Design, synthesis and biological evaluation of novel FKBP51 ligands

Design, Synthese und biologische Evaluierung von neuartigen FKBP51 Liganden

Vom Fachbereich Chemie
 der Technischen Universität Darmstadt

zur Erlangung des Grades
Doctor rerum naturalium (Dr. rer. nat.)

Dissertation von
Andreas Markus Voll

Erstgutachter:
Zweitgutachter:
Prof. Dr. Felix Hausch
Prof. Dr. Boris Schmidt

Darmstadt 2021

Tag der Einreichung: 28.01.2021

Tag der mündlichen Prüfung: 19.04.2021

Voll, Andreas Markus: Design, synthesis and biological evaluation of novel FKBP51 ligands Darmstadt, Technische Universität Darmstadt Jahr der Veröffentlichung der Dissertation auf TUprints: 2023
URN: urn:nbn:de:tuda-tuprints-179499
Tag der mündlichen Prüfung: 19.04.2021

Veröffentlichung unter CC-BY 4.0 International
https://creativecommons.org/licenses/

Erklärung laut Promotionsordnung

§8 Abs. 1 lit. c PromO

Ich versichere hiermit, dass die elektronische Version meiner Dissertation mit der schriftlichen Version übereinstimmt und für die Durchführung des Promotionsverfahrens vorliegt.

§8 Abs. 1 lit. d PromO

Ich versichere hiermit, dass zu einem vorherigen Zeitpunkt noch keine Promotion versucht wurde und zu keinem früheren Zeitpunkt an einer in- oder ausländischen Hochschule eingereicht wurde. In diesem Fall sind nähere Angaben über Zeitpunkt, Hochschule, Dissertationsthema und Ergebnis dieses Versuchs mitzuteilen.

§9 Abs. 1 PromO

Ich versichere hiermit, dass die vorliegende Dissertation selbstständig und nur unter Verwendung der angegebenen Quellen verfasst wurde.

§9 Abs. 2 PromO

Die Arbeit hat bisher noch nicht zu Prüfungszwecken gedient.

Abstract

The FK506-binding protein 51 (FKBP51) has emerged as an attractive new drug target for mood disorders, obesity and chronic pain. The most advanced FKBP51 ligands of the SAFit class are highly selective against the anti-target FKBP52, but only poorly discriminate against the homologs FKBP12 and FKBP12.6. To improve SAFit-like compounds we employed a structure-based approach:

Envisioning enhanced properties of macrocycles like increased oral bioavailability, metabolic stability and selectivity compared to the linear SAFit-construct, we designed and synthesized FKBP-binding macrocycles. These macrocycles were synthesized via ring-closing-metathesis and a solid-phase assisted approach. Surprisingly, we observed that many of these macrocyclic analogs have a novel high preference for FKBP51 over FKBP12 and FKBP12.6 and that they bind with a new binding mode featuring a transient conformation that is disfavored for the small FKBPs. These findings represent the structural basis for enhanced selectivity and a new chemical scaffold for selective FKBP51 ligands. Furthermore, we present the rational design and synthesis of novel A and B ring derivatives of SAFit1 (an essential building block of SAFit-ligands). Reducing the size of SAFit to explore the necessary interactions and subsequently combining the most favorable moieties resulted in novel diaza-chalcone derivatives. These compounds reached similar FKBP51 selectivity and affinity in comparison to SAFit1 and most importantly displayed a reduced weight by up to $132 \mathrm{~g} / \mathrm{mol}$. Additionally, a compound series of A / B ring-analogs was synthesized by Click reaction, which displayed a new preference for FKBP12.6 over FKBP12. This may offer new possibilities to alter FKBP selectivities.

Zusammenfassung

Das Protein FKBP51 (FK506-binding protein 51) ist ein attraktives Wirkstoffziel für die Behandlung von psychischen Krankheiten, Adipositas und chronischem Schmerz. Die bestentwickelten FKBP51 Liganden der SAFit-Klasse binden hochselektiv an FKBP51 und nicht das anti-target FKBP52. Allerdings binden die SAFit Liganden die stark homologen off-targets FKBP12 und 12.6. Im Rahmen dieser Arbeit wurde ein Struktur-basierter Ansatz verfolgt, um diese Bindeeigenschaften der SAFit ähnlichen Verbindungen zu verbessern:

Hierzu wurden unter Zuhilfenahme des SAFit Grundgerüstes Makrozyklen durch RingschlussMetathese, sowie Festphasen-Peptid-Synthese synthetisiert. Diese neuartigen Makrozyklen präferieren die Bindung an FKBP51 und binden nicht mehr an FKBP12 und 12.6. Eine Erklärung für diese spezifische Eigenschaft konnte mit Hilfe von Kokristallstrukturen postuliert werden. Der makrozyklische Ligand bindet nur eine transiente Konformation der Proteine, die bei FKBP51 bevorzugt vorliegt. Diese neue Ligandenklasse bildet eine strukturelle Grundlage für die Entwicklung von hochselektiven FKBP51 Liganden.

Des Weiteren wurden neuartige A/B-Ringsysteme (essentieller Baustein von SAFit-Liganden) synthetisiert, um SAFit-Derivate zu finden, welche verbesserte Eigenschaften hinsichtlich Molekülmasse und Größe aufweisen. Insbesondere zeigten Diazachalkone im Vergleich zu SAFit1 ähnliche FKBP51 Selektivität und Affinität auf. Zusätzlich konnte die Molekülmasse um $132 \mathrm{~g} / \mathrm{mol}$ verringert werden. Zudem zeigte eine weitere Serie von A/B-Ringsystemen, welche über eine ClickReaktion synthetisiert wurden, eine bis dato unbekannte, bevorzugte Bindung von FKBP12.6 gegenüber FKBP12. Diese Ergebnisse könnten uns neue Möglichkeiten zur Steuerung und Anpassung der Eigenschaften für FKBP Liganden liefern.

Declaration of contributions

The synthesis of compounds NG67 and NG72 were conducted by Niklas Gutfreund as part of his master thesis under my supervision. Preliminary works towards meta OH substituted macrocycles were conducted by Matthias Roth as part of his master thesis under my supervision. Details can be found in their master thesis. Compound 77 was kindly provided by Tim Heymann.

The measurement of binding affinities was conducted by Tim Heymann, Stefanie Merz and Patrick Purder. The tracer used in these measurements (MTQ238 or FTSP11) was provided by Dr. Tianqi Mao and synthesized according to Dr. Sebastian Pomplun. Details can be found in their dissertations.

Co-crystallization of ligands with FKBPs and corresponding diffraction measurement were performed in cooperation with Dr. Andreas Bracher and Dr. Christian Meyners.

Molecular dynamics simulations were perfomed by Dr. Daniel Tietze.

Table of contents

ERKLÄRUNG LAUT PROMOTIONSORDNUNG I
ABSTRACT II
ZUSAMMENFASSUNG III
DECLARATION OF CONTRIBUTIONS IV
TABLE OF CONTENTS V

1. INTRODUCTION 1
1.1. FKBP51 vs. FKBP52 and the selective ligand class SAFit 1
1.2. FKBP12 and 12.6 2
1.3. Development of SAFit ligands 4
2. AIM 5
3. RESULTS AND DISCUSSION 7
3.1. Upscaled synthesis of SAFit's A / B ring 7
3.2. Macrocyclization of SAFit 10
3.2.1. Macrocyclization through ring-closing-metathesis (RCM) 10
3.2.2. Macrocyclization through macrolactamization 13
3.2.3. Binding affinities (Fluorescence polarization assay) 14
3.2.4. Structural basis for FKBP51 selectivity by co-crystal structures 18
3.2.5. Fluorescent macrocyclic tracer as proof of concept of selective FKBP51 binding 22
3.2.6. More insight into the structural basis for selectivity by co-crystal structures 25
3.3. Structure-Affinity-Relationships (SAR) of the SAFit A and B ring. 26
3.3.1. Synthesis of novel A / B rings by Claisen-Schmidt chalcone synthesis 26
3.3.2. Binding affinities (Fluorescence polarization assay). 28
3.3.3. Extended SAR - Synthesis of diaza-chalcones 30
3.4. SAR of SAFit A/B ring triazole derivatives 32
3.4.1. Synthesis of SAFit A/B ring derivatives by Click reaction 32
3.4.2. Binding affinities (Fluorescence polarization assay) 33
3.4.3. Extended SAR 34
3.4.4. Synthesis of minimized SAFit derivatives by Click reaction 37
3.4.5. Structural basis for selectivities postulated by modeling into co-crystal structures 39
3.5. Synthesis of fluorescent SAFit ligands as tool compounds 41
3.5.1. Fluoresceine labeled SAFit 41
3.5.2. TAMRA labeled SAFit 41
3.6. Crystal structures and refinement of BR175, BR179, SP597, SP464, SP468 and AntaB 43
3.7. Refit of the $\mathrm{G}_{\mathrm{q} / 11}$ protein ligand $\mathrm{YM}-254890$ 43
4. CONCLUSION 46
5. MATERIALS AND METHODS 48
5.1. Nuclear magnetic resonance spectroscopy (NMR) 48
5.2. HPLC and MS 48
5.2.1. Liquid chromatography coupled with mass spectrometry (LC-MS) 48
5.2.2. High-resolution mass spectrometry (HRMS) 48
5.3. High-performance liquid chromatography (HPLC) 48
5.3.1. Analytical HPLC 48
5.3.2. Chiral HPLC 49
5.3.3. Semi-preparative HPLC 49
5.4. Column chromatography 49
5.4.1. Manual chromatography 49
5.4.2. Flash chromatography 49
5.4.3. Thin-layer chromatography (TLC) 49
5.5. Procedure of co-crystallization 50
5.5.1. Crystallization of 37 and 40 50
5.5.2. Structure solution and refinement of 37 and 40 50
5.5.3. Crystallization of BR179 50
5.5.4. Structure solution and refinement of BR179 50
5.5.5. Crystallization of BR175 50
5.5.6. Structure solution and refinement of BR175 51
5.5.7. Crystallization of SP597 51
5.5.8. Structure solution and refinement of SP597 51
5.5.9. Refinement data 52
5.6. Fluorescence polarisation assay 53
5.7. Isothermal titration calorimetry 53
5.8. Solvents and reagents 54
5.9. General procedures 54
5.9.1. Autoclave 54
5.9.2. Test cleavage 54
5.9.3. Chloranil test 54
5.9.4. Kaiser test 54
5.9.5. SPPS and macrocyclization 54
5.9.6. Click reaction 56
5.9.7. Steglich esterification 56
6. EXPERIMENTAL PROCEDURES 57
6.1. Upscaled synthesis of the SAFit A/B ring 57
6.2. Macrocycles through RCM 63
6.2.1 Building blocks 63
6.2.2. Macrocycles 73
6.3. Cyclopeptides 87
6.3.1 Building blocks 87
6.3.2. Macrocycles 90
6.3.3. Macrocyclic tracer 117
6.4. $\quad A / B$ ring derivatization through chalcone synthesis 130
6.4.1. Building blocks 130
6.4.2. Final compounds 214
6.5. A / B ring derivatization through Click reaction 246
6.5.1 Building blocks 246
6.5.2. Final compounds 252
6.6. SAFit tracers (tool compounds) 312
7. SUPPLEMENT 315
8. CURRICULUM VITAE 316
9. ACKNOWLEDGMENTS 317
10. REFERENCES 318

1. Introduction

1.1. FKBP51 vs. FKBP52 and the selective ligand class SAFit

The FK506-binding protein 51 (FKBP51, encoded by the FKBP5 gene) shows peptidyl-prolyl cis-trans isomerase (PPlase) activity and belongs to the class of immunophilins known to bind the macrocyclic, natural compounds and immunosuppressive drugs FK506 (Tacrolimus) and Rapamycin (Sirolimus,

Figure 1A). ${ }^{[1]}$
A

FK506

Rapamycin

B

Figure 1. A) The chemical structure of the FKBP ligands FK506, Rapamycin and the FKBP51-selective ligand SAFit1. The key interactions of SAFit1 and 2 with FKBP51 is indicated. B) SAFit1 in complex with the FK1 domain of FKBP51 with the highlighted key interactions. (Unpublished crystal structure of SAFit1, kindly provided by Dr. Christian Meyners)

FKBP51 works in association with the heat shock protein 90 (Hsp90) as a cochaperone and decreases glucocorticoid receptor (GR) signaling. ${ }^{[2]}$ In contrast, the close and homologous protein FKBP52 functions as a facilitator of GR signaling (Figure 2). ${ }^{[3]}$ FKBP51 structurally consists of an N-terminal FK1 domain, which displays PPlase activity, a PPlase-like FK2 domain and a C-terminal tetratrico peptide repeat (TPR) domain. The FK1 domain implements the PPlase site with the ligand-binding pocket. The

FK2 domain also has a typical FKBP-like structure, but it neither shows isomerase activity nor does it bind FK506 or Rapamycin. ${ }^{[4,5]}$

Interestingly, FKBP51 emerged as a promising drug target for stress-related diseases like depression, ${ }^{\text {[6- }}$ ${ }^{13]}$ obesity, ${ }^{[14,15]}$ and chronic pain ${ }^{[16-18]}$ due to the findings that FKBP51 knockout mice displayed enhanced stress-coping behavior, attenuated weight gain in a high-fat diet model and increased pain durability. In contrast, FKBP52 knockout mice displayed adverse effects such as impaired sex organ development, ${ }^{[19,20]}$ which highlights the necessity of highly selective ligands for drug development. ${ }^{[21]}$

> FKBP51 vs FKBP52

Figure 2. High structural homology between FKBP51 (colored cartoon, pdb-ID: 1kt0) and FKBP52 (grey cartoon, pdb-ID: 1q1c, 1 p 5 q) displayed by an overlay. Both proteins consist of three domains: The FK1 domain with the active PPlase site, the FK2 domain with a homologous structure to the FK1 domain but with no PPlase activity and the TPR domain necessary for Hsp90 binding.

The FKBP51 selective ligands SAFit1 and 2 developed by the Hausch group are binding by a factor of >10000 towards FKBP51 over FKBP52. ${ }^{[13]}$ The cyclohexyl ring at the C^{9} position displaces in FKBP51 the amino acid F^{67} forming a new pocket (Figure 1B). The formation of this transient pocket is unfavored in FKBP52. ${ }^{[13]}$ In vivo testing of SAFit2 phenocopied the results observed in FKBP51 knockout mice. The mice showed increased stress-coping behavior, ${ }^{[13]}$ attenuated weight gain, together with antidiabetic effects, ${ }^{[15]}$ reduction of chronic pain, ${ }^{[16,18]}$ reduction of NF-кB driven inflammatory pathways ${ }^{[12]}$ and slight reduction of conditioned alcohol consumption. ${ }^{[22]}$

1.2. FKBP12 and 12.6

FKBP12 and its isoform 12.6 are, with a molecular weight of 12 kDa , its smallest members of the FKBP family. Both contain the PPlase core domain, which is highly homologous to the PPlase-domains in many FKBPs (FK1 domain of FKBP51, Figure 3).

Figure 3. High structural homology between the FKBP51 FK1 domain (colored cartoon, pdb-ID: 3o5q) and FKBP12 (grey cartoon, pdb-ID: 1fkj) displayed by an overlay. FKBP12 consists only of the FK1 domain.
FKBP12 is well known to form a trimeric complex with the natural drug FK506 and calcineurin ${ }^{[23]}$, an enzyme involved in the T-cell activation cascade ${ }^{[24]}$. In association with Rapamycin, the complex binds to the FRB (FKBP-Rapamycin binding) domain of the protein called mammalian target of Rapamycin (mTOR). ${ }^{[25]}$ Formation of these complexes and thus inhibition of pathways regulated by these proteins leads to an immunosuppressive response, which is used to inhibit allograft rejection in posttransplantation patients. ${ }^{[26-30]}$

FKBP12 is essential for mammalian life and occurs in most tissues and is together with FKBP12.6 a cofactor of the ryanodine receptor (RyR), ${ }^{[31-33]}$ where they play an important role in fine-tuning the excitability of smooth or heart muscle. Knock-out of FKBP12 in mice produced an embryonic lethal phenotype due to severe cardiac defects also attributed to interference with the ryanodine receptor, ${ }^{[34,35]}$ which intracellularly modulates Ca^{2+}-signaling in myocytes to evoke muscle contraction. Recent cryoelectron microscopy structures have elucidated the FKBP binding site in the ryanodine receptor complex, where FKBP12 and FKBP12.6 occupied identical positions. ${ }^{[36,37]}$ While the RyR1FKBP12 complex is present in skeletal muscle, the homologous RyR2 and FKBP12.6 seem to have evolved as a specialized system to control cardiac muscle stimulation in mammals. ${ }^{[1]}$ Various studies have investigated the role of FKBP12 and FKBP12.6 and their interaction levels with different ryanodine receptors, however, with highly controversial findings. Future development of selective tool compounds might give a better insight into their respective function.

1.3. Development of SAFit ligands

Figure 4. Ligand development of the SAFit-class. Examples of the variants of the bottom-group (green) and top-group (blue) during structure-affinity-relationship studies (SAR). These new moieties displayed reduced size but also reduced affinity towards FKBP51 in the micromolar ranges. Earliest developments on the top-group and the bottom-group by Holt et al. and Clackson et al. ${ }^{[38,39]}$

The FKBP51-selective SAFit-class was developed by serendipity, during works on a bump and hole approach on FKBP51 and 52. Gaali et al. ${ }^{[13]}$ prepared a ligand series (iFit), which should only bind the F67V-engineered mutants of FKBP51 and 52, to be able to observe the phenotype of selective binding in vitro. This system was analogous to the already developed system of the FKBP12 mutant F36V, using analogs of the Shld ligand developed by Clackson et al. ${ }^{[39]}$ In a fluorescence polarization assay, Gaali et al. noticed that the iFit ligands retained weak affinity to the wildtype FKBP51 but not to FKBP52. A cocrystal structure (pdb-ID: 4tw6) revealed a flip of F67 in the FKBP51-FK1 domain by an induced-fit or a conformational selection. Further SAR studies on the selectivity inducing moiety singled out the cyclohexyl ring to be most efficient in high selectivity vs. FKBP52 and high-affinity binding of FKBP51. Due to SAFits lack of drug-like chemical properties further development was aimed at identifying sizereducing moieties. Especially the trimethoxyphenyl was extensively modulated in previous SAR studies (green, Figure 4). Several trimethoxy-analogs and analogs implementing a hydroxyl group mimicking part of the hemiacetal moiety in FK506 at the C^{10}, which forms a hydrogen bond with D68 (1, Figure 4) did decrease the size of SAFit but also reduced affinity towards micromolar ranges. ${ }^{[40]}$ More recently a novel decaline like bicyclic scaffold rigidifying the bottom-part (2, Figure 4) was developed by Feng et al., ${ }^{[41]}$ which also displayed FKBP51 selectivity vs FKBP52 and bound in the submicromolar range. Both SARs still leaving the trimethoxy bottom-group of SAFit as best moiety for now. The top-group (A/B ring, blue, Figure 4) of SAFit1 is needed for high-affinity binding, although no specific interactions can be found in the co-crystal structure of SAFit1. The removal of this group leads to a decrease in affinity towards the $\mu \mathrm{M}$ range. ${ }^{[42]}$ Substitution by several smaller pipecolic acid amides with a plethora of natural and unnatural amino acids provided smaller sized compounds of the SAFit-class (3, Figure 4), which displayed FKBP51 selectivity and reached submicromolar affinities. These results altogether

Aim

suggest the need for new approaches towards drug-like and selective FKBP51 ligand development, which will be addressed in this thesis.

2. Aim

Although SAFit has already quite advanced functional properties the drug-like qualities are lacking. Blood-brain-barrier penetration is quite low, its molecular weight is too high and its metabolic stability is still low. ${ }^{[13]}$ Another crucial point is that SAFit-like compounds still bind other FKBPs, including FKBP12 and its isoform FKBP12.6 (for SAFit1: $\mathrm{Ki}^{\text {FKBP12 }}: 135 \mathrm{nM}, \mathrm{K}_{\mathrm{i}}{ }^{\text {FKBP12.6 }}: 26 \mathrm{nM}$). As mentioned above, knockouts of these ubiquitous immunophilins in mice produced an embryonic lethal phenotype, which was linked to interference with a ryanodine receptor. ${ }^{[34]}$ An inhibition of FKBP12 and 12.6 as off-targets over a prolonged time might be disadvantageous for a drug's mode of action. We set out employing two different approaches for the modulation of SAFit's properties.

A Planned sites for modifications

B

Figure 5. A) The planned sites for modifications to alter the properties of the SAFit-class compounds are indicated by highlighting the site for macrocyclization (linker) and a new shallow binding site on the surface of the protein (red ellipse). B) SAFit1 in the co-crystal structure with the highlighted modification sites as described above.

Our first objective was to rationally design novel and FKBP51 selective macrocycles. Macrocyclization is a popular approach in drug discovery to improve drug-like properties for compounds outside the rule-of-five (Ro5) space ${ }^{[43-45]}$. Macrocycles are thought to have better affinities and selectivities as well as improved ADME properties compared to their non-cyclic counterparts and are often synthesized to improve oral bioavailability, which is especially important for compounds in the non-Ro5-chemical space. ${ }^{[43-45]}$ Altogether, macrocyclization is thought to be crucial for the unexpectedly benign properties of the clinically used natural products FK506, Rapamycin and Cyclosporin as well as close analogs thereof. ${ }^{[46]}$ Indeed, the groups of Holt and Luengo et al. already developed macrocyclic FKBP12 ligands binding in the nanomolar range. ${ }^{[38,47]}$ Structural simplification of natural macrocycles like Sangliferin A led to efficient inhibitors of cyclophilin. ${ }^{[48,49]}$ Systematic exploration of macrocyclic analogs of Rapamycin led to the identification of novel non-immunosuppressive FKBP ligands and novel inhibitors for hENT1 ${ }^{[50]}$ and GLUT1. ${ }^{[50]}$ Starting with the crystal structure of the linear SAFit1 displaying a highly conserved binding mode and to maintain the FKBP51 selectivity, we chose to keep the pipecolate, the chalcone-derived A / B rings and cyclohexyl ring constant and insert a linker between the last two (Figure 5).

The second objective was to find new binding interactions of the SAFit1 A/B ring by systematically analyzing the effects of small variations through Claisen-Schmidt reactions. As mentioned above, cocrystal structures of SAFit and analogs showed that this ligand moiety has only unspecific contacts with the surface of the protein (Figure 5) but is still needed for high-affinity binding. Additionally, we thought to develop a fast and easily approachable library employing the Huisgen-Sharpless-Meldal (Click) reaction to reach further into the shallow binding pocket located on the protein's surface as well as to develop smaller sized top-groups to find options to improve our current best ligand SAFit (red ellipse, Figure 5).

3. Results and discussion

3.1. Upscaled synthesis of SAFit's A / B ring

SAFit's A/B ring was essential for our planned syntheses and due to an increased demand of SAFit2 in mouse and rat model experiments, an efficient, cheap, high-yielding, multigram scale synthesis was required. Therefore, we started to revise and optimize the synthesis of the A / B ring of SAFit as previously reported by Gaali et al. ${ }^{[13]}$

Scheme 1. a) $\mathrm{KOH}, \mathrm{H}_{2} \mathrm{O} / \mathrm{EtOH}, 0^{\circ} \mathrm{C}$ - r.t.; b) Zn powder, $\mathrm{NH}_{4} \mathrm{Cl}, \mathrm{MeOH} / \mathrm{THF}$; c) $\mathrm{RuCl}_{2}\left[(\mathrm{~S})\right.$-(DM-SEGPHOS)][(S)-DAIPEN], $\mathrm{K}_{2} \mathrm{CO}_{3}$, iPrOH/THF; d) allylbromide or 4-(2-chloroethyl)morpholine hydrochloride or 9, $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeCN}$; e) $\mathrm{NaBH}_{4}, \mathrm{THF}$.

The reaction sequence starts with the Claisen-Schmidt reaction of the respective ketone and aldehyde providing the chalcone 4, which was recrystallized and gave in an upscaled setup of 100 g aldehyde moderate yields of 56%. The aldol condensation was also conducted on a smaller scale (50 g) and reached up to $90 \% .{ }^{[51]}$ Regarding the cheap starting materials and simple reaction setup, we did not further optimize the reaction. Gaali et al. ${ }^{[13]}$ further processed the chalcone in an autoclave at 40 bar hydrogen pressure to chemoselectively reduce the double bond via Lindlar catalyst (5). The reaction yielded satisfying amounts (76\%) but took 3-4 days and was limited to the size of the autoclave's reaction chamber, which could only take up 200 mL per batch. Due to these limitations, we looked for alternative reduction methods. Standard procedures to gain α, β-saturated ketones by reduction usually involve the use of comparatively expensive transition metals such as palladium, ruthenium or iridium and high pressures of hydrogen or higher temperatures in combination with a different hydrogen source (Scheme 2). ${ }^{[52-55]}$ Alternative methods with cheaper catalysts were developed such as iron catalysts with isopropanol as hydrogen source, but they still require a ligand as well as heating. ${ }^{[56]}$ A recent report of upscaled Shld synthesis included a method using Pd / C and $\mathrm{NH}_{4} \mathrm{HCO}_{3}$ for the chalcone
reduction, but only with a moderate yield of 68\%. ${ }^{[57]}$ A cheap alternative is reported by Zhou and Li et al., which uses zinc and ammonium chloride or ammonium acetate that allows the reduction of $\alpha, \beta-$ saturated ketones in very short reaction times in good to excellent yields (85-95\%). ${ }^{[58,59]}$

Scheme 2. a) Reduction of α, β-saturated ketones using a transition metal and hydrogen, b) reduction using different hydrogen sources such as formic acid and xanthate at high temperatures, c) chemoselective reduction by iron catalysis under milder conditions, d) zinc reduction at room temperature.

Our first trials in reducing the chalcone 4 in the manner of Zhou et al. gave some product and mostly a side product, which quickly precipitated as white, quite insoluble solid and was identified by MS $(\mathrm{m} / \mathrm{z}=553.12)$ and NMR to be a dimer of the reduced chalcone (Scheme 3). The reaction mechanism is not described in the literature but it is postulated to react via radicals, which could explain the dimerization reaction. Zhou et al. dissolved their starting materials and reactants in $\mathrm{H}_{2} \mathrm{O} /$ THF and added Zn powder portion-wise in 15 min steps.

Scheme 3. The side reaction towards the dimeric side product and the simple change resulting in product $\mathbf{5}$ in high yield (81\%).

We thought of a method to prevent the dimerization reaction by having our starting material as diluted as possible, which can be achieved by the drop-wise addition of the chalcone to a vigorously stirring
slurry of Zn powder and $\mathrm{NH}_{4} \mathrm{Cl}$ in $\mathrm{MeOH} / \mathrm{THF}$. The results were astounding as we were able to isolate pure product 5 in high amounts (81\%) in a very fast and upscaled reaction setup with 50 g starting material. This reaction setup was also tested for various chalcone derivatives (3.3.1) but seems to work best with the SAFit top-group. One of the problems was the solubility of the chalcones in MeOH. A change in the solvent (EtOH, DMF, THF) did not work, as the reaction worked best with a solvent being able to dissolve some of the salt $\left(\mathrm{NH}_{4} \mathrm{Cl}\right)$ together with the organic starting material (chalcone). Using mixtures with water made the workups very complex and often lead to prolonged workup and also to an increased side product ratio. Although not universally applicable, this procedure can be regarded as an improvement for the SAFit A/B ring synthesis.

After the chalcone reduction, Gaali et al. already introduced the carboxylic ester or morpholine group onto the phenol, then reduced the ketone asymmetrically. Here we thought to first synthesize the chiral alcohol, which then can be diversified into several different top groups through S_{N} reaction at the reactive phenol. To be able to measure the enantiomeric ratio (er) by chiral column we synthesized the racemic alcohol 6 via NaBH_{4} reduction. For the asymmetric reduction, we tried several newer and cheaper catalyst systems than those that have been used before. ${ }^{[51]}$ We found the Noyori catalyst $\mathrm{RuCl}_{2}[(S)-(\mathrm{DM}-\mathrm{SEGPHOS})]\left[(S)\right.$-DAIPEN] at 10 bar H_{2} and with $\mathrm{K}_{2} \mathrm{CO}_{3}$ as activating base to be the most satisfying regarding yields (87\%), er (99.33/0.67), and handling. The reaction worked with 40 g starting material in an autoclave (Roth, Model II) and purification was done by simple precipitation in cooled DCM, which gave pure product 7. Later on, in subsequent experiments, we noticed this catalyst was also able to reduce the ketone already at 1 bar hydrogen pressure using KOtBu as base giving similar results in yield (73\%) and er (99.63/0.37), which increases handling speed of the reaction setup even more as the laborious step with the autoclave can be omitted. Further reaction of the chiral alcohol with 4-(2-chloroethyl)morpholine hydrochloride provided the SAFit2 A/B ring 8 in a quantitative yield. Other linkers were applied as well and worked likewise with excellent yields (compounds 10 and 11). The overall yield of the whole reaction sequence amounted to 63%. This is quite an enhancement regarding the scale and handling of the reaction and the overall yield of the former sequence ($53 \%,{ }^{[60]}$ calculated with crude yields). A portion of the SAFit2 A/B ring was used in the complete synthesis of SAFit2 in cooperation with Michael Bauder (TU Darmstadt, Doctoral student). Furthermore, we sent a sample of SAFit 2 to the group of Prof. Dr. Christian Müller at the University Clinic Erlangen whose group evaluated that SAFit2 reduces the alcohol consumption and reinstatement of the conditioned alcohol effects in mice. ${ }^{[22]}$

Results and discussion

3.2. Macrocyclization of SAFit

3.2.1. Macrocyclization through ring-closing-metathesis (RCM)

Based on the structure-affinity relationship findings on SAFit analogs ${ }^{[13,40-42]}$ and the highly conserved binding mode (Figure 1B), we chose to keep the pipecolate, the chalcone-derived A / B rings and cyclohexyl ring constant and to cyclize between the latter two. For macrocyclization several options are available. Macrolactamization, -lactonization and ring-closing metathesis (RCM) are the most popular ones in organic chemistry. We first chose to conduct RCM as the double bond located at the linker can be easily modified and thus gave us more diversity in our final products, which also minimized the amount of work to synthesize several derivatives. The synthesis started from the chiral alcohol 7 (Scheme 1), which was coupled with allyl bromide or linker 9 providing compounds 10 and 11 (Scheme 4). After coupling with Fmoc-S-pipecolate (12/13), the constructs were deprotected resulting in the free secondary amines 14 and 15.

Scheme 4. a) $\mathrm{K}_{2} \mathrm{CO}_{3}$, allyl bromide or 9, MeCN, rt; b) DCC, DMAP, Fmoc-S-pipecolate, DCM; c) 20% 4-methyl piperidine in DMF.

To insert the selectivity inducing moiety as in SAFit, we synthesized the chiral cyclohexyl bearing compound 18 as described by Feng et al. (Scheme 5). ${ }^{[40]}$

Scheme 5. a) N-BuLi, THF; b) LiHMDS, allyl bromide, THF; c) $\mathrm{LiOH}, \mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{THF} / \mathrm{H}_{2} \mathrm{O}$.
2-Cyclohexylacetyl chloride is coupled with the Evans auxiliary (16) and further reacted with allyl bromide (17), then deprotected to get the chiral carboxylic acid 18.

Scheme 6. a) 18, HATU, HOAt, DIPEA, DMF; b) Grubbs-2 cat., DCM; c) Wilkinson cat. or Pt/C, DCM/MeOH, 1 bar H_{2}; d) PdCl_{2}, p-benzoquinone, $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}$; e) $\mathrm{OsO}_{4}, \mathrm{NMO}, \mathrm{Ac} / \mathrm{H}_{2} \mathrm{O}$.

18 was coupled with the amines 14 and 15 under a standard peptide coupling method providing the linear amides 19 and 20 (Scheme 6). The ring-closing metathesis was conducted as described by Lee and Grubbs ${ }^{[61]}$, which gave us excellent yields of the macrocycles 21 and 22 (86% and 92%). For 21 we were able to separate both E and Z isomer, which were in an 89:11 ratio present in the crude mixture and for the larger macrocycle $\mathbf{2 2}$ we only isolated the E-isomer as determined by NMR. To introduce additional functionalities into the linker, we further derivatized the E-isomers by Wilkinson or Pt / C reduction (23/26), by Wacker-Oxidation (24/27) as described by Miller et al. ${ }^{[62]}$ or dihydroxylation (25/28), which resulted in only one Wacker product respectively. The dihydroxylated diastereomeric mixture was separable for the smaller macrocycle. For the larger macrocycle, we only got an inseparable dihydroxylated diastereomeric mixture.

Partially based on the macrocyclic FKBP12 ligands by Holt et al. ${ }^{[38]}$ we additionally synthesized geminal methyl bearing compound $\mathbf{3 1}$ (Scheme 7). Starting from the amine 14 we coupled cyclohexyl glycine (29), which we deprotected with DBU within 3 minutes and directly reacted with the acid chloride of 2,2-dimethylbut-3-enoic acid. The Fmoc deprotection of $\mathbf{2 9}$ underwent under standard conditions (20\% 4-methyl piperidine in DMF, 15 min , r.t.) a side reaction, in which the deprotected amine cleaved off the piperidine and formed a diketopiperazine. The side product having a mass of $250 \mathrm{~g} / \mathrm{mol}$ was confirmed via LCMS in the deprotection solution.

Scheme 7. a) Fmoc-D-Chg-OH, HATU, HOAt, DIPEA, DMF; b) DBU, DCM, 3 min , then 2,2-dimethylbut-3-enoic acid chloride is added c) Grubbs-2 cat., p-benzoquinone, toluene, $80^{\circ} \mathrm{C}$; d) PdCl_{2}, p-benzoquinone, $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}$.

To prevent this, we screened the reaction with differing concentrations of 4-methyl piperidine in time dependency but only got again diketopiperazine as a side product. Thus, we changed the base to DBU, which is known to deprotect Fmoc very rapidly. Here we also observed side product formation, but only after reaction times over 5 minutes. The diketopiperazine formation, unfortunately, was favored in the subsequent coupling of 2,2-dimethylbut-3-enoic acid via HATU coupling. We therefore freshly prepared the acid chloride and added it directly to the DBU deprotection solution, which provided us with compound 30 in good yield (74% over two steps). The RCM of the linear construct was first conducted as described above in DCM at $30^{\circ} \mathrm{C}$ but did not show conversion. Due to that we changed the solvent system to toluene and heated stepwise to $80^{\circ} \mathrm{C}$ until we observed conversion. Unfortunately, LCMS analysis revealed a majorly running side reaction with the metathesis catalysts, where the aromatic allyl must have undergone double bond transfer towards the vinyl ether and subsequently been cleaved off. The alkene isomerization side reaction with ruthenium catalysts was already described by Cadot et al. ${ }^{[63]}$ and its prevention by Hong et al. ${ }^{[64]}$. The addition of p-benzoquinone is postulated to work as a ruthenium hydride quencher, the species, which is believed to conduct the side reaction. Indeed, p-benzoquinone worked with our system as well, although the yield of 31 was still mediocre (38\%), possibly due to steric hindrance caused by the geminal methyls. Due to low amounts of the compound, we conducted only the well-behaving Wacker oxidation (32) as the derivatization method.

Unfortunately, almost none of the macrocycles closed by RCM did not show detectable binding to FKBP51 in a fluorescence polarization assay. ${ }^{[65]}$ Gratifyingly, the 18-membered dihydroxylated macrocycle 28 of the larger macrocycle bound to FKBP51 with a K_{i} of $1.2 \mu \mathrm{M}$. Surprisingly, however, 28 did not bind to FKBP12 or FKBP12.6 and as expected no binding to FKBP52 was observed (see supplement Figure 17). The second compound showing detectable affinity was the macrocycle 32, which bound FKBP51 with a K_{i} of $0.78 \mu \mathrm{M}$, no FKBP552, FKBP12 $1.9 \mu \mathrm{M}$ and FKBP12.6 7.6 $\mu \mathrm{M}$. What most piqued our interest was the novel FKBP51 selectivity of compound $\mathbf{2 8}$ over FKBP12 and 12.6, which we further investigated by the synthesis of macrolactams with similar sizes of 17-19 membered rings.

3.2.2. Macrocyclization through macrolactamization

We set out to investigate the unprecedented but highly desired FKBP51 selectivity of the RCM macrocycle $\mathbf{2 8}$ in more detail, utilizing amino acids to rapidly explore the effect of the linker.

Scheme 8. a) tert-butyl bromoacetate, $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeCN}$; b) Fmoc-S-Pip-OH, DCC, DMAP, DCM; c) 20\% TFA in DCM; d) 2-CTC resin, DIPEA, DCM; e) 20\% 4-methyl piperidine in DMF, rt, $3 \times 10 \mathrm{~min}$; f) Fmoc-d-Chg-OH, HATU, HOAt, DIPEA, DMF; g) 5\% 4-methyl piperidine in DMF, $0^{\circ} \mathrm{C}, 3 \times 5 \mathrm{~min}$; h) NosCl, Collidine, DMF; i) PPh_{3}, dry MeOH , DIAD, dry THF, rt, $3 \times 10 \mathrm{~min}$; j) β-mercapto
ethanol, DBU, DMF, rt, $3 \times 10 \mathrm{~min}$; k) Fmoc-AA-OH, HATU, HOAt, DIPEA, DMF; I) 20% HFIP in DCM; m) 1 mM in DMF, HATU, DIPEA.

Applying the Fmoc solid-phase peptide synthesis (SPPS) strategy, we started from the chiral alcohol 7, which we coupled with tert-butyl bromoacetate (33), then with Fmoc-S-pipecolate (34, Scheme 8). The precursor for all final substances was deprotected with TFA (35) and loaded onto 2-chloro trityl (2-CTC) resin (36a). After Fmoc deprotection we introduced D-cyclohexyl glycine as the FKBP52-discriminating moiety (36b) and synthesized varying macrocycles with differing linkers achieved by the incorporation of natural and unnatural amino acids. Optionally, we N-methylated the amino acids to probe the influence of the now blocked amide groups. N-methylation is often used as a tool to enhance compounds' metabolic stability. Additionally, one might enhance and rigidify the cycle's conformation to get a favorable entropic contribution upon ligand binding. ${ }^{[66,67]}$ The Fmoc deprotection of 36b underwent under standard conditions (20\% 4-methyl piperidine in DMF, 15 min , r.t.), as already mentioned above, a diketopiperazine side product formation. To suppress this, the reaction was done with 5% 4-methyl piperidine in DMF at $0^{\circ} \mathrm{C}$ in $5 \mathrm{~min} .{ }^{[68]}$ This was only possible on solid-phase and not in solution since a longer reaction time under these enhanced conditions showed again an increased amount of side product. Finally, the linear peptides were cleaved from the resin and cyclized in the crude state by macrolactamization (37-63). Here we diluted down to 1 mM in DMF and cyclized with the coupling reagent HATU overnight. These macrocyclization conditions worked for all linear constructs presented here. Other coupling conditions with the reagents DPPA and PyBOP were tested as well but did not surpass formerly mentioned conditions.

We additionally synthesized a library screening for differing selectivity inducing moieties (\mathbf{X}), where we simply exchanged the cyclohexyl by several suiting D-amino acids and kept the second amino acid constant as Aib.

3.2.3. Binding affinities (Fluorescence polarization assay)

All final compounds were screened for affinity towards the FKBPs 51, 52, 12 and 12.6 in a competitive fluorescence polarization assay. ${ }^{[65,6]}$ Gratifyingly, most of the macrocycles with amino acid-based linkers bound to FKBP51 in the low to submicromolar range (Table 1). Most importantly, however, none of the macrocycles did show any affinity towards FKBP12, FKB12.6, or FKBP52. The glycine derivative 37 had an affinity of $2.3 \mu \mathrm{M}$, which gradually increased with an increasing substitution (38 (D-Ala): $1.0 \mu \mathrm{M}, 39$ (Aib): $0.29 \mu \mathrm{M}$). For the geminal cyclic amino acids, the affinity slightly decreased with size (40: $0.40 \mu \mathrm{M}, 41: 0.40 \mu \mathrm{M}, 42: 1.3 \mu \mathrm{M}$).
N-methylation of glycine did not affect affinity majorly [43 ($\mathrm{R}_{3}=\mathrm{Me}$): $3.1 \mu \mathrm{M}$)]. Likewise, single N methylation of the $\mathrm{D}-\mathrm{Chg}$ [$44\left(\mathrm{R}_{1}=\mathrm{Me}\right): 0.96 \mu \mathrm{M}$] had no considerable effect on the affinity and the double N-methylated compound 45 showed a decrease in binding affinity towards FKBP51. The N methylated Aib analog 46 also displayed this behavior.

Table 1. Affinities of macrocycles with amino acid-containing linker determined by a competitive fluorescence polarization assay; [a] standard error from three independent measurements; [b] values derived from literature ${ }^{[29,70]}$; [c] error from two independent measurements; *82\% purity with a 75:25 diastereomeric mixture.

Cmpd. Nr. (Journal)	Purity 254 nm [\%]	x		FKBP51FK1	FKBP12	FKBP12.6
					$\mathrm{K}_{\mathrm{i}}[\mu \mathrm{M}]$	
SAFit1		Figure 1		$0.004 \pm 0.001^{\text {[]] }}$	$0.163 \pm 0.009{ }^{\text {[a] }}$	$0.019 \pm 0.002^{[\text {[]] }}$
FK506		Figure 1		$0.104^{[b]}$	$0.0006^{[b]}$	$0.004^{[b]}$
37 (AV011)	95			$2.30 \pm 0.05^{\text {[c] }}$	>80	>80
38 (AV022)	96			1.00	>80	>80
39 (AV023/183)	99			$0.29 \pm 0.05^{[\text {a] }}$	>80	>80
40 (AV075)	96			$0.40 \pm 0.05^{[\text {a] }}$	>80	>80
41 (AV293)	99			0.40	>80	>80
42 (AV076)	98			1.30	>80	>80
43 (AV658)	99			3.10	>80	>80
44 (AV087)	98			$0.96 \pm 0.14^{\text {[c] }}$	>80	>80
45 (AV160)	97			$5.30 \pm 0.50^{[c]}$	>80	>80
46 (AV168)	89			0.37	>80	>80
47 (AV041)	99			0.80	>80	>80
48 (AV042)	99			5.10	>80	>80
49 (AV021)	96			17	>80	>80
50 (AV024)	99			7.40	>80	>80
51 (AV077)	99			>80	>80	>80
52 (AV079)	99			1.80	>80	>80
53 (AV078)	99			>80	>80	>80

54* (AV419)	82			1.30	>80	>80
55 (424)	99			2.50	>80	>80
56 (AV422)	99			4.70	>80	>80
57 (425)	84			>80	>80	>80
59 (AV454)	99			>80	>80	>80
61 (AV458)	89			>80	>80	>80
63 (AV457)	99			>80	>80	>80

Unfortunately, we could not synthesize the other N-methylated Aib analogs. The coupling of the highly sterically hindered Aib to the N-methylated D-Chg simply did not occur under various coupling conditions. (HATU + Fmoc-AIB-OH, Fmoc-Aib-Cl, Fmoc-Aib-F, Nos-Aib-Cl). ${ }^{[71,}{ }^{72]} \mathrm{N}$-cyclization [47 (DPro): $0.80 \mu \mathrm{M}$] did, similarly to N-methylation not increase binding significantly. In contrast, the l-Pro derivative (48: $5.1 \mu \mathrm{M}$) displayed even worse affinity compared to D-Pro and similarly the L-Ala derivative (49: $17 \mu \mathrm{M}$) in comparison to D-Ala.

Longer amino acid linkers reduced affinity [50 ($\beta-\mathrm{Ala}$): $7.4 \mu \mathrm{M}$ and GABA 51 (no binding)], which could be compensated by appropriate rigidification as in 52 ($1.8 \mu \mathrm{M}$; other diastereomer 53 inactive). Some of the crude linear constructs were also tested in the FP-assay. These displayed mostly no binding or binding in a higher magnitude than their cyclic counterparts ($>20 \mu \mathrm{M}$), underlining the significance of the macrocyclization.

Additionally, we proved that the cyclohexyl moiety is best suited for selectivity as well as high affinity at least in the range of commercially available natural and unnatural amino acids. All tested derivatives (54-63) showed decreased affinities towards FKBP51 but also displayed selectivity over FKBP12 and 12.6. The residues D-Phg, D-Trp, D-His and D-Tyr (57-63) did not show any binding.

The affinities of compounds 37 and 40 for FKBP51FK1 determined by FP-assay (Figure 6) were again confirmed by isothermal titration calorimetry (ITC), yielding an enthalpy-driven $K_{d}=3.6 \mu \mathrm{M} \pm 0.9 \mu \mathrm{M}$ for 37 and $K_{d}=0.6 \mu \mathrm{M} \pm 0.1 \mu \mathrm{M}$ for 40 respectively (Figure 7, data measured and provided by Dr. Christian Meyners).

Figure 6. FP-Assay binding curves of compounds 37 and 40.

Figure 7. A) Binding of compound 37 to FKBP51FK1 determined by isothermal titration calorimetry at $25^{\circ} \mathrm{C}$. A $20 \mu \mathrm{M}$ solution FKBP51FK1 formulated in 20 mM HEPES $\mathrm{pH} 8.0,20 \mathrm{mM} \mathrm{NaCl}, 5 \%$ glycerol and 2% DMSO was placed in the sample cell of a PEAK-ITC instrument. The syringe was filled with a $200 \mu \mathrm{M}$ solution of 37 formulated in the same buffer. After equilibration, the compound was titrated into the sample cell by 12 injections of $3 \mu \mathrm{l}$ each. The obtained data were analyzed using the provided software package and fitted to a one-site binding model yielding a K_{d}-value of $3600 \pm 900 \mathrm{nM}$ (mean \pm SD from 3 independent experiments). B) Binding of compound 40 to FKBP51FK1 determined by isothermal titration calorimetry at 25 ${ }^{\circ} \mathrm{C}$. A $13 \mu \mathrm{M}$ solution FKBP51FK1 formulated in 20 mM HEPES $\mathrm{pH} 8.0,20 \mathrm{mM} \mathrm{NaCl}, 5 \%$ glycerol and 2% DMSO was placed in the sample cell of a PEAK-ITC instrument. The syringe was filled with a $100 \mu \mathrm{M}$ solution of $\mathbf{4 0}$ formulated in the same buffer. After equilibration, the compound was titrated into the sample cell by 12 injections of $3 \mu \mathrm{l}$ each. The obtained data were analyzed using the provided software package and fitted to a one-site binding model yielding a K_{d}-value of $600 \pm 100 \mathrm{nM}$ (mean \pm SD from 3 independent experiments); Data provided by Dr. Christian Meyners.

3.2.4. Structural basis for FKBP51 selectivity by co-crystal structures

To clarify the structural basis for the unprecedented selectivity of the peptidic macrocycles, we solved in cooperation with Dr. Andreas Bracher from the Max Planck Institue of Biochemistry (Martinsried, Munich) and Dr. Christian Meyners (TU Darmstadt, AK Hausch) the crystal structures of compound 37, 40 and 46 (PDB-ID: 7aot, 7aou and 7awf) in complex with FKBP51FK1 A19T. ${ }^{[73]}$ As expected, the interactions of the pipecolate, the A- and B-rings, as well as the cyclohexyl group with FKBP51, were completely conserved in comparison to previous FKBP51-SAFit cocrystal structures (Figure 8).

Figure 8. Crystal structure of the FK1 domain of FKBP51 in complex with 40 (pink-colored sticks, linker region in magenta, PDB-ID: 7aou), key interactions with the residues ${ }^{87}, Y^{113}$ and Y^{57} indicated as orange broken line (distance in Å) in overlap with the crystal structure of SAFit1 (cyan-colored sticks, not published, provided by Dr. Christian Meyners) indicating the conservation of the key interactions. Due to the high similarity of the co-crystal structure of compounds 37, 40 and 46, only 40 is depicted.
This includes a displacement of F^{67}, which is responsible for the strong selectivity vs. FKBP52 of SAFitlike ligands. ${ }^{[13,40-42]}$ However, the $\beta 3$ b strand which contains F^{67} and which previously was shown to display enhanced basal mobility ${ }^{[74]}$ was substantially rearranged (Figure 9).

Figure 9. A) Crystal structure of the FK1 domain of FKBP51 in complex with $\mathbf{4 0}$ (pink-colored sticks), key interactions with the residues ${ }^{187}$, Y^{113} and Y^{57} indicated as orange broken line (distance in \AA). B) Crystal structure of the FK1 domain of FKBP51 (pale cyan) in complex with 40 (pink-colored sticks) superimposed to the structure of the SAFit1-analog iFit4 in complex with FKBP51FK1 (pale green, pdb-ID: 4tw7, iFit4 has been omitted for clarity). The $\beta 3 b$ strand is highlighted in cyan and green, respectively, and key residues Y^{57}, D^{68} and H^{71} are shown as sticks. The key carbonyl of 40 displacing D^{68} is highlighted in magenta and the new hydrogen bond between Y^{57} and D^{68} in complex with 40 is indicated as an orange broken line.
C) Same display of compound $\mathbf{3 7}$ as described in A. D) Same display of compound $\mathbf{3 7}$ as described under point B. E) Same display of compound $\mathbf{4 6}$ as described in A. F) Same display of compound $\mathbf{4 6}$ as described under point B.

Strikingly, we observed that a carbonyl group of 37,40 and 46 displaced D^{68} and replaced it as a hydrogen bond acceptor for the ε-hydroxyl group of Y^{57}. The rearrangement of the $\beta 3 b$ strand is stabilized by an inward flip of H^{71}, which partially replaces S^{70} and substitutes the former as a hydrogen bond donor for the backbone carbonyl of Y^{57}. A similar inward flip of H^{71} has previously been observed for FKBP51 in complex with Rapamycin and FRB (pdb: 4drh). ${ }^{[75]}$ Intriguingly, H^{71} is replaced in FKBP12 and FKBP12.6 by an arginine (R^{40} in FKBP12/12.6 numbering), which can be expected to be less efficient in stabilizing the 37/40/46-binding conformation, providing a molecular rationale for the discrimination vs. FKBP12/12.6 observed for the macrocycles.

The macrocyclic ligands selectivity and its weaker binding affinity in comparison to SAFit1 might also be explained by the molecular dynamics (MD) simulation of compound $\mathbf{4 0}$ bound to the FKBP51FK1 domain (Figure 10). In cooperation with Dr. Daniel Tietze, we employed the program YASARA to calculate a 200 ns MD simulation of the protein-ligand complex in aqueous solution at room temperature, with structural snapshots taken every 100 ps . The protein itself did not show significant changes like secondary structure unfolding or refolding during the whole MD simulation, indicated by the mostly constant rmsd. The linker of compound 40 displays higher flexibility indicated by the average B-factor, which could keep the $\beta 3 b$ strand also in its rearranged form. On the other hand, a too flexible ligand might also have several conformations, which do not fit well into the protein's pocket, leading in comparison to the SAFit ligands to weaker affinity.

Figure 10. A) The ligand 40 bound to the FKBP51FK1 domain is MD simulated for 200 ns in a water shell at r.t. by employing the Yasara molecular modeling program. ${ }^{[76,77]}$ The average B-factor is displayed in the color code from blue to red. The relatively stable rmsd value over time indicates no extreme changes in the overall structure. B) A zoomed-in view of the averaged ligand conformation of compound 40 and its flexibility indicated by the B-factor coloring.

Nonetheless, our results provide the first ligands that robustly discriminate between FKBP51 and FKBP12 and FKBP12.6 and provide a structural basis for the rational design for further lead optimization. As mentioned above, FKBP12 and FKBP12.6 are cofactors of the ryanodine receptor ${ }^{[31-33]}$ and play an important role in fine-tuning the excitability of smooth or heart muscle. FKBP12 knockout or knockdown leads to severe cardiac defects, ${ }^{[34,35]}$ underscoring the importance of selectivity for FKBP51 over FKBP12/12.6 in FKBP51-based therapies.

Results and discussion

3.2.5. Fluorescent macrocyclic tracer as proof of concept of selective FKBP51 binding

We decided to synthesize a probe to further elucidate these highly selective ligands by attaching a TAMRA fluorophore ($\mathbf{7 6}$, Scheme 9) with the best binding compound 39 (Table 1). Starting from the co-crystal structure (Figure 8) we thought to add the fluorophores linker onto the B ring in meta position, where the exit vector would behave like a prolongation of the carboxylic acid of SAFit1.

Scheme 9. Reaction scheme for the meta B ring modification and the TAMRA coupled fluorescent tracer. a) $\mathrm{NaOH}, \mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}$, $0^{\circ} \mathrm{C}-\mathrm{rt}$; b) $\left.\mathrm{Zn}, \mathrm{NH}_{4} \mathrm{Cl}, \mathrm{MeOH} ; ~ c\right) \mathrm{RuCl}_{2}\left[(S)\right.$-(DM-SEGPHOS)][(S)-DAIPEN], THF, 10 bar $\mathrm{H}_{2}, \mathrm{KOtBu}, \mathrm{rt}$; d) $\mathrm{TrtCl}^{2}, \mathrm{~K}_{2} \mathrm{CO}_{3}, \mathrm{MeCN}$; e) 76, $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeCN} ;$ f) DCC, Fmoc-S-Pipecolate, DMAP, DCM; g) 1\% TFA in DCM; h) 2-CTC-resin, DIPEA, DCM; i) 20\% 4-methyl piperidine in DMF, $3 \times 10 \mathrm{~min}$; j) Fmoc-d-Chg-OH, HATU, HOAt, DIPEA, DMF; k) $5 \% 4-\mathrm{Me}$-piperidine in DMF, $0^{\circ} \mathrm{C}, 3 \times 5 \mathrm{~min}$; I) Fmoc-Aib-OH, HATU, HOAt, DIPEA, DMF; m) $\mathrm{Pd}(\mathrm{OAc})_{2}$, morpholine, PPh_{3}, THF; n) 20% HFIP in DCM; o) HATU, pentafluoro phenol, 1 mM in DMF, p) Mel, $\mathrm{K}_{2} \mathrm{CO}_{3}, ~ q$) $\mathrm{Ag}_{2} \mathrm{CO}_{3}$, tert-butyl (2-bromoethyl) carbamate; (MeCN) r) DCM/TFA, 4/1 s) TEA, 5 (6)-NHS-TAMRA, (DMF).

Preliminary works towards the synthesis route were performed by the master student Matthias Roth under my supervision. ${ }^{[51]}$ We started with the Claisen-Schmidt reaction of the respective ketone and
aldehyde providing the chalcone 64, which was chemo-selectively (65) and then asymmetrically reduced (66). The racemic alcohol (67) was synthesized using NaBH_{4} reduction to determine the enantiomeric ratio via chiral column HPLC. The diphenol needed protection for further handling, which was achieved by mono tritylation (68) followed by reaction with the freshly prepared linker allyl 2bromoacetate (69). Compound 70 was then coupled with Fmoc-S-pipecolate and the trityl group was removed yielding 71. The free phenol was loaded onto 2-CTC resin (72a) and further coupled under standard SPPS conditions providing 72b. The linear construct was cyclized in solution (73) and further methylated (74). For the macrocyclization reaction with HATU, a side product with a mass corresponding to the uronium salt of the phenol was observed. Attempts of removing this group under basic conditions did also result in ring-opening. Thus, we tried different coupling reagents (DPPA, PyBOP, HBTU) and additives (HOAt, pentafluorophenol). Fortunately, we were able to prevent the side reaction by using HATU together with an excess of pentafluorophenol as a scavenger of the reactive species. The meta hydroxy (73) and its methoxy (74) analog were tested in an FP-assay (Table 2) and displayed a slightly decreased affinity towards FKBP51 (0.37-0.39 $\mu \mathrm{M}$) in comparison to its parent compound 39 and no binding of FKBP52, 12 and 12.6.

Table 2. Ki values were determined by a competitive fluorescence polarization assay; [a] standard error from three independent measurements.

Cmpd.	\mathbf{R}_{4}	FKBP51FK1
		$\mathrm{K}_{\mathrm{i}}[\mu \mathrm{M}]$
$\mathbf{3 9}$	No substituent	$0.29 \pm 0.05^{[\mathrm{da]}}$
$\mathbf{7 3}$	H	0.37
$\mathbf{7 4}$	Me	0.39

The macrocyclic tracer was synthesized starting from compound 73. First, a linker was added by a nucleophilic substitution reaction with tert-butyl-(2-bromoethyl) carbamate, which was deprotected with TFA and finally coupled with an N-hydroxy succinimide activated 5-(6)-TAMRA fluorophore providing the regioisomers of compound 76. The regioisomers stemming from the used regioisomeric fluorophor could be separated and three fractions were obtained: 76a (pure regioisomer 1), 76b (mixed fraction of both isomers 34 to 66 ratio) and 76c (regioisomer 2 still containing 12\% isomer 1).

B

Figure 11. A) Structure of the TAMRA labeled tracer 76a 5 or 6-TAMRA regioisomer. B) Binding of the TAMRA-tracer 76a to FKBPs 51, 52, 12 and 12.6 determined by a fluorescence polarization assay yielding K_{d}-values of $45 \pm 7 \mathrm{nM}$ for FKBP51FK1, $6 \pm 1.4 \mu \mathrm{M}$ for FKBP12, >80 $\mu \mathrm{M}$ for FKBP52FK1 and $3.6 \pm 0.8 \mu \mathrm{M}$ for FKBP12.6. The error bars represent the standard deviation of three independent experiments. C) The FRET assay of 76 with fluorescein-labeled FKBP51FK1 domain. A serial dilution series of the tracer was placed in a microplate and supplemented with 5 nM of fluorescein-labeled FKBP51FK1. The binding of the tracer resulted in quenching of the fluorescein signal observable as a decrease in the fluorescence intensity at 530 nm upon excitation at 485 nm . The obtained data were plotted against the tracer concentration and fitted to a binary binding model yielding for $\mathbf{7 6}$ a a K_{d}-value of $80 \pm 10 \mathrm{nM}$, for $\mathbf{7 6 b}$ a K_{d}-value of $150 \pm 25 \mathrm{nM}$ and $\mathbf{7 6 c}$ a K_{d}-value of $380 \pm 35 \mathrm{nM}$. The error bars represent the standard deviation of three independent experiments. D) The overlay of the analytical HPLC chromatogram of $\mathbf{7 6 a}$ (blue), $\mathbf{7 6 b}$ (red) and $\mathbf{7 6 c}$ (green) displaying the ratio of the regioisomers.

