwerdt (2016).
3) Ladier et al. (2014, p. 279).
4) Weber et al. (2005, p. 22).
5) Bartholdi and Gue (2004, p. 235-236), Pfohl (2005, p. 313).
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For each operator group g, the maximum number of available operatorsW g as well as a set of

predefined shift patterns Sg is given. Operators belonging to operator group g can be deployed in

any of the predefined shift patterns s ∈ Sg. Each shift pattern is described via binary parameters

γgst, which signal whether an operator who belongs to operator group g and works in shift

pattern s ∈ Sg is on duty (i.e., γgst = 1) or not (i.e., γgst = 0). Table 3.10 shows exemplary

shift patterns. The example considers an 8h planning horizon from 08:00-16:00 and shows

Time Operator group 1 Operator group 2

t From To s = 1 s = 2 s = 3 s = 4 s = 1 s = 2 s = 3

1 08:00 08:30 1 1 1 1 1 0 0
2 08:30 09:00 1 1 1 1 1 0 0
3 09:00 09:30 1 1 1 1 1 0 0
4 09:30 10:00 1 1 1 1 1 0 0
5 10:00 10:30 1 1 1 1 1 1 0
6 10:30 11:00 1 1 1 1 1 1 0
7 11:00 11:30 1 1 1 1 1 1 0
8 11:30 12:00 0 1 1 1 1 1 0
9 12:00 12:30 1 0 1 1 0 1 1
10 12:30 13:00 1 1 0 1 0 1 1
11 13:00 13:30 1 1 1 0 0 1 1
12 13:30 14:00 1 1 1 1 0 1 1
13 14:00 14:30 1 1 1 1 0 0 1
14 14:30 15:00 1 1 1 1 0 0 1
15 15:00 15:30 1 1 1 1 0 0 1
16 15:30 16:00 1 1 1 1 0 0 1

Table 3.10 Exemplary shift patterns.
Source: Own table.

predefined shift patterns for two operator groups (i.e., g ∈ {1, 2}). The four shift patterns for

operator group g = 1 all begin at 08:00 and end at 16:00. Operators who are assigned to the

first shift pattern (i.e., (g, s) = (1, 1)), for instance, are granted a 30 minute rest break from

11:30-12:00. Moreover, the example shows three predefined shift patterns for operator group

g = 2. While all three have a shift length of 4h and no rest breaks, they differ with respect

to their start times. Specifically, shift one, two, and three start at 08:00, 10:00, and 12:00,

respectively.

For the sake of completeness, the remaining basic assumptions of the ISTSFD are briefly

summarized below:

• Fixed outbound departures: Outbound trucks have already been scheduled, i.e., it is

known at which dock-doors and at which times outbound trucks will be processed.
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• Exclusive service mode: Inbound trucks can only be processed at inbound dock-doors

and outbound trucks can only be processed at outbound dock-doors.

• Truck time windows: Processing of an inbound trucks must start within the truck’s

presupposed time window, which is defined through a release time and due time.

• Standardized freight units: Cargo is shipped in standardized freight units such as pallets.

• Sort-at-receiving protocol: Cargo is unloaded from inbound trucks and directly trans-

ferred to the associated outbound dock-doors. Upon arrival, the cargo is temporarily

stored in front of the outbound dock-door until loading of the outbound truck starts.

• Truck processing time: The processing time of inbound trucks include the time for

unloading all freight units and transshipping them to the associated outbound dock-doors.

It is hence directly proportional to the number of freight units and depends on the distance

between the unloading dock and the loading docks.

• No preemption: That is, (un-)loading a truck may not be interrupted. Moreover, an

operator cannot process multiple trucks at the same time and must not start a new task

prior to finishing her current task.

• Delayed freight units: Delaying cargo is allowed. Cargo that arrives at the outbound

dock-door after loading of the outbound truck starts is regarded as delayed freight units.

It is postponed until the next departure to the same destination.

• Service level: The required service level and hence the allowed number of delayed freight

units is defined and known.

• Operator characteristics: Trucks are processed by operators, i.e., workers equipped with

material handling equipment. All operators have identical characteristics (i.e., identical

skills, speed, etc.).

• Shift cost: The costs for deploying an operator in a certain shift pattern are given and

known in advance.

3.3.1.2 Related literature

The shift and truck scheduling problem bears some resemblance with the previously described

(multi-mode) resource and truck scheduling problem. In order to avoid redundancies with the
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literature described in the context of the TSFD-RC-F and TSFD-RC-V, only studies which may

be able to model the ISTSFD’s employee timetabling characteristics will be summarized below.

Truck scheduling publications usually neglect employee timetabling aspects. Ladier and Alpan

and Rosales et al. are among the few exceptions. Ladier and Alpan attempt to combine truck

scheduling and employee rostering in a cross-docking terminal. They present two independent

models, one for truck scheduling and one for employee rostering, and propose a solution

approach where both models are solved iteratively until a stable point is reached. The study,

however, does not include a fully integrated model.1) Rosales et al. study the problem of

scheduling inbound trailers in a cross-docking platform. They aim to minimize the operational

costs consisting of the cost of forklift operations and labor cost. They presume that a worker

is assigned to a certain dock-door and responsible for all trailers allocated to his dock-door.

In addition, a set of constraints compel employee workload balancing2). However, the study

assumes that the unloading start times for each trailer are given in advance. That is, the

proposed model is rather an assignment problem than a scheduling problem.

Employee timetabling has also been integrated in the job-shop scheduling problem3). Some

examples are Artigues et al. and Guyon et al.4) However, these studies assume that each

operation has a certain machine it must be processed on. This is different from the ISTSFD

in which each inbound truck can theoretically be processed at every inbound dock-door. The

flexible job-shop scheduling problem – a generalization of the job-shop scheduling problem

– considers identical multi-purpose machines that can process different types of operations5).

The inbound dock-doors in the ISTSFD, on the other hand, can be seen as unrelated parallel

machines, which is not a feature of the classic flexible job-shop scheduling problem.

The ISTSFD also bears some resemblances with some extensions of the RCPSP, e.g., the RCPSP

with time-dependent resource capacities6). The RCPSPSwith time-dependent resource capacities

usually assumes that the resource capacity in each time period is known and given in advance.

In the ISTSFD, on the other hand, the resource capacity in each time period is an outcome

instead of an input parameter.

1) Ladier and Alpan (2015, p. 676).
2) Rosales et al. (2009, pp. 325-326).
3) The standard version of the job-shop scheduling problem considers a set of jobs. Each job consists of a set of

operations that must be processed in a given order. Each operation must be processed on a specific machine (that
is known in advance) and only one operation of a job can be performed at a time. Cf. Guyon et al. (2014, p. 148).

4) Artigues et al. (2009), Guyon et al. (2014).
5) Kress et al. (2019, p. 180).
6) E.g., Hartmann (2013), Klein (2000), Sprecher and Drexl (1998).
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As existing research cannot directly be applied to the shift and truck scheduling problem, a new

solution concept needs to be developed.

3.3.2 Model formulations

Two variants of the ISTSFD are proposed in the following. Section 3.3.2.1 describes the single-

mode shift and truck scheduling problem, which assumes fixed operator requirements for each

inbound truck. A multi-mode variant of the shift and truck scheduling problem is presented in

Section 3.3.2.2. The multi-mode problem does not consider fixed operator requirements but

allows several operator modes in which each truck can be processed.

3.3.2.1 Single-mode model

The first model for shift and truck scheduling, referred to as ISTSFD-F, considers a single

operator mode for each inbound truck. That is, similar to the TSFD-RC-F, the ISTSFD-F

assumes that the number of required operators for processing a truck is given and known in

advance. That is, the ISTSFD-F only considers one operator mode.

The first discrete-time formulation of the ISTSFD-F, referred to as ISTSFD-F-DT1, applies a

set of binary variables xidt in order to express at which dock-door d ∈ D and at which time

t ∈ T processing of inbound truck i starts. Furthermore, it involves the decision variablesWgs

and yio. The integer variablesWgs express how many operators from operator group g ∈ G are

rostered in shift pattern s ∈ Sg. The binary decision variables yio, on the other hand, are used

to signal whether the cargo of inbound truck i arrives in the outbound area in-time so that the

cargo can be loaded onto outbound truck o. When applying the notation listed in Table 3.11,

the ISTSFD-F-DT1 can be formulated with the objective function (3.109) and the constraints

(3.110) to (3.118). Objective function (3.109) minimizes the total labor cost for deployed

operators from various operator groups. Constraints (3.110) ensure that in each time interval a

sufficient number of operators is present. Moreover, constraints (3.111) limit the number of

operators rostered from each operator group g ∈ G. They guarantee that the number of available

operators per operator group is not exceeded. Constraints (3.112) enforce that each inbound

truck is processed exactly once and render violating any time window impossible. Constraints

(3.113) prevent multiple trucks from being processed in parallel at a dock-door. Constraints

(3.114) in conjunction with (3.115) compels the service level by limiting the number of freight

units which are delayed. Finally, (3.116) to (3.118) define the domain of the decision variables.
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Sets:

I Set of inbound trucks.

O Set of outbound trucks.

D Set of inbound doors.

T Set of time intervals.

G Set of operator groups.

Sg Set of shift patterns for operator group g ∈ G.

Indices:

i Index used for inbound trucks, i ∈ I.
o Index used for outbound trucks, o ∈ O.
d Index used for inbound doors, d ∈ D.
t, t′ Indices used for time intervals, t, t′ ∈ T .
g Index used for operator groups, g ∈ G.
s Index used for shift patterns, s ∈ Sg with g ∈ G.

Input parameters:

ri Release time, i.e., earliest possible time to start processing inbound truck i ∈ I; ri ∈ T .
di Due time, i.e., latest possible time to start processing inbound truck i ∈ I; di ∈ T .
κi Number of operators required to process inbound truck i ∈ I; κi ∈ Z

+.

do Time when processing of outbound truck o ∈ O starts; do ∈ T .
pid Time for processing inbound truck i ∈ I at inbound dock-door d ∈ D; pid ∈ Z

+.

fio Number of product units to be transferred from inbound truck i ∈ I to outbound truck

o ∈ O; fio ∈ Z
+

0 .

W g Maximum number of operators in operator group g ∈ G.
Cgs Cost of shift pattern s ∈ Sg with g ∈ G.
γgst Binary parameter for expressing the shift work time: 1, if time interval t ∈ T is work time

in shift s ∈ Sg; 0, otherwise.

α Required minimum service level; α ∈ [0, 1].

Λ Big number.

Decision variables:

Wgs Integer variable: Number of operators belonging to operator group g ∈ G deployed in shift

pattern s ∈ Sg.
xidt Binary variable: 1, if inbound truck i ∈ I is processed at inbound door d ∈ D and starts

processing in time interval t ∈ T ; 0, otherwise.

yio Binary variable: 1, if processing inbound truck i ∈ I is finished before processing outbound

truck o ∈ O starts; 0, otherwise.

Table 3.11 Notations for the model formulations of the ISTSFD-F.

Source: Own table.
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ISTSFD-F-DT1:

Minimize
∑︂

g∈G

∑︂

s∈Sg

CgsWgs (3.109)

subject to
∑︂

i∈I

∑︂

d∈D

t
∑︂

t′=max{0;t−pid+1}
κixidt′

≤
∑︂

g∈G

∑︂

s∈Sg

γgstWgs

∀t ∈ T (3.110)

∑︂

s∈Sg

Wgs ≤W g ∀g ∈ G (3.111)

∑︂

d∈D

di
∑︂

t=ri

xidt = 1 ∀i ∈ I (3.112)

∑︂

i∈I

t
∑︂

t′=max{0;t−pid+1}
xidt′ ≤ 1 ∀t ∈ T , d ∈ D (3.113)

∑︂

d∈D

∑︂

t∈T
(t+ pid − 1)xidt − do ≤ Λyio ∀i ∈ I, o ∈ O : fio > 0 (3.114)

∑︂

i∈I

∑︂

o∈O
fioyio ≤ (1− α)

∑︂

i∈I

∑︂

o∈O
fio (3.115)

Wgs ∈ Z
+ ∀g ∈ G, s ∈ Sg (3.116)

xidt ∈ {0; 1} ∀i ∈ I, d ∈ D, t ∈ T (3.117)

yio ∈ {0; 1} ∀i ∈ I, o ∈ O : fio > 0 (3.118)

The ISTSFD-F-DT1’s big-M formulations in the form of constraints (3.114) can be eliminated

by applying the preprocessing parameters aidt. Recall that aidt, which was already applied in

the TSFD-RC-F, expresses the number of delayed freight units associated with truck i if it is

processed at dock-door d and processing starts in time interval t. Equation (3.10) can be used

in order to compute the preprocessing parameters. Hence, an alternative discrete-time model

formulation for the ISTSFD-F, denoted as ISTSFD-F-DT2, can be formulated with the objective

function (3.119) and the constraints (3.120) to (3.126).
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ISTSFD-F-DT2:

Minimize
∑︂

g∈G

∑︂

s∈Sg

CgsWgs (3.119)

subject to
∑︂

i∈I

∑︂

d∈D

t
∑︂

t′=max{0;t−pid+1}
κixidt′

≤
∑︂

g∈G

∑︂

s∈Sg

γgstWgs

∀t ∈ T (3.120)

∑︂

s∈Sg

Wgs ≤W g ∀g ∈ G (3.121)

∑︂

d∈D

di
∑︂

t=ri

xidt = 1 ∀i ∈ I (3.122)

∑︂

i∈I

t
∑︂

t′=max{0;t−pid+1}
xidt′ ≤ 1 ∀t ∈ T , d ∈ D (3.123)

∑︂

i∈I

∑︂

d∈D

∑︂

t∈T
aidtxidt ≤ (1− α)

∑︂

i∈I

∑︂

o∈O
fio (3.124)

Wgs ∈ Z
+ ∀g ∈ G, s ∈ Sg (3.125)

xidt ∈ {0; 1} ∀i ∈ I, d ∈ D, t ∈ T (3.126)

The ISTSFD-F-DT2 requires only constraint (3.124) to enforce the service level. Compared with

the ISTSFD-F-DT1, it hence involves up to |I| · |O| fewer decision variables and constraints. Its

objective function (3.119), resource constraints (3.120), upper limit on the operator number

(3.121), truck-to-door assignment constraints (3.122), and no-overlap constraint (3.123), on

the other hand, remain unchanged compared with the ISTSFD-F-DT1.

3.3.2.2 Multi-mode model

The ISTSFD-F can be extended in order to allow for multiple operator modes. The multi-mode

shift and truck scheduling problem (ISTSFD-V) integrates the decision of how many operators

should process each inbound truck. Considering the set of operator modes K adds an additional

degree of freedom. Specifically, this allows to accelerate or slow down truck processing by

deploying more operators or fewer operators, respectively. Applying the additional (or altered)

notation defined in Table 3.12, the resulting mixed-integer program, denoted as ISTSFD-V-DT1,

consists of objective function (3.127) and constraints (3.128) to (3.136).
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Sets:

K Set of operator modes.

Indices:

k Index used for operator modes, k ∈ K.

Input parameters:

pidk Time for processing inbound truck i ∈ I at inbound dock-door d ∈ D in operator mode

k ∈ K; pidk ∈ Z
+.

Decision variables:

xidkt Binary variable: 1, if inbound truck i ∈ I is processed at inbound door d ∈ D in operator

mode k ∈ K and starts processing in time interval t ∈ T ; 0, otherwise.

Table 3.12 Additional and altered notations for the model formulations of the ISTSFD-V.

Source: Own table.

ISTSFD-V-DT1:

Minimize
∑︂

g∈G

∑︂

s∈Sg

CgsWgs (3.127)

subject to
∑︂

i∈I

∑︂

d∈D

∑︂

k∈K

t
∑︂

t′=max{0;t−pidk+1}
κikxidkt′

≤
∑︂

g∈G

∑︂

s∈Sg

γgstWgs

∀t ∈ T (3.128)

∑︂

s∈Sg

Wgs ≤W g ∀g ∈ G (3.129)

∑︂

d∈D

∑︂

k∈K

di
∑︂

t=ri

xidkt = 1 ∀i ∈ I (3.130)

∑︂

i∈I

∑︂

k∈K

t
∑︂

t′=max{0;t−pidk+1}
xidkt′ ≤ 1 ∀t ∈ T , d ∈ D (3.131)

∑︂

d∈D

∑︂

k∈K

∑︂

t∈T
(t+ pidk − 1)xidkt − do ≤ Λyio ∀i ∈ I, o ∈ O : fio > 0 (3.132)

∑︂

i∈I

∑︂

o∈O
fioyio ≤ (1− α)

∑︂

i∈I

∑︂

o∈O
fio (3.133)

Wgs ∈ Z
+ ∀g ∈ G, s ∈ Sg (3.134)

xidkt ∈ {0; 1} ∀i ∈ I, d ∈ D,
k ∈ K, t ∈ T

(3.135)

yio ∈ {0; 1} ∀i ∈ I, o ∈ O : fio > 0 (3.136)
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The ISTSFD-V-DT1 seeks to minimize the total labor cost for activated operators from all opera-

tor groups (3.127). While constraints (3.128) enforce that the number of active operators (i.e.,

operators on site) suffices, constraints (3.129) ensure that the maximum number workforce is

not overextended. The assignment constraints (3.130) enforce that each inbound truck is pro-

cessed and that truck processing starts within a truck’s time window. Constraints (3.131) forbid

parallel processing at a dock-door, while constraints (3.132) in combination with constraint

(3.133) enforce the required service level by limiting the number of delayed freight units. Lastly,

constraints (3.134) to (3.136) define the domain of the decision variablesWgs, xidkt, and yio.

Note that the ISTSFD-V-DT1 involves big-M constraints for calculating the number of delayed

freight units (3.132). As in the case of the ISTSFD-F-DT1, these constraints may result in a weak

relaxation and, hence, make it more challenging to solve instances of the ISTSFD-V-DT1 with

an off-the-shelf solver. Therefore, an alternative discrete-time formulation, denoted as ISTSFD-

V-DT2, which spares out big-M formulations, is proposed below. It applies preprocessing

parameters in order to compute the delayed freight units and compel the service level. The

preprocessing parameters aidkt signal how many of inbound truck i’s freight units cannot

be loaded onto the designated outbound trucks since they arrive too late in the outbound

area. The parameters can be computed with equation (3.65). The ISTSFD-V-DT2 consists

of objective function (3.137) and constraints (3.138) to (3.144). Note that ISTSFD-V-DT2’s

objective function (3.137), resource constraints (3.138), upper limit on the number of deployed

operators (3.139), truck assignment constraints (3.140), and no-overlap constraints (3.141)

remain unchanged compared with the ISTSFD-V-DT1. The service level constraint (3.142),

however, includes the preprocessing parameters aidkt. The ISTSFD-V-DT2 consists of up to

|I| · |O| fewer decision variables and constraints than the ISTSFD-V-DT1.
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ISTSFD-V-DT2:

Minimize
∑︂

g∈G

∑︂

s∈Sg

CgsWgs (3.137)

subject to
∑︂

i∈I

∑︂

d∈D

∑︂

k∈K

t
∑︂

t′=max{0;t−pidk+1}
κikxidkt′

≤
∑︂

g∈G

∑︂

s∈Sg

γgstWgs

∀t ∈ T (3.138)

∑︂

s∈Sg

Wgs ≤W g ∀g ∈ G (3.139)

∑︂

d∈D

∑︂

k∈K

di
∑︂

t=ri

xidkt = 1 ∀i ∈ I (3.140)

∑︂

i∈I

∑︂

k∈K

t
∑︂

t′=max{0;t−pidk+1}
xidkt′ ≤ 1 ∀t ∈ T , d ∈ D (3.141)

∑︂

i∈I

∑︂

d∈D

∑︂

k∈K

∑︂

t∈T
aidktxidkt ≤ (1− α)

∑︂

i∈I

∑︂

o∈O
fio (3.142)

Wgs ∈ Z
+ ∀g ∈ G, s ∈ Sg (3.143)

xidkt ∈ {0; 1} ∀i ∈ I, d ∈ D,
k ∈ K, t ∈ T

(3.144)

3.3.3 Complexity

Table 3.13 provides the equations for calculating the number of decision variables and constraints

of the single-mode and multi-mode shift and truck scheduling formulations.