All three fractions were tested for binding in a FRET-assay with 76a having the highest affinity $\left(K_{d}=80 \pm 10 \mathrm{nM}\right.$; Figure 11C). The FRET was measured with a fluorescein-labeled FKBP51FK1 domain (C103A/C107I/E140C, with the fluoresceine label on cysteine 140). The affinity of the tracer 76a was further confirmed in an FP-assay, which bound directly to FKBP51 ($\mathrm{K}_{\mathrm{d}}=45 \pm 7 \mathrm{nM}$) but poorly to FKBP12, FKBP12.6 or FKBP52 (Figure 11B) confirming the high preference of FKBP51 by the macrocyclic structures. The sudden rise in affinity can be explained by additional interactions of the TAMRA with the surface of the protein. Unfortunately, due to the low quantity, the large structure of this compound and rotamers in the NMR we could not elucidate, which of the regioisomers was the more potent one.

Synthesis of the tracer with the pure NHS-TAMRA fluorophore should give more insight in future works.

3.2.6. More insight into the structural basis for selectivity by co-crystal structures

To get further insight into the structural basis for the unprecedented selectivity of the macrocycles, we solved another two co-crystal structures of the latest compounds, the dihydrophenyl glycine containing compound 54 and the meta methoxylated compound 74 in complex with FKBP51FK1 A19T (Figure 12A and B). Similar to the co-crystal structure of 40 the key-interactions with FKBP51 were completely conserved in comparison to the SAFit1 co-crystal structure along with the displacement of D^{68} by the carbonyl in the macrocycles (Figure 12C). Unexpectedly, the unfolding of the $\beta 3 \mathrm{~b}$ strand, as well as the flip of His ${ }^{71}$ did not happen for both of those complexes. These findings suggest a more complex mechanism underlying the high selectivity of these macrocycles but all contain the rearrangement or displacement of D^{68} and disruption of the hydrogen-bond with Y^{57}, which is the current best rationale to explain the specific binding mode of the peptidic macrocycles.

Figure 12. A) Crystal structure of the FK1 domain of FKBP51 in complex with compound $\mathbf{7 4}$ (salmon-colored sticks), key interactions with the residues $1^{87}, Y^{113}$ and Y^{57} indicated as orange broken line. B) Crystal structure of the FK1 domain of FKBP51 in complex with compound 54 (light-pink-colored sticks), key interactions with the residues $1^{87}, Y^{113}$ and Y^{57} indicated as orange broken line. C) Overlay of the crystal structure of the FK1 domain of FKBP51 in complex with 40, $\mathbf{5 4}$ and $\mathbf{7 4}$ (pale green-, light-pink- and salmon-colored sticks respectively) superimposed to the structure of the SAFit1-analog iFit4 in complex with FKBP51FK1 (yellow-colored, pdb-ID: 4tw7, iFit4 has been omitted for clarity). The $\beta 3$ b strand is highlighted in green, magenta and red respectively, and key residues Y^{57}, D^{68} and H^{71} are shown as sticks. The key carbonyl of 40, $\mathbf{5 4}$ and $\mathbf{7 4}$ displacing D^{68} and the new hydrogen bond is indicated as an orange broken line. The unfolding of the $\beta 3 b$ strand, as well as the flip of His^{71} in the complexes of 54 and $\mathbf{7 4}$ is not present. Indicating that only the displacement of D^{68} might be more essential for the newfound selectivity over FKBP12 and 12.6.

3.3. Structure-Affinity-Relationships (SAR) of the SAFit A and B ring

3.3.1. Synthesis of novel A / B rings by Claisen-Schmidt chalcone synthesis

We started to explore the essential moieties for high-affinity binding by systematically analyzing the effects of small variations as we aimed to discover the essential binding interactions of the SAFit1 A/B rings. We either exchanged the A or the B ring (Figure 13) in the original SAFit structure and kept the other with methoxy substituents constant.

Figure 13. Screening for novel A / B rings. Either the A or B ring was kept constant and the other was varied to be able to compare the influence of differing residues.
The synthesis began as described for the upscaled synthesis of the SAFit A/B ring (Scheme 1) with the Claisen-Schmidt reaction, providing the chalcones (A, Scheme 10).

Scheme 10. General synthesis pathway of the A / B ring derivatives for library A. a) NaOH or KOH or $\mathrm{Na}_{2} \mathrm{CO}_{3},\left(\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}\right)$; b) $\mathrm{Pd} / \mathrm{C}, 1$ bar $\mathrm{H}_{2},(\mathrm{MeOH}) ;$ c) Zn powder, $\mathrm{NH}_{4} \mathrm{Cl}$, (THF/MeOH); d) CBS cat., $\mathrm{BH}_{3}{ }^{*} \mathrm{SMe}_{2}$, (THF); e) RuCl $[(\mathrm{S})$-(DM-SEGPHOS)][(S)DAIPEN], (THF), 10 bar H_{2}, KOtBu; f) 77, DIC, DMAP, (DCM).

The Claisen-Schmidt reaction conditions were modified where necessary. Especially for the insertion of pyridines, we had to optimize due to extensive side reactions. At standard Claisen-Schmidt conditions, we observed for pyridine containing top-groups direct Michael-Addition of the product
chalcone to the reactants, which gave a complex product mixture barely containing the target products. This was partially prevented by excess usage of the aldehyde and dropwise addition of the ketone (See conditions in the experimental procedures). The reduction (B, Scheme 10) was done either with $\mathrm{Zn} / \mathrm{NH}_{4} \mathrm{Cl}$ or $\mathrm{Pd} / \mathrm{C}+\mathrm{H}_{2}$, where Pd / C worked best for the heteroaromatic- and pyridine chalcones. An asymmetric Noyori or Corey-Bakshi-Shibata (CBS) reduction provided the chiral alcohol (C, Scheme 10). We opted for conducting an asymmetric reduction of pyridine containing top groups by Noyori catalyst as we observed in the CBS reduction a stable complex formation with the required borane reagent, which often needed excess addition of borane due to the scavenging of the reagent and after reaction an additional deprotection step with concentrated HCl . The ee of the alcohol was determined via chiral HPLC using a racemate as a reference, which was synthesized by NaBH_{4} reduction. The topgroups were then coupled with the building block 77 (Scheme 10) ${ }^{[13]}$ using the recently published Steglich esterification method of Jorgensen et al., ${ }^{[57]}$ which gave a mixture of diastereomers up to 10% of the final compounds. Coupling under normal Steglich conditions (1.0 eq DCC, 0.1 eq DMAP) gave highly diastereomeric mixtures. The final compounds contained $\leq 5 \%$ diastereomer after purification as determined by analytical HPLC. Otherwise less pure compounds are marked in the following tables. To evaluate which attachment point on the B ring is the most suiting we also thought of synthesizing regioismers of SAFit1, with changes in the position of the carboxylic acid. Having the phenol on the para or ortho position required changes in the synthesis (Scheme 11). Especially with the "ortho-SAFit" (199) we initially found in literature research that the Claisen-Schmidt synthesis would need the protection of the phenol because the chalcone (138) would undergo a further reaction towards the flavonoid ${ }^{[78]}$ We first tried the Claisen-Schmidt under slightly modified conditions and got enough product for our purposes (33\%). If an increased yield is needed one might try trityl (Trt) or methoxymethyl (Mom) protection of the phenol prior to the Claisen-Schmidt reaction. Further synthesis towards the chiral alcohol (140) succeeded only with the CBS catalyst, the Noyori conditions did not work, probably due to good chelating properties of the starting material. Further synthesis was performed as described for SAFit1 ${ }^{[13]}$, which included coupling of the chiral alcohol with the tert-butyl protected carboxylic acid, then further coupling of the bottom-core construct 77 as discussed above (Scheme 10). The final tert butyl deprotection of 196 under acidic conditions, unfortunately, additionally cleaved the internal ester, which is not observed within the SAFit synthesis. This likewise occurred for the para-regioisomer. Other deprotection conditions with ZnBr_{2} or $\mathrm{Yb}\left(\mathrm{OTf}_{3}\right)$ as suggested by Greene and Wuts also cleaved the internal ester. ${ }^{[79]}$ Thus, we had to exchange the protecting group and coupled the chiral alcohols with the prior synthesized, allyl protected compound 69 . Final products 195 and 199 were obtained after deprotection with palladium acetate under basic conditions.

Scheme 11. Synthesis of the ortho-SAFit 199. a) $\mathrm{NaOH}, \mathrm{EtOH} ;$ b) $\mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}, \mathrm{THF}$; c) $\mathrm{S}-\mathrm{CBS}, \mathrm{BH}_{3} * \mathrm{SMe}_{2}$, THF; d) $\mathrm{K}_{2} \mathrm{CO}_{3}$, tert-butyl bromoacetate, MeCN; e) 77, DMAP, DIC, DCM; f) 30% TFA in DCM; g) $\mathrm{K}_{2} \mathrm{CO}_{3}, 69$, MeCN ; h) $\mathrm{Pd}(\mathrm{OAc})_{2}$, morpholine, PPh 3 , THF.

Scheme 12. Synthesis of the para-SAFit 195. a) $\mathrm{KOH}, \mathrm{EtOH} ; \mathrm{b}) \mathrm{Zn}$-Powder, $\mathrm{NH}_{4} \mathrm{Cl}, \mathrm{MeOH} / \mathrm{THF} ; \mathrm{c}$) Noyori, $\mathrm{KOtBu}, \mathrm{iPrOH}, \mathrm{H}_{2}$; d) $\mathrm{K}_{2} \mathrm{CO}_{3}, 69, \mathrm{MeCN}$; e) 77, DMAP, DIC, DCM; f) $\mathrm{Pd}(\mathrm{OAc})_{2}$, morpholine, $\mathrm{PPh}_{3}, \mathrm{THF}$.

3.3.2. Binding affinities (Fluorescence polarization assay)

All final compounds were tested for affinity in a competitive fluorescence polarization assay (FP-assay) towards the FKBPs 51, 52, 12 and 12.6. ${ }^{[65]}$ Table $\mathbf{3}$ comprising all B ring derivatizations compares the final compounds with SAFit1 (FKBP51: 4 nM). All tested derivatives bound less towards FKBP51. The para and ortho-analogs of SAFit1 (195 and 199) displayed interesting changes in selectivity. The para-SAFit1-analog binds FKBP51 (4 nM) as strong as SAFit1 but loses in selectivity towards FKBP52. The ortho-analog loses affinity towards FKBP51 (170 nM) but remains highly 51 selective. These results strongly suggest the original meta position of SAFit1 as the optimal derivatization point, as we did with the following compounds. The ortho-pyridine compound $\mathbf{2 0 0}$ (ortho-pyridine) again underscores these findings as it showed complete loss of high affinity against FKBP51 ($1 \mu \mathrm{M}$). The best compounds with binding affinities around 30 nM included the meta- and para-pyridines (201 and 202) as well as the aniline 204. Halogens, as well as the nitrile substitutions, showed decreased affinity (205-208). The
methoxy B ring derivative 209 was used as a reference for the A ring derivatives (Table 4). The thiophene (210) and furan (211) heteroaromatics displayed the lowest affinity in this series.

Table 3. Library of the B ring SAFit variants. K_{i} values were determined by a competitive fluorescence polarization assay. [a] error values calculated from two independent assays.

Cmpd.	$\begin{gathered} \text { A/B ring } \\ \mathrm{R} \text { (Scheme 10) } \end{gathered}$	FKBP51FK1	FKBP52FK1	$\begin{gathered} \text { FKBP12 } \\ \mathrm{K}_{\mathrm{i}}[\mathrm{nM}] \end{gathered}$	FKBP12.6
SAFit1		3	>10000	172	17
195		4	1500	15	5
199		170	>10000	1800	>10000
200		$1030 \pm 49^{\text {[a] }}$	>10000	>10000	>10000
201		$23 \pm 7^{\text {[a] }}$	>10000	$175 \pm 14^{\text {[a] }}$	$72 \pm 23^{\text {[a] }}$
202		$26 \pm 5^{\text {[a] }}$	>10000 ${ }^{\text {a] }}$	$110 \pm 22^{\text {[a] }}$	$41 \pm 14^{\text {[a] }}$
209		$71 \pm 3^{\text {[a] }}$	>10000	$690 \pm 29^{\text {[a] }}$	$180 \pm 10^{\text {[a] }}$
204		$32 \pm 22^{\text {[a] }}$	>10000	$303 \pm 83{ }^{\text {[a] }}$	$96 \pm 48^{\text {[a] }}$
205		63	>10000	480	140
206		66	>10000	380	70
207		110	>10000	870	230
208		99	>10000	1000	260
210		145	>10000	785	250
211		150	>10000	910	200

Instead of the carboxylic acid in SAFit1, we installed a methoxy group on the B ring for the series of A ring derivatives (Table 4). This was conducted due to the additional deprotection step of the carboxylic acid we would have had for each final compound. Thus, we synthesized compound 209 as a reference to be able to compare the A ring derivatives with SAFit1. The FP-assay revealed that all pyridine compounds (212-214) bound better than the control compound 209. This indicates that the two methoxy substituents of the A ring of SAFit are replaceable. Removing these would give us already an improved molecular weight of $60 \mathrm{~g} / \mathrm{mol}$. Additionally, SAFit1's FKBP51 affinity is 18 times higher than compound 209, which indicates that by combining the pyridine top-groups with the carboxylic acid on the B ring or creating a diaza A / B ring with decreased molecular weight should also bind effectively.

Table 4. Library of the A ring SAFit variants. K_{i} values were determined by a competitive fluorescence polarization assay. [a] error values calculated from two independent assays.
Cmpd.

3.3.3. Extended SAR - Synthesis of diaza-chalcones

To extend the findings of the A or B ring derivatives we combined their best binders and synthesized diaza-chalcones. The general chalcone synthesis employing the Claisen-Schmidt method did not reward us with product at all. The procedures using KOH as base reported by Basnet and Jeong et al. mostly delivered complex side product mixtures consisting of dimers and oligomers, which made
product isolation difficult. ${ }^{[80,81]}$ Vatsadze et al. described the formation of cyclic, dimeric and trimeric side products that occurred during their attempts of synthesis of diaza chalcones. Interestingly, only the synthesis of the 4, 4-diaza-chalcone using $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in pure $\mathrm{H}_{2} \mathrm{O}$ worked in good yields. ${ }^{\text {[82] }}$ Unfortunately, their approach did only give single-digit yields for the other pyridine combinations. After monitoring the reaction by LCMS we noticed that the aldol intermediate formed extremely quick (Scheme 13) and longer reaction times increased side product formation. We, therefore, altered the reaction conditions by quenching the fast reactions after 5-10 minutes to extract the intermediate (Scheme 10).

				a b c d e f	$\begin{aligned} & \mathbf{R}_{1} \\ & 2-\mathrm{Py} \\ & 3-\mathrm{Py} \\ & 4-\mathrm{Py} \\ & 2-\mathrm{Py} \\ & 3-\mathrm{Py} \\ & 4-\mathrm{Py} \end{aligned}$	$\begin{aligned} & \mathrm{R}_{2} \\ & 3-\mathrm{Py} \\ & 3-\mathrm{Py} \\ & 3-\mathrm{Py} \\ & 4-\mathrm{Py} \\ & 4-\mathrm{Py} \\ & 4-\mathrm{Py} \end{aligned}$

Scheme 13. Modified synthesis of the diaza-chalcones. a) $\mathrm{Na}_{2} \mathrm{CO}_{3},(\mathrm{H} 2 \mathrm{O}), 5 \mathrm{~min}, 0^{\circ} \mathrm{C}$; b) dry load onto $\mathrm{SiO}_{2}, 120^{\circ} \mathrm{C}, 1 \mathrm{~h}$. To transform the intermediate to the chalcone we directly loaded the crude extract onto silica (dry load), which we subsequently heated to $120^{\circ} \mathrm{C}$ to condensate the intermediate to the chalcone. The silica visibly turned from white to yellow as the reaction proceeded. The resulting dry load was directly used for silica column chromatography. With this optimized method, we were able to get all 6 combinations of diaza-chalcones in moderate yields from 27-66\%. As little literature exists describing the synthesis for these diaza-chalcones this synthesis method can be regarded as novel. Further synthesis was conducted as described in Scheme 10. Unfortunately, the yield of the asymmetric reduction was quite low. The diaza compounds' ability to chelate metals might have also increased the difficulties in handling these. The final synthesis of the 2,4-diaza compound (Scheme 13d), unfortunately, did not deliver enough yield and was not repeated because of very similar results of the diaza-chalcones in the FP-assay.

We additionally synthesized one B ring carboxylic acid-bearing compound with pyridine as A ring (225). The FP-assay results of the combinations are given in Table 5. The diaza compounds 219-222 bound quite similar compared to SAFit1 with a reduced affinity by factor 10 ($\sim 40 \mathrm{nM}$). Only compound 223 exhibited decreased FKBP51 binding affinity (90 nM). All of them kept similar selectivities towards FKBP12 and 12.6. Due to their high-affinity binding and decrease in molecular weight by $132 \mathrm{~g} / \mathrm{mol}$ in comparison to SAFit1, it seems pyridines are a suiting replacement of the methoxy groups. Additionally, compound 225, the combination of para-pyridine on the A ring together with SAFits carboxylic acid on the B ring displayed the best FKBP51 binding affinity in the combinatorial series with 20 nM .

Table 5. Combination of the best binding ligands of the A and B ring series. K_{i} values were determined by a competitive fluorescence polarization assay.
Cmpd.

3.4. SAR of SAFit A/B ring triazole derivatives

3.4.1. Synthesis of SAFit A/B ring derivatives by Click reaction

Scheme 14. Synthesis of the SAFit-like precursor for Click-reaction and final compound synthesis. a) $\mathrm{K}_{2} \mathrm{CO}_{3}$, propargyl bromide, (MeCN); b) DIC, DMAP, (DCM), $0^{\circ} \mathrm{C}$ - r.t.; c) $\mathrm{CuSO}_{4}, \mathrm{R}-\mathrm{N}_{3}$, sodium ascorbate, ($t \mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}$).
To further explore derivatives of the seemingly important carboxylic acid site on the B ring of SAFit1, we thought to synthesize a precursor, from which we would be able to quickly derivatize via Click-
reaction. Bioisosterical modifications of ligands are often regarded to alter a ligands' physicochemical properties. ${ }^{[83]}$ As the carboxyl group of SAFit1 protrudes into a shallow, but a quite broad pocket (Figure 5B) we thought to shape our ligands properties by inserting triazoles as isosteres of carboxylic acid esters of SAFit1. We, therefore, synthesized a suitable precursor, starting with the chiral alcohol 7 (Scheme 14). Here we chose to keep the dimethoxybenzene as A ring, due to the increased synthesis complexity of the pyridines. Compound $\mathbf{7}$ was coupled with propargyl bromide giving compound 226, which was coupled with construct $\mathbf{7 7}$ providing precursor 233. This construct was "clicked" with several commercially available azides providing the new compound library (Table 6). The amines for compounds 235-241 were after the Click reaction Boc deprotected with TFA in DCM.

3.4.2. Binding affinities (Fluorescence polarization assay)

Table 6: Library of the clicked top-group derivatives. K_{i} values were determined by a competitive fluorescence polarization assay; [a] values and error from two independent experiments.
Cmpd.

Interestingly, a general trend of loss of selectivity towards FKBP52 was observed with ligands containing a longer linker with a primary or secondary amine at the terminus (compounds 235-241). This could be caused by the difference in the amino acid 85 (Q^{85} for FKBP51 and E^{85} for FKBP52) in the binding pockets of 51 and 52, which is positioned in distance compatible with the linker length. Furthermore, all ligands showed FKBP12 and 12.6 binding analogous to SAFit1. An astounding exception was compound 242, which showed a remarkable preference for FKBP51 ($14 \pm 2 \mathrm{nM}$) and FKBP12.6 (16 $\pm 5 \mathrm{nM})$ and no FKBP12 binding (FP-assay binding curves see Figure 14). This is especially interesting since no tool compound distinguishing between FKBP12 and 12.6 was published up to this date.

3.4.3. Extended SAR

These novel findings were further explored in an extended SAR. Especially compound 242, which bears the p-anisole moiety, showed remarkable properties. Therefore, we synthesized an extended library, which comprises para-anisole derivatives and analogs (pyridines, halogenated aromatics, increased alkyl residues). The azides were commercially purchased, only the 1-azido-3,4,5-trimethoxybenzene was synthesized from the aniline according to the procedure of Odlo et al. ${ }^{[84]}$ All final compound analogs of parent compound $\mathbf{2 4 2}$ displayed in the FP-assay a preference of FKBP51 over 52 (Table 7). Noticeably, compounds 244-246 having the nitrile, ethoxy group and 3,5-dimethoxy substituent displayed the same selectivity profile but they did not reach its level of affinity. Insertion of the isopropoxy group loses in FKBP12.6 affinity, but still exerts selectivity over FKBP12 (247). Alternating the position and increasing the number of methoxy groups as well as increasing linker length by one methylene unit to a benzyl in compounds 248-251 abolished this newfound preference. The exchange of the methoxy group to halogens or pyridines also did not exert the FKBP12.6 preference (252-260).

Table 7. Extended Library of the "clicked" final compounds. K_{i} values were determined by a competitive fluorescence polarization assay; [a] values and error from two independent experiments.

Cmpd.	R (Scheme 14)	FKBP51FK1	FKBP52FK1	FKBP12	FKBP12.6
		K_{i} [nM]			
242		$14 \pm 2^{\text {[a] }}$	>10000	>10000	$16 \pm 5^{\text {[a] }}$
244		23	>10000	>10000	21
245		45	>10000	>10000	42
246		80	>10000	>10000	60
247		90	>10000	>10000	2800

248

We further synthesized compound $\mathbf{2 6 1}$ to ascertain if the selective properties of compound $\mathbf{2 4 2}$ remain when we decrease the size by leaving out the A ring (Scheme 15). This also simplified the overall synthesis due to one less chiral center. Here we started with 3-hydroxy benzaldehyde, which was coupled with propargyl bromide, then clicked with p-azido anisole providing compound $\mathbf{2 3 1}$ and finally coupled with compound 77 resulting in compound 261.

Results and discussion

Scheme 15. The synthesis of compound 261, the truncated version of 242. a) propargyl bromide, $\mathrm{K}_{2} \mathrm{CO}_{3}$, (MeCN); b) p-azido anisole, CuSO_{4}, sodium ascorbate, $\left.\left(t \mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}\right) ; c\right) \mathrm{NaBH}_{4}$, (MeOH); d) 77, DIC, DMAP, (DCM).

We additionally synthesized compound 262 where the cyclohexyl on the bottom-group is exchanged with a pipecolate diketo amide (Scheme 16). FKBP ligands having this specific structure were shown to bind primarily to FKBP12 and FKBP12.6 while having a micromolar affinity towards FKBP51 and 52. ${ }^{[85]}$ By possibly abolishing the binding of FKBP51 and 52, we hoped for a possible selection between only FKBP12 and 12.6.

Scheme 16. Synthesis of compound 262 the diketo analog of 242. a) DCC, DMAP, Boc-S-Pip-OH, (DCM); b) TFA/DCM, 1/2; c) HATU, HOAt, DIPEA, (DMF); d) p-azido anisole, CuSO_{4}, sodium ascorbate, ($t \mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}$).

The synthesis started with 226 which was coupled with Boc-S-Pipecolate (229), deprotected and coupled with compound 227, which was synthesized as previously reported ${ }^{[85]}$ giving us compound 232. This was clicked with p-azido anisole providing final compound 262.

Compound 261 with decreased top-group size lost in affinity towards FKBP51 and did not show any binding towards FKBP52, 12 and 12.6 (Table 8). The A ring in the parent compound 242 might work as a lever to force the B ring into the right position, explaining the necessity of the complete A / B ring construct. The diketo analog (262) displayed as expected no FKBP551 and 52 binding. Unfortunately, the compound lost in FKBP12.6 preference and bound both FKBP12 and 12.6 in the nanomolar range. This highlights the importance of the cyclohexyl ring, which could induce a necessary chain flip needed for FKBP12.6 preference.

Table 8. Extended library of derivatives of compound 242. K_{i} values were determined by a competitive fluorescence polarization assay.
Cmpd.

3.4.4. Synthesis of minimized SAFit derivatives by Click reaction

The same approach of a "clicked" library was conducted for a minimized precursor construct (Scheme 17), which gave us a suitable starting point to search for smaller top-groups in broad variability. The precursor was synthesized starting from compound 77, which was coupled with propargyl bromide providing us with precursor 263. Compound 263 was clicked with the same azide pool as previously used leading to the library of SAFit derivatives with reduced size (Table 9).

Scheme 17. Synthesis of the smaller precursor for the Click reaction and final compound synthesis. a) DIPEA, propargyl bromide, (MeCN); b) $\mathrm{CuSO}_{4}, \mathbf{R}-\mathrm{N}_{3}$, sodium ascorbate, $\left(t \mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}\right)$.

In comparison to their bigger SAFit analogs we determined generally weaker binding affinities in the micromolar range towards FKBP51, but also found high FKBP51 selectivity. The terminal amines also showed mostly selective FKBP51 binding but already in the micromolar range (265-272). Compound 273, one of the most affine compounds of this series, still had a sub-micromolar affinity of 350 nM towards FKBP51 and did not show FKBP52, 12 and 12.6 binding. Many analogs of compound $\mathbf{2 7 3}$ also showed selective FKBP51 binding, but with decreased affinities (274-280). Insertion of halogens or pyridines, as well as several methoxy analogs (281-290), did not display the same selectivity.

Table 9. Library of the minimized "clicked" compounds. Ki values were determined by a competitive fluorescence polarization assay; [a] values and error from two independent experiments.

Cmpd.	R (Scheme 17)	FKBP51FK1	FKBP52FK1	FKBP12	FKBP12.6
		$\mathrm{K}_{\mathrm{i}}[\mathrm{nM}]$			
263	ξ	3100	>80000	>80000	3200
265	$\square^{(N H}$	930	>80000	>80000	>80000
266		1200	>80000	>80000	5000
268		1200	>80000	>80000	1900
270		2300	>80000	>80000	>80000
272		2800	>80000	>80000	>80000
273		$350 \pm 30^{[b]}$	>80000	>80000	>80000
274		$300 \pm 10^{[a]}$	>80000	>80000	>80000
275	$\sqrt{11}$	550	>80000	>80000	>80000
276	$3-$	590	>80000	>80000	>80000

277

3.4.5. Structural basis for selectivities postulated by modeling into co-crystal structures

An explanation for the unprecedented high selectivity for compound $\mathbf{2 4 2}$ as well for $\mathbf{2 7 3}$ might be explained by the amino acids postulated to surround these new moieties when bound to FKBPs (Figure 14). As we could not obtain co-crystal structures, we modeled these compounds onto the co-crystal structure of SAFit1 with FKBP51 and superimposed the published FKBP12 and 12.6 rapamycin complexes. The FKBP12.6 preference of $\mathbf{2 4 2}$ might be explained by the residues differences in position 49 (arginine for FKBP12.6 and valine for FKBP12, Figure 14A). Similarly, compound 273 can interact with several differing residues in the shallow pocket, which becomes clear by superimposing FKBP51 with FKBP12 and 12.6. Especially FKBP51's valine 78 differs strongly from lysine 47 in FKBP12 and 12.6 (Figure 14B).

Results and discussion

Figure 14. A) Compound 242 modeled onto the structure of SAFit1 (pink sticks). FKBP12.6 (pdb-ID: 1c9h, grey surface) and FKBP12 (pdb-ID: 1fkl) are overlapped. The shallow pocket formed by homologous amino acids is depicted in grey sticks, the differing residues are colored as green sticks in the case of FKBP12.6 (R49) and orange sticks for FKBP12 (V49). The binding curves of the FP-assay are depicted below. B) Compound $\mathbf{2 7 3}$ modeled onto the structure of SAFit1 (pink sticks). FKBP51 (gray surface, residues as orange sticks) is overlapped with FKBP12 and 12.6 (green sticks) and the differing residues highlighted. FKBP12 and 12.6 are highly homologous, thus only FKBP12 is displayed as green sticks for clarity. E75 is only defined as a stub in the crystal structure due to insufficient electron density of the solvent-exposed residue. The binding curves of the FP-assay are depicted below.

3.5. Synthesis of fluorescent SAFit ligands as tool compounds

To provide a SAFit tool compound for biochemical studies, we synthesized fluorescent analogs of SAFit.

3.5.1. Fluoresceine labeled SAFit

Scheme 18. Synthesis of the fluoresceine labeled compound 291 a) 5(6)-NHS-fluoresceine, TEA, DMF.
5(6)-NHS-fluoresceine was coupled towards the amine linker of NG72. The SAFit analog NG72 was prior synthesized by Niklas Gutfreund during his master thesis under my supervision. ${ }^{[86]}$ The fluorescent tracer 291 (Scheme 18) was used to check differences in affinity of several FKBP51FK1 mutants through active site titrations (Unpublished data, Anna Charalampidou, AK Hausch) and in a flow cytometry screening (FACS - fluorescence-activated cell sorting) of randomized FKBP51 mutants (Unpublished data, Andreas Christmann, AK Kolmar).

3.5.2. TAMRA labeled SAFit

5(6)-NHS-TAMRA was coupled towards the amine linkers of NG72 and NG67. The SAFit analog NG72 and NG67 were synthesized by Niklas Gutfreund during his master thesis under my supervision. ${ }^{[86]}$ The fluorescent tracers 292 and 293 (Scheme 19) were used in FRET experiments with a FITC-FKBP51FK1 domain to measure binding curves, as well as kinetics (Unpublished data, Christian Meyners, AK Hausch).

Scheme 19. Synthesis of the TAMRA labeled compound 291 a) 5(6)-NHS-TAMRA, TEA, DMF.

3.6. Crystal structures and refinement of BR175, BR179, SP597, SP464, SP468 and AntaB

In addition to the mentioned co-crystal structures above, we co-crystallized and refined in cooperation with Dr. Andreas Bracher several bicyclic FKBP binding ligands (BR175, BR179, SP597, SP464, SP468, Figure 15), which were used for structure-activity relationship studies in the doctoral thesis of Jürgen Kolos (AK Hausch, TU Darmstadt). For the refinement process, data and PDB-IDs: see Refinement data 5.5.9, Table 12. Additionally, we solved the crystal structure of Antascomicine B (AntaB), which is a natural compound known to bind to FKBPs analogous to FK506 and Rapamycin. ${ }^{[87]}$

Figure 15. Structures of the bicylic compounds BR175, BR179, SP597, SP464, SP468 and AntaB co-crystallized with FKBP51 FK1.

3.7. Refit of the $\mathbf{G}_{\mathrm{q} / 11}$ protein ligand $\mathrm{YM}-\mathbf{2 5 4 8 9 0}$

In cooperation with Dr. Daniel Tietze we worked on a refit of the $G_{q / 11}$ protein ligand YM-254890. The natural compound YM- 254890 showed antithrombotic and thrombolytic efficacy in rat models ${ }^{[88-91]}$ and the closely related depsipeptide FR-900359 directly targets melanoma cells in mouse xenograft models ${ }^{[92]}$, making these compounds a focus of interest in drug research.

A new found cis-conformation solved by Dr. Daniel Tietze in NMR experiments in aqueous solvent was fitted in the published co-crystal structure 3ah8. Here the ligand displayed prior a trans-conformation, which was fitted by conformational analysis in organic solvent. As the ligands native conformation should resemble more closely to the cis-conformation in water, we refitted the ligand structure as follows. The reflection data of 3ah8 was converted by the structure factor tool (SF-tool) of the Protein Data Bank (PDB) to get the respective reflection data in a mtz-file format. ${ }^{[93]}$ The mtz-file together with the pdb of 3ah8 was used in the programs CCP4i2 and Coot to create an omit-map of the structure. The original ligand was removed and via REFMAC5 refined to get the difference density map showing the positive density at the ligand site. ${ }^{[94-102]}$ For further ligand fitting the restraints of the YM-ligand was calculated using the program prodrg in the interface of $C C P 4 i^{[103]}$ The ligand was then manually
fitted into the binding pocket using Coot. ${ }^{[96]}$ Finally, the protein ligand complex was refined with 10 cycles in REFMAC5 with standard settings in CCP4i2. No further refinement was conducted. To compare the two different ligands conformations, the original PDB-ligand structure was also refined under the same conditions using REFMAC5 together with the omit-map getting the final R-and R-freevalues for both structures (Table 10, Figure 16). The R values are used in crystallography as data quality check. The best possible number would be 0 , indicating a perfect agreement between the simulated diffraction pattern of the crystallographic model and the experimental X-ray diffraction data. Typical values are between 0.15-0.25 (lower numbers for high resolution structures). R free is used as control for the R value to prevent possible bias in the structure building. Here only 90% of the reflections are used in refinement and then compared with the other non-used 10%. The R free value should be as close as possible to the R value.

Table 10. R values for 3 ah8 crystal structure reanalysis. [a] Fit of original into omit-map.

	3ah8 $^{\text {[a] }}$	YM-Refit
R-work	0.22	0.29
R-free	0.26	0.33

Figure 16. Superimposition of the refitted G_{q} bound $Y M-254890$ ligand (green sticks, $N M R$ in $H_{2} O$) with the published crystal structure (cyan sticks, NMR in organic solvent, PDB-ID: 3ah8). Electron density grid (gray) is shown at an RMSD of 1 Å.

As the R-value and overall B factor only give a view of the global fit and the published crystal structures resolution is not optimal ($2.9 \AA$) , which means the comparison of the global fit is not a satisfactory reference value, we conducted a further experiment to get an evaluation of the local fit for both ligands as it was suggested in Deller et al. ${ }^{[104]}$ Therefore, we calculated the RSCC (real space correlation
coefficient) using the software MolProbity in the Phenix suite. ${ }^{[105,106]}$ The RSCC defines the positioning of the object into the surrounding electron density. The RSCC values range between 0 (bad) and 1 (good), where the value 1 describes the best possible fit (Table 11). ${ }^{[104]}$ Both ligands have the same or nearly the same fit, which would mean our newly found conformation is also a valid solution of the crystal structure. These results were published as part of the publication "Structural and Dynamical Basis of G Protein Inhibition by YM254890 and FR900359: An Inhibitor in Action". ${ }^{[91]}$

Table 11. RSCC values and reanalysis of the crystal structure 3AH8 via MolProbity in the Phenix suite.

	3AH8 (fit of original into omit-map)	YM-Refit
RSCC (ligand)	0.915	0.914
B-factor (ligand)	121.67	106.08
Occupancy (ligand)	1.00	1.00
R-work (global)	0.22	0.29
R-free (global)	0.25	0.31
B-factor (global)	108.03	110.63
RMS angles (global)	1.62	1.57
RMS bonds (global)	0.01	0.01
Resolution [Å]	$19.65-2.90$	$19.65-2.90$

4. Conclusion

This thesis presents the first macrocyclic ligands that robustly bind the drug target FKBP51 and discriminate against the essential and homologous proteins FKBP52, FKBP12 and FKBP12.6. Macrocyclization of the currently most advanced ligand SAFit (SAFit1: FKBP51: 4 nM, FKBP12.6: 19 nM , FKBP12: 163 nM) resulted in FKBP51-specific binding ligands and provides a structural basis for rational design and further lead optimization of FKBP51 specific ligands (39: FKBP51: 290 nM, 40 FKBP51: 400 nM, Figure 17 and Figure 18).

Figure 17. Macrocyclic ligand 40 with selective binding of FKBP51.
Co-crystal structures of the macrocycles in complex with FKBP51 gave first insights into a plausible mechanism for the FKBP51 selectivity. Disruption of an intermolecular hydrogen bond of the protein by a carbonyl in the macrocycle leads to a new, transient protein conformation, which might be disfavored by FKBP12 and 12.6. FKBP12 and FKBP12.6 are cofactors of the ryanodine receptor ${ }^{[31-33]}$ and play an important role in fine-tuning the excitability of smooth or heart muscle. FKBP12 knockout or knockdown leads to severe cardiac defects in mice ${ }^{[34,35]}$, underscoring the importance of selectivity for FKBP51 over FKBP12/12.6 in FKBP51-based therapies.

Figure 18. Overview of the best binding ligands structures of this thesis and their specifications.
We further explored the A/B-rings of SAFit as they do not show any specific interactions in the cocrystal structure with FKBP51, but are definitely needed for high-affinity binding. We synthesized >40 SAFit derivatives with differing moieties on the A / B rings and determined that pyridines can be used to replace the methoxy groups of SAFit (225: FKBP51: 20 nM). Further synthesis of diaza chalcones, having reduced weight in comparison to SAFit1, were also among the ligands with comparable affinity and selectivity profile of SAFit1 (219: FKBP51: 35 nM).

Further research into new A / B rings by fast and simple Click chemistry resulted in a wide variety of ligands, where one significantly differed in the FP-assays. Compound $\mathbf{2 4 2}$ displayed preferred binding of FKBP51 and FKBP12.6, but not FKBP12. The differences in the function of FKBP12 and 12.6 are until now not completely understood. The development of a discriminating tool compound thereof would help in the research of the physiological roles of those proteins. Compound $\mathbf{2 4 2}$ and it's analogs presented here are to my knowledge the first pharmacological agents that can discriminate between FKBP12 and FKB12.6.

Additionally, employing Click chemistry, we found a new smaller A / B ring structure (273: FKBP51: 350 nM), which also specifically binds FKBP51. The binding mechanism could be explained by the differences in the amino acids surrounding the new moiety. A prospective co-crystal structure of both the specific binding as well as partially discriminating ligand will give more insights in the future. Increasing the affinity of the macrocyclic ligands is still a major factor, as well as finding new types of linkers, which are not based on peptidic bonds. This could also improve metabolic stability.

5. Materials and Methods

5.1. Nuclear magnetic resonance spectroscopy (NMR)

${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra were recorded at the NMR department of chemistry of the Technische Universität Darmstadt (TUD) on a Bruker AC 300, AR300 or DRX500. Chemical shifts for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ are given in ppm (δ). Deuterated chloroform $\left(\mathrm{CDCl}_{3}\right)$, dimethyl sulfoxide ($\mathrm{DMSO}-d_{6}$), dichloromethane $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$ and tetrahydrofuran (THF- d_{8}) were used as solvents and the spectra calibrated according to their corresponding peak. The multiplicities are abbreviated as follows: singlet (s), doublet (d), triplet (t), quartet (q), doublet of doublets (dd), doublet of doublet of doublets (ddd), doublet of triplets (dt), multiplet (m). In case of rotamers, which were found for all SAFit-like analogs, the major peaks were selected and reported.

5.2. HPLC and MS

5.2.1. Liquid chromatography coupled with mass spectrometry (LC-MS)

Pump:	Beckman System Gold 125 Solvent Module
Detector:	Beckman System Gold 199 Detector Module
Column:	YMC Pack Pro C8, $100 \times 4.6 \mathrm{~mm}, 3 \mu \mathrm{~m}$
Solvent A:	$95 \% \mathrm{H}_{2} \mathrm{O}, 5 \% \mathrm{MeCN}, 0.1 \%$ Formic acid
Solvent B:	$95 \% \mathrm{MeCN}, 5 \% \mathrm{H}_{2} \mathrm{O}, 0.1 \%$ Formic acid
Method:	$0-100 \%$ B in $19 \mathrm{~min}, 1 \mathrm{~mL} / \mathrm{min}$
MS:	LCQ Deca XP Plus
Ionization:	ESI

5.2.2. High-resolution mass spectrometry (HRMS)

High resolution MS was performed at the MS department of the Technical University Darmstadt.

MS:	Impact II, Fa. Bruker Daltonik
Mass range:	$20-40.000 \mathrm{~m} / \mathrm{z}$
Detector:	qTOF
Accuracy:	$<2 \mathrm{ppm}$
Ionization:	ESI

5.3. High-performance liquid chromatography (HPLC)

5.3.1. Analytical HPLC

Pump:	Dionex System Summit Pump
Detector:	UVD380

Column: \quad Phenomenex Jupiter 4μ Proteo $90 \AA ̊, 250 \times 4.6 \mathrm{~mm}, 4$ micron
Solvent A: $\quad 95 \% \mathrm{H}_{2} \mathrm{O}, 5 \% \mathrm{MeCN}, 0.1 \%$ TFA
Solvent B: $\quad 95 \% \mathrm{MeCN}, 5 \% \mathrm{H}_{2} \mathrm{O}, 0.1 \%$ TFA
Methods: Described at the specific compounds; the purity of each compound is given in percentage of the main compounds peak area.

5.3.2. Chiral HPLC

Pump: Beckman System Gold 125S Solvent Module
Detector: Beckman System Gold Diode Array Detector Module 168
Column: Daicel chemical industries Ltd, Chiralcel OD-H, Normal Phase analytical column, $250 \times 4.6 \mathrm{~mm}, 5 \mu \mathrm{~m}$

Solvent A: n-Hexane
Solvent B: iso-Propanol
Method: Described at the specific compounds

5.3.3. Semi-preparative HPLC

Pump: Beckman System Gold 126 NMP Programmable Solvent Module
Detector: Beckman System Gold 166 Programmable Detector Module
Column: Phenomenex Jupiter 4μ Proteo $90 \AA$, $250 \times 10 \mathrm{~mm}, 4$ micron
Solvent A: $\quad \mathrm{H}_{2} \mathrm{O}, 0.1 \%$ TFA
Solvent B: MeCN, 0.1\% TFA
Methods: Described at the specific compounds

5.4. Column chromatography

5.4.1. Manual chromatography

Silicagel: Kieselgel 60 Roth, 0.04-0.063 mm, 230-400 mesh

5.4.2. Flash chromatography

Automated flash chromatography was performed with an Interchim Puriflash 430 with UV detection.

5.4.3. Thin-layer chromatography (TLC)

Aluminum plates coated with silica $60 \mathrm{~F}_{254}$ were used for analytical chromatography (Merck). The compound spots were visualized by UV light and/or by staining the TLC plate with one of the solutions given below and if needed carefully heated by a heat gun.

Hanessians: $\quad 5 \mathrm{~g} \mathrm{Ce}\left(\mathrm{SO}_{4}\right)_{2}, 25 \mathrm{~g} \mathrm{NH}_{4} \mathrm{Mo}_{7} \mathrm{O}_{24} * 4 \mathrm{H}_{2} \mathrm{O}, 40 \mathrm{~mL} \mathrm{H} 2 \mathrm{O}, 50 \mathrm{~mL} \mathrm{H} \mathrm{H}_{2} \mathrm{SO}_{4}$
Ninhydrin: $\quad 0.5 \mathrm{~g}$ Ninhydrin, 100 mL EtOH, 5 mL AcOH
$\mathrm{KMnO}_{4}: \quad 1.5 \mathrm{~g} \mathrm{KMnO}_{4}, 10 \mathrm{~g} \mathrm{~K}_{2} \mathrm{CO}_{3}, 1.25 \mathrm{~mL} 10 \% \mathrm{NaOH}$ in $200 \mathrm{~mL} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$

Materials and Methods

5.5. Procedure of co-crystallization

5.5.1. Crystallization of 37 and 40

Complexes were prepared by mixing FKBP51 at 2.5 mM with a slight molar excess of 20 mM ligand dissolved in DMSO. Crystallization was performed at $20^{\circ} \mathrm{C}$ using the hanging drop vapor-diffusion method, equilibrating mixtures of $1 \mu \mathrm{l}$ protein complex and $1 \mu \mathrm{l}$ reservoir against $500 \mu \mathrm{l}$ reservoir solution. Crystals were obtained after seeding with reservoir solutions containing 30-60\% PEG-3350, 0.2 $\mathrm{M} \mathrm{NH}_{4}$-acetate and HEPES- NaOH pH 7.5 .

The complex of compound 37 was crystallized and refined by Andreas Bracher and compound 40, BR179, BR175, SP597, SP468, SP464 and AntaB were crystallized in cooperation, measured and refined by myself. Complexes 54 and 74 were crystallized, measured and refined by Dr. Christian Meyners.

5.5.2. Structure solution and refinement of 37 and 40

Diffraction data were collected at the European Synchrotron Radiation Facility (ESRF) in Grenoble, France and the Swiss Light Source (SLS). Diffraction data were integrated with XDS ${ }^{[107]}$ and further processed with the implemented programs of the CCP4i and CCP4i2 interface (Collaborative Computational Project). ${ }^{[94,108]}$ The data reduction was conducted with Aimless. ${ }^{[108-110]}$ Crystal structures were solved by molecular replacement employing the program Molrep. ${ }^{[111,}{ }^{112]}$ Iterative model improvement and refinement were performed with Coot ${ }^{[96]}$ and Refmac5. ${ }^{[97, ~ 99-102]}$ The dictionaries for the compounds were generated with PRODRG implemented in CCP4i. ${ }^{[103]}$ Residues facing solvent channels without detectable side-chain density were truncated at $C \beta$.

5.5.3. Crystallization of BR179

Complexes were prepared by mixing FKBP51 at 2.19 mM with BR179 at 6.25 mM . Crystallization was performed at $20^{\circ} \mathrm{C}$ using the hanging drop vapor-diffusion method, equilibrating mixtures of $1 \mu \mathrm{l}$ protein complex and 1μ l reservoir against 500μ l reservoir solution (tray A324, drop D5, 20.11.2015). Crystals were obtained after seeding with reservoir solutions containing 38\% PEG-3350, 0.2 M NH4acetate and HEPES- NaOH pH 7.5 .

5.5.4. Structure solution and refinement of BR179

Diffraction data were collected at beamline ID30B of the European Synchrotron Radiation Facility (ESRF) in Grenoble, France (15.12.2015). Further processing was conducted as described under paragraph 5.5.2.

5.5.5. Crystallization of BR175

Complexes were prepared by mixing FKBP51 at 2.19 mM with BR175 at 2.5 mM . Crystallization was performed at $20^{\circ} \mathrm{C}$ using the hanging drop vapor-diffusion method, equilibrating mixtures of $1 \mu \mathrm{l}$ protein complex and 1μ l reservoir against 500μ l reservoir solution (tray A330, drop A5, 20.12.2016).

Crystals were obtained after seeding with reservoir solutions containing 38\% PEG-3350, 0.2 M NH4acetate and HEPES-NaOH pH 7.5.

5.5.6. Structure solution and refinement of BR175

Diffraction data were collected at beamline ID29 of the European Synchrotron Radiation Facility (ESRF) in Grenoble, France (4.02.2017). The GrenADeS/EDNA (Ref. PMID: 23682196) pipeline was used for data processing. Further processing was conducted as described under paragraph 5.5.2.

5.5.7. Crystallization of SP597

Complexes were prepared by mixing FKBP51 at 2.19 mM with SP597 at 2.5 mM . Crystallization was performed at $20^{\circ} \mathrm{C}$ using the hanging drop vapor-diffusion method, equilibrating mixtures of $1 \mu \mathrm{l}$ protein complex and $1 \mu \mathrm{l}$ reservoir against $500 \mu \mathrm{l}$ reservoir solution (tray A330, drop B4 or B6, 20.12.2016). Crystals were obtained after seeding with reservoir solutions containing 36% or 40% PEG3350, $0.2 \mathrm{M} \mathrm{NH} 4-a c e t a t e$ and HEPES-NaOH pH 7.5.

5.5.8. Structure solution and refinement of SP597

Diffraction data were collected at beamline ID29 of the European Synchrotron Radiation Facility (ESRF) in Grenoble, France (4.02.2017). The GrenADeS/EDNA (Ref. PMID: 23682196) pipeline was used for data processing. Further processing was conducted as described under paragraph 5.5.2.

5.5.9. Refinement data

Table 12. Refinement data of compounds 37, 40, SP597, BR175, BR179, SP468, SP464 and Antascomicin B (AntaB). Refinement data for46, 54 and 74 not shown (Correspondence: Christian Meyners, AK Hausch)

Lig. Name	37	40	SP597	BR175	BR179	SP468	SP464	AntaB
Lig. Structure								
PDB-ID	7AOT	7AOU	7APQ	7APT	7APS	Not published	Not published	Not published
FKBP51fk1 A19T	13-140	13-140	13-140	13-140	13-140	13-140	13-140	13-140
Synchrotron	ESRF							
Beamline	ID30B	ID23-1	ID29	ID29	ID30B	ID23-1	ID23-1	ID23-1
Space group	$P 2{ }_{1} 2_{1} 2_{1}$	P1	$P 2{ }_{1} 2_{1} 2_{1}$	$P 2{ }_{1} 2_{1} 2_{1}$	$P 2{ }_{1} 2_{1} 2_{1}$			
a (${ }^{\text {) }}$	43.504	43.410	41.82	41.92	34.81	41.900	42.018	42.010
b (Å)	49.633	49.460	54.61	54.55	39.92	54.810	54.593	54.890
c (Å)	59.903	59.590	56.46	56.28	43.55	56.690	56.357	56.590
$\alpha\left({ }^{\circ}\right)$	90	90	90	90	74.06	90	90	90
$\beta\left({ }^{\circ}\right)$	90	90	90	90	76.11	90	90	90
$Y\left({ }^{\circ}\right)$	90	90	90	90	74.05	90	90	90
Integration software	XDS	GrenADES/ EDNA	GrenADeS/EDNA/X DS	GrenADeS/EDNA/X DS	XDS	$\begin{gathered} \text { GrenADES/ } \\ \text { EDNA } \end{gathered}$	$\begin{gathered} \text { GrenADES/ } \\ \text { EDNA } \end{gathered}$	$\begin{gathered} \text { GrenADES/ } \\ \text { EDNA } \end{gathered}$
Resolution limits (Å)	49.63-0.85	38.06-1.16	$\begin{gathered} 39.28-1.09 \text { (1.11- } \\ 1.09) \end{gathered}$	$\begin{gathered} 39.17-1.15(1.15- \\ 1.13) \end{gathered}$	$\begin{aligned} & 37.42-0.94 \\ & (0.95-0.94) \end{aligned}$	$\begin{aligned} & 39.44-0.90 \\ & (0.92-0.90) \end{aligned}$	$\begin{gathered} 19.69-0.92(0.94- \\ 0.92) \end{gathered}$	$\begin{aligned} & 39.40-0.89 \\ & (0.90-0.89) \end{aligned}$
$\langle 1 / \sigma(1)\rangle$	22.1 (1.4)	9.8 (2.1)	5.9 (2.0)	9.5 (2.0)	16.3 (1.2)	16.2 (1.9)	14.5 (1.6)	8.4 (2.0)
Multiplicity	5.7 (3.3)	1.6 (1.9)	3.5 (3.2)	3.2 (2.6)	3.7 (3.1)	1.0 (1.0)	1.0 (1.0)	1.0 (1.0)
Completene ss (\%)	97.1 (72.4)	98.9 (97.7)	100 (99.8)	100 (99.9)	85.9 (76.0)	99.4 (93.9)	100 (100)	100 (99.5)
Refinement program	Refmac5	Refmac5	REFMAC	REFMAC	REFMAC	REFMAC	REFMAC	REFMAC
Resolution range (Å)	30-0.85	29.80-1.16	30.00-1.09	28.62-1.13	30.00-0.94	39.44-0.90	19.69-0.92	28.74-0.89
Reflections ${ }_{\text {all }}$	105556	45040	54712	48910	119854	96245	90448	101731
Reflections ${ }_{\mathrm{fr}}$ ee	5557	2243	2760	2536	6102	4720	4539	5078
$R_{\text {work }}$	0.122	0.150	0.181	0.167	0.141	0.147	0.144	0.144
$R_{\text {free }}$	0.138	0.179	0.215	0.216	0.165	0.150	0.165	0.150
Protein No. of atoms (BFactor)	2109 (11.5)	2076 (17.2)	2077 (15.3)	2096 (19.5)	$\begin{aligned} & 2211 \text { (15.5), } \\ & 2244 \text { (12.7) } \end{aligned}$	1987 (12.7)	2250 (12.0)	2181 (12.5)

Lig. Name	37	40	SP597	BR175	BR179	SP468	SP464	AntaB
Lig. Structure								
PDB-ID	7AOT	7AOU	7APQ	7APT	7APS	Not published	Not published	Not published
Ligand No. of atoms (BFactor)	91 (8.0)	95 (13.7)	122 (22.4)	47 (19.8)	$\begin{gathered} 50(9.5), 50 \\ (12.5) \end{gathered}$	108 (13.3)	55 (13.6)	101 (17.8)
Water No. of atoms (BFactor)	223 (23.4)	152 (27.4)	118 (16.7)	155 (30.7)	$\begin{gathered} 141(23.9), 131 \\ (21.9) \end{gathered}$	147 (21.5)	220 (30.7)	213 (21.9)
R.m.s.d. bonds (Å)	0.030	0.015	0.015	0.021	0.014	0.009	0.014	0.009
R.m.s.d. angles (${ }^{\circ}$)	2.522	1.971	1.888	2.200	1.950	1.670	2.124	1.613

5.6. Fluorescence polarisation assay

Competitive fluorescence polarization assays (FP-Assays) were performed by my colleagues Tim Heyman, Stephanie Merz and Patrick Purder (TU Darmstadt). The fluorescence polarization assay was performed according to Kozany et al. ${ }^{[65]}$ The assay plates were measured with a plate reader Tecan Genios Pro at excitation/emission values of 535/590 nm. The data were analyzed using Prism 6.0 (GraphPad Software). The K_{d} values were calculated by fitting to the equation provided in Kozany et al. (Supporting Information, Appendix 3). ${ }^{[65]}$

5.7. Isothermal titration calorimetry

The isothermal titration calorimetry (ITC) experiments were performed by Dr. Christian Meyners (TU Darmstadt) with a MicroCal PEAQ-ITC isothermal titration calorimeter (Malvern).

5.8. Solvents and reagents

Reagents were obtained from abcr, Sigma Aldrich, Alfa Aesar, Fluka, Merck, Novabiochem, Carl Roth, Bachem, Acros Organics and Oxchem and used without further purification. Compound 77 was kindly provided by my colleague Tim Heymann. Compounds NG72 and NG67 were kindly provided by the master student Niklas Gutfreund, working under my supervision.

5.9. General procedures

5.9.1. Autoclave

Autoclave for hydrogenation reactions: Modell type II 250 mL, Carl Roth
Hydrogen: Air Liquide, Klasse 5.0

5.9.2. Test cleavage

After washing the resin with $\operatorname{DCM}(3 \times)$ a few resin beads are taken and transferred into an Eppendorf tube. 1 mL of a 20% HFIP in DCM solution is added and the product cleaved off the resin for 15 min . The solvent is evaporated under the air stream and the solid leftover is dissolved in acetonitrile $+0.1 \%$ HCOOH (HPLC grade), filtered by syringe PTFE-filter and analyzed by LC-MS.

5.9.3. Chloranil test

After washing the resin with DCM (3x) a few resin beads are taken from the filter syringe and transferred into an Eppendorf tube. Then 1-2 drops of a 2% acetaldehyde in DMF solution and 1-2 drops of a 2% chloranil in DMF solution are added to the resin. Deprotected secondary amines are confirmed by a quickly blue coloring of the beads, primary amines can also be confirmed but the reaction takes several minutes.

5.9.4. Kaiser test

After washing the resin with DCM $(3 x)$ a few resin beads are taken from the filter syringe and transferred into an Eppendorf tube. Then 1-2 drops of a 0.5 g ninhydrin in 10 mL EtOH solution, 1-2 drops of a 2 g Phenol in 0.5 mL EtOH solution and 1-2 drops of a mixture of $0.2 \mathrm{~mL} 0.001 \mathrm{M} \mathrm{KCN} \mathrm{in} \mathrm{H}_{2} \mathrm{O}$ mixed with 9.8 mL pyridine are added to the resin. The tube is carefully heated by a heat gun for 1-2 minutes. Deprotected primary amines are confirmed by a purple coloring of the beads.

5.9.5. SPPS and macrocyclization

a) Resin Loading: 2-Chlorotrityl chloride resin (2.0 eq) is placed into a dried and heated flask and swelled for 30 min in $30 \mathrm{~mL} / \mathrm{g}$ resin dry DCM at r.t. under argon protection. The compound to load (1.0 eq) is dissolved in a minimum amount dry DCM and mixed with DIPEA (4 eq) and the resulting mixture is then added to the resin and stirred at r.t. overnight. After complete loading (TLC check of the solution) the resin is capped for 30 min by addition of $100 \mu \mathrm{~L} / \mathrm{g}$ resin dry

MeOH and DIPEA (1.0 eq). The resin is then filtered, washed with DMF ($3 \times$), DCM ($3 \times$) and dried in the desiccator overnight and the loading / determined as follows: ${ }^{[67]}$

$$
\frac{\left(m_{\text {total }}-m_{\text {resin }}\right) \cdot 10^{3}}{(M W-36.46) \cdot m_{\text {total }}}=l \mathrm{mmol} / \mathrm{g}
$$

b) $1^{\text {st }}$ deprotection: The needed amount of resin calculated by the resin loading is transferred to a syringe with filter fritt. The resin is swelled for 20 min in DCM, then washed with DMF $3 x$. The pipecolate is Fmoc deprotected by shaking in 20\% 4-methyl piperidine in DMF ($3 \times 10 \mathrm{~min}$). The completion of the reaction is monitored on LCMS by test cleavage (5.9.2) as well as by Chloranil-test (5.9.3).
c) 1st AA coupling: Fmoc-AA-OH, (3.0 eq respectively to the resin loading), HATU (3.0 eq) and HOAt (3.0 eq) are dissolved in a minimum amount of DMF by sonication. Then DIPEA (6.0 eq) is added and the mixture is drawn up into the filter syringe filled with loaded resin. The syringe is mixed by shaking for 2 h or with especially hindered substrates overnight. Finally, the solvent is removed and the resin is washed with DMF ($3 x$), THF ($3 x$), DCM ($3 x$). The coupling is confirmed via test cleavage (5.9.2) and/or by Chloranil-test (5.9.3).
d) $\mathbf{2}^{\text {nd }}$ deprotection: The Fmoc protecting group is removed by the addition of 5\% 4-methyl piperidine in DMF solution pre-cooled in an ice bath to $4{ }^{\circ} \mathrm{C}$ to the filter syringes. After 5 min the deprotection solution is removed and the resin is washed with DMF ($1 \times$). The completion of the reaction is confirmed via test cleavage (5.9.2) and/or by Kaiser Test (5.9.4). The deprotection procedure is repeated two times if needed. After the final step the resin is washed with DMF ($3 x$), then DCM ($3 x$).
e) Nosyl protection (optional for N-methylation): o-Nitrobenzensulfonychloride (4.0 eq) is dissolved in NMP and 2, 4, 6-collidine (10.0 eq) is added. The mixture is drawn up into the syringe with resin and reacted for 15 min . This procedure is repeated 2 x . After the final step the resin is washed with DMF $(3 \times)$, then DCM $(3 x)$. The completion of the reaction is confirmed via test cleavage (5.9.2) and/or by Kaiser-test (5.9.4).
f) N-methylation (optional for N-methylation): The resin is washed with dry THF ($3 x$) and a solution of $\mathrm{PPh}_{3}(5.0 \mathrm{eq})$ and dry $\mathrm{MeOH}(10.0 \mathrm{eq})$ in dry THF is added. Then DIAD (5.0 eq) diluted in dry THF is added portion-wise (Caution! Exothermic reaction!). After 10 min the reaction mixture is discarded, the resin washed with dry THF and the procedure repeated 2 x . After the final step the resin is washed with DMF (3x), then DCM (3x). The completion of the reaction is confirmed via test cleavage (5.9.2).
g) Nosyl deprotection (optional for \boldsymbol{N}-methylation): DBU (5.0 eq) and beta-mercaptoethanol (10.0 eq) are dissolved in NMP. The mixture is drawn up into the syringe with resin and reacted for 10 min . This procedure is repeated $2 x$ After the final step the resin is washed with DMF
$(3 x)$, then DCM $(3 x)$. The completion of the reaction is confirmed via test cleavage (5.9.2) and/or by Chloranil-test (5.9.3).
h) $\mathbf{2}^{\text {nd }} \mathbf{A A}$ coupling: Repeat entry c.
i) $\mathbf{3}^{\text {rd }}$ deprotection: Repeat entry d); in case of the meta OH B ring derivative, another deprotection for the allyl is done by the addition of premixing $\operatorname{Pd}(\mathrm{OAc})_{2}(0.1 \mathrm{eq}), \mathrm{PPh}_{3}(1.0 \mathrm{eq})$ and morpholine (2.0 eq) in THF. After addition to the syringe, the resin is mixed for 20 min . The completion of the reaction is confirmed via test cleavage (5.9.2)
j) $\quad \mathbf{2}^{\text {nd }} \boldsymbol{N}$-methylation (optional): Repeat entry e), f) and \mathbf{g}).
k) Cleavage from resin: The resin is transferred to a round bottom flask and stirred in $20 \mathrm{~mL} / \mathrm{g}$ resin 20% HFIP in DCM for 2 h . The resin is filtered off and washed with DCM. The solvent is removed and the crude linear product is identified by LCMS.
I) Macrocyclization: The crude linear product is dissolved in DMF (1.0 mM) then HATU (3.0 eq) and DIPEA (5.0 eq) added. In the case of the meta OH B ring derivative another method is used: HATU (1.0 eq), DIPEA (3.0 eq) and pentafluorophenol (10.0 eq) in NMP (1 mM). The reaction is stirred at r.t. overnight and the solvent removed under reduced pressure. The crude product is purified by silica column chromatography and/or semi-preparative HPLC.