Model formulation #DV #C

ISTSFD-F-DT1 |I| · (|D| · |T |+ |O|) +∑︁g∈G
|Sg| |T | · (|D|+1)+ |I| · (|O|+1)+ |G|+1

ISTSFD-F-DT2 |I| · |D| · |T |+∑︁g∈G
|Sg| |T | · (|D|+ 1) + |I|+ |G|+ 1

ISTSFD-V-DT1 |I| · (|D| · |K| · |T |+ |O|) +∑︁g∈G
|Sg| |T | · (|D|+1)+ |I| · (|O|+1)+ |G|+1

ISTSFD-V-DT2 |I| · |D| · |K| · |T |+∑︁g∈G
|Sg| |T | · (|D|+ 1) + |I|+ |G|+ 1

#DV and #C denote the number of decision variables and the number of constraints, respectively.

Table 3.13 Number of decision variables and constraints for different model formulations of the
ISTSFD.

Source: Own table.
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The ISTSFD-F’s and ISTSFD-V’s model dimensions are slightly bigger compared with the

discrete-time TSFD-RC-F and TSFD-RC-V, respectively. Both the ISTSFD-F and ISTSFD-V

contain
∑︁

g∈G |Sg| − 1 more decision variables and |G| more constraints than their TSFD-RC-

F and TSFD-RC-V counterparts. Hence, in most real-world settings (where usually only a

few operator groups and shift patterns are considered), the number of decision variables and

constraints does not increase dramatically in comparison with the single-mode and multi-

mode resource and truck scheduling problem. However, that also means that the ISTSFD may

involve millions of decision variables for large-sized instances, which likely prevents large-sized

instances from being solved with a default solver in a reasonable time. The following theorems

and corollaries on the complexity status of the ISTSFD support this speculation.

Theorem 3.3.1. Finding a feasible solution for the ISTSFD-F is strongly NP-complete for |D| ≥ 1.

Theorem 3.3.2. Finding a feasible solution for the ISTSFD-V is strongly NP-complete for |D| ≥ 1.

Theorem 3.3.1 (Theorem 3.3.2) directly follows from the ISTSFD-F (ISTSFD-V) being a gen-

eralization of the TSFD-RC-F (TSFD-RC-V), which was proven to be strongly NP-complete in

Theorem 3.1.1 (Theorem 3.2.1). Note that the feasibility of a given solution to the ISTSFD-F

and ISTSFD-V can be tested in polynomial time.

Corollary 3.3.3. The ISTSFD-F is strongly NP-hard.

Corollary 3.3.4. The ISTSFD-V is strongly NP-hard.

3.4 Chapter summary

This chapter presented mathematical programs for scheduling resources and trucks in cross-

docking facilities. First, the NP-hard resource and truck scheduling problem (TSFD-RC-F) was

described in Section 3.1. Given a set of inbound trucks with known operator requirements to

process over the planning horizon, the TSFD-RC-F seeks to determine at what time each truck

should be processed in order to keep the demand for operators low over the planning horizon.

A total of four mixed-integer programming formulations, two discrete-time and two continuous-

time formulations, for the TSFD-RC-F were proposed. Next, the multi-mode resource and truck

scheduling problem (TSFD-RC-V), also proven to be NP-hard, was described in Section 3.2.
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Unlike the TSFD-RC-F, the TSFD-RC-V does not assume that the operator requirements for

each truck are given. Instead, it aims to determine by how many operators and at what time

each truck should be processed in order to minimize the demand for operators over the planning

horizon. Again, discrete-time and continuous-time mixed integer programs were proposed.

Lastly, the shift and truck scheduling problem (ISTSFD), which enables decision-makers to

consider different operator groups and shift patterns, was described in Section 3.3. The ISTSFD’s

goal is to minimize the total labor cost for operators. Both a single-mode (ISTSFD-F) and a

multi-mode (ISTSFD-V) variant for shift and truck scheduling were presented.
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4 Solution procedures

4.1 Introduction

The complexity statuses of the discussed resource planning models make it difficult to solve

large-sized instances with a default solver. Therefore, this chapter presents suited solution

procedures that can be used to tackle the proposed planning problems. Specifically, this chapter

sets out to develop heuristic solution procedures based on a column generation scheme. Column

generation (CG) is often used when dealing with LP-relaxations of mixed-integer programs

that contain too many columns (associated with variables) to handle explicitly – such as the

proposed discrete-time formulations in this work. The basic idea is that instead of considering all

potential columns right away, a restricted model that only contains a (small) subset of columns

is defined. New columns that may improve the relaxation value are iteratively generated

(by solving a pricing problem) and added to the restricted model. However, the majority of

all possible columns are left out of the restricted LP-relaxation since most of these columns

will very likely not be part of the optimal solution. The LP-relaxation of the restricted model

has been solved to optimality once no columns with negative reduced costs, that is, columns

that may improve the relaxation value, are excluded from the restricted model.1) Column

generation has been successfully applied to a wide range of scheduling problems including truck

scheduling2), parallel machine scheduling3), staff scheduling4), airline crew scheduling5), and

resource-constrained project scheduling6). A comprehensive overview on column generation

1) Chen et al. (2010, pp. 334-335).
2) E.g., Chmielewski et al. (2009).
3) E.g., Chen and Powell (1999), Chen (2004), Van Den Akker et al. (1999), Van Den Akker et al. (2012).
4) E.g., Fügener and Brunner (2019).
5) E.g., Zeighami and Soumis (2019).
6) E.g., Brucker and Knust (2003).
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can be found in Desaulniers et al.1)

The general structure of the column generation-based solution procedure, which will be ex-

plained in more detail below, is shown in Figure 4.1. The solution procedure defines a restricted

problem, i.e., the LP-relaxation of the discrete-time model where only a subsetM of columns is

included. Once the setM has been initialized, absent columns that may improve the relaxation

value are added iteratively using an approach based on column generation. In every iteration,

the LP-relaxation of the restricted problem is solved to optimality with a default solver. The

obtained optimal dual multipliers are passed to a pricing problem2). The pricing problem aims

to identify at least one absent column with negative reduced cost or prove that no such column

exists. If the optimal objective value of the pricing problem is negative, the corresponding

column is added to the setM and, hence, to the restricted problem. Once the appropriate

columns have been added to the restricted problem, the LP-relaxation of the restricted prob-

lem is solved again, and the pricing process continues with the newly obtained optimal dual

multipliers. The generation of new columns terminates when there are no more columns with

negative reduced cost. Moreover, it is well known that the optimal value of the LP-relaxation

of the restricted problem is equivalent to the optimal value of the LP-relaxation of the original

problem once the column generation has run its course. In light of the restricted problem being

an LP-relaxation, however, there is no guarantee that the solution obtained in the last iteration

is integral. Therefore, integrality on the decision variables is reintroduced, and the restricted

problem with the final column setM is solved in order to obtain an integral solution.3)

The remainder of this chapter is structured as follows. Section 4.2 presents a column generation-

based solution procedure for the resource and truck scheduling problem (TSFD-RC-F). Specif-

ically, the computation of initial columns and the generation of absent columns, which may

improve the relaxation value, are described in more detail. Similarly, details regarding the

heuristic solution procedures for the multi-mode resource and truck scheduling problem (TSFD-

RC-V) and the shift and truck scheduling problem (ISTSFD-V) are presented in Section 4.3

and Section 4.4, respectively. The chapter ends with a short summary and concluding remarks

provided in Section 4.5.

1) Desaulniers et al. (2005).
2) Note that there may also be multiple pricing problems. In the following, however, it is referred to as the pricing

problem.
3) Emde et al. (2020, p. 412).
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Figure 4.1 General structure of the column generation-based solution procedures.
Source: Own figure.
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4.2 Resource and truck scheduling problem

In this section, a column generation-based solution procedure for the resource and truck

scheduling problem (TSFD-RC-F) is proposed. Algorithm 1 summarizes the heuristic procedure.

Algorithm 1: Solution procedure for the TSFD-RC-F

Data: TSFD-RC-F-DT2 and an empty column setM.

Result: Integer solution for the TSFD-RC-F-DT2.

1 Define the R(TSFD-RC-F-DT2) over the column setM;

2 Compute set of initial columns and add them to column setM;

3 Solve LP-relaxation of the R(TSFD-RC-F-DT2);

4 Pass dual multipliers to the pricing problem and solve it;

5 if columns with negative reduced costs were found then

6 Add the columns to column setM;

7 Go back to step 3;

8 if current solution fractional then

9 Reintroduce integrality on variables and solve R(TSFD-RC-F-DT2);

Specifically, the time-discrete model formulation TSFD-RC-F-DT2 is used as a basis. First, a

restricted version, denoted as R(TSFD-RC-F-DT2), is defined over the column setM (line 1).

After adding a set of initial columns to the column setM (line 2), the LP-relaxation of the

R(TSFD-RC-F-DT2) is solved with a column generation procedure (line 3 to 7). If this results

in a fractional solution, integrality on the decision variables is reintroduced in order to obtain

an integer solution for the TSFD-RC-F (line 8 to 9). This section provides details concerning

the computation of initial columns and the column generation procedure.

4.2.1 Initial columns

Prior to starting the column generation procedure, a non-empty set of initial columns is required.

This section presents two procedures for computing initial columns for the TSFD-RC-F-DT2.

First, a MIP formulation is presented which allows to generate a feasible truck schedule to the

TSFD-RC-F. This schedule can be stored in the column setM. Afterwards, a heuristic approach

for generating initial columns is presented. Both procedures can either be applied individually

or in a sequential manner.
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4.2.1.1 Generating initial columns via MIP

Even though it is not strictly necessary, having a feasible initial solution in the column set

M before starting the column generation procedure can be helpful. For instance, it can be

guaranteed that the heuristic procedure terminates with a feasible integer solution. A feasible

solution could be computed by solving a feasibility problem of the TSFD-RC-F, i.e., by simply

setting the TSFD-RC-F’s objective function to 1 and dropping the resource constraints. However,

this approach performs poorly according to the pretests. The pretests revealed that when solving

the integer program TSFD-U-F, with the objective function (4.1) and constraints (4.2) to (4.4),

a feasible solution to the TSFD-RC-F can be identified in a shorter time.

TSFD-U-F:

Minimize
∑︂

i∈I

∑︂

d∈D

∑︂

t∈T
aidtxidt (4.1)

subject to
∑︂

d∈D

di
∑︂

t=ri

xidt = 1 ∀i ∈ I (4.2)

∑︂

i∈I

t
∑︂

t′=max{0;t−pid+1}
xidt′ ≤ 1 ∀t ∈ T , d ∈ D (4.3)

xidt ∈ {0; 1} ∀i ∈ I, d ∈ D, t ∈ T (4.4)

The TSFD-U-F drops the TSFD-RC-F’s service level constraint and tries to find a truck schedule

with a minimum number of delayed product units instead (4.1). That is, the objective function

guarantees that the predefined service level α is met. Constraints (4.2) assure that each inbound

truck is processed within its time window. Inequalities (4.3) guarantee that at most one inbound

truck at a time is processed at a dock-door. Finally, constraints (4.4) represent the binary

integrality requirement of 0-1 variables. Note that the TSFD-RC-F’s resource constraints are

not included. An optimal solution to the TSFD-U-F is a feasible solution to the TSFD-RC-F and

hence can be added to column setM and the R(TSFD-RC-F-DT2). Note that this approach

adds |I| columns to the R(TSFD-RC-F-DT2), i.e., the least number of columns required.

4.2.1.2 Generating initial columns heuristically

Solving the TSFD-U-F is not a trivial task. Especially for large problem instances, it can require

a long computational time. Therefore, a procedure which randomly adds “good” initial columns
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to the empty setM is proposed in this section. Algorithm 2 summarizes the procedure.

Algorithm 2: Generating the set of initial columns for the TSFD-RC-F

Data: Empty column setM.
Result: Non-empty column setM.

1 for i := 1 to |I| do
2 T i ← {ri};
3 repeat

4 Randomly select a time interval t ∈ {ri + 1, . . . , di} \ T i;
5 T i ← T i ∪ {t};
6 until |T i| ≥ 1 +

⌊︂

|{ri+1,...,di}|
4

⌋︂

;

7 pBi ← mind∈D{pid}+ 0.1 · (maxd∈D{pid} −mind∈D{pid});
8 for d := 1 to |D| do
9 if pid ≤ pBi then

10 Add columns m = (i, d, t) with t ∈ T i to column setM;

First, a set of possible start times T i is determined for a given truck i (line 2 to 6). The set

includes the release time ri, which is expected to be of high relevance in many cases, as well as
⌊︂

|{ri+1,...,di}|
4

⌋︂

randomly chosen feasible start times from {ri + 1, . . . , di}. That is, ca. 25% of all

time intervals in which truck i could start, are included in set T i. The quality of a column is

mainly evaluated based on the processing time. Specifically, a columnm = (i, d, t) is considered

as being “good”, if it is characterized by a short truck processing time pid. The upper limit pBi ,

up to which the processing time is considered as being short, is calculated for a given truck i

(line 7). Based on that, all columns m = (i, d, t) with pid ≤ pBi and t ∈ T i are added to the

column setM (line 8 to 10).

4.2.2 Column generation

The LP-relaxation of the TSFD-RC-F-DT2 can be solved with its restricted version R(TSFD-RC-

F-DT2) (defined over column setM) and a column generation procedure. It is well known from

optimization theory, that the optimal value of the LP-relaxation of the R(TSFD-RC-F-DT2) will

be equivalent to the optimal value of the LP-relaxation of the TSFD-RC-F-DT2, if there are no

columns with negative reduced costs excluded from the R(TSFD-RC-F-DT2), i.e., such columns

that may improve the relaxation value. A mathematical programming model for finding an

improving columnm = (i, d, t), if one exists, defines the pricing problem. The pricing problem

requires the dual multipliers of the relaxed R(TSFD-RC-F-DT2). Using the dual variables λt
for the resource constraints (3.12), νi for the truck assignment constraints (3.13), µtd for the
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no-overlap constraints (3.14), , and π for the service level constraint (3.15), the dual of the

relaxed R(TSFD-RC-F-DT2), denoted as d-R(TSFD-RC-F-DT2), is as follows:

d-R(TSFD-RC-F-DT2):

Maximize
∑︂

i∈I
νi −

∑︂

t∈T

∑︂

d∈D
µtd − π(1− α)

∑︂

i∈I

∑︂

o∈O
fio (4.5)

subject to
∑︂

t∈T
λt ≤ 1 (4.6)

νi −
t+pid−1
∑︂

t′=t

κiλt′ −
t+pid−1
∑︂

t′=t

µt′d − aidtπ ≤ 0 ∀(i, d, t) ∈M (4.7)

λt ∈ R
+ ∀t ∈ T (4.8)

µtd ∈ R
+ ∀t ∈ T , d ∈ D (4.9)

νi ∈ R
+ ∀i ∈ I (4.10)

π ∈ R
+ (4.11)

The reduced costs Rm of column m = (i, d, t) can be computed by equation (4.12).

Rm = aidtπ +

t+pid−1
∑︂

t′=t

κiλt′ +

t+pid−1
∑︂

t′=t

µt′d − νi (4.12)

According to the primal simplex method, finding and adding an absent column with negative

reduced cost could improve a current optimal solution to the LP-relaxation of the R(TSFD-

RC-F-DT2). For pricing out absent columns with negative reduced cost, if any exist, a pricing

subproblem needs to be solved. The pricing problem can be decomposed by truck and dock-door

into |I|·|D| pricing subproblems1). The pricing subproblem for the truck-door pair (i, d), referred

to as TSFD-RC-F-PP(i,d), can be formulated as follows:

1) Other decompositions, e.g., by truck, are possible too.
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TSFD-RC-F-PP(i,d):

Minimize π ·
(︄

di
∑︂

t=ri

aidtxt

)︄

+

di+pid−1
∑︂

t=ri

⎡

⎣λtκi ·

⎛

⎝

t
∑︂

t′=max{ri;t−pid+1}
xt′

⎞

⎠

⎤

⎦

+

di+pid−1
∑︂

t=ri

⎡

⎣µtd ·

⎛

⎝

t
∑︂

t′=max{ri;t−pid+1}
xt′

⎞

⎠

⎤

⎦− νi

(4.13)

subject to
di
∑︂

t=ri

xt = 1 (4.14)

xt ∈ {0; 1} ∀t ∈ {ri, . . . , di} (4.15)

Objective function (4.13) seeks to identify an absent column with minimum reduced cost. That

is, the time interval t that minimizes the reduced cost must be found. Therefore, a set of binary

decision variables xt is defined so that xt = 1 if processing truck i on dock-door d starts in time

interval t. Constraint (4.14) compels that processing inbound truck i starts exactly once.

Note that it may be necessary to solve up to |I| · |D|mixed integer programs in every iteration to

identify a column with negative reduced costs or to prove optimality for the LP-relaxation of the

R(TSFD-RC-F-DT2). Hence, this approach may be computationally expensive, especially for

big problem instances. Next, I therefore propose an efficient algorithm that I have implemented

to solve the pricing problem and add generated columns with negative reduced cost to the

R(TSFD-RC-F-DT2). The column generation procedure is shown in Algorithm 3.

The algorithm basically consists of two major phases: (i) Updating the dual multipliers λt, µtd,

νi, and π by solving the LP-relaxation of the R(TSFD-RC-F-DT2) (line 2), and (ii) finding absent

columns with negative reduced cost, if any exist, and adding them to the R(TSFD-RC-F-DT2)

(line 3 to 16). Both phases are executed alternately and the procedure stops once no new

columns which can improve the optimal value of the LP-relaxation of the R(TSFD-RC-F-DT2)

can be found (line 17). The generation of new columns is designed in a computationally

efficient way. Specifically, I decompose the search space and determine separately for every

truck-door-pair (i, d) the columnm∗
id ∈ {m̃ = ( i, d, t̃ ) | ri ≤ t̃ ≤ di} with the minimum reduced

cost R∗
id (line 6 to 13). In other words, the “best” time interval to start processing truck i on

dock-door d, i.e. the time interval that results in minimum reduced costs, is identified. All

columns m∗
id with R∗

id < 0 are temporarily stored in the set N (line 14 to 15) and added to

the R(TSFD-RC-F-DT2) at the end of each iteration (line 16). In every iteration, the algorithm
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Algorithm 3: Column generation procedure for the TSFD-RC-F

Data: R(TSFD-RC-F-DT2) and the initial column setM.
Result: R(TSFD-RC-F-DT2) including all columns such that the optimal value of the

relaxed R(TSFD-RC-F-DT2) is equivalent to the optimal value of the relaxed
TSFD-RC-F-DT2.

1 repeat

2 Solve the LP-relaxation of the R(TSFD-RC-F-DT2) over the setM and store the values
of the dual variables λt, µtd, νi, and π;

3 N ← ∅;
4 for i := 1 to |I| do
5 for d := 1 to |D| do
6 R̃← ai,d,riπ +

∑︁ri+pid−1
t=ri

κiλt +
∑︁ri+pid−1

t=ri
µtd − νi;

7 m∗
id ← (i, d, ri);

8 R∗
id ← R̃;

9 for t := ri + 1 to di do

10 R̃← R̃+(ai,d,t+pid−1−ai,d,t−1)π+κi(λt+pid−1−λt−1)+(µt+pid−1,d−µt−1,d);
11 if R̃ < R∗

id then

12 m∗
id ← (i, d, t);

13 R∗
id ← R̃;

14 if R∗
id < 0 then

15 N ← N ∪ {m∗
id};

16 M←M∪N ;
17 until N = ∅;

guarantees to identify the column with the minimum reduced cost in O(|I| · |D| · |T |) and up

to |I| · |D| columns are added to the R(TSFD-RC-F-DT2).

Once the column generation procedure terminates, the LP-relaxation of both the R(TSFD-RC-

F-DT2) and TSFD-RC-F-DT2 are solved to optimality. If the obtained solution only consists

of integer variables, the optimal solution to the TSFD-RC-F-DT2 is found. If the solution is

fractional, on the other hand, integrality on the decision variables is reintroduced and the

R(TSFD-RC-F-DT2) is solved to optimality as an integer program. By doing so, a feasible

integer solution can be obtained. Note, however, that in this case the obtained solution to the

R(TSFD-RC-F-DT2) is not necessarily the optimal solution to the TSFD-RC-F-DT2. Hence, the

proposed procedure is a heuristic solution procedure.
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4.3 Multi-mode resource and truck scheduling problem

In this section, a column generation-based solution procedure for the multi-mode resource and

truck scheduling problem (TSFD-RC-V) is proposed. Algorithm 4 summarizes the heuristic

procedure. Specifically, the time-discrete model formulation TSFD-RC-V-DT2 is used as a basis.

First, a restricted version, denoted as R(TSFD-RC-V-DT2), is defined over the column setM
(line 1). After adding a set of initial columns to the column setM (line 2), the LP-relaxation

of the R(TSFD-RC-V-DT2) is solved with a column generation procedure (line 3 to 7). If this

results in a fractional solution, integrality on the decision variables is reintroduced in order

to obtain an integer solution for the TSFD-RC-V (line 8 to 9). This section provides details

concerning the computation of initial columns and the column generation procedure.