5.9.6. Click reaction

Alkyne (1.0 eq) and azide (1.5 eq) are dissolved in $2 \mathrm{~mL} t \mathrm{BuOH}$. Then $\mathrm{CuSO}_{4}(1.5 \mathrm{eq})$ is dissolved in 2 mL $\mathrm{H}_{2} \mathrm{O}$ and added to the solution. Finally, sodium ascorbate (1.5 eq) is added.

After complete reaction (1-2 h), monitored by TLC and LCMS, the mixture is diluted with DCM and washed with $\mathrm{H}_{2} \mathrm{O}(3 \times)$. The organic phase is dried with MgSO_{4}, filtered and the solvent removed under reduced pressure and the crude product purified.

5.9.7. Steglich esterification

Alcohol (1.0 eq), the carboxylic acid (1.1 eq) and DMAP (4 eq) are dissolved in 5 mL dry DCM and cooled to $0^{\circ} \mathrm{C}$ for 15 min . Then $\operatorname{DIC}(1.1 \mathrm{eq})$ is added. The mixture is stirred for 15 min at $0^{\circ} \mathrm{C}$, then overnight at rising temperature to room temperature. After complete conversion, the solvent is removed and the crude product is purified.

6. Experimental procedures

6.1. Upscaled synthesis of the SAFit A / B ring

(E)-3-(3,4-dimethoxyphenyl)-1-(3-hydroxyphenyl)prop-2-en-1-one (AV483)

4
3-Hydroxyacetophenon ($81.93 \mathrm{~g}, 0.60 \mathrm{~mol}, 1.0 \mathrm{eq}$) and 3,4-Dimethoxybenzaldehyde ($100 \mathrm{~g}, 0.60 \mathrm{~mol}$, 1 eq) are dissolved in 800 mL EtOH . The mixture is cooled to $0^{\circ} \mathrm{C}$ for 30 min , then cooled $\mathrm{KOH}(135 \mathrm{~g}$, 2.41 mol, 4 eq) dissolved in $500 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$ is added dropwise in 1 h . The mixture is stirred under slowly rising temperatures overnight. After complete conversion, the reaction mixture is cooled by adding 1 kg ice and acidified with 600 mL 6 M HCl . Then $250 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$ is added dropwise to precipitate the product. After stirring overnight the precipitate is filtered, washed with $\mathrm{H}_{2} \mathrm{O}$ and dried on the rotivap, then via a high vacuum pump. The pure product $\mathbf{4}$ is obtained as a yellow-beige solid.

Yield $96 \mathrm{~g}(56 \%)$.
$\operatorname{TLC}(C H / E E, 2 / 1): \mathrm{R}_{f}(4)=0.22$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.76(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{dd}, J=1.6,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{ddd}, J=1.0$, $1.6,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.20(\mathrm{dd}, \mathrm{J}=2.0,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.16-7.09(\mathrm{~m}, 2 \mathrm{H}), 7.05(\mathrm{~s}, 1 \mathrm{H})$, 6.87 (d, J = $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$-NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 191.05,156.66,151.64,149.27,145.75,139.72,129.82,127.77,123.38$, $120.75,120.35,119.91,115.30,111.22,110.37,56.01$.

LC-MS (30-100\% B, $19 \mathbf{m i n}): \mathrm{t}_{R}(4)=7.65 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=285.10[\mathrm{M}+\mathrm{H}]^{+}$, found $=285.18[\mathrm{M}+\mathrm{H}]^{+}$.
RP-HPLC ($\mathbf{3 0} \mathbf{- 1 0 0 \%}$ B, $1.5 \mathrm{~mL} / \mathrm{min}, 20 \mathrm{~min}, 254 \mathrm{~nm}$): $\mathrm{t}_{R}(4)=7.60 \mathrm{~min}$ (99% Purity).

3-(3,4-dimethoxyphenyl)-1-(3-hydroxyphenyl)propan-1-one (AV328/AV330/AV332/AV334/AV409/AV487/AV489)

5
Zn powder ($115 \mathrm{~g}, 1.76 \mathrm{~mol}, 10.0 \mathrm{eq}$) and $\mathrm{NH}_{4} \mathrm{Cl}(94 \mathrm{~g}, 1.76 \mathrm{~mol}, 10.0 \mathrm{eq})$ are added to a flask and suspended in 500 mL MeOH. 4 ($50 \mathrm{~g}, 0.18 \mathrm{~mol}, 1.0 \mathrm{eq}$) is dissolved in 250 mL MeOH and 180 mL THF and added dropwise to the vigorously stirring suspension in 3 h . After complete addition, the mixture is filtered and washed with $\mathrm{MeOH} .1 .5 \mathrm{~L} \mathrm{H}_{2} \mathrm{O}$ is added slowly to the filtrate under stirring to precipitate the product. The mixture is stirred overnight to facilitate full precipitation, then filtered, washed with $\mathrm{H}_{2} \mathrm{O}$ and dried on the rotivap. The pure product 5 is obtained as a beige-white solid.

Yield 41 g (81\%).
$\operatorname{TLC}(C H / E E, 2 / 1): R_{f}(5)=0.34$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}\right.$, DMSO- d_{6}): $\delta 9.73(\mathrm{~s}, 1 \mathrm{H}), 7.48-7.38(\mathrm{~m}, 1 \mathrm{H}), 7.38-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.01$ (ddd, J= 1.1, 2.5, 8.1 Hz, 1H), $6.92-6.67(\mathrm{~m}, 3 \mathrm{H}), 3.73(\mathrm{~s}, 2 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.27(\mathrm{dd}, \mathrm{J}=7.0,8.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.86$ ($\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$).
${ }^{13}$ C-NMR (75 MHz, DMSO- \boldsymbol{d}_{6}): $\delta 199.13,157.53,148.59,147.02,138.04,133.66,129.70,120.09$, $120.03,118.85,114.02,112.41,111.87,55.50,55.37,29.22$.

LC-MS (30-100\% B, 19 min$): \mathrm{t}_{\mathrm{R}}(\mathbf{5})=7.67 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=287.12[\mathrm{M}+\mathrm{H}]^{+}$, found $=287.10[\mathrm{M}+\mathrm{H}]^{+}$.

RP-HPLC ($\mathbf{3 0} \mathbf{- 1 0 0 \%}$ B, $1.5 \mathrm{~mL} / \mathrm{min}, 20 \mathrm{~min}, 254 \mathrm{~nm}$): $\mathrm{t}_{R}(5)=7.34 \mathrm{~min}(99 \%$ Purity).

3-(3-(3,4-dimethoxyphenyl)-1-hydroxypropyl)phenol (AV141)

Chemical Formula: $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{4}$
Exact Mass: 288,14
Molecular Weight: 288,34
6
$5(100 \mathrm{mg}, 0.35 \mathrm{mmol}, 1.0 \mathrm{eq})$ is dissolved in 5 mL THF. $\mathrm{NaBH}_{4}(13.56 \mathrm{mg}, 0.35 \mathrm{mmol}, 1.0 \mathrm{eq})$ is added and the reaction stirred at r.t. overnight. The mixture is quenched with 1 mL 3 M HCl . The THF is removed under reduced pressure and the aqueous phase diluted with $\mathrm{H}_{2} \mathrm{O}$, then extracted with DCM $(3 \times 10 \mathrm{~mL})$ The crude product is purified by column chromatography $(C H / E E, 3 / 2)$. The pure product 6 is obtained as a beige-white solid.

Yield 86 mg (85\%).
$\operatorname{TLC}(C H / E E, 3 / 2): \mathrm{R}_{f}(6)=0.26$.
${ }^{1} \mathrm{H}-$ NMR ($\mathbf{3 0 0} \mathrm{MHz}, ~ D M S O-d_{6}$): $\delta 7.13(\mathrm{td}, J=3.5,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{t}, \mathrm{J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 6.76-6.70(\mathrm{~m}, 2 \mathrm{H}), 6.66(\mathrm{dt}, J=2.3,6.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.58(\mathrm{dd}, J=5.3,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H})$, 3.77 (s, 3H), 2.59 (qdd, J = 4.1, 6.4, 14.1 Hz, 2H), $2.14-1.86(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13}$ C-NMR (75 MHz, DMSO- d_{6}): $\delta 156.34,148.83,147.22,146.07,134.41,129.76,120.38,118.19$, 114.91, 112.94, 112.06, 111.50, 73.98, 56.01, 55.91, 40.30, 31.63.

LC-MS (30-100\% B, $19 \mathbf{m i n}): \mathrm{t}_{\mathrm{R}}(6)=9.05 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=271.12[\mathrm{M}-\mathrm{OH}]^{+}$, found $=271.06[\mathrm{M}-$ $\mathrm{OH}]^{+}$.

RP-HPLC (0 - 100\% B, $1.5 \mathrm{~mL} / \mathrm{min}, 20 \mathrm{~min}, 254 \mathrm{~nm}$): $\mathrm{t}_{R}(6)=10.94 \mathrm{~min}$ (92% Purity).
Chiral-HPLC (20\% iPrOH in n-Hexane, isocratic, $\mathbf{1 . 0} \mathrm{mL} / \mathrm{min}, 220 \mathrm{~nm}): \mathrm{t}_{\mathrm{R}}(\mathbf{6})=16.30+18.25 \mathrm{~min}(\mathrm{er}=$ 50.50/49.50).

(R)-3-(3-(3,4-dimethoxyphenyl)-1-hydroxypropyl)phenol (AV142/AV200/AV497)

7
$\mathrm{K}_{2} \mathrm{CO}_{3}(19.30 \mathrm{~g}, 0.14 \mathrm{~mol}, 1.0 \mathrm{eq})$ is filled into an autoclave (Roth, Model II). 5 ($40 \mathrm{~g}, 0.14 \mathrm{~mol}, 1.0 \mathrm{eq}$) is dissolved in 150 mL iPrOH and 50 mL THF and added to the autoclave. The solution is sparged with argon for 10 min , then $\mathrm{RuCl}_{2}[(\mathrm{~S})$-(DM-SEGPHOS)][(S)-DAIPEN] ($1.35 \mathrm{~g}, 1 \mathrm{mmol}, 0.008 \mathrm{eq}$) is added and the autoclave closed, then flushed $3 x$ with H_{2}, then 10 bar H_{2} applied. After 2 d reaction time, the mixture is transferred to a beaker and filtered through celite and washed with MeOH . The solvent is removed under reduced pressure. The crude product is dissolved in EE and 2 g activated charcoal added. Then the mixture is filtered through 500 g silica using a gradient of $\mathrm{CH} / \mathrm{EE} 2 / 1$ going up to $\mathrm{CH} / \mathrm{EE}$ $1 / 1$. The product fractions are combined, the solvent removed and the brown oily product then dissolved in a minimum amount DCM under heating to reflux. The product precipitates by cooling the DCM under airstream. After filtering and washing with cooled DCM the pure product $\mathbf{7}$ is obtained as white solid.

Yield $34.9 \mathrm{~g}(87 \%)$.
$\operatorname{TLC}(C H / E E, 1 / 1): \mathrm{R}_{f}(\mathbf{7})=0.35$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.15(\mathrm{td}, J=1.5,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.77-6.72(\mathrm{~m}, 2 \mathrm{H}), 6.67(\mathrm{dt}, J=1.8,10.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.59(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~d}, J=$ $1.5 \mathrm{~Hz}, 3 \mathrm{H}), 2.74-2.52(\mathrm{~m}, 4 \mathrm{H}), 2.13-1.87(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13}$ C-NMR (126 MHz, CDCl 3): $\delta 156.28,148.89,147.28,146.16,134.40,129.83,120.39,118.28,114.91$, 112.94, 112.05, 111.51, 74.00, 56.05, 55.95, 40.38, 31.66.

LC-MS (30-100\% B, $19 \mathbf{m i n}): \mathrm{t}_{R}(7)=5.97 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=271.32[\mathrm{M}-\mathrm{OH}]^{+}$, found = $271.17[\mathrm{M}-$ $\mathrm{OH}]^{+}$.

RP-HPLC ($\mathbf{3 0} \mathbf{- 1 0 0 \%}$ B, $1.5 \mathrm{~mL} / \mathrm{min}, 20 \mathrm{~min}, 254 \mathrm{~nm}$): $\mathrm{t}_{R}(7)=4.93 \mathrm{~min}$ (99% Purity).
Chiral-HPLC (20\% iPrOH in n-Hexane, isocratic, $1.0 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}): \mathrm{t}_{R}(7)=16.30+18.25 \mathrm{~min}(e r=$ 99.33/0.67).

(R)-3-(3-(3,4-dimethoxyphenyl)-1-hydroxypropyl)phenol (AV526)

7

5 (100 mg, $0.35 \mathrm{mmol}, 1.0 \mathrm{eq}$) is suspended in 5 mL iPrOH. $\mathrm{RuCl}_{2}[(\mathrm{~S})$-(DM-SEGPHOS)][(S)-DAIPEN] $(6 \mathrm{mg}, 3 \mu \mathrm{~mol}, 0.008 \mathrm{eq})$ is added, then the mixture is sparged with argon for 10 min . A 1 M solution of KOtBu in $\mathrm{tBuOH}(0.35 \mathrm{~mL}, 1.0 \mathrm{eq})$ is added and the flask flushed with H_{2} for 3 min , then 1 bar H_{2} applied overnight. The solvent is removed under reduced pressure. The crude product is purified by silica column chromatography ($\mathrm{CH} / \mathrm{EE}, 1 / 1$) and pure product 7 is obtained as white solid.

Yield 73 mg (73\%).
$\operatorname{TLC}(C H / E E, 1 / 1): \mathrm{R}_{f}(7)=0.35$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.16(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{t}, \mathrm{J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $6.77-6.72(\mathrm{~m}, 2 \mathrm{H}), 6.70-6.65(\mathrm{~m}, 2 \mathrm{H}), 4.60(\mathrm{dd}, \mathrm{J}=5.3,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 2.69-$ $2.51(\mathrm{~m}, 2 \mathrm{H}), 2.12-1.90(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13}$ C-NMR (126 MHz, CDCl_{3}): $\delta 156.31,148.91,147.29,146.24,134.44,129.82,120.39,118.24,114.89$, $112.94,112.05,111.51,73.97,56.06,55.96,40.43,31.68,29.82$.

RP-HPLC ($\mathbf{3 0} \mathbf{- 1 0 0 \%}$ B, $1.5 \mathrm{~mL} / \mathrm{min}, 20 \mathrm{~min}, 254 \mathrm{~nm}$): $\mathrm{t}_{R}(\mathbf{7})=4.89 \mathrm{~min}$ (99% Purity).
Chiral-HPLC (20\% iPrOH in n-Hexane, isocratic, $1.0 \mathrm{~mL} / \mathrm{min}, \mathbf{2 2 0} \mathbf{n m}$): $\mathrm{t}_{\mathrm{R}}(\mathbf{7})=16.30+18.25 \mathrm{~min}(\mathrm{er}=$ 99.63/0.37).

(R)-3-(3,4-dimethoxyphenyl)-1-(3-(2-morpholinoethoxy)phenyl)propan-1-ol (AV531)

8

7 (23.47 g, $80 \mathrm{mmol}, 1.0 \mathrm{eq})$ is dissolved in $270 \mathrm{~mL} \mathrm{MeCN} . \mathrm{K}_{2} \mathrm{CO}_{3}(45.00 \mathrm{~g}, 330 \mathrm{mmol}, 4.0 \mathrm{eq})$ and 4-(2chloroethyl)morpholine hydrochloride ($15.15 \mathrm{~g}, 80 \mathrm{mmol}, 1.0 \mathrm{eq}$) are added. The reaction is stirred at reflux overnight. After complete conversion, the suspension is filtered, washed with MeCN and the solvent removed under reduced pressure. The crude product $\mathbf{8}$ is obtained as slightly brown oil and used without further purification.

Yield 32.17 g (quant.).
TLC (EE/MeOH, 20/1): $\mathrm{R}_{f}(8)=0.34$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.31-7.22(\mathrm{~m}, 1 \mathrm{H}), 6.97-6.91(\mathrm{~m}, 2 \mathrm{H}), 6.87-6.77(\mathrm{~m}, 2 \mathrm{H}), 6.81-6.69$ $(\mathrm{m}, 2 \mathrm{H}), 4.66(\mathrm{dd}, J=5.1,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{t}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.75-3.69(\mathrm{~m}$, $4 \mathrm{H}), 2.79(\mathrm{t}, \mathrm{J}=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.75-2.60(\mathrm{~m}, 2 \mathrm{H}), 2.57(\mathrm{dd}, \mathrm{J}=3.7,5.7 \mathrm{~Hz}, 4 \mathrm{H}), 2.16-1.95(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13}$ C-NMR (126 MHz, CDCl_{3}): $\delta 158.97,148.91,147.27,146.68,134.49,129.53,120.27,118.54,113.62$, $112.20,111.91,111.39,73.66,66.90,65.77,57.71,56.00,55.90,54.12,40.73,31.73$.

LC-MS (0-100\% B, 19 min$): \mathrm{t}_{R}(8)=7.10 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=402.22[\mathrm{M}+\mathrm{H}]^{+}$, found $=402.36[\mathrm{M}+\mathrm{H}]^{+}$. RP-HPLC (0 - 100\% B, $1.5 \mathrm{~mL} / \mathrm{min}, 20 \mathrm{~min}, 220 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}(8)=9.25 \mathrm{~min}$ (97% Purity) .

6.2. Macrocycles through RCM

6.2.1. Building blocks

2-(allyloxy)ethyl 4-methylbenzenesulfonate (AV170)

9
2-(Allyloxy)ethanol ($1.91 \mathrm{~g}, 0.02 \mathrm{~mol}, 1 \mathrm{eq}$) and pyridine ($2.96 \mathrm{~g}, 0.04 \mathrm{~mol}, 2.0 \mathrm{eq}$) are dissolved in 30 mL dry DCM and cooled to $0^{\circ} \mathrm{C}$ for 10 min . Then p-toluenesulfonyl chloride is added portion-wise. The reaction is stirred at slowly rising temperature to r.t. overnight. Complete conversion is checked by TLC and LCMS. The reaction mixture is diluted with 30 mL DCM washed with $2 \mathrm{M} \mathrm{HCl}(2 \times 30 \mathrm{~mL})$, $4 \% \mathrm{NaHCO}_{3}(1 \times 40 \mathrm{~mL})$, then $\mathrm{H}_{2} \mathrm{O}(1 \times 40 \mathrm{~mL})$ and brine $(1 \times 50 \mathrm{~mL})$. The organic phase is dried with MgSO_{4}, filtered and the solvent removed under reduced pressure. The crude product is purified by manual column chromatography (CH/EE, $5 / 1$). Product 9 is obtained as a slightly yellow oil.

Yield: $2.72 \mathrm{~g}(57 \%)$.
TLC (CH/EE, 5/1, v/v): $\mathrm{R}_{f}(9)=0.25$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.82-7.77(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.31(\mathrm{~m}, 2 \mathrm{H}), 5.81$ (ddt, J = 5.5, 10.3, 17.2 Hz, $1 \mathrm{H}), 5.22$ (dq, J = 1.6, 17.3 Hz, 1H), 5.16 (dq, J = 1.4, 10.4 Hz, 1H), 4.17 (ddd, J = 0.9, 3.7, $5.8 \mathrm{~Hz}, 2 \mathrm{H}$), 3.94 (dt, J = 1.4, 5.5 Hz, 2H), 3.65-3.59 (m, 2H), 2.44 (s, 3H), 1.57 (d, J = $1.7 \mathrm{~Hz}, 0 \mathrm{H}$).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathbf{1 2 6} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right): \delta 144.90,134.26,133.27,129.94,128.12,117.53,72.31,69.37,67.59$, 21.76.

LC-MS $(0-100 \% ~ B, 19 \mathbf{m i n}): \mathrm{t}_{\mathrm{R}}(9)=11.4 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=257.08[\mathrm{M}+\mathrm{H}]^{+}$, found $=257.09[\mathrm{M}+\mathrm{H}]^{+}$.

(R)-1-(3-(allyloxy)phenyl)-3-(3,4-dimethoxyphenyl)propan-1-ol (AV123/AV144/AV146/AV212)

10

7 ($2.16 \mathrm{~g}, 7.49 \mathrm{mmol}, 1.0 \mathrm{eq}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(1.14 \mathrm{~g}, 8.24 \mathrm{mmol}, 1.1 \mathrm{eq})$ and allyl bromide ($997 \mathrm{mg}, 8.24 \mathrm{mmol}$, $1.1 \mathrm{eq})$ are dissolved in 70 mL MeCN. The reaction is stirred overnight at r.t. After complete conversion, the mixture is filtered over celite and washed with MeCN. The solvent is removed under reduced pressure and the crude product purified by silica filtration (CH/EE, 3/2). Compound 10 is obtained as a white solid.

Yield 2.31 g (94\%)
TLC (CH/EE, 3/2, v/v): $\mathrm{R}_{f}(10)=0.53$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.24(\mathrm{ddd}, J=1.0,7.0,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{dd}, J=1.4,7.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.86-$ $6.78(\mathrm{~m}, 1 \mathrm{H}), 6.77(\mathrm{~d}, \mathrm{~J}=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~s}, 1 \mathrm{H}), 6.13-5.98(\mathrm{~m}, 1 \mathrm{H}), 5.41$ (dq, J = 1.6, 17.3 Hz, 1H), 5.28 (dq, J = 1.4, 10.5 Hz, 1H), 4.64 (dd, J = 5.3, 7.7 Hz, 1H), 4.52 (dt, J = 1.5, $5.2 \mathrm{~Hz}, 2 \mathrm{H}$), 3.84 (d, $J=1.5 \mathrm{~Hz}, 6 \mathrm{H}$), $2.65(\mathrm{qdd}, J=6.4,9.2,13.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.20-1.91(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 158.81,148.86,147.21,146.44,134.45,133.29,129.53,120.25,118.46$, $117.70,113.76,112.38,111.83,111.32,73.77,68.80,55.96,55.85,40.63,31.68$.

LC-MS (0-100\%, 19 min$): \mathrm{t}_{\mathrm{R}}(\mathbf{1 0})=10.47 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=311.17[\mathrm{M}-\mathrm{OH}]^{+}$, found $=311.03[\mathrm{M}-$ $\mathrm{OH}]^{+}$.

RP-HPLC (0 - 100\% B, $1.5 \mathrm{~mL} / \mathrm{min}, 20 \mathrm{~min}, 254 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}(\mathbf{1 0})=14.75 \mathrm{~min}$ (97% Purity).

(R)-1-(3-(2-(allyloxy)ethoxy)phenyl)-3-(3,4-dimethoxyphenyl)propan-1-ol (AV176/AV178)

11
7 ($969 \mathrm{mg}, 3.36 \mathrm{mmol}, 1.0 \mathrm{eq}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(697 \mathrm{~g}, 5 \mathrm{mmol}, 1.5 \mathrm{eq})$ and $9(861 \mathrm{mg}, 3.4 \mathrm{mmol}, 1.1 \mathrm{eq})$ are dissolved in 20 mL MeCN. The reaction is stirred overnight after heating to reflux. After complete conversion, the mixture is filtered over celite and washed with acetone. The solvent is removed under reduced pressure and the crude product purified by column chromatography ($\mathrm{CH} / \mathrm{EE}, 3 / 1$). Compound 11 is obtained as a beige oil.

Yield 1.18 g (94\%)
TLC (CH/EE, 1/1, v/v): $\mathrm{R}_{f}(\mathbf{1 1})=0.46$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.26(\mathrm{td}, \mathrm{J}=2.8,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.99-6.90(\mathrm{~m}, 2 \mathrm{H}), 6.89-6.77(\mathrm{~m}, 1 \mathrm{H})$, $6.77-6.66(\mathrm{~m}, 2 \mathrm{H}), 5.95(\mathrm{ddt}, J=5.0,10.1,16.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.32(\mathrm{dd}, J=2.7,17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{~d}, J=$
$10.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.72-4.60(\mathrm{~m}, 1 \mathrm{H}), 4.19-4.03(\mathrm{~m}, 5 \mathrm{H}), 3.86(\mathrm{~d}, \mathrm{~J}=2.9 \mathrm{~Hz}, 6 \mathrm{H}), 3.84-3.72(\mathrm{~m}, 2 \mathrm{H})$, 2.66 (qdd, J = 2.7, 8.4, 13.8, 16.1 Hz, 2H), $2.13-1.92$ (m, 3H).
${ }^{13}$ C-NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 159.06,148.91,147.25,146.45,134.61,134.50,129.51,120.26,118.51$, $117.37,113.66,112.33,111.90,111.40,73.77,72.41,68.57,67.47,55.99,55.88,40.65,31.67,26.97$.

LC-MS (30-100\%, $19 \mathbf{m i n}): \mathrm{t}_{R}(11)=10.93 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=354.17[\mathrm{M}-\mathrm{OH}]^{+}, 390.22\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$, found $=355.10[\mathrm{M}-\mathrm{OH}]^{+}, 390.04\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$.

RP-HPLC (0 - 100\% B, $1.5 \mathrm{~mL} / \mathrm{min}, 20 \mathrm{~min}, 220 \mathrm{~nm}$): $\mathrm{t}_{R}(11)=14.54 \mathrm{~min}(93 \%$ Purity) .

(S)-1-((9H-fluoren-9-yl)methyl) 2-((R)-1-(3-(allyloxy)phenyl)-3-(3,4dimethoxyphenyl)propyl) piperidine-1,2-dicarboxylate (AV126/161)

Chemical Formula: $\mathrm{C}_{41} \mathrm{H}_{43} \mathrm{NO}_{7}$ Exact Mass: 661,30
Molecular Weight: 661,78
12
$10(1.29 \mathrm{~g}, 3.47 \mathrm{mmol}, 1.0 \mathrm{eq})$ and Fmoc-S-pipecolate ($1.99 \mathrm{~g}, 5.66 \mathrm{mmol}, 1.1 \mathrm{eq}$) are dissolved in 40 mL dry DCM and cooled to $0^{\circ} \mathrm{C}$ for 15 min . DMAP ($70 \mathrm{mg}, 0.57 \mathrm{mmol}, 0.1 \mathrm{eq}$) is added and stirred until dissolved, then $\operatorname{DCC}(1.17 \mathrm{~g}, 5.66 \mathrm{mmol}, 1.1 \mathrm{eq})$ is added. The mixture is stirred for 15 min . Finally, the ice bath is removed and the reaction stirred overnight at r.t. The reaction mixture is filtered, washed with DCM and the solvent removed under reduced pressure. The crude product is purified by silica column chromatography $(\mathrm{CH} / \mathrm{EE}, 5 / 1)$ and pure product 12 obtained as a white foam.

Yield 3.16 g (93\%).
TLC (CH/EE, 5/1, v/v): $\mathrm{R}_{f}(12)=0.22$.
LC-MS (70-100\% B, 19 min$): \mathrm{t}_{\mathrm{R}}\left(\mathbf{1 2)}=7.70 \mathrm{~min}, \mathrm{~m} / \mathrm{z}\right.$: calculated $=679.30[\mathrm{M}+\mathrm{H}]^{+}$,
found $=679.02[\mathrm{M}+\mathrm{H}]^{+}$.
RP-HPLC (70-100\% B, $1.5 \mathrm{~mL} / \mathrm{min}, 20 \mathrm{~min}, 220 \mathrm{~nm}$): $\mathrm{t}_{R}(\mathbf{1 2})=11.12 \mathrm{~min}$ (99% Purity).
(S)-1-((9H-fluoren-9-yl)methyl) 2-((R)-1-(3-(2-(allyloxy)ethoxy)phenyl)-3-(3,4dimethoxyphenyl)propyl) piperidine-1,2-dicarboxylate (AV116/AV182)

13
$11(1.29 \mathrm{~g}, 3.47 \mathrm{mmol}, 1.0 \mathrm{eq})$ and Fmoc-S-pipecolate ($1.30 \mathrm{~g}, 3.81 \mathrm{mmol}, 1.1 \mathrm{eq}$) are dissolved in 20 mL dry DCM and cooled to $0^{\circ} \mathrm{C}$ for 15 min . DMAP ($50 \mathrm{mg}, 0.38 \mathrm{mmol}, 0.1 \mathrm{eq}$) is added and stirred until dissolved, then DCC ($0.8 \mathrm{~g}, 3.81 \mathrm{mmol}, 1.1 \mathrm{eq}$) is added. The mixture is stirred for 15 min . Finally, the ice bath is removed and the reaction stirred overnight at r.t. The reaction mixture is filtered, washed with DCM and the solvent removed under reduced pressure. The crude product is purified by silica column chromatography ($\mathrm{CH} / \mathrm{EE}, 4 / 1$) and pure product 13 obtained as a white foam.

Yield $2.17 \mathrm{~g}(89 \%)$.
TLC (CH/EE, 4/1, v/v): $\mathrm{R}_{f}(13)=0.22$.
LC-MS (50-100\% B, $19 \mathbf{m i n}): \mathrm{t}_{R}(\mathbf{1 3})=12.27 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=723.36\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$, found $=723.07\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$.

RP-HPLC (50-100\% B, $1.5 \mathrm{~mL} / \mathrm{min}, 20 \mathrm{~min}, 220 \mathrm{~nm}): \mathrm{t}_{\mathrm{R}}(\mathbf{1 3})=16.82 \mathrm{~min}$ (99\% Purity).
(S)-(R)-1-(3-(allyloxy)phenyl)-3-(3,4-dimethoxyphenyl)propyl piperidine-2-carboxylate (AV129/AV185)

Chemical Formula: $\mathrm{C}_{26} \mathrm{H}_{33} \mathrm{NO}_{5}$ Exact Mass: 439,24

Molecular Weight: 439,54
$12(3.15 \mathrm{~g}, 4.76 \mathrm{mmol}, 1.0 \mathrm{eq})$ is dissolved in 40 mL DCM and $10 \% 4$-methyl piperidine (4.4 mL) is added. The reaction is stirred at r.t. for 2 h , then diluted with 50 mL DCM, washed with 1 M HCl $(4 \times 50 \mathrm{~mL})$ and brine $(1 \times 50 \mathrm{~mL})$. The organic phase is dried with MgSO_{4}, filtered and the solvent removed. The crude product is purified by silica column chromatography (CH/EE, $2 / 1+1 \%$ TEA $+2 \%$ MeOH) and the pure product 14 obtained as a colorless oil.

Yield 1.85 g (89\%).
TLC (CH/EE, 2/1 +1\% TEA + 2\% MeOH, v/v): $\mathrm{R}_{f}(14)=0.25$.
${ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz}, ~ C h l o r o f o r m-d): \delta 7.24(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.96-6.85(\mathrm{~m}, 2 \mathrm{H}), 6.83$ (ddd, J = 1.0, $2.6,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.05(\mathrm{ddt}, \mathrm{J}=5.3,10.5,17.1 \mathrm{~Hz}, 1 \mathrm{H})$, 5.77 (dd, J = 5.7, $7.9 \mathrm{~Hz}, 1 \mathrm{H}$), $5.41(\mathrm{dq}, \mathrm{J}=1.6,17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.28(\mathrm{dq}, \mathrm{J}=1.4,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{dt}, \mathrm{J}=$ $1.5,5.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.37(\mathrm{dd}, \mathrm{J}=3.2,9.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.07(\mathrm{dt}, \mathrm{J}=3.4,11.9 \mathrm{~Hz}, 1 \mathrm{H})$, $2.72-2.45(\mathrm{~m}, 3 \mathrm{H}), 2.34-2.15(\mathrm{~m}, 1 \mathrm{H}), 2.15-1.96(\mathrm{~m}, 3 \mathrm{H}), 1.87-1.74(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.37(\mathrm{~m}, 4 \mathrm{H})$. ${ }^{13} \mathrm{C}-$ NMR (75 MHz , Chloroform-d): $\delta 172.95,158.83,149.03,147.47,141.94,133.77,133.31,129.65$, $120.27,119.15,117.83,114.07,113.34,111.84,111.47,75.64,68.94,58.87,56.05,55.98,45.78$, 38.07, 31.47, 29.41, 25.97, 24.27.

LC-MS (0-100\% B, 19 min$): \mathrm{t}_{\mathrm{R}}(14)=8.32 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=440.24[\mathrm{M}+\mathrm{H}]^{+}$, found $=440.23[\mathrm{M}+\mathrm{H}]^{+}$.

RP-HPLC (0 - 100\% B, $1.5 \mathrm{~mL} / \mathrm{min}, 20 \mathrm{~min}, 220 \mathrm{~nm}$): $\mathrm{t}_{R}(14)=12.95 \mathrm{~min}$ (93% Purity).

((S)-(R)-1-(3-(2-(allyloxy)ethoxy)phenyl)-3-(3,4-dimethoxyphenyl)propyl piperidine-2-

 carboxylate (AV184)

15
$13(2.17 \mathrm{~g}, 3.08 \mathrm{mmol}, 1.0 \mathrm{eq})$ is dissolved in 30 mL DCM and $10 \% 4$-methyl piperidine (3.3 mL) is added. The reaction is stirred at r.t. for 2 h , then diluted with 50 mL DCM, washed with 1 M HCl $(4 \times 50 \mathrm{~mL})$ and brine $(1 \times 50 \mathrm{~mL})$. The organic phase is dried with MgSO_{4}, filtered and the solvent
removed. The crude product is purified by silica column chromatography (CH/EE, 2/1+1\% TEA $+2 \%$ $\mathrm{MeOH})$ and the pure product 15 obtained as a colorless oil.

Yield $1.23 \mathrm{~g}(83 \%)$.
TLC (CH/EE, 2/1 +1\% TEA + 2\% MeOH, v/v): $\mathrm{R}_{f}(15)=0.25$.
${ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz}$, Chloroform-d): $\delta 7.23(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{dt}, \mathrm{J}=1.2,5.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.83$ (ddd, J $=1.0,2.6,8.2 \mathrm{~Hz}, 1 \mathrm{H}$), $6.77(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.93$ (ddt, J=5.7, 10.4, 17.3 Hz, 1 H), 5.76 (dd, J = 5.7, 7.9 Hz, 1H), $5.37-5.25(\mathrm{~m}, 1 \mathrm{H}), 5.20(\mathrm{dq}, \mathrm{J}=1.4,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.16-4.05(\mathrm{~m}$, $4 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.82-3.74(\mathrm{~m}, 2 \mathrm{H}), 3.36(\mathrm{dd}, \mathrm{J}=3.2,9.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.11-3.00(\mathrm{~m}, 1 \mathrm{H})$, $2.70-2.44(\mathrm{~m}, 3 \mathrm{H}), 2.31-2.16(\mathrm{~m}, 1 \mathrm{H}), 2.12-1.96(\mathrm{~m}, 4 \mathrm{H}), 1.80(\mathrm{dt}, \mathrm{J}=3.8,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.69-1.36$ ($\mathrm{m}, 3 \mathrm{H}$).
${ }^{13}$ C-NMR (75 MHz, Chloroform-d): δ 172.81, 158.92, 148.89, 147.33, 141.78, 134.53, 133.65, 129.49, $120.14,119.08,117.33,113.77,113.19,111.71,111.34,75.51,72.37,68.49,67.42,58.73,55.92$, $55.86,45.66,37.94,31.33,29.28,25.84,24.15$.

LC-MS (0-100\% B, 19 min$): \mathrm{t}_{R}(15)=8.65 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=484.26[\mathrm{M}+\mathrm{H}]^{+}$, found $=484.18[\mathrm{M}+\mathrm{H}]^{+}$.

RP-HPLC (0 - 100\% B, $1.5 \mathrm{~mL} / \mathrm{min}, 20 \mathrm{~min}, 220 \mathrm{~nm}$): $\mathrm{t}_{R}(15)=12.97 \mathrm{~min}$ (98% Purity).

(R)-4-benzyl-3-(2-cyclohexylacetyl)oxazolidin-2-one (AV187)

16
To a solution of (R)-4-benzyloxazolidin-2-one ($4.54 \mathrm{~g}, 25.64 \mathrm{mmol}, 1 \mathrm{eq}$) in THF (50 mL) is added a 2.5 M N -butyllithium solution in hexane ($13.32 \mathrm{ml}, 33.30 \mathrm{mmol}, 1.5 \mathrm{eq}$) dropwise in 10 min at $-78^{\circ} \mathrm{C}$ and the mixture is stirred at that temperature for 1.5 h . To the mixture is added 2-cyclohexylacetyl chloride ($1.30 \mathrm{~mL}, 8.47 \mathrm{mmol}, 1.5 \mathrm{eq}$) dropwise in 10 min at $-78^{\circ} \mathrm{C}$. The reaction is stirred for 2.5 h at $-78^{\circ} \mathrm{C}$ and is then slowly warmed to r.t. After stirring overnight, the reaction mixture is quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The aqueous layer is extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers are dried over MgSO_{4}, filtrated and concentrated under reduced pressure. Finally, the crude product is purified by manual chromatography ($\mathrm{CH} / \mathrm{EE}-8 / 1$). Compound 16 is obtained as a white crystalline compound.

Yield 7.52 g (97\%)
TLC (CH/EE, 8/1, v/v): $\mathrm{R}_{f}(\mathbf{1 6})=0.31$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.36-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.24-7.19(\mathrm{~m}, 2 \mathrm{H}), 4.68$ (ddt, $J=9.6,7.6,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.22-4.13(\mathrm{~m}, 2 \mathrm{H}), 3.31(\mathrm{dd}, J=13.4,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{dd}, J=15.9,6.6 \mathrm{~Hz}$, 1 H), $2.82-2.72(\mathrm{~m}, 2 \mathrm{H}), 1.91$ (dddt, $J=14.8,7.8,6.8,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.78(\mathrm{ttt}, J=9.1,3.7,1.8 \mathrm{~Hz}, 2 \mathrm{H})$, $1.72(\mathrm{dqd}, J=12.6,3.4,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.66(\mathrm{dtt}, J=13.1,3.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.35-1.25(\mathrm{~m}, 2 \mathrm{H}), 1.17(\mathrm{qt}, J$ $=12.7,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.10-0.98(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=172.75,153.56,135.49,129.55,129.08,127.46,66.22,55.35,42.82$, $38.15,34.45,33.28,33.23,26.28$.

LC-MS (0-100\% B, 19 min$): \mathrm{t}_{\mathrm{R}}(16)=12.96 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=302.18[\mathrm{M}+\mathrm{H}]^{+}$, found $=302.04[\mathrm{M}+\mathrm{H}]^{+}$.
RP-HPLC ($\mathbf{3 0} \mathbf{- 1 0 0 \%}$ B, $1.5 \mathrm{~mL} / \mathrm{min}, 20 \mathrm{~min}, 254 \mathrm{~nm}$): $\mathrm{t}_{R}(16)=14.6 \mathrm{~min}(92 \%$ Purity) .

(R)-4-benzyl-3-((R)-2-cyclohexylpent-4-enoyl)oxazolidin-2-one (AV188)

Chemical Formula: $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{NO}_{3}$
Exact Mass: 341,20
Molecular Weight: 341,44

16 ($7.48 \mathrm{~g}, 25 \mathrm{mmol}, 1 \mathrm{eq}$) is dissolved in dry THF and added to a dried flask under argon protection, then cooled under stirring for 30 min at $-78^{\circ} \mathrm{C}$. A 1 M solution of LiHMDS in THF ($37.23 \mathrm{ml}, 37 \mathrm{mmol}$. 1.5 eq) is slowly added in 45 min and the solution is then stirred for 45 min at $-78^{\circ} \mathrm{C}$. Then 3-bromoprop-1-ene ($3.22 \mathrm{ml}, 37 \mathrm{mmol}, 1.5 \mathrm{eq}$) is added dropwise in 10 min and the solution is stirred at $-78^{\circ} \mathrm{C}$ with slowly rising temperature to $\mathrm{r} . \mathrm{t}$. overnight. The mixture is quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(100 \mathrm{~mL})$ and the aqueous layer extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 100 \mathrm{~mL})$. The combined organic layers are washed with brine, dried over MgSO_{4}, filtrated and concentrated under reduced pressure. The crude product is purified by manual chromatography ($C y+5 \% E E$). Compound 17 is obtained as a white solid.

Yield 7.10 g (84\%)
TLC (Cy + 5\% EE, v/v): $\mathrm{R}_{f}(17)=0.15$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.29-7.09(\mathrm{~m}, 5 \mathrm{H}), 5.74$ (dddd, $\left.J=6.2,7.7,10.2,16.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.00(\mathrm{dq}$, $J=1.6,17.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.93(\mathrm{ddd}, J=1.2,2.0,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.67-4.53(\mathrm{~m}, 1 \mathrm{H}), 4.05-4.02(\mathrm{~m}, 2 \mathrm{H}), 3.84$
(ddd, J = 5.0, 7.5, 9.2 Hz, 1H), 3.22 (dd, J=3.3, 13.3 Hz, 1H), 2.55 (dd, J = 10.0, 13.3 Hz, 1H), $2.44-$ $2.29(\mathrm{~m}, 2 \mathrm{H}), 1.82-1.48(\mathrm{~m}, 7 \mathrm{H}), 1.24-0.82(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13}$ C-NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 175.90,153.31,135.77,135.69,129.50,128.98,127.32,116.95,65.79$, $55.74,47.50,40.17,38.17,33.88,31.27,29.78,27.00,26.40$.

LC-MS (50-100\% B, $19 \mathbf{m i n}): \mathrm{t}_{\mathrm{R}}(\mathbf{1 7})=10.38 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=342.20[\mathrm{M}+\mathrm{H}]^{+}$, found $=342.13[\mathrm{M}+\mathrm{H}]^{+}$.

RP-HPLC ($\mathbf{3 0} \mathbf{- 1 0 0 \%}$ B, $1.5 \mathrm{~mL} / \mathrm{min}, 20 \mathrm{~min}, 254 \mathrm{~nm}): \mathrm{t}_{R}(17)=17.06 \mathrm{~min}(99 \%$ Purity) .

(R)-2-cyclohexylpent-4-enoic acid (AV189)

Chemical Formula: $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}_{2}$
Exact Mass: 182,13
Molecular Weight: 182,26
18
Lithium hydroxide ($2.22 \mathrm{~g}, 93 \mathrm{mmol}, 4.5 \mathrm{eq}$) and a $30 \mathrm{wt} \%$ hydrogen peroxide solution (8.34 g , $74 \mathrm{mmol}, 3.6 \mathrm{eq})$ are added to a solution of $17(7.05 \mathrm{~g}, 21 \mathrm{mmol}, 1 \mathrm{eq})$ in $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}(215 \mathrm{~mL} / 135 \mathrm{~mL}$, $8 / 5)$. The resulting solution is stirred at r.t overnight. Then the reaction mixture is quenched with 100 mL sat. $\mathrm{Na}_{2} \mathrm{SO}_{3}$ solution, acidified with conc. HCl to $\mathrm{pH}=1$ and extracted with DCM $(3 \times 100 \mathrm{~mL})$. The organic layers are combined, washed with brine and dried over MgSO_{4} and the mixture is concentrated under reduced pressure. The crude product is purified by column chromatography (CH/EE, 5/1). Compound 18 is obtained as a colorless oil.

Yield 2.53 g (68\%)
TLC (CH/EE, 5/1, v/v): $\mathrm{R}_{f}(18)=0.14$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 11.45(\mathrm{~s}, 1 \mathrm{H}), 5.77$ (ddt, $\left.J=6.7,10.1,17.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.07(\mathrm{dq}, \mathrm{J}=1.5,17.1$ $\mathrm{Hz}, 1 \mathrm{H}), 5.01(\mathrm{dt}, J=1.4,10.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{ddt}, J=1.4,6.6,7.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.30-2.23(\mathrm{~m}, 1 \mathrm{H}), 1.83-$ 1.63 (m, 4H), 1.58 (dddd, $J=3.2,6.7,11.2,14.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.31-0.96(\mathrm{~m}, 5 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): ~ \delta 181.70,135.84,116.76,51.79,39.76,33.49,30.95,30.58,26.45,26.41$. LC-MS (0-100\%, 19 min$): \mathrm{t}_{\mathrm{R}}(\mathbf{1 8})=11.52 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=183.26[\mathrm{M}+\mathrm{H}]^{+}, 224.29[\mathrm{M}+\mathrm{MeCN}+\mathrm{H}]^{+}$, found $=183.09[\mathrm{M}+\mathrm{H}]^{+}, 223.78[\mathrm{M}+\mathrm{MeCN}+\mathrm{H}]^{+}$.

RP-HPLC (0 - 100\% B, $1.5 \mathrm{~mL} / \mathrm{min}, 20 \mathrm{~min}, 220 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}(\mathbf{1 8})=14.24 \mathrm{~min}$ (95% Purity).

(S)-(R)-1-(3-(allyloxy)phenyl)-3-(3,4-dimethoxyphenyl)propyl 1-((R)-2-cyclohexylpent-4-enoyl)piperidine-2-carboxylate (AV132/AV190)

19
18 ($456 \mathrm{mg}, 2.50 \mathrm{mmol}, 1.1 \mathrm{eq}$) is dissolved in 5 mL DMF, HATU ($951 \mathrm{mg}, 2.50 \mathrm{mmol}, 1.1 \mathrm{eq}$) and DIPEA $(1160 \mu \mathrm{~L}, 6.83 \mathrm{mmol}, 3.0 \mathrm{eq})$ are added and the mixture stirred for 5 min . Then a solution of $14(1.0 \mathrm{~g}$, $2.28 \mathrm{mmol}, 1.0 \mathrm{eq}$) in 15 mL DMF is added. The reaction is stirred at r.t overnight. The solvent is removed under reduced pressure. The crude product is purified by silica column chromatography (CH/EE, 7/1) to obtain pure product 19 as sticky resin.

Yield 900 mg (68\%).
$\operatorname{TLC}(C H / E E, 7 / 1, v / v): R_{f}(19)=0.21$.
${ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz}$, Chloroform-d): $\delta 7.27-7.19(\mathrm{~m}, 1 \mathrm{H}), 6.93-6.81(\mathrm{~m}, 3 \mathrm{H}), 6.80-6.73(\mathrm{~m}, 1 \mathrm{H})$, $6.71-6.62(\mathrm{~m}, 2 \mathrm{H}), 6.11-5.98(\mathrm{~m}, 1 \mathrm{H}), 5.93-5.81(\mathrm{~m}, 1 \mathrm{H}), 5.81-5.72(\mathrm{~m}, 1 \mathrm{H}), 5.64-5.53(\mathrm{~m}, 1 \mathrm{H})$, $5.46-5.36(\mathrm{~m}, 1 \mathrm{H}), 5.32-5.24(\mathrm{~m}, 2 \mathrm{H}), 5.10-4.96(\mathrm{~m}, 1 \mathrm{H}), 4.96-4.88(\mathrm{~m}, 1 \mathrm{H}), 4.56-4.49(\mathrm{~m}, 2 \mathrm{H})$, $3.98-3.87(m, 1 H), 3.84(d, J=2.2 \mathrm{~Hz}, 6 \mathrm{H}), 3.15-3.01(\mathrm{~m}, 1 \mathrm{H}), 2.66-2.39(\mathrm{~m}, 3 \mathrm{H}), 2.38-2.17(\mathrm{~m}$, $3 H), 2.13-1.94(m, 1 H), 1.87(d, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.80-1.48(\mathrm{~m}, 9 \mathrm{H}), 1.46-1.04(\mathrm{~m}, 4 \mathrm{H}), 1.03-0.70$ ($\mathrm{m}, 2 \mathrm{H}$).
${ }^{13}$ C-NMR (75 MHz , Chloroform-d): $\delta 174.76,170.86,170.43,158.77,148.96,148.89,147.33,141.71$, $141.34,136.81,136.40,133.68,133.37,133.26,133.13,129.74,129.63,120.24,120.16,119.30$, $119.15,117.84,117.73,116.75,116.07,114.37,114.26,113.38,113.27,111.76,111.67,111.33$, $76.21,68.85,56.33,55.98,55.88,51.97,47.47,46.88,43.84,40.38,40.13,38.09,37.77,34.80,34.53$, 32.02, 31.74, 31.50, 31.35, 30.46, 30.20, 27.10, 26.54, 26.47, 26.44, 26.21, 25.72, 21.25, 21.16

LC-MS (70-100\% B, 19 min$): \mathrm{t}_{\mathrm{R}}(19)=8.48 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=604.36[\mathrm{M}+\mathrm{H}]^{+}$, found $=604.13[\mathrm{M}+\mathrm{H}]^{+}$.

RP-HPLC (0 - 100\% B, $1.5 \mathrm{~mL} / \mathrm{min}, 20 \mathrm{~min}, 254 \mathrm{~nm}$): $\mathrm{t}_{R}(19)=17.15 \mathrm{~min}$ (98% Purity) .

(S)-(R)-1-(3-(2-(allyloxy)ethoxy)phenyl)-3-(3,4-dimethoxyphenyl)propyl 1-((R)-2-cyclohexylpent-4-enoyl)piperidine-2-carboxylate (AV124/AV125/AV191)

Chemical Formula: $\mathrm{C}_{39} \mathrm{H}_{53} \mathrm{NO}_{7}$ Exact Mass: 647,38
Molecular Weight: 647,84

18 ($415 \mathrm{mg}, 2.27 \mathrm{mmol}, 1.1 \mathrm{eq}$) is dissolved in 5 mL DMF, HATU ($865 \mathrm{mg}, 2.27 \mathrm{mmol}, 1.1 \mathrm{eq}$) and DIPEA $(1055 \mu \mathrm{~L}, 6.20 \mathrm{mmol}, 3.0 \mathrm{eq})$ are added and the mixture stirred for 5 min . Then a solution of $15(1.0 \mathrm{~g}$, $2.07 \mathrm{mmol}, 1.0 \mathrm{eq}$) in 10 mL DMF is added. The reaction is stirred at r.t overnight. The solvent is removed under reduced pressure. The crude product is purified by silica column chromatography (CH/EE, 7/1) to obtain pure product $\mathbf{2 0}$ as sticky resin.

Yield 1.20 g (90\%).
TLC (CH/EE, 7/1, v/v): $\mathrm{R}_{f}(\mathbf{2 0})=0.23$
${ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz}$, Chloroform-d): $\delta 7.23(\mathrm{t}, \mathrm{J}=7.4,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.93-6.87(\mathrm{~m}, 2 \mathrm{H}), 6.86-6.80(\mathrm{~m}$, $1 \mathrm{H}), 6.80-6.73(\mathrm{~m}, 1 \mathrm{H}), 6.69-6.61(\mathrm{~m}, 2 \mathrm{H}), 6.01-5.86(\mathrm{~m}, 1 \mathrm{H}), 5.85-5.71(\mathrm{~m}, 2 \mathrm{H}), 5.59(\mathrm{~d}, \mathrm{~J}=5.7$ $\mathrm{Hz}, 1 \mathrm{H}), 5.35-5.24(\mathrm{~m}, 1 \mathrm{H}), 5.24-5.15(\mathrm{~m}, 1 \mathrm{H}), 5.09-4.95(\mathrm{~m}, 1 \mathrm{H}), 4.95-4.87(\mathrm{~m}, 1 \mathrm{H}), 4.15-4.03$ $(m, 6 H), 3.95-3.88(m, 1 H), 3.86-3.81(m, 6 H), 3.81-3.72(m, 2 H), 3.14-3.01(m, 1 H), 2.74-2.13$ (m, 7H), $1.93-1.79(\mathrm{~m}, 1 \mathrm{H}), 1.79-1.50(\mathrm{~m}, 9 \mathrm{H}), 1.42-1.01(\mathrm{~m}, 4 \mathrm{H}), 1.01-0.66(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13}$ C-NMR (75 MHz , Chloroform-d): $\delta 174.75,174.46,170.83,170.40,158.97,148.95,148.88,147.45$, 147.31, 141.64, 141.28, 136.80, 136.39, 134.62, 134.57, 133.67, 133.37, 129.71, 129.60, 120.22, $120.14,119.34,119.18,117.47,117.41,116.74,116.06,114.18,114.13,113.35,113.22,111.75$, $111.65,111.31,76.22,72.44,68.56,68.52,67.49,60.45,56.33,55.97,55.88,51.96,47.44,46.86$, $43.83,40.37,40.12,39.23,38.06,37.77,34.79,34.52,32.01,31.73,31.47,31.33,30.45,30.19,29.78$, 28.29, 27.10, 26.53, 26.47, 26.43, 26.32, 26.21, 25.71, 25.12, 21.24, 21.13, 14.28.

LC-MS (70-100\% B, 19 min$): \mathrm{t}_{R}(\mathbf{2 0})=8.42 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=648.38[\mathrm{M}+\mathrm{H}]^{+}$,
found $=648.06[\mathrm{M}+\mathrm{H}]^{+}$.
RP-HPLC (70-100\% B, $1.5 \mathrm{~mL} / \mathrm{min}, \mathbf{2 0} \mathbf{~ m i n}, \mathbf{2 5 4} \mathbf{n m}): \mathrm{t}_{\mathrm{R}}(\mathbf{2 0})=9.99 \mathrm{~min}(99 \%$ Purity).

6.2.2. Macrocycles

(2R,5S,12R,14Z)-12-cyclohexyl-2-[2-(3,4-dimethoxyphenyl)ethyl]-3,17-dioxa-10azatricyclo[16.3.1.0,10]docosa-1(22),14,18,20-tetraene-4,11-dione (AV137/AV153/AV201)

$19(536 \mathrm{mg}, 0.89 \mathrm{mmol}, 1.0 \mathrm{eq})$ is dissolved in 1.8 L dry DCM $(0.5 \mathrm{mM})$ in a dried flask with a condenser. The solution is sparged continuously with argon and heated to $30^{\circ} \mathrm{C}$. The system is equilibrated for 45 min , then Grubbs $2^{\text {nd }}$ generation catalyst ($75 \mathrm{mg}, 0.089,0.1 \mathrm{eq}$) is added. After 2.5 h the solution is filtered through a silica plug and the product eluted with 300 mL EE. The solvent is removed under reduced pressure and the crude mixture purified by manual silica column chromatography ($\mathrm{CH} / \mathrm{EE}$, $4 / 1$) to obtain pure products 21a (E-isomer) and b (Z-isomer).