Algorithm 4: Solution procedure for the TSFD-RC-V

Data: TSFD-RC-V-DT2 and an empty column setM.
Result: Integer solution for the TSFD-RC-V-DT2.

1 Define the R(TSFD-RC-V-DT2) over the column setM;
2 Compute set of initial columns and add them to column setM;
3 Solve LP-relaxation of the R(TSFD-RC-V-DT2);
4 Pass dual multipliers to the pricing problem and solve it;
5 if columns with negative reduced costs were found then

6 Add the columns to column setM;
7 Go back to step 3;

8 if current solution fractional then

9 Reintroduce integrality on variables and solve R(TSFD-RC-V-DT2);

4.3.1 Initial columns

In this section, two approaches for computing initial columns for the R(TSFD-RC-V-DT2) are

presented. The first approach computes an initial column set by solving a MIP with a default

solver. The obtained solution is a feasible solution to the TSFD-RC-V. The second approach, on

the other hand, heuristically generates initial columns that can be used in the R(TSFD-RC-V-

DT2). Both procedures can either be applied individually or in a sequential manner.
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4.3.1.1 Generating initial columns via MIP

It can be beneficial to store a feasible solution in the restricted problem R(TSFD-RC-V-DT2)

before starting the column generation procedure. Such a feasible solution can be obtained by

solving the TSFD-U-V with the objective function (4.16) and constraints (4.17) to (4.19).

TSFD-U-V:

Minimize
∑︂

i∈I

∑︂

d∈D

∑︂

k=|K|

∑︂

t∈T
aidktxidkt (4.16)

subject to
∑︂

d∈D

∑︂

k=|K|

di
∑︂

t=ri

xidkt = 1 ∀i ∈ I (4.17)

∑︂

i∈I

∑︂

k=|K|

t
∑︂

t′=max{0;t−pidk+1}
xidkt′ ≤ 1 ∀t ∈ T , d ∈ D (4.18)

xidkt ∈ {0; 1} ∀i ∈ I, d ∈ D, k = |K|, t ∈ T (4.19)

The TSFD-U-V is an extended version of the TSFD-U-F. Specifically, it only considers the fastest

operator mode k = |K|. This results in a smaller search space and may reduce the computation

time. The TSFD-U-V aims to minimize the number of delayed product units (4.16). By solving

the TSFD-U-V to optimality, hence, a solution with the highest possible service level is identified.

This solution satisfies the service level constraint of the original multi-mode resource and truck

scheduling problem TSFD-RC-V. Constraints (4.17) assure that each inbound truck is processed

within its time window. Moreover, constraints (4.18) prevent overlaps, i.e., that multiple trucks

are processed in parallel at a dock-door. The obtained solution includes |I| columns and can be

added to the R(TSFD-RC-V-DT2).

4.3.1.2 Generating initial columns heuristically

Solving the TSFD-U-V with a default solver can require a long computational time – especially

for large problem instances. Therefore, an alternative procedure for determining an initial

column set is presented. The procedure identifies “good” columns m = (i, d, k, t) and adds

them to setM. Algorithm 5 shows the pseudocode. For a given inbound truck i, its release time

ri and
⌊︂

|{ri+1,...,di}|
4

⌋︂

randomly chosen start times from {ri + 1, . . . , di} are stored as candidate

start times in set T i (line 2 to 6). That is, ca. 25% of all time intervals in which truck i could
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Algorithm 5: Generating the set of initial columns for the TSFD-RC-V

Data: Empty column setsM.
Result: Non-empty column setM.

1 for i := 1 to |I| do
2 T i ← {ri};
3 repeat

4 Randomly select a time interval t ∈ {ri + 1, . . . , di} \ T i;
5 T i ← T i ∪ {t};
6 until |T i| ≥ 1 +

⌊︂

|{ri+1,...,di}|
4

⌋︂

;

7 pBi ← mind∈D{pid1}+ 0.1 · (maxd∈D{pid1} −mind∈D{pid1});
8 for d := 1 to |D| do
9 if pid1 ≤ pBi then

10 Add columns m = (i, d, k, t) with k = 1 and t ∈ T i to column setM;

start, are included in set Ti. Next, the procedure adds columns that are associated with a

convenient dock-door d ∈ D to the setM (line 7 to 10). Line 7 computes an upper limit pBi
for the processing time which is used to evaluate the convenience of a dock-door d. In this

context, a dock-door with a short processing time is regarded as being convenient, since a short

truck processing time may increase the chances that a truck’s cargo reaches the outbound area

in-time. Specifically, all columns m = (i, d, k = 1, t) with pid1 ≤ pBi and t ∈ T i are added to the

column setM (line 8 to 10).

4.3.2 Column generation

Once the initial column setM has been determined, the LP-relaxation of the R(TSFD-RC-V-

DT2) can be solved to optimality with a column generation procedure. The column generation

procedure aims to find absent columns (i.e., columns that are not in the column setM) with

negative reduced costs that may improve the relaxation value. The equation for computing

the reduced costs of an absent column m = (i, d, k, t) can be derived from the dual of the

relaxed R(TSFD-RC-V-DT2). Using the dual variables λt for the resource constraints (3.67), νi
for the truck assignment constraints (3.68), µtd for the no-overlap constraints (3.69), and π for

the service level constraint (3.70), the dual d-R(TSFD-RC-V-DT2) can be formulated with the

objective function (4.20) and the constraints (4.21) to (4.26).
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d-R(TSFD-RC-V-DT2):

Maximize
∑︂

i∈I
νi −

∑︂

t∈T

∑︂

d∈D
µtd − π(1− α)

∑︂

i∈I

∑︂

o∈O
fio (4.20)

subject to
∑︂

t∈T
λt ≤ 1 (4.21)

νi −
t+pidk−1
∑︂

t′=t

κikλt′ −
t+pidk−1
∑︂

t′=t

µt′d − aidktπ ≤ 0 ∀(i, d, k, t) ∈M (4.22)

λt ∈ R
+ ∀t ∈ T (4.23)

µtd ∈ R
+ ∀t ∈ T , d ∈ D (4.24)

νi ∈ R
+ ∀i ∈ I (4.25)

π ∈ R
+ (4.26)

In the LP-relaxation of the R(TSFD-RC-V-DT2), the reduced cost Rm associated with the absent

column m = (i, d, k, t) can be calculated with equation (4.27).

Rm = aidktπ +

t+pidk−1
∑︂

t′=t

κikλt′ +

t+pidk−1
∑︂

t′=t

µt′d − νi (4.27)

Rm measures the extent by which constraint (4.22) is violated. It can be plugged in a pricing

problem for identifying absent columns with negative reduced cost. The pricing problem

can be decomposed by truck and dock-door into |I| · |D| pricing subproblems1). The pricing

subproblem for the truck-door pair (i, d), denoted as TSFD-RC-V-PP(i,d), can be formulated

with the objective function (4.28) and constraints (4.29) to (4.30).

1) Other decompositions, e.g., by truck or by truck, door, and operator mode, are possible too.
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TSFD-RC-V-PP(i,d):

Minimize π ·
(︄

∑︂

k∈K

di
∑︂

t=ri

aidktxkt

)︄

+
∑︂

k∈K

di+pidk−1
∑︂

t=ri

⎡

⎣λtκik ·

⎛

⎝

t
∑︂

t′=max{ri;t−pidk+1}
xkt′

⎞

⎠

⎤

⎦

+
∑︂

k∈K

di+pidk−1
∑︂

t=ri

⎡

⎣µtd ·

⎛

⎝

t
∑︂

t′=max{ri;t−pidk+1}
xkt′

⎞

⎠

⎤

⎦− νi

(4.28)

subject to
∑︂

k∈K

di
∑︂

t=ri

xkt = 1 (4.29)

xkt ∈ {0; 1} ∀k ∈ K,
t ∈ {ri, . . . , di}

(4.30)

The TSFD-RC-V-PP(i,d) aims to identify an absent column with minimum reduced cost. That

is, for a given truck-door pair (i, d), it tries to find the best operator mode and start time that

lead to minimum reduced costs (4.28). For this purpose, a set of binary decision variables

xkt is defined so that xkt = 1 if truck i is processed in operator mode k on dock-door d and

processing starts in time interval t. Constraint (4.29) assures that truck i is processed in exactly

one operator mode and that processing starts once.

Using the TSFD-RC-V-PP(i,d) – a mixed-integer program – for identifying new columns and

solving the LP-relaxation of the R(TSFD-RC-V-DT2) to optimality, may be computationally

expensive. Therefore, an efficient algorithm that can be used to find and add columns with

negative reduced cost to the R(TSFD-RC-V-DT2) is shown in Algorithm 6. The algorithm –

an extension of the pricing algorithm previously described for the TSFD-RC-F – contains two

phases. First, the LP-relaxation of the R(TSFD-RC-V-DT2) is solved in order to update the dual

multipliers λt, µtd, νi, and π (line 2). Once the dual multipliers have been updated, the procedure

aims to identify absent columns m = (i, d, k, t) with negative reduced costs and includes them

in the column setM and, hence, the restricted problem (line 3 to 19). For every truck-door pair

(i, d), the procedure determines the column m∗
id ∈ {m̃ = (i, d, k̃, t̃) | k̃ ∈ K, t̃ ∈ {ri, . . . , di}}

with the minimum reduced costs R∗
id (line 6 to 16). That is, the operator mode and time interval

that lead to the minimum reduced costs are determined. If column m∗
id has negative reduced

costs (i.e., R∗
id < 0), it is temporarily stored in set N (line 17 to 18). Lastly, all columns in set

N are added to the column setM and, hence, to the restricted problem R(TSFD-RC-V-DT2)
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Algorithm 6: Column generation procedure for the TSFD-RC-V

Data: R(TSFD-RC-V-DT2) and the initial column setM.
Result: R(TSFD-RC-V-DT2) including all columns such that the optimal value of the

relaxed R(TSFD-RC-V-DT2) is equivalent to the optimal value of the relaxed
TSFD-RC-V-DT2.

1 repeat

2 Solve the LP-relaxation of the R(TSFD-RC-V-DT2) over the setM and store the values
of the dual variables λt, µtd, νi, and π;

3 N ← ∅;
4 for i := 1 to |I| do
5 for d := 1 to |D| do
6 R∗

id ←∞;
7 for k := 1 to |K| do
8 R̃← ai,d,k,riπ +

∑︁ri+pidk−1
t=ri

κikλt +
∑︁ri+pidk−1

t=ri
µtd − νi;

9 if R̃ < R∗
id then

10 m∗
id ← (i, d, k, ri);

11 R∗
id ← R̃;

12 for t := ri + 1 to di do

13 R̃← R̃+ (ai,d,k,t+pidk−1 − ai,d,k,t−1)π + κik(λt+pidk−1 − λt−1)
+ (µt+pidk−1,d − µt−1,d);

14 if R̃ < R∗
id then

15 m∗
id ← (i, d, k, t);

16 R∗
id ← R̃;

17 if R∗
id < 0 then

18 N ← N ∪ {m∗
id};

19 M←M∪N ;
20 until N = ∅;

(line 19). Both steps, namely updating the dual multipliers and searching absent columns with

negative reduced costs, are repeated until no new columns with negative reduced costs can be

found (line 20).

Once the column generation procedure terminates, the LP-relaxation of both the R(TSFD-RC-

V-DT2) and TSFD-RC-V-DT2 are solved to optimality. If the obtained solution only consists

of integer variables, the optimal solution to the TSFD-RC-V-DT2 is found. If the solution is

fractional, on the other hand, integrality on the decision variables is reintroduced and the

R(TSFD-RC-V-DT2) is solved with a default solver. Note that in this case the obtained integer

solution to the R(TSFD-RC-V-DT2) is not necessarily the optimal solution to the TSFD-RC-V-
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DT2. Hence, the proposed procedure is a heuristic solution procedure.

4.4 Shift and truck scheduling problem

In this section, a column generation-based solution procedure for the shift and truck scheduling

problem (ISTSFD-V) is proposed1). Algorithm 7 summarizes the heuristic procedure. The

time-discrete model formulation ISTSFD-V-DT2 is used as a basis. First, a restricted version of

the ISTSFD-V-DT2, denoted as R(ISTSFD-V-DT2), is defined over the column setsMtruck and

Mshift (line 1). Both column sets are used to store truck columns and shift columns, respectively.

After adding initial truck columns toMtruck and initial shift columns toMshift (line 2), the

LP-relaxation of the R(ISTSFD-V-DT2) is solved with a column generation procedure (line 3 to

14). If this results in a fractional solution, integrality on the decision variables is reintroduced

in order to obtain an integer solution for the ISTSFD-V (line 15 to 16). This section provides

details concerning the computation of initial columns and the column generation procedure.

4.4.1 Initial columns

4.4.1.1 Generating initial columns via MIP

There are multiple ways to generate initial columns via solving mixed-integer programs. In

general, the computation of truck and shift columns could be either separated or integrated. This

section presents one approach for computing the initial truck and shift column sets separately

and simultaneously.

When separating the computation of initial truck and shift columns, the TSFD-U-V, which was

proposed in the context of the multi-mode resource and truck scheduling problem, could be

solved with a default solver for determining an initial set of truck columns for the R(ISTSFD-V-

DT2). Solving the TSFD-U-V to optimality provides |I| truck columns which can be added to

the restricted problem R(ISTSFD-V-DT2). Note, however, that the TSFD-U-V neither considers

different operator shift types nor the maximum number of operators that are available in each

operator group. Hence, it is not guaranteed that the obtained truck schedule can be executed

with the available resources. This is problematic as it may hinder the default solver from

1) Note that the ISTSFD-V is a generalization of the ISTSFD-F. The presented solution procedure requires minor
adjustments so that it can be applied to the ISTSFD-F.
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Algorithm 7: Solution procedure for the ISTSFD-V

Data: ISTSFD-V-DT2 and the empty column setsMtruck andMshift.
Result: Integer solution for the ISTSFD-V-DT2.

1 Define the R(ISTSFD-V-DT2) over the column setsMtruck andMshift;
2 Compute set of initial truck columns and shift columns and add them to column sets
Mtruck andMshift, respectively;

3 repeat

4 b← False;
5 Solve LP-relaxation of the R(ISTSFD-V-DT2) and save the dual multipliers;
6 Pass dual multipliers to the truck pricing problem and solve it;
7 if truck columns with negative reduced costs were found then

8 Add the truck columns to truck column setMtruck;
9 b← True;

10 Pass dual multipliers to the shift pricing problem and solve it;
11 if shift columns with negative reduced costs were found then

12 Add the shift columns to shift column setMshift;
13 b← True;

14 until b = False;
15 if current solution fractional then

16 Reintroduce integrality on variables and solve R(ISTSFD-V-DT2);

obtaining a solution for the LP-relaxation of the restricted problem – a prerequisite for updating

the dual multipliers which is required for pricing out new columns. Therefore, an infeasible

dummy shift pattern s = |Sg|+ 1 can be defined for each operator group g ∈ G and loaded into

the restricted problem in order to assure that the default solver can obtain a solution for the

LP-relaxation of the restricted problem. Specifically, the dummy shift patterns are defined such

that γg,|Sg |+1,t = 1 for all t ∈ T , i.e., operators deployed in this shift pattern work throughout

the entire planning horizon and do not take any breaks. Furthermore, the dummy shifts’ cost

Cg,|Sg |+1 are set prohibitively high in order to avoid that dummy shift patterns appear in the

final solution.

The previously described approach is sufficient for column generation to work, however, it can

be advantageous to compute a feasible solution to the ISTSFD-V and load it into the restricted

problem R(ISTSFD-V-DT2) before starting the column generation procedure. Such a feasible

solution can be obtained by solving the ISTSFD-U-V with the objective function (4.31) and
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constraints (4.32) to (4.37)1).

ISTSFD-U-V:

Minimize
∑︂

i∈I

∑︂

d∈D

∑︂

k∈K

∑︂

t∈T
aidktxidkt (4.31)

subject to
∑︂

i∈I

∑︂

d∈D

∑︂

k∈K

t
∑︂

t′=max{0;t−pidk+1}
κikxidkt′

≤
∑︂

g∈G

∑︂

s∈Sg

γgstWgs

∀t ∈ T (4.32)

∑︂

s∈Sg

Wgs ≤W g ∀g ∈ G (4.33)

∑︂

d∈D

∑︂

k∈K

di
∑︂

t=ri

xidkt = 1 ∀i ∈ I (4.34)

∑︂

i∈I

∑︂

k∈K

t
∑︂

t′=max{0;t−pidk+1}
xidkt′ ≤ 1 ∀t ∈ T , d ∈ D (4.35)

xidkt ∈ {0; 1} ∀i ∈ I, d ∈ D, k ∈ K, t ∈ T (4.36)

Wgs ∈ Z
+ ∀g ∈ G, s ∈ Sg (4.37)

Similar to the TSFD-U-V, the ISTSFD-U-V aims to minimize the number of delayed product units

(4.31). Constraints (4.32) guarantee that enough operators are on-site throughout the planning

horizon while constraints (4.33) assure that the maximum number of available operators in

each operator group is not exceeded. Moreover, constraints (4.34) and (4.35) are the truck

assignment constraints and no-overlap constraints, respectively. Note that the obtained optimal

solution to the ISTSFD-U-V satisfies the ISTSFD-V’s service level constraint and, hence, is also

a feasible solution to the original shift and truck scheduling problem ISTSFD-V. Solving the

ISTSFD-U-V to optimality provides |I| truck columns and up to |G| · |S| shift columns which

can be added to the restricted problem R(ISTSFD-V-DT2).

1) According to preliminary tests, the ISTSFD-U-V performed better than simply setting the ISTSFD-V’s objective
function to 1.
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4.4.1.2 Generating initial columns heuristically

Generating initial columns by solving the previously proposed mixed-integer programs with a

default solver can be computationally expensive. Hence, a heuristic approach for computing

initial columns is presented below. The procedure heuristically identifies both truck columns

m = (i, d, k, t) and shift columns n = (g, s) and adds them to the setsMtruck andMshift,

respectively. Algorithm 8 shows the pseudocode. The procedure consists of two phases: (i)

Algorithm 8: Generating the sets of initial columns for the ISTSFD-V

Data: Empty column setsMtruck andMshift for truck columns and shift columns,
respectively.

Result: Non-empty column setsMtruck andMshift.
1 for i := 1 to |I| do
2 T i ← {ri};
3 repeat

4 Randomly select a time interval t ∈ {ri + 1, . . . , di} \ T i;
5 T i ← T i ∪ {t};
6 until |T i| ≥ 1 +

⌊︂

|{ri+1,...,di}|
4

⌋︂

;

7 pBi ← mind∈D{pid1}+ 0.1 · (maxd∈D{pid1} −mind∈D{pid1});
8 for d := 1 to |D| do
9 if pid1 ≤ pBi then

10 Add columns m = (i, d, k, t) with k = 1 and t ∈ T i to column setMtruck;

11 for g := 1 to |G| do
12 Sg ← ∅;
13 repeat

14 Randomly select a shift pattern s ∈ Sg \ Sg;
15 Sg ← Sg ∪ {s};
16 until |Sg| ≥

⌊︂

|Sg |
3

⌋︂

;

17 Define a dummy shift pattern s = |Sg|+ 1 with Cg,|Sg |+1 =∞ and γg,|Sg |+1,t = 1 with
t ∈ T ;

18 Sg ← Sg ∪ {s = |Sg|+ 1};
19 Add columns m = (g, s) with s ∈ Sg to column setMshift;

Adding a set of initial truck columns to the truck column setMtruck (line 1 to 10), and (ii)

adding a set of initial shift columns to the shift column setMshift (line 11 to 19). Note that

the calculation of the truck columns is identical to the procedure in Algorithm 5, which was

described in the context of the multi-mode resource and truck scheduling problem in Section

4.3. Therefore, only the generation of shift columns is explained in more detail below. For a

87



given operator group g,
⌊︂

|Sg |
3

⌋︂

shift patterns are randomly chosen and temporarily stored in

set Sg (line 12 to 16). Furthermore, a dummy shift pattern s = |Sg|+ 1 – with infinite costs

and an operator worktime throughout the whole planning horizon – is added to set Sg (line 17

to 18). The dummy shift pattern guarantees that the default solver can obtain a solution for

the LP-relaxation of the restricted problem. Lastly, all shift columns n = (g, s) with s ∈ Sg are
added to the column setMshift (line 19).

4.4.2 Column generation

After the initial truck and shift column setsMtruck andMshift have been computed, a column

generation procedure can be applied in order to solve the LP-relaxation of the R(ISTSFD-V-DT2)

to optimality. A column generation procedure tries to detect absent truck and shift columns

that may improve the relaxation value, and adds them to the restricted problem R(ISTSFD-V-

DT2). Therefore, the reduced cost of absent truck and shift columns need to be evaluated. The

equations for computing the reduced cost of an absent truck columnm = (i, d, k, t) or an absent

shift column n = (g, s) can be derived from the dual of the relaxed R(ISTSFD-V-DT2). Using

the dual variables λt for the resource constraints (3.138), ψg for the upper limits of available

operators (3.139), νi for the truck assignment constraints (3.140), µtd for the no-overlap

constraints (3.141), and π for the service level constraint (3.142), the dual d-R(ISTSFD-V-DT2)

can be formulated with the objective function (4.38) and the constraints (4.39) to (4.44).
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d-R(ISTSFD-V-DT2):

Maximize
∑︂

i∈I
νi −

∑︂

g∈G
ψgW g −

∑︂

t∈T

∑︂

d∈D
µtd

− π(1− α)
∑︂

i∈I

∑︂

o∈O
fio

(4.38)

subject to
∑︂

t∈T
λtγgst + ψg ≤ Cgs ∀(g, s) ∈Mshift (4.39)

νi −
t+pidk−1
∑︂

t′=t

κikλt′ −
t+pidk−1
∑︂

t′=t

µt′d

−aidktπ ≤ 0

∀(i, d, k, t) ∈Mtruck (4.40)

λt ∈ R
+ ∀t ∈ T (4.41)

µtd ∈ R
+ ∀t ∈ T , d ∈ D (4.42)

νi ∈ R
+ ∀i ∈ I (4.43)

π ∈ R
+ (4.44)

ψg ∈ R
+ ∀g ∈ G (4.45)

In the LP-relaxation of the R(ISTSFD-V-DT2), the reduced cost Rn and Rm associated with the

absent shift column n = (g, s) and truck column m = (i, d, k, t), respectively, can be calculated

as follows:

Rn = Cgs −
∑︂

t∈T
λtγgst − ψg (4.46)

Rm = aidktπ +

t+pidk−1
∑︂

t′=t

κikλt′ +

t+pidk−1
∑︂

t′=t

µt′d − νi (4.47)

Rn measures the extent by which constraint (4.39) is violated. Rm, on the other hand, measures

the extent by which (4.40) is violated. Both expressions can be used in pricing problems for

identifying absent truck and shift columns with negative reduced cost. Note that equation (4.47)

for the reduced cost Rm of the absent truck columnm = (i, d, k, t) is identical to equation (4.27)

associated with the TSFD-RC-V. Moreover, the pricing problem TSFD-RC-V-PP(i,d) can be used

for identifying absent truck columns with negative reduced costs for the R(ISTSFD-V-DT2).

Hence, only the pricing problem for identifying absent shift columns with negative reduced cost

will be explained in more detail below.

The shift pricing problem can be decomposed by the operator group into |G| pricing subprob-
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lems1). The shift pricing subproblem for operator group g, denoted as ISTSFD-V-PP-S(g), can

be formulated with the objective function (4.48) and constraints (4.49) to (4.50)

ISTSFD-V-PP-S(g):

Minimize
∑︂

s∈Sg

Cgszs −
∑︂

s∈Sg

∑︂

t∈T
λtγgstzs − ψg (4.48)

subject to
∑︂

s∈Sg

zs = 1 (4.49)

zs ∈ {0; 1} ∀s ∈ Sg (4.50)

The ISTSFD-V-PP-S(g) aims to identify an absent shift pattern with minimum reduced cost.

That is, for a given operator group g ∈ G, it tries to find the best shift pattern s ∈ Sg which

leads to minimum reduced cost (4.48). For this purpose, a set of binary decision variables zs is

defined so that zs = 1 if shift pattern s is chosen. Constraint (4.49) assures that exactly one

shift pattern is chosen.

Using the ISTSFD-V-PP-S(g) – a mixed-integer program – for identifying new columns and solv-

ing the LP-relaxation of the R(ISTSFD-V-DT2) to optimality, may be computationally expensive.

Therefore, the previously proposed efficient column generation algorithm for the multi-mode

resource and truck scheduling problem is extended. Algorithm 9 shows the procedure in

pseudocode that can be applied to find both truck and shift columns with negative reduced

costs. It is an extension of the column generation procedure for the TSFD-RC-V and consists

of three phases: (i) Solving the LP-relaxation of the R(ISTSFD-V-DT2) in order to update the

dual multipliers (line 2), (ii) identifying and adding absent truck columns m = (i, d, k, t) with

negative reduced costs to the restricted problem (line 3 to 19), and (iii) identifying and adding

absent shift columns n = (g, s) with negative reduced costs to the restricted problem (line

20 to 30). Note that phases (i) and (ii) are identical to the phases described in the column

generation algorithm for the TSFD-RC-V. Hence, only phase (iii), i.e., the pricing procedure for

shift columns, will be described in more detail below. The column generation procedure for

shifts aims to identify absent shift columns n = (g, s) with negative reduced costs and includes

them in the column setMshift and, hence, in the restricted problem. For every operator group

g ∈ G, the procedure determines the column n∗g ∈ {ñ = (g, s̃) | s̃ ∈ Sg} with the minimum

reduced costs R∗
g (line 22 to 27). That is, the shift pattern which leads to the minimum reduced

1) A decomposition is not mandatory. It would be also feasible to solve only one pricing problem.
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Algorithm 9: Column generation procedure for the ISTSFD-V

Data: R(ISTSFD-V-DT2) and the initial column setsMtruck andMshift.
Result: R(ISTSFD-V-DT2) including all columns such that the optimal value of the relaxed

R(ISTSFD-V-DT2) is equivalent to the optimal value of the relaxed ISTSFD-V-DT2.
1 repeat

2 Solve the LP-relaxation of the R(ISTSFD-V-DT2) over the setsMtruck andMshift and
store the values of the dual variables λt, µtd, νi, π, and ψg;

3 Ntruck ← ∅;
4 for i := 1 to |I| do
5 for d := 1 to |D| do
6 R∗

id ←∞;
7 for k := 1 to |K| do
8 R̃← ai,d,k,riπ +

∑︁ri+pidk−1
t=ri

κikλt +
∑︁ri+pidk−1

t=ri
µtd − νi;

9 if R̃ < R∗
id then

10 m∗
id ← (i, d, k, ri);

11 R∗
id ← R̃;

12 for t := ri + 1 to di do

13 R̃← R̃+ (ai,d,k,t+pidk−1 − ai,d,k,t−1)π + κik(λt+pidk−1 − λt−1)
+ (µt+pidk−1,d − µt−1,d);

14 if R̃ < R∗
id then

15 m∗
id ← (i, d, k, t);

16 R∗
id ← R̃;

17 if R∗
id < 0 then

18 Ntruck ← Ntruck ∪ {m∗
id};

19 Mtruck ←Mtruck ∪Ntruck;
20 Nshift ← ∅;
21 for g := 1 to |G| do
22 R∗

g ←∞;
23 for s := 1 to |Sg| do
24 R̃← Cgs −

∑︁

t∈T λtγgst − ψg;
25 if R̃ < R∗

g then

26 n∗g ← (g, s);
27 R∗

g ← R̃;

28 if R∗
g < 0 then

29 Nshift ← Nshift ∪ {n∗g};

30 Mshift ←Mshift ∪Nshift;
31 until Ntruck ∪Nshift = ∅;
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costs is determined. If column n∗g has negative reduced costs (i.e., R∗
g < 0), it is temporarily

stored in set Nshift (line 28 to 29). Lastly, all columns in set Nshift are added to the column set

Mshift and, hence, to the restricted problem R(ISTSFD-V-DT2) (line 30). Phases (i)-(iii) are

repeated until no new truck or shift columns with negative reduced cost can be found (line 31).

Once the algorithm terminates, the LP-relaxation of both the R(ISTSFD-V-DT2) and ISTSFD-

V-DT2 are solved to optimality. If the obtained solution only consists of integer variables, the

optimal solution to the ISTSFD-V-DT2 is found. If the solution is fractional, on the other hand,

integrality on the decision variables is reintroduced and the R(ISTSFD-V-DT2) is solved with a

default solver. Note that in this case the obtained integer solution to the R(ISTSFD-V-DT2) is

not necessarily the optimal solution to the ISTSFD-V-DT2. Hence, the proposed procedure is a

heuristic solution procedure.

4.5 Chapter summary

This chapter described solution procedures for the resource and truck scheduling problem,

multi-mode resource and truck scheduling problem, and shift and truck scheduling problem.

In Section 4.2, a heuristic solution procedure for tackling the resource and truck scheduling

problem (TSFD-RC-F) was proposed. The solution procedure consisted of a column generation

schemewhich allowed to add decision variables iteratively to the discrete-timemodel formulation

of the TSFD-RC-F. First, ways to generate an initial subset of columns that can be added to

the restricted model were described. Specifically, a mixed-integer program and a heuristic

procedure for computing a set of initial columns were developed. Next, a mixed-integer pricing

program and an efficient pricing algorithm were proposed. They can be used in order to identify

absent columns that may improve the relaxation value of the restricted problem. Moreover,

the solution procedure served as a basis and was extended in Section 4.3 and Sec 4.4 in order

to tackle the multi-mode resource and truck scheduling problem (TSFD-RC-V) and the shift

and truck scheduling problem (ISTSFD-V), respectively. Both sections presented details on the

computation of initial columns and the column generation procedure.

92



5 Computational experiments

This section contains numerical experiments for evaluating the performance of both the pro-

posed mathematical programs and the proposed column generation-based solution procedures.

Specifically, the research objectives in Table 5.1 are addressed.

Item Research objective Evaluation criteria Section

RO1 Identify the best mixed-integer programming formulations
for the proposed models.

Solution quality
Computational time

5.2

RO2 Assess the performance of the proposed column generation-
based solution procedures.

Solution quality
Computational time

5.3

RO3 Derive managerial insights by benchmarking the proposed
models against frequently used truck scheduling models.

Solution quality 5.4

Table 5.1 Research objectives.
Source: Own table.

The numerical study in Section 5.2 seeks for the best performing model formulations of the TSFD-

RC-F, TSFD-RC-V, and ISTSFDs (research objective RO1), while the performance of the column

generation-based solution procedures is analyzed in Section 5.3 (research objective RO2). Both

studies employ the computational time and the solution quality for performance assessment.

The numerical study in Section 5.4 sets out to address research objective RO3 by investigating

the solution quality of the proposed scheduling models. Specifically, the study benchmarks

the TSFD-RC-F, TSFD-RC-V, and ISTSFD-F with respect to various key performance indicators

(KPIs) against two frequently used truck scheduling models: (i) a model for minimizing the

makespan, and (ii) a model for minimizing the total processing time of trucks. In addition, the

impact of problem characteristics such as the length of time windows, the number of available

inbound dock-doors, and the share of big trucks on the models’ solution quality is analyzed.

All numerical experiments are conducted on a notebook with an Intel i7-8550 CPU and 16GB

RAM. The MIP models are solved with IBM ILOG CPLEX Optimizer V12.10.0 and the column
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generation-based solution procedure is implemented in C++ (Visual Studio 2019) using the

CPLEX API for solving the restricted master problem and pricing problem. If not mentioned

otherwise, the solution time for all solution approaches is limited to 15 minutes per test instance.

Prior to the experiments, the next section outlines the test instance generator required to develop

suitable testbeds for conducting the described computational experiments.

5.1 Instance generation

The presented research objectives call for a diverse set of test instances. Since there were no

suitable testbeds available, it was necessary to implement a test instance generator. A total of six

testbeds ranging from very small-sized instances (dubbed as XS) to very large-sized instances

(dubbed as XXL) were generated. All generated problem instances share the following basic

assumptions. They assume an 8h planning horizon (e.g., 08:00 – 16:00) with inbound truck

arrival times and outbound truck deadlines uniformly distributed between 08:00 and 14:30,

and 13:00 and 16:00, respectively. This overlap between inbound and outbound operations

fosters that the deadlines of outbound trucks potentially affect the scheduling of inbound trucks.

The number of outbound trucks supplied by each inbound truck is randomly chosen between

five and seven1).

Moreover, it is distinguished between small inbound trucks and big inbound trucks. When

dealing with single-mode processing, it is assumed that a small inbound truck must be processed

by one operator (i.e., κi = 1) and that a big inbound truck must be processed by two operators

(i.e., κi = 2). This seems to be a simple rule of thumb that may be used in practice. When

dealing with multi-mode processing, on the other hand, two operator modes (k ∈ {1, 2}) are
considered for inbound trucks i ∈ I: A slow processing mode (κi,k=1 = 1) and a fast processing

mode (κi,k=2 = 2). Truck processing times are generated as follows:

1. Randomly set the truck processing times for small trucks in the slow mode (using one

operator) and the truck processing times for big trucks in the fast mode (using two

operators) between 30 and 70 minutes, a similar ballpark as Tadumadze et al.2). Note

that the generated truck processing times can be used in the single-mode models.

2. For the multi-mode models, furthermore derive the truck processing times for small trucks

1) Rijal et al. (2019, p. 768).
2) Tadumadze et al. (2019, p. 351).
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in the fast mode (using two operators) by using the equation pi,k=2 =
pi,k=1√

2
. Moreover,

derive the truck processing times for big trucks in the slow mode (using one operator)

by using the equation pi,k=1 = pi,k=2 ·
√
2. This procedure is adapted from Tadumadze

et al. and considers a sub-additive performance increase1).

Based on these assumptions, the instance generator is initialized with the six input parameters

from Table 5.2. These parameters are critical factors that make problem instances of the

proposed models either harder or easier to solve. The number of inbound trucks |I| ranges from

Generated testbeds

Parameter XS S M L XL XXL

|I| 30 50 80 150 250 350

|D| {4, 5} {6, 7, 8} {9, 11, 13} {18, 21} {30, 35} {40, 45}
|O| 20 30 30 50 50 70

|T | {48, 96, 240}
di − ri {∼ U(30, 50),∼ U(60, 80)}
β {∼ U(0.0, 0.0),∼ U(0.2, 0.3),∼ U(0.4, 0.5)}

Table 5.2 Parameters for instance generation.
Source: Own table.

30 in testbed XS to 350 in testbed XXL. Similarly, the number of outbound trucks varies between

20 in XS and 70 in XXL. For every testbed, different values for the number of available inbound

dock-doors |D| are chosen such that the ratio |I|
|D| , i.e., the average number of inbound trucks

per dock-door, varies between six and nine. The number of time intervals |T |, which is a key

complexity driver of the discrete-time models and expresses the granularity of time, is chosen

from the set {48, 96, 240}. In other words, time interval lengths of ten minutes (|T | = 48), five

minutes (|T | = 96), and two minutes (|T | = 240) are considered. Lastly, the length of time

windows and the share of big inbound trucks are varied in order to ensure a certain diversity

within each testbed. The truck time windows (di − ri) are uniformly distributed and either of

short length (30 to 50 minutes) or moderate length (60 to 80 minutes). The share of big trucks,

denoted as β, is also uniformly distributed. Specifically, three cases are considered: (i) no big

inbound trucks (∼ U(0.0, 0.0)), (ii) between 20-30% big inbound trucks (∼ U(0.2, 0.3)), and

(iii) between 40-50% big inbound trucks (∼ U(0.4, 0.5)).

Moreover, the shift and truck scheduling problems (ISTSFD-F and ISTSFD-V) require operator

1) Tadumadze et al. (2019, p. 351).
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group information and shift pattern information as input data. If not mentioned otherwise, one

operator group (i.e., |G| = 1) with the shift pattern information shown in Table 5.3 are used in

the computational experiments.

Operator
group

Shift
pattern

Start End Work break Cgs

1 1 08:00 16:00 11:30 - 12:00 1

1 2 08:00 16:00 12:00 - 12:30 1

1 3 08:00 16:00 12:30 - 13:00 1

1 4 08:00 16:00 13:00 - 13:30 1

Table 5.3 Standard shift pattern information.
Source: Own table.

The computational time and the solution quality need to be analyzed when seeking for the best

performing MIP formulations of the proposed models. This demands test instances that can be

solved to optimality by an off-the-shelf-solver in a reasonable time. Therefore, testbeds XS and S

are chosen for investigating research objective RO1. In order to address research objective RO2,

i.e., assessing the performance of the column generation-based solution procedures, the larger

problem instances in testbeds L, XL, and XXL are chosen. Note that the size of these problem

instances is representative for real-world facilities. Lastly, testbeds S and M are chosen for

benchmarking the proposed models against existing truck scheduling models and for deriving

managerial insights.

5.2 Performance of the mixed-integer programs

This section addresses research objective RO1, that is, it sets out to compare the computational

performance of the TSFD-RC-F’s, the TSFD-RC-V’s, and the ISTSFDs’ model formulations. For

this purpose, the test instances from testbeds XS and S are used.

5.2.1 Resource and truck scheduling problem

According to preliminary tests, the number of inbound dock-doors |D| has only a marginal

impact on the complexity of instances in XS and S. Therefore, |D| is set to the values of five in XS

and seven in S. Since the granularity of time certainly impacts the computational performance
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of discrete-time models, all possible values for the number of time intervals are considered.

Furthermore, different truck time window lengths and big truck shares are considered. Thus,

the experiment includes a total of 360 instances, ten for each parameter combination. Table

5.4 presents the numerical results. The table shows the average CPU time for solving the MIP

in column “CPU s”. It also reports the number of instances for which the solver identified a

feasible integer solution (column “#f ”) and the number of instances that are solved to proven

optimality (column “#∗”) within the time limit. Furthermore, the average optimality gaps of

the best upper bound obtained within the time limit are reported in column “gap∗”.

The results indicate that parameter |T | has a strong effect on the problem complexity of discrete-

time models. In fact, the solution time grows disproportionally when the number of time

intervals is increased. It can also be observed that the instances with larger truck time windows

are harder to solve than instances with smaller time windows. Larger truck time windows

increase the size of the MIP models (in the case of discrete-time models) and the size of the

solution space which results in longer computational times. The parameter β also affects the

solution time. Instances that only consider small inbound trucks (β ∼ U(0.0, 0.0)) are solved

in a shorter time than instances that incorporate small and big trucks. Both discrete-time

models find the optimal solutions for all 360 instances. While TSFD-RC-F-DT1 fails to prove

optimality in one instance, TSFD-RC-F-DT2 is not able to prove optimality for two instances

within the time limit of 15 minutes. However, TSFD-RC-F-DT2 performs slightly better than

TSFD-RC-F-DT1 as it has shorter solution times in most of the instances. Only in one instance,

in which TSFD-RC-F-DT2 fails while TSFD-RC-F-DT1 succeeds to prove optimality within the

time limit, TSFD-RC-F-DT2 is clearly outperformed by TSFD-RC-F-DT1.

When comparing the average solution time of the continuous-time models, the results are more

ambiguous. The solution times do not clearly show which model formulation is superior. For

most instances in testbed XS, both continuous-time models are able to find the optimal solution.

As the optimality gap indicates, both models struggle to find the optimal solutions for instances

from testbed S. The results also reveal that the continuous-time models have difficulties with

proving optimality. Specifically, TSFD-RC-F-CT1 and TSFD-RC-F-CT2 cannot prove optimality

for 112 and 95 out of 360 instances, respectively. Surprisingly, both models are not able to

identify a feasible integer solution in ca. 5% of the instances.

When comparing the discrete-time models with the continuous-time models, the table shows

that the discrete-time models can be solved in a much shorter time. For many instances, their

solution time is more than ten times shorter than the continuous-time models’ solution time.

Overall, it can be concluded that the discrete-time model formulations clearly outperform the

continuous-time model formulations when seeking optimal solutions with a default solver.
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5.2.2 Multi-mode resource and truck scheduling problem

It was shown in the last section that the TSFD-RC-F’s continuous-time formulations were clearly

outperformed by its discrete-time model formulations in terms of both solution quality and

solution time. Due to the huge performance gap that was observed between the discrete-

time and continuous-time model formulations, it is likely that the TSFD-RC-V’s discrete-time

formulations dominate its continuous-time formulations. To test this hypothesis, testbed XS

is used for comparing the discrete-time and continuous-time model formulations of the TSFD-

RC-V. The experiment includes 180 instances, ten for each parameter combination. Table 5.5

reports the average CPU times for solving the MIPs (columns “CPU s”), the number of instances

that are solved to proven optimality (columns “#∗”), and the average optimality gaps (columns

“gap∗”) for all model formulations.