Yield (21a) 441 mg (86\%), (21b) 44 mg (9\%).
TLC (CH/EE, 4/1, v/v): $\mathrm{R}_{f}(\mathbf{2 1 a})=0.25, \mathrm{R}_{f}(\mathbf{2 1 b})=0.35$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{THF}-\mathrm{d}_{8}, \mathbf{2 1 a}\right): \delta 7.10(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.05-7.01(\mathrm{~m}, 1 \mathrm{H}), 6.80-6.73(\mathrm{~m}, 1 \mathrm{H})$, $6.75(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.72-6.66(\mathrm{~m}, 1 \mathrm{H}), 6.62(\mathrm{dd}, \mathrm{J}=2.1,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.91$ (dt, J = 6.6, 8.0, 15.5 Hz, 1H), $5.64(d d, J=4.9,8.3 \mathrm{~Hz}, 1 \mathrm{H}$), $5.64-5.58(\mathrm{~m}, 1 \mathrm{H}), 5.56$ (ddd, J = 4.7, 7.4, $15.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.64-4.49(\mathrm{~m}, 2 \mathrm{H}), 3.73(\mathrm{~d}, \mathrm{~J}=13.1 \mathrm{~Hz}, 6 \mathrm{H}), 3.68-3.60(\mathrm{~m}, 1 \mathrm{H}), 2.57-2.30(\mathrm{~m}, 6 \mathrm{H})$, $2.27-2.19(\mathrm{~m}, 1 \mathrm{H}), 2.12-2.03(\mathrm{~m}, 1 \mathrm{H}), 2.04-1.93(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.66(\mathrm{~m}, 4 \mathrm{H}), 1.67-1.54(\mathrm{~m}, 4 \mathrm{H})$, $1.52-1.45(\mathrm{~m}, 1 \mathrm{H}), 1.44-1.33(\mathrm{~m}, 1 \mathrm{H}), 1.32-1.24(\mathrm{~m}, 1 \mathrm{H}), 1.24-1.09(\mathrm{~m}, 3 \mathrm{H}), 1.07-0.96(\mathrm{~m}, 1 \mathrm{H})$, $0.92-0.83(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13}$ C-NMR (126 MHz, THF-d ${ }_{8}$, 21a): $\delta 172.35,171.44,160.69,150.91,149.26,142.09,135.88,134.76$, 129.51, 127.89, 121.12, 120.34, 118.78, 113.71, 113.41, 111.32, 78.16, 69.15, 56.46, 56.29, 52.35, $48.51,44.24,42.47,38.51,32.61,31.86,31.26,29.76,28.06,27.87,27.49,26.88,26.84,21.75$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{THF}-\mathrm{d}_{8}, 21 \mathrm{~b}\right): \delta 7.11(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.79-6.75(\mathrm{~m}, 2 \mathrm{H}), 6.74(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.70(\mathrm{~d}, 1 \mathrm{H}), 6.69-6.65(\mathrm{~m}, 2 \mathrm{H}), 5.73(\mathrm{dd}, \mathrm{J}=3.7,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.49-5.44(\mathrm{~m}, 1 \mathrm{H}), 5.36-5.28(\mathrm{~m}$, 1 H), 5.23 ($\mathrm{dt}, \mathrm{J}=2.1,4.0,11.3 \mathrm{~Hz}, 1 \mathrm{H}$), $5.10(\mathrm{dt}, \mathrm{J}=2.6,4.3,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{dq}, \mathrm{J}=2.8,16.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.98-3.91(\mathrm{~m}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.50(\mathrm{td}, \mathrm{J}=3.0,13.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.76-2.68(\mathrm{~m}, 1 \mathrm{H})$, $2.66-2.60(\mathrm{~m}, 2 \mathrm{H}), 2.56-2.45(\mathrm{~m}, 1 \mathrm{H}), 2.29-2.17(\mathrm{~m}, 1 \mathrm{H}), 2.17-2.10(\mathrm{~m}, 1 \mathrm{H}), 2.10-2.00(\mathrm{~m}, 2 \mathrm{H})$, $1.90-1.82(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.62(\mathrm{~m}, 10 \mathrm{H}), 1.62-1.41(\mathrm{~m}, 1 \mathrm{H}), 1.34-0.95(\mathrm{~m}, 4 \mathrm{H})$.
${ }^{13}$ C-NMR (126 MHz, THF- $\mathrm{d}_{8}, 21 \mathrm{~b}$): δ 176.07, 172.84, 159.27, 150.98, 149.33, 142.82, 135.20, 131.01, $129.76,129.14,121.20,118.07,117.87,113.91,113.53,110.81,75.45,65.21,56.47,56.34,52.22$, $47.35,44.10,42.28,39.03,32.42,32.05,31.25,30.06,27.86,27.66,27.57,27.54,26.58,20.76$.

LC-MS (50-100\% B, 19 min$): \mathrm{t}_{\mathrm{R}}(21 \mathrm{a})=11.75 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=576.32[\mathrm{M}+\mathrm{H}]^{+}$, found $=576.05\left[\mathrm{M}+\mathrm{H}^{+}, \mathrm{t}_{\mathrm{R}}(\mathbf{2 1 b})=11.94 \mathrm{~min}, \mathrm{~m} / \mathrm{z}\right.$: calculated $=576.32[\mathrm{M}+\mathrm{H}]^{+}$, found $=576.35[\mathrm{M}+\mathrm{H}]^{+}$.

HRMS (ESI, 21a): calculated $=576.33196[\mathrm{M}+\mathrm{H}]^{+}$, found $=576.33244[\mathrm{M}+\mathrm{H}]^{+}$, err $[\mathrm{ppm}]=0.82$.
RP-HPLC (50-100\% B, $1.5 \mathrm{~mL} / \mathrm{min}, 20 \mathrm{~min}, 254 \mathrm{~nm}$): $\mathrm{t}_{R}(\mathbf{2 1 a})=15.77 \mathrm{~min}$ (99% Purity)
RP-HPLC (50-100\% B, $1.5 \mathrm{~mL} / \mathrm{min}, 20 \mathrm{~min}, 254 \mathrm{~nm}$): $\mathrm{t}_{R}(\mathbf{2 1 b})=16.48 \mathrm{~min}(98 \%$ Purity).

(2R,5S,12R,14E)-12-cyclohexyl-2-[2-(3,4-dimethoxyphenyl)ethyl]-3,17,20-trioxa-10-

 azatricyclo[19.3.1.0 ${ }^{5},{ }^{10}$]pentacosa-1(25),14,21,23-tetraene-4,11-dione (AV128/AV135/AV202)

Chemical Formula: $\mathrm{C}_{36} \mathrm{H}_{49} \mathrm{NO}_{7}$ Exact Mass: 607,35

Molecular Weight: 607,78
$19(592 \mathrm{mg}, 0.91 \mathrm{mmol}, 1.0 \mathrm{eq})$ is dissolved in 1.8 L dry DCM (0.5 mM) in a dried flask with a condenser. The solution is sparged continuously with argon and heated to $30^{\circ} \mathrm{C}$. The system is equilibrated for 45 min , then Grubbs $2^{\text {nd }}$ generation catalyst ($78 \mathrm{mg}, 0.091,0.1 \mathrm{eq}$) is added. After 2.5 h the solution is filtered through a silica plug and the product eluted with 200 mL EE. The solvent is removed under
reduced pressure and the crude mixture purified by manual silica column chromatography ($\mathrm{CH} / \mathrm{EE}$, 4/1) to obtain pure product 22.

Yield 519 mg (92\%).
TLC (CH/EE, 3/1, v/v): $\mathrm{R}_{f}(\mathbf{2 2})=0.25$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 7.28-7.19(\mathrm{~m}, 1 \mathrm{H}), 7.11(\mathrm{t}, \mathrm{J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.94-6.90(\mathrm{~m}, 1 \mathrm{H}), 6.85$ (ddd, J = 0.9, 2.5, 8.2 Hz, 1H), $6.82-6.77(m, 1 H), 6.75-6.68(m, 2 H), 5.69(d d, J=5.1,8.8 H z, 1 H)$, 5.64 (ddd, J = 1.3, 5.8, 15.0 Hz, 1H), $5.59(\mathrm{~d}, \mathrm{~J}=5.9 \mathrm{~Hz}, 0 \mathrm{H}), 5.52(\mathrm{dt}, \mathrm{J}=5.7,15.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.47(\mathrm{~d}, 1 \mathrm{H})$, $5.44-5.36(\mathrm{~m}, 0 \mathrm{H}), 4.23-4.18(\mathrm{~m}, 2 \mathrm{H}), 3.90(\mathrm{~d}, 2 \mathrm{H}), 3.81(\mathrm{~d}, \mathrm{~J}=5.3 \mathrm{~Hz}, 6 \mathrm{H}), 3.72-3.57(\mathrm{~m}, 2 \mathrm{H}), 3.18$ (td, J = 3.1, 12.8 Hz, 1H), 2.71-2.63(m, 1H), 2.63-2.52(m, 2H), 2.47-2.40(m, 1H), 2.31-2.21(m, $3 \mathrm{H}), 2.14-2.03(\mathrm{~m}, 1 \mathrm{H}), 1.87-1.81(\mathrm{~m}, 1 \mathrm{H}), 1.79-1.53(\mathrm{~m}, 8 \mathrm{H}), 1.48-1.35(\mathrm{~m}, 2 \mathrm{H}), 1.31-1.20(\mathrm{~m}$, $3 \mathrm{H}), 1.20-1.08(\mathrm{~m}, 1 \mathrm{H}), 1.04-0.91(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$-NMR ($126 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 175.05,171.89,159.50,149.76,148.15,142.51,134.50,132.19$, 129.94, 128.32, 120.82, 120.12, 116.69, 115.33, 112.77, 112.32, 76.58, 71.79, 69.78, 68.93, 56.42, $56.34,56.30,52.49,47.49,44.22,40.84,38.32,32.93,32.30,31.89,30.55,27.41,27.10,27.02,26.14$, 21.43.

LC-MS (50-100\% B, $19 \mathbf{m i n}): \mathrm{t}_{\mathrm{R}}(\mathbf{2 2})=10.67 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=620.35[\mathrm{M}+\mathrm{H}]^{+}$, found $=620.39[\mathrm{M}+\mathrm{H}]^{+}$.

HRMS (ESI): calculated $=620.35818[\mathrm{M}+\mathrm{H}]^{+}$, found $=620.35870[\mathrm{M}+\mathrm{H}]^{+}$, err $[\mathrm{ppm}]=0.84$.
RP-HPLC (50-100\% B, $1.5 \mathrm{~mL} / \mathrm{min}, 20 \mathrm{~min}, 254 \mathrm{~nm}$): $\mathrm{t}_{R}(\mathbf{2 2})=14.72 \mathrm{~min}$ (99% Purity).
(2R,5S,12R)-12-cyclohexyl-2-[2-(3,4-dimethoxyphenyl)ethyl]-3,17-dioxa-10azatricyclo[16.3.1.0 ${ }^{5},{ }^{10}$]docosa-1(22),18,20-triene-4,11-dione (AV152/AV171/AV172/AV174/AV217)

Chemical Formula: $\mathrm{C}_{35} \mathrm{H}_{47} \mathrm{NO}_{6}$ Exact Mass: 577,34
Molecular Weight: 577,75

23

21a ($48 \mathrm{mg}, 0.083 \mathrm{mmol}, 1.0 \mathrm{eq}$) is dissolved in 3 mL dry MeOH and the solvent sparged with argon for 5 min , Then $\mathrm{Pt} / \mathrm{C}(2 \mathrm{mg}, 0.0008 \mathrm{mmol}, 0.01 \mathrm{eq})$ is added and the slurry sparged with H_{2} for 10 min . Then the reaction is stirred at 1 bar H_{2} for 2 h . The mixture is filtered over SiO_{2} and eluted with MeOH . The solvent is removed and the crude product is purified by semi-preparative HPLC.
prep-HPLC (70 - 100\% B, $10 \mathrm{~mL} / \mathrm{min}, 10 \mathrm{~min}, 254 \mathrm{~nm}): \mathrm{t}_{R}(23)=6.80 \mathrm{~min}$.
Yield 16 mg (33\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{THF}-\mathrm{d}_{8}\right): \delta 7.12(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{dd}, \mathrm{J}=1.5,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{dd}, \mathrm{J}=2.6$, $7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.74(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{dt}, \mathrm{J}=1.2,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{dd}, \mathrm{J}=2.1,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.70$ (dd, J = 6.2, $7.4 \mathrm{~Hz}, 1 \mathrm{H}$), $5.66(\mathrm{~d}, \mathrm{~J}=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.28-4.16(\mathrm{~m}, 1 \mathrm{H}), 4.17-4.01(\mathrm{~m}, 1 \mathrm{H}), 3.78(\mathrm{~d}, \mathrm{~J}=$ $15.2 \mathrm{~Hz}, 4 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 2.72-2.59(\mathrm{~m}, 1 \mathrm{H}), 2.57-2.50(\mathrm{~m}, 1 \mathrm{H}), 2.53-2.44(\mathrm{~m}, 2 \mathrm{H})$, $2.39-2.28(\mathrm{~m}, 1 \mathrm{H}), 2.21-2.13(\mathrm{~m}, 1 \mathrm{H}), 2.09-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.79$ (ddd, J=7.0, 10.3, $14.4 \mathrm{~Hz}, 2 \mathrm{H}$), $1.70(\mathrm{~d}, \mathrm{~J}=13.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.68-1.56(\mathrm{~m}, 6 \mathrm{H}), 1.56-1.44(\mathrm{~m}, 2 \mathrm{H}), 1.46-1.34(\mathrm{~m}, 2 \mathrm{H}), 1.35-1.24(\mathrm{~m}$, $1 \mathrm{H}), 1.26-1.18(\mathrm{~m}, 1 \mathrm{H}), 1.21-1.07(\mathrm{~m}, 1 \mathrm{H}), 1.09-0.88(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13}$ C-NMR (126 MHz, THF- d_{8}): $\delta 173.73,171.66,160.77,150.95,149.30,142.46,134.83,129.71$, $121.14,120.22,118.47,113.76,113.45,112.38,77.96,68.69,56.46,56.29,52.27,46.09,44.27$, $42.34,38.56,33.11,32.01,30.87,30.72,30.32,27.79,27.69,27.61,27.32,26.98,25.98,21.56$.

LC-MS (70-100\% B, 19 min$): \mathrm{t}_{R}(\mathbf{2 3})=7.60 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=578.34[\mathrm{M}+\mathrm{H}]^{+}$, found $=578.42[\mathrm{M}+\mathrm{H}]^{+}$.

HRMS (ESI): calculated $=578.34761[\mathrm{M}+\mathrm{H}]^{+}$, found $=578.34766[\mathrm{M}+\mathrm{H}]^{+}$, err $[\mathrm{ppm}]=0.08$.
RP-HPLC (50-100\% B, $1.5 \mathrm{~mL} / \mathrm{min}, 20 \mathrm{~min}, 254 \mathrm{~nm}): \mathrm{t}_{R}(23)=15.89 \mathrm{~min}(99 \%$ Purity)
(2R,5S,12R)-12-cyclohexyl-2-[2-(3,4-dimethoxyphenyl)ethyl]-3,17-dioxa-10azatricyclo[16.3.1.0 ${ }^{5}{ }^{10}$]docosa-1(22),18,20-triene-4,11,14-trione (AV240)

Chemical Formula: $\mathrm{C}_{35} \mathrm{H}_{45} \mathrm{NO}_{7}$ Exact Mass: 591,32
Molecular Weight: 591,73

21a ($34 \mathrm{mg}, 0.059 \mathrm{mmol}, 1.0 \mathrm{eq}$) is dissolved in 0.7 mL THF and add 0.1 mL H O ($7 / 1$, ratio). p benzoquinone ($7 \mathrm{mg}, 0.06 \mathrm{mmol}, 1.1 \mathrm{eq}$) is added, then $\mathrm{PdCl}_{2}(2 \mathrm{mg}, 0.01 \mathrm{mmol}, 0.2 \mathrm{eq})$. The reaction is stirred overnight at r.t. The solvent is removed under reduced pressure and the crude product is purified by silica column chromatography ($\mathrm{CH} / \mathrm{EE}, 3 / 1$) and pure $\mathbf{2 4}$ is obtained.

Yield 27 mg (77\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.19(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{t}, \mathrm{J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.81-6.75(\mathrm{~m}, 3 \mathrm{H}), 6.71-$ $6.65(\mathrm{~m}, 2 \mathrm{H}), 5.65(\mathrm{dd}, \mathrm{J}=5.3,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.39-5.33(\mathrm{~m}, 1 \mathrm{H}), 4.46-4.33(\mathrm{~m}, 2 \mathrm{H}), 3.91-3.87(\mathrm{~m}$, 1 H), $3.86(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.36(\mathrm{td}, \mathrm{J}=2.8,13.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.15-3.08(\mathrm{~m}, 1 \mathrm{H}), 3.08-3.02(\mathrm{~m}, 2 \mathrm{H})$, 2.92 (ddd, J = 5.8, 8.2, 16.7 Hz, 1H), 2.67-2.58 (m, 2H), 2.54 (dt, J = 4.9, 16.7 Hz, 1H), 2.49-2.43 (m, $1 \mathrm{H}), 2.33-2.21(\mathrm{~m}, 1 \mathrm{H}), 2.15-2.05(\mathrm{~m}, 2 \mathrm{H}), 1.80-1.60(\mathrm{~m}, 5 \mathrm{H}), 1.59-1.47(\mathrm{~m}, 1 \mathrm{H}), 1.33-1.16(\mathrm{~m}$, 2H), 1.16-1.06 (m, 1H), 1.06-0.85 (m, 2H).
${ }^{13} \mathrm{C}$-NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$): $\delta 207.80,174.87,171.62,159.77,149.06,147.46,141.64,133.91,129.33$, $120.31,119.60,117.04,114.99,111.89,111.53,76.04,65.66,56.09,56.00,51.59,43.64,43.58$, $42.51,42.38,40.36,37.20,31.59,31.37,30.00,27.06,26.67,26.57,26.39,25.57,19.84$.
LC-MS (50-100\% B, $19 \mathbf{~ m i n}): \mathrm{t}_{\mathrm{R}}(\mathbf{2 4})=10.43 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=592.32[\mathrm{M}+\mathrm{H}]^{+}$, found $=592.34[\mathrm{M}+\mathrm{H}]^{+}$.

HRMS (ESI): calculated $=592.32688[\mathrm{M}+\mathrm{H}]^{+}$, found $=592.32709[\mathrm{M}+\mathrm{H}]^{+}$, err $[\mathrm{ppm}]=0.35$. RP-HPLC (50 - 100\% B, $1.5 \mathrm{~mL} / \mathrm{min}, 20 \mathrm{~min}, 254 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}(\mathbf{2 4})=12.76 \mathrm{~min}$ (99% Purity)
(2R,5S,12R)-12-cyclohexyl-2-[2-(3,4-dimethoxyphenyl)ethyl]-14,15-dihydroxy-3,17-dioxa-10-azatricyclo[16.3.1.0,50]docosa-1(22),18,20-triene-4,11-dione (AV219/AV222)

Chemical Formula: $\mathrm{C}_{35} \mathrm{H}_{47} \mathrm{NO}_{8}$
Exact Mass: 609,33
Molecular Weight: 609,75
25a and b
21a ($53 \mathrm{mg}, 0.092 \mathrm{mmol}, 1.0 \mathrm{eq}$) is dissolved in 2 mL acetone and add $220 \mu \mathrm{~L} \mathrm{H}_{2} \mathrm{O}$ ($9 / 1$, ratio). NMO $(16 \mathrm{mg}, 0.14 \mathrm{mmol}, 1.5 \mathrm{eq})$ is added, then $\mathrm{OsO}_{4}(23 \mu \mathrm{~L}, 0.002 \mathrm{mmol}, 0.02 \mathrm{eq})$ of a $2.5 \mathrm{w} \%$ solution in $t \mathrm{BuOH}$. The reaction is stirred overnight at r.t. The reaction is quenched with 1 mL sat. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3(a \mathrm{aq})}$ solution and stirred for 15 min . The mixture is diluted with $\mathrm{H}_{2} \mathrm{O}$ and extracted with DCM ($3 \times 15 \mathrm{~mL}$). The organic phase is washed with 15 mL sat. $\mathrm{CuSO}_{4(a q)}$ solution, dried over MgSO_{4}, filtered and the solvent removed under reduced pressure. The crude product is purified by semi-preparative HPLC and pure diastereomers $\mathbf{2 5 a}$ and \mathbf{b} are obtained.
prep-HPLC ($\mathbf{6 0}-\mathbf{8 0 \%}$ B, $10 \mathrm{~mL} / \mathrm{min}, 20 \mathrm{~min}, 254 \mathrm{~nm}): \mathrm{t}_{R}(25)=6.80 \mathrm{~min}$.
Yield (25a) 15 mg (26\%), (25b) 13 mg (23\%).
TLC (CH/EE, 1/1, v/v): $\mathrm{R}_{f}(\mathbf{2 5})=0.35$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25 \mathrm{a}\right): \delta 7.24-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.17(\mathrm{dd}, \mathrm{J}=7.4,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.89-6.83(\mathrm{~m}$, $1 \mathrm{H}), 6.77$ (d, J = $7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.75-6.71(\mathrm{~m}, 1 \mathrm{H}), 6.69-6.64(\mathrm{~m}, 2 \mathrm{H}), 5.67(\mathrm{dd}, \mathrm{J}=5.6,8.3 \mathrm{~Hz}, 1 \mathrm{H})$, $5.63(\mathrm{~d}, \mathrm{~J}=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{dd}, \mathrm{J}=6.1,12.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{dd}, \mathrm{J}=5.7,12.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.83$ $(\mathrm{s}, 3 \mathrm{H}), 3.76-3.72(\mathrm{~m}, 1 \mathrm{H}), 3.72-3.63(\mathrm{~m}, 2 \mathrm{H}), 3.27(\mathrm{~s}, 3 \mathrm{H}), 2.66-2.56(\mathrm{~m}, 2 \mathrm{H}), 2.53-2.44(\mathrm{~m}, 2 \mathrm{H})$, $2.44-2.35(\mathrm{~m}, 1 \mathrm{H}), 2.35-2.23(\mathrm{~m}, 1 \mathrm{H}), 2.14-2.01(\mathrm{~m}, 2 \mathrm{H}), 1.90-1.81(\mathrm{~m}, 1 \mathrm{H}), 1.79-1.52(\mathrm{~m}, 7 \mathrm{H})$, $1.54-1.31(\mathrm{~m}, 2 \mathrm{H}), 1.28-0.89(\mathrm{~m}, 4 \mathrm{H})$.
${ }^{13}$ C-NMR (126 MHz, CDCl $_{3}, 25$) : 174.59, 170.21, 158.97, 148.99, 147.44, 140.67, 133.46, 129.39, $120.27,120.20,117.98,111.87,111.50,109.88,78.00,72.13,69.95,69.83,56.07,55.98,52.17$, $44.46,44.14,41.66,36.98,32.98,31.80,31.08,29.35,26.82,26.65,26.33,25.67,20.38,1.96$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathbf{5 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}, \mathbf{2 5 b}\right): \delta 7.24(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.09-7.07(\mathrm{~m}, 1 \mathrm{H}), 6.93-6.89(\mathrm{~m}, 1 \mathrm{H})$, $6.88-6.85(\mathrm{~m}, 1 \mathrm{H}), 6.79(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.70-6.65(\mathrm{~m}, 2 \mathrm{H}), 5.65(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.54-5.49$
$(\mathrm{m}, 1 \mathrm{H}), 4.36(\mathrm{dd}, \mathrm{J}=2.8,12.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{dd}, \mathrm{J}=6.1,12.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.90-3.88(\mathrm{~m}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H})$, $3.85(\mathrm{~s}, 3 \mathrm{H}), 3.68-3.63(\mathrm{~m}, 1 \mathrm{H}), 3.61-3.56(\mathrm{~m}, 1 \mathrm{H}), 2.96(\mathrm{td}, \mathrm{J}=2.7,13.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.76-2.68(\mathrm{~m}$, $1 \mathrm{H}), 2.61-2.52(\mathrm{~m}, 2 \mathrm{H}), 2.46-2.35(\mathrm{~m}, 1 \mathrm{H}), 2.20-2.14(\mathrm{~m}, 1 \mathrm{H}), 2.14-2.06(\mathrm{~m}, 1 \mathrm{H}), 2.03-1.93(\mathrm{~m}$, $1 \mathrm{H}), 1.83(\mathrm{~d}, \mathrm{~J}=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.77-1.55(\mathrm{~m}, 4 \mathrm{H}), 1.55-1.36(\mathrm{~m}, 1 \mathrm{H}), 1.29-1.04(\mathrm{~m}, 3 \mathrm{H}), 1.04-0.83$ ($\mathrm{m}, 2 \mathrm{H}$).
${ }^{13}$ C-NMR (126 MHz, $\mathrm{CDCl}_{3}, \mathbf{2 5 b}$): $\delta 176.39,171.95,159.08,149.07,147.55,140.97,133.35,130.22$, $120.56,120.36,118.73,112.53,111.87,111.56,77.79,72.74,70.52,68.89,56.10,56.00,52.39$, $44.35,43.38,41.28,36.14,34.10,32.12,31.37,30.36,26.57,26.53,26.44,25.55,20.13$.

LC-MS (50-100\% B, $19 \mathbf{m i n}): \mathrm{t}_{R}(\mathbf{2 5 a})=6.38 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=610.33[\mathrm{M}+\mathrm{H}]^{+}$, found $=610.40[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{t}_{R}(\mathbf{2 5 b})=7.12 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=610.33[\mathrm{M}+\mathrm{H}]^{+}$, found $=610.44[\mathrm{M}+\mathrm{H}]^{+}$.
HRMS (ESI, 25a): calculated $=610.33744[\mathrm{M}+\mathrm{H}]^{+}$, found $=610.33760[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{err}[\mathrm{ppm}]=0.26$.
HRMS (ESI, 25b): calculated $=610.33744\left[\mathrm{M}+\mathrm{H}^{+}\right.$, found $=610.33762[\mathrm{M}+\mathrm{H}]^{+}$, err $[\mathrm{ppm}]=0.28$.
RP-HPLC ($\mathbf{5 0} \mathbf{- 1 0 0 \%}$ B, $1.5 \mathrm{~mL} / \mathrm{min}, 15 \mathrm{~min}, 254 \mathrm{~nm}$): $\mathrm{t}_{R}(\mathbf{2 5 a})=6.49 \mathrm{~min}$ (99% Purity).
RP-HPLC (50-100\% B, $1.5 \mathrm{~mL} / \mathrm{min}, 15 \mathrm{~min}, 254 \mathrm{~nm}): \mathrm{t}_{R}(\mathbf{2 5 b})=7.46 \mathrm{~min}$ (95% Purity).
(2R,5S,12R)-12-cyclohexyl-2-[2-(3,4-dimethoxyphenyl)ethyl]-3,17,20-trioxa-10azatricyclo[19.3.1.0 ${ }^{5}{ }^{10}$]pentacosa-1(25),21,23-triene-4,11-dione (AV339)

26
$22(30 \mathrm{mg}, 0.048 \mathrm{mmol}, 1.0 \mathrm{eq}), \mathrm{RuCl}\left(\mathrm{PPh}_{3}\right)_{3}(22 \mathrm{mg}, 0.024 \mathrm{mmol}, 0.5 \mathrm{eq})$ are dissolved in 3 mL toluene. The solution is sparged with H_{2} for 10 min and then the reaction is stirred under 1 bar H_{2} atmosphere overnight at r.t. The solvent is removed and the crude product purified by silica column chromatography ($\mathrm{CH} / \mathrm{EE}, 3 / 1$) to obtain pure product 26.

Yield 28 mg (93\%).

TLC (CH/EE, 3/1, v/v): $R_{f}(\mathbf{2 6})=0.25$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 7.23(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{t}, \mathrm{J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.92-6.89(\mathrm{~m}, 1 \mathrm{H}), 6.89$ $-6.86(\mathrm{~m}, 1 \mathrm{H}), 6.77(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.71-6.65(\mathrm{~m}, 2 \mathrm{H}), 5.81(\mathrm{dd}, \mathrm{J}=5.6,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.66-5.61$ $(\mathrm{m}, 1 \mathrm{H}), 4.26-4.11(\mathrm{~m}, 2 \mathrm{H}), 3.97-3.91(\mathrm{~m}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.67$ (ddd, J=2.7, 4.9, 11.5 $\mathrm{Hz}, 1 \mathrm{H}$), $3.59-3.48(\mathrm{~m}, 2 \mathrm{H}), 3.39$ (ddd, J = 4.8, 7.2, $9.3 \mathrm{~Hz}, 1 \mathrm{H}$), $3.02-2.94(\mathrm{~m}, 1 \mathrm{H}), 2.68-2.57(\mathrm{~m}$, 1H), 2.57-2.47(m, 2H), 2.32-2.26(m, 1H), 2.26-2.18(m, 1H), 2.09-1.99(m, 1H), 1.91-1.83(m, $1 \mathrm{H}), 1.82-1.48(\mathrm{~m}, 11 \mathrm{H}), 1.46-1.33(\mathrm{~m}, 5 \mathrm{H}), 1.30-1.17(\mathrm{~m}, 2 \mathrm{H}), 1.17-1.06(\mathrm{~m}, 1 \mathrm{H}), 1.01-0.84$ ($\mathrm{m}, 2 \mathrm{H}$).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 175.49,171.39,159.24,149.04,147.44,141.78,133.93,129.52$, $121.03,120.38,117.24,116.19,112.00,111.52,76.08,71.45,70.44,69.15,56.09,55.99,51.99$, $46.95,44.07,41.19,38.22,30.68,30.60,30.55,27.07,26.94,26.64,26.59,25.76,25.27,21.02$.

LC-MS ($\mathbf{7 0 - 1 0 0 \%}$ B, 19 min): $\mathrm{t}_{\mathrm{R}}(\mathbf{2 6})=8.41 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=622.37[\mathrm{M}+\mathrm{H}]^{+}$, found $=622.50[\mathrm{M}+\mathrm{H}]^{+}$.
HRMS (ESI): calculated $=622.37383[\mathrm{M}+\mathrm{H}]^{+}$, found $=622.37352[\mathrm{M}+\mathrm{H}]^{+}$, err $[\mathrm{ppm}]=0.50$.
RP-HPLC ($\mathbf{7 0} \mathbf{- 1 0 0 \%}$ B, $\mathbf{1 . 5} \mathbf{~ m L} / \mathrm{min}, 20 \mathrm{~min}, \mathbf{2 5 4 n m}$): $\mathrm{t}_{R}(\mathbf{2 6})=8.35 \mathrm{~min}$ (99% Purity).

(2R,5S,12R)-12-cyclohexyl-2-[2-(3,4-dimethoxyphenyl)ethyl]-3,17,20-trioxa-10-

 azatricyclo[19.3.1.0,50]pentacosa-1(25),21,23-triene-4,11,14-trione (AV248)

Chemical Formula: $\mathrm{C}_{37} \mathrm{H}_{49} \mathrm{NO}_{8}$
Exact Mass: 635,35
Molecular Weight: 635,79
27
22 ($50 \mathrm{mg}, 0.081 \mathrm{mmol}, 1.0 \mathrm{eq}$) is dissolved in 0.7 mL THF and add $0.1 \mathrm{~mL} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$ ($7 / 1$, ratio). p-benzoquinone ($10 \mathrm{mg}, 0.09 \mathrm{mmol}, 1.1 \mathrm{eq}$), then $\mathrm{PdCl}_{2}(4 \mathrm{mg}, 0.016 \mathrm{mmol}, 0.4 \mathrm{eq})$ are added. The reaction is stirred overnight at r.t. The solvent is removed under reduced pressure and the crude product is purified by semi-preparative HPLC and pure 27 obtained.
prep-HPLC ($60-\mathbf{1 0 0 \%}$ B, $10 \mathrm{~mL} / \mathrm{min}, 10 \mathrm{~min}, 254 \mathrm{~nm}): \mathrm{t}_{R}(27)=7.93 \mathrm{~min}$.

Yield 23 mg (45\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.20(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{t}, \mathrm{J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~d}, \mathrm{~J}=1.2,7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.82-6.76(\mathrm{~m}, 2 \mathrm{H}), 6.71-6.66(\mathrm{~m}, 2 \mathrm{H}), 5.73(\mathrm{dd}, \mathrm{J}=5.4,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.45(\mathrm{~d}, 1 \mathrm{H}), 4.16-4.09$ (m, 2H), $3.93(\mathrm{~d}, \mathrm{~J}=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.90-3.81(\mathrm{~m}, 6 \mathrm{H}), 3.76-3.70(\mathrm{~m}, 2 \mathrm{H}), 3.69-3.61(\mathrm{~m}, 1 \mathrm{H}), 3.25-$ $3.18(\mathrm{~m}, 1 \mathrm{H}), 3.16-3.08(\mathrm{~m}, 1 \mathrm{H}), 2.83(\mathrm{dd}, \mathrm{J}=6.0,17.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.76$ (ddd, J = 4.9, 8.3, $16.4 \mathrm{~Hz}, 1 \mathrm{H}$), $2.66(\mathrm{dd}, \mathrm{J}=6.1,18.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.63-2.50(\mathrm{~m}, 2 \mathrm{H}), 2.43(\mathrm{dt}, \mathrm{J}=5.0,16.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.31-2.16(\mathrm{~m}, 2 \mathrm{H})$, $2.13-2.01(\mathrm{~m}, 1 \mathrm{H}), 1.91-1.82(\mathrm{~m}, 1 \mathrm{H}), 1.77-1.57(\mathrm{~m}, 7 \mathrm{H}), 1.57-1.50(\mathrm{~m}, 1 \mathrm{H}), 1.49-1.35(\mathrm{~m}, 2 \mathrm{H})$, $1.31-1.18(\mathrm{~m}, 2 \mathrm{H}), 1.19-1.05(\mathrm{~m}, 1 \mathrm{H}), 1.03-0.79(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$-NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 207.55,174.71,171.04,159.35,149.05,147.48,141.88,133.88,129.41$, $120.37,119.60,114.89,114.43,111.98,111.53,76.07,69.79,68.59,66.15,56.09,56.02,52.09$, $44.00,43.86,43.04,41.14,40.57,37.99,31.74,31.28,30.25,26.91,26.62,26.51,26.43,25.64,20.87$. LC-MS (50-100\% B, $19 \mathbf{~ m i n}$): $\mathrm{t}_{R}(\mathbf{2 7})=9.88 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=636.35[\mathrm{M}+\mathrm{H}]^{+}$, found $=636.44[\mathrm{M}+\mathrm{H}]^{+}$.

HRMS (ESI): calculated $=636.35309[\mathrm{M}+\mathrm{H}]^{+}$, found $=636.35343[\mathrm{M}+\mathrm{H}]^{+}$, err $[\mathrm{ppm}]=0.52$.
RP-HPLC (50 - 100\% B, $1.5 \mathrm{~mL} / \mathrm{min}, 15 \mathrm{~min}, 254 \mathrm{~nm}): \mathrm{t}_{\mathrm{R}}(\mathbf{2 7})=10.91 \mathrm{~min}(99 \%$ Purity)
(2R,5S,12R)-12-cyclohexyl-2-[2-(3,4-dimethoxyphenyl)ethyl]-14,15-dihydroxy-3,17,20-trioxa-10-azatricyclo[19.3.1.0 ${ }^{5}{ }^{10}$]pentacosa-1(25),21,23-triene-4,11-dione (AV246)

Chemical Formula: $\mathrm{C}_{37} \mathrm{H}_{51} \mathrm{NO}_{9}$ Exact Mass: 653,36
Molecular Weight: 653,80
28
22 ($53 \mathrm{mg}, 0.086 \mathrm{mmol}, 1.0 \mathrm{eq}$) is dissolved in 2 mL acetone and add $220 \mu \mathrm{LH} \mathrm{H}_{2} \mathrm{O}$ (9/1, ratio). NMO $(12 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.2 \mathrm{eq})$, then $\mathrm{OsO}_{4}(21 \mu \mathrm{~L}, 0.002 \mathrm{mmol}, 0.02 \mathrm{eq})$ of a $2.5 \mathrm{w} \%$ solution in $t \mathrm{BuOH}$ are added. The reaction is stirred overnight at r.t. The reaction is quenched with 1 mL sat. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3(\text { aq) }}$ solution and stirred for 15 min . The mixture is diluted with $\mathrm{H}_{2} \mathrm{O}$ and extracted with DCM ($3 \times 15 \mathrm{~mL}$).

The organic phase is washed with 15 mL sat. $\mathrm{CuSO}_{4(\mathrm{aq})}$ solution, dried over MgSO_{4}, filtered and the solvent removed under reduced pressure. The crude product is purified by semi-preparative HPLC and pure $\mathbf{2 8}$ obtained. (Diastereomers could not be separated on either semi-prep. HPLC or analytical RPHPLC)
prep-HPLC (55-65\% B, $10 \mathrm{~mL} / \mathrm{min}, 10 \mathrm{~min}, 254 \mathrm{~nm}): \mathrm{t}_{R}(28)=9.25 \mathrm{~min}$.
Yield 19 mg (34\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.29-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.25-7.21(\mathrm{~m}, 1 \mathrm{H}), 7.01(\mathrm{t}, \mathrm{J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.93-$ $6.85(\mathrm{~m}, 2 \mathrm{H}), 6.81-6.74(\mathrm{~m}, 1 \mathrm{H}), 6.71-6.65(\mathrm{~m}, 2 \mathrm{H}), 5.76(\mathrm{dd}, \mathrm{J}=5.9,8.1 \mathrm{~Hz}, 0.57 \mathrm{H}), 5.70(\mathrm{dd}, \mathrm{J}=$ $5.2,8.3 \mathrm{~Hz}, 0.43 \mathrm{H}$), $5.58(\mathrm{~d}, \mathrm{~J}=1.9,6.2 \mathrm{~Hz}, 0.50 \mathrm{H}), 5.55(\mathrm{~d}, 0.64 \mathrm{H}), 4.35-4.15(\mathrm{~m}, 2 \mathrm{H}), 4.05(\mathrm{~d}, \mathrm{~J}=$ $13.6 \mathrm{~Hz}, 0.42 \mathrm{H}), 3.91-3.81(\mathrm{~m}, 6 \mathrm{H}), 3.79-3.42(\mathrm{~m}, 6 \mathrm{H}), 3.40-3.29(\mathrm{~m}, 0.53 \mathrm{H}), 3.24-3.09(\mathrm{~m}$, $0.51 \mathrm{H}), 3.03-2.85(\mathrm{~m}, 1 \mathrm{H}), 2.82-2.46(\mathrm{~m}, 2 \mathrm{H}), 2.40-2.20(\mathrm{~m}, 2 \mathrm{H}), 2.17-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.95-1.80$ $(\mathrm{m}, 1 \mathrm{H}), 1.80-1.34(\mathrm{~m}, 8 \mathrm{H}), 1.30-0.87(\mathrm{~m}, 4 \mathrm{H})$.
${ }^{13}$ C-NMR (126 MHz, CDCl 3): $\delta 176.10,175.88,172.13,171.46,159.37,158.55,149.14,149.06,147.60$, $147.49,141.68,141.42,133.75,133.66,129.85,129.75,129.55,120.54,120.33,119.94,117.36$, $116.91,116.16,116.01,111.95,111.58,111.52,76.46,74.79,73.53,73.16,72.15,70.67,70.64$, $70.46,69.86,69.63,69.34,56.10,56.04,56.00,52.19,52.16,44.25,44.07,44.03,42.82,41.62,41.22$, $37.94,37.37,34.09,33.41,31.93,31.67,31.53,31.49,30.45,29.80,27.11,26.83,26.75,26.70,26.68$, 26.56, 26.54, 26.46, 25.70, 25.62, 21.04, 20.89.

LC-MS (50-100\% B, 19 min$): \mathrm{t}_{\mathrm{R}}(\mathbf{2 8})=7.68 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=654.36[\mathrm{M}+\mathrm{H}]^{+}$, found $=654.51[\mathrm{M}+\mathrm{H}]^{+}$.

HRMS (ESI): calculated $=654.36366\left[\mathrm{M}+\mathrm{H}^{+}\right.$, found $=654.36352[\mathrm{M}+\mathrm{H}]^{+}$, err $[\mathrm{ppm}]=0.21$.
RP-HPLC (50-100\% B, $1.5 \mathrm{~mL} / \mathrm{min}, 15 \mathrm{~min}, 254 \mathrm{~nm}): \mathrm{t}_{R}(\mathbf{2 8})=7.95 \mathrm{~min}(99 \%$ Purity, $1 / 1 \mathrm{dr}$ determined by NMR).
(S)-(R)-1-(3-(allyloxy)phenyl)-3-(3,4-dimethoxyphenyl)propyl 1-((R)-2-((()9H-fluoren-9-yl)methoxy)carbonyl)amino)-2-cyclohexylacetyl)piperidine-2-carboxylate (AV134/AV186)

29
HATU ($761 \mathrm{mg}, 2 \mathrm{mmol}, 1.1 \mathrm{eq}$), HOAt ($272 \mathrm{mg}, 2 \mathrm{mmol}, 1.1 \mathrm{eq}$), Fmoc-D-Chg-OH ($760 \mathrm{mg}, 2 \mathrm{mmol}$, 1.1 eq) are dissolved in 5 ml dry DMF and 5 ml dry DCM. Then DIPEA ($930 \mu \mathrm{~L}, 5.5 \mathrm{mmol}, 3.0 \mathrm{eq}$) is added. The solution is stirred for 10 min , then added to a solution of $14(800 \mathrm{mg}, 1.8 \mathrm{mmol}, 1.0 \mathrm{eq}) \mathrm{in}$ 12 ml dry DCM in a dried flask under argon atmosphere. The reaction is stirred at r.t. overnight. The solvent is removed under reduced pressure and the crude product purified by silica column chromatography ($\mathrm{CH} / \mathrm{EE}, 5 / 1$) and pure 29 is obtained as a white foam.

Yield 1.45 g (99\%).
$\operatorname{TLC}(C H / E E, 3 / 1, v / v): R_{f}(29)=0.25$.
${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}$, Chloroform-d): $\delta 7.77-7.73(\mathrm{~m}, 2 \mathrm{H}), 7.64-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.35(\mathrm{~m}, 2 \mathrm{H})$, $7.35-7.24(\mathrm{~m}, 3 \mathrm{H}), 6.97-6.77(\mathrm{~m}, 4 \mathrm{H}), 6.76-6.60(\mathrm{~m}, 3 \mathrm{H}), 6.11-6.00(\mathrm{~m}, 1 \mathrm{H}), 5.83-5.79(\mathrm{~m}, 0 \mathrm{H})$, 5.72 (dd, J = 5.6, 8.0 Hz, 1H), $5.66(d, J=9.0 H z, 1 H), 5.47-5.37(m, 2 H), 5.34-5.25(m, 1 H), 4.71-$ $4.64(\mathrm{~m}, 1 \mathrm{H}), 4.56-4.50(\mathrm{~m}, 2 \mathrm{H}), 4.46-4.31(\mathrm{~m}, 1 \mathrm{H}), 4.30-4.11(\mathrm{~m}, 2 \mathrm{H}), 3.91(\mathrm{~d}, \mathrm{~J}=13.7 \mathrm{~Hz}, 1 \mathrm{H})$, $3.89-3.79(m, 6 H), 3.36-3.24(m, 1 H), 2.59-2.45(m, 2 H), 2.41-2.26(m, 1 H), 2.25-2.15(m, 1 H)$, $2.15-1.96(\mathrm{~m}, 1 \mathrm{H}), 1.85-1.56(\mathrm{~m}, 8 \mathrm{H}), 1.54-1.40(\mathrm{~m}, 2 \mathrm{H}), 1.40-1.05(\mathrm{~m}, 6 \mathrm{H}), 0.95-0.81(\mathrm{~m}, 1 \mathrm{H})$. ${ }^{13}$ C-NMR (126 MHz , Chloroform-d): $\delta 171.88,171.05,170.18,170.03,158.95,158.83,156.37,149.00$, $147.46,144.18,143.87,141.66,141.37,133.61,133.33,133.20,129.77,127.80,127.72,127.14$, $125.27,120.33,120.25,119.99,119.28,119.04,117.80,117.70,114.56,114.41,113.39,113.24$, $111.97,111.84,111.57,111.49,76.44,68.90,67.01,56.64,56.08,56.00,55.95,55.15,52.76,47.38$, $43.96,41.90,40.50,39.75,38.14,37.91,31.59,31.17,30.10,29.80,28.45,27.81,26.95,26.29,26.19$, 26.00, 25.84, 25.41, 24.81, 21.17, 21.07.

LC-MS (50-100\% B, $19 \mathbf{m i n}): \mathrm{t}_{R}(29)=12.90 \mathrm{~min}, \mathrm{~m} / \mathrm{z}:$ calculated $=801.40[\mathrm{M}+\mathrm{H}]^{+}$, found $=801.21[\mathrm{M}+\mathrm{H}]^{+}$.

RP-HPLC (50-100\% B, $1.5 \mathrm{~mL} / \mathrm{min}, 20 \mathrm{~min}, 254 \mathrm{~nm}): \mathrm{t}_{R}(29)=18.92 \mathrm{~min}(97 \%$ Purity).
(S)-(R)-1-(3-(allyloxy)phenyl)-3-(3,4-dimethoxyphenyl)propyl 1-((R)-2-cyclohexyl-2-(2,2-dimethylbut-3-enamido)acetyl)piperidine-2-carboxylate (AV205/AV208/AV210/AV211/AV215/AV220)

30
$29(50 \mathrm{mg}, 0.06 \mathrm{mmol}, 1.0 \mathrm{eq})$ is dissolved in 2.5 mL dry DCM and $25 \mu \mathrm{LDBU}(0.17 \mathrm{mmol}, 2.65 \mathrm{eq})$ is added. The reaction is stirred for 3 min , then a solution of 2,2-dimethylbut-3-enoic acid ($28 \mu \mathrm{~L}$, $0.24 \mathrm{mmol}, 2.0 \mathrm{eq})$ prior stirred in $\mathrm{SOCl}_{2}(26 \mu \mathrm{~L}, 0.36 \mathrm{mmol}, 3 \mathrm{eq})$ at $70^{\circ} \mathrm{C}$ for 2 h is added. The reaction is stirred for 20 min , then the solvent removed under reduced pressure and the crude product purified by semi-preparative HPLC (70-100\%, 10 min) and pure product 30 obtained.

Yield 31 mg (74\%).
TLC (CH/EE, 3/2, v/v): $\mathrm{R}_{f}(\mathbf{3 0})=0.45$.
${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}$, Chloroform-d): $\delta 7.30-7.21(\mathrm{~m}, 1 \mathrm{H}), 6.95-6.89(\mathrm{~m}, 1 \mathrm{H}), 6.89-6.86(\mathrm{~m}, 1 \mathrm{H})$, $6.86-6.83(\mathrm{~m}, 2 \mathrm{H}), 6.81-6.74(\mathrm{~m}, 1 \mathrm{H}), 6.70-6.62(\mathrm{~m}, 3 \mathrm{H}), 6.11-5.99(\mathrm{~m}, 1 \mathrm{H}), 5.99-5.88(\mathrm{~m}, 1 \mathrm{H})$, 5.70 (dd, J = 5.9, $7.8 \mathrm{~Hz}, 1 \mathrm{H}$), $5.45-5.38(\mathrm{~m}, 1 \mathrm{H}), 5.35-5.31(\mathrm{~m}, 1 \mathrm{H}), 5.31-5.25(\mathrm{~m}, 1 \mathrm{H}), 5.25-5.18$ (m, 1H), $5.18-5.10(\mathrm{~m}, 1 \mathrm{H}), 4.90(\mathrm{dd}, \mathrm{J}=6.1,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.59-4.47(\mathrm{~m}, 3 \mathrm{H}), 3.93(\mathrm{~d}, \mathrm{~J}=13.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.87-3.84(\mathrm{~m}, 6 \mathrm{H}), 3.25(\mathrm{td}, \mathrm{J}=2.9,13.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.67-2.41(\mathrm{~m}, 2 \mathrm{H}), 2.40-2.30(\mathrm{~m}, 1 \mathrm{H}), 2.30-$ $2.14(\mathrm{~m}, 1 \mathrm{H}), 2.13-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.82-1.56(\mathrm{~m}, 7 \mathrm{H}), 1.51-1.38(\mathrm{~m}, 2 \mathrm{H}), 1.31-1.26(\mathrm{~m}, 4 \mathrm{H}), 1.21$ $(\mathrm{s}, 2 \mathrm{H}), 1.16-0.93(\mathrm{~m}, 2 \mathrm{H}), 0.91-0.69(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13}$ C-NMR (126 MHz, Chloroform-d): $\delta 176.78,176.64,171.91,171.44,169.99,158.86,149.09,147.54$, $142.60,142.51,141.59,141.40,133.63,133.37,133.24,129.86,120.40,120.30,119.29,119.07$,
$117.81,117.76,115.26,115.16,114.68,114.47,113.34,113.27,112.02,111.89,111.60,76.51,68.97$,
$68.92,56.83,56.11,56.02,53.48,53.26,52.95,45.51,44.10,41.85,40.19,40.08,38.17,37.98,31.64$, $31.25,30.26,30.00,28.44,27.95,27.05,26.27,26.20,26.00,25.81,25.73,25.41,24.98,24.88,24.69$, 24.64, 21.14, 21.05.

LC-MS (50-100\% B, $19 \mathbf{~ m i n}): \mathrm{t}_{\mathrm{R}}(\mathbf{3 0})=11.61 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=675.39[\mathrm{M}+\mathrm{H}]^{+}$, found $=675.03[\mathrm{M}+\mathrm{H}]^{+}$.

RP-HPLC (50-100\% B, $1.5 \mathrm{~mL} / \mathrm{min}, \mathbf{2 0} \mathbf{~ m i n}, 220 \mathrm{~nm}): \mathrm{t}_{R}(\mathbf{3 0})=15.70 \mathrm{~min}(95 \%$ Purity).
(2R,5S,12R,16E)-12-cyclohexyl-2-[2-(3,4-dimethoxyphenyl)ethyl]-15,15-dimethyl-3,19-dioxa-10,13-diazatricyclo[18.3.1.0 ${ }^{5},{ }^{10}$]tetracosa-1(24),16,20,22-tetraene-4,11,14-trione (AV216/AV218/AV221/AV224/AV341Fr2)

31
$30(68 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0 \mathrm{eq})$ is dissolved in 200 mL toluene $(0.5 \mathrm{mM})$ in a dried flask with a condenser. The solution is sparged continuously with argon and heated to $80^{\circ} \mathrm{C}$. The system is equilibrated for 30 min , then p-benzoquinone ($6 \mathrm{mg}, 0.05 \mathrm{mmol}, 0.5 \mathrm{eq}$) and Grubbs $2^{\text {nd }}$ generation catalyst (9 mg , $0.01,0.1 \mathrm{eq}$) is added. After stirring overnight and continuous argon sparging toluene is refilled and another portion of Grubbs catalyst $(3 \mathrm{mg})$ added. The reaction is continuously stirred for 3 d , then the solvent removed under reduced pressure. The crude product is filtered through silica and eluted with EE, then purified by semi-preparative HPLC (70-100\%, 10 min).

Yield 25 mg (38\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.20(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.96-6.92(\mathrm{~m}, 1 \mathrm{H}), 6.84$ (ddd, J = 1.0, 2.6, 8.2 Hz, 1H), $6.79-6.75(\mathrm{~m}, 2 \mathrm{H}), 6.69-6.62(\mathrm{~m}, 2 \mathrm{H}), 6.49(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.86-5.78(\mathrm{~m}, 1 \mathrm{H}), 5.70$ (ddd, J $=4.8,5.9,16.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.64-5.58(\mathrm{~m}, 1 \mathrm{H}), 5.20-5.17(\mathrm{~m}, 1 \mathrm{H}), 4.74-4.71(\mathrm{~m}, 1 \mathrm{H}), 4.71-4.69(\mathrm{~m}$, 1H), 4.60 (ddd, J = 1.3, 5.9, 14.2 Hz, 1H), $3.86(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.76(\mathrm{~d}, \mathrm{~J}=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.26(\mathrm{td}, \mathrm{J}$ $=3.0,13.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.64-2.46(\mathrm{~m}, 2 \mathrm{H}), 2.35-2.21(\mathrm{~m}, 1 \mathrm{H}), 2.21-2.12(\mathrm{~m}, 1 \mathrm{H}), 2.12-2.01(\mathrm{~m}, 1 \mathrm{H})$,
$1.78-1.66(\mathrm{~m}, 5 \mathrm{H}), 1.66-1.60(\mathrm{~m}, 4 \mathrm{H}), 1.59-1.53(\mathrm{~m}, 1 \mathrm{H}), 1.51-1.38(\mathrm{~m}, 1 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{~s}$, $3 H), 1.21-0.93(\mathrm{~m}, 4 \mathrm{H})$.
${ }^{13}$ C-NMR (126 MHz, CDCl 3): $\delta 175.54,172.12,171.44,158.92,149.07,147.52,141.24,139.22,133.76$, $129.44,124.83,120.30,119.77,116.35,112.06,111.91,111.54,76.91,68.10,56.10,56.01,53.54$, $53.20,52.62,44.86,43.84,42.13,37.46,31.42,30.27,27.99,26.54,26.30,26.26,26.13,25.72,25.21$, 20.09.

LC-MS (50-100\% B, $19 \mathbf{m i n}): \mathrm{t}_{R}(31)=10.70 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=647.37[\mathrm{M}+\mathrm{H}]^{+}$,
found $=647.41[\mathrm{M}+\mathrm{H}]^{+}$.
HRMS (ESI): calculated $=647.369208[\mathrm{M}+\mathrm{H}]^{+}$, found $=647.36980\left[\mathrm{M}+\mathrm{H}^{+}\right.$, err $[\mathrm{ppm}]=1.11$.
RP-HPLC (50-100\% B, $1.5 \mathrm{~mL} / \mathrm{min}, 20 \mathrm{~min}, 254 \mathrm{~nm}): \mathrm{t}_{R}(31)=11.81 \mathrm{~min}(86 \%$ Purity)
(2R,5S,12R)-12-cyclohexyl-2-[2-(3,4-dimethoxyphenyl)ethyl]-15,15-dimethyl-3,19-dioxa-10,13-diazatricyclo[18.3.1.0 $\mathbf{5}^{10}$]tetracosa-1(24),20,22-triene-4,11,14,16-tetrone (AV341Fr1)

Chemical Formula: $\mathrm{C}_{38} \mathrm{H}_{50} \mathrm{~N}_{2} \mathrm{O}_{8}$
Exact Mass: 662,36
Molecular Weight: 662,81
32
$31(10 \mathrm{mg}, 0.015 \mathrm{mmol}, 1.0 \mathrm{eq})$ is dissolved in 0.7 mL THF and $0.1 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$ ($7 / 1$, ratio) added. p-benzoquinone ($4 \mathrm{mg}, 0.04 \mathrm{mmol}, 2 \mathrm{eq}$), then $\mathrm{PdCl}_{2}(2 \mathrm{mg}, 0.015 \mathrm{mmol}, 1.0 \mathrm{eq})$ are added. The reaction is stirred over 3 d at r.t. The solvent is removed under reduced pressure and the crude product is purified by preparative HPLC (70-100\%, 10 min).

Yield 1 mg (10\%).
LC-MS (70-100\% B, 19 min$): \mathrm{t}_{R}(32)=5.91 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=663.36[\mathrm{M}+\mathrm{H}]^{+}$,
found $=663.45[\mathrm{M}+\mathrm{H}]^{+}$.
HRMS (ESI): calculated $=663.36399[\mathrm{M}+\mathrm{H}]^{+}$, found $=663.36359[\mathrm{M}+\mathrm{H}]^{+}$, err $[\mathrm{ppm}]=0.61$.
RP-HPLC ($\mathbf{7 0} \mathbf{- 1 0 0 \%}$ B, $1.5 \mathrm{~mL} / \mathrm{min}, 20 \mathrm{~min}, \mathbf{2 5 4} \mathbf{n m}$): $\mathrm{t}_{R}(\mathbf{3 2)}=5.84 \mathrm{~min}$ (77% Purity)

6.3. Cyclopeptides

6.3.1. Building blocks

(R)-tert-butyl 2-(3-(3-(3,4-dimethoxyphenyl)-1-hydroxypropyl)phenoxy)acetate (AV145/AV150/TR05)

33
$7(4.00 \mathrm{~g}, 14 \mathrm{mmol}, 1.0 \mathrm{eq})$ is dissolved in $120 \mathrm{~mL} \mathrm{MeCN}. \mathrm{~K}_{2} \mathrm{CO}_{3}(2.90 \mathrm{~g}, 21 \mathrm{mmol}, 1.5 \mathrm{eq})$ and tert-butyl bromoacetate ($2.98 \mathrm{~g}, 15 \mathrm{mmol}, 1.1 \mathrm{eq}$) are added. After 3 h the suspension is filtered, washed with MeCN and the solvent removed under reduced pressure. The crude product is purified by silica column chromatography (CH/EE, 2/1) and pure 33 obtained as resinous oil.

Yield 5.34 g (96\%).
$\operatorname{TLC}(C H / E E, 2 / 1): R_{f}(33)=0.36$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.27(\mathrm{~m}, 1 \mathrm{H}), 6.96(\mathrm{~m}, 2 \mathrm{H}), 6.81(\mathrm{~m}, 2 \mathrm{H}), 6.74(\mathrm{~m}, 2 \mathrm{H}), 4.67(\mathrm{dd}, 1 \mathrm{H})$, $4.53(\mathrm{~s}, \mathrm{H}), 3.87(\mathrm{~m}, 6 \mathrm{H}), 2.65(\mathrm{~m}, 2 \mathrm{H}), 2.03(\mathrm{~m}, 3 \mathrm{H}), 1.50(\mathrm{~s}, 9 \mathrm{H})$.

LC-MS (0-100\% B, 19 min$): \mathrm{t}_{\mathrm{R}}(33)=11.49 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=420.24\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$, found $=420.09\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$.
(S)-1-((9H-fluoren-9-yl)methyl) 2-((R)-1-(3-(2-(tert-butoxy)-2-oxoethoxy)phenyl)-3-(3,4dimethoxyphenyl)propyl) piperidine-1,2-dicarboxylate (AV003/094/TR06)

34
Compound 33 ($1.5 \mathrm{~g}, 3.73 \mathrm{mmol}, 1 \mathrm{eq}$) and (S)-1-(((9H-fluoren-9-yl)methoxy)carbonyl)piperidine-2carboxylic acid ($1.44 \mathrm{~g}, 4.10 \mathrm{mmol}, 1.1 \mathrm{eq}$) are dissolved in 15 mL of dry DCM and added to a dried flask under argon protection. The mixture is then cooled to $0^{\circ} \mathrm{C}$ for 15 min . First DMAP ($66 \mathrm{mg}, 0,54 \mathrm{mmol}$) and after 5 min DCC ($1.12 \mathrm{~g}, 5.42 \mathrm{mmol}$) were added under constant stirring. The ice bath is removed after stirring for 15 min . The reaction mixture is then stirred at r.t. overnight. For purification, the suspension is filtered and washed with $\mathrm{Et}_{2} \mathrm{O}(2 \times 75 \mathrm{~mL})$ and $\mathrm{DCM}(1 \times 50 \mathrm{~mL})$. The solvent is removed under vacuum and the crude product is purified via column chromatography $(\mathrm{CH} / \mathrm{EE}, 3 / 1)$. The pure product 34 is obtained as a white solid.