When comparing both continuous-time formulations, the results are rather ambiguous. The

TSFD-RC-V-CT2 has a slightly shorter average solution time but also a slightly bigger average

optimality gap than the TSFD-RC-V-CT1. Both model formulations regularly struggle to find

the optimal solution. With an average optimality gap of up to 22.83% for some parameter

combinations, the continuous-time models often fail to find near-optimal solutions within a

15 minutes time limit. Since the discrete-time formulations solve all instances from XS to

optimality and their average solution time is almost 200 times shorter than the continuous-time

formulations’ solution time, it can be concluded that the discrete-time formulations clearly

outperform the continuous-time formulations.

Hence, only the discrete-time models are analyzed in more detail below. Both testbed XS

and testbed S are used for this experiments and the results are reported in Table 5.6. Both

discrete-time model formulations are able to solve all test instances in testbed XS to optimality

within a few seconds. The differences between the TSFD-RC-V-DT1 and TSFD-RC-V-DT2

are marginal with the TSFD-RC-V-DT2 having slightly shorter solution times for most of the

parameter combinations in XS. For instances in S, on the other hand, the differences between

both discrete-time formulations are clearly recognizable. When applying a default solver to

the TSFD-RC-V-DT1 and TSFD-RC-V-DT2, seven and one test instances cannot be solved to

proven optimality within 15 minutes, respectively. Moreover, the TSFD-RC-V-DT1 fails to find

the optimal solution for two instances from testbed S. The TSFD-RC-V-DT2, on the other hand,

always identified the optimal solution. With a ca. 70% shorter average solution time for instances

from S, the TSFD-RC-V-DT2 outperforms the TSFD-RC-V-DT1. Hence, the TSFD-RC-V-DT2

seems to be the superior model formulation for the multi-mode resource and truck scheduling

problem.
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Instances TSFD-RC-V-DT1 TSFD-RC-V-DT2

Size |D| |T | di − ri β CPUs #∗ gap∗ CPUs #∗ gap∗

XS 5 48 ∼ U(30, 50) ∼ U(0.0, 0.0) 0.28 10 0.00 0.17 10 0.00
XS 5 48 ∼ U(30, 50) ∼ U(0.2, 0.3) 0.33 10 0.00 0.22 10 0.00
XS 5 48 ∼ U(30, 50) ∼ U(0.4, 0.5) 0.32 10 0.00 0.21 10 0.00
XS 5 48 ∼ U(60, 80) ∼ U(0.0, 0.0) 0.47 10 0.00 0.33 10 0.00
XS 5 48 ∼ U(60, 80) ∼ U(0.2, 0.3) 0.47 10 0.00 0.30 10 0.00
XS 5 48 ∼ U(60, 80) ∼ U(0.4, 0.5) 0.52 10 0.00 0.42 10 0.00
XS 5 96 ∼ U(30, 50) ∼ U(0.0, 0.0) 0.67 10 0.00 0.50 10 0.00
XS 5 96 ∼ U(30, 50) ∼ U(0.2, 0.3) 1.03 10 0.00 0.80 10 0.00
XS 5 96 ∼ U(30, 50) ∼ U(0.4, 0.5) 0.98 10 0.00 0.70 10 0.00
XS 5 96 ∼ U(60, 80) ∼ U(0.0, 0.0) 1.28 10 0.00 0.73 10 0.00
XS 5 96 ∼ U(60, 80) ∼ U(0.2, 0.3) 1.58 10 0.00 1.67 10 0.00
XS 5 96 ∼ U(60, 80) ∼ U(0.4, 0.5) 1.46 10 0.00 0.91 10 0.00
XS 5 240 ∼ U(30, 50) ∼ U(0.0, 0.0) 4.16 10 0.00 3.18 10 0.00
XS 5 240 ∼ U(30, 50) ∼ U(0.2, 0.3) 4.61 10 0.00 3.61 10 0.00
XS 5 240 ∼ U(30, 50) ∼ U(0.4, 0.5) 4.24 10 0.00 3.32 10 0.00
XS 5 240 ∼ U(60, 80) ∼ U(0.0, 0.0) 7.19 10 0.00 5.54 10 0.00
XS 5 240 ∼ U(60, 80) ∼ U(0.2, 0.3) 7.88 10 0.00 5.90 10 0.00
XS 5 240 ∼ U(60, 80) ∼ U(0.4, 0.5) 8.23 10 0.00 6.58 10 0.00
S 7 48 ∼ U(30, 50) ∼ U(0.0, 0.0) 0.74 10 0.00 0.53 10 0.00
S 7 48 ∼ U(30, 50) ∼ U(0.2, 0.3) 0.99 10 0.00 0.66 10 0.00
S 7 48 ∼ U(30, 50) ∼ U(0.4, 0.5) 1.03 10 0.00 0.95 10 0.00
S 7 48 ∼ U(60, 80) ∼ U(0.0, 0.0) 1.55 10 0.00 0.91 10 0.00
S 7 48 ∼ U(60, 80) ∼ U(0.2, 0.3) 2.03 10 0.00 1.68 10 0.00
S 7 48 ∼ U(60, 80) ∼ U(0.4, 0.5) 1.89 10 0.00 1.09 10 0.00
S 7 96 ∼ U(30, 50) ∼ U(0.0, 0.0) 2.71 10 0.00 2.01 10 0.00
S 7 96 ∼ U(30, 50) ∼ U(0.2, 0.3) 7.52 10 0.00 3.36 10 0.00
S 7 96 ∼ U(30, 50) ∼ U(0.4, 0.5) 3.08 10 0.00 2.20 10 0.00
S 7 96 ∼ U(60, 80) ∼ U(0.0, 0.0) 5.00 10 0.00 2.47 10 0.00
S 7 96 ∼ U(60, 80) ∼ U(0.2, 0.3) 4.61 10 0.00 3.52 10 0.00
S 7 96 ∼ U(60, 80) ∼ U(0.4, 0.5) 6.65 10 0.00 8.54 10 0.00
S 7 240 ∼ U(30, 50) ∼ U(0.0, 0.0) 14.87 10 0.00 9.37 10 0.00
S 7 240 ∼ U(30, 50) ∼ U(0.2, 0.3) 118.13 9 0.00 113.54 9 0.00
S 7 240 ∼ U(30, 50) ∼ U(0.4, 0.5) 21.98 10 0.00 19.10 10 0.00
S 7 240 ∼ U(60, 80) ∼ U(0.0, 0.0) 304.75 8 2.00 24.10 10 0.00
S 7 240 ∼ U(60, 80) ∼ U(0.2, 0.3) 326.60 8 1.67 40.99 10 0.00
S 7 240 ∼ U(60, 80) ∼ U(0.4, 0.5) 279.32 8 0.00 95.48 10 0.00

Avg. XS 2.54 0.00 1.95 0.00
S 61.30 0.20 18.36 0.00

|I| = 30 and |I| = 50 for instances in XS and S.
CPUs: Avg. CPU time for solving the MIP.
#∗: Number of instances that are solved to proven optimality.
gap∗: Avg. optimality gap in %.

Table 5.6 Numerical results for different discrete-time MIP formulations of the TSFD-RC-V.
Source: Own table.

5.2.3 Shift and truck scheduling problem

This section sets out to identify the best MIP formulations for the shift and truck scheduling

problems. The experiment includes a total of four discrete-time model formulations, two for

the single-mode problem and two for the multi-mode problem. A total of 360 instances from

testbeds XS and S are included in the experiment. Table 5.7 shows the numerical results. It

reports the average CPU times for solving the MIPs with a default solver in columns “CPU s”.
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Moreover, the table shows the number of instances for which the default solver identifies a

feasible integer solution within the time limit of 15 minutes (columns “#∗”). Finally, the average

optimality gaps of the best upper bounds are reported in columns “gap∗”.

First, some general observations for both the single-mode and multi-mode problem can be made.

Dealing with more inbound trucks and time intervals, as well as wider truck time windows,

usually results in longer solution times. Furthermore, instances which consider both small and

big inbound trucks are oftentimes harder to solve than instances which only consider small

inbound trucks. Moreover, the solution time significantly increases when considering multiple

operator modes.

When comparing the model formulations for the single-mode shift and truck scheduling problem,

only marginal differences can be observed. The default solver is able to solve all 360 test instances

to optimality within a few seconds when using ISTSFD-F-DT1 and ISTSFD-F-DT2. Due to its

slightly shorter solution times for most of the parameter combinations, the ISTSFD-F-DT2

should be used when tackling small-sized problem instances of the single-mode shift and truck

scheduling problem.

When comparing the multi-mode formulations, on the other hand, more notable differences

in the solution time can be observed. For most of the instances, the ISTSFD-V-DT2 can be

solved significantly faster than the ISTSFD-V-DT1. The average solution time for instances from

testbed S, for example, can be almost cut by half when using the ISTSFD-V-DT2 instead of the

ISTSFD-V-DT1. Moreover, the default solver is able to obtain the optimal solution for all 360 test

instances when using the ISTSFD-V-DT2. When using the ISTSFD-V-DT1, on the other hand,

it fails to find the optimal solution for one test instance within the time limit of 15 minutes.

Hence, the ISTSFD-V-DT2 should be used when tackling small-sized problem instances for the

multi-mode shift and truck scheduling problem.

5.3 Performance of the solution procedure

This section sets out to evaluate the performance of the proposed column generation-based

solution procedures. To do so, the solution procedures are benchmarked against the best

performing MIP formulations from the previous section. The experiment applies instances from

testbeds L, XL, and XXL. The value of |T | is set to 96 in testbeds XL and XXL, resulting in time

intervals with a rather fine granularity of five minutes. In order to assess the applicability of

the solution procedure in scenarios that require a very fine time granularity, the experiment
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applies a time interval length of two minutes (i.e., |T | = 240) for instances from testbeds L. Ten

instances for each parameter combination are generated and each instance is solved twice –

one time with a predefined service level of 100% (i.e., α = 1.0) and one time with a predefined

service level of 99% (i.e., α = 0.99). In this context, the service level only applies to the product

units that can theoretically reach the outbound area in time. Each experiment, hence, includes

a total of 720 instances.

According to preliminary tests, it is faster to heuristically select the initial columns for the column

generation-based solution procedures than by solving the proposed mixed-integer programs

with a default solver. Hence, the initial columns are generated heuristically throughout the

entire computational experiment. Furthermore, the proposed efficient algorithms for pricing

out new columns are used. Table 5.8 summarizes the components that are used in the column

generation-based solution procedures.

Model Initial columns Column generation

Resource and truck scheduling problem Algorithm 2 Algorithm 3

Multi-mode resource and truck scheduling problem Algorithm 5 Algorithm 6

Shift and truck scheduling problem Algorithm 8 Algorithm 9

Table 5.8 Components used in the column generation-based solution procedure.

Source: Own table.

5.3.1 Resource and truck scheduling problem

Table 5.9 summarizes the numerical results for evaluating the TSFD-RC-F-CG, that is, the

proposed column generation-based solution procedure for solving the TSFD-RC-F.

With respect to the TSFD-RC-F-DT2, the table shows the average solution time (column

“CPU s”), the number of instances that are solved to optimality (column “#∗”), and the number

of instances for which the best known solution is identified (column “#UB”). In addition, it

includes the average optimality gap (column “gap∗”) and the average gap to the best known

solution (column “gapUB”) measured in percentage, as well as the number of columns in the MIP

(column “#col”). The reporting structure for the TSFD-RC-F-CG is slightly different. The column

“#s” contains the number of instances that are solved within the time limit, i.e., the default

solver terminates within the time limit. Recall that solving an instance with the TSFD-RC-F-CG

(a heuristic solution procedure) within the time limit does not necessarily lead to the global

optimal solution of the problem instance. Therefore, the number of instances that are solved to
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proven optimality are reported within column “#p”. Specifically, the TSFD-RC-F-CG solves an

instance to proven optimality if two conditions are met: (i) the instance is solved within the

time limit, and (ii) the gap between the identified solution and the LP lower bound is less than

one.

The results substantiate some of the observations made when analyzing the MIP formulations

in one of the previous sections. It can be seen that the average solution times for instances with

wider truck time windows and a higher share of big trucks are longer. Both wider truck time

windows and varying operator requirements result in a bigger solution space and hence make

an instance harder to solve. Furthermore, the number of available dock-doors appears to affect

the solution time. In each testbed, the average solution time increases when less dock-doors

are available for processing inbound trucks. Reducing the number of available dock-doors

increases the average number of trucks per dock-door (i.e., a higher ratio |I|
|D|) and makes it

more challenging to find feasible truck schedules.

Furthermore, some observations regarding the TSFD-RC-F-DT2 can be made. The MIP formu-

lation is able to solve the majority of the instances with |T | = 96 from testbeds XL and XXL to

optimality. Only 1 out of 240 instances from XL and 10 out of 240 instances from XXL cannot

be solved to optimality within the time limit. For both testbeds, the average optimality gap is

less than 1% for all parameter combinations. However, the TSFD-RC-F-DT2 struggles to find

the optimal solution when a very fine time granularity (i.e., |T | = 240) is applied. Specifically,

72 out of 240 instances (30.0%) cannot be solved to proven optimality within the time limit.

Moreover, in 41 out of 240 instances (ca. 17.1%) the solver fails to find the best known solution

within the time limit.

The column generation-based solution procedure TSFD-RC-F-CG, on the other hand, solves

all instances with |T | = 96 within the time limit and identifies the best known solution in all

instances. It also finds the best known solution for all instances with a time interval length of

two minutes (i.e., |T | = 240), but is unable to terminate within the time limit in 27 out of 240

instances (ca. 11.3%). The average optimality gap is less than 1% for 31 out of 36 parameter

combinations and does not exceed 2.2%. Moreover, the TSFD-RC-F-CG can prove for ca. 98%

of the instances from XL and XXL and ca. 91% of the solved instances from L that the identified

solution is the global optimum. This result is very surprising since it is theoretically a heuristic

solution procedure. The TSFD-RC-F-CG not only outperforms the TSFD-RC-F-DT2 in terms

of solution quality, but also with respect to the computational time. The solution procedure

is able to solve the test instances from testbed XL and XXL on average in ca. 14 seconds and

22 seconds, respectively. The test instances with finer time intervals from testbed L have an

average solution time of ca. 2.5 minutes. Note that its run time is on average ca. 69%, for some
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parameter combinations even up to ca. 93%, shorter than the MIP formulation’s run time.

When solving problem instances with a very fine time granularity (|T | = 240), both the TSFD-

RC-F-DT2 and TSFD-RC-F-CG sometimes struggle to terminate within the time limit. In light

of TSFD-RC-F being an operational problem that has to be solved frequently, long computations

are most likely not acceptable for practitioners. Therefore, the TSFD-RC-F-DT2 and the TSFD-

RC-F-CG are further compared with respect to the best found solution within a 60-s time limit.

One minute of CPU time should be acceptable even for the most demanding applications. In

this test, 40 out of the 72 problem instances from testbed L which could not be solved by the

default solver within the 15 minutes time limit, are randomly selected. Table 5.10 summarizes

the results. In 35 out of 40 instances, the default solver does not find a feasible solution within

|D| = 18 |D| = 21

Best known DT2 CG Best known DT2 CG
ID solution Gap (%) Gap (%) solution Gap (%) Gap (%)

1 13 - 0.00 12 - 0.00
2 16 - 0.00 17 - 0.00
3 16 6.25 6.25 18 - 5.56
4 18 - 0.00 18 - 0.00
5 20 - 0.00 19 - 0.00
6 22 4.55 4.55 17 47.06 0.00
7 19 - 0.00 19 - 5.26
8 19 - 0.00 19 - 0.00
9 18 - 5.56 19 5.26 5.26
10 20 - 0.00 20 - 0.00
11 20 - 0.00 17 - 0.00
12 19 5.26 5.26 20 - 0.00
13 19 - 0.00 19 - 0.00
14 18 - 0.00 22 - 0.00
15 17 - 0.00 13 - 0.00
16 24 - 4.17 18 - 0.00
17 18 - 0.00 19 - 0.00
18 21 - 0.00 16 - 0.00
19 20 - 0.00 17 - 0.00
20 19 - 0.00 16 - 0.00

Avg. 5.35 1.29 26.16 0.80

A dash (-) denotes that no feasible solution was found within the time limit.
DT2: TSFD-RC-F-DT2; CG: TSFD-RC-F-CG.

Table 5.10 Comparison of the TSFD-RC-F-DT2 and TSFD-RC-F-CG given a 60 seconds time limit
(instances from testbed L).

Source: Own table.

the 60-s time limit when solving the TSFD-RC-F-DT2. In the few cases where it finds a feasible

solution, the average gap to the best known solution is ca. 14%. The TSFD-RC-F-CG, on the
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other hand, is clearly superior at finding good solutions within the 60-s time limit. It lowers

the average gap to the best known solution to ca. 1% and is able to identify the best known

solution in 32 out of 40 test instances.

It can be summarized that the TSFD-RC-F-CG clearly outperforms the MIP formulation in terms

of solution quality and computational time and hence should be used when tackling real-world

instances.

5.3.2 Multi-mode resource and truck scheduling problem

Subsequently, the proposed column generation-based solution procedure for solving the multi-

mode resource and truck scheduling problem, denoted as TSFD-RC-V-CG, will be evaluated.

Recall that the number of decision variables in the TSFD-RC-V is considerably higher than in

the TSFD-RC-F, since it also seeks to identify the best operator mode for each truck (i.e., how

many operators should process each truck).

The solution procedure is benchmarked against the TSFD-RC-V-DT2, which was identified as

the best performing MIP formulation before. The numerical results are reported in Table 5.11.

With respect to the TSFD-RC-V-DT2, the table now also reports the number of instances for

which the default solver is able to identify a feasible integer solution within the 15 minutes time

limit (column “#f ”). Besides that, the reporting structure is identical with the structure that

was used when evaluating the TSFD-RC-F-CG in the previous section.

When feeding the TSFD-RC-V-DT2 into a default solver, the solver is able to find the best known

solution for ca. 89% of the instances from testbeds XL and XXL. The default solver is not able

to identify a feasible solution for 6 out of 480 test instances with |T | = 96. For instances from

testbed XL and XXL, the average gap to the best known solution is ca. 0.1% and ca. 3.1%,

respectively. Note that the gap considerably increased compared to the single-mode resource

and truck scheduling problem. The results also show that the TSFD-RC-V-DT2 struggles to

solve instances with a very fine time granularity (i.e., |T | = 240). Ca. 41.3% (99 out of 240

instances) cannot be solved to proven optimality within the time limit. Moreover, the solver

is unable to find the best known solution in 25% of the instances and even fails to identify a

feasible solution in 17 out of 240 instances (ca. 7%).

The heuristic solution procedure TSFD-RC-V-CG, on the other hand, finds the best known

solution for all instances with |T | = 96. Only in 3 out of 480 instances from testbed XL and XXL,

the procedure does not terminate within the time limit. Moreover, the column generation-based
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solution procedure also identifies the best known solution for all instances with a very fine time

granularity (|T | = 240). With an average optimality gap of less than 1.5%, it is capable to find

near-optimal solutions. Surprisingly, the TSFD-RC-V-CG – a heuristic procedure – is able to

prove for ca. 96% of the instances from XL and XXL, and ca. 91% of the solved instances from

L that the identified solution is the global optimum. With an average solution time of less than

30 seconds for instances from XL and XXL, and less than 3 minutes for instances from L, the

heuristic procedure achieves up to 97% shorter average run times than the default solver.

In 42 out of 240 instances from testbed L – almost double the number compared to the TSFD-

RC-F-CG – the heuristic solution procedure does not terminate within the 15 minutes time

limit. Therefore, the TSFD-RC-V-DT2 and the TSFD-RC-V-CG are compared with respect to

the best found solution within a 60-s time limit. For this purpose, 40 out of the 99 problem

instances from testbed L which could not be solved by the default solver within the 15 minutes

time limit, are randomly selected. Table 5.12 reports the results. In all instances, the default

solver is unable to identify a feasible solution within the 60-s time limit when solving the

TSFD-RC-V-DT2. This may be unacceptable for practitioners, since the multi-mode resource

and truck scheduling problem is an operational problem which must be solved frequently. When

applying the heuristic solution procedure TSFD-RC-V-CG, on the other hand, near-optimal

solution can be found within the time limit. Specifically, the procedure is capable to find the

best known solution within a 60-s time limit in 31 out of 40 test instances.

Again, it can be concluded that the proposed heuristic solution procedure clearly outperforms

the MIP formulation in terms of solution quality and computational time.

5.3.3 Shift and truck scheduling problem

This section sets out to evaluate the performance of the heuristic solution procedure proposed

for the shift and truck scheduling problem. Therefore, the multi-mode shift and truck scheduling

problem ISTSFD-V is used for the comparison. It deals with a considerably larger number of

decision variables than the ISTSFD-F as it also determines the best operator mode for each

inbound truck.

The heuristic solution procedure, in the following denoted as ISTSFD-V-CG, is benchmarked

against the ISTSFD-V-DT2, which was identified as the best performing MIP formulation before.

Table 5.13 reports the numerical results. The reporting structure is identical with the structure

that was used when evaluating the TSFD-RC-F-CG in one of the previous sections.
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|D| = 18 |D| = 21

Best known DT2 CG Best known DT2 CG
ID solution Gap (%) Gap (%) solution Gap (%) Gap (%)

1 13 - 0.00 14 - 0.00
2 14 - 0.00 14 - 0.00
3 13 - 0.00 14 - 0.00
4 13 - 0.00 17 - 0.00
5 16 - 0.00 14 - 0.00
6 15 - 0.00 16 - 0.00
7 16 - 0.00 18 - 0.00
8 16 - 0.00 17 - 0.00
9 15 - 0.00 16 - 0.00
10 20 - 5.00 13 - 0.00
11 17 - 5.88 14 - 7.14
12 17 - 0.00 16 - 6.25
13 14 - 0.00 16 - 0.00
14 13 - 7.69 16 - 0.00
15 16 - 0.00 18 - 0.00
16 17 - 0.00 18 - 0.00
17 15 - 0.00 17 - 0.00
18 15 - 0.00 18 - 0.00
19 18 - 5.56 16 - 6.25
20 16 - 6.25 16 - 6.25

Avg. - 1.52 - 1.29

A dash (-) denotes that no feasible solution was found within the time limit.
DT2: TSFD-RC-V-DT2; CG: TSFD-RC-V-CG.

Table 5.12 Comparison of the TSFD-RC-V-DT2 and TSFD-RC-V-CG given a 60 seconds time limit
(instances from testbed L).

Source: Own table.

Compared to the TSFD-RC-V, the average solution time for solving the ISTSFD-V with a default

solver has decreased. While the default solver is able to solve almost all instances from testbed

XL, it is unable to find the optimal solution for 15 and 51 instances from XXL and L, respectively.

Moreover, the default solver sometimes struggles to identify the best known solution within

the time limit. With an average gap of ca. 0.25%, however, the default solver reliably finds

solutions that are close to the best known solutions.

Regarding the heuristic solution procedure, it can be seen that the ISTSFD-V-CG contains less

than 0.5% of the MIP’s number of columns. This, in turn, results in considerably shorter solution

times compared to the ISTSFD-V-DT2. Specifically, instances in XL, XXL, and L are on average

solved ca. eleven times, seven times, and three times faster, respectively. Only one instance

from testbed XXL and 21 instances from testbed L cannot be solved within the 15 minutes time

limit. However, the ISTSFD-V-CG is able to identify the best known solution in all 720 instances.
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Furthermore, the ISTSFD-V-CG can prove for almost 94% of the solved instances that that the

identified solution is the global optimum.

Since both the default solver and the heuristic solution procedure do not terminate within the

time limit for some of the problem instances from testbed L, they are further compared in terms

of the best found solution within a 60-s time limit. For this analysis, 40 out of the 51 instances

from testbed L which could not be solved by the default solver, are randomly selected. The

numerical results are reported in Table 5.14. The default solver fails to solve the instances to

|D| = 18 |D| = 21

Best known DT2 CG Best known DT2 CG
ID solution Gap (%) Gap (%) solution Gap (%) Gap (%)

1 21 - 0.00 15 - 6.67
2 19 - 0.00 19 - 0.00
3 17 - 5.88 18 - 5.56
4 20 - 0.00 17 - 0.00
5 19 - 0.00 19 - 0.00
6 20 - 0.00 15 - 0.00
7 19 - 0.00 15 - 6.67
8 20 - 0.00 16 - 6.25
9 18 - 0.00 16 - 0.00
10 21 - 4.76 18 - 5.56
11 19 - 5.26 17 - 0.00
12 17 - 0.00 16 - 0.00
13 13 - 7.69 17 - 5.88
14 15 - 6.67 16 - 6.25
15 18 - 5.56 17 - 0.00
16 19 - 0.00 19 - 0.00
17 18 - 0.00 17 - 0.00
18 25 - 4.00 20 - 5.00
19 20 - 0.00 18 - 5.56
20 21 - 0.00 15 - 0.00

Avg. - 1.99 - 2.67

A dash (-) denotes that no feasible solution was found within the time limit.
DT2: ISTSFD-V-DT2; CG: ISTSFD-V-CG.

Table 5.14 Comparison of the ISTSFD-V-DT2 and ISTSFD-V-CG given a 60 seconds time limit
(instances from testbed L).

Source: Own table.

feasibility within the 60-s time limit. With the ISTSFD-V being an operational problem that

must be solved frequently, this may be unacceptable for practical applications. When tackling

large instances with a fine time granularity with the ISTSFD-V-CG, on the other hand, good

solutions close to the best known solutions can be identified in 60s. The procedure even finds

the best known solution in 24 out of 40 test instances.
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Again, it can be concluded that the proposed heuristic solution procedure outperforms the MIP

formulation in terms of solution quality and computational time.

5.4 Managerial insights

This section evaluates the solution quality of the TSFD-RC-F, TSFD-RC-V, and ISTSFDs and,

hence, the potential benefit of utilizing resource-related performance measures in truck schedul-

ing models.

The numerical studies, which call for test instances that can be solved to proven optimality

within a short time, use the small- and moderate-sized instances from testbeds S and M.

Throughout the entire experiment, |T | is set to 48. The number of dock-doors |D| is chosen
from the sets {6, 7, 8} and {9, 11, 13} for instances from S and M, respectively. Hence, the

average number of inbound trucks per dock-door |I|
|D| varies between six and nine. Similar to

the experiments in the previous sections, test instances with short and moderate truck time

windows (i.e., (di − ri) ∈ {∼ U(30, 50),∼ U(60, 80)}) as well as test instances with different

shares of big trucks (i.e., β ∈ {∼ U(0.0, 0.0),∼ U(0.2, 0.3),∼ U(0.4, 0.5)}), are included. Hence,
each numerical experiment includes a total of 720 test instances with 20 instances for each

parameter combination.

5.4.1 Resource and truck scheduling problem

In order to evaluate the solution quality of the TSFD-RC-F, it is benchmarked against a truck

scheduling model for minimizing the makespan, denoted as TSFD-MS-F, and a truck scheduling

model for minimizing the total truck processing time, denoted as TSFD-PT-F. Both the TSFD-

MS-F and TSFD-PT-F can be found in Appendix. Moreover, this section investigates the operator

utilization and the role of other factors (e.g., width of truck time windows, service level, etc.) in

the TSFD-RC-F.

Benefits of utilizing operator requirements as the key performance indicator

This section sets out to analyze whether utilizing the operator requirements as the dominant key

performance indicator results in more efficient cross-docking operations. For this purpose, the

TSFD-RC-F is compared with a truck scheduling model for makespan minimization, denoted as
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TSFD-MS-F, and a truck scheduling model for total truck processing time minimization, denoted

as TSFD-PT-F. The makespan and the total truck processing time are frequently used objective

functions in truck scheduling models that do not explicitly consider the required operators. The

three models are compared in terms of the following performance indicators:

1. Makespan C: The time span that elapses from the start of processing the first inbound

truck until the end of processing the last inbound truck.

2. Total truck throughput time (TPT ): The cumulated time that all trucks spend at the

cross-docking terminal. Specifically, it includes:

a) Total truck waiting time H: The cumulated time that inbound trucks spend on the

yard prior to being unloaded at one of the dock-doors.

b) Total truck processing time P : The cumulated time that is required to unload all

inbound trucks and transfer the product units from the inbound area to the outbound

area.

3. Required operatorsW : The number of operators required to accomplish the workload.

The truck throughput time is included as a performance indicator to acknowledge for the truck

driver detention at warehousing facilities, a significant issue for the trucking industry. It was

estimated that motor carriers in the United States could save over $3 billion annually from

eliminating time inefficiencies related to loading and unloading operations1). Truck drivers

in the United States wait on average ca. 2.5h (often without getting paid during that time)

and experience more frequent pickup and delivery delays at warehousing facilities. These

detentions regularly create cascading effects on subsequent pick-ups and deliveries, and reduce

the earnings of both trucking companies and drivers.2) Costello and Karickhoff even

identify the reduction of truck throughput times at facilities as a measure to reduce the truck

driver shortage in the United States. By reducing a truck driver’s throughput time at warehouse

facilities, he can drive more miles within the hours-of-service limits which increases his and,

ultimately, the whole trucking industry’s effective capacity.3)

Table 5.15 reports the descriptive statistics for the numerical experiment. Note that, naturally, the

TSFD-MS-F, TSFD-PT-F, and TSFD-RC-F compute truck schedules with theminimummakespan,

1) Belella et al. (2009, p. 20).
2) Speltz and Murray (2019, p. 9).
3) Costello and Karickhoff (2019, p. 14).
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minimum total truck processing time, and minimum operator requirements, respectively. The

statistics reveal that the TSFD-PT-F and TSFD-RC-F compute truck schedules with a ca. 6-8%

longer makespan than the truck schedules computed with the TSFD-MS-F. Since the required

service level is met in all cases, this marginal increase has no negative effect on the internal

operations. It can also be seen that the total truck waiting time is smaller when using the TSFD-

MS-F. In order to minimize the makespan, the model tends to start processing trucks soon after

their arrival at the cross-docking terminal. This yields to ca. 18% and 10% shorter average

truck waiting times compared to the TSFD-PT-F and TSFD-RC-F, respectively. With an average

waiting time of ca. 11 minutes per truck, however, this is a rather small improvement. In addition,

the table provides the models’ average performance regarding the truck processing time. As

in the case of truck waiting time, a longer truck processing time can be considered negative

since it could turn into a lengthened truck throughput time. The average truck processing

time, however, only slightly increases by ca. 2 minutes and ca. 4-5 minutes when applying the

TSFD-RC-F and TSFD-MS-F, respectively. Achieving a minimum makespan (TSFD-MS-F) or a

minimum total truck processing time (TSFD-PT-F) comes at a price, as it requires a significantly

larger number of operators according to the statistics. Compared with the TSFD-RC-F, both

models generate truck schedules that use ca. 20-35% more operators. This strong surge is

unfavorable since it turns into higher labor cost and, consequently, into higher total operational

cost of the cross-docking terminal. Hence, it can be concluded that the TSFD-RC-F outperforms

both the makespan and processing time models.

Impact of exogenous factors on operator requirements

In order to assess whether and how exogenous factors affect the dominance of the TSFD-RC-F,

the models’ operator requirements for different parameter combinations are explored in the

following. Specifically, the influence of factors such as the number of available dock-doors |D|,
the width of time windows (di− ri), and the share of big trucks β on the number of operatorsW

is analyzed. Table 5.16 reports the operator requirements of the single-mode truck scheduling

models for different parameter combinations. It can be seen from the table that the makespan

model performs worst. For each parameter combination, it generates truck schedules with the

highest average operator requirements. By applying the TSFD-PT-F, the number of operators

can be reduced in most cases. As expected, the TSFD-RC-F outperforms the other two single-

mode truck scheduling models as it guarantees to compute truck schedules that can be executed

with a minimum number of operators. Interestingly, the potential saving strongly varies among

the different parameter combinations. In very few cases, the TSFD-RC-F is able to reduce the

operator requirements by less than 10% compared to the makespan and processing time models.
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Instances Required operators (avg.) Gap w/ TSFD-RC-F

Size |D| di − ri β W avg
MS W avg

PT W avg
RC ∆MS ∆PT

S 6 ∼ U(30, 50) ∼ U(0.0, 0.0) 6.00 6.00 5.75 4.3% 4.3%
S 6 ∼ U(30, 50) ∼ U(0.2, 0.3) 9.30 9.05 8.00 16.3% 13.1%
S 6 ∼ U(30, 50) ∼ U(0.4, 0.5) 10.60 10.40 9.60 10.4% 8.3%
S 6 ∼ U(60, 80) ∼ U(0.0, 0.0) 6.00 6.00 5.85 2.6% 2.6%
S 6 ∼ U(60, 80) ∼ U(0.2, 0.3) 9.25 9.15 7.80 18.6% 17.3%
S 6 ∼ U(60, 80) ∼ U(0.4, 0.5) 10.70 10.40 9.50 12.6% 9.5%
S 7 ∼ U(30, 50) ∼ U(0.0, 0.0) 7.00 6.80 6.05 15.7% 12.4%
S 7 ∼ U(30, 50) ∼ U(0.2, 0.3) 9.80 9.60 8.00 22.5% 20.0%
S 7 ∼ U(30, 50) ∼ U(0.4, 0.5) 11.75 11.20 9.50 23.7% 17.9%
S 7 ∼ U(60, 80) ∼ U(0.0, 0.0) 7.00 6.95 6.05 15.7% 14.9%
S 7 ∼ U(60, 80) ∼ U(0.2, 0.3) 9.85 9.80 7.40 33.1% 32.4%
S 7 ∼ U(60, 80) ∼ U(0.4, 0.5) 11.55 11.45 8.90 29.8% 28.7%
S 8 ∼ U(30, 50) ∼ U(0.0, 0.0) 7.90 7.50 6.20 27.4% 21.0%
S 8 ∼ U(30, 50) ∼ U(0.2, 0.3) 10.90 9.70 8.15 33.7% 19.0%
S 8 ∼ U(30, 50) ∼ U(0.4, 0.5) 12.10 10.95 8.45 43.2% 29.6%
S 8 ∼ U(60, 80) ∼ U(0.0, 0.0) 7.85 7.35 5.75 36.5% 27.8%
S 8 ∼ U(60, 80) ∼ U(0.2, 0.3) 11.05 10.25 7.90 39.9% 29.7%
S 8 ∼ U(60, 80) ∼ U(0.4, 0.5) 12.60 11.95 8.90 41.6% 34.3%
M 9 ∼ U(30, 50) ∼ U(0.0, 0.0) 9.00 8.95 8.55 5.3% 4.7%
M 9 ∼ U(30, 50) ∼ U(0.2, 0.3) 12.95 12.90 11.00 17.7% 17.3%
M 9 ∼ U(30, 50) ∼ U(0.4, 0.5) 14.85 14.15 12.75 16.5% 11.0%
M 9 ∼ U(60, 80) ∼ U(0.0, 0.0) 9.00 9.00 8.55 5.3% 5.3%
M 9 ∼ U(60, 80) ∼ U(0.2, 0.3) 12.95 12.75 10.95 18.3% 16.4%
M 9 ∼ U(60, 80) ∼ U(0.4, 0.5) 15.50 15.30 12.85 20.6% 19.1%
M 11 ∼ U(30, 50) ∼ U(0.0, 0.0) 10.95 10.53 8.74 25.3% 20.5%
M 11 ∼ U(30, 50) ∼ U(0.2, 0.3) 14.89 13.21 10.68 39.4% 23.7%
M 11 ∼ U(30, 50) ∼ U(0.4, 0.5) 17.30 15.60 12.40 39.5% 25.8%
M 11 ∼ U(60, 80) ∼ U(0.0, 0.0) 11.00 10.55 8.45 30.2% 24.9%
M 11 ∼ U(60, 80) ∼ U(0.2, 0.3) 15.15 13.75 10.15 49.3% 35.5%
M 11 ∼ U(60, 80) ∼ U(0.4, 0.5) 17.35 16.00 12.35 40.5% 29.6%
M 13 ∼ U(30, 50) ∼ U(0.0, 0.0) 12.10 10.60 8.15 48.5% 30.1%
M 13 ∼ U(30, 50) ∼ U(0.2, 0.3) 16.25 14.15 10.35 57.0% 36.7%
M 13 ∼ U(30, 50) ∼ U(0.4, 0.5) 18.55 16.40 12.05 53.9% 36.1%
M 13 ∼ U(60, 80) ∼ U(0.0, 0.0) 12.45 11.45 8.65 43.9% 32.4%
M 13 ∼ U(60, 80) ∼ U(0.2, 0.3) 16.55 14.30 10.05 64.7% 42.3%
M 13 ∼ U(60, 80) ∼ U(0.4, 0.5) 18.90 16.75 12.15 55.6% 37.9%

|I| = 50 and |I| = 80 for instances in S and M.
Gap w/ TSFD-RC-F calculated as follows: ∆∗ = ((W avg

∗ −W avg
RC ) /W avg

RC ) · 100%.

Table 5.16 Comparison of resource requirements for different single-mode truck scheduling models.
Source: Own table.

For most of the cases, however, the relative advantage of the TSFD-RC-F in terms of operator

requirements varies between 15-35% and can reach values of up to ca. 65%. The varying

impact of the exogenous factors on the operator requirements can be further explored with the
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help of Figure 5.1. The figure illustrates how changes in the number of available dock-doors,
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a) Results for testbed S.
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b) Results for testbed M.

Figure 5.1 Effect of exogenous factors on the number of operators in different single-mode truck
scheduling models.

Source: Own figure.

width of time windows, and share of big trucks affect the operator requirements in the different

single-mode truck scheduling models. The figure suggests a positive relationship between the

number of dock-doors |D| and the operator requirementsW when the makespan or processing

time model, both models that pursue to process trucks in parallel, is applied. Increasing the

number of available dock-doors facilitates parallel processing and hence causes a surge in

demand for operators. The opposite can be observed for the TSFD-RC-F. As |D| increases, the
demand for operators slightly decreases. More available dock-doors, i.e., additional flexibility,
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help the TSFD-RC-F to reduce (undesired) parallel processing. These countervailing effects also

amplify the differences in operator requirements between the models. The more dock-doors

are available for processing inbound trucks, the bigger the discrepancy between the models’

operator requirements. In situations with plentiful available dock-doors, the relative operator

gap with the TSFD-RC-F can easily exceed values of 50% and 35% for the makespan model and

processing time model, respectively. Furthermore, the width of time windows appears to neither

have a strong effect on the number of operators nor amplifying the differences in operator

requirements between the models. When applying the makespan or processing time model,

the impact of the big truck share β is somehow comparable with the impact of the available

dock-doors |D|. The figure suggests a degressive relationship between β andW , i.e., the effect

is decreasing in higher values. When applying the TSFD-RC-F, higher values of β also eventuate

in higher operator requirements. However, the figure suggests a linear relationship between β

andW when the TSFD-RC-F is applied. Moreover, higher values of β magnify the differences

in operator requirements between the models, since the effect of β appears to be smaller in the

TSFD-RC-F compared to the TSFD-MS-F and TSFD-PT-F.

Operator utilization

The previous two sections revealed that the TSFD-RC-F usually generates truck schedules that

can be executed with a considerably smaller number of operators compared to the TSFD-MS-F

and TSFD-PT-F. In order to get a better idea of how efficiently the different models utilize

the available resources, the operator utilization over the planning horizon is studied in this

section. Table 5.17 provides the summary statistics on the average operator utilization1) and

shows the time span with a full operator utilization and an operator utilization of less than 50%

relative to the length of the planning horizon. For the makespan and processing time models,

average utilization rates of ca. 50-55% are realized. That is, operators on-site experience ca. 4h

of idle time in schedules generated by the TSFD-MS-F and TSFD-PT-F. With utilization rates

of ca. 65%, the TSFD-RC-F allows to considerably reduce the idle times of operators. The

statistics regarding the full and low operator utilization indicate that both the makespan and

processing time model unevenly distribute the workload over the planning horizon. Note that

the facility operates at full capacity for less than 1h (<11%) when applying these models. The

TSFD-RC-F, on the other hand, appears to achieve a more evenly distributed workload which

can also be seen in the representative example displayed in Figure 5.2. The figure depicts the

1) In this context, the operator utilization is defined as the amount of the available operator time (i.e., W · |T |) that
is used for unloading inbound trucks, expressed as a percentage.

120



Average operator Time w/ full operator Time w/ operator utilization
utilization utilization below 50%

Size MS PT RC MS PT RC MS PT RC

S 54.0% 50.5% 63.3% 10.9% 7.7% 24.2% 41.2% 48.3% 33.2%
M 55.9% 52.2% 68.8% 8.3% 6.0% 29.0% 35.8% 43.5% 26.9%

|I| = 50 and |I| = 80 for instances in S and M.
MS: TSFD-MS-F; PT: TSFD-PT-F; RC: TSFD-RC-F.

Table 5.17 Operator utilization statistics for different single-mode truck scheduling models.
Source: Own table.
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Figure 5.2 Exemplary operator utilization over the planning horizon for different single-mode truck
scheduling models.