Yield 2.41 g (88\%)
$\operatorname{TLC}(C H / E E, 2 / 1, v / v): R_{f}(34)=0.50$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.79-7.73(\mathrm{~m}, 1 \mathrm{H}), 7.74-7.68(\mathrm{~m}, 1 \mathrm{H}), 7.63-7.55(\mathrm{~m}, 1 \mathrm{H}), 7.46(\mathrm{dd}, \mathrm{J}$ $=20.4,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.15(\mathrm{~m}, 4 \mathrm{H}), 6.98-6.92(\mathrm{~m}, 1 \mathrm{H}), 6.90(\mathrm{t}, \mathrm{J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.84-6.73(\mathrm{~m}$, $1 \mathrm{H}), 6.74(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.68-6.57(\mathrm{~m}, 2 \mathrm{H}), 5.76(\mathrm{dd}, J=8.2,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.95(\mathrm{dd}, J=75.5,5.5$ $\mathrm{Hz}, 1 \mathrm{H}), 4.54-4.23(\mathrm{~m}, 4 \mathrm{H}), 3.82(\mathrm{~d}, \mathrm{~J}=10.3 \mathrm{~Hz}, 6 \mathrm{H}), 3.22-2.94(\mathrm{~m}, 1 \mathrm{H}), 2.51(\mathrm{tt}, \mathrm{J}=28.8,7.9 \mathrm{~Hz}$, $2 \mathrm{H}), 2.37-2.15(\mathrm{~m}, 2 \mathrm{H}), 2.03(\mathrm{~s}, 1 \mathrm{H}), 1.73$ (dddd, $J=21.4,10.8,7.3,4.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=\delta 170.92,167.87,158.10,156.39,155.92,148.92,147.35,143.91$, $141.73,141.52,141.30,133.52,133.41,129.66,127.66,127.05,125.08,120.12,119.95,113.98$, $113.28,111.78,111.40,82.31,76.43,76.17,67.79,65.80,65.67,60.36,55.82,54.92,54.57,47.26$, 42.04, 41.89, 38.04, 31.14, 28.03, 26.83, 24.80, 24.56, 21.73, 21.02, 20.82, 20.73, 20.55, 14.21.

LC-MS (80-100\% B, 19 min$): \mathrm{t}_{\mathrm{R}}(34)=5.62 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=736.35[\mathrm{M}+\mathrm{H}]^{+}$,
found $=736.33[\mathrm{M}+\mathrm{H}]^{+}$.
HPLC-RP (70-100\% B, $1.0 \mathrm{~mL} / \mathrm{min}, 20 \mathrm{~min}): \mathrm{t}_{R}(34)=18.67 \mathrm{~min}(99 \%$ Purity).

2-(3-((R)-1-(((S)-1-(((9H-fluoren-9-yl)methoxy)carbonyl)piperidine-2-carbonyl)oxy)-3-(3,4dimethoxyphenyl)propyl)phenoxy)acetic acid (AV095)

35
Compound $34(2.40 \mathrm{~g}, 3.53 \mathrm{mmol}, 1 \mathrm{eq})$ is dissolved in 15 mL of dry DCM and stirred at r.t. under argon protection. 6.5 mL TFA (30%) is added and the reaction stirred for 1 h . TFA and solvent are removed under reduced pressure and the remaining TFA is co-evaporated with toluene and then DCM. The crude product is purified via manual column chromatography (Cy/EE $-7 / 3+1 \%$ TFA). Product 35 is obtained after drying overnight at high vacuum as a resinous solid.

Yield 2.25 g (quant.)
TLC (CH/EE/TFA, 7/3/0.2, v/v): $\mathrm{R}_{f}(35)=0.19$.
${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, Chloroform-d): $\delta=7.80-7.68(\mathrm{~m}, 2 \mathrm{H}), 7.54(\mathrm{t}, \mathrm{J}=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.30(\mathrm{~m}, 2 \mathrm{H})$, $7.32-7.16(\mathrm{~m}, 3 \mathrm{H}), 6.94(\mathrm{dd}, J=13.3,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.89-6.80(\mathrm{~m}, 2 \mathrm{H}), 6.77(\mathrm{t}, \mathrm{J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~d}$, $J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.64-6.55(\mathrm{~m}, 1 \mathrm{H}), 5.82-5.63(\mathrm{~m}, 1 \mathrm{H}), 5.00(\mathrm{~d}, \mathrm{~J}=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{~d}, J=5.5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.55(\mathrm{~s}, 1 \mathrm{H}), 4.49-4.34(\mathrm{~m}, 2 \mathrm{H}), 4.24(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{q}, J=7.2 \mathrm{~Hz}, 0 \mathrm{H}), 4.13-3.99(\mathrm{~m}$, $1 \mathrm{H}), 3.85(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}, 6 \mathrm{H}), 3.79(\mathrm{~s}, 1 \mathrm{H}), 3.21-3.10(\mathrm{~m}, 1 \mathrm{H}), 2.68-2.42(\mathrm{~m}, 1 \mathrm{H}), 2.38-2.15(\mathrm{~m}, 1 \mathrm{H})$, $2.09(\mathrm{~s}, 1 \mathrm{H}), 2.08-2.00(\mathrm{~m}, 1 \mathrm{H}), 1.73(\mathrm{~d}, J=38.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.44(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.28(\mathrm{t}, J=7.2 \mathrm{~Hz}$, 2 H).
${ }^{13}$ C-NMR (101 MHz, Chloroform-d): $\delta=172.87,172.73,170.82,159.13,158.71,157.85,157.69$, 157.16, 156.91, 148.94, 147.42, 143.87, 143.65, 143.59, 142.14, 141.58, 141.42, 133.60, 133.45, 130.01, 127.92, 127.27, 125.09, 124.95, 120.67, 120.44, 120.14, 120.02, 115.26, 114.52, 113.12, $111.94,111.64,111.29,68.57,65.24,64.88,61.27,56.10,56.01,55.12,54.80,47.20,42.26,42.13$, $38.10,37.87,31.48,31.28,27.04,26.92,24.76,24.49,21.21,20.81,20.59,14.23$.

ESI-MS: m / z : calculated $=702.74[\mathrm{M}+\mathrm{Na}]^{+}$, found $=702.13[\mathrm{M}+\mathrm{Na}]^{+}$.
RP-HPLC ($50-\mathbf{1 0 0 \%}$ B, $1.0 \mathrm{~mL} / \mathrm{min}, 20 \mathrm{~min}$): $\mathrm{t}_{R}(35)=10.72 \mathrm{~min}(91 \%$ Purity) .

Resin bound 2-(3-((R)-1-(((S)-1-(((9H-fluoren-9-yl)methoxy)carbonyl)piperidine-2-carbonyl)oxy)-3-(3,4-dimethoxyphenyl)propyl)phenoxy)acetic acid (AV098/AV177)

36
Synthesis according to 5.9.5.

6.3.2. Macrocycles

(2R,5S,12R)-12-cyclohexyl-2-[2-(3,4-dimethoxyphenyl)ethyl]-3,19-dioxa-10,13,16triazatricyclo[18.3.1.0 ${ }^{5}{ }^{10}$]tetracosa-1(24),20,22-triene-4,11,14,17-tetrone (AV011/148)

Chemical Formula: $\mathrm{C}_{35} \mathrm{H}_{45} \mathrm{~N}_{3} \mathrm{O}_{8}$
Exact Mass: 635,32
Molecular Weight: 635,75
37
Starting materials: Resin: 36 (0.17 mmol), $1^{\text {st }} A A:$ Fmoc-D-Chg-OH, $2^{\text {nd }}$ AA: Fmoc-Gly-OH, General Procedure 5.9.5.
prep-HPLC ($80 \mathbf{- 1 0 0 \%}$ B, $10 \mathrm{~mL} / \mathrm{min}, 10 \mathrm{~min}, \mathbf{2 5 4} \mathrm{~nm}): \mathrm{t}_{R}(37)=9.50 \mathrm{~min}$.
Yield 11 mg (10\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.29-7.21(\mathrm{~m}, 1 \mathrm{H}), 7.14(\mathrm{~d}, \mathrm{~J}=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.96-6.87(\mathrm{~m}, 3 \mathrm{H}), 6.88-$ $6.82(\mathrm{~m}, 1 \mathrm{H}), 6.77(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.69-6.61(\mathrm{~m}, 2 \mathrm{H}), 5.67-5.59(\mathrm{~m}, 1 \mathrm{H}), 5.26-5.18(\mathrm{~m}, 1 \mathrm{H})$, $4.82-4.74(\mathrm{~m}, 1 \mathrm{H}), 4.69-4.57(\mathrm{~m}, 2 \mathrm{H}), 4.57-4.43(\mathrm{~m}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.80-3.73(\mathrm{~m}$, $1 \mathrm{H}), 3.37(\mathrm{dd}, \mathrm{J}=4.3,14.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{td}, \mathrm{J}=2.9,13.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.66-2.39(\mathrm{~m}, 1 \mathrm{H}), 2.37-2.22(\mathrm{~m}$,
$1 \mathrm{H}), 2.21-2.11(\mathrm{~m}, 1 \mathrm{H}), 2.10-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.94-1.79(\mathrm{~m}, 2 \mathrm{H}), 1.80-1.67(\mathrm{~m}, 2 \mathrm{H}), 1.69-1.53(\mathrm{~m}$, $8 \mathrm{H}), 1.54-1.34(\mathrm{~m}, 1 \mathrm{H}), 1.30-1.10(\mathrm{~m}, 2 \mathrm{H}), 1.09-0.93(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13}$ C-NMR (126 MHz, CDCl 3): $\delta 172.01,171.50,170.31,169.37,157.84,149.02,147.48,141.76,133.42$, $129.96,121.32,120.27,116.67,111.78,111.49,111.44,109.57,76.65,66.89,56.06,55.98,53.59$, $52.56,44.00,43.88,41.12,37.32,31.35,30.12,28.14,26.41,26.11,26.03,25.22,19.99$.

LC-MS (80-100\% B, $19 \mathbf{~ m i n}): \mathrm{t}_{\mathrm{R}}(37)=2.30 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=636.33[\mathrm{M}+\mathrm{H}]^{+}$, found $=636.07[\mathrm{M}+\mathrm{H}]^{+}$.

HRMS (ESI): calculated $=636.32794[\mathrm{M}+\mathrm{H}]^{+}$, found $=636.32770[\mathrm{M}+\mathrm{H}]^{+}$, $\operatorname{err}[\mathrm{ppm}]=0.37$.
RP-HPLC ($\mathbf{0} \mathbf{- 1 0 0 \%}$ B, $1.5 \mathrm{~mL} / \mathrm{min}, 30 \mathrm{~min}, 220 \mathrm{~nm}$): $\mathrm{t}_{R}(\mathbf{3 7})=19.87 \mathrm{~min}(93 \%$ Purity)
(2R,5S,12R,15R)-12-cyclohexyl-2-[2-(3,4-dimethoxyphenyl)ethyl]-15-methyl-3,19-dioxa-10,13,16-triazatricyclo[18.3.1.0,$^{5}{ }^{10}$]tetracosa-1(24),20,22-triene-4,11,14,17-tetrone (AV022)

Chemical Formula: $\mathrm{C}_{36} \mathrm{H}_{47} \mathrm{~N}_{3} \mathrm{O}_{8}$
Exact Mass: 649,34
Molecular Weight: 649,77

Starting materials: Resin: 36, $1^{\text {st }}$ AA: Fmoc-D-Chg-OH, $2^{\text {nd }}$ AA: Fmoc-D-Ala-OH, General Procedure 5.9.5.
Silica column chromatography: DCM/MeOH, 8/2, v/v.
prep-HPLC ($80-100 \% \mathrm{~B}, 10 \mathrm{~mL} / \mathrm{min}, 10 \mathrm{~min}, 254 \mathrm{~nm})$: $\mathrm{t}_{R}(38)=11.80 \mathrm{~min}$.
Yield 17 mg (19\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(800 \mathrm{MHz}\right.$, DMSO- $\left.\mathrm{d}_{6}+\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 8.31(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{t}, \mathrm{J}=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.90-6.86(\mathrm{~m}, 1 \mathrm{H}), 6.87-6.82(\mathrm{~m}, 3 \mathrm{H}), 6.78(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{dd}, \mathrm{J}=2.0,8.1 \mathrm{~Hz}$, $1 \mathrm{H}), 5.62(\mathrm{dd}, \mathrm{J}=5.0,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.08-5.04(\mathrm{~m}, 1 \mathrm{H}), 4.73(\mathrm{~d}, \mathrm{~J}=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{~d}, \mathrm{~J}=15.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.48(\mathrm{dd}, \mathrm{J}=7.0,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{p}, \mathrm{J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.70-3.65(\mathrm{~m}$, $1 \mathrm{H}), 3.00-2.93(\mathrm{~m}, 1 \mathrm{H}), 2.59-2.52(\mathrm{~m}, 1 \mathrm{H}), 2.49-2.43(\mathrm{~m}, 1 \mathrm{H}), 2.17-2.10(\mathrm{~m}, 1 \mathrm{H}), 2.06-1.99(\mathrm{~m}$,
$2 \mathrm{H}), 1.79-1.72(\mathrm{~m}, 1 \mathrm{H}), 1.72-1.68(\mathrm{~m}, 1 \mathrm{H}), 1.67-1.58(\mathrm{~m}, 6 \mathrm{H}), 1.58-1.54(\mathrm{~m}, 1 \mathrm{H}), 1.40-1.33(\mathrm{~m}$, $2 H), 1.31(d, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.22-1.11(\mathrm{~m}, 2 \mathrm{H}), 1.09-1.03(\mathrm{~m}, 1 \mathrm{H}), 0.98-0.89(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(201 \mathrm{MHz}, \mathrm{DMSO}-\boldsymbol{d}_{6}+\mathrm{CD}_{2} \mathrm{Cl}_{2}\right.$): $\delta \mathbf{1 7 2 . 1 6}, 171.15,170.56,167.97,158.76,148.66,147.06$, $141.43,133.34,128.95,120.00,119.50,116.36,112.26,111.89,110.08,75.41,65.71,55.51,55.37$, $52.48,52.10,50.28,42.48,40.25,37.37,30.71,30.11,27.16,26.02,25.87,25.67,25.61,24.46,19.53$, 18.04.

LC-MS (0-100\% B, 19 min$): \mathrm{t}_{\mathrm{R}}(\mathbf{3 8})=12.00 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=650.34[\mathrm{M}+\mathrm{H}]^{+}$, found $=650.09[\mathrm{M}+\mathrm{H}]^{+}$.

HRMS (ESI): calculated $=650.34359[\mathrm{M}+\mathrm{H}]^{+}$, found $=650.34361[\mathrm{M}+\mathrm{H}]^{+}$, err $[\mathrm{ppm}]=0.03$.
RP-HPLC ($\mathbf{0} \mathbf{- 1 0 0 \%}$ B, $1.5 \mathrm{~mL} / \mathrm{min}, \mathbf{2 0} \mathbf{~ m i n}, \mathbf{2 2 0} \mathbf{n m}$): $\mathrm{t}_{R}(\mathbf{3 8})=20.35 \mathrm{~min}$ (96% Purity)
(2R,5S,12R)-12-cyclohexyl-2-[2-(3,4-dimethoxyphenyl)ethyl]-15,15-dimethyl-3,19-dioxa-10,13,16-triazatricyclo[18.3.1.0,10]tetracosa-1(24),20,22-triene-4,11,14,17-tetrone (AV023/183)

Chemical Formula: $\mathrm{C}_{37} \mathrm{H}_{49} \mathrm{~N}_{3} \mathrm{O}_{8}$
Exact Mass: 663,35
Molecular Weight: 663,80
39
Starting materials: Resin: 36, $1^{\text {st }} A A$: Fmoc-D-Chg-OH, $2^{\text {nd }} A A$: Fmoc-Aib-OH, General Procedure 5.9.5.
Silica column chromatography: $\mathrm{DCM} / \mathrm{Ac}, 10 / 1, \mathrm{v} / \mathrm{v}$.
$\operatorname{TLC}(D C M / A c, 10 / 1): \mathrm{R}_{f}(39)=0.35$.
Yield 257 mg (83\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.73(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.19(\mathrm{~m}, 1 \mathrm{H}), 6.99-6.96(\mathrm{~m}, 1 \mathrm{H}), 6.85-$ $6.80(\mathrm{~m}, 2 \mathrm{H}), 6.77(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.68-6.62(\mathrm{~m}, 2 \mathrm{H}), 6.48(\mathrm{~s}, 1 \mathrm{H}), 5.65(\mathrm{dd}, \mathrm{J}=5.7,7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $5.25-5.20(\mathrm{~m}, 1 \mathrm{H}), 4.69(\mathrm{dd}, \mathrm{J}=6.1,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{~d}, \mathrm{~J}=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~d}, \mathrm{~J}=16.1 \mathrm{~Hz}, 1 \mathrm{H})$, $3.86(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.81-3.75(\mathrm{~m}, 1 \mathrm{H}), 3.28(\mathrm{td}, \mathrm{J}=3.1,13.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.62-2.44(\mathrm{~m}, 2 \mathrm{H}), 2.31-$
$2.20(\mathrm{~m}, 1 \mathrm{H}), 2.16-2.10(\mathrm{~m}, 1 \mathrm{H}), 2.08-2.00(\mathrm{~m}, 1 \mathrm{H}), 1.99(\mathrm{~s}, 1 \mathrm{H}), 1.82(\mathrm{~s}, 1 \mathrm{H}), 1.78(\mathrm{~s}, 3 \mathrm{H}), 1.77-$ $1.60(\mathrm{~m}, 10 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}), 1.30-1.17(\mathrm{~m}, 2 \mathrm{H}), 1.16-0.97(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13}$ C-NMR (126 MHz, CDCl 3): $\delta 174.04,172.32,171.69,169.57,157.60,149.07,147.53,142.13,133.55$, $129.78,120.64,120.27,115.19,111.84,111.54,110.27,76.29,66.95,58.76,56.08,56.00,53.63$, $52.52,51.94,43.83,41.40,37.83,31.25,30.34,26.45,26.20,26.12,25.47,25.22,24.81,19.89$.

LC-MS (50-100\% B, $19 \mathbf{m i n}): \mathrm{t}_{R}(39)=8.25 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=664.35[\mathrm{M}+\mathrm{H}]^{+}$, found $=664.32[\mathrm{M}+\mathrm{H}]^{+}$.

HRMS (ESI): calculated $=664.35924[\mathrm{M}+\mathrm{H}]^{+}$, found $=664.36019[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{err}[\mathrm{ppm}]=1.42$.
RP-HPLC (50 - 100\% B, $1.5 \mathrm{~mL} / \mathrm{min}, 20 \mathrm{~min}, 254 \mathrm{~nm}): \mathrm{t}_{R}(\mathbf{3 9)}=12.57 \mathrm{~min}$ (99\% Purity)
(2'R,5'S,12'R)-12'-cyclohexyl-2'-[2-(3,4-dimethoxyphenyl)ethyl]-3',19'-dioxa-10',13',16'-triazaspiro[cyclopropane-1,15'-tricyclo[18.3.1.0 ${ }^{5},{ }^{10}$]tetracosane]-1'(24'),20',22'-triene-4',11',14',17'-tetrone (AV075)

Chemical Formula: $\mathrm{C}_{37} \mathrm{H}_{47} \mathrm{~N}_{3} \mathrm{O}_{8}$
Exact Mass: 661,34
Molecular Weight: 661,78
40

Starting materials: Resin: 36, $1^{\text {st }} A A$: Fmoc-D-Chg-OH, $2^{\text {nd }} A A$: Fmoc-1-amino-1-cyclopropanecarboxylic acid, General Procedure 5.9.5.

Silica column chromatography: $\mathrm{DCM} / \mathrm{MeOH}, 95 / 5, \mathrm{v} / \mathrm{v}$.
prep-HPLC ($80-100 \%$ B, $10 \mathrm{~mL} / \mathrm{min}, 10 \mathrm{~min}, 254 \mathrm{~nm}$): $\mathrm{t}_{R}(40)=10.40 \mathrm{~min}$.
Yield 27 mg (77\%).
${ }^{1} \mathrm{H}-$ NMR (599 MHz, DMSO- $\boldsymbol{d}_{6}+$ CD $_{2} \mathrm{Cl}_{2}$): $\delta 8.12(\mathrm{~s}, 1 \mathrm{H}), 7.46(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $6.51(d, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.43-6.38(\mathrm{~m}, 3 \mathrm{H}), 6.35-6.31(\mathrm{~m}, 1 \mathrm{H}), 6.24(\mathrm{dd}, \mathrm{J}=2.1,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{dd}$, $J=5.3,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{dd}, \mathrm{J}=2.7,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{~d}, \mathrm{~J}=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{~d}, \mathrm{~J}=15.9 \mathrm{~Hz}, 1 \mathrm{H})$, $4.04(\mathrm{t}, \mathrm{J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{~s}, 3 \mathrm{H}), 3.27(\mathrm{~s}, 4 \mathrm{H}), 3.17(\mathrm{~d}, \mathrm{~J}=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{t}, \mathrm{J}=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.05$
$-1.96(\mathrm{~m}, 1 \mathrm{H}), 1.75-1.67(\mathrm{~m}, 1 \mathrm{H}), 1.66-1.54(\mathrm{~m}, 3 \mathrm{H}), 1.40-1.28(\mathrm{~m}, 1 \mathrm{H}), 1.30-1.13(\mathrm{~m}, 6 \mathrm{H}), 1.13$
$-1.03(\mathrm{~m}, 2 \mathrm{H}), 0.98-0.86(\mathrm{~m}, 2 \mathrm{H}), 0.85-0.66(\mathrm{~m}, 2 \mathrm{H}), 0.66-0.55(\mathrm{~m}, 1 \mathrm{H}), 0.55-0.41(\mathrm{~m}, 3 \mathrm{H}), 0.39$ - $0.29(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{DMSO}-\boldsymbol{d}_{\mathbf{6}}+\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 185.63,185.35,184.66,183.74,173.34,163.11,161.51$, $155.74,147.84,143.26,134.47,133.90,131.29,126.72,126.36,124.21,90.10,79.77,69.99,69.84$, $67.92,66.88,56.94,54.96,52.06,48.52,45.21,44.85,41.57,40.47,40.38,40.27,40.14,38.96,34.12$, 30.32, 28.75.

LC-MS (0-100\% B, 19 min$): \mathrm{t}_{\mathrm{R}}(\mathbf{4 0})=12.24 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=662.34[\mathrm{M}+\mathrm{H}]^{+}$, found $=662.32[\mathrm{M}+\mathrm{H}]^{+}$.

HRMS (ESI): calculated $=662.34359[\mathrm{M}+\mathrm{H}]^{+}$, found $=662.34412[\mathrm{M}+\mathrm{H}]^{+}$, err $[\mathrm{ppm}]=0.79$.
RP-HPLC ($\mathbf{0}$ - 100\% B, $1.5 \mathrm{~mL} / \mathrm{min}, 20 \mathrm{~min}, 220 \mathrm{~nm}$): $\mathrm{t}_{R}(\mathbf{4 0})=19.97 \mathrm{~min}$ (96% Purity)
(2'R,5'S,12'R)-12'-cyclohexyl-2'-[2-(3,4-dimethoxyphenyl)ethyl]-3',19'-dioxa-10',13',16'-triazaspiro[cyclobutane-1,15'-tricyclo[18.3.1.0 ${ }^{5},^{10}$]tetracosane]-1'(24'),20',22'-triene-4',11',14',17'-tetrone (AV293)

Chemical Formula: $\mathrm{C}_{38} \mathrm{H}_{49} \mathrm{~N}_{3} \mathrm{O}_{8}$
Exact Mass: 675,35
Molecular Weight: 675,81
41

Starting materials: Resin: 36, $1^{\text {st }} A A:$ Fmoc-D-Chg-OH, $2^{\text {nd }} A A$: Fmoc-1-amino-1-cyclobutanecarboxylic acid, General Procedure 5.9.5

Silica column chromatography: $\mathrm{DCM} / \mathrm{Ac}, 10 / 1, \mathrm{v} / \mathrm{v}$.
TLC (DCM/Ac, 10/1): $\mathrm{R}_{f}(41)=0.55$.
prep-HPLC ($50-100 \% \mathrm{~B}, 10 \mathrm{~mL} / \mathrm{min}, 10 \mathrm{~min}, 254 \mathrm{~nm}): \mathrm{t}_{R}(41)=8.00 \mathrm{~min}$.
Yield 38 mg (29\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.87(\mathrm{~d}, \mathrm{~J}=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.17(\mathrm{~m}, 1 \mathrm{H}), 6.89-6.83(\mathrm{~m}, 2 \mathrm{H}), 6.81-$ $6.72(\mathrm{~m}, 2 \mathrm{H}), 6.64-6.61(\mathrm{~m}, 2 \mathrm{H}), 6.57(\mathrm{~s}, 1 \mathrm{H}), 5.60(\mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{q}, \mathrm{J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{~d}, \mathrm{~J}$ $=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{dd}, \mathrm{J}=6.4,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~d}, \mathrm{~J}=16.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.81-$ $3.77(m, 1 H), 3.22-3.14(m, 1 H), 2.94-2.85(m, 1 H), 2.78-2.69(m, 1 H), 2.59-2.52(m, 1 H), 2.52-$ $2.40(m, 1 H), 2.29-2.17(m, 1 H), 2.14-2.06(m, 1 H), 2.03-1.81(m, 4 H), 1.80-1.59(m, 11 H), 1.51$ $-1.38(m, 1 H), 1.31-1.19(m, 2 H), 1.19-1.09(m, 1 H), 1.08-1.00(m, 1 H)$.
${ }^{13}$ C-NMR (126 MHz, CDCl_{3}): $\delta 173.13,171.95,171.45,169.89,157.76,149.01,147.45,142.16,133.47$, $129.75,120.72,120.20,116.94,111.76,111.47,107.68,76.51,66.58,59.87,56.03,55.95,53.44$, $52.32,43.81,41.27,38.36,32.25,31.12,30.36,29.36,28.06,26.49,26.20,26.14,26.08,25.31,19.94$, 15.71.

LC-MS (50-100\% B, 19 min$): \mathrm{t}_{\mathrm{R}}(\mathbf{4 1})=9.47 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=676.36[\mathrm{M}+\mathrm{H}]^{+}$, found $=676.48[\mathrm{M}+\mathrm{H}]^{+}$.

HRMS (ESI): calculated $=676.35924[\mathrm{M}+\mathrm{H}]^{+}$, found $=676.35936[\mathrm{M}+\mathrm{H}]^{+}$, $\operatorname{err}[\mathrm{ppm}]=0.17$.
RP-HPLC (50-100\% B, $1.5 \mathrm{~mL} / \mathrm{min}, 20 \mathrm{~min}, 254 \mathrm{~nm}): \mathrm{t}_{\mathrm{R}}(\mathbf{4 1})=8.78 \mathrm{~min}$ (99% Purity)
(2'R,5'S,12'R)-12'-cyclohexyl-2'-[2-(3,4-dimethoxyphenyl)ethyl]-3',19'-dioxa-10',13',16'-triazaspiro[cyclopentane-1,15'-tricyclo[18.3.1.0 ${ }^{5},{ }^{10}$]tetracosane]-1'(24'),20',22'-triene-4',11',14',17'-tetrone (AV076)

Chemical Formula: $\mathrm{C}_{39} \mathrm{H}_{51} \mathrm{~N}_{3} \mathrm{O}_{8}$
Exact Mass: 689,37
Molecular Weight: 689,84
42
Starting materials: Resin: 36, $1^{\text {st }} A A$: Fmoc-D-Chg-OH, $2^{\text {nd }} A A$: Fmoc-1-amino-1-cyclopentanecarboxylic acid, General Procedure 5.9.5.
prep-HPLC (80 - 100\% B, $\mathbf{1 0} \mathbf{~ m L} / \mathrm{min}, 10 \mathrm{~min}, \mathbf{2 5 4} \mathrm{~nm}): \mathrm{t}_{R}(\mathbf{4 2})=5.01 \mathrm{~min}$.

Silica column chromatography: $\mathrm{DCM} / \mathrm{MeOH}, 95 / 5, \mathrm{v} / \mathrm{v}$.
Yield 4 mg (4\%).
LC-MS (50-100\% B, $19 \mathbf{m i n}): \mathrm{t}_{\mathrm{R}}(\mathbf{4 2})=13.04 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=690.37[\mathrm{M}+\mathrm{H}]^{+}$,
found $=690.36[\mathrm{M}+\mathrm{H}]^{+}$.
HRMS (ESI): calculated $=690.37487[\mathrm{M}+\mathrm{H}]^{+}$, found $=690.37549[\mathrm{M}+\mathrm{H}]^{+}$, err $[\mathrm{ppm}]=0.90$.
RP-HPLC ($\mathbf{0}$ - 100\% B, $1.5 \mathrm{~mL} / \mathrm{min}, 20 \mathrm{~min}, 220 \mathrm{~nm}$): $\mathrm{t}_{R}(\mathbf{4 2})=21.33 \mathrm{~min}$ (98% Purity)
(2R,5S,12R)-12-cyclohexyl-2-[2-(3,4-dimethoxyphenyl)ethyl]-16-methyl-3,19-dioxa-10,13,16-triazatricyclo[18.3.1.0,510]tetracosa-1(24),20,22-triene-4,11,14,17-tetrone (AV658)

Chemical Formula: $\mathrm{C}_{36} \mathrm{H}_{47} \mathrm{~N}_{3} \mathrm{O}_{8}$
Exact Mass: 649,34
Molecular Weight: 649,77
43

Starting materials: Resin: 36, $1^{\text {st }} A A$: Fmoc-D-Chg-OH, $2^{\text {nd }} A A$: Fmoc-Gly-OH, General Procedure 5.9.5.
prep-HPLC ($60-100 \%$ B, $10 \mathrm{~mL} / \mathrm{min}, 10 \mathrm{~min}, 254 \mathrm{~nm}): \mathrm{t}_{R}(43)=4.60 \mathrm{~min}$.
Silica column chromatography: DCM $+2 \% \mathrm{MeOH}, \mathrm{v} / \mathrm{v}$.
Yield 30 mg (19\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.23(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~s}, 1 \mathrm{H}), 6.80-6.73(\mathrm{~m}, 3 \mathrm{H}), 6.69-6.61(\mathrm{~m}$, $2 H), 5.73-5.67(m, 1 H), 5.41-5.35(m, 1 H), 4.89(t, J=7.8 H z, 1 H), 4.72(d, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(d, J$ $=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{q}, \mathrm{J}=17.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.92-3.85(\mathrm{~m}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.28-3.18(\mathrm{~m}$, $1 \mathrm{H}), 3.07(\mathrm{~s}, 3 \mathrm{H}), 2.62-2.51(\mathrm{~m}, 2 \mathrm{H}), 2.25-2.02(\mathrm{~m}, 2 \mathrm{H}), 1.83-1.62(\mathrm{~m}, 12 \mathrm{H}), 1.54-1.38(\mathrm{~m}, 1 \mathrm{H})$, $1.30-0.98(\mathrm{~m}, 5 \mathrm{H})$.
${ }^{13}$ C-NMR (126 MHz, CDCl_{3}): $\delta 171.69,170.83,168.72,167.77,157.99,149.01,147.46,142.02,133.74$, $129.52,120.27,119.53,114.01,111.90,111.72,111.47,75.87,68.30,56.07,56.01,53.72,53.55$, $53.08,52.11,43.94,42.00,37.99,35.78,30.84,30.15,28.60,26.19,26.14,26.07,25.29,19.77$.

LC-MS (50-100\% B, 19 min$): \mathrm{t}_{\mathrm{R}}(\mathbf{4 3})=7.07 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=650.34[\mathrm{M}+\mathrm{H}]^{+}$, found $=650.51[\mathrm{M}+\mathrm{H}]^{+}$.

HRMS (ESI): calculated $=650.34359[\mathrm{M}+\mathrm{H}]^{+}$, found $=650.34345[\mathrm{M}+\mathrm{H}]^{+}$, err $[\mathrm{ppm}]=0.22$.
RP-HPLC (50-100\% B, $1.5 \mathrm{~mL} / \mathrm{min}, 15 \mathrm{~min}, 220 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}(\mathbf{4 3})=6.77 \mathrm{~min}$ (99\% Purity)
(2R,5S,12R)-12-cyclohexyl-2-[2-(3,4-dimethoxyphenyl)ethyl]-13-methyl-3,19-dioxa-10,13,16-triazatricyclo[18.3.1.0,10]tetracosa-1(24),20,22-triene-4,11,14,17-tetrone (AV087)

Chemical Formula: $\mathrm{C}_{36} \mathrm{H}_{47} \mathrm{~N}_{3} \mathrm{O}_{8}$
Exact Mass: 649,34
Molecular Weight: 649,77
44

Starting materials: Resin: 36, $1^{\text {st }} A A$: Fmoc-D-Chg-OH, $2^{\text {nd }} A A$: Fmoc-Gly-OH, General Procedure 5.9.5.

Silica column chromatography: $\mathrm{DCM} / \mathrm{MeOH}, 95 / 5, \mathrm{v} / \mathrm{v}$.
prep-HPLC ($80-90 \% \mathrm{~B}, 10 \mathrm{~mL} / \mathrm{min}, 15 \mathrm{~min}, 254 \mathrm{~nm}): \mathrm{t}_{R}(44)=11.38 \mathrm{~min}$.
Yield 1 mg (1\%).
LC-MS (0-100\% B, $19 \mathbf{m i n}): \mathrm{t}_{\mathrm{R}}(44)=12.03 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=650.34[\mathrm{M}+\mathrm{H}]^{+}$, found $=650.19[\mathrm{M}+\mathrm{H}]^{+}$.

HRMS (ESI): calculated $=650.34359[\mathrm{M}+\mathrm{H}]^{+}$, found $=650.34372[\mathrm{M}+\mathrm{H}]^{+}$, $\operatorname{err}[\mathrm{ppm}]=0.20$.
RP-HPLC (0 - 100\% B, $1.5 \mathrm{~mL} / \mathrm{min}, 20 \mathrm{~min}, 220 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}(\mathbf{4 4})=19.72 \mathrm{~min}$ (98% Purity)
(2R,5S,12R)-12-cyclohexyl-2-[2-(3,4-dimethoxyphenyl)ethyl]-13,16-dimethyl-3,19-dioxa-10,13,16-triazatricyclo[18.3.1.0,10]tetracosa-1(24),20,22-triene-4,11,14,17-tetrone (AV160)

Chemical Formula: $\mathrm{C}_{37} \mathrm{H}_{49} \mathrm{~N}_{3} \mathrm{O}_{8}$
Exact Mass: 663,35
Molecular Weight: 663,80
45

Starting materials: Resin: 36, $1^{\text {st }}$ AA: Fmoc-D-Chg-OH, $2^{\text {nd }}$ AA: Fmoc-Gly-OH, General Procedure 5.9.5.
prep-HPLC (50-100\% B, $10 \mathrm{~mL} / \mathrm{min}, 10 \mathrm{~min}, 254 \mathrm{~nm}): \mathrm{t}_{\mathrm{R}}(\mathbf{4 5})=11.75 \mathrm{~min}$.
Yield 6 mg (30\%).
LC-MS ($\mathbf{5 0 - 1 0 0 \%} \mathbf{B , 1 9} \mathbf{~ m i n}$): $\mathrm{t}_{\mathrm{R}}(\mathbf{4 5})=7.14 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=664.35[\mathrm{M}+\mathrm{H}]^{+}$,
found $=664.14[\mathrm{M}+\mathrm{H}]^{+}$.
HRMS (ESI): calculated $=664.35924[\mathrm{M}+\mathrm{H}]^{+}$, found $=664.35913[\mathrm{M}+\mathrm{H}]^{+}$, err $[\mathrm{ppm}]=0.17$.
RP-HPLC (0 - 100\% B, $1.5 \mathrm{~mL} / \mathrm{min}, 20 \mathrm{~min}, 254 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}(\mathbf{4 5})=19.93 \mathrm{~min}(97 \%$ Purity)
((2R,5S,12R)-12-cyclohexyl-2-[2-(3,4-dimethoxyphenyl)ethyl]-15,15,16-trimethyl-3,19-dioxa-10,13,16-triazatricyclo[18.3.1.0 ${ }^{5},{ }^{10}$]tetracosa-1(24),20,22-triene-4,11,14,17-tetrone (AV168)

Chemical Formula: $\mathrm{C}_{38} \mathrm{H}_{51} \mathrm{~N}_{3} \mathrm{O}_{8}$
Exact Mass: 677,37
Molecular Weight: 677,83
46

Starting materials: Resin: 36, $1^{\text {st }}$ AA: Fmoc-D-Chg-OH, $2^{\text {nd }} A A$: Fmoc-AIB-OH, General Procedure 5.9.5.
prep-HPLC (70 - 90\% B, $10 \mathrm{~mL} / \mathrm{min}, 25 \mathrm{~min}, 254 \mathrm{~nm})$: $\mathrm{t}_{R}(46)=16.25 \mathrm{~min}$.
Yield 15 mg (21\%).
LC-MS (50-100\% B, 19 min$): \mathrm{t}_{R}(46)=7.64 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=678.37[\mathrm{M}+\mathrm{H}]^{+}$, found $=678.41[\mathrm{M}+\mathrm{H}]^{+}$.

RP-HPLC (50-100\% B, $1.5 \mathrm{~mL} / \mathrm{min}, 20 \mathrm{~min}, 254 \mathrm{~nm}): \mathrm{t}_{\mathrm{R}}(46)=9.34 \mathrm{~min}(89 \%$ Purity)
(9R,12R,19S,22R)-12-cyclohexyl-22-[2-(3,4-dimethoxyphenyl)ethyl]-2,21-dioxa-5,11,14triazatetracyclo[21.3.1.0 ${ }^{5}{ }^{9} .0^{14},{ }^{19}$] heptacosa-1(26),23(27),24-triene-4,10,13,20-tetrone (AV041)

47

Starting materials: Resin: 36, $1^{\text {st }} \mathrm{AA}$: Fmoc-D-Chg-OH, $2^{\text {nd }} \mathrm{AA}$: Fmoc-D-Pro-OH, General Procedure 5.9.5.
Silica column chromatography: $\mathrm{DCM} / \mathrm{MeOH}, 9 / 1, \mathrm{v} / \mathrm{v}$.
prep-HPLC (65-68\% B, $10 \mathrm{~mL} / \mathrm{min}, 14 \mathrm{~min}, 254 \mathrm{~nm}): \mathrm{t}_{R}(48)=11.80 \mathrm{~min}$.
Yield 7 mg (7\%).
LC-MS (0-100\% B, 19 min$): \mathrm{t}_{R}(47)=12.38 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=676.36[\mathrm{M}+\mathrm{H}]^{+}$, found $=676.18[\mathrm{M}+\mathrm{H}]^{+}$.

HRMS (ESI): calculated $=676.35924[\mathrm{M}+\mathrm{H}]^{+}$, found $=676.35889[\mathrm{M}+\mathrm{H}]^{+}$, err $[\mathrm{ppm}]=0.52$.
RP-HPLC (0 - 100\% B, $1.5 \mathrm{~mL} / \mathrm{min}, 20 \mathrm{~min}, 220 \mathrm{~nm}$): $\mathrm{t}_{R}(47)=20.25 \mathrm{~min}$ (99\% Purity)
(9S,12R,19S,22R)-12-cyclohexyl-22-[2-(3,4-dimethoxyphenyl)ethyl]-2,21-dioxa-5,11,14triazatetracyclo[21.3.1.0 ${ }^{5},{ }^{9} .0^{14},{ }^{19}$] heptacosa-1(26),23(27),24-triene-4,10,13,20-tetrone (AVO42)

Chemical Formula: $\mathrm{C}_{38} \mathrm{H}_{49} \mathrm{~N}_{3} \mathrm{O}_{8}$
Exact Mass: 675,35
Molecular Weight: 675,81
48

Starting materials: Resin: 36, $1^{\text {st }}$ AA: Fmoc-D-Chg-OH, $2^{\text {nd }}$ AA: Fmoc-L-Pro-OH, General Procedure 5.9.5.
Silica column chromatography: DCM/MeOH, 9/1, v/v.
prep-HPLC (65-68\% B, $10 \mathrm{~mL} / \mathrm{min}, 14 \mathrm{~min}, 254 \mathrm{~nm}): \mathrm{t}_{R}(48)=11.80 \mathrm{~min}$.
Yield 4 mg (4\%).
LC-MS (0-100\% B, $19 \mathbf{m i n}): \mathrm{t}_{R}(48)=12.03 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=676.36[\mathrm{M}+\mathrm{H}]^{+}$, found $=676.18[\mathrm{M}+\mathrm{H}]^{+}$.

HRMS (ESI): calculated $=676.35924[\mathrm{M}+\mathrm{H}]^{+}$, found $=676.35941[\mathrm{M}+\mathrm{H}]^{+}$, $\operatorname{err}[\mathrm{ppm}]=0.24$.
RP-HPLC ($\mathbf{0} \mathbf{- 1 0 0 \%}$ B, $1.5 \mathrm{~mL} / \mathrm{min}, \mathbf{2 0} \mathbf{~ m i n}, 220 \mathrm{~nm}$): $\mathrm{t}_{R}(\mathbf{4 8})=19.82 \mathrm{~min}$ (99% Purity)
(2R,5S,12R,15S)-12-cyclohexyl-2-[2-(3,4-dimethoxyphenyl)ethyl]-15-methyl-3,19-dioxa-10,13,16-triazatricyclo[18.3.1.0,10]tetracosa-1(24),20,22-triene-4,11,14,17-tetrone (AV021)

Chemical Formula: $\mathrm{C}_{36} \mathrm{H}_{47} \mathrm{~N}_{3} \mathrm{O}_{8}$
Exact Mass: 649,34
Molecular Weight: 649,77

49

Starting materials: Resin: 36, $1^{\text {st }} A A$: Fmoc-D-Chg-OH, $2^{\text {nd }} A A$: Fmoc-L-Ala-OH, General Procedure 5.9.5.
Silica column chromatography: $\mathrm{DCM} / \mathrm{MeOH}, 8 / 2, \mathrm{v} / \mathrm{v}$.
prep-HPLC ($80-100 \%$ B, $10 \mathrm{~mL} / \mathrm{min}, 10 \mathrm{~min}, 254 \mathrm{~nm}): \mathrm{t}_{R}(49)=11.80 \mathrm{~min}$.
Yield 27 mg (28\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(800 \mathrm{MHz}\right.$, DMSO- $\mathrm{d}_{6}+\mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 8.30(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.25$ (m, 1H), 6.96 (ddd, J = 1.0, 2.6, 8.2 Hz, 1H), $6.93-6.89(\mathrm{~m}, 1 \mathrm{H}), 6.83(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}, \mathrm{~J}=2.0$ $\mathrm{Hz}, 1 \mathrm{H}), 6.74-6.71(\mathrm{~m}, 1 \mathrm{H}), 6.65(\mathrm{dd}, \mathrm{J}=2.0,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.73(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.23-5.20(\mathrm{~m}, 1 \mathrm{H})$, $4.68(\mathrm{~d}, \mathrm{~J}=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.64-4.58(\mathrm{~m}, 1 \mathrm{H}), 4.46(\mathrm{t}, \mathrm{J}=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{~d}, \mathrm{~J}=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.99-$ $3.92(\mathrm{~m}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 2.64-2.56(\mathrm{~m}, 1 \mathrm{H}), 2.48-2.37(\mathrm{~m}, 2 \mathrm{H}), 2.15-2.07(\mathrm{~m}, 2 \mathrm{H})$, $2.06-1.99(\mathrm{~m}, 1 \mathrm{H}), 1.74-1.60(\mathrm{~m}, 5 \mathrm{H}), 1.60-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.52-1.42(\mathrm{~m}, 2 \mathrm{H}), 1.40-1.21(\mathrm{~m}, 2 \mathrm{H})$, $1.16(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.14-1.07(\mathrm{~m}, 2 \mathrm{H}), 0.97-0.80(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13}$ C-NMR (201 MHz, DMSO- $\boldsymbol{d}_{6}+$ CD $_{2} \mathrm{Cl}_{2}$): $\delta 171.15,170.52,170.43,167.86,158.41,148.63,147.05$, $140.21,133.18,129.53,121.86,119.97,117.71,112.25,111.87,110.35,75.05,68.11,55.51,55.34$, $54.90,51.85,51.66,46.78,43.37,35.15,30.72,29.31,27.98,26.17,25.77,25.41,25.36,25.10,20.19$, 18.21 .

LC-MS (0-100\% B, $19 \mathbf{m i n}): \mathrm{t}_{\mathrm{R}}(49)=12.34 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=650.34[\mathrm{M}+\mathrm{H}]^{+}$, found $=650.07[\mathrm{M}+\mathrm{H}]^{+}$.
HRMS (ESI): calculated $=650.34359[\mathrm{M}+\mathrm{H}]^{+}$, found $=650.34358[\mathrm{M}+\mathrm{H}]^{+}$, err $[\mathrm{ppm}]=0.01$.
RP-HPLC (0 - 100\% B, $1.5 \mathrm{~mL} / \mathrm{min}, 20 \mathrm{~min}, 220 \mathrm{~nm}$): $\mathrm{t}_{R}(\mathbf{4 9})=20.72 \mathrm{~min}$ (96% Purity)
(2R,5S,12R)-12-cyclohexyl-2-[2-(3,4-dimethoxyphenyl)ethyl]-3,20-dioxa-10,13,17triazatricyclo[19.3.1.0 $\mathbf{0}^{\mathbf{1 0}}{ }^{\text {] }}$ pentacosa-1(25),21,23-triene-4,11,14,18-tetrone (AV024)

Chemical Formula: $\mathrm{C}_{36} \mathrm{H}_{47} \mathrm{~N}_{3} \mathrm{O}_{8}$
Exact Mass: 649,34
Molecular Weight: 649,77
50

Starting materials: Resin: 36, $1^{\text {st }}$ AA: Fmoc-D-Chg-OH, $2^{\text {nd }}$ AA: Fmoc- β-Ala-OH, General Procedure 5.9.5.
Silica column chromatography: DCM/MeOH, 9/1, v/v.
prep-HPLC (80 - 100\% B, $10 \mathrm{~mL} / \mathrm{min}, 10 \mathrm{~min}, 254 \mathrm{~nm}$): $\mathrm{t}_{R}(50)=9.60 \mathrm{~min}$.
Yield 14 mg (16\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(800 \mathrm{MHz}\right.$, DMSO- $\left.\mathrm{d}_{6}+\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 7.93(\mathrm{~d}, \mathrm{~J}=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.82-7.78(\mathrm{~m}, 1 \mathrm{H}), 7.24(\mathrm{t}, \mathrm{J}=7.9$ $\mathrm{Hz}, 1 \mathrm{H}), 6.89-6.86(\mathrm{~m}, 1 \mathrm{H}), 6.86-6.82(\mathrm{~m}, 2 \mathrm{H}), 6.77(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.74-6.71(\mathrm{~m}, 1 \mathrm{H}), 6.69(\mathrm{dd}$, $J=2.0,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.58(\mathrm{dd}, \mathrm{J}=5.3,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.17-5.13(\mathrm{~m}, 1 \mathrm{H}), 4.71-4.67(\mathrm{~m}, 1 \mathrm{H}), 4.46(\mathrm{~d}, \mathrm{~J}=$ $15.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{~d}, \mathrm{~J}=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.03-3.97(\mathrm{~m}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.59-3.53(\mathrm{~m}$, $1 \mathrm{H}), 3.18-3.13(\mathrm{~m}, 1 \mathrm{H}), 3.13-3.06(\mathrm{~m}, 1 \mathrm{H}), 2.58-2.52(\mathrm{~m}, 1 \mathrm{H}), 2.48-2.40(\mathrm{~m}, 2 \mathrm{H}), 2.32-2.27(\mathrm{~m}$, $1 \mathrm{H}), 2.10-2.05(\mathrm{~m}, 1 \mathrm{H}), 2.05-1.98(\mathrm{~m}, 2 \mathrm{H}), 1.77-1.69(\mathrm{~m}, 3 \mathrm{H}), 1.69-1.64(\mathrm{~m}, 1 \mathrm{H}), 1.64-1.56(\mathrm{~m}$, $5 \mathrm{H}), 1.42-1.32(\mathrm{~m}, 1 \mathrm{H}), 1.28-1.06(\mathrm{~m}, 5 \mathrm{H}), 1.05-0.92(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13}$ C-NMR (201 MHz, DMSO- $\boldsymbol{d}_{6}+$ CD $_{2} \mathrm{Cl}_{2}$): $\delta 170.89,170.83,170.40,167.51,158.36,148.65,147.05$, $141.88,133.26,129.34,120.09,119.68,114.92,112.28,111.89,111.34,74.62,67.48,55.49,55.36$, $54.90,52.76,51.86,43.31,37.31,34.31,34.24,30.39,29.65,27.58,26.38,25.81,25.65,25.59,24.76$, 20.19.

LC-MS (0-100\% B, $19 \mathbf{m i n}): \mathrm{t}_{R}(\mathbf{5 0})=11.97 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=650.35[\mathrm{M}+\mathrm{H}]^{+}$, found $=650.04[\mathrm{M}+\mathrm{H}]^{+}$.

HRMS (ESI): calculated $=650.34359[\mathrm{M}+\mathrm{H}]^{+}$, found $=650.34363[\mathrm{M}+\mathrm{H}]^{+}$, err $[\mathrm{ppm}]=0.05$.
RP-HPLC ($\mathbf{0} \mathbf{- 1 0 0 \%}$ B, $1.5 \mathrm{~mL} / \mathrm{min}, 20 \mathrm{~min}, 220 \mathrm{~nm}$): $\mathrm{t}_{R}(\mathbf{5 0})=19.73 \mathrm{~min}$ (99\% Purity)
(2R,5S,12R)-12-cyclohexyl-2-[2-(3,4-dimethoxyphenyl)ethyl]-3,21-dioxa-10,13,18triazatricyclo[20.3.1.0 ${ }^{5},{ }^{10}$]hexacosa-1(26),22,24-triene-4,11,14,19-tetrone (AV077)

Chemical Formula: $\mathrm{C}_{37} \mathrm{H}_{49} \mathrm{~N}_{3} \mathrm{O}_{8}$ Exact Mass: 663,35
Molecular Weight: 663,80

51

Starting materials: Resin: 36, $1^{\text {st }} \mathrm{AA}$: Fmoc-D-Chg-OH, $2^{\text {nd }} \mathrm{AA}:$ Fmoc-GABA-OH, General Procedure 5.9.5.
Silica column chromatography: $\mathrm{DCM} / \mathrm{MeOH}, 95 / 5, \mathrm{v} / \mathrm{v}$.
prep-HPLC ($\mathbf{8 0} \mathbf{- 1 0 0 \%}$ B, $10 \mathrm{~mL} / \mathrm{min}, 20 \mathrm{~min}, 254 \mathrm{~nm}): \mathrm{t}_{\mathrm{R}}(\mathbf{5 1})=10.20 \mathrm{~min}$.
Yield $8 \mathrm{mg}(5 \%)$.
LC-MS ($0-100 \%$ B, 19 min): $\mathrm{t}_{R}(51)=11.72 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=664.35[\mathrm{M}+\mathrm{H}]^{+}$, found $=664.31[\mathrm{M}+\mathrm{H}]^{+}$.
HRMS (ESI): calculated $=664.35924[\mathrm{M}+\mathrm{H}]^{+}$, found $=664.35929[\mathrm{M}+\mathrm{H}]^{+}$, err $[\mathrm{ppm}]=0.07$.
RP-HPLC (0 - 100\% B, $1.5 \mathrm{~mL} / \mathrm{min}, 20 \mathrm{~min}, 220 \mathrm{~nm}$): $\mathrm{t}_{R}(\mathbf{5 1})=19.23 \mathrm{~min}(99 \%$ Purity)
(2R,5S,12R,15R,19R)-12-cyclohexyl-2-[2-(3,4-dimethoxyphenyl)ethyl]-3,23-dioxa-10,13,20triazatetracyclo[22.3.1. $0^{5},{ }^{10} .0^{15},{ }^{19}$] octacosa-1(28),24,26-triene-4,11,14,21-tetrone (AV079)

Chemical Formula: $\mathrm{C}_{39} \mathrm{H}_{51} \mathrm{~N}_{3} \mathrm{O}_{8}$
Exact Mass: 689,37
Molecular Weight: 689,84
52

Starting materials: Resin: 36, $1^{\text {st }}$ AA: Fmoc-D-Chg-OH, $2^{\text {nd }}$ AA: (1R,2R)-Fmoc-2-amino-1cyclopentanecarboxylic acid, General Procedure 5.9.5.
prep-HPLC (90-96\% B, $10 \mathrm{~mL} / \mathrm{min}, 10 \mathrm{~min}, 254 \mathrm{~nm}): \mathrm{t}_{R}(52)=5.10 \mathrm{~min}$.
Yield $3 \mathrm{mg}(3 \%)$.
LC-MS (0-100\% B, $19 \mathbf{m i n}$): $\mathrm{t}_{\mathrm{R}}(\mathbf{5 2})=12.31 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=690.37[\mathrm{M}+\mathrm{H}]^{+}$, found $=690.32[\mathrm{M}+\mathrm{H}]^{+}$.

HRMS (ESI): calculated $=690.37489[\mathrm{M}+\mathrm{H}]^{+}$, found $=690.37473[\mathrm{M}+\mathrm{H}]^{+}$, $\operatorname{err}[\mathrm{ppm}]=0.23$.
RP-HPLC (0 - 100\% B, $1.5 \mathrm{~mL} / \mathrm{min}, 20 \mathrm{~min}, 220 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}(\mathbf{5 2})=20.33 \mathrm{~min}$ (99\% Purity)
(2R,5S,12R,15S,19R)-12-cyclohexyl-2-[2-(3,4-dimethoxyphenyl)ethyl]-3,23-dioxa-10,13,20triazatetracyclo[22.3.1.0 $,^{10} .0^{15},{ }^{19}$] octacosa-1(28),24,26-triene-4,11,14,21-tetrone (AV078)

53

Starting materials: Resin: 36, $1^{\text {st }}$ AA: Fmoc-D-Chg-OH, $2^{\text {nd }}$ AA: (1S,2R)-Fmoc-2-amino-1cyclopentanecarboxylic acid, General Procedure 5.9.5.
prep-HPLC (90-96\% B, $10 \mathrm{~mL} / \mathrm{min}, 10 \mathrm{~min}, 254 \mathrm{~nm}): \mathrm{t}_{\mathrm{R}}(53)=5.10 \mathrm{~min}$.
Yield 2 mg (4\%).
LC-MS (0-100\% B, 19 min$): \mathrm{t}_{R}(53)=12.69 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=690.37[\mathrm{M}+\mathrm{H}]^{+}$,
found $=690.28[\mathrm{M}+\mathrm{H}]^{+}$.
HRMS (ESI): calculated $=690.37489[\mathrm{M}+\mathrm{H}]^{+}$, found $=690.37455[\mathrm{M}+\mathrm{H}]^{+}$, err $[\mathrm{ppm}]=0.50$.
RP-HPLC (0 - 100\% B, $1.5 \mathrm{~mL} / \mathrm{min}, 20 \mathrm{~min}, 220 \mathrm{~nm}$): $\mathrm{t}_{R}(53)=21.03 \mathrm{~min}$ (99% Purity)
(2R,5S,12R)-12-(cyclohexa-1,4-dien-1-yl)-2-[2-(3,4-dimethoxyphenyl)ethyl]-15,15-dimethyl-3,19-dioxa-10,13,16-triazatricyclo[18.3.1.0 ${ }^{5}{ }^{10}$]tetracosa-1(24),20,22-triene-4,11,14,17tetrone (AV419)

Chemical Formula: $\mathrm{C}_{37} \mathrm{H}_{45} \mathrm{~N}_{3} \mathrm{O}_{8}$
Exact Mass: 659,32
Molecular Weight: 659,77

54

Starting materials: Resin: 36, $1^{\text {st }} A A$: Fmoc-D-Dhphg-OH, $2^{\text {nd }} A A$: Fmoc-AIB-OH, General Procedure 5.9.5.

Silica column chromatography: $\mathrm{DCM} / \mathrm{Ac}, 10 / 1, \mathrm{v} / \mathrm{v}$.
TLC (DCM/Ac, 10/1): $\mathrm{R}_{f}(54)=0.35$.
Yield 7 mg (8\%).
LC-MS (50-100\% B, 19 min$): \mathrm{t}_{\mathrm{R}}(54)=6.87 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=660.33[\mathrm{M}+\mathrm{H}]^{+}$, found $=660.64[\mathrm{M}+\mathrm{H}]^{+}$.

HRMS (ESI): calculated $=660.32794[\mathrm{M}+\mathrm{H}]^{+}$, found $=660.32819[\mathrm{M}+\mathrm{H}]^{+}$, $\operatorname{err}[\mathrm{ppm}]=0.38$.
RP-HPLC (50-100\% B, $1.5 \mathrm{~mL} / \mathrm{min}, 20 \mathrm{~min}, 220 \mathrm{~nm}$): $\mathrm{t}_{R}(54)=7.35 \mathrm{~min}$ (82% Purity)
(2R,5S,12R)-12-(cyclohexylmethyl)-2-[2-(3,4-dimethoxyphenyl)ethyl]-15,15-dimethyl-3,19-dioxa-10,13,16-triazatricyclo[18.3.1.0 $\left.{ }^{5},{ }^{10}\right]$ tetracosa-1(24),20,22-triene-4,11,14,17-tetrone (AV424)

Chemical Formula: $\mathrm{C}_{38} \mathrm{H}_{51} \mathrm{~N}_{3} \mathrm{O}_{8}$
Exact Mass: 677,37
Molecular Weight: 677,83

55

Starting materials: Resin: 36, $1^{\text {st }} A A$: Fmoc-D-Cha-OH, $2^{\text {nd }} A A$: Fmoc-AIB-OH, General Procedure 5.9.5.

Silica column chromatography: DCM/Ac, 20/1, v/v.
TLC (DCM/Ac, 15/1): $\mathrm{R}_{f}(55)=0.30$.
Yield 24 mg (25\%).
LC-MS (50-100\% B, 19 min$): \mathrm{t}_{\mathrm{R}}(55)=9.26 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=678.37[\mathrm{M}+\mathrm{H}]^{+}$,
found $=678.64[\mathrm{M}+\mathrm{H}]^{+}$.
HRMS (ESI): calculated $=678.37489[\mathrm{M}+\mathrm{H}]^{+}$, found $=678.37543[\mathrm{M}+\mathrm{H}]^{+}$, err $[\mathrm{ppm}]=0.79$.
RP-HPLC (50-100\% B, $1.5 \mathrm{~mL} / \mathrm{min}, 20 \mathrm{~min}, 220 \mathrm{~nm}): \mathrm{t}_{R}(55)=10.40 \mathrm{~min}(99 \%$ Purity)
(2R,5S,12R)-2-[2-(3,4-dimethoxyphenyl)ethyl]-15,15-dimethyl-12-phenyl-3,19-dioxa-10,13,16-triazatricyclo[18.3.1.0,10]tetracosa-1(24),20,22-triene-4,11,14,17-tetrone (AV422)

56
Starting materials: Resin: 36, $1^{\text {st }} \mathrm{AA}$: Fmoc-D-Phg-OH, $2^{\text {nd }} \mathrm{AA}$: Fmoc-AIB-OH, General Procedure 5.9.5.
Silica column chromatography: DCM/Ac, $12 / 1, \mathrm{v} / \mathrm{v}$.
TLC (DCM/Ac, 10/1): $\mathrm{R}_{f}(\mathbf{5 6})=0.25$.
Yield 10 mg (11\%).
LC-MS (50-100\% B, 19 min): $\mathrm{t}_{\mathrm{R}}(\mathbf{5 6})=6.99 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=672.33[\mathrm{M}+\mathrm{H}]^{+}$, found $=672.46[\mathrm{M}+\mathrm{H}]^{+}$.

HRMS (ESI): calculated $=672.32794[\mathrm{M}+\mathrm{H}]^{+}$, found $=672.32778[\mathrm{M}+\mathrm{H}]^{+}$, err $[p p m]=0.24$.
RP-HPLC ($\mathbf{5 0} \mathbf{- 1 0 0 \%}$ B, $1.5 \mathrm{~mL} / \mathrm{min}, 20 \mathrm{~min}, 220 \mathrm{~nm}$): $\mathrm{t}_{R}(\mathbf{5 6})=7.26 \mathrm{~min}(99 \%$ Purity)
(2R,5S,12R)-2-[2-(3,4-dimethoxyphenyl)ethyl]-15,15-dimethyl-12-(pyridin-3-yl)-3,19-dioxa-10,13,16-triazatricyclo[18.3.1.0,10]tetracosa-1(24),20,22-triene-4,11,14,17-tetrone (AV425)

57

Starting materials: Resin: 36, $1^{\text {st }} A A$: Fmoc-D-Pyg-OH, $2^{\text {nd }} A A$: Fmoc-Gly-OH, General Procedure 5.9.5.
prep-HPLC ($40-100 \%$ B, $10 \mathrm{~mL} / \mathrm{min}, 10 \mathrm{~min}, 254 \mathrm{~nm}): \mathrm{t}_{R}(57)=5.42 \mathrm{~min}$.
Yield 4 mg (4\%).
LC-MS (0-100\% B, 19 min$): \mathrm{t}_{\mathrm{R}}(57)=8.73 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=673.30[\mathrm{M}+\mathrm{H}]^{+}$,
found $=673.66[\mathrm{M}+\mathrm{H}]^{+}$.
RP-HPLC (0 - 100\% B, $1.5 \mathrm{~mL} / \mathrm{min}, 20 \mathrm{~min}, 254 \mathrm{~nm}$): $\mathrm{t}_{R}(57)=11.39 \mathrm{~min}$ (84% Purity)
tert-butyl 3-\{[(2R,5S,12R)-2-[2-(3,4-dimethoxyphenyl)ethyl]-15,15-dimethyl-4,11,14,17-tetraoxo-3,19-dioxa-10,13,16-triazatricyclo[18.3.1.0 $\left.{ }^{5},{ }^{10}\right]$ tetracosa-1(24),20,22-trien-12-yl]methyl\}-2,3-dihydro-1H-indole-1-carboxylate (AV42O)

58
Starting materials: Resin: 36, $1^{\text {st }} A A$: Fmoc-D-Trp-OH, $2^{\text {nd }} A A$: Fmoc-AIB-OH, General Procedure 5.9.5.
Silica column chromatography: $\mathrm{DCM} / \mathrm{Ac}, 15 / 1, \mathrm{v} / \mathrm{v}$.
$\operatorname{TLC}(C H / E E, 10 / 1): \mathrm{R}_{f}(58)=0.35$.
Yield 32 mg (28\%).
LC-MS (50-100\% B, $19 \mathbf{m i n}): \mathrm{t}_{\mathrm{R}}(\mathbf{5 8})=10.25 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=811.38[\mathrm{M}+\mathrm{H}]^{+}$, found $=811.57[\mathrm{M}+\mathrm{H}]^{+}$.
RP-HPLC ($\mathbf{5 0} \mathbf{- 1 0 0 \%}$ B, $1.5 \mathrm{~mL} / \mathrm{min}, 20 \mathrm{~min}, 220 \mathrm{~nm}$): $\mathrm{t}_{R}(58)=12.01 \mathrm{~min}(99 \%$ Purity)
(2R,5S,12R)-2-[2-(3,4-dimethoxyphenyl)ethyl]-12-[(1H-indol-3-yl)methyl]-15,15-dimethyl-3,19-dioxa-10,13,16-triazatricyclo[18.3.1.0 $\left.{ }^{5},{ }^{10}\right]$ tetracosa-1(24),20,22-triene-4,11,14,17tetrone (AV454)

59
$58(10 \mathrm{mg}, 0.01 \mathrm{mmol}, 1.0 \mathrm{eq})$ is dissolved in $300 \mu \mathrm{~L}$ DCM. $150 \mu \mathrm{~L}$ TFA is added and the reaction stirred for 20 min . The solvent is removed under airstream and the crude product purified by semi-preparative HPLC.
prep-HPLC ($\mathbf{5 0 - 1 0 0 \%} \mathrm{B}, 10 \mathrm{~mL} / \mathrm{min}, 15 \mathrm{~min}, 254 \mathrm{~nm}$): $\mathrm{t}_{R}(59)=6.54 \mathrm{~min}$.
Yield 3 mg (33\%).
LC-MS ($\mathbf{5 0 - 1 0 0 \%} \mathbf{B}, 19 \mathrm{~min}$): $\mathrm{t}_{\mathrm{R}}(\mathbf{5 9})=6.19 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=711.33[\mathrm{M}+\mathrm{H}]^{+}$,
found $=711.69[\mathrm{M}+\mathrm{H}]^{+}$.
RP-HPLC ($\mathbf{5 0} \mathbf{- 1 0 0 \%}$ B, $1.5 \mathrm{~mL} / \mathrm{min}, 20 \mathrm{~min}, 220 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}(59)=6.55 \mathrm{~min}(99 \%$ Purity)
(2R,5S,12R)-12-\{[4-(tert-butoxy)phenyl]methyl\}-2-[2-(3,4-dimethoxyphenyl)ethyl]-15,15-dimethyl-3,19-dioxa-10,13,16-triazatricyclo[18.3.1.0 $\left.{ }^{5}{ }^{10}\right]$ tetracosa-1(24),20,22-triene-4,11,14,17-tetrone (AV423)

Chemical Formula: $\mathrm{C}_{42} \mathrm{H}_{53} \mathrm{~N}_{3} \mathrm{O}_{9}$
Exact Mass: 743,38
Molecular Weight: 743,88

60

Starting materials: Resin: 36, $1^{\text {st }} A A$: Fmoc-D-Tyr-OH, $2^{\text {nd }} A A$: Fmoc-AIB-OH, General Procedure 5.9.5.
Silica column chromatography: $\mathrm{CH} / \mathrm{EE}, 12 / 1, \mathrm{v} / \mathrm{v}$.
TLC (CH/EE, 10/1): $\mathrm{R}_{f}(60)=0.38$.
Yield 20 mg (19\%).
LC-MS (50-100\% B, 19 min$): \mathrm{t}_{\mathrm{R}}(\mathbf{6 0})=8.46 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=744.38[\mathrm{M}+\mathrm{H}]^{+}$,
found $=744.68[\mathrm{M}+\mathrm{H}]^{+}$.
RP-HPLC (50-100\% B, $1.5 \mathrm{~mL} / \mathrm{min}, 20 \mathrm{~min}, 220 \mathrm{~nm}): \mathrm{t}_{R}(\mathbf{6 0})=9.43 \mathrm{~min}$ (99\% Purity)
(2R,5S,12R)-2-[2-(3,4-dimethoxyphenyl)ethyl]-12-[(4-hydroxyphenyl)methyl]-15,15-dimethyl-3,19-dioxa-10,13,16-triazatricyclo[18.3.1.0 ${ }^{5}{ }^{10}$]tetracosa-1(24),20,22-triene-4,11,14,17-tetrone (AV458)

Chemical Formula: $\mathrm{C}_{38} \mathrm{H}_{45} \mathrm{~N}_{3} \mathrm{O}_{9}$ Exact Mass: 687,32
Molecular Weight: 687,78
61
$60(12 \mathrm{mg}, 0.02 \mathrm{mmol}, 1.0 \mathrm{eq})$ is dissolved in $300 \mu \mathrm{~L}$ DCM. $150 \mu \mathrm{~L}$ TFA is added and the reaction stirred for 40 min . The solvent is removed under airstream and the crude product purified by semi-preparative HPLC.
prep-HPLC (50-100\% B, $10 \mathrm{~mL} / \mathrm{min}, 15 \mathrm{~min}, 254 \mathrm{~nm}): \mathrm{t}_{R}(61)=7.45 \mathrm{~min}$.
Yield 4 mg (36\%).
LC-MS (30-100\% B, $19 \mathbf{~ m i n}): \mathrm{t}_{R}(\mathbf{6 1})=8.92 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=688.32[\mathrm{M}+\mathrm{H}]^{+}$,
found $=688.54[\mathrm{M}+\mathrm{H}]^{+}$.
RP-HPLC ($\mathbf{3 0} \mathbf{- 1 0 0 \%}$ B, $1.5 \mathrm{~mL} / \mathrm{min}, 20 \mathrm{~min}, \mathbf{2 5 4} \mathbf{n m}$): $\mathrm{t}_{R}(\mathbf{6 1})=9.35 \mathrm{~min}$ (89\% Purity)
(2R,5S,12R)-2-[2-(3,4-dimethoxyphenyl)ethyl]-15,15-dimethyl-12-\{[1-(triphenylmethyl)-1H-imidazol-5-yl]methyl\}-3,19-dioxa-10,13,16-triazatricyclo[18.3.1.0 $\left.{ }^{5},{ }^{10}\right]$ tetracosa-1(24),20,22-triene-4,11,14,17-tetrone (AV421)

Chemical Formula: $\mathrm{C}_{54} \mathrm{H}_{57} \mathrm{~N}_{5} \mathrm{O}_{8}$
Exact Mass: 903,42
Molecular Weight: 904,06

62

Starting materials: Resin: 36, $1^{\text {st }}$ AA: Fmoc-D-His-OH, $2^{\text {nd }}$ AA: Fmoc-AIB-OH, General Procedure 5.9.5.
Silica column chromatography: $\mathrm{CH} / \mathrm{EE}, 12 / 1, \mathrm{v} / \mathrm{v}$.
TLC (CH/EE, 10/1): $\mathrm{R}_{f}(\mathbf{6 2})=0.45$.
Yield 18 mg (14\%).
LC-MS (30-100\% B, 19 min): $\mathrm{t}_{\mathrm{R}}(\mathbf{6 2})=7.86 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=904.42[\mathrm{M}+\mathrm{H}]^{+}$, found $=904.67[\mathrm{M}+\mathrm{H}]^{+}$.
(2R,5S,12R)-2-[2-(3,4-dimethoxyphenyl)ethyl]-12-[(1H-imidazol-5-yl)methyl]-15,15-dimethyl-3,19-dioxa-10,13,16-triazatricyclo[18.3.1.0 ${ }^{5}{ }^{10}$]tetracosa-1(24),20,22-triene-4,11,14,17-tetrone (AV457)

Chemical Formula: $\mathrm{C}_{35} \mathrm{H}_{43} \mathrm{~N}_{5} \mathrm{O}_{8}$
Exact Mass: 661,31
Molecular Weight: 661,74

63

$62(18 \mathrm{mg}, 0.02 \mathrm{mmol}, 1.0 \mathrm{eq})$ is dissolved in $300 \mu \mathrm{~L}$ DCM. $5 \mu \mathrm{~L}$ TIS, then $150 \mu \mathrm{~L}$ TFA are added and the reaction stirred for 30 min . The solvent is removed under airstream and the crude product purified by semi-preparative HPLC.
prep-HPLC ($\mathbf{4 0} \mathbf{- 1 0 0 \%} \mathbf{B}, \mathbf{1 0} \mathbf{~ m L} / \mathrm{min}, 10 \mathrm{~min}, \mathbf{2 5 4} \mathrm{~nm}): \mathrm{t}_{R}(63)=5.41 \mathrm{~min}$.
Yield 5 mg (38\%).
LC-MS (50-100\% B, 19 min$): \mathrm{t}_{\mathrm{R}}(\mathbf{6 3})=1.09 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=662.31[\mathrm{M}+\mathrm{H}]^{+}$,
found $=662.76[\mathrm{M}+\mathrm{H}]^{+}$.
RP-HPLC ($\mathbf{3 0} \mathbf{- 1 0 0 \%}$ B, $1.5 \mathrm{~mL} / \mathrm{min}, 20 \mathrm{~min}, 254 \mathrm{~nm}): \mathrm{t}_{R}(63)=6.20 \mathrm{~min}$ (99\% Purity)

6.3.3. Macrocyclic tracer

(E)-1-(3,5-dihydroxyphenyl)-3-(3,4-dimethoxyphenyl)prop-2-en-1-one (AV241/AV243/AV266)

64

3,5-Dihydroxyacetophenon ($6.00 \mathrm{~g}, 39 \mathrm{mmol}, 1.0 \mathrm{eq}$) and 3,4-dimethoxybenzaldehyde ($6.55 \mathrm{~g}, 39 \mathrm{~mol}$, 1.0 eq) are dissolved in 120 mL EtOH and sparged with argon for 20 min . The solution is cooled to $0^{\circ} \mathrm{C}$ and cooled $\mathrm{NaOH}(10.40 \mathrm{~g}, 350 \mathrm{mmol}, 9.0 \mathrm{eq})$ is dissolved in 120 mL H O and slowly added in 10 min . The reaction is stirred under argon at slowly rising temperature to r.t. overnight. The mixture is acidified with conc. HCl and extracted with $\mathrm{EE}(3 \times 150 \mathrm{~mL})$. The combined organic layers are dried with MgSO_{4}, filtered and the solvent removed under reduced pressure. The crude product is purified by silica filtration (EE). The product 64 is obtained as a yellow foam.

Yield 8.75 g (74\%).
TLC (CH/EE, 1/1): $\mathrm{R}_{f}(\mathbf{6 4})=0.22$.
${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}$, DMSO-d $): \delta 9.61$ (s, 2H), 7.67 - $7.60(\mathrm{~m}, 2 \mathrm{H}), 7.50(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.34$ (dd, J= 2.0, $8.4 \mathrm{~Hz}, 1 \mathrm{H}$), $7.03-6.93(\mathrm{~m}, 3 \mathrm{H}), 6.80(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.51(\mathrm{t}, \mathrm{J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.81$ (s, 3H).
${ }^{13}$ C-NMR (126 MHz, DMSO- \boldsymbol{d}_{6}): δ 197.74, 189.25, 158.69, 151.26, 149.10, 144.22, 140.08, 138.89, 127.59, 123.83, 120.08, 111.60, 110.72, 107.20, 106.99, 106.57, 106.24, 59.81, 55.76, 55.61, 26.76 , 20.76, 14.10.

LC-MS (0-100\% B, 19 min$): \mathrm{t}_{\mathrm{R}}(64)=9.08 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=301.10[\mathrm{M}+\mathrm{H}]^{+}$, found $=301.22[\mathrm{M}+\mathrm{H}]^{+}$.

RP-HPLC (0 - 100\% B, $1.5 \mathrm{~mL} / \mathrm{min}, 20 \mathrm{~min}, 254 \mathrm{~nm}): \mathrm{t}_{R}(64)=10.95 \mathrm{~min}(83 \%$ Purity) .

1-(3,5-dihydroxyphenyl)-3-(3,4-dimethoxyphenyl)propan-1-one (AV269/AV270/AV271/AV272/AV335)

65

Zn powder ($1.4 \mathrm{~g}, 21 \mathrm{mmol}, 5.0 \mathrm{eq}$) and $\mathrm{NH}_{4} \mathrm{Cl}(5.5 \mathrm{~g}, 126 \mathrm{mmol}, 30.0 \mathrm{eq})$ are added to a flask and suspended in $50 \mathrm{~mL} \mathrm{MeOH} .4(1.22 \mathrm{~g}, 4 \mathrm{mmol}, 1.0 \mathrm{eq})$ is dissolved in 30 mL MeOH and added dropwise to the vigorously stirring suspension in 1.5 h . After complete addition, the mixture is filtered and washed with MeOH . The solvent is removed on rotivap, then the solid dissolved in $100 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$ and extracted with EE $(3 \times 100 \mathrm{~mL})$. The combined organic layers are dried with MgSO_{4}, filtered and the solvent removed under reduced pressure. The crude product is purified by column chromatography (CH/EE, 1/1). The pure product 65 is obtained as a beige-white solid.

Yield 350 mg (28\%).
$\operatorname{TLC}(C H / E E, 1 / 1): R_{f}(65)=0.25$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}\right.$, DMSO- $\left.\mathrm{d}_{6}\right) \delta 9.54(\mathrm{~s}, 2 \mathrm{H}), 6.86(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~d}, \mathrm{~J}$ $=2.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.74(\mathrm{dd}, J=2.0,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.44(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.18(\mathrm{dd}, J$ $=7.0,8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.83(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13}$ C-NMR (126 MHz, DMSO) $\delta 199.02,158.55,148.61,147.04,138.65,133.71,120.02,112.44$, 111.93, 107.01, 105.87, 55.54, 55.41, 29.27.

LC-MS (0-100\% B, 19 min$): \mathrm{t}_{\mathrm{R}}(65)=9.23 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=303.12[\mathrm{M}+\mathrm{H}]^{+}$, found $=302.92[\mathrm{M}+\mathrm{H}]^{+}$.
RP-HPLC (0 - 100\% B, $1.5 \mathrm{~mL} / \mathrm{min}, 20 \mathrm{~min}, 254 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}(\mathbf{6 5)}=10.61 \mathrm{~min}$ (99% Purity).

(R)-5-(3-(3,4-dimethoxyphenyl)-1-hydroxypropyl)benzene-1,3-diol (AV273/AV275/AV277/AV291/AV338)

Chemical Formula: $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{5}$
Exact Mass: 304,13
Molecular Weight: 304,34

66

$65(2.10 \mathrm{~g}, 6.95 \mathrm{mmol}, 1.0 \mathrm{eq})$ is dissolved in 50 mL THF and added to an autoclave. The solution is sparged with argon for 10 min , then 100 mL iPrOH is added and the solution further sparged with argon for 5 min . $\mathrm{RuCl}_{2}[(S)$-(DM-SEGPHOS)][(S)-DAIPEN] ($84 \mathrm{mg}, 0.07 \mathrm{mmol}, 0.01 \mathrm{eq}$) and 1 M KOtBu in $t \mathrm{BuOH}$ $(7 \mathrm{~mL}, 7 \mathrm{mmol}, 1.0 \mathrm{eq})$ is added and the autoclave closed, then flushed $3 x$ with H_{2} and finally 10 bar H_{2} applied. After reaction overnight, the mixture is transferred to a flask and the solvent is removed under reduced pressure. The crude product is dissolved in 200 mL EE and washed with 100 mL sat. $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The aqueous phase is extracted with EE ($3 \times 100 \mathrm{ml}$). The combined organic layers are dried with MgSO_{4}, filtered and the solvent removed under reduced pressure. The crude product is purified by column chromatography ($\mathrm{CH} / \mathrm{EE}, 1 / 2$). The pure product 66 is obtained as a white solid.

Yield 1.37 g (65\%).
TLC (CH/EE, 1/1): $\mathrm{R}_{f}(\mathbf{6 6})=0.14$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta 9.03(\mathrm{~s}, 2 \mathrm{H}), 6.83(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{dd}$, $J=2.0,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.06(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{dt}, J=$ $4.8,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 2.62-2.51(\mathrm{~m}, 2 \mathrm{H}), 2.47(\mathrm{~s}, 0 \mathrm{H}), 1.79(\mathrm{ddt}, \mathrm{J}=5.6,9.0,11.9$ $\mathrm{Hz}, 2 \mathrm{H}$).
${ }^{13}$ C-NMR (126 MHz, DMSO) $\delta 158.04,148.64,148.48,146.85,134.70,119.91,112.25,111.97$, 103.90, 100.83, 71.71, 55.54, 55.39, 40.98, 30.64.

LC-MS (0-100\% B, 19 min$): \mathrm{t}_{R}(66)=8.53 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=287.11[\mathrm{M}-\mathrm{OH}]^{+}$, found $=287.12[\mathrm{M}-$ $\mathrm{OH}]^{+}$.

RP-HPLC (0 - 100\% B, $1.5 \mathrm{~mL} / \mathrm{min}, 20 \mathrm{~min}, 254 \mathrm{~nm}$): $\mathrm{t}_{R}(66)=9.06 \mathrm{~min}(98 \%$ Purity).
Chiral-HPLC (20\% iPrOH in n-Hexane, isocratic, $1.0 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}$): $\mathrm{t}_{R}(\mathbf{6 6})=20.77 \mathrm{~min}(\mathrm{er}>99 / 1)$.

5-(3-(3,4-dimethoxyphenyl)-1-hydroxypropyl)benzene-1,3-diol (AV274)

67
$65(70 \mathrm{mg}, 0.23 \mathrm{mmol}, 1.0 \mathrm{eq})$ is dissolved in $3 \mathrm{~mL} \mathrm{THF} . \mathrm{NaBH}_{4}(9 \mathrm{mg}, 0.23 \mathrm{mmol}, 1.0 \mathrm{eq})$ is added and the reaction stirred at r.t. overnight. The mixture is quenched with 1 mL 3 M HCl . The THF is removed under reduced pressure. The crude product is purified by column chromatography ($C H / E E, 1 / 1$). The pure product 67 is obtained as a beige-white solid.

Yield 50 mg (71\%).
$\operatorname{TLC}(C H / E E, 1 / 1): \mathrm{R}_{f}(67)=0.13$.
${ }^{1} \mathrm{H}-\mathrm{NMR}(\mathbf{3 0 0} \mathrm{MHz}$, DMSO-d $): \delta 9.05(\mathrm{~s}, 2 \mathrm{H}), 6.83(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{dd}$, $J=2.0,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.18(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.05(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{q}, J=$ $5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}), 2.65-2.51(\mathrm{~m}, 1 \mathrm{H}), 2.45(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 0 \mathrm{H}), 1.79(\mathrm{qd}, \mathrm{J}=4.5,9.0$ $\mathrm{Hz}, 2 \mathrm{H}$).
${ }^{13}$ C-NMR (75 MHz, DMSO- \boldsymbol{d}_{6}): $\delta 158.03,148.61,148.48,146.82,134.68,119.90,112.21,111.93$, 103.88, 100.81, 71.69, 55.53, 55.38, 40.99, 31.13.

LC-MS (0-100\% B, 19 min$): \mathrm{t}_{R}(67)=8.15 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=287.11[\mathrm{M}-\mathrm{OH}]^{+}$, found = $287.13[\mathrm{M}-$ $\mathrm{OH}]^{+}$.

RP-HPLC (0 - 100\% B, $1.5 \mathrm{~mL} / \mathrm{min}, 20 \mathrm{~min}, 254 \mathrm{~nm}$): $\mathrm{t}_{R}(67)=9.00 \mathrm{~min}$ (95% Purity).
Chiral-HPLC (20\% iPrOH in n-Hexane, isocratic, $1.0 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}): \mathrm{t}_{\mathrm{R}}(\mathbf{6 7})=21.17+22.97 \mathrm{~min}(\mathrm{er}$ $=31.38 / 68.62$).

(R)-3-(3-(3,4-dimethoxyphenyl)-1-hydroxypropyl)-5-(trityloxy)phenol (AV313/AV314/AV317/AV319/AV342)

68

66 ($680 \mathrm{mg}, 2.23 \mathrm{mmol}, 1.0 \mathrm{eq}$) is dissolved in 50 mL dry MeCN and added to dried flask under argon atmosphere. Then $\mathrm{K}_{2} \mathrm{CO}_{3}(308 \mathrm{mg}, 2.23 \mathrm{mmol}, 1.0 \mathrm{eq})$ and trityl chloride ($466 \mathrm{mg}, 1.67 \mathrm{mmol}, 0.75 \mathrm{eq}$) are added. The reaction is stirred at r.t. overnight. The mixture is filtered and the solvent removed. The crude product is purified by column chromatography ($\mathrm{CH} / \mathrm{EE}, 2 / 1$ gradient to EE). The pure product 68 is obtained as a yellow solid.

Yield 431 mg (47\%).
$\operatorname{TLC}(C H / E E, 2 / 1): R_{f}(68)=0.20$.
${ }^{1} \mathrm{H}-\mathrm{NMR}^{1} \mathrm{H}$ NMR (500 MHz, DMSO- \boldsymbol{d}_{6}) $\delta 9.01(\mathrm{~s}, 1 \mathrm{H}), 7.41-7.38(\mathrm{~m}, 6 \mathrm{H}), 7.30(\mathrm{dd}, \mathrm{J}=7.0,8.5 \mathrm{~Hz}$, $7 \mathrm{H}), 7.24-7.19(\mathrm{~m}, 3 \mathrm{H}), 6.83(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{dd}, J=2.0,8.2 \mathrm{~Hz}, 1 \mathrm{H})$, $6.22(\mathrm{t}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.06(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.98(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.97(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{dt}$, $J=4.7,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 6 \mathrm{H}), 2.32(\mathrm{dddd}, J=6.2,9.7,13.9,23.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.64-1.47(\mathrm{~m}$, 2 H).
${ }^{13}$ C-NMR (126 MHz, DMSO- \boldsymbol{d}_{6}): δ 156.99, 156.22, 148.55, 147.35, 146.80, 143.90, 134.58, 128.33, 127.69, 127.04, 119.84, 112.22, 111.92, 109.06, 106.07, 105.93, 89.16, 71.36, 59.70, 55.53, 55.37, 40.80, 30.79, 20.71, 14.04.

LC-MS (50-100\% B, $19 \mathbf{m i n}): \mathrm{t}_{\mathrm{R}}(68)=8.78 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=569.23[\mathrm{M}+\mathrm{Na}]^{+}$, found $=596.11[\mathrm{M}+\mathrm{Na}]^{+}$(95\% Purity)
allyl 2-bromoacetate (AV294)

Chemical Formula: $\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{BrO}_{2}$
Exact Mass: 177,96
Molecular Weight: 179,01
69
Allyl alcohol ($1.00 \mathrm{~mL}, 15 \mathrm{mmol}, 1.0 \mathrm{eq}$) is dissolved in dry DCM in a dried flask under argon atmosphere. Pyridine ($1.18 \mathrm{~mL}, 15 \mathrm{mmol}, 1.0 \mathrm{eq}$) is added and the flask cooled to $0^{\circ} \mathrm{C}$ for 15 min . Then bromoacetyl bromide ($1.40 \mathrm{~mL}, 16 \mathrm{mmol}, 1.1 \mathrm{eq}$) is added dropwise in 20 min . After 20 min further stirring the ice bath is removed and the reaction stirred at r.t. for 30 min . Finally, the reaction is quenched by addition of $30 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$, then extracted with $\mathrm{DCM}(3 \times 50 \mathrm{~mL})$, the combined organic layers washed with brine and dried with MgSO_{4}, filtered and concentrated under reduced pressure. The crude product 69 is used without further purification.

Yield 2.61 g (quant.).
TLC (CH/EE, 4/1, v/v): $\mathrm{R}_{f}(69)=0.66$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.06-5.82(\mathrm{~m}, 1 \mathrm{H}), 5.44-5.23(\mathrm{~m}, 2 \mathrm{H}), 4.67(\mathrm{dd}, \mathrm{J}=2.3,5.8 \mathrm{~Hz}, 2 \mathrm{H})$, $3.92-3.81(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13}$ C-NMR (75 MHz, CDCl_{3}): $\delta 167.05,131.35,119.33,66.88,25.82$.
El-MS (303 K): m/z: calculated = 123/121 [M-Oallyl] ${ }^{+}$, $99[\mathrm{M}-\mathrm{HBr}]^{+}, 95 / 93\left[\mathrm{BrCH}_{2}\right]^{+}, 85\left[\mathrm{M}-\mathrm{BrCH}_{2}\right]^{+}$, found $=123 / 121[\mathrm{M}-\mathrm{Oallyl}]^{+}, 99[\mathrm{M}-\mathrm{HBr}]^{+}, 95 / 93\left[\mathrm{BrCH}_{2}\right]^{+}, 85\left[\mathrm{M}-\mathrm{BrCH}_{2}\right]^{+}$.

(R)-allyl 2-(3-(3-(3,4-dimethoxyphenyl)-1-hydroxypropyl)-5-(trityloxy)phenoxy)acetate (AV318/AV320/AV345)

70

68 ($1000 \mathrm{mg}, 1.83 \mathrm{mmol}, 1.0 \mathrm{eq}$) is dissolved in $50 \mathrm{~mL} \mathrm{MeCN}. \mathrm{~K}_{2} \mathrm{CO}_{3}(1000 \mathrm{mg}, 7.32 \mathrm{mmol}, 4.0 \mathrm{eq})$ and $69(570 \mathrm{mg}, 3.20 \mathrm{mmol}, 1.75 \mathrm{eq})$ are added. The reaction is stirred at r.t. night. After complete conversion, the suspension is filtered, washed with MeCN and the solvent removed under reduced pressure. The crude product is purified by column chromatography ($\mathrm{CH} / \mathrm{EE}, 3 / 1$ then $2 / 1$). The pure product $\mathbf{7 0}$ is obtained as a yellow solid.

Yield 910 mg (77\%).
$\operatorname{TLC}(C H / E E, 1 / 1): R_{f}(70)=0.57$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}\right.$, DMSO-d ${ }_{6}$) $\delta 7.41$ - $7.37(\mathrm{~m}, 6 \mathrm{H}), 7.30(\mathrm{dd}, J=7.0,8.5 \mathrm{~Hz}, 6 \mathrm{H}), 7.25-7.20(\mathrm{~m}, 3 \mathrm{H})$, $6.83(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{dd}, J=2.0,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.36(\mathrm{dd}, J=1.2,2.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.24(\mathrm{t}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.07(\mathrm{t}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.86(\mathrm{ddt}, J=5.4,10.7,17.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.30-5.17$ $(\mathrm{m}, 2 \mathrm{H}), 5.06(\mathrm{~d}, \mathrm{~J}=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.57-4.53(\mathrm{~m}, 4 \mathrm{H}), 4.21(\mathrm{dt}, J=4.9,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{~s}$, 3 H), 2.32 (dddd, J = 6.1, 9.7, 13.9, $23.6 \mathrm{~Hz}, 2 \mathrm{H}$), $1.64-1.48(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13}$ C-NMR (126 MHz, DMSO- \boldsymbol{d}_{6}): $\delta 168.21,157.39,156.29,148.55,147.73,146.81,143.63,134.49$, 132.09, 128.29, 127.78, 127.16, 119.84, 117.94, 113.41, 112.22, 111.91, 111.10, 105.12, 104.90 , 89.52, 71.27, 64.74, 64.55, 59.69, 55.53, 55.38, 40.76, 30.75 .

LC-MS (70-100\% B, 19 min): $\mathrm{t}_{\mathrm{R}}(\mathbf{7 0})=6.33 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=667.27[\mathrm{M}+\mathrm{Na}]^{+}$, found $=667.16[\mathrm{M}+\mathrm{Na}]^{+}$.
(S)-1-((9H-fluoren-9-yl)methyl) 2-((R)-1-(3-(2-(allyloxy)-2-oxoethoxy)-5-hydroxyphenyl)-3-(3,4-dimethoxyphenyl)propyl) piperidine-1,2-dicarboxylate (AV321/AV346/322/362/323)

71
70 ($910 \mathrm{mg}, 1.41 \mathrm{mmol}, 1.0 \mathrm{eq}$) and Fmoc-S-pipecolate ($546 \mathrm{mg}, 1.55 \mathrm{mmol}, 1.1 \mathrm{eq}$) are dissolved in 50 mL dry DCM and cooled to $0^{\circ} \mathrm{C}$ for 15 min . DMAP ($57 \mathrm{mg}, 0.47 \mathrm{mmol}, 0.3 \mathrm{eq}$) is added and stirred until dissolved, then DCC ($320 \mathrm{mg}, 1.55 \mathrm{mmol}, 1.1 \mathrm{eq}$) is added. The mixture is stirred for 15 min . Finally, the ice bath is removed and the reaction stirred overnight at r.t. The reaction mixture is filtered, washed with DCM and the solvent removed under reduced pressure. The crude product is dissolved in 30 mL DCM $+1 \%$ TFA and stirred for 5 min . The solvent is removed under reduced pressure and the crude product purified by silica column chromatography $(\mathrm{CH} / \mathrm{EE}, 2 / 1)$ and the pure product 71 is obtained as a colorless oil.

Yield 1.05 g (92\%).
$\operatorname{TLC}(C H / E E, 2 / 1, v / v): R_{f}(71)=0.30$.
${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}$, Chloroform-d): $\delta 7.79-7.72(\mathrm{~m}, 1 \mathrm{H}), 7.71(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.57$ (dd, J=7.6, $11.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.46 (dd, J = 7.5, $26.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.34 (ddt, J = $7.6,16.1,33.4 \mathrm{~Hz}, 3 \mathrm{H}$), $7.20(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.77-6.70(\mathrm{~m}, 1 \mathrm{H}), 6.68-6.53(\mathrm{~m}, 2 \mathrm{H}), 6.45-6.41(\mathrm{~m}, 2 \mathrm{H}), 6.30(\mathrm{~d}, \mathrm{~J}=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.94-5.82$ $(\mathrm{m}, 1 \mathrm{H}), 5.74-5.62(\mathrm{~m}, 1 \mathrm{H}), 5.33-5.27(\mathrm{~m}, 1 \mathrm{H}), 5.23(\mathrm{~d}, \mathrm{~J}=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.04-4.86(\mathrm{~m}, 1 \mathrm{H}), 4.68-$ $4.63(\mathrm{~m}, 2 \mathrm{H}), 4.57(\mathrm{~s}, 1 \mathrm{H}), 4.50(\mathrm{~s}, 1 \mathrm{H}), 4.48-4.41(\mathrm{~m}, 1 \mathrm{H}), 4.38-4.22(\mathrm{~m}, 2 \mathrm{H}), 4.06(\mathrm{~d}, \mathrm{~J}=16.4 \mathrm{~Hz}$, $1 \mathrm{H}), 3.87-3.74(\mathrm{~m}, 6 \mathrm{H}), 3.22-3.13(\mathrm{~m}, 1 \mathrm{H}), 2.90(\mathrm{t}, \mathrm{J}=13.1 \mathrm{~Hz}, 0 \mathrm{H}), 2.62-2.38(\mathrm{~m}, 2 \mathrm{H}), 2.34-2.25$ (m, 1H), $2.21-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.72(\mathrm{t}, \mathrm{J}=14.4 \mathrm{~Hz}, 4 \mathrm{H}), 1.52-1.39(\mathrm{~m}, 1 \mathrm{H}), 1.31(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13}$ C-NMR (126 MHz , Chloroform-d): $\delta 159.25,149.07,147.52,143.94,141.41,131.53,127.86,127.22$, 125.19, 120.27, 120.12, 119.25, 111.93, 111.84, 111.55, 107.01, 105.72, 105.27, 101.92, 76.16, 68.03 , $66.00,65.42,56.09,55.99,55.09,54.67,47.37,42.16,38.08,31.28,31.21,26.96,24.88,24.65,20.80$, 14.34.

LC-MS (50-100\% B, $19 \mathbf{m i n}): \mathrm{t}_{R}(\mathbf{7 1})=11.32 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=753.33\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$,
found $=753.73\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$.

Resin bound (S)-1-((9H-fluoren-9-yl)methyl) 2-((R)-1-(3-(2-(allyloxy)-2-oxoethoxy)-5-hydroxyphenyl)-3-(3,4-dimethoxyphenyl)propyl) piperidine-1,2-dicarboxylate (AV324/AV348/AV363)

72
Synthesis according to 5.9.5.
(2R,5S,12R)-12-cyclohexyl-2-[2-(3,4-dimethoxyphenyl)ethyl]-22-hydroxy-15,15-dimethyl-3,19-dioxa-10,13,16-triazatricyclo[18.3.1.0 ${ }^{5}{ }^{10}$]tetracosa-1(24),20,22-triene-4,11,14,17tetrone (AV361/AV367/AV331P)

Chemical Formula: $\mathrm{C}_{37} \mathrm{H}_{49} \mathrm{~N}_{3} \mathrm{O}_{9}$ Exact Mass: 679,35
Molecular Weight: 679,80
73

Starting materials: Resin: 72, $1^{\text {st }} A A$: Fmoc-D-Chg-OH, $2^{\text {nd }} A A$: Fmoc-Aib-OH, Procedure 5.9.5.
Silica column chromatography: $\mathrm{DCM} / \mathrm{MeOH}, 30 / 1, \mathrm{v} / \mathrm{v}$.
TLC (DCM/MeOH, 30/1): $\mathrm{R}_{f}(\mathbf{7 3})=0.25$.
Yield 90 mg (20\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.78(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.67-6.62(\mathrm{~m}, 1 \mathrm{H}), 6.61-6.52(\mathrm{~m}, 2 \mathrm{H}), 6.35-6.32(\mathrm{~m}, 2 \mathrm{H}), 5.57-5.51(\mathrm{~m}, 1 \mathrm{H}), 5.25-5.21(\mathrm{~m}, 1 \mathrm{H})$, $4.70(\mathrm{~s}, 1 \mathrm{H}), 4.64(\mathrm{~d}, \mathrm{~J}=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~d}, \mathrm{~J}=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.85-3.81$ $(\mathrm{m}, 1 \mathrm{H}), 3.31(\mathrm{t}, \mathrm{J}=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.57-2.48(\mathrm{~m}, 2 \mathrm{H}), 2.29-2.19(\mathrm{~m}, 1 \mathrm{H}), 2.17-2.10(\mathrm{~m}, 1 \mathrm{H}), 2.08-$
$1.99(\mathrm{~m}, 1 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H}), 1.77-1.61(\mathrm{~m}, 8 \mathrm{H}), 1.53-1.44(\mathrm{~m}, 1 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}), 1.31-1.16(\mathrm{~m}, 3 \mathrm{H})$, $1.18-1.09(m, 1 H), 1.08-0.93(m, 2 H)$.
${ }^{13}$ C-NMR (126 MHz, CDCl 3): $\delta 174.09,172.12,171.65,169.90,158.71,158.10,149.04,147.47,142.80$, $133.71,120.26,111.89,111.54,108.63,102.77,101.46,76.57,66.99,58.74,56.09,56.02,53.60$,
$52.49,43.89,41.38,37.73,31.22,30.36,28.17,26.48,26.24,26.19,26.11,25.66,25.31,24.84,19.97$.
LC-MS (30-100\% B, $19 \mathbf{m i n}): \mathrm{t}_{R}(\mathbf{7 3})=10.92 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=680.35[\mathrm{M}+\mathrm{H}]^{+}$,
found $=680.49[\mathrm{M}+\mathrm{H}]^{+}$.
HRMS (ESI): calculated $=680.35416[\mathrm{M}+\mathrm{H}]^{+}$, found $=680.35433[\mathrm{M}+\mathrm{H}]^{+}$, err $[\mathrm{ppm}]=0.25$.
RP-HPLC ($\mathbf{3 0} \mathbf{- 1 0 0 \%}$ B, $1.5 \mathrm{~mL} / \mathrm{min}, 20 \mathrm{~min}, 254 \mathrm{~nm}$): $\mathrm{t}_{R}(73)=12.05 \mathrm{~min}(99 \%$ Purity)
(2R,5S,12R)-12-cyclohexyl-2-[2-(3,4-dimethoxyphenyl)ethyl]-22-methoxy-15,15-dimethyl-3,19-dioxa-10,13,16-triazatricyclo[18.3.1.0 ${ }^{5},^{10}$]tetracosa-1(24),20,22-triene-4,11,14,17tetrone (AV389)

Chemical Formula: $\mathrm{C}_{38} \mathrm{H}_{51} \mathrm{~N}_{3} \mathrm{O}_{9}$
Exact Mass: 693,36
Molecular Weight: 693,83
74
73 ($5 \mathrm{mg}, 0.01 \mathrm{mmol}, 1.0 \mathrm{eq}$) is dissolved in 1 mL dry MeCN and $\mathrm{K}_{2} \mathrm{CO}_{3}(10 \mathrm{mg}, 0.1 \mathrm{mmol}, 10.0 \mathrm{eq})$ is added. Then Mel ($5 \mu \mathrm{~L}, 0.1 \mathrm{mmol}, 10.0 \mathrm{eq}$) is added and the mixture stirred at r.t. overnight. The mixture is diluted with DCM and extracted $1 x$ with $1 \mathrm{M} \mathrm{NaOH}_{a q}$. The organic solvent is removed and the crude product purified by semi-preparative HPLC.
prep-HPLC (70 - 100\% B, $10 \mathrm{~mL} / \mathrm{min}, 10 \mathrm{~min}, 254 \mathrm{~nm}): \mathrm{t}_{R}(74)=3.83 \mathrm{~min}$.
Yield 1 mg (19\%).
LC-MS (50-100\% B, 19 min$): \mathrm{t}_{\mathrm{R}}(74)=9.07 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=694.36[\mathrm{M}+\mathrm{H}]^{+}$,
found $=694.47[\mathrm{M}+\mathrm{H}]^{+}$.
HRMS (ESI): calculated $=694.36981[\mathrm{M}+\mathrm{H}]^{+}$, found $=694.36967[\mathrm{M}+\mathrm{H}]^{+}$, $\operatorname{err}[\mathrm{ppm}]=0.20$.
tert-butyl N-(2-\{[(2R,5S,12R)-12-cyclohexyl-2-[2-(3,4-dimethoxyphenyl)ethyl]-15,15-dimethyl-4,11,14,17-tetraoxo-3,19-dioxa-10,13,16-triazatricyclo[18.3.1.0 $\left.{ }^{5},{ }^{10}\right]$ tetracosa-1(24),20,22-trien-22-yl]oxy\}ethyl)carbamate (AV384)

75
$73(33 \mathrm{mg}, 0.048 \mathrm{mmol}, 1.0 \mathrm{eq})$ is dissolved in 1 mL dry MeCN and $\mathrm{Ag}_{2} \mathrm{CO}_{3}(28 \mathrm{mg}, 0.1 \mathrm{mmol}, 2.0 \mathrm{eq})$ is added. Then tert-butyl (2-bromoethyl)carbamate ($40 \mathrm{mg}, 0.16 \mathrm{mmol}, 3.0 \mathrm{eq}$) is added and the mixture stirred at $30^{\circ} \mathrm{C}$ over 3 d . The mixture is filtered and washed with MeCN. The organic solvent is removed, the crude product purified by semi-preparative HPLC and pure 75 obtained.
prep-HPLC ($\mathbf{5 0} \mathbf{- 1 0 0 \%}$ B, $10 \mathrm{~mL} / \mathrm{min}, 10 \mathrm{~min}, 254 \mathrm{~nm}): \mathrm{t}_{\mathrm{R}}(75)=6.46 \mathrm{~min}$.
Yield 18 mg (45\%).
LC-MS (50-100\% B, 19 min$): \mathrm{t}_{R}(75)=13.68 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=823.44[\mathrm{M}+\mathrm{H}]+$, found $=823.32$ $[\mathrm{M}+\mathrm{H}]+$.

9-\{2-carboxy-4(5)-[(2-\{[(2R,5S,12R)-12-cyclohexyl-2-[2-(3,4-dimethoxyphenyl)ethyl]-15,15-dimethyl-4,11,14,17-tetraoxo-3,19-dioxa-10,13,16-triazatricyclo[18.3.1.0 $\left.{ }^{5},{ }^{10}\right]$ tetracosa-1(24),20,22-trien-22-yl]oxy\}ethyl)carbamoyl]phenyl\}-6-(dimethylamino)-N,N-dimethyl-3H-xanthen-3-iminium (AV387)

76

75 ($18 \mathrm{mg}, 0.022 \mathrm{mmol}, 1.0 \mathrm{eq}$) is dissolved in 2 mL dry DCM and 0.5 mL TFA added. After 30 min the solvent is removed under reduced pressure and the TFA co-evaporated with DCM and toluene. The crude product is dissolved in 1.5 mL DMF and $30 \mu \mathrm{~L}$ TEA, then 5 (6)-TAMRA NHS ester ($12 \mathrm{mg}, 0.022$ $\mathrm{mmol}, 1.0 \mathrm{eq}$) added. The flask is protected from light by an alumina foil wrapping. After stirring at r.t. overnight the solvent is removed under reduced pressure and the crude product purified by silica column chromatography ($\mathrm{DCM}+15 \mathrm{MeOH}$). The regioisomers could be separated and three fractions were obtained. 76a (pure regioisomer 1), 76b (mixed fraction of both isomers), 76c (regioisomer 2 still containing 12% isomer 1). All fractions were tested in an FRET-Assay, with 76a having the highest affinity.

TLC (DCM + $15 \mathrm{MeOH}, 2 / 1$): $\mathrm{R}_{f}(14)=0.22$.
Yield 76a, 10 mg (40\%), 76b, 7 mg (28\%), 76c, 8 mg (32\%).
${ }^{1} \mathrm{H}-$ NMR (500 MHz, DMSO-d6, 76a): $\delta 9.04(\mathrm{t}, \mathrm{J}=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.47-8.43(\mathrm{~m}, 1 \mathrm{H}), 8.26-8.19(\mathrm{~m}, 1 \mathrm{H})$, $8.17(\mathrm{~s}, 1 \mathrm{H}), 7.55(\mathrm{t}, \mathrm{J}=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.23(\mathrm{~m}, 1 \mathrm{H}), 6.87-6.79(\mathrm{~m}, 1 \mathrm{H}), 6.79-6.74(\mathrm{~m}, 1 \mathrm{H})$, $6.70-6.62(\mathrm{~m}, 1 \mathrm{H}), 6.54-6.44(\mathrm{~m}, 6 \mathrm{H}), 6.45-6.39(\mathrm{~m}, 1 \mathrm{H}), 5.77-5.73(\mathrm{~m}, 1 \mathrm{H}), 5.59-5.50(\mathrm{~m}, 1 \mathrm{H})$, $5.13-5.06(\mathrm{~m}, 1 \mathrm{H}), 4.69(\mathrm{~d}, \mathrm{~J}=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~d}, \mathrm{~J}=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.51-4.46(\mathrm{~m}, 1 \mathrm{H}), 4.16-4.04$ $(\mathrm{m}, 2 \mathrm{H}), 3.76-3.67(\mathrm{~m}, 6 \mathrm{H}), 3.69-3.63(\mathrm{~m}, 2 \mathrm{H}), 3.32(\mathrm{~s}, 12 \mathrm{H}), 3.20-3.06(\mathrm{~m}, 1 \mathrm{H}), 2.94(\mathrm{~s}, 6 \mathrm{H}), 2.09$
$-1.89(\mathrm{~m}, 4 \mathrm{H}), 1.72-1.55(\mathrm{~m}, 9 \mathrm{H}), 1.53-1.41(\mathrm{~m}, 1 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H}), 1.28-1.16(\mathrm{~m}, 2 \mathrm{H})$, $1.18-1.08(\mathrm{~m}, 1 \mathrm{H}), 1.08-0.81(\mathrm{~m}, 3 \mathrm{H})$.

13C-NMR (126 MHz, DMSO-d6, 76a): $\delta 173.47,172.88,170.99,167.64,166.71,160.09,157.58$, 152.11, 151.95, 148.63, 147.03, 143.17, 142.62, 135.82, 134.46, 133.27, 128.39, 126.87, 124.16, $123.20,119.94,112.21,111.88,108.97,105.54,102.14,97.96,88.51,75.12,65.91,61.76,60.96$, $56.16,55.47,55.36,54.88,52.66,51.68,43.52,40.71,37.58,33.69,31.25,30.62,30.18,29.91,28.64$, $27.08,26.92,25.78,25.65,25.53,24.99,24.57,24.49,23.16,23.08$.
HRMS (ESI): 76a calculated $=1135.53866[\mathrm{M}]+$, found $=1135.54008[\mathrm{M}]+$, $\mathrm{err}[\mathrm{ppm}]=1.25$.
HRMS (ESI): 76b calculated $=1135.53866[M]+$, found $=1135.54043[M]+$, $\operatorname{err}[p p m]=1.56$.
HRMS (ESI): 76c calculated $=1135.53866[\mathrm{M}]+$, found $=1135.53983[\mathrm{M}]+$, $\mathrm{err}[\mathrm{ppm}]=1.03$.
RP-HPLC ($\mathbf{5 0} \mathbf{- 1 0 0 \%}$ B, $1.5 \mathrm{~mL} / \mathrm{min}, \mathbf{2 0} \mathbf{~ m i n , ~} \mathbf{2 5 4 n m}$): t_{R} ($\mathbf{7 6 a}$) $=8.37 \mathrm{~min}(99 \%$ Purity)
RP-HPLC ($\mathbf{5 0} \mathbf{- 1 0 0 \%}$ B, $1.5 \mathrm{~mL} / \mathrm{min}, 20 \mathrm{~min}, 254 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}(\mathbf{7 6 b})=7.85 \mathrm{~min}, 8.39(34 \%, 66 \%)$
RP-HPLC ($\mathbf{5 0} \mathbf{- 1 0 0 \%} \mathbf{B}, 1.5 \mathrm{~mL} / \mathrm{min}, 20 \mathrm{~min}, 254 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}(\mathbf{7 6 c})=7.75,8.40 \mathrm{~min}(87 \%, 12 \%)$

6.4. A / B ring derivatization through chalcone synthesis

6.4.1. Building blocks

(S)-1-((S)-2-cyclohexyl-2-(3,4,5-trimethoxyphenyl)acetyl)piperidine-2-carboxylic acid (THE129)

77
This precursor was kindly provided by my colleague Tim Heymann. For the synthesis see Jorgensen et al. ${ }^{[57]}$
(E)-3-(3,4-dimethoxyphenyl)-1-(3-methoxyphenyl)prop-2-en-1-one

78
1-(3-methoxyphenyl)ethanon ($4.5 \mathrm{~g}, 30 \mathrm{mmol}, 1.0 \mathrm{eq}$) and 3,4-dimethoxybenzaldehyde ($5 \mathrm{~g}, 30 \mathrm{mmol}$, 1 eq) are dissolved in 45 mLEtOH . The mixture is cooled to $0^{\circ} \mathrm{C}$ for 30 min , then cooled $\mathrm{KOH}(6.7 \mathrm{~g}$, $120 \mathrm{mmol}, 4 \mathrm{eq}$) dissolved in $30 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$ is added dropwise over 30 min . The mixture is stirred under slowly rising temperature overnight. After complete conversion, the reaction mixture is cooled by adding ice and acidified with 6 M HCl to $\mathrm{pH}=1-2$. Then $100 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$ is added dropwise to precipitate the product. The precipitate is filtered, washed with $\mathrm{H}_{2} \mathrm{O}$ and dried on the rotivap and under high vacuum. The pure product 78 is obtained as a yellow-beige solid.

Yield 9 g (quant.).
$\operatorname{TLC}(C H / E E, 2 / 1): \mathrm{R}_{f}(78)=0.51$.

LC-MS (0-100\% B, 19 min$): \mathrm{t}_{\mathrm{R}}(\mathbf{7 8})=11.28 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=299.12[\mathrm{M}+\mathrm{H}]^{+}$, found $=299.15[\mathrm{M}+\mathrm{H}]^{+}$(95\% Purity)

3-(3,4-dimethoxyphenyl)-1-(3-methoxyphenyl)propan-1-one (MedChem17_JS_Zn)

Chemical Formula: $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{4}$
Exact Mass: 300,14
Molecular Weight: 300,35
79
$\mathrm{NH}_{4} \mathrm{Ac}(52 \mathrm{~g}, 670 \mathrm{mmol}, 100.0 \mathrm{eq})$ is dissolved in $100 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$ and added to a flask then $78(2 \mathrm{~g}, 7 \mathrm{mmol}$, 1.0 eq) is dissolved in 200 mL EtOH and added. Zn powder ($3.3 \mathrm{~g}, 50 \mathrm{mmol}, 7.5 \mathrm{eq}$) is added in 5 portions in 15 min time steps. After complete addition, the mixture is filtered and washed with EtOH. The EtOH is removed on rotivap and the residual aqueous phase extracted with EE (3x). The combined organic layers are dried with MgSO_{4}, filtered and the solvent removed under reduced pressure. The crude product is purified by silica column chromatography ($\mathrm{CH} / \mathrm{EE}, 5 / 1$). The pure product 79 is obtained as a beige-white solid.

Yield 0.52 g (26\%).
$\operatorname{TLC}(C H / E E, 3 / 1): R_{f}(79)=0.24$.
LC-MS (0-100\% B, 19 min$): \mathrm{t}_{\mathrm{R}}(79)=11.27 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=301.14[\mathrm{M}+\mathrm{H}]^{+}$,
found $=300.98[\mathrm{M}+\mathrm{H}]^{+}$(95\% Purity)

3-(3,4-dimethoxyphenyl)-1-(3-methoxyphenyl)propan-1-ol (AV485_rac)

Chemical Formula: $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{4}$
Exact Mass: 302,15
Molecular Weight: 302,36
80
$79(50 \mathrm{mg}, 0.17 \mathrm{mmol}, 1.0 \mathrm{eq})$ is dissolved in 5 mL THF. $\mathrm{NaBH}_{4}(13 \mathrm{mg}, 0.33 \mathrm{mmol}, 2.0 \mathrm{eq})$ is added and the reaction stirred at r.t. overnight. The mixture is quenched with 1 mL 3 M HCl . The THF is removed under reduced pressure and the aqueous phase diluted with $\mathrm{H}_{2} \mathrm{O}$, then extracted with DCM $(3 \times 10 \mathrm{~mL})$ The crude product is purified by column chromatography $(C H / E E, 3 / 1)$. The pure product 80 is obtained as a beige-white solid.

Yield 46 mg (92\%).
$\operatorname{TLC}(C H / E E, 3 / 1): \mathrm{R}_{f}(\mathbf{8 0})=0.23$.
LC-MS (0-100\% B, 19 min$): \mathrm{t}_{R}(80)=10.37 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=320.18\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$,
found $=319.99\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$.
Chiral-HPLC (20\% iPrOH in n-Hexane, isocratic, $1.0 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}): \mathrm{t}_{\mathrm{R}}(\mathbf{8 0})=13.25+13.89 \mathrm{~min}(e r$ $=49.89 / 50.11)$.

(R)-3-(3,4-dimethoxyphenyl)-1-(3-methoxyphenyl)propan-1-ol (AV485)

Chemical Formula: $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{4}$ Exact Mass: 302,15
Molecular Weight: 302,36
81
Dissolve S-CBS ($9 \mathrm{mg}, 0.03 \mathrm{mmol}, 0.1 \mathrm{eq}$) in 1.1 mL dry THF and add to a flask under argon atmosphere. Add $20 \mu \mathrm{~L}(0.1 \mathrm{eq})$ of a $2 \mathrm{M} \mathrm{BH}_{3}{ }^{*} \mathrm{SMe}_{2}$ solution in THF. Dissolve $79(100 \mathrm{mg}, 0.33 \mathrm{mmol}, 1.0 \mathrm{eq})$ in $800 \mu \mathrm{~L}$ dry THF and add to the catalyst. Then $250 \mu \mathrm{~L}(1.5 \mathrm{eq})$ of a $2 \mathrm{M}_{\mathrm{BH}}^{3}$ * SMe_{2} solution in THF is added dropwise in 1 h . After complete addition, the reaction is further stirred for 1.5 h , then stopped by the addition of MeOH . The solvent is removed under reduced pressure. The crude product is purified by column chromatography (CH/EE, $2 / 1$). The pure product $\mathbf{8 1}$ is obtained as a white oil.

Yield 98 g (97\%).
$\operatorname{TLC}(C H / E E, 2 / 1): R_{f}(81)=0.27$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.74-9.63(1 \mathrm{H}, \mathrm{m}), 9.37-9.32(2 \mathrm{H}, \mathrm{m}), 9.28-9.19(2 \mathrm{H}, \mathrm{m}), 9.19-9.11$ $(2 \mathrm{H}, \mathrm{m}), 7.09(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.7,5.3 \mathrm{~Hz}), 6.28(3 \mathrm{H}, \mathrm{s}), 6.27(3 \mathrm{H}, \mathrm{s}), 6.24(3 \mathrm{H}, \mathrm{s}), 5.22-4.99(2 \mathrm{H}, \mathrm{m}), 4.60-$ 4.37 ($2 \mathrm{H}, \mathrm{m}$)
${ }^{13}$ C-NMR (75 MHz, CDCl ${ }_{3}$): $\delta 159.97,149.05,147.40,146.50,134.54,129.66,120.36,118.37,113.17$, 112.02, 111.62, 111.52, 73.97, 56.10, 55.38, 40.70, 31.79.

LC-MS (30-100\% B, $19 \mathbf{m i n}): \mathrm{t}_{R}(81)=8.29 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=320.18\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$, found $=320.34\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$.

RP-HPLC ($\mathbf{3 0} \mathbf{- 1 0 0 \%}$ B, $1.5 \mathrm{~mL} / \mathrm{min}, 20 \mathrm{~min}, 254 \mathrm{~nm}$): $\mathrm{t}_{R}(81)=8.37 \mathrm{~min}(99 \%$ Purity).
Chiral-HPLC (20\% iPrOH in n-Hexane, isocratic, $1.0 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}): \mathrm{t}_{\mathrm{R}}(\mathbf{8 1})=13.69+15.48 \mathrm{~min}(\mathrm{er}$ $=2.52 / 97.48)$.

(R)-1-(3-((2-chloroallyl)oxy)phenyl)-3-(3,4-dimethoxyphenyl)propan-1-ol (AV245)

Chemical Formula: $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{ClO}_{4}$
Exact Mass: 362,13
Molecular Weight: 362,85
82

7 ($1.9 \mathrm{~g}, 6.6 \mathrm{mmol}, 1.0 \mathrm{eq}$) is dissolved in 25 mL MeCN. K2CO3 ($1.1 \mathrm{~g}, 7.9 \mathrm{mmol}, 1.2 \mathrm{eq}$) and 2,3-dichloro-1-propene ($900 \mu \mathrm{~L}, 6.6 \mathrm{mmol}, 1.5 \mathrm{eq}$) are added. The reaction is stirred at $50^{\circ} \mathrm{C}$ overnight. The mixture is filtered over celite and washed with MeCN. The solvent is removed and the crude product purified by silica column chromatography (CH/EE, 2/1) and 82 obtained as a colorless oil.

Yield 2.12 g (89\%).
TLC (CH/EE, 2/1, v/v): $\mathrm{R}_{f}(\mathbf{8 2})=0.35$.
LC-MS (50-100\% B, 19 min$): \mathrm{t}_{R}(82)=12.23 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=345.13[\mathrm{M}-\mathrm{OH}]^{+}$, found $=345.34[\mathrm{M}-$ $\mathrm{OH}]^{+}$.