Source: Own figure.

total number of occupied operators for each time interval of the 8h planning horizon. Recall that

the TSFD-RC-F is the benchmark as it generates a truck schedule that can be executed with the

minimum number of operators. In both examples, it requires a considerably larger number of

operators to execute a truck schedule with a minimum makespan or minimum total processing

time. When applying the TSFD-MS-F to the instance from the figure, up to 12 operators must

be on-duty at a time for processing the inbound trucks. That amounts to a surplus of 4 operators

as compared with the TSFD-RC-F’s resource efficient plan. Looking at the figure, it is apparent

that the additional operators are mainly utilized during peak hours - in the example between

10:00-11:30 and 14:00-14:30. Outside of the peak hours, and hence most of the time, the

additional operators are barely utilized. Similar observations can be made for the TSFD-PT-F.

Moreover, Figure 5.3 displays the effect of exogenous factors on the operator utilization. The

figure shows that the TSFD-RC-F yields a higher operator utilization than the makespan and

processing time models, regardless of the factor values. Furthermore, the TSFD-RC-F is robust

against changes to the number of available dock-doors, the length of time windows, and the
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a) Results for testbed S.

9 11 13
Number of dock-doors

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

O
pe

ra
to

r 
ut

ili
za

tio
n 

(a
vg

.)

30-50min 60-80min
Time window length

0% 20-30% 40-50%
Big truck share

TSFD-MS-F TSFD-PT-F TSFD-RC-F
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Figure 5.3 Effect of exogenous factors on the operator utilization in different single-mode truck
scheduling models.

Source: Own figure.

share of big trucks. In the case of the makespan and processing time models, on the other hand,

the operator utilization decreases as the number of available dock-doors and the share of big

trucks increases.
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Effect of service level adjustments in the TSFD-RC-F

The previous sections examined how factors such as the number of available dock-doors, the

width of time windows, and the big truck share, affect the operator requirements in the TSFD-

RC-F. It was shown, for example, that the operator requirements decrease as the number of

available dock-doors increases and the share of big trucks decreases. These factors, however, are

either hard to change or even cannot be changed at all. The number of dock-doors, for instance,

is set during the construction phase of the cross-docking facility and is impossible to adjust at

the time of computing the truck schedules. It is also difficult to reduce the share of big trucks as

it is determined by the cargo volume. The defined service level α, on the other hand, is a design

parameter that can be influenced by the decision-maker. This section, therefore, sets out to

investigate how sensitive the operator requirement is to changes in the service level and if the

operational efficiency can be improved by marginally lowering the service level. All instances

from testbed M are solved again assuming different values for the service level α. Throughout

the experiment, α is chosen from the set {1.0, 0.99, 0.98, 0.97}. In this context, the service level

only applies to the product units that can theoretically reach the outbound area in time. Figure

5.4 shows the average operator requirements and the average number of additionally delayed

product units for each service level. The figure suggests a regressive relationship between α

andW , that is, the effect is decreasing in lower values. It can be seen from the figure that by

allowing to delay 1% of the overall cargo (i.e., α = 0.99), the operator requirements can be

reduced by almost 10% (ca. 1 operator) on average. In 44% of the test instances, the operator

requirements can be reduced by one, while in ca. 20% of the instances reductions of two or more

operators can be realized. Even bigger operator reductions can be achieved more frequently

when further reducing the service level requirements. However, the benefit comes at a price, as

a lower service level implies a higher number of delayed product units. It can be seen from the

figure that a service level reduction of 1% corresponds on average to ca. 13 additionally delayed

product units in instances from testbed M. Given the fact that it requires one dedicated operator

(paid for the whole 8h shift) to avoid delaying 13 pallets, adjusting the service level could be a

reasonable means to further improve the operational efficiency in a cross-docking facility.

Effect of time window adjustments in the TSFD-RC-F

This section analyzes the effect of time window adjustments on the operator requirements

in the TSFD-RC-F. It is analyzed whether the number of required operators can be further

reduced by slightly extending the truck time windows. It is suspected that prolonging truck

time windows adds additional flexibility and may help to further smoothing out the workload
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Figure 5.4 Impact of service level adjustments in the TSFD-RC-F (testbed M).
Source: Own figure.

over the planning horizon. Note that it might be difficult to adjust the time windows as they

usually must be reconciled with the transportation provider due to their possible impact on the

truck routing. However, in some cases, for instance when both the transportation service and

the cross-docking service are offered by the same provider, time window adjustments could be

an option.

For this experiment, time window extensions of 10 and 20 minutes are considered. The original

time windows are extended in such a way that all trucks are released 10 and 20 minutes earlier,

respectively. The resulting operator requirements are then compared against the base case

with the original time windows. In addition, the influence on the truck throughput time is

analyzed. Figure 5.5 presents the numerical results for testbed M. The figure shows that with

10 minutes longer time windows, ca. 1.3 operators, equating to a work time of ca. 620 minutes,

can be saved on average. In ca. 1/3 of the instances, savings of two or more operators can be

realized. Once again, these operator reductions come at a price, as extended time windows

result in longer truck throughput times. Specifically, the figure shows that the average truck

throughput time increases by ca. 6 minutes as the time windows are extended by 10 minutes.

That is, the cumulated truck throughput time increases by roughly 480 minutes. The aggregated
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Figure 5.5 Impact of time window adjustments in the TSFD-RC-F (testbed M).
Source: Own figure.

results suggest that time window extensions are unfavorable. However, extending time windows

for smaller truck subsets instead, could be a reasonable option to further reduce the operator

requirements. This could be analyzed in a future study.

5.4.2 Multi-mode resource and truck scheduling problem

The TSFD-RC-F, which was analyzed in the previous section, assumes that the resource require-

ment for each truck is known and given in advance. Throughout the experiment, it was assumed

that one and two operators are deployed for processing small and big trucks, respectively. This

rule of thumb, however, might not result in the most efficient truck schedule. The TSFD-RC-V,

on the other hand, has the additional flexibility of adapting the workforce for processing inbound

trucks. This section sets out to explore the potential benefits of considering multiple operator

modes for each inbound truck by benchmarking the TSFD-RC-V against the TSFD-RC-F. In

the following, both models are compared with respect to various key performance indicators.

Moreover, the role of influencing factors (e.g., width of truck time windows, service level, etc.)

in the TSFD-RC-V will be investigated.
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Benefits of the multiple operator modes

In the following, the TSFD-RC-V is benchmarked against the TSFD-RC-F in terms of the

makespan, truck waiting and processing time, and operator requirements1). Table 5.18 reports

the descriptive statistics for the numerical experiment.

Makespan Total truck Total truck Required
wating time processing time operators

Size RC-F RC-V RC-F RC-V RC-F RC-V RC-F RC-V

S

N 360 360 360 360 360 360 360 360
Mean 429.5 433.5 635.8 704.1 1,856.4 1,807.0 7.7 6.5
Median 430.0 430.0 590.0 670.0 1,850.0 1,800.0 8.0 6.0
SD 22.0 23.1 258.4 249.5 96.7 137.6 1.7 1.1

M

N 360 360 360 360 360 360 360 360
Mean 434.7 438.7 927.1 1,009.3 2,791.7 2,706.5 10.5 9.0
Median 440.0 440.0 880.0 950.0 2,780.0 2,720.0 10.0 9.0
SD 20.5 19.0 328.6 333.1 130.7 169.0 2.0 1.3

|I| = 50 and |I| = 80 for instances in S and M.
N: Number of observations; SD: Standard deviation.
Mean, median, and standard deviation in minutes.
RC-F: TSFD-RC-F; RC-V: TSFD-RC-V.

Table 5.18 Descriptive statistics for single-mode and multi-mode resource and truck scheduling
problem and different key performance indicators.

Source: Own table.

Having the additional flexibility of adapting the workforce for processing inbound trucks (TSFD-

RC-V) allows to reduce the average number of required operators by ca. 15%. This significant

reduction comes at a price, as it leads to truck schedules with a slightly longer makespan.

With an average increase of less than five minutes compared with the TSFD-RC-F and in light

of TSFD-RC-V meeting the service level, however, the difference has no negative effect on

the internal operations. Moreover, it can be seen that a truck’s waiting time increases by ca.

1.5 minutes when using the TSFD-RC-V. The average processing time per truck, on the other

hand, can be reduced by almost the same extent when applying the TSFD-RC-V instead of the

TSFD-RC-F. That is, the average truck throughput times of the single-mode and multi-mode

models are almost identical. Hence, it can be concluded that the TSFD-RC-V is superior to the

TSFD-RC-F and allows to further improve the operational efficiency in a cross-docking facility.

1) The TSFD-RC-V is not compared against the multi-mode versions of the makespan or cumulated truck processing
time model. These models choose the fastest operator mode for every truck according to preliminary test. As
this, in turn, results in extremely high operator requirements, a comparison would make little or no sense.
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Impact of exogenous factors on operator requirements

The previous section revealed that truck schedules computed with the TSFD-RC-V can be

executed with ca. 15% fewer operators than schedules computed with the TSFD-RC-F. In order

to better understand under which circumstances the TSFD-RC-V’s flexibility of adapting the

workforce may or may not pay off, the impact of various exogenous factors (namely the number

of dock-doors, width of time windows, and share of big trucks) on the operator requirements

is investigated in more detail below. Table 5.19 reports the operator requirements in the

TSFD-RC-F and TSFD-RC-V for different parameter combinations.

For all 36 parameter combinations, applying the single-mode model results in a higher average

number of required operators than the multi-mode model. The relative advantage of the

TSFD-RC-V in terms of operator requirements varies between 1-20% among the reported

parameter combinations. It can be seen that the TSFD-RC-V’s relative advantage over the

TSFD-RC-F is strongly impacted by the share of big trucks β. While its relative advantage varies

between 1-9% for instances without big trucks (i.e., β ∼ U(0.0, 0.0)), it reaches values between

13-20% for instances which include both small and big inbound trucks (i.e., β ∼ U(0.2, 0.3)

and β ∼ U(0.4, 0.5)). Variations in the number of dock-doors and the time window length,

on the other hand, seem to have a weaker impact on the relative gap between the operator

requirements in the TSFD-RC-V and the TSFD-RC-F. The influence of the three exogenous

factors can be further explored with the help of Figure 5.6. The figure illustrates how the

number of dock-doors |D|, the width of time windows (di − ri), and the share of big trucks

β affect the operator requirementsW in the single-mode and multi-mode resource and truck

scheduling problem.

As the number of inbound dock-doors increases, the demand for operators slightly decreases

when applying the TSFD-RC-F or TSFD-RC-V. That is, more available dock-doors offer additional

flexibility which helps both models to reduce (undesired) parallel processing. With the two

models’ curves being almost parallel to each other, the number of inbound dock-doors does not

seem to influence the absolute difference in operator requirements between the two models.

Furthermore, the width of time windows appears to neither have a strong effect on the number

of operators nor amplifying the differences in operator requirements between the two models.

The figure also illustrates the significant impact of the share of big trucks β on the number of

required operatorsW . The figure suggests an almost linear relationship between β andW when

the TSFD-RC-F or TSFD-RC-V is applied. It can be seen that the effect of β is smaller in the

TSFD-RC-V compared to the TSFD-RC-F. Therefore, higher values of β magnify the differences

in operator requirements between the two models.
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Instances Required Gap w/
operators (avg.) TSFD-RC-F

Size |D| di − ri β W avg
RC−F W avg

RC−V ∆RC−V

S 6 ∼ U(30, 50) ∼ U(0.0, 0.0) 5.75 5.65 -1.7%
S 6 ∼ U(30, 50) ∼ U(0.2, 0.3) 8.00 6.50 -18.8%
S 6 ∼ U(30, 50) ∼ U(0.4, 0.5) 9.60 7.75 -19.3%
S 6 ∼ U(60, 80) ∼ U(0.0, 0.0) 5.85 5.65 -3.4%
S 6 ∼ U(60, 80) ∼ U(0.2, 0.3) 7.80 6.50 -16.7%
S 6 ∼ U(60, 80) ∼ U(0.4, 0.5) 9.50 7.75 -18.4%
S 7 ∼ U(30, 50) ∼ U(0.0, 0.0) 6.05 5.80 -4.1%
S 7 ∼ U(30, 50) ∼ U(0.2, 0.3) 8.00 6.55 -18.1%
S 7 ∼ U(30, 50) ∼ U(0.4, 0.5) 9.50 7.75 -18.4%
S 7 ∼ U(60, 80) ∼ U(0.0, 0.0) 6.05 5.55 -8.3%
S 7 ∼ U(60, 80) ∼ U(0.2, 0.3) 7.40 6.25 -15.5%
S 7 ∼ U(60, 80) ∼ U(0.4, 0.5) 8.90 7.40 -16.9%
S 8 ∼ U(30, 50) ∼ U(0.0, 0.0) 6.20 5.85 -5.6%
S 8 ∼ U(30, 50) ∼ U(0.2, 0.3) 8.15 6.55 -19.6%
S 8 ∼ U(30, 50) ∼ U(0.4, 0.5) 8.45 6.90 -18.3%
S 8 ∼ U(60, 80) ∼ U(0.0, 0.0) 5.75 5.40 -6.1%
S 8 ∼ U(60, 80) ∼ U(0.2, 0.3) 7.90 6.45 -18.4%
S 8 ∼ U(60, 80) ∼ U(0.4, 0.5) 8.90 7.15 -19.7%
M 9 ∼ U(30, 50) ∼ U(0.0, 0.0) 8.55 8.10 -5.3%
M 9 ∼ U(30, 50) ∼ U(0.2, 0.3) 11.00 9.15 -16.8%
M 9 ∼ U(30, 50) ∼ U(0.4, 0.5) 12.75 10.30 -19.2%
M 9 ∼ U(60, 80) ∼ U(0.0, 0.0) 8.55 8.20 -4.1%
M 9 ∼ U(60, 80) ∼ U(0.2, 0.3) 10.95 9.20 -16.0%
M 9 ∼ U(60, 80) ∼ U(0.4, 0.5) 12.85 10.65 -17.1%
M 11 ∼ U(30, 50) ∼ U(0.0, 0.0) 8.74 8.05 -7.9%
M 11 ∼ U(30, 50) ∼ U(0.2, 0.3) 10.68 9.16 -14.2%
M 11 ∼ U(30, 50) ∼ U(0.4, 0.5) 12.40 10.00 -19.4%
M 11 ∼ U(60, 80) ∼ U(0.0, 0.0) 8.45 7.95 -5.9%
M 11 ∼ U(60, 80) ∼ U(0.2, 0.3) 10.15 8.75 -13.8%
M 11 ∼ U(60, 80) ∼ U(0.4, 0.5) 12.35 9.95 -19.4%
M 13 ∼ U(30, 50) ∼ U(0.0, 0.0) 8.15 7.60 -6.7%
M 13 ∼ U(30, 50) ∼ U(0.2, 0.3) 10.35 8.35 -19.3%
M 13 ∼ U(30, 50) ∼ U(0.4, 0.5) 12.05 9.75 -19.1%
M 13 ∼ U(60, 80) ∼ U(0.0, 0.0) 8.65 7.95 -8.1%
M 13 ∼ U(60, 80) ∼ U(0.2, 0.3) 10.05 8.50 -15.4%
M 13 ∼ U(60, 80) ∼ U(0.4, 0.5) 12.15 9.90 -18.5%

|I| = 50 and |I| = 80 for instances in S and M.
Gap w/ TSFD-RC-F calculated as follows: ∆∗ =

(︁(︁

W avg
∗ −W avg

RC−F

)︁

/W avg
RC−F

)︁

· 100%.

Table 5.19 Comparison of resource requirements for the TSFD-RC-V and TSFD-RC-F.
Source: Own table.

Operator utilization

This section benchmarks the TSFD-RC-V against the TSFD-RC-F with respect to the operator

utilization. The comparison attempts to shed a light on how efficiently resources are utilized

when applying both models. Table 5.20 provides the summary statistics for both models.
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a) Results for testbed S.
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b) Results for testbed M.

Figure 5.6 Effect of exogenous factors on the number of operators in the TSFD-RC-F and TSFD-RC-V.
Source: Own figure.

It can be seen from the table that a significantly higher operator utilization1) can be achieved

by using the multi-mode resource and truck scheduling model. Specifically, average increases of

ca. 9% and ca. 7% for instances from testbed S and testbed M can be realized, respectively.

Moreover, the statistics on the time span with full and low operator utilization indicate that the

TSFD-RC-V yields a more evenly distributed workload over the planning horizon. That is, the

1) Once again, the operator utilization is defined as the amount of the available operator time (i.e., W · |T |) that is
used for unloading inbound trucks, expressed as a percentage.
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Average operator Time w/ full operator Time w/ operator
utilization utilization utilization below 50%

Size RC-F RC-V RC-F RC-V RC-F RC-V

S 63.3% 72.2% 24.2% 39.1% 33.2% 23.3%
M 68.8% 75.7% 29.0% 40.4% 26.9% 20.6%

|I| = 50 and |I| = 80 for instances in S and M.
RC-F: TSFD-RC-F; RC-V: TSFD-RC-V.

Table 5.20 Operator utilization statistics for TSFD-RC-F and TSFD-RC-V.
Source: Own table.

TSFD-RC-V is doing better at avoiding peaks of operator demand during the planning horizon

which, in turn, allows to reduce the number of required operators. This aspect is also illustrated

in Figure 5.7, which shows for an exemplary test instance how operators are utilized over the

planning horizon in both models.
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Figure 5.7 Exemplary operator utilization over the planning horizon for TSFD-RC-F and TSFD-RC-V.
Source: Own figure.

During the busiest period from 09:00 to 15:00, the operator demand fluctuates between four

and eight when applying the TSFD-RC-F. When applying the TSFD-RC-V, on the other hand, a

more level schedule with smaller operator demand fluctuations can be realized. More than that,

by smoothing out the workload over the planning horizon, the TSFD-RC-V computes a schedule

which allows a cut down on the required operators of 12.5% compared to the TSFD-RC-F.

Lastly, Figure 5.8 allows to explore how the number of dock-doors |D|, the width of truck time

windows (di − ri), and the share of big trucks β affect the average operator utilization in the

TSFD-RC-V. The TSFD-RC-F’s utilization rates are included as a reference.

The TSFD-RC-V always seems to achieve a considerably higher average operator utilization
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a) Results for testbed S.
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b) Results for testbed M.

Figure 5.8 Effect of exogenous factors on the operator utilization in TSFD-RC-F and TSFD-RC-V.
Source: Own figure.

than the TSFD-RC-F, no matter which factor level is chosen. Moreover, the nearly horizontal

course of the utilization rate curve shows the TSFD-RC-V’s robustness against changes of the

factor values.

It can be summarized that the TSFD-RC-V’s inherent additional flexibility of adapting the

workforce for processing inbound trucks makes it possible to cut down the required number of

operators by smoothing out the workload over the planning horizon.
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Effect of service level adjustments in the TSFD-RC-V

Previously, it was shown in the context of the TSFD-RC-F that adjustments to the service

level requirement can have a huge impact on the operator demand. This section sets out to

explore whether service level adjustments have a similar effect when considering multiple

operator modes like in the TSFD-RC-V. For this purpose, all problem instances in testbed M are

solved multiple times using different service levels α ∈ {1.0, 0.99, 0.98, 0.97}1). The results are

illustrated in Figure 5.9. The figure shows the average operator requirements and the additional

number of delayed freight units for different service levels.
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Figure 5.9 Impact of service level adjustments in the TSFD-RC-V (testbed M).
Source: Own figure.

The figure suggest a regressive relationship between the service level and the operator require-

ments. That is, the effect of the service level on the operator requirements is decreasing in

lower values – an observation that was already made for the TSFD-RC-F in one of the previous

sections. From the figure, it can be seen that reducing the service level requirement from 100%

1) In this context, the service level only applies to the product units that can theoretically reach the outbound area
in time.
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to 99% (an 1% service level reduction is equivalent to ca. 13 additionally delayed freight units)

makes it possible to cut down the required operators by ca. 5.5% (ca. 0.5 operators). Compared

with the TSFD-RC-F, in which operator demand reductions of ca. 10% (ca. 1 operator) could be

obtained when reducing the required service level from 100% to 99%, service level adjustments

seem to have a smaller impact in the TSFD-RC-V. Even though the operator demand reacts less

sensitive to changes in the service level, adjusting the service level could still be a reasonable

means to further improve the operational efficiency when considering multiple operator modes.