(E)-3-(3,4-diethoxyphenyl)-1-(3-methoxyphenyl)prop-2-en-1-one (MedChem17_RR_CS)

83
3,4-diethoxybenzaldehyde ($5.0 \mathrm{~g}, 26 \mathrm{mmol}, 1.0 \mathrm{eq}$) and 3-methoxyacetophenone ($3.84 \mathrm{~g}, 26 \mathrm{mmol}$, 1 eq) are dissolved in 40 mL EtOH . The mixture is cooled to $0^{\circ} \mathrm{C}$ for 15 min , then cooled $\mathrm{KOH}(5.75 \mathrm{~g}$, $100 \mathrm{mmol}, 4 \mathrm{eq}$) dissolved in $25 \mathrm{~mL} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$ added. The reaction is stirred overnight under slowly rising temperature. The mixture is diluted with $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$ and extracted with $\mathrm{EE}(3 \times 100 \mathrm{~mL})$. The combined organic phases are washed with brine $(1 \times 50 \mathrm{~mL})$, dried with MgSO_{4}, filtered and the solvent removed under reduced pressure. The crude product is purified by manual column chromatography ($\mathrm{CH} / \mathrm{EE}$, $5 / 1$) and 83 obtained as a yellow oil.

Yield 8.59 g (97\%).

TLC (CH/EE, 5/1, v/v): $\mathrm{R}_{f}(\mathbf{8 3})=0.34$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.68(\mathrm{~d}, \mathrm{~J}=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{dt}, \mathrm{J}=1.3,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.45(\mathrm{~m}$, 1H), $7.36-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.16-7.09(\mathrm{~m}, 2 \mathrm{H}), 7.04$ (ddd, J = 1.0, 2.7, $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}$, 1 H), 4.07 (qd, J = 3.8, $7.0 \mathrm{~Hz}, 4 \mathrm{H}$), $3.80(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{td}, \mathrm{J}=3.0,7.0 \mathrm{~Hz}, 6 \mathrm{H})$.

LC-MS (50-100\% B, $19 \mathbf{m i n}): \mathrm{t}_{\mathrm{R}}(\mathbf{8 3})=12.23 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=327.15[\mathrm{M}+\mathrm{H}]^{+}$, found $=327.21[\mathrm{M}+\mathrm{H}]^{+}$.

3-(3,4-diethoxyphenyl)-1-(3-methoxyphenyl)propan-1-one (MedChem17_RR_Zn)

Chemical Formula: $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{4}$
Exact Mass: 328,17
Molecular Weight: 328,40
84
Zn powder ($650 \mathrm{mg}, 10 \mathrm{mmol}, 10.0 \mathrm{eq}$) and $\mathrm{NH}_{4} \mathrm{OAc}(10 \mathrm{~g}, 130 \mathrm{mmol}, 130.0 \mathrm{eq})$ are added to a flask and suspended in 100 mL EtOH and $20 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O} .83(430 \mathrm{mg}, 1 \mathrm{mmol}, 1.0 \mathrm{eq})$ is dissolved in 30 mL EtOH and added dropwise to the vigorously stirring suspension in 30 min . After complete addition, the mixture is filtered and washed with EtOH. The EtOH is partially removed under reduced pressure, then diluted with $100 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$ and the mixture extracted with $\mathrm{EE}(3 \times 50 \mathrm{~mL})$. The combined organic phases are dried with MgSO_{4}, then filtered and the solvent removed under reduced pressure. The crude product is purified by column chromatography ($C H / E E, 7 / 1$). The pure product $\mathbf{8 4}$ is obtained as a beige solid.

Yield 380 mg (88\%).
TLC (CH/EE, 7/1, v/v): $\mathrm{R}_{f}(84)=0.24$.
LC-MS (50-100\% B, $19 \mathbf{m i n}): \mathrm{t}_{\mathrm{R}}(\mathbf{8 4})=12.04 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=329.17[\mathrm{M}+\mathrm{H}]^{+}$,
found $=328.94[\mathrm{M}+\mathrm{H}]^{+}$.

3-(3,4-diethoxyphenyl)-1-(3-methoxyphenyl)propan-1-ol (MedChem17_RR_rac)

Chemical Formula: $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{O}_{4}$
Exact Mass: 330,18
Molecular Weight: 330,42

85

$84(50 \mathrm{mg}, 0.16 \mathrm{mmol}, 1.0 \mathrm{eq})$ is dissolved in 5 mL iPrOH. $\mathrm{NaBH}_{4}(13 \mathrm{mg}, 0.33 \mathrm{mmol}, 2 \mathrm{eq})$ is added and the reaction stirred overnight. The mixture is quenched with 5 mL 0.5 M HCl . The aqueous phase is extracted with $\mathrm{EE}(3 \times 10 \mathrm{~mL})$. The crude product is purified by column chromatography ($\mathrm{CH} / \mathrm{EE}, 3 / 1$). The pure product 85 is obtained as beige-white oil.

Yield 44 mg (87\%).
$\operatorname{TLC}(C H / E E, 3 / 1): R_{f}(85)=0.37$.
LC-MS (50-100\% B, 19 min$): \mathrm{t}_{\mathrm{R}}(85)=9.40 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=313.18[\mathrm{M}-\mathrm{OH}]^{+}$, found $=312.99[\mathrm{M}-$ $\mathrm{OH}]^{+}$.

Chiral-HPLC (5\% iPrOH in n-Hexane, isocratic, $1.0 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}): \mathrm{t}_{R}(85)=25.18 \mathrm{~min}, 28.37 \mathrm{~min}$.
(R)-3-(3,4-diethoxyphenyl)-1-(3-methoxyphenyl)propan-1-ol (MedChem17_RR_chiral)

Chemical Formula: $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{O}_{4}$ Exact Mass: 330,18
Molecular Weight: 330,42
86

84 ($100 \mathrm{mg}, 0.32 \mathrm{mmol}, 1.0 \mathrm{eq}$) is dissolved in 9 mL dry THF and added to the flask under argon atmosphere. Then S-CBS (0.4 eq) is added and 1.8 eq borane complex in THF solution added dropwise within 1 h . The reaction is stirred overnight after full addition. The mixture is quenched with 5 mL MeOH and stirred for 1 h . The solvent is removed under reduced pressure. The crude product is purified by column chromatography $(\mathrm{CH} / \mathrm{EE}, 3 / 1)$. The pure product 86 is obtained as a white oil.

Yield 92 mg (92\%).
TLC (CH/EE, 3/1): $\mathrm{R}_{f}(86)=0.37$.
LC-MS (50-100\% B, 19 min$): \mathrm{t}_{R}(86)=9.41 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=313.18[\mathrm{M}-\mathrm{OH}]^{+}$, found $=312.99[\mathrm{M}-$ $\mathrm{OH}]^{+}$.

Chiral-HPLC (20\% iPrOH in n-Hexane, isocratic, $1.0 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}): \mathrm{t}_{R}(86)=28.80 \mathrm{~min}(\mathrm{er}=$ 94.05/5.05).

(E)-3-(3-chloro-4-methoxyphenyl)-1-(3-methoxyphenyl)prop-2-en-1-one (MedChem17_SZ_CS)

Chemical Formula: $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{ClO}_{3}$
Exact Mass: 302,07
Molecular Weight: 302,75
87

3-chloro-4-methoxybenzaldehyde ($5.0 \mathrm{~g}, 29 \mathrm{mmol}, 1.0 \mathrm{eq}$) and 3-methoxyacetophenone (4.40 g , $29 \mathrm{mmol}, 1 \mathrm{eq}$) are dissolved in 40 mL EtOH. The mixture is cooled to $0^{\circ} \mathrm{C}$ for 15 min , then cooled KOH ($6.60 \mathrm{~g}, 120 \mathrm{mmol}, 4 \mathrm{eq}$) dissolved in 25 mL H H O added. The reaction is stirred overnight under slowly rising temperatures. The mixture is diluted with $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$ and extracted with $\mathrm{EE}(3 \times 100 \mathrm{~mL})$. The combined organic phases are washed with brine ($1 \times 50 \mathrm{~mL}$), dried with MgSO_{4}, filtered and the solvent removed under reduced pressure. The crude product is purified by manual column chromatography (CH/EE, 5/1) and 87 obtained as a yellow oil.

Yield $5.39 \mathrm{~g}(61 \%)$.
TLC (CH/EE, 5/1, v/v): $\mathrm{R}_{f}(87)=0.58$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 3.40(\mathrm{~d}, \mathrm{~J}=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.26(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.23-3.14(\mathrm{~m}, 2 \mathrm{H})$,
$3.12-3.02(\mathrm{~m}, 2 \mathrm{H}), 2.89-2.77(\mathrm{~m}, 2 \mathrm{H}),-0.38(\mathrm{~s}, 3 \mathrm{H}),-0.45(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C-NMR (75 MHz, $\mathbf{C D C l}_{3}$): $\delta 189.99,160.00,155.38,143.81,139.48,134.85,130.67,129.68,125.04$, $122.67,121.48,121.10,119.36,113.07,111.56,56.27,55.56$.

LC-MS (50-100\% B, $19 \mathbf{m i n}): \mathrm{t}_{R}(87)=12.48 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=303.07[\mathrm{M}+\mathrm{H}]^{+}$, found $=303.16[\mathrm{M}+\mathrm{H}]^{+}$.

3-(3-chloro-4-methoxyphenyl)-1-(3-methoxyphenyl)propan-1-one (MedChem17_SZ_Zn)

Chemical Formula: $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{ClO}_{3}$
Exact Mass: 304,09
Molecular Weight: 304,77

88

Zn powder ($810 \mathrm{mg}, 12 \mathrm{mmol}, 7.50 \mathrm{eq}$) and $\mathrm{NH}_{4} \mathrm{OAc}(13 \mathrm{~g}, 165 \mathrm{mmol}, 100.0 \mathrm{eq})$ are added to a flask and suspended in 100 mL EtOH and $20 \mathrm{~mL} \mathrm{H} \mathbf{2} \mathbf{O} .87$ ($500 \mathrm{mg}, 1.66 \mathrm{mmol}, 1.0 \mathrm{eq}$) is dissolved in 30 mL

EtOH and added dropwise to the vigorously stirring suspension in 30 min . After complete addition, the mixture is filtered and washed with EtOH. The EtOH is partially removed under reduced pressure, then diluted with $100 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$ and the mixture extracted with EE $(3 \times 50 \mathrm{~mL})$. The combined organic phases are dried with MgSO_{4}, then filtered and the solvent removed under reduced pressure. The crude product is purified by column chromatography (CH/EE, $7 / 1$). The pure product $\mathbf{8 8}$ is obtained as a beige solid.

Yield 293 mg (58\%).
$\operatorname{TLC}(C H / E E, 7 / 1, v / v): R_{f}(88)=0.24$.
LC-MS (30-100\% B, $19 \mathbf{m i n}): \mathrm{t}_{R}(88)=10.67 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=305.09[\mathrm{M}+\mathrm{H}]^{+}$, found $=305.00[\mathrm{M}+\mathrm{H}]^{+}$.

3-(3-chloro-4-methoxyphenyl)-1-(3-methoxyphenyl)propan-1-ol (MedChem17_SZ_rac)

Chemical Formula: $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{ClO}_{3}$ Exact Mass: 306,10
Molecular Weight: 306,78

89

88 ($60 \mathrm{mg}, 0.18 \mathrm{mmol}, 1.0 \mathrm{eq}$) is dissolved in $5 \mathrm{~mL} \mathrm{iPrOH} . \mathrm{NaBH}_{4}(14 \mathrm{mg}, 0.47 \mathrm{mmol}, 2.0 \mathrm{eq})$ is added and the reaction stirred overnight. The mixture is quenched with 5 mL 0.5 M HCl . The aqueous phase is extracted with $E E(3 \times 10 \mathrm{~mL})$. The crude product is purified by column chromatography ($C H / E E, 3 / 1$). The pure product 89 is obtained as beige-white oil.

Yield 47 mg (83\%).
$\operatorname{TLC}(C H / E E, 3 / 1): R_{f}(89)=0.31$.
LC-MS (0-100\% B, $19 \min): \mathrm{t}_{R}(89)=9.61 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=289.10[\mathrm{M}-\mathrm{OH}]^{+}$, found $=289.03[\mathrm{M}-$ $\mathrm{OH}]^{+}$.

Chiral-HPLC (10\% iPrOH in n-Hexane, isocratic, $1.0 \mathrm{~mL} / \mathrm{min}, \mathbf{2 2 0} \mathrm{nm}): \mathrm{t}_{\mathrm{R}}(89)=12.15 \mathrm{~min}, 12.79 \mathrm{~min}$.

(R)-3-(3-chloro-4-methoxyphenyl)-1-(3-methoxyphenyl)propan-1-ol (MedChem17_SZ_chiral)

Chemical Formula: $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{ClO}_{3}$
Exact Mass: 306,10
Molecular Weight: 306,78

90

88 ($100 \mathrm{mg}, 0.32 \mathrm{mmol}, 1.0 \mathrm{eq}$) is dissolved in 9 mL dry THF and added to the flask under argon atmosphere. Then S-CBS (0.4 eq) is added. Subsequently, 1.8 eq borane complex in THF solution are added dropwise within 1 h . The reaction is stirred overnight after full addition. The mixture is quenched with 5 mL MeOH and stirred for 1 h . The solvent is removed under reduced pressure. The crude product is purified by column chromatography $(C H / E E, 3 / 1)$. The pure product 90 is obtained as a white oil.

Yield 100 mg (quant.).
$\operatorname{TLC}(C H / E E, 3 / 1): R_{f}(90)=0.31$.
LC-MS (0-100\% B, 19 min$): \mathrm{t}_{R}(90)=9.68 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=289.10[\mathrm{M}-\mathrm{OH}]^{+}$, found $=289.10[\mathrm{M}-$ $\mathrm{OH}]^{+}$.

Chiral-HPLC (10\% iPrOH in n-Hexane, isocratic, $1.0 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}): \mathrm{t}_{\mathrm{R}}(90)=12.27 \mathrm{~min}(e r=$ 92.90/7.10).

(E)-3-(3,4-dimethoxyphenyl)-1-(pyridin-4-yl)prop-2-en-1-one (AV430/AV432/AV444)

Chemical Formula: $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}_{3}$ Exact Mass: 269,11
Molecular Weight: 269,30

4-Acetylpyridine ($5.0 \mathrm{~g}, 0.04 \mathrm{~mol}, 1.0 \mathrm{eq}$) and 3,4-dimethoxybenzaldehyde ($6.86 \mathrm{~g}, 0.04 \mathrm{~mol}, 1 \mathrm{eq}$) are dissolved in 60 mL MeOH. The mixture is cooled to $0^{\circ} \mathrm{C}$ for 15 min , then cooled $\mathrm{KOH}(2.78 \mathrm{~g}, 0.05 \mathrm{~mol}$, 1.2 eq) dissolved in 20 mL H O added. The mixture is checked every 10 min by TLC and the reaction stopped after 40 min . The reaction mixture is diluted with sat. $\mathrm{NH}_{4} \mathrm{Cl}_{(\mathrm{aq})}(50 \mathrm{~mL})$, brine (50 mL) and $\mathrm{H}_{2} \mathrm{O}$ $(50 \mathrm{~mL})$ and extracted with EE $(3 \times 100 \mathrm{~mL})$. The combined organic phases are washed with brine
$(1 \times 50 \mathrm{~mL})$, dried with MgSO_{4}, filtered and the solvent removed under reduced pressure. The crude product is purified by manual column chromatography ($\mathrm{CH} / \mathrm{EE}, 1 / 1+1 \% \mathrm{TEA}$) and 91 obtained as yellow oil.

Yield $1.56 \mathrm{~g}(14 \%)$.
$\operatorname{TLC}(C H / E E, 1 / 1+1 \% ~ T E A, ~ v / v): R_{f}(91)=0.22$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.79-8.74(\mathrm{~m}, 2 \mathrm{H}), 7.76-7.68(\mathrm{~m}, 3 \mathrm{H}), 7.24-7.08(\mathrm{~m}, 3 \mathrm{H}), 6.86(\mathrm{~d}, \mathrm{~J}=$ $8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C-NMR (75 MHz, CDCl $_{3}$): $\delta 189.84,152.11,150.74,149.44,147.04,144.82,127.35,123.82,121.57$, 119.21, 111.26, 110.27, 56.09, 56.05.

LC-MS (30-100\% B, 19 min$): \mathrm{t}_{\mathrm{R}}(91)=5.43 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=270.11[\mathrm{M}+\mathrm{H}]^{+}$, found $=270.21[\mathrm{M}+\mathrm{H}]^{+}$.
RP-HPLC (0 - 100\% B, $1.5 \mathrm{~mL} / \mathrm{min}, 20 \mathrm{~min}, 254 \mathrm{~nm}): \mathrm{t}_{R}(91)=8.72 \mathrm{~min}$ (99% Purity).

3-(3,4-dimethoxyphenyl)-1-(pyridin-4-yl)propan-1-one (AV502/AV505/AV507)

Chemical Formula: $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{3}$
Exact Mass: 271,12
Molecular Weight: 271,31
92
Zn powder ($2.43 \mathrm{~g}, 40 \mathrm{mmol}, 10.0 \mathrm{eq}$) and $\mathrm{NH}_{4} \mathrm{Cl}(1.99 \mathrm{~g}, 40 \mathrm{mmol}, 10.0 \mathrm{eq})$ are added to a flask and suspended in 20 mL MeOH. 91 ($1.0 \mathrm{mg}, 4 \mathrm{mmol}, 1.0 \mathrm{eq}$) is dissolved in 50 mL MeOH and added dropwise to the vigorously stirring suspension in 1 h . After complete addition, the mixture is filtered and washed with $\mathrm{MeOH} .100 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$ is added to the filtrate and adjusted to $\mathrm{pH}=13$ with a 10% aqueous NaOH solution. The mixture is extracted with $\mathrm{EE}(3 \times 50 \mathrm{~mL})$, the combined organic phases dried with MgSO_{4}, then filtered and the solvent removed under reduced pressure. The crude (380 mg) is dissolved in 10 mL DCM and Dess-Martin-Periodinan ($650 \mathrm{mg}, 1.4 \mathrm{mmol}, 1.1 \mathrm{eq}$) is added. The reaction is stirred at r.t. overnight. $30 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$ is added to the reaction and adjusted to $\mathrm{pH}=13$ with a 10% aqueous NaOH solution. The mixture is extracted with $\mathrm{DCM}(3 \times 50 \mathrm{~mL})$. The combined organic phases dried with MgSO_{4}, then filtered and the solvent removed under reduced pressure. The crude product is purified by column chromatography ($\mathrm{CH} / \mathrm{EE}, 2 / 1$). The pure product 92 is obtained as a beige solid.

Yield 90 mg (9\%).
$\operatorname{TLC}(C H / E E, 2 / 1, v / v): R_{f}(92)=0.20$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.77-8.69(\mathrm{~m}, 2 \mathrm{H}), 7.71-7.60(\mathrm{~m}, 2 \mathrm{H}), 6.74-6.70(\mathrm{~m}, 2 \mathrm{H}), 6.69(\mathrm{~d}, \mathrm{~J}=$ $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.21(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.95(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13}$ C-NMR (75 MHz, CDCl ${ }_{3}$): $\delta 198.64,150.66,150.35,123.78,121.69,121.12,120.19,111.87,111.46$, 111.22, 55.95, 55.88, 40.98, 29.36.

LC-MS (0-100\% B, 19 min$): \mathrm{t}_{\mathrm{R}}(\mathbf{9 2})=9.48 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=272.12[\mathrm{M}+\mathrm{H}]^{+}$, found $=272.21[\mathrm{M}+\mathrm{H}]^{+}$.

RP-HPLC (0 - 100\% B, $1.5 \mathrm{~mL} / \mathrm{min}, 20 \mathrm{~min}, 220 \mathrm{~nm}$): $\mathrm{t}_{R}(92)=8.58 \mathrm{~min}(99 \%$ Purity).

3-(3,4-dimethoxyphenyl)-1-(pyridin-4-yl)propan-1-ol (AV522/AV524)

$92(60 \mathrm{mg}, 0.22 \mathrm{mmol}, 1.0 \mathrm{eq})$ is dissolved in $5 \mathrm{~mL} \mathrm{iPrOH} . \mathrm{NaBH}_{4}(30 \mathrm{mg}, 0.79 \mathrm{mmol}, 3.6 \mathrm{eq})$ is added and the reaction stirred at $70^{\circ} \mathrm{C}$ overnight. The mixture is cooled to r.t. and quenched with 10 mL 3 M HCl . The aqueous phase is adjusted to $\mathrm{pH}=13$ with $10 \% \mathrm{NaOH}_{(\text {aq })}$ solution, then extracted with DCM $(3 \times 10 \mathrm{~mL})$. The crude product is purified by column chromatography $(\mathrm{CH} / \mathrm{EE}, 1 / 4)$. The pure product 93 is obtained as beige-white oil.

Yield 20 mg (33\%).
$\operatorname{TLC}(C H / E E, 1 / 4): \mathrm{R}_{f}(93)=0.20$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.60-8.46(\mathrm{~m}, 2 \mathrm{H}), 7.27(\mathrm{dd}, J=2.0,6.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.79(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, $6.74-6.66(\mathrm{~m}, 2 \mathrm{H}), 4.70(\mathrm{dd}, \mathrm{J}=4.8,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 2.76-2.63(\mathrm{~m}, 2 \mathrm{H}), 2.10-$ $1.94(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13}$ C-NMR (75 MHz, CDCl ${ }_{3}$): $\delta 153.99,149.81,149.12,147.54,133.96,121.01,120.37,111.93,111.54$, 72.30, 56.09, 56.00, 40.64, 31.48.

LC-MS (0-100\% B, 19 min$): \mathrm{t}_{\mathrm{R}}(93)=6.10 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=274.14[\mathrm{M}+\mathrm{H}]^{+}$, found $=274.26[\mathrm{M}+\mathrm{H}]^{+}$.

Chiral-HPLC (20\% iPrOH in n-Hexane, isocratic, $1.0 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}): \mathrm{t}_{R}(93)=23.89 \mathrm{~min}, 24.24 \mathrm{~min}$.

(R)-3-(3,4-dimethoxyphenyl)-1-(pyridin-4-yl)propan-1-ol (AV529)

Chemical Formula: $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{3}$ Exact Mass: 273,14
Molecular Weight: 273,33
94

93 ($30 \mathrm{mg}, 0.11 \mathrm{mmol}, 1.0 \mathrm{eq}$) is dissolved in 5 mL iPrOH. Then KOtBu ($110 \mu \mathrm{~L}, 0.11 \mathrm{mmol}, 1 \mathrm{eq}$) is added and the solution is sparged with argon for 5 min . $\mathrm{RuCl}_{2}[(\mathrm{~S})$-(DM-SEGPHOS)][(S)-DAIPEN] (2.7 mg , $0.002 \mathrm{mmol}, 0.02 \mathrm{eq})$ is added and the solution sparged with H_{2} for 5 min , then the reaction stirred at 1 bar H_{2} at r.t. overnight. After full conversion, the solvent is removed under reduced pressure. The crude product is purified by column chromatography $(\mathrm{CH} / \mathrm{EE}, 1 / 4)$. The pure product 94 is obtained as a white oil.

Yield 14 mg (47\%).
$\operatorname{TLC}(C H / E E, 1 / 4): R_{f}(94)=0.21$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.56-8.49(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.26(\mathrm{~m}, 2 \mathrm{H}), 6.79(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.75-$ $6.69(\mathrm{~m}, 2 \mathrm{H}), 4.71(\mathrm{dd}, \mathrm{J}=4.8,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 4 \mathrm{H}), 3.85(\mathrm{~s}, 5 \mathrm{H}), 2.77-2.63(\mathrm{~m}, 2 \mathrm{H}), 2.10-1.90$ ($\mathrm{m}, 2 \mathrm{H}$).
${ }^{13} \mathrm{C}$-NMR (126 MHz, CDCl_{3}): $\delta 153.97,149.82,149.11,147.54,147.54,133.96,121.00,120.36,111.93$, 111.54, 72.30, 56.09, 56.00, 40.64, 31.48.

LC-MS (0-100\% B, 19 min$): \mathrm{t}_{R}(94)=6.10 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=274.14[\mathrm{M}+\mathrm{H}]^{+}$, found $=274.23[\mathrm{M}+\mathrm{H}]^{+}$.

RP-HPLC (0 - 100\% B, $1.5 \mathrm{~mL} / \mathrm{min}, 20 \mathrm{~min}, 254 \mathrm{~nm}$): $\mathrm{t}_{R}(94)=6.39 \mathrm{~min}$ (99% Purity).
Chiral-HPLC (20\% iPrOH in n-Hexane, isocratic, $1.0 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}$): $\mathrm{t}_{R}(94)=22.65 \mathrm{~min}(>99 \%)$.
(E)-3-(3,4-dimethoxyphenyl)-1-(pyridin-3-yl)prop-2-en-1-one (AV481/AV482/AV486)

Chemical Formula: $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}_{3}$
Exact Mass: 269,11
Molecular Weight: 269,30

3,4-Dimethoxybenzaldehyde ($5.0 \mathrm{~g}, 0.03 \mathrm{~mol}, 1.0 \mathrm{eq}$) and 3-acetylpyridine ($3.65 \mathrm{~g}, 0.03 \mathrm{~mol}, 1 \mathrm{eq}$) are dissolved in 50 mL MeOH. The mixture is cooled to $0^{\circ} \mathrm{C}$ for 20 min , then cooled $\mathrm{NaOH}(1.32 \mathrm{~g}, 0.05 \mathrm{~mol}$, 1.1 eq) dissolved in $30 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$ is added slowly in 2 min . The mixture is checked every 5 min by TLC and the reaction stopped after 20 min when side reaction is observed. The reaction mixture is diluted with sat. $\mathrm{NH}_{4} \mathrm{Cl}_{(\mathrm{aq})}(50 \mathrm{~mL})$, brine $(50 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$ and extracted with $\mathrm{EE}(3 \times 100 \mathrm{~mL})$. The combined organic phases are washed with brine ($1 \times 50 \mathrm{~mL}$), dried with MgSO_{4}, filtered and the solvent removed under reduced pressure. The crude product is crystallized by dissolving in $10 \mathrm{mLEtOH}, 10 \mathrm{~mL} \mathrm{MeOH}$ and 50 mL EE and the addition of 1.5 mL conc. HCl under stirring. The mixture is kept in the freezer ($20^{\circ} \mathrm{C}$) overnight. The crystals are filtered and washed with cold EE and 95 obtained as yellow crystals.

Yield $1.52 \mathrm{~g}(19 \%)$.
$\operatorname{TLC}(C H / E E, 1 / 1, v / v): R_{f}(95)=0.42$.
${ }^{1} \mathrm{H}-\mathrm{NMR}(\mathbf{3 0 0} \mathrm{MHz}, \mathrm{MeOD}): \delta 9.32$ (dd, $\left.J=0.9,2.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.85(\mathrm{dd}, J=1.7,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.64$ (ddd, $J=$ $1.6,2.2,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.80-7.67(\mathrm{~m}, 2 \mathrm{H}), 7.51(\mathrm{dd}, J=2.0,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.41$
(dd, $J=2.1,8.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.09 (d, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}$), $4.00(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 3 \mathrm{H}), 3.96(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C-NMR (75 MHz, MeOD): δ 190.04, 153.61, 152.56, 150.87, 149.51, 147.96, 138.84, 125.77, 125.50, 120.04, 112.68, 112.08, 56.64, 56.48.

LC-MS (0-100\% B, 19 min$): \mathrm{t}_{\mathrm{R}}(95)=9.61 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=270.11[\mathrm{M}+\mathrm{H}]^{+}$, found $=270.20[\mathrm{M}+\mathrm{H}]^{+}$.

RP-HPLC (0 - 100\% B, $1.5 \mathrm{~mL} / \mathrm{min}, 20 \mathrm{~min}, 254 \mathrm{~nm}$): $\mathrm{t}_{R}(95)=8.67 \mathrm{~min}(90 \%$ Purity).

3-(3,4-dimethoxyphenyl)-1-(pyridin-3-yl)propan-1-one (AV498)

Chemical Formula: $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{3}$ Exact Mass: 271,12
Molecular Weight: 271,31

Zn powder ($2.43 \mathrm{~g}, 40 \mathrm{mmol}, 10.0 \mathrm{eq}$) and $\mathrm{NH}_{4} \mathrm{Cl}(1.99 \mathrm{~g}, 40 \mathrm{mmol}, 10.0 \mathrm{eq})$ are added to a flask and suspended in 20 mL MeOH. 91 ($1.0 \mathrm{mg}, 4 \mathrm{mmol}, 1.0 \mathrm{eq}$) is dissolved in 100 mL MeOH and added dropwise to the vigorously stirring suspension in 25 min . After complete addition, the mixture is filtered and washed with $\mathrm{MeOH} .100 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$ is added to the filtrate and adjusted to $\mathrm{pH}=13$ with a 10% aqueous NaOH solution. The mixture is extracted with $\mathrm{EE}(3 \times 50 \mathrm{~mL})$, the combined organic phases are dried with MgSO_{4}, then filtered and the solvent removed under reduced pressure. The crude
product is purified by column chromatography (CH/EE, 1/1). The pure product 96 is obtained as a beige solid.

Yield 250 mg (25\%).
$\operatorname{TLC}(C H / E E, 1 / 1, v / v): R_{f}(96)=0.25$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.12-9.07(\mathrm{~m}, 1 \mathrm{H}), 8.70(\mathrm{dd}, J=1.6,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.14(\mathrm{dt}, J=1.9,8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.38-7.29(\mathrm{~m}, 1 \mathrm{H}), 6.77-6.66(\mathrm{~m}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.23(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.97(\mathrm{t}, \mathrm{J}$ $=7.5 \mathrm{~Hz}, 2 \mathrm{H}$).
${ }^{13}$ C-NMR (75 MHz, CDCl $_{3}$): $\delta 198.31,153.63,149.74,149.14,147.71,135.45,133.50,132.26,123.78$, 120.35, 112.01, 111.59, 56.09, 41.09, 29.66.

LC-MS (0-100\% B, $19 \min): \mathrm{t}_{\mathrm{R}}(96)=9.52 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=272.12[\mathrm{M}+\mathrm{H}]^{+}$, found $=272.43[\mathrm{M}+\mathrm{H}]^{+}$.
RP-HPLC (0 - 100\% B, $1.5 \mathrm{~mL} / \mathrm{min}, 20 \mathrm{~min}, 220 \mathrm{~nm}): \mathrm{t}_{R}(96)=8.23 \mathrm{~min}(99 \%$ Purity).

3-(3,4-dimethoxyphenyl)-1-(pyridin-3-yl)propan-1-ol (AV514)

Chemical Formula: $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{3}$ Exact Mass: 273,14
Molecular Weight: 273,33
97
$96(20 \mathrm{mg}, 0.07 \mathrm{mmol}, 1.0 \mathrm{eq})$ is dissolved in $2 \mathrm{~mL} \mathrm{iPrOH} . \mathrm{NaBH}_{4}(3 \mathrm{mg}, 0.07 \mathrm{mmol}, 1 \mathrm{eq})$ is added and the reaction stirred at r.t. overnight. The mixture is quenched with MeOH . The aqueous phase is adjusted to $\mathrm{pH}=13$ with $10 \% \mathrm{NaOH}_{(a q)}$ solution, then extracted with DCM $(3 \times 10 \mathrm{~mL})$. The crude product is purified by column chromatography ($C H / E E, 1 / 1$). The pure product 97 is obtained as beigewhite oil.

Yield 17 mg (85\%).
$\operatorname{TLC}(C H / E E, 1 / 1): \mathrm{R}_{f}(97)=0.15$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.55(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.50(\mathrm{dd}, J=1.7,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{dt}, J=2.0,7.9$ $\mathrm{Hz}, 1 \mathrm{H}$), 7.28 (ddd, $J=0.9,4.9,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.75-6.68(\mathrm{~m}, 2 \mathrm{H}), 4.74(\mathrm{dd}, J=$ $5.1,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 2.78-2.59(\mathrm{~m}, 2 \mathrm{H}), 2.19-1.95(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13}$ C-NMR (126 MHz, CDCl 3): $\delta 149.06,147.97,147.53,140.07,133.98,133.79,123.70,120.36,111.91$, 111.54, 71.64, 56.10, 56.01, 40.77, 31.64, 29.85.

LC-MS (0-100\% B, 19 min$): \mathrm{t}_{\mathrm{R}}(97)=6.17 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=274.14[\mathrm{M}+\mathrm{H}]^{+}$, found $=274.23[\mathrm{M}+\mathrm{H}]^{+}$.

Chiral-HPLC (20\% iPrOH in n-Hexane, isocratic, $1.0 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}): \mathrm{t}_{R}(97)=15.54 \mathrm{~min}, 16.22 \mathrm{~min}$.

(R)-3-(3,4-dimethoxyphenyl)-1-(pyridin-3-yl)propan-1-ol (AV528)

Chemical Formula: $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{3}$
Exact Mass: 273,14
Molecular Weight: 273,33
98
$96(30 \mathrm{mg}, 0.11 \mathrm{mmol}, 1.0 \mathrm{eq})$ is dissolved in 5 mL iPrOH. Then $\operatorname{KOtBu}(110 \mu \mathrm{~L}, 0.11 \mathrm{mmol}, 1 \mathrm{eq})$ is added and the solution is sparged with argon for 5 min . $\mathrm{RuCl}_{2}[(\mathrm{~S})$-(DM-SEGPHOS)][(S)-DAIPEN] (4 mg, $0.003 \mathrm{mmol}, 0.03 \mathrm{eq}$) is added and the solution sparged with H_{2} for 5 min , then the reaction stirred at 1 bar H_{2} at r.t. overnight. After full conversion, the solvent is removed under reduced pressure. The crude product is purified by column chromatography $(C H / E E, 1 / 1)$. The pure product 98 is obtained as a white oil.

Yield 27 mg (90\%).
$\operatorname{TLC}(E E): \mathrm{R}_{f}(94)=0.47$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.50(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.45(\mathrm{dd}, \mathrm{J}=1.7,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{dt}, J=1.9,7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.29-7.21(\mathrm{~m}, 1 \mathrm{H}), 6.77(\mathrm{~s}, 2 \mathrm{H}), 6.74-6.65(\mathrm{~m}, 2 \mathrm{H}), 4.72(\mathrm{dd}, \mathrm{J}=5.1,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~s}$, $3 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 2.77-2.56(\mathrm{~m}, 2 \mathrm{H}), 2.17-1.93(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13}$ C-NMR (126 MHz, CDCl 3): $\delta 149.07,148.85,147.87,147.47,140.26,134.04,133.83,123.66,120.34$, 111.91, 111.51, 71.47, 56.07, 55.98, 40.78, 31.63, 29.82.

LC-MS (0-100\% B, 19 min$): \mathrm{t}_{\mathrm{R}}(94)=6.18 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=274.14[\mathrm{M}+\mathrm{H}]^{+}$, found $=274.22[\mathrm{M}+\mathrm{H}]^{+}$.

Chiral-HPLC (20\% iPrOH in n-Hexane, isocratic, $1.0 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}(94)=16.20 \mathrm{~min}(>99 \%)$.
(E)-3-(3,4-dimethoxyphenyl)-1-(pyridin-1-yl)prop-2-en-1-one (MedChem19_17)

Chemical Formula: $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}_{3}$ Exact Mass: 269,11
Molecular Weight: 269,30

3,4-Dimethoxybenzaldehyde ($8.23 \mathrm{~g}, 0.05 \mathrm{~mol}, 1.0 \mathrm{eq}$) and 2-Acetylpyridine ($6.00 \mathrm{~g}, 0.05 \mathrm{~mol}, 1 \mathrm{eq}$) are dissolved in 180 mL EtOH. The mixture is cooled to $0^{\circ} \mathrm{C}$ for 20 min , then cooled $\mathrm{KOH}(11.13 \mathrm{~g}$, $0.2 \mathrm{~mol}, 1.1 \mathrm{eq}$) dissolved in $120 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$ is added slowly in 2 min . The yellow precipitate is filtered, washed with $\mathrm{H}_{2} \mathrm{O}$, dissolved in DCM, dried with MgSO_{4}, filtered and the solvent removed under reduced pressure. The yellow solid 99 is further used as crude.

Yield 11.11 g (83\%).
$\operatorname{TLC}(C H / E E, 1 / 1, v / v): R_{f}(99)=0.35$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.72$ (ddd, $\left.J=0.9,1.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.19-8.09(\mathrm{~m}, 2 \mathrm{H}), 7.96-7.80(\mathrm{~m}$, 2 H), 7.46 (ddd, $J=1.3,4.7,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.23(\mathrm{~m}, 2 \mathrm{H}), 6.88(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 3.91$ ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13}$ C-NMR (75 MHz, CDCl $_{3}$): $\delta 189.38,154.56,151.65,149.33,148.84,145.18,137.12,128.32,126.84$, $124.03,123.01,118.71,111.14,110.33,56.12,56.08$.

LC-MS (0-100\% B, 19 min): $\mathrm{t}_{\mathrm{R}}(99)=11.27 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=270.25[\mathrm{M}+\mathrm{H}]^{+}$, found $=270.15[\mathrm{M}+\mathrm{H}]^{+}$.

3-(3,4-dimethoxyphenyl)-1-(pyridin-2-yl)propan-1-one (AV495/AV509/AV646)

Chemical Formula: $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{3}$ Exact Mass: 271,12
Molecular Weight: 271,31
100
$99(1 \mathrm{~g}, 4 \mathrm{mmol}, 1.0 \mathrm{eq})$ is dissolved in 50 mL THF and the solution sparged with argon for $5 \mathrm{~min} .10 \mathrm{w} \%$ $\mathrm{Pd} / \mathrm{C}(0.2 \mathrm{~g}, 0.05 \mathrm{eq})$ is added and the slurry sparged with H_{2} for 5 min , then stirred under 1 atm H_{2} for 2.5 h . After complete conversion, the mixture is filtered and washed with THF. The solvent is removed under reduced pressure. The crude product is purified by column chromatography ($C H / E E, 2 / 1$). The pure product $\mathbf{1 0 0}$ is obtained as a beige solid.

Yield 530 mg (52\%).
TLC (CH/EE, 1/1, v/v): $\mathrm{R}_{f}(\mathbf{1 0 0})=0.25$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.60(\mathrm{t}, \mathrm{J}=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{dt}, J=4.5,9.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.44-7.31(\mathrm{~m}, 1 \mathrm{H}), 6.73(\mathrm{~d}, \mathrm{~J}=2.8 \mathrm{~Hz}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.48(\mathrm{td}, J=2.2,8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $2.95(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): ~ \delta 201.08,153.38,148.92,148.84,147.30,136.86,134.07,127.08,121.79$, 120.27, 111.92, 111.31, 55.93, 55.82, 39.54, 29.54.

LC-MS (0-100\% B, $19 \mathbf{m i n}): \mathrm{t}_{\mathrm{R}}(\mathbf{1 0 0})=10.95 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=272.12[\mathrm{M}+\mathrm{H}]^{+}$, found $=272.03[\mathrm{M}+\mathrm{H}]^{+}$.

RP-HPLC (0 - 100\% B, $1.5 \mathrm{~mL} / \mathrm{min}, 20 \mathrm{~min}, 220 \mathrm{~nm}): \mathrm{t}_{R}(\mathbf{1 0 0})=11.28 \mathrm{~min}$ (98% Purity) .

3-(3,4-dimethoxyphenyl)-1-(pyridin-2-yl)propan-1-ol (AV515/AV523/AV525/AV653/AV667)

Chemical Formula: $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{3}$ Exact Mass: 273,14
Molecular Weight: 273,33 101
$100(50 \mathrm{mg}, 0.07 \mathrm{mmol}, 1.0 \mathrm{eq})$ is dissolved in 2 mL iPrOH. $\mathrm{NaBH}_{4}(30 \mathrm{mg}, 0.70 \mathrm{mmol}, 10 \mathrm{eq})$ is added and the reaction stirred at $70^{\circ} \mathrm{C}$ overnight. The mixture is diluted with $10 \mathrm{~mL} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$ and quenched with a few drops conc. HCl . The aqueous phase is adjusted to $\mathrm{pH}=13$ with $10 \% \mathrm{NaOH}_{(\mathrm{aq})}$ solution, then extracted with DCM $(3 \times 10 \mathrm{~mL})$. The crude product is purified by column chromatography ($C H / E E, 1 / 1$). The pure product 101 is obtained as beige-white oil.

Yield 20 mg (40\%).
$\operatorname{TLC}(C H / E E, 1 / 1): \mathrm{R}_{f}(101)=0.15$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.60-8.54(\mathrm{~m}, 1 \mathrm{H}), 7.69(\mathrm{td}, J=1.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.25(\mathrm{~m}, 1 \mathrm{H})$, 7.22 (ddd, $J=1.0,4.9,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.83-6.72(\mathrm{~m}, 3 \mathrm{H}), 4.79(\mathrm{dd}, J=3.9,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.87$ $(\mathrm{s}, 3 \mathrm{H}), 2.83-2.69(\mathrm{~m}, 2 \mathrm{H}), 2.19-2.10(\mathrm{~m}, 1 \mathrm{H}), 1.99$ (dddd, $J=5.7,8.5,9.5,13.8 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13}$ C-NMR (126 MHz, CDCl 3): $\delta 149.06,147.97,147.53,140.07,133.98,133.79,123.70,120.36,111.91$, 111.54, 71.64, 56.10, 56.01, 40.77, 31.64, 29.85.

LC-MS (0-100\% B, 19 min$): \mathrm{t}_{R}(101)=6.26 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=274.14[\mathrm{M}+\mathrm{H}]^{+}$, found $=274.15[\mathrm{M}+\mathrm{H}]^{+}$.

Chiral-HPLC (20\% iPrOH in n-Hexane, isocratic, $1.0 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}): \mathrm{t}_{R}(\mathbf{1 0 1})=9.25 \mathrm{~min}, 9.43 \mathrm{~min}$.

(R)-3-(3,4-dimethoxyphenyl)-1-(pyridin-2-yl)propan-1-ol (AV527)

Chemical Formula: $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{3}$ Exact Mass: 273,14
Molecular Weight: 273,33
102
$100(20 \mathrm{mg}, 0.07 \mathrm{mmol}, 1.0 \mathrm{eq})$ is dissolved in 5 mL iPrOH. Then $\mathrm{K}_{2} \mathrm{CO}_{3}(15 \mathrm{mg}, 0.11 \mathrm{mmol}, 1.5 \mathrm{eq})$ is added and the solution is sparged with argon for 5 min . $\mathrm{RuCl}_{2}[(S)$-(DM-SEGPHOS)][(S)-DAIPEN] (2 mg , $0.002 \mathrm{mmol}, 0.02 \mathrm{eq})$ is added and the solution is added to an autoclave. The autoclave is flushed with $\mathrm{H}_{2}(3 x)$ and the reaction is stirred at 10 bar H_{2} at r.t. overnight. After full conversion, the solvent is removed under reduced pressure. The crude product is purified by column chromatography ($\mathrm{CH} / \mathrm{EE}$, $1 / 1)$. The pure product 102 is obtained as a white oil.

Yield 15 mg (75\%).
$\operatorname{TLC}(C H / E E, 1 / 1): \mathrm{R}_{f}(102)=0.24$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.57(\mathrm{dt}, J=1.3,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{td}, J=1.7,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~d}, \mathrm{~J}=6.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.22$ (ddd, $J=1.1,4.9,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{ddd}, J=2.5,6.0,17.0 \mathrm{~Hz}, 3 \mathrm{H}), 4.80(\mathrm{dd}, J=3.9,8.2$ $\mathrm{Hz}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 2.83-2.68(\mathrm{~m}, 2 \mathrm{H}), 2.20-1.91(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$-NMR (126 MHz, CDCl 3): $\delta 162.03,148.99,148.33,147.31,136.81,134.80,122.45,120.40,112.06$, 111.46, 72.10, 56.08, 55.96, 40.71, 31.37, 29.83.

LC-MS (0-100\% B, 19 min$): \mathrm{t}_{\mathrm{R}}(102)=6.23 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=274.14[\mathrm{M}+\mathrm{H}]^{+}$, found $=274.17[\mathrm{M}+\mathrm{H}]^{+}$.
Chiral-HPLC (20\% iPrOH in n-Hexane, isocratic, $1.0 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}): \mathrm{t}_{\mathrm{R}}(\mathbf{1 0 2})=9.23 \mathrm{~min}(\mathrm{er}=$ 92.56/7.44).

(E)-1-(3-methoxyphenyl)-3-(pyridin-4-yl)prop-2-en-1-one (AV431/AV434/AV435/AV436/AV443)

Chemical Formula: $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{NO}_{2}$
Exact Mass: 239,09
Molecular Weight: 239,27

Pyridine-4-carboxaldehyde ($14.02 \mathrm{~g}, 0.09 \mathrm{~mol}, 2 \mathrm{eq}$) is dissolved in 40 mL MeOH . The solution is cooled to $0^{\circ} \mathrm{C}$ for 15 min , then cooled $\mathrm{KOH}(10.48 \mathrm{~g}, 0.19 \mathrm{~mol}, 4.0 \mathrm{eq})$ dissolved in 30 mL H O is added. Subsequently a solution of 3-methoxyacetophenone ($5.0 \mathrm{~g}, 0.05 \mathrm{~mol}, 1.0 \mathrm{eq}$) in 20 mL MeOH is added dropwise in 10 min . The mixture is checked every 5 min by TLC and the reaction stopped after 20 min when side reaction is observed. The reaction mixture is diluted with sat. $\mathrm{NH}_{4} \mathrm{Cl}_{(\mathrm{aq})}(100 \mathrm{~mL})$, brine $(50 \mathrm{~mL})$ and extracted with EE $(3 \times 100 \mathrm{~mL})$. The combined organic phases are washed with brine $(1 \times 50 \mathrm{~mL})$, dried with MgSO_{4}, filtered and the solvent removed under reduced pressure. The crude product is enriched by manual column chromatography ($\mathrm{EE}+3 \% \mathrm{TEA}$), then crystallized in $\mathrm{iPrOH} / \mathrm{H} 2 \mathrm{O}$ -20/1. Compound 103 is obtained as yellow crystals.

Yield 1 g (9\%).
$\operatorname{TLC}(E E+3 \% T E A): R_{f}(103)=0.42$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.70-8.64(\mathrm{~m}, 2 \mathrm{H}), 7.70-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.58(\mathrm{ddd}, \mathrm{J}=0.9,1.6,7.7 \mathrm{~Hz}$, 1 H), $7.53(\mathrm{dd}, \mathrm{J}=1.5,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.48-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.41(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{ddd}, J=0.9,2.7$, $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.87$ (s, 3H).
${ }^{13}$ C-NMR (126 MHz, CDCl 3): $\delta 189.60,160.17,150.64,142.32,141.55,139.00,129.86,126.33,122.15$, 121.26, 119.93, 113.11, 55.63.

LC-MS (0-100\% B, 19 min$): \mathrm{t}_{R}(103)=9.61 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=240.10[\mathrm{M}+\mathrm{H}]^{+}$, found $=240.25[\mathrm{M}+\mathrm{H}]^{+}$.

1-(3-methoxyphenyl)-3-(pyridin-4-yl)propan-1-one (AV437/AV445)

Chemical Formula: $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NO}_{2}$
Exact Mass: 241,11
Molecular Weight: 241,29
104

Zn powder ($1.34 \mathrm{~g}, 20 \mathrm{mmol}, 10.0 \mathrm{eq}$) and $\mathrm{NH}_{4} \mathrm{Cl}(1.10 \mathrm{~g}, 20 \mathrm{mmol}, 10.0 \mathrm{eq})$ are added to a flask and suspended in 10 mL MeOH. 103 ($490 \mathrm{mg}, 2 \mathrm{mmol}, 1.0 \mathrm{eq}$) is dissolved in 10 mL MeOH and added dropwise to the vigorously stirring suspension in 10 min . After complete addition, the mixture is filtered and washed with $\mathrm{MeOH} .50 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$ is added to the filtrate and adjusted to $\mathrm{pH}=13$ with a 10% aqueous NaOH solution. The mixture is extracted with $\mathrm{EE}(3 \times 50 \mathrm{~mL})$, the combined organic phases dried with MgSO_{4}, then filtered and the solvent removed under reduced pressure. The crude is purified by column chromatography (EE). The pure product 104 is obtained as a beige solid.

Yield 320 mg (65\%).
$\operatorname{TLC}(E E): R_{f}(104)=0.27$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.52-8.48(\mathrm{~m}, 2 \mathrm{H}), 7.52(\mathrm{ddd}, J=1.0,1.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{dd}, J=1.5$, $2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.11(\mathrm{ddd}, J=0.9,2.7,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}$, $3 H), 3.36-3.23(\mathrm{~m}, 2 \mathrm{H}), 3.08(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13}$ C-NMR (126 MHz, CDCl 3): $\delta 197.94,159.93,150.84,149.35,137.92,129.68,124.01,120.56,119.74$, 112.36, 55.46, 38.88, 29.27.

LC-MS (0-100\% B, 19 min$): \mathrm{t}_{\mathrm{R}}(104)=8.90 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=242.11[\mathrm{M}+\mathrm{H}]^{+}$, found $=242.25[\mathrm{M}+\mathrm{H}]^{+}$.

1-(3-methoxyphenyl)-3-(pyridin-4-yl)propan-1-ol (AV448)

105
104 ($50 \mathrm{mg}, 0.21 \mathrm{mmol}, 1.0 \mathrm{eq}$) is dissolved in 2 mL iPrOH. $\mathrm{NaBH}_{4}(8 \mathrm{mg}, 0.21 \mathrm{mmol}, 1 \mathrm{eq})$ is added and the reaction stirred at r.t. overnight. The mixture is diluted with 10 mL MeOH and quenched with a few drops conc. HCl . The solvent removed under reduced pressure. The crude product is purified by column chromatography (EE). The pure product 105 is obtained as a beige-white oil.

Yield 45 mg (90\%).
$\operatorname{TLC}(E E): R_{f}(105)=0.20$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.46-8.39(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.17-7.10(\mathrm{~m}, 2 \mathrm{H}), 6.91(\mathrm{dt}, \mathrm{J}=$ $1.5,3.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.82(\mathrm{ddd}, J=1.1,2.6,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{dd}, J=5.1,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~d}, J=1.1 \mathrm{~Hz}$, $3 H), 2.83-2.61(m, 3 H), 2.17-1.95(m, 2 H)$.
${ }^{13}$ C-NMR (126 MHz, CDCl 3): $\delta 160.02,151.55,149.41,146.21,129.76,124.16,118.26,113.25,111.59$, 73.51, 55.39, 39.33, 31.51.

LC-MS (0-100\% B, 19 min$): \mathrm{t}_{\mathrm{R}}(105)=7.26 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=244.13[\mathrm{M}+\mathrm{H}]^{+}$, found $=244.19[\mathrm{M}+\mathrm{H}]^{+}$.

Chiral-HPLC (20\% iPrOH in n-Hexane, isocratic, $1.0 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}): \mathrm{t}_{R}(\mathbf{1 0 5)}=13.98 \mathrm{~min}$, 16.12 min .

(R)-1-(3-methoxyphenyl)-3-(pyridin-4-yl)propan-1-ol (AV447)

Chemical Formula: $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{2}$
Exact Mass: 243,13
Molecular Weight: 243,30
106

Dissolve S-CBS ($34 \mathrm{mg}, 0.12 \mathrm{mmol}, 0.1 \mathrm{eq}$) in 4.1 mL dry THF and add to a flask under argon atmosphere. Add $60 \mu \mathrm{~L}(0.1 \mathrm{eq})$ of a $2 \mathrm{M} \mathrm{BH}_{3} * \mathrm{SMe}_{2}$ solution in THF. Dissolve $104(300 \mathrm{mg}, 1.24 \mathrm{mmol}$, 1.0 eq) in 3.1 mL dry THF and add to the catalyst. Then $933 \mu \mathrm{~L}(1.5 \mathrm{eq})$ of a $2 \mathrm{M} \mathrm{BH}_{3} * \mathrm{SMe}_{2}$ solution in THF is added dropwise in 1 h . After complete addition, the reaction is further stirred for 2 h , then stopped by the addition of MeOH . The formation of product-boron complexes is stopped by the addition of 1.1 eq conc. HCl and further stirring for 1 h . Finally, the mixture is diluted with sat. NaHCO_{3} solution until basic and extracted with EE ($3 \times 20 \mathrm{~mL}$). The combined organic phases are washed with brine ($1 \times 50 \mathrm{~mL}$), dried with MgSO_{4}, filtered and the solvent removed under reduced pressure. The crude product is purified by column chromatography (EE). The pure product $\mathbf{1 0 6}$ is obtained as a white oil.

Yield 217 mg (71\%).
$\operatorname{TLC}(E E): R_{f}(106)=0.21$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.42(\mathrm{dq}, \mathrm{J}=1.7,5.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.13-7.09(\mathrm{~m}, 2 \mathrm{H})$,
$6.93-6.87(\mathrm{~m}, 2 \mathrm{H}), 6.82(\mathrm{ddd}, J=1.1,2.5,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{dd}, J=5.1,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~d}, J=1.3$
$\mathrm{Hz}, 3 \mathrm{H}), 2.81-2.62(\mathrm{~m}, 2 \mathrm{H}), 2.17-1.95(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 159.99,151.49,149.42,129.72,124.13,118.27,113.21,111.57,73.44$, 55.37, 39.35, 31.49.

LC-MS (0-100\% B, 19 min$): \mathrm{t}_{\mathrm{R}}(106)=6.53 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=244.13[\mathrm{M}+\mathrm{H}]^{+}$, found $=244.23[\mathrm{M}+\mathrm{H}]^{+}$.

Chiral-HPLC (20\% iPrOH in n-Hexane, isocratic, $\mathbf{1 . 0} \mathbf{~ m L} / \mathrm{min}, 220 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}(\mathbf{1 0 6})=15.95 \mathrm{~min}(\mathrm{er}=$ 94.47/5.53).

(E)-1-(3-methoxyphenyl)-3-(pyridin-2-yl)prop-2-en-1-one (AV438)

Chemical Formula: $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{NO}_{2}$
Exact Mass: 239,09
Molecular Weight: 239,27
107

Pyridine-2-carboxaldehyde ($14.02 \mathrm{~g}, 0.09 \mathrm{~mol}, 2 \mathrm{eq}$) is dissolved in 10 mL MeOH . The solution is cooled to $0^{\circ} \mathrm{C}$ for 15 min , then cooled $\mathrm{NaOH}(2.05 \mathrm{~g}, 0.05 \mathrm{~mol}, 1.1 \mathrm{eq})$ dissolved in 18 mL H O is added. Subsequently a solution of 3-Methoxyacetophenone ($5.0 \mathrm{~g}, 0.05 \mathrm{~mol}, 1.0 \mathrm{eq}$) in 10 mL MeOH is added dropwise in 10 min . The mixture is checked every 5 min by TLC and the reaction stopped after 10 min . The reaction mixture is diluted with sat. $\mathrm{NH}_{4} \mathrm{Cl}_{(\mathrm{aq})}(50 \mathrm{~mL})$ and extracted with EE $(3 \times 100 \mathrm{~mL})$. The combined organic phases are washed with brine ($1 \times 50 \mathrm{~mL}$), dried with MgSO_{4}, filtered and the solvent removed under reduced pressure. The crude product is purified by manual column chromatography ($\mathrm{EE}+1 \% \mathrm{TEA}$), then precipitated in $\mathrm{iPrOH} / \mathrm{H} 2 \mathrm{O}-20 / 1$. Compound 107 is obtained as yellow crystals.

Yield 4.23 g (38\%).
$\operatorname{TLC}(E E+1 \% T E A): R_{f}(107)=0.60$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.68(\mathrm{~m}, 1 \mathrm{H}), 8.09(\mathrm{~d}, \mathrm{~J}=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.80-7.65(\mathrm{~m}, 3 \mathrm{H}), 7.60(\mathrm{dd}, \mathrm{J}=$ $1.6,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~m}, 1 \mathrm{H}), 7.40(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{ddd}, J=1.1,4.7,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{ddd}, \mathrm{J}=$ $0.9,2.7,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C-NMR (126 MHz, CDCl 3): δ 190.29, 160.09, 153.33, 150.23, 142.81, 139.37, 137.06, 129.73, 125.90, 125.46, 124.52, 121.58, 119.90, 112.94, 55.63.

LC-MS (0-100\% B, 19 min$): \mathrm{t}_{\mathrm{R}}(107)=11.31 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=240.10[\mathrm{M}+\mathrm{H}]^{+}$,
found $=240.14[\mathrm{M}+\mathrm{H}]^{+}$.
RP-HPLC ($\mathbf{3 0} \mathbf{- 1 0 0 \%}$ B, $1.5 \mathrm{~mL} / \mathrm{min}, 20 \mathrm{~min}, 254 \mathrm{~nm}$): $\mathrm{t}_{R}(95)=4.05 \mathrm{~min}(99 \%$ Purity) .

1-(3-methoxyphenyl)-3-(pyridin-2-yl)propan-1-one (AV490)

Chemical Formula: $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NO}_{2}$
Exact Mass: 241,11
Molecular Weight: 241,29

Zn powder ($5.46 \mathrm{~g}, 84 \mathrm{mmol}, 10.0 \mathrm{eq}$) and $\mathrm{NH}_{4} \mathrm{Cl}(4.47 \mathrm{~g}, 84 \mathrm{mmol}, 10.0 \mathrm{eq})$ are added to a flask and suspended in 30 mL MeOH. 107 ($2.0 \mathrm{~g}, 8 \mathrm{mmol}, 1.0 \mathrm{eq}$) is dissolved in 50 mL MeOH and added dropwise to the vigorously stirring suspension in 30 min . After complete addition, the mixture is filtered and washed with MeOH .200 mL H H O is added to the filtrate and adjusted to $\mathrm{pH}=13$ with a 10% aqueous NaOH solution. The mixture is extracted with $\mathrm{EE}(3 \times 50 \mathrm{~mL})$, the combined organic phases dried with MgSO_{4}, then filtered and the solvent removed under reduced pressure. The crude product 108 is obtained as brown oil and used without further purification.

Yield $1.88 \mathrm{~g}(93 \%)$.
TLC (CH/EE, 2/1, v/v): $\mathrm{R}_{f}(\mathbf{1 0 8})=0.27$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.49(\mathrm{ddd}, \mathrm{J}=0.9,1.9,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.61-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.49(\mathrm{dd}, \mathrm{J}=1.6$, $2.6 \mathrm{~Hz}, 1 \mathrm{H}$), $7.33(\mathrm{dd}, J=7.6,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{dt}, J=1.1,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{dtd}, J=1.2,2.9,7.3 \mathrm{~Hz}$, $2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.48(\mathrm{td}, \mathrm{J}=0.6,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.22(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13}$ C-NMR (75 MHz, CDCl ${ }_{3}$): $\delta 199.06,160.68,159.79,149.21,138.27,136.31,129.50,123.30,121.19$, $120.75,119.54,112.20,55.39,37.90,32.10$.

LC-MS (0-100\% B, 19 min$): \mathrm{t}_{\mathrm{R}}(108)=6.65 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=242.11[\mathrm{M}+\mathrm{H}]^{+}$, found $=242.24[\mathrm{M}+\mathrm{H}]^{+}$.

RP-HPLC (0 - 100\% B, $1.5 \mathrm{~mL} / \mathrm{min}, 20 \mathrm{~min}, 254 \mathrm{~nm}$): $\mathrm{t}_{R}(108)=6.38 \mathrm{~min}(96 \%$ Purity).

1-(3-methoxyphenyl)-3-(pyridin-2-yl)propan-1-ol (AV492)

Chemical Formula: $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{2}$
Exact Mass: 243,13
Molecular Weight: 243,30
$108(50 \mathrm{mg}, 0.21 \mathrm{mmol}, 1.0 \mathrm{eq})$ is dissolved in $2 \mathrm{~mL} \mathrm{iPrOH} . \mathrm{NaBH}_{4}(8 \mathrm{mg}, 0.21 \mathrm{mmol}, 1 \mathrm{eq})$ is added and the reaction stirred at r.t. overnight. The mixture is diluted with 10 mL MeOH and quenched with a few drops conc. HCl . The solvent removed under reduced pressure. The crude product is purified by column chromatography (CH/EE, 1/1). The pure product 109 is obtained as beige-white oil.

Yield 30 mg (60\%).
$\operatorname{TLC}(C H / E E, 1 / 1): \mathrm{R}_{f}(109)=0.18$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.53$ (ddd, $\left.J=0.9,1.8,4.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.63(\mathrm{td}, J=1.9,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-$ $7.23(\mathrm{~m}, 1 \mathrm{H}), 7.22-7.14(\mathrm{~m}, 2 \mathrm{H}), 7.03-6.95(\mathrm{~m}, 2 \mathrm{H}), 6.81(\mathrm{dd}, \mathrm{J}=2.7,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{dd}, \mathrm{J}=4.2$, $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.00(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.31-2.12(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13}$ C-NMR (126 MHz, CDCl_{3}): $\delta 161.50,159.83,148.70,147.20,136.98,129.38,123.39,121.33,118.33$, 112.78, 111.39, 73.75, 55.35, 37.99, 34.60.

LC-MS (0-100\% B, 19 min$): \mathrm{t}_{\mathrm{R}}(109)=5.76 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=244.13[\mathrm{M}+\mathrm{H}]^{+}$, found $=244.11[\mathrm{M}+\mathrm{H}]^{+}$.

RP-HPLC (0 - 100\% B, $1.5 \mathrm{~mL} / \mathrm{min}, 20 \mathrm{~min}, 220 \mathrm{~nm}$): $\mathrm{t}_{R}(109)=1.75 \mathrm{~min}$ (98% Purity).
Chiral-HPLC (20\% iPrOH in n-Hexane, isocratic, $\mathbf{1 . 0} \mathbf{~ m L} / \mathrm{min}, \mathbf{2 2 0} \mathbf{n m}): \mathrm{t}_{R}(\mathbf{1 0 9})=7.85 \mathrm{~min}, 8.25 \mathrm{~min}$.

(R)-1-(3-methoxyphenyl)-3-(pyridin-2-yl)propan-1-ol (AV494)

Chemical Formula: $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{2}$
Exact Mass: 243,13
Molecular Weight: 243,30
110
Dissolve S-CBS ($11.5 \mathrm{mg}, 0.04 \mathrm{mmol}, 0.1 \mathrm{eq}$) in 1.4 mL dry THF and add to a flask under argon atmosphere. Add $20 \mu \mathrm{~L}(0.1 \mathrm{eq})$ of a $2 \mathrm{M} \mathrm{BH}_{3}{ }^{*} \mathrm{SMe}_{2}$ solution in THF. Dissolve 108 ($100 \mathrm{mg}, 0.41 \mathrm{mmol}$, 1.0 eq) in 1 mL dry THF and add to the catalyst. Then $311 \mu \mathrm{~L}(1.5 \mathrm{eq})$ of a $2 \mathrm{M}_{\mathrm{BH}}^{3}$ * SMe_{2} solution in THF is added dropwise in 1 h . After complete addition, the reaction is further stirred for 2 h , then stopped by the addition of MeOH . The formation of product-boron complexes is stopped by the addition of 1.1 eq conc. HCl and further stirring for 1 h . Finally, the mixture is diluted with sat. NaHCO_{3} solution until basic and extracted with EE ($3 \times 20 \mathrm{~mL}$). The combined organic phases are washed with brine ($1 \times 50 \mathrm{~mL}$), dried with MgSO_{4}, filtered and the solvent removed under reduced pressure. The crude product is purified by column chromatography ($\mathrm{CH} / \mathrm{EE}, 1 / 1$). The pure product 110 is obtained as a white oil.

Yield 80 mg (80\%).
$\operatorname{TLC}(E E): R_{f}(110)=0.15$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.51(\mathrm{dt}, \mathrm{J}=1.3,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{td}, \mathrm{J}=1.8,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.19(\mathrm{~m}$, 1H), $7.19-7.08(\mathrm{~m}, 2 \mathrm{H}), 6.99-6.89(\mathrm{~m}, 2 \mathrm{H}), 6.78(\mathrm{ddd}, J=1.0,2.7,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\mathrm{dd}, \mathrm{J}=4.5,7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 3.80(\mathrm{~d}, J=0.5 \mathrm{~Hz}, 3 \mathrm{H}), 2.98(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.27-2.09(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13}$ C-NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 161.52,159.86,148.73,147.20,136.97,129.39,123.39,121.33,118.34$, $112.81,111.42,73.78,55.36,37.98,34.62$.

LC-MS (0-100\% B, 19 min$): \mathrm{t}_{\mathrm{R}}(110)=5.76 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=244.13[\mathrm{M}+\mathrm{H}]^{+}$, found $=244.09[\mathrm{M}+\mathrm{H}]^{+}$.

Chiral-HPLC (20\% iPrOH in n-Hexane, isocratic, $1.0 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}): \mathrm{t}_{\mathrm{R}}(\mathbf{1 1 0})=8.35 \mathrm{~min}(\mathrm{er}=$ 91.43/8.57).

(E)-1-(3-methoxyphenyl)-3-(pyridin-3-yl)prop-2-en-1-one (AV446)

Chemical Formula: $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{NO}_{2}$
Exact Mass: 239,09
Molecular Weight: 239,27

111

Pyridine-3-carboxaldehyde ($4.21 \mathrm{~g}, 0.03 \mathrm{~mol}, 2 \mathrm{eq}$) is dissolved in 3 mL MeOH . The solution is cooled to $0^{\circ} \mathrm{C}$ for 15 min , then cooled $\mathrm{NaOH}(0.62 \mathrm{~g}, 0.015 \mathrm{~mol}, 1.1 \mathrm{eq})$ dissolved in 6 mL H O is added. Subsequently a solution of 3-Methoxyacetophenone ($1.50 \mathrm{~g}, 0.01 \mathrm{~mol}, 1.0 \mathrm{eq}$) in 3 mL MeOH is added dropwise in 10 min . The mixture is checked every 10 min by TLC and the reaction stopped after 30 min . The reaction mixture is diluted with sat. $\mathrm{NH}_{4} \mathrm{Cl}_{(\mathrm{aq})}(50 \mathrm{~mL})$ and extracted with EE $(3 \times 100 \mathrm{~mL})$. The combined organic phases are washed with brine ($1 \times 50 \mathrm{~mL}$), dried with MgSO_{4}, filtered and the solvent removed under reduced pressure. The crude product is enriched by manual column chromatography (CH/EE, 1/1 + 1\% TEA). Compound 111 is obtained as a yellow oil.

Yield $3.21 \mathrm{~g}(95 \%)$.
$\operatorname{TLC}(C H / E E, 1 / 1, v / v+1 \% T E A): R_{f}(111)=0.29$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.03(\mathrm{~m}, 1 \mathrm{H}), 8.58-8.41(\mathrm{~m}, 2 \mathrm{H}), 8.12(\mathrm{~m}, 1 \mathrm{H}), 7.91(\mathrm{~m}, 1 \mathrm{H}), 7.79-7.67$
(m, 2H), $7.47-7.40(\mathrm{~m}, 1 \mathrm{H}), 7.40-7.34(\mathrm{~m}, 1 \mathrm{H}), 7.31(\mathrm{~m}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C-NMR (126 MHz, CDCl ${ }_{3}$): $\delta 190.75,154.76,152.07,151.07,149.96,140.89,135.83,134.66,129.73$, 124.11, 124.02, 123.84, 121.12, 119.63, 113.01, 55.53.

LC-MS (0-100\% B, 19 min$): \mathrm{t}_{\mathrm{R}}(111)=9.38 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=240.10[\mathrm{M}+\mathrm{H}]^{+}$, found $=240.30[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{t}_{R}($ Pyridine-3-carboxaldehyde $)=1.71, \mathrm{~m} / \mathrm{z}$: calculated $=108.13[\mathrm{M}+\mathrm{H}]^{+}$, found $=108.30[\mathrm{M}+\mathrm{H}]^{+}$

RP-HPLC (0 - 100\% B, $1.5 \mathrm{~mL} / \mathrm{min}, 20 \mathrm{~min}, 254 \mathrm{~nm}$): $\mathrm{t}_{R}(111)=7.91 \mathrm{~min}$ (87\% Purity), t_{R} (Pyridine-3carboxaldehyde) $=1.71$.

1-(3-methoxyphenyl)-3-(pyridin-3-yl)propan-1-one (AV491)

Chemical Formula: $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NO}_{2}$
Exact Mass: 241,11
Molecular Weight: 241,29
112
Zn powder ($5.46 \mathrm{~g}, 84 \mathrm{mmol}, 10.0 \mathrm{eq}$) and $\mathrm{NH}_{4} \mathrm{Cl}(4.47 \mathrm{~g}, 84 \mathrm{mmol}, 10.0 \mathrm{eq})$ are added to a flask and suspended in 30 mL MeOH. 111 ($2.0 \mathrm{~g}, 8 \mathrm{mmol}, 1.0 \mathrm{eq}$) is dissolved in 50 mL MeOH and added dropwise to the vigorously stirring suspension in 30 min . After complete addition, the mixture is filtered and washed with $\mathrm{MeOH} .200 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$ is added to the filtrate and adjusted to $\mathrm{pH}=13$ with a 10% aqueous NaOH solution. The mixture is extracted with $\mathrm{EE}(3 \times 50 \mathrm{~mL})$, the combined organic phases dried with MgSO_{4}, then filtered and the solvent removed under reduced pressure. The crude is purified by column chromatography (EE). The pure product 112 is obtained as a yellow solid.

Yield 1.00 g (50\%).
$\operatorname{TLC}(E E): R_{f}(112)=0.42$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.36-8.21(\mathrm{~m}, 2 \mathrm{H}), 7.37(\mathrm{dt}, J=2.0,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.24(\mathrm{~m}, 2 \mathrm{H})$, $7.14(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{dd}, J=4.8,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{dd}, J=2.7,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 3.09(\mathrm{t}$, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.86(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13}$ C-NMR (75 MHz, CDCl $_{3}$): $\delta 198.20,159.84,149.92,147.60,137.97,136.55,135.97,129.61,123.32$, 120.54, 119.61, 112.27, 55.39, 39.78, 27.12.

LC-MS (0-100\% B, 19 min$): \mathrm{t}_{\mathrm{R}}(112)=6.73 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=242.11[\mathrm{M}+\mathrm{H}]^{+}$, found $=242.30[\mathrm{M}+\mathrm{H}]^{+}$.

RP-HPLC (0 - 100\% B, $1.5 \mathrm{~mL} / \mathrm{min}, 20 \mathrm{~min}, 254 \mathrm{~nm}): \mathrm{t}_{R}(112)=6.73 \mathrm{~min}(99 \%$ Purity).

1-(3-methoxyphenyl)-3-(pyridin-3-yl)propan-1-ol (AV493)

Chemical Formula: $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{2}$
Exact Mass: 243,13
Molecular Weight: 243,30

113
$112(50 \mathrm{mg}, 0.21 \mathrm{mmol}, 1.0 \mathrm{eq})$ is dissolved in $2 \mathrm{~mL} \mathrm{iPrOH} . \mathrm{NaBH}_{4}(8 \mathrm{mg}, 0.21 \mathrm{mmol}, 1 \mathrm{eq})$ is added and the reaction stirred at r.t. overnight. The mixture is diluted with 10 mL MeOH and quenched with a few drops conc. HCl . The solvent removed under reduced pressure. The crude product is purified by column chromatography $(C H / E E, 1 / 1)$. The pure product 113 is obtained as beige-white oil.

Yield 30 mg (60\%).
$\operatorname{TLC}(C H / E E, 1 / 1): \mathrm{R}_{f}(113)=0.18$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.44-8.33(\mathrm{~m}, 2 \mathrm{H}), 7.51(\mathrm{dt}, J=1.9,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.17(\mathrm{~m}, 2 \mathrm{H})$,
$6.95-6.87(\mathrm{~m}, 2 \mathrm{H}), 6.82(\mathrm{ddd}, J=1.1,2.5,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{dd}, \mathrm{J}=5.1,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 2.81$ - $2.63(m, 2 H), 2.16-1.95(m, 2 H)$.
${ }^{13}$ C-NMR (126 MHz, CDCl 3): $\delta 159.98,149.98,147.36,146.40,137.34,136.11,129.71,123.48,118.30$, 113.22, 111.53, 73.41, 55.37, 40.19, 29.29.

LC-MS (0-100\% B, 19 min$): \mathrm{t}_{R}(113)=5.90 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=244.13[\mathrm{M}+\mathrm{H}]^{+}$, found $=244.27[\mathrm{M}+\mathrm{H}]^{+}$.
Chiral-HPLC (20\% iPrOH in n-Hexane, isocratic, $1.0 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}$): $\mathrm{t}_{R}(\mathbf{1 1 3})=12.79 \mathrm{~min}$, 14.99 min .

(R)-1-(3-methoxyphenyl)-3-(pyridin-3-yl)propan-1-ol (AV496)

Chemical Formula: $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{2}$ Exact Mass: 243,13
Molecular Weight: 243,30

114

Dissolve S-CBS ($11.5 \mathrm{mg}, 0.04 \mathrm{mmol}, 0.1 \mathrm{eq}$) in 1.4 mL dry THF and add to a flask under argon atmosphere. Add $20 \mu \mathrm{~L}(0.1 \mathrm{eq})$ of a $2 \mathrm{M} \mathrm{BH}_{3}{ }^{*} \mathrm{SMe}_{2}$ solution in THF. Dissolve $112(100 \mathrm{mg}, 0.41 \mathrm{mmol}$, 1.0 eq) in 1 mL dry THF and add to the catalyst. Then $311 \mu \mathrm{~L}(1.5 \mathrm{eq})$ of a $2 \mathrm{M} \mathrm{BH}_{3}{ }^{*} \mathrm{SMe}_{2}$ solution in THF is added dropwise in 1 h . After complete addition, the reaction is further stirred for 2 h , then stopped by the addition of MeOH . The formation of product-boron complexes is stopped by the addition of 1.1 eq conc. HCl and further stirring for 1 h . Finally, the mixture is diluted with sat. NaHCO_{3} solution until basic and extracted with EE ($3 \times 20 \mathrm{~mL}$). The combined organic phases are washed with brine ($1 \times 50 \mathrm{~mL}$), dried with MgSO_{4}, filtered and the solvent removed under reduced pressure. The crude product is purified by column chromatography ($C H / E E, 1 / 1$). The pure product 114 is obtained as a white oil.

Yield 80 mg (80%).
TLC (CH/EE, 1/1, v/v): $\mathrm{R}_{f}(\mathbf{1 1 4})=0.30$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.45-8.35(\mathrm{~m}, 2 \mathrm{H}), 7.61(\mathrm{dt}, \mathrm{J}=2.0,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.24(\mathrm{~m}, 1 \mathrm{H})$,
$7.21(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{dd}, J=1.5,7.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.81-6.75(\mathrm{~m}, 1 \mathrm{H}), 5.29(\mathrm{~d}, \mathrm{~J}=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.50$ (td, J = 4.6, 6.3 Hz, 1H), 3.74 (s, 3H), 2.78-2.54 (m, 2H), 1.88 (td, J=6.5, 8.0 Hz, 2H).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 159.15,149.54,147.72,146.99,137.37,135.69,129.01,123.37,117.98$, 112.11, 111.26, 71.42, 54.90, 28.64.

LC-MS ($0-100 \%$ B, $19 \mathbf{m i n}$): $\mathrm{t}_{\mathrm{R}}(\mathbf{1 1 4})=5.85 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=244.13[\mathrm{M}+\mathrm{H}]^{+}$, found $=244.33[\mathrm{M}+\mathrm{H}]^{+}$.

Chiral-HPLC (20\% iPrOH in n-Hexane, isocratic, $1.0 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}): \mathrm{t}_{\mathrm{R}}(\mathbf{1 1 4})=16.10 \mathrm{~min}(e r=$ 87.44/12.56).

(E)-1-(3-hydroxyphenyl)-3-(pyridin-3-yl)prop-2-en-1-one (AV665)

Chemical Formula: $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NO}_{2}$
Exact Mass: 225,08
Molecular Weight: 225,24
115
Pyridine-3-carboxaldehyde ($2.00 \mathrm{~g}, 19 \mathrm{mmol}, 1 \mathrm{eq}$) and 3-hydroxy acetophenone ($2.54 \mathrm{~g}, 19 \mathrm{mmol}$, $1 \mathrm{eq})$ are dissolved in 8 mL MeOH . The solution is cooled to $0^{\circ} \mathrm{C}$ for 15 min , then cooled $\mathrm{NaOH}(1.6 \mathrm{~g}$, $38 \mathrm{mmol}, 2 \mathrm{eq}$) dissolved in $8 \mathrm{~mL} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$ is added. The mixture is stirred for 2.5 h under cooling, then neutralized with conc. HCl , diluted with $40 \mathrm{~mL} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$ and the precipitate filtered off and washed with $\mathrm{H}_{2} \mathrm{O}$. The crude product is used in the next steps without further purification. Compound $\mathbf{1 1 5}$ is obtained as yellow solid.

Yield 4.00 g (95%).
TLC (CH/EE, 2/1, v/v): $\mathrm{R}_{f}(\mathbf{1 1 5})=0.15$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}\right.$, DMSO-d d_{6}): $\delta 9.01(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.61(\mathrm{dd}, \mathrm{J}=1.6,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.34(\mathrm{dt}, \mathrm{J}=2.0$, $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{~d}, \mathrm{~J}=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, \mathrm{~J}=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.68-7.62(\mathrm{~m}, 1 \mathrm{H}), 7.51-7.45(\mathrm{~m}, 2 \mathrm{H})$, $7.38(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.12-7.04(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13}$ C-NMR (126 MHz, DMSO- d_{6}): $\delta 188.90,157.83,150.93,150.33,140.31,138.71,135.04,130.50$, 129.84, 124.09, 123.88, 120.51, 119.64, 114.71.

LC-MS ($0-100 \% \mathrm{~B}, 19 \mathrm{~min}$): $\mathrm{t}_{R}(\mathbf{1 1 5})=8.53 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=226.24[\mathrm{M}+\mathrm{H}]^{+}$, found $=226.30[\mathrm{M}+\mathrm{H}]^{+}$

RP-HPLC (0 - 100\% B, $1.5 \mathrm{~mL} / \mathrm{min}, 15 \mathrm{~min}, 220 \mathrm{~nm}): \mathrm{t}_{R}(115)=6.18 \mathrm{~min}$ (87\% Purity)

1-(3-hydroxyphenyl)-3-(pyridin-3-yl)propan-1-one (AV669)

Chemical Formula: $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}_{2}$
Exact Mass: 227,09
Molecular Weight: 227,26

116

115 ($4.00 \mathrm{~g}, 18 \mathrm{mmol}, 1.0 \mathrm{eq}$) is dissolved in 100 mL THF. The solution is sparged with argon for 5 min . Then $10 \mathrm{wt} \% \mathrm{Pd} / \mathrm{C}(0.94 \mathrm{~g}, 1 \mathrm{mmol}, 0.05 \mathrm{eq})$ is added and the slurry sparged with H_{2} for 10 min . After 3 h the reaction is complete. The mixture is filtered over celite and washed with THF. The solvent is removed and the crude is purified by recrystallization in MeOH . The pure product $\mathbf{1 1 6}$ is obtained as slightly yellow solid.

Yield $2.55 \mathrm{~g}(63 \%)$.
TLC (CH/EE, 1/2, v/v): $\mathrm{R}_{f}(\mathbf{1 1 6})=0.25$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.40(\mathrm{~s}, 1 \mathrm{H}), 7.13(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{dd}, \mathrm{J}=1.7,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.31$
(dt, J = 2.0, 7.9 Hz, 1H), 6.05 (dt, J = 1.3, 7.7 Hz, 1H), 6.01-5.85 (m, 3H), 5.64 (ddd, J = 1.0, 2.7, 8.1 Hz, 1H), 1.98 (t, J = 7.4 Hz, 2H), 1.55 (t, J = $7.4 \mathrm{~Hz}, 2 \mathrm{H}$).
${ }^{13}$ C-NMR (126 MHz, CDCl 3): $\delta 198.73,157.60,149.75,147.15,137.91,136.70,135.88,129.77,123.31$, 120.26, 118.92, 114.08, 39.02, 26.60.

LC-MS (0-100\% B, 19 min$): \mathrm{t}_{\mathrm{R}}(116)=6.36 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=228.09[\mathrm{M}+\mathrm{H}]^{+}$, found $=228.29[\mathrm{M}+\mathrm{H}]^{+}$.

3-(1-hydroxy-3-(pyridin-3-yl)propyl)phenol (AV672)

Chemical Formula: $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}_{2}$
Exact Mass: 229,11
Molecular Weight: 229,27

117

116 ($50 \mathrm{mg}, 0.22 \mathrm{mmol}, 1.0 \mathrm{eq}$) is dissolved in $2 \mathrm{~mL} \mathrm{THF} . \mathrm{CeCl} 3 * 7 \mathrm{H}_{2} \mathrm{O}(8 \mathrm{mg}, 0.02 \mathrm{mmol}, 0.1 \mathrm{eq})$ is added, then $\mathrm{NaBH}_{4}(8 \mathrm{mg}, 0.22 \mathrm{mmol}, 1 \mathrm{eq})$ is added slowly and the reaction stirred for 10 min . The
mixture is diluted with 10 mL MeOH and quenched with a few drops conc. HCl . The solvent is removed under reduced pressure. The crude product is purified by column chromatography ($\mathrm{CH} / \mathrm{EE}, 1 / 3$). The pure product 117 is obtained as a beige-white solid.

Yield 30 mg (60\%).
TLC (CH/EE, 1/3): $\mathrm{R}_{f}(117)=0.19$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}\right.$, DMSO- $\left.\mathrm{d}_{6}\right): \delta 9.24(\mathrm{~s}, 1 \mathrm{H}), 8.41(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.38(\mathrm{dd}, \mathrm{J}=1.6,4.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.60(\mathrm{dt}, \mathrm{J}=2.0,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{ddd}, \mathrm{J}=0.9,4.7,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.77-6.75(\mathrm{~m}$, $1 \mathrm{H}), 6.73(\mathrm{dt}, \mathrm{J}=1.3,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{ddd}, \mathrm{J}=1.1,2.5,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{~d}, \mathrm{~J}=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{dt}, \mathrm{J}$ $=5.0,7.1 \mathrm{~Hz}, 1 \mathrm{H}$), $2.72-2.55(\mathrm{~m}, 2 \mathrm{H}), 1.85$ (dddd, J = 2.1, 5.8, 8.5, 10.9 Hz, 2H).
${ }^{13} \mathrm{C}$-NMR (126 MHz, DMSO- \boldsymbol{d}_{6}): $\delta 157.14,149.53,147.52,146.98,137.41,135.68,128.89,123.37$, $116.39,113.57,112.62,71.38,40.47,28.61$.

LC-MS (0-100\% B, 19 min$): \mathrm{t}_{R}(117)=5.92 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=230.27[\mathrm{M}+\mathrm{H}]^{+}$, found $=230.17[\mathrm{M}+\mathrm{H}]^{+}$.

RP-HPLC (0 - 100\% B, $1.5 \mathrm{~mL} / \mathrm{min}, 15 \mathrm{~min}, 220 \mathrm{~nm}$): $\mathrm{t}_{R}(117)=1.85 \mathrm{~min}$ (93% Purity).
Chiral-HPLC (10\% iPrOH in n-Hexane, isocratic, $1.0 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}): \mathrm{t}_{R}(117)=41.48 \mathrm{~min}$, 50.13 min .

(R)-3-(1-hydroxy-3-(pyridin-3-yl)propyl)phenol (AV670/AV682)

Chemical Formula: $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}_{2}$
Exact Mass: 229,11
Molecular Weight: 229,27
118

116 ($500 \mathrm{mg}, 2.20 \mathrm{mmol}, 1.0 \mathrm{eq}$) is dissolved in 20 mL THF. Then a 1 M solution of KOtBu in tBuOH $(3.30 \mathrm{~mL}, 3.30 \mathrm{mmol}, 1.5 \mathrm{eq})$ is added and the solution is sparged with argon for 5 min . $\mathrm{RuCl}_{2}[(\mathrm{~S})$-(DM-SEGPHOS)][(S)-DAIPEN] ($107 \mathrm{mg}, 0.088 \mathrm{mmol}, 0.04 \mathrm{eq}$) is added. The slurry is sparged with H_{2} for 5 min and the reaction is stirred at $1 \mathrm{bar}_{\mathrm{H}}^{2}$ at $\mathrm{r} . \mathrm{t}$. overnight. After full conversion, the mixture is diluted with $50 \mathrm{~mL} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$ and extracted with EE $(3 \times)$. The combined organic phases are washed with brine ($1 \times 50 \mathrm{~mL}$), dried with MgSO_{4}, filtered and the solvent removed under reduced pressure The crude product is purified by column chromatography (EE). The pure product 118 is obtained as a beige solid.

Yield 349 mg (70\%).
$\operatorname{TLC}(E E): R_{f}(118)=0.26$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}\right.$, DMSO- $\left.\mathrm{d}_{6}\right): \delta 9.22(\mathrm{~s}, 1 \mathrm{H}), 8.44-8.39(\mathrm{~m}, 1 \mathrm{H}), 8.38(\mathrm{dd}, \mathrm{J}=1.6,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.60$ (dt, J = 2.0, $7.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.28 (ddd, J = 0.9, 4.8, $7.8 \mathrm{~Hz}, 1 \mathrm{H}$), $7.09(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.77-6.71(\mathrm{~m}, 2 \mathrm{H})$, 6.61 (ddd, J = 1.1, 2.5, 8.0 Hz, 1H), $5.20(d, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{q}, \mathrm{J}=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.31(\mathrm{~s}, 3 \mathrm{H}), 2.75-$ $2.53(\mathrm{~m}, 2 \mathrm{H}), 1.91-1.78(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13}$ C-NMR (75 MHz, DMSO- \boldsymbol{d}_{6}): $\delta 157.12,149.50,147.49,146.96,137.39,135.65,128.86,123.34$,
$116.37,113.55,112.61,71.37,28.59$.
LC-MS (0-100\% B, 19 min$): \mathrm{t}_{\mathrm{R}}(118)=5.80 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=230.27[\mathrm{M}+\mathrm{H}]^{+}$, found $=230.19[\mathrm{M}+\mathrm{H}]^{+}$.

Chiral-HPLC (20\% iPrOH in n-Hexane, isocratic, $1.0 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}): \mathrm{t}_{R}(\mathbf{1 1 8})=42.68,49.55 \mathrm{~min}(e r$ $=1.15 / 98.85)$.

(R)-tert-butyl 2-(3-(1-hydroxy-3-(pyridin-3-yl)propyl)phenoxy)acetate (AV679/AV683/AV684/AV685/AV686/AV688/AV689)

Dissolve 118 (100 mg, $0.43 \mathrm{mmol}, 1.0 \mathrm{eq}$) in 10 mL dry MeCN and add Ag2CO3 (120 mg, 0.43 mmol , $1.0 \mathrm{eq})$. Then $65 \mu \mathrm{~L}(1.0 \mathrm{eq})$ of tert-butyl bromoacetate is added. The mixture is stirred overnight at r.t. After complete conversion, the reaction is filtered, washed with MeCN and the solvent removed. The crude product is purified by column chromatography ($\mathrm{CH} / \mathrm{EE}, 1 / 1$). The pure product 119 is obtained as a beige oil.

Yield 64 mg (42\%).
TLC (CH/EE, 1/1, v/v): $\mathrm{R}_{f}(\mathbf{1 1 9})=0.30$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.41(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.38(\mathrm{dd}, \mathrm{J}=1.7,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{dt}, \mathrm{J}=2.1,7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.30-7.15(\mathrm{~m}, 2 \mathrm{H}), 6.99-6.90(\mathrm{~m}, 2 \mathrm{H}), 6.85-6.76(\mathrm{~m}, 1 \mathrm{H}), 4.64(\mathrm{dd}, \mathrm{J}=5.1,8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.52(\mathrm{~s}, 2 \mathrm{H}), 2.84-2.62(\mathrm{~m}, 2 \mathrm{H}), 2.18-1.89(\mathrm{~m}, 2 \mathrm{H}), 1.48(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13}$ C-NMR (75 MHz, CDCl $_{3}$): $\delta 168.11,158.26,149.92,147.32,146.51,137.29,136.12,129.74,123.49$, $119.14,113.78,112.20,82.51,73.21,65.73,40.20,29.20,28.17$.

LC-MS (0-100\% B, 19 min$): \mathrm{t}_{R}(119)=8.18 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=344.42[\mathrm{M}+\mathrm{H}]^{+}$, found $=344.13[\mathrm{M}+\mathrm{H}]^{+}$.

RP-HPLC (0 - 100\% B, $1.5 \mathrm{~mL} / \mathrm{min}, 15 \mathrm{~min}, 220 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}(119)=8.10 \mathrm{~min}$ (92% Purity).

(E)-3-(pyridin-2-yl)-1-(pyridin-4-yl)prop-2-en-1-one (AV734/AV743/AV744)

Chemical Formula: $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}$
Exact Mass: 210,08
Molecular Weight: 210,23
120

Pyridine-2-carboxaldehyde ($1.00 \mathrm{~g}, 9.3 \mathrm{mmol}, 1 \mathrm{eq}$) and 4-acetylpyridine ($1.13 \mathrm{~g}, 9.3 \mathrm{mmol}, 1 \mathrm{eq}$) are dissolved in $40 \mathrm{~mL} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$. The solution is cooled to $0^{\circ} \mathrm{C}$ for 15 min , then $\mathrm{Na}_{2} \mathrm{CO}_{3}(4.00 \mathrm{~g}, 37.3 \mathrm{mmol}, 4 \mathrm{eq})$ dissolved in $36 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$ is added. The reaction is stopped after the formation of a precipitate is observed (10 min). The mixture is extracted with DCM $(3 \times 20 \mathrm{~mL})$, the combined organic phases are washed with brine $(1 \times 50 \mathrm{~mL})$, dried with MgSO_{4}, filtered and the crude loaded directly onto SiO_{2}. The dry-load is then heated under stirring to $120^{\circ} \mathrm{C}$ for 1 h . The now yellow silica is cooled and directly used as a dry-load for a silica column chromatography ($\mathrm{EE}+\mathbf{2 \%} \mathrm{MeOH}$). Pure compound $\mathbf{1 2 0}$ is obtained as a yellow solid.

Yield 520 mg (27\%).
TLC (EE $+2 \% \mathrm{MeOH}): \mathrm{R}_{f}(\mathbf{1 2 0})=0.30$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.86-8.78(\mathrm{~m}, 2 \mathrm{H}), 8.67(\mathrm{~d}, \mathrm{~J}=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{~d}, \mathrm{~J}=15.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.87-7.77(\mathrm{~m}, 3 \mathrm{H}), 7.76-7.66(\mathrm{~m}, 1 \mathrm{H}), 7.46(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{dd}, \mathrm{J}=4.8,7.7 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13}$ C-NMR (75 MHz, CDCl ${ }_{3}$): $\delta 189.89,152.67,150.96,150.40,144.61,143.95,137.04,125.87,124.97$, 124.62, 121.64.

LC-MS (0-100\% B, 19 min$): \mathrm{t}_{R}(120)=8.49 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=211.23[\mathrm{M}+\mathrm{H}]^{+}$, found $=211.20[\mathrm{M}+\mathrm{H}]^{+}$.

3-(pyridin-2-yl)-1-(pyridin-4-yl)propan-1-one (AV750/AV754/AV755/AV756/AV757)

Chemical Formula: $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}$
Exact Mass: 212,09
Molecular Weight: 212,25
121

120 ($30 \mathrm{mg}, 0.14 \mathrm{mmol}, 1.0 \mathrm{eq}$) is dissolved in 5 mL MeOH and sparged for 5 min with argon. Then $10 \mathrm{wt} \% \mathrm{Pt} / \mathrm{C}(14 \mathrm{mg}, 0.007 \mathrm{mmol}, 0.05 \mathrm{eq})$ is added and the slurry sparged with H_{2} for 5 min . The
mixture is filtered after 5 min and washed with MeOH . The solvent is removed under reduced pressure. The crude is purified by column chromatography ($\mathrm{EE}+10 \% \mathrm{MeOH}$). The pure product 121 is obtained as a white solid.

Yield 18 mg (60\%).
$\mathrm{TLC}(E E+10 \% \mathrm{MeOH}): \mathrm{R}_{f}(121)=0.32$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.82-8.72(\mathrm{~m}, 2 \mathrm{H}), 8.48(\mathrm{ddd}, \mathrm{J}=1.0,1.9,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.77-7.70(\mathrm{~m}$, $2 H), 7.59(t d, J=1.9,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{ddd}, \mathrm{J}=1.2,4.9,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.54-$ $3.46(\mathrm{~m}, 2 \mathrm{H}), 3.24(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13}$ C-NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 151.03,149.32,136.55,123.47,121.52,121.21,37.87,31.70$.
LC-MS (0-100\% B, 19 min$): \mathrm{t}_{R}(121)=1.98 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=213.25[\mathrm{M}+\mathrm{H}]^{+}$,
found $=213.26[\mathrm{M}+\mathrm{H}]^{+}$.

(R)-3-(pyridin-2-yl)-1-(pyridin-4-yl)propan-1-ol (AV760)

Chemical Formula: $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}$
Exact Mass: 214,11
Molecular Weight: 214,26

121 ($30 \mathrm{mg}, 0.14 \mathrm{mmol}, 1.0 \mathrm{eq}$) is dissolved in 5 mL THF. Then a 1 M solution of KOtBu in tBuOH ($140 \mu \mathrm{~L}, 0.14 \mathrm{mmol}, 1.0 \mathrm{eq}$) is added and the solution is sparged with argon for 5 min . $\mathrm{RuCl}_{2}[(\mathrm{~S})$-(DM-SEGPHOS)][(S)-DAIPEN] ($7 \mathrm{mg}, 0.006 \mathrm{mmol}, 0.04 \mathrm{eq}$) is added. The slurry is sparged with H_{2} for 5 min and the reaction is stirred at 1 bar H_{2} at r.t. overnight. The solvent is removed under reduced pressure. The crude product is purified by column chromatography ($\mathrm{EE}+10 \% \mathrm{MeOH}$). The pure product 122 is obtained as a yellow solid.

Yield 7 mg (23\%).
TLC (EE + 10\% MeOH): $\mathrm{R}_{f}(122)=0.20$.
LC-MS (0-100\% B, $19 \mathbf{m i n}): \mathrm{t}_{R}(\mathbf{1 2 2})=1.25 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=215.1[\mathrm{M}+\mathrm{H}]^{+}$, found $=215.09[\mathrm{M}+\mathrm{H}]^{+}$.

(E)-3-(pyridin-3-yl)-1-(pyridin-3-yl)prop-2-en-1-one (AV735)

Chemical Formula: $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}$
Exact Mass: 210,08
Molecular Weight: 210,23
123

Pyridine-3-carboxaldehyde ($1.00 \mathrm{~g}, 9.3 \mathrm{mmol}, 1 \mathrm{eq}$) and 3-acetylpyridine ($1.13 \mathrm{~g}, 9.3 \mathrm{mmol}, 1 \mathrm{eq}$) are dissolved in $20 \mathrm{~mL} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$. The solution is cooled to $0^{\circ} \mathrm{C}$ for 15 min , then $\mathrm{Na}_{2} \mathrm{CO}_{3}(4.00 \mathrm{~g}, 37.3 \mathrm{mmol}, 4 \mathrm{eq})$ dissolved in $36 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$ is added. The reaction is stopped after the formation of a precipitate is observed $(40 \mathrm{~min})$. The solid is filtered and washed with $\mathrm{H}_{2} \mathrm{O}$. The crude product is purified by silica column chromatography ($\mathrm{EE}+2 \% \mathrm{MeOH}$). Compound 123 is obtained as a yellow solid.

Yield 640 mg (33\%).
TLC (EE + 2\% MeOH): $\mathrm{R}_{f}(\mathbf{1 2 3})=0.25$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathbf{5 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right): \delta 9.22(\mathrm{dd}, \mathrm{J}=0.9,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.85(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.80(\mathrm{dd}, \mathrm{J}=1.7,4.8$ $\mathrm{Hz}, 1 \mathrm{H}), 8.63(\mathrm{dd}, \mathrm{J}=1.6,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.28(\mathrm{dt}, \mathrm{J}=2.0,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{dt}, \mathrm{J}=2.0,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.81$ (d, J = $15.8 \mathrm{~Hz}, 1 \mathrm{H}$), $7.54(\mathrm{~d}, \mathrm{~J}=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{ddd}, \mathrm{J}=0.9,4.8,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(d d d, \mathrm{~J}=0.9,4.8$, $8.0 \mathrm{~Hz}, 1 \mathrm{H}$).
${ }^{13}$ C-NMR (126 MHz, CDCl 3): $\delta 188.59,153.58,151.64,150.29,149.88,142.18,136.00,134.73,133.18$, 130.35, 123.94, 123.85, 123.22.

LC-MS (0-100\% B, 19 min$): \mathrm{t}_{\mathrm{R}}(\mathbf{1 2 3})=7.10 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=211.23[\mathrm{M}+\mathrm{H}]^{+}$, found $=211.26[\mathrm{M}+\mathrm{H}]^{+}$.

3-(pyridin-3-yl)-1-(pyridin-3-yl)propan-1-one (AV748)

Chemical Formula: $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}$
Exact Mass: 212,09
Molecular Weight: 212,25
124
$(200 \mathrm{mg}, 1.0 \mathrm{mmol}, 1.0 \mathrm{eq})$ is dissolved in 5 mL MeOH and sparged for 5 min with argon. Then $10 \mathrm{wt} \%$ $\mathrm{Pd} / \mathrm{C}(100 \mathrm{mg}, 1 \mathrm{eq})$ is added and the slurry sparged with H_{2} for 1 min . The mixture is filtered after

10 min and washed with MeOH . The solvent is removed under reduced pressure. The crude is purified by column chromatography ($\mathrm{EE}+6 \% \mathrm{MeOH}$). The pure product 124 is obtained as a yellow solid.

Yield 100 g (50\%).
TLC (EE + 6\% MeOH): $\mathrm{R}_{f}(124)=0.25$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.10(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.72(\mathrm{dd}, \mathrm{J}=1.7,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.48(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}$, 1 H), $8.43-8.37(\mathrm{~m}, 1 \mathrm{H}), 8.16(\mathrm{dt}, \mathrm{J}=1.9,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{dd}, \mathrm{J}=4.9,8.0 \mathrm{~Hz}$, 1 H), 7.18 (dd, J = 4.9, $7.9 \mathrm{~Hz}, 1 \mathrm{H}$), $3.29(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.05(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13}$ C-NMR (75 MHz, CDCl ${ }_{3}$): $\delta 197.24,153.62,149.75,149.47,147.64,136.27,136.22,135.34,131.89$, 123.73, 123.50, 39.99, 26.77.

LC-MS (0-100\% B, 19 min$): \mathrm{t}_{R}(124)=1.98 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=213.25[\mathrm{M}+\mathrm{H}]^{+}$, found $=213.25[\mathrm{M}+\mathrm{H}]^{+}$.

(R)-3-(pyridin-3-yl)-1-(pyridin-3-yl)propan-1-ol (AV758)

Chemical Formula: $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}$
Exact Mass: 214,11
Molecular Weight: 214,26

125

$124(30 \mathrm{mg}, 0.14 \mathrm{mmol}, 1.0 \mathrm{eq})$ is dissolved in 5 mL THF. Then a 1 M solution of KOtBu in tBuOH ($140 \mu \mathrm{~L}, 0.14 \mathrm{mmol}, 1.0 \mathrm{eq}$) is added and the solution is sparged with argon for 5 min . $\mathrm{RuCl}_{2}[(\mathrm{~S})$-(DMSEGPHOS $)]\left[(S)\right.$-DAIPEN] ($7 \mathrm{mg}, 0.006 \mathrm{mmol}, 0.04 \mathrm{eq}$) is added. The slurry is sparged with H_{2} for 5 min and the reaction is stirred at 1 bar H_{2} at r.t. overnight. The solvent is removed under reduced pressure. The crude product is purified by column chromatography ($\mathrm{EE}+10 \% \mathrm{MeOH}$). The pure product 125 is obtained as a white oil.

Yield 7 mg (23\%).
TLC (EE + 10\% MeOH): $\mathrm{R}_{f}(125)=0.24$.
LC-MS (0-100\% B, 19 min$): \mathrm{t}_{\mathrm{R}}(125)=1.19 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=215.26[\mathrm{M}+\mathrm{H}]^{+}$,
found $=215.32[\mathrm{M}+\mathrm{H}]^{+}$.

(E)-3-(pyridin-2-yl)-1-(pyridin-3-yl)prop-2-en-1-one (AV736)

Chemical Formula: $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}$
Exact Mass: 210,08
Molecular Weight: 210,23

Pyridine-2-carboxaldehyde ($1.00 \mathrm{~g}, 9.3 \mathrm{mmol}, 1 \mathrm{eq}$) and 3-acetylpyridine ($1.13 \mathrm{~g}, 9.3 \mathrm{mmol}, 1 \mathrm{eq}$) are dissolved in $20 \mathrm{~mL} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$. The solution is cooled to $0^{\circ} \mathrm{C}$ for 15 min , then $\mathrm{Na}_{2} \mathrm{CO}_{3}(4.00 \mathrm{~g}, 37.3 \mathrm{mmol}, 4 \mathrm{eq})$ dissolved in $36 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$ is added. The reaction is stopped after the formation of a precipitate is observed $(30 \mathrm{~min})$. The mixture is extracted with DCM $(3 \times 20 \mathrm{~mL})$, the combined organic phases are washed with brine $(1 \times 50 \mathrm{~mL})$, dried with MgSO_{4}, filtered and the crude loaded directly onto SiO_{2}. The dry-load is then heated under stirring to $120^{\circ} \mathrm{C}$ for 1 h . The now yellow silica is cooled and directly used as a dry-load for a silica column chromatography ($\mathrm{EE}+2 \% \mathrm{MeOH}$). Compound 126 is obtained as a yellow oil.

Yield 800 mg (40\%).
TLC ($\mathrm{EE}+\mathbf{2 \%} \mathbf{~ M e O H}$): $\mathrm{R}_{f}(\mathbf{1 2 6})=0.23$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathbf{3 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.23(\mathrm{dd}, \mathrm{J}=0.9,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.74(\mathrm{dd}, \mathrm{J}=1.7,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.63(\mathrm{ddd}, \mathrm{J}=$ $0.9,1.9,4.8 \mathrm{~Hz}, 1 \mathrm{H}$), 8.27 (ddd, J = 1.8, 2.3, $8.0 \mathrm{~Hz}, 1 \mathrm{H}$), $8.01(\mathrm{~d}, \mathrm{~J}=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, \mathrm{~J}=15.2 \mathrm{~Hz}$, 1H), 7.67 (dd, J = 1.8, $7.7 \mathrm{~Hz}, 1 \mathrm{H}$), $7.45-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.25$ (ddd, J = 1.2, 4.7, 7.6 Hz, 1 H).
${ }^{13}$ C-NMR (75 MHz, CDCl $_{3}$): $\delta 189.15,153.37,152.75,150.28,150.03,143.80,136.93,135.93,133.14$, 125.61, 124.85, 124.74, 123.60.

LC-MS (0-100\% B, 19 min$): \mathrm{t}_{\mathrm{R}}(126)=8.31 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=211.23[\mathrm{M}+\mathrm{H}]^{+}$, found $=211.21[\mathrm{M}+\mathrm{H}]^{+}$.

3-(pyridin-2-yl)-1-(pyridin-3-yl)propan-1-one (AV749)

Chemical Formula: $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}$
Exact Mass: 212,09
Molecular Weight: 212,25

126 (200 mg, $0.14 \mathrm{mmol}, 1.0 \mathrm{eq}$) is dissolved in 5 mL MeOH and sparged for 5 min with argon. Then $10 \mathrm{wt} \% \mathrm{Pd} / \mathrm{C}(100 \mathrm{mg}, 0.007 \mathrm{mmol}, 0.1 \mathrm{eq})$ is added and the slurry sparged with H_{2} for 5 min . The mixture is filtered after 10 min and washed with MeOH . The solvent is removed under reduced pressure. The crude is purified by column chromatography ($\mathrm{EE}+6 \% \mathrm{MeOH}$). The pure product $\mathbf{1 2 7}$ is obtained as a yellow solid.

Yield $60 \mathrm{mg}(30 \%)$.
TLC (EE + 6\% MeOH): $\mathrm{R}_{f}(127)=0.42$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.17(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.73(\mathrm{dd}, \mathrm{J}=1.7,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.46(\mathrm{~d}, \mathrm{~J}=4.9 \mathrm{~Hz}$, $1 \mathrm{H}), 8.22(\mathrm{dt}, \mathrm{J}=2.0,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{td}, \mathrm{J}=1.8,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{dd}, \mathrm{J}=4.9,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~d}, \mathrm{~J}=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{dd}, \mathrm{J}=5.0,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.23(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13}$ C-NMR (75 MHz, CDCl ${ }_{3}$): $\delta 198.30,160.14,153.40,149.69,149.24,136.55,135.48,132.28,123.65$, 123.46, 121.46, 37.89, 31.69.

LC-MS (0-100\% B, 19 min$): \mathrm{t}_{R}(127)=1.83 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=213.25[\mathrm{M}+\mathrm{H}]^{+}$, found $=213.22[\mathrm{M}+\mathrm{H}]^{+}$.

(R)-3-(pyridin-2-yl)-1-(pyridin-3-yl)propan-1-ol (AV759)

Chemical Formula: $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}$
Exact Mass: 214,11
Molecular Weight: 214,26

128

127 ($20 \mathrm{mg}, 0.12 \mathrm{mmol}, 1.0 \mathrm{eq}$) is dissolved in 5 mL THF. Then a 1 M solution of KOtBu in tBuOH ($140 \mu \mathrm{~L}, 0.14 \mathrm{mmol}, 1.2 \mathrm{eq}$) is added and the solution is sparged with argon for 5 min . $\mathrm{RuCl}_{2}[(\mathrm{~S})$-(DM-SEGPHOS)][(S)-DAIPEN] ($7 \mathrm{mg}, 0.006 \mathrm{mmol}, 0.04 \mathrm{eq}$) is added. The slurry is sparged with H_{2} for 5 min and the reaction is stirred at 1 bar H_{2} at r.t. overnight. The solvent is removed under reduced pressure. The crude product is purified by column chromatography ($\mathrm{EE}+10 \% \mathrm{MeOH}$). The pure product 128 is obtained as a yellow oil.

Yield 8 mg (40\%).
TLC (EE + 10\% MeOH): $\mathrm{R}_{f}(128)=0.18$.
LC-MS (0-100\% B, 19 min$): \mathrm{t}_{R}(128)=1.30 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=215.11[\mathrm{M}+\mathrm{H}]^{+}$,
found $=215.15[\mathrm{M}+\mathrm{H}]^{+}$.

(E)-3-(pyridin-3-yl)-1-(pyridin-4-yl)prop-2-en-1-one (AV745)

Chemical Formula: $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}$
Exact Mass: 210,08
Molecular Weight: 210,23

Pyridine-3-carboxaldehyde ($1.00 \mathrm{~g}, 9.3 \mathrm{mmol}, 1 \mathrm{eq}$) and 4-acetylpyridine ($1.13 \mathrm{~g}, 9.3 \mathrm{mmol}, 1 \mathrm{eq}$) are dissolved in $40 \mathrm{~mL} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$. The solution is cooled to $0^{\circ} \mathrm{C}$ for 15 min , then $\mathrm{Na}_{2} \mathrm{CO}_{3}(4.00 \mathrm{~g}, 37.3 \mathrm{mmol}, 4 \mathrm{eq})$ dissolved in $36 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$ is added. The reaction is stopped after the formation of a precipitate is observed $(7 \mathrm{~min})$. The mixture is extracted with DCM $(3 \times 20 \mathrm{~mL})$, the combined organic phases are washed with brine $(1 \times 50 \mathrm{~mL})$, dried with MgSO_{4}, filtered and the crude loaded directly onto SiO_{2}. The dry-load is then heated under stirring to $120^{\circ} \mathrm{C}$ for 1 h . The now yellow silica is cooled and directly used as dry-load for a silica column chromatography ($\mathrm{EE}+2 \% \mathrm{MeOH}$). Compound 129 is obtained as a yellow oil.

Yield 1.11 g (57\%).
$\operatorname{TLC}(E E+2 \% \mathrm{MeOH}): \mathrm{R}_{f}(129)=0.20$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.87-8.74(\mathrm{~m}, 3 \mathrm{H}), 8.66-8.50(\mathrm{~m}, 1 \mathrm{H}), 7.92(\mathrm{dd}, \mathrm{J}=2.0,7.9 \mathrm{~Hz}, 1 \mathrm{H})$, $7.81-7.67(\mathrm{~m}, 3 \mathrm{H}), 7.46(\mathrm{~d}, \mathrm{~J}=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{dd}, \mathrm{J}=4.9,8.0 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13}$ C-NMR (126 MHz, CDCl 3): $\delta 189.23,151.71,150.97,150.23,143.85,142.89,134.76,130.15,123.90$, 122.93, 121.47.

LC-MS ($0-100 \% \mathrm{~B}, 19 \mathrm{~min}): \mathrm{t}_{\mathrm{R}}(129)=6.88 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=211.23[\mathrm{M}+\mathrm{H}]^{+}$, found $=211.26[\mathrm{M}+\mathrm{H}]^{+}$.

3-(pyridin-3-yl)-1-(pyridin-4-yl)propan-1-one (AV751/AV762)

Chemical Formula: $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}$
Exact Mass: 212,09
Molecular Weight: 212,25
$129(200 \mathrm{mg}, 0.95 \mathrm{mmol}, 1.0 \mathrm{eq})$ is dissolved in 20 mL MeOH and sparged for 5 min with argon. Then $10 \mathrm{wt} \% \mathrm{Pt} / \mathrm{C}(19 \mathrm{mg}, 0.01 \mathrm{mmol}, 0.01 \mathrm{eq})$ is added and the slurry sparged with H_{2} for 5 min . The mixture
is filtered after 20 min and washed with MeOH . The solvent is removed under reduced pressure. The crude is purified by column chromatography ($\mathrm{EE}+10 \% \mathrm{MeOH}$). The pure product 130 is obtained as a yellow solid.

Yield 38 g (19\%).
TLC (EE +10\% MeOH): $\mathrm{R}_{f}(130)=0.20$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.83-8.77(\mathrm{~m}, 2 \mathrm{H}), 8.56-8.49(\mathrm{~m}, 1 \mathrm{H}), 8.46(\mathrm{dd}, \mathrm{J}=1.6,4.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.72-7.67(\mathrm{~m}, 2 \mathrm{H}), 7.57(\mathrm{dt}, \mathrm{J}=2.0,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{ddd}, \mathrm{J}=0.9,4.8,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.31(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}$, $2 H), 3.09(t, J=7.3 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13}$ C-NMR (75 MHz, CDCl ${ }_{3}$): $\delta 198.01,151.20,150.04,148.03,142.47,136.16,136.13,123.57,121.03$, 40.20, 26.84.

LC-MS (0-100\% B, 19 min$): \mathrm{t}_{R}(\mathbf{1 3 0})=1.95 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=213.25[\mathrm{M}+\mathrm{H}]^{+}$, found $=213.23[\mathrm{M}+\mathrm{H}]^{+}$.

(R)-3-(pyridin-3-yl)-1-(pyridin-4-yl)propan-1-ol (AV764)

Chemical Formula: $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}$
Exact Mass: 214,11
Molecular Weight: 214,26

131

$130(30 \mathrm{mg}, 0.14 \mathrm{mmol}, 1.0 \mathrm{eq})$ is dissolved in 5 mL THF. Then a 1 M solution of KOtBu in tBuOH ($140 \mu \mathrm{~L}, 0.14 \mathrm{mmol}, 1.0 \mathrm{eq}$) is added and the solution is sparged with argon for 5 min . $\mathrm{RuCl}_{2}[(\mathrm{~S})$-(DM-SEGPHOS)][(S)-DAIPEN] ($7 \mathrm{mg}, 0.006 \mathrm{mmol}, 0.04 \mathrm{eq}$) is added. The slurry is sparged with H_{2} for 5 min and the reaction is stirred at 1 bar H_{2} at r.t. overnight. The solvent is removed under reduced pressure. The crude product is purified by column chromatography ($\mathrm{EE}+10 \% \mathrm{MeOH}$). The pure product 131 is obtained as a yellow oil.

Yield 7 mg (23\%).
TLC (EE + 10\% MeOH): $\mathrm{R}_{f}(131)=0.20$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.57-8.51(\mathrm{~m}, 2 \mathrm{H}), 8.42(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.37(\mathrm{dd}, \mathrm{J}=1.6,4.8 \mathrm{~Hz}, 1 \mathrm{H})$, 7.51 (dt, J = 2.0, 7.9 Hz, 1H), $7.30-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.20(\mathrm{dd}, \mathrm{J}=4.8,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{dd}, \mathrm{J}=4.5,8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.77(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.15-1.93(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13}$ C-NMR (126 MHz, CDCl ${ }_{3}$): $\delta 153.91,149.98,149.92,147.50,136.94,136.19,123.64,120.93,71.59$, 40.02, 28.95.

LC-MS ($0-100 \% \mathrm{~B}, 19 \mathrm{~min}): \mathrm{t}_{\mathrm{R}}(131)=1.22 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=215.11[\mathrm{M}+\mathrm{H}]^{+}$, found $=215.21[\mathrm{M}+\mathrm{H}]^{+}$.

(E)-3-(pyridin-4-yl)-1-(pyridin-4-yl)prop-2-en-1-one (AV746)

Chemical Formula: $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}$
Exact Mass: 210,08
Molecular Weight: 210,23
132

Pyridine-4-carboxaldehyde ($1.00 \mathrm{~g}, 9.3 \mathrm{mmol}, 1 \mathrm{eq}$) and 4-acetylpyridine ($1.13 \mathrm{~g}, 9.3 \mathrm{mmol}, 1 \mathrm{eq}$) are dissolved in $40 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$. The solution is cooled to $0^{\circ} \mathrm{C}$ for 15 min , then $\mathrm{Na}_{2} \mathrm{CO}_{3}(2.00 \mathrm{~g}, 19.0 \mathrm{mmol}, 2 \mathrm{eq})$ dissolved in 36 mL H O is added. The reaction is stopped after the formation of a precipitate is observed $(7 \mathrm{~min})$. The mixture is extracted with DCM $(3 \times 20 \mathrm{~mL})$, the combined organic phases are washed with brine $(1 \times 50 \mathrm{~mL})$, dried with MgSO_{4}, filtered and the crude loaded directly onto SiO_{2}. The dry-load is then heated under stirring to $120^{\circ} \mathrm{C}$ for 1 h . The now yellow silica is cooled and directly used as dry-load for a silica column chromatography ($\mathrm{EE}+2 \% \mathrm{MeOH}$). Compound $\mathbf{1 3 2}$ is obtained as a yellow oil.

Yield 830 mg (42\%).
TLC (EE + 2\% MeOH): $\mathrm{R}_{f}(\mathbf{1 3 2})=0.20$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.87-8.78(\mathrm{~m}, 2 \mathrm{H}), 8.73-8.65(\mathrm{~m}, 2 \mathrm{H}), 7.78-7.73(\mathrm{~m}, 2 \mathrm{H}), 7.70(\mathrm{~d}, \mathrm{~J}=$ $15.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{~d}, \mathrm{~J}=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.47-7.43(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13}$ C-NMR (126 MHz, CDCl 3): $\delta 189.33$, 151.08, 150.87, 143.60, 143.51, 141.48, 125.15, 122.12, 121.49.
LC-MS ($0-100 \% \mathrm{~B}, 19 \mathrm{~min}): \mathrm{t}_{\mathrm{R}}(132)=6.00 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=211.23[\mathrm{M}+\mathrm{H}]^{+}$,
found $=211.23[\mathrm{M}+\mathrm{H}]^{+}$.

3-(pyridin-4-yl)-1-(pyridin-4-yl)propan-1-one (AV752/AV763)

Chemical Formula: $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}$
Exact Mass: 212,09
Molecular Weight: 212,25

132 ($200 \mathrm{mg}, 0.95 \mathrm{mmol}, 1.0 \mathrm{eq}$) is dissolved in 20 mL MeOH and sparged for 5 min with argon. Then $10 \mathrm{wt} \% \mathrm{Pt} / \mathrm{C}\left(19 \mathrm{mg}, 0.01 \mathrm{mmol}, 0.01 \mathrm{mg}\right.$) is added and the slurry sparged with H_{2} for 5 min . The mixture is filtered after 35 min and washed with MeOH . The solvent is removed under reduced pressure. The crude is purified by column chromatography ($\mathrm