Effect of time window adjustments in the TSFD-RC-V

It was revealed in the context of the single-mode resource and truck scheduling problem that

truck time window extensions may help to reduce the operator demand. This section sets out to

investigate if this also holds for the TSFD-RC-V. Subsequently, it is analyzed if prolonging the

truck time windows can help smoothing out the workload over the planning horizon which, in

turn, may help to further reduce the peak workforce. Once again, time window extensions of

10 and 20 minutes are considered. Specifically, the original time windows are prolonged in such

a way that all inbound trucks are released 10 and 20 minutes earlier, respectively. The instances

with the original truck time windows are used as a reference in order to assess whether time

window extensions pay off or not. The three scenarios are compared with respect to the operator

demand and the average truck throughput time. Figure 5.10 depicts the numerical results for

testbed M.

The figure suggests a regressive relationship between the width of time windows and the

operator requirements – an observation that was already made for the TSFD-RC-F in one of the

previous sections. It can be seen that by prolonging the truck time windows by ten minutes,

the average operator demand can be reduced by ca. 9% (ca. 0.8 operators). This reduction is

equivalent to a ca. 380 minutes reduction in work time. Compared with the TSFD-RC-F, in

which reductions of more than 12% could be obtained, the effect of time window extensions

seem to be smaller. Moreover, the reduced operator demand comes at a price, as the average

truck throughput time increases by ca. 13% (ca. 6 minutes). Since the benefits in the form

of a reduced operator demand are offset by the longer truck throughput times, time window

extensions seem to be an unfavorable choice in the TSFD-RC-V.
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Figure 5.10 Impact of time window adjustments in the TSFD-RC-V (testbed M).
Source: Own figure.

5.4.3 Shift and truck scheduling problem

This sections sets out to evaluate the solution quality of the ISTSFD.

In the following, the ISTSFD-F will be benchmarked against sequential scheduling approaches

which first create the truck schedules and then create the employee timetables. According to

Ladier and Alpan, sequential approaches are commonly used in practice1). Specifically, the

ISTSFD-F is benchmarked against the following two sequential approaches:

• TSFD-MS-F/SP: First, a truck schedule is created by solving the truck scheduling model

for minimizing the makespan (TSFD-MS-F). After that, employee timetables are created

by solving the shift planning model SP.

• TSFD-PT-F/SP: First, a truck schedule is created by solving the truck scheduling model

for minimizing the total processing time (TSFD-PT-F). After that, employee timetables

are created by solving the shift planning model SP.

1) Ladier and Alpan (2015, p. 679)
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The shift planning model SP uses the obtained truck schedule as an input. It aims to minimize

the total operator costs and must assure that the operator demand never exceeds the operator

supply. The SP can be found in Appendix.

Then, the benefits of having the additional flexibility of adapting the workforce for processing

inbound trucks (i.e., multiple operator modes) is investigated for the shift and truck scheduling

problem. Moreover, the impact of work breaks is analyzed.

If not mentioned otherwise, the shift patterns s ∈ {1, 2, 3, 4}, which were described in Table 5.3

are applied.

Benefits of utilizing operator requirements as the key performance indicator

It was shown in the context of the resource and truck scheduling problem that utilizing the

operator requirements as the main key performance indicator can significantly improve the

cross-dock efficiency. Recall, however, that the TSFD-RC-F only considers one standard shift type

for operators and does not consider work breaks. Hence, it cannot be expected that the finding

also holds when multiple shift patterns and work breaks are considered. In the following, it will

be analyzed whether using the operator demand as the main performance indicator also pays

off in planning situations with multiple shift patterns and work breaks. The ISTSFD-F will be

compared with the TSFD-MS-F/SP and TSFD-PT-F/SP in terms of the makespan, truck waiting

and processing times, and operator requirements. Table 5.21 reports the descriptive statistics

for the numerical experiment. First, the table shows that the TSFD-PT-F/SP and ISTSFD-F

compute truck schedules with a ca. 5-7% longer makespan than the truck schedules computed

with the TSFD-MS-F/SP. This increase of less than 30 minutes, however, has no negative effect

on the internal operations. With respect to the operator requirements, it can be seen from

the table that both sequential approaches generate plans which require can 18-35% more

operators than plans generated with the ISTSFD-F. However, the significantly lower operator

demand in the integrated shift and truck scheduling model comes at a price. Compared with

the TSFD-PT-F/SP, which realizes the shortest average truck throughput times, the ISTSFD-F’s

average truck throughput time slightly increases by ca. 4% (equivalent to ca. two minutes). Note,

however, that it requires ca. 20% more operators to achieve this marginal truck throughput time

reduction. This strong surge in operator demand and hence operational costs is unfavorable. It

can be concluded that utilizing the operator demand as the main performance indicator is also

beneficial in planning situations with multiple shift patterns and work breaks.
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Benefits of the multiple operator modes

Moving on now to investigate whether having multiple operator modes in the shift and truck

scheduling problem may or may not be beneficial, the ISTSFD-V is benchmarked against the

ISTSFD-F1). Again, both models are compared with respect to the makespan, truck processing

and waiting times, and operator requirements. Table 5.22 reports the descriptive statistics for

the numerical experiment.

Makespan Total truck Total truck Required
waiting time processing time operators

Size F V F V F V F V

S

N 360 360 360 360 360 360 360 360
Mean 426.4 430.9 645.1 681.6 1900.4 1836.1 8.6 7.4
Median 430.0 430.0 620.0 659.0 1890.0 1845.0 8.0 7.0
SD 21.9 20.7 199.3 209.1 92.6 109.8 1.8 1.2

M

N 360 360 360 360 360 360 360 360
Mean 430.1 436.2 931.1 984.7 2855.2 2707.7 11.9 10.2
Median 430.0 438.0 890.0 954.0 2850.0 2717.0 12.0 10.0
SD 19.9 18.5 249.6 264.0 131.7 157.1 2.3 1.5

|I| = 50 and |I| = 80 for instances in S and M.
N: Number of observations; SD: Standard deviation.
Mean, median, and standard deviation in minutes.
F: ISTSFD-F; V: ISTSFD-V.
Shift patterns s ∈ {1, 2, 3, 4} used in all models.

Table 5.22 Descriptive statistics for ISTSFD-V and ISTSFD-F and different key performance
indicators.

Source: Own table.

The table shows that the ISTSFD-V computes truck schedules that have a ca. 5 minute longer

makespan than the ISTSFD-F does. However, this marginal increase does not have a negative

impact on the internal operations since the service level requirements are still met. The average

truck throughput time, i.e., the sum of truck waiting time and truck processing time, can be

slightly reduced when having the additional flexibility of multiple operator modes. Specifically,

the slightly longer truck waiting times are offset by shorter average truck processing times.

While the differences in terms of the makespan and truck throughput times are rather small,

significant differences with respect to the operator requirements can be observed. The table

1) The ISTSFD-V is not compared against the multi-mode versions of the presented sequential models. The models,
which seek to minimize the makespan or cumulated truck processing time at the first stage, choose the fastest
operator mode for every truck according to preliminary test. As this, in turn, results in extremely high operator
requirements, a comparison would make little or no sense.
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shows that the operator demand can be reduced by ca. 14% by considering multiple operator

modes instead of applying the proposed “rule of thumb”, which deploys one operator and

two operators for processing small and big trucks, respectively. That is, ca. 1.2 and 1.7 fewer

operators are needed in instances from testbed S and testbed M, respectively. As the operator

demand considerably decreases and the average truck throughput time slightly decreases, it

can be summarized that having multiple operator modes clearly pays off in the ISTSFD.

Impact of work breaks

This section is devoted to exploring the effect of work breaks on the operator requirements.

Specifically, it attempts to analyze whether the operator requirements can be reduced by con-

sidering more potential start times for work breaks. From a theoretical perspective, considering

more work break patterns offers additional flexibility and hence allows to better match the

operator supply with the operator demand. However, it also increases the complexity of both the

planning task and the facility operations. It hence becomes important to identify a reasonable

number of work break patterns which provides sufficient flexibility to match operator supply

and demand.

A total of ten different shift patterns, which are shown in Table 5.23, are considered for the

analysis. Each work shift starts at 08:00, ends at 16:00, includes a 30 minute work break

Operator
group

Shift
pattern

Start End Work break Cgs

1 1 08:00 16:00 11:30 - 12:00 1
1 2 08:00 16:00 12:00 - 12:30 1
1 3 08:00 16:00 12:30 - 13:00 1
1 4 08:00 16:00 13:00 - 13:30 1
1 5 08:00 16:00 11:40 - 12:10 1
1 6 08:00 16:00 12:10 - 12:40 1
1 7 08:00 16:00 11:50 - 12:20 1
1 8 08:00 16:00 12:20 - 12:50 1
1 9 08:00 16:00 12:40 - 13:10 1
1 10 08:00 16:00 12:50 - 13:20 1

Table 5.23 Shift pattern information for analyzing the impact of work breaks on the operator
requirements.

Source: Own table.

between 11:30 and 13:30 (e.g., a lunch break), and has identical shift costs. However, each

138



shift pattern is characterized by a unique start time for the work break. Based on that, the test

instances from testbed M are solved for the following five scenarios:

• Two shift patterns: s ∈ {1, 2}

• Four shift patterns: s ∈ {1, 2, 3, 4}

• Six shift patterns: s ∈ {1, 2, 3, 4, 5, 6}

• Eight shift patterns: s ∈ {1, 2, 3, 4, 5, 6, 7, 8}

• Ten shift patterns: s ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

Figure 5.11 depicts the average operator requirements and the average truck throughput time for

the five scenarios and different sequential and integrated models for shift and truck scheduling.
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Figure 5.11 Impact of the number of shift patterns (and work breaks) on the operator requirements
and truck throughput times in different models for shift and truck scheduling (testbed M).

Source: Own figure.

Figure 5.11a suggests a regressive relationship between the number of work/break patterns

and the average operator requirements. The L-shaped curves indicate that the effect decreases

in higher values. When increasing the number of work break patterns from two to four, large

operator reductions of ca. 30% in both the TSFD-MS-F/SP and the TSFD-PT-F/SP, and moder-

ate operator reductions of ca. 10% in the ISTSFD-F can be achieved. The effect is smaller in
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the ISTSFD-V, where the operator demand can be reduced by ca. 4%. Further increasing the

number of work break patterns does not lead to significant reductions in the operator demand.

Figure 5.11b shows how the number of work break patterns impacts the truck throughput

times in the different models. The number of work break patterns does not effect the average

truck throughput time in the sequential models. This result is as expected, since the truck

throughput times are determined in stage one which neglects any shift planning aspects. For

the integrated models, on the other hand, it can be seen that the average truck throughput

times drop significantly when increasing the number of work break patterns from two to four.

All in all, considering the four shift patterns s ∈ {1, 2, 3, 4} seems to be a good compromise as it

provides enough flexibility and does not add too much complexity to the problem of scheduling

workforce and trucks.

5.5 Chapter summary

This chapter set out to evaluate the performance of both the proposed mathematical programs

and the proposed column generation-based solution procedures.

In Section 5.2, the different MIP formulations for the (multi-mode) resource and truck scheduling

problems and the shift and truck scheduling problem were evaluated with respects to the

solution quality and computational time. It was shown that the discrete-time models are

clearly outperforming the continuous-time model formulations in terms of both the solution

quality and computational time. Moreover, the results indicated that applying preprocessing

parameters for calculating the number of delayed freight units and compelling the service level

is beneficial, as it helps to reduce the solution time for most of the instances. The performance

of the proposed column generation-based solution procedures was analyzed in Section 5.3. It

could be seen that the heuristic solution procedures are able to find high-quality solutions. The

developed solution procedures clearly outperformed the MIP formulations in terms of solution

quality and computational time and hence should be used when tackling real-world instances.

Finally, Section 5.4 aimed to derive managerial insights for the TSFD-RC-F, TSFD-RC-V, and

the ISTSFDs. Amongst others, the following take-home messages could be derived:

• Scheduling models which utilize a metric directly related to the internal resource require-

ments as the objective function obtain plans with a more evenly distributed workload that

can be executed with a significantly smaller number of operators than the most frequently

used truck scheduling models.
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• Considering multi-mode processing, i.e., providing the additional flexibility of adapting

the workforce for truck processing, further helps to achieve considerable efficiency gains.

• The service level requirement has a strong impact on the operator demand. Lowering

the required service level can be a reasonable means to further improve the operational

efficiency in a cross-docking facility.

• Too low a number of work break patterns may result in a strong surge in operator demand.
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6 Conclusion

This chapter marks the end of this work. First, the study and its main research results will be

summarized. Moreover, opportunities for future research will be described.

6.1 Summary

While operational cross-docking decision problems such as the assignment of trucks to dock-

doors and the scheduling of trucks have been addressed, the literature largely overlooked

the importance of considering resource planning aspects in operational decision problems.

This is very surprising considering that labor cost is “very often the first cost center of a

logistics platform”1) and that material handling equipment such as forklifts requires a significant

investment. Therefore, this study’s overall research objective was to “develop novel planning tools

that allow cross-docking managers to allocate and schedule internal resources more efficiently”.

This was done by developing novel mathematical models that combine two interdependent

operational problems faced by cross-docking managers, namely the scheduling of internal

resources and the scheduling of trucks.

First, the resource and truck scheduling problem (TSFD-RC-F) was introduced. The TSFD-RC-F

deals with the problem of scheduling inbound trucks in a cross-docking platform, where the

departure times of outbound trucks follow a given schedule. In this setting, trucks are processed

by operators (that is, a worker equipped with suitable material handling equipment), and

the number of required operators for processing a truck is given and known in advance. The

goal is to identify a feasible truck schedule that can be executed with a minimum number of

operators. Various discrete-time and continuous-time mixed-integer programming formulations

were proposed for this novel problem. In light of TSFD-RC-F being an NP-hard problem, a

1) Ladier and Alpan (2016, p. 147).
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column generation-based solution procedure was developed to solve large problem instances.

Next, the multi-mode resource and truck scheduling problem (TSFD-RC-V) was proposed.

The TSFD-RC-V is a generalization of the TSFD-RC-F since it discards the assumption that

the number of required operators for processing a truck is given and known in advance. It

integrates the decision of how many resources should be deployed for truck processing. Hence,

it better represents real-world settings in which terminal managers usually have the flexibility

of adapting the resources for certain trucks, e.g., very time-critical trucks. The TSFD-RC-V’s

objective, however, is identical to the objective of the TSFD-RC-F. It seeks to find a truck schedule

that can be executed with a minimum number of operators. Again, different mixed-integer

programming formulations and a heuristic solution procedure were presented.

Moreover, a further extension of the resource and truck scheduling problem was proposed.

The so-called shift and truck scheduling problem (ISTSFD) discards some of the TSFD-RC’s

simplifying assumptions regarding the availability of operators. While both the TSFD-RC-F

and the TSFD-RC-V assume one standard shift type without work breaks for operators and a

shift length equal to the planning horizon, the ISTSFD attempts to provide a framework that

integrates the employee timetabling task and the truck scheduling task. Specifically, the ISTSFD

distinguishes between different operator types (e.g., temporary and regular staff or part-time

and full-time staff) and different shift patterns (including work breaks). It seeks to find a truck

schedule that can be executed at minimum labor costs. Thus, the ISTSFD can be a suitable

decision-making tool for labor-intense cross-docking platforms that are often characterized by a

high proportion of personnel expenses1). The ISTSFD was modeled for single-mode operations

(ISTSFD-F) and multi-mode operations (ISTSFD-V). In addition, a column generation-based

solution procedure was proposed.

To assess the computational performance of the MIP formulations and the heuristic solution

procedures, as well as to derive managerial insights, large-sized computational experiments

were conducted. It was shown that the discrete-time MIP formulations clearly outperform the

continuous-time MIP formulations in terms of both solution quality and computational time.

Moreover, the solution time could be reduced by using the proposed preprocessing parameters

for calculating the number of delayed freight units and compelling the service level. While

a default solver can solve the discrete-time MIPs for small and medium-sized instances in a

reasonable time, it often fails to provide good solutions for very large problem instances with

a fine time granularity. The proposed heuristics solution procedures, on the other hand, can

1) Pfohl (2005, p. 313).
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provide high-quality for very large problem instances in a short time and clearly outperform

commercial solvers. In addition, extensive computational experiments were conducted in order

to derive managerial insights for the novel models. Some of the take-home messages that could

be derived were:

• By using the internal resource requirements instead of the frequently used makespan

or processing time as the primary performance metrics, the operational efficiency of the

cross-docking platform can be significantly increased.

• By integrating the decision of how many resources should be deployed for truck processing

(i.e., considering multi-mode processing), further gains in the operational efficiency can

be realized.

• The defined service level has a significant impact on the operator demand. Lowering

the required service level can be a reasonable means to further improve the operational

efficiency in a cross-docking facility.

• The work break patterns have a significant impact on the operator requirements. Too low

a number of work break patterns may result in a strong surge in operator demand.

6.2 Future research

Moving forward, there are additional opportunities for future research.

The numerical results indicated that minor adjustments to the predefined service level could

further reduce the number of deployed resources and hence improve the operational efficiency.

Hence, future research could focus on incorporating the decision of defining an adequate

service level. The aggregated results suggested that time window extensions (for all trucks) are

unfavorable. However, extending time windows for smaller truck subsets could be a reasonable

option to further reduce the operator requirements without significantly increasing the truck

throughput times. Fixed outbound departures, as assumed in this work, might not be applicable

in some industries. Therefore, the integration of outbound operations could also be an interesting

task for future research. To account for uncertainties such as uncertain truck arrival times and

truck processing times, it may be worthwhile to develop a robust optimization approach in the

future.

From an algorithmic perspective, the proposed column generation procedures may also form
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the basis of branch-and-price schemes. Even though the heuristics deliver near-optimal solu-

tions for large-sized instances and hence are sufficient for practical purposes, embedding the

column generation procedures into exact branch-and-price algorithms can be interesting from a

theoretical perspective. It may also be worthwhile to develop Benders decomposition algorithms

to tackle the proposed problems. The proposed continuous-time formulations could be used as

a starting point.
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Appendix

Additional models

The truck scheduling model for minimizing the makespan (TSFD-MS-F) in the single-mode

context is as follows:

TSFD-MS-F:

Minimize C (A.1)

subject to
∑︂

d∈D

∑︂

t∈T
(t+ pid − 1)xidt ≤ C ∀i ∈ I (A.2)

∑︂

d∈D

di
∑︂

t=ri

xidt = 1 ∀i ∈ I (A.3)

∑︂

i∈I

t
∑︂

t′=max{0;t−pid+1}
xidt′ ≤ 1 ∀t ∈ T , d ∈ D (A.4)

∑︂

d∈D

∑︂

t∈T
(t+ pid − 1)xidt − do ≤ Λyio ∀i ∈ I, o ∈ O : fio > 0 (A.5)

∑︂

i∈I

∑︂

o∈O
fioyio ≤ (1− α)

∑︂

i∈I

∑︂

o∈O
fio (A.6)

C ∈ R
+ (A.7)

xidt ∈ {0; 1} ∀i ∈ I, d ∈ D, t ∈ T (A.8)

yio ∈ {0; 1} ∀i ∈ I, o ∈ O : fio > 0 (A.9)
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The truck scheduling model for minimizing the total truck processing time (TSFD-PT-F) in the

single-mode context is as follows:

TSFD-PT-F:

Minimize
∑︂

i∈I

∑︂

d∈D

di
∑︂

t=ri

pidxidt (A.10)

subject to
∑︂

d∈D

di
∑︂

t=ri

xidt = 1 ∀i ∈ I (A.11)

∑︂

i∈I

t
∑︂

t′=max{0;t−pid+1}
xidt′ ≤ 1 ∀t ∈ T , d ∈ D (A.12)

∑︂

d∈D

∑︂

t∈T
(t+ pid − 1)xidt − do ≤ Λyio ∀i ∈ I, o ∈ O : fio > 0 (A.13)

∑︂

i∈I

∑︂

o∈O
fioyio ≤ (1− α)

∑︂

i∈I

∑︂

o∈O
fio (A.14)

xidt ∈ {0; 1} ∀i ∈ I, d ∈ D, t ∈ T (A.15)

yio ∈ {0; 1} ∀i ∈ I, o ∈ O : fio > 0 (A.16)

The shift planning model (SP) requires the input parameters wD
t expressing the operator

demand in time interval t ∈ T as an input. It computes an employee timetable with minimum

total operator costs (if a feasible employee timetable for the given truck schedule exists) and

can be formulated as follows:

SP

Minimize
∑︂

g∈}

∑︂

s∈Sg

CgsWgs (A.17)

subject to
∑︂

g∈G

∑︂

s∈Sg

γgstWgs ≥ wD
t ∀t ∈ T (A.18)

∑︂

s∈Sg

Wgs ≤W g ∀g ∈ G (A.19)

Wgs ∈ Z
+ ∀g ∈ G, s ∈ Sg (A.20)
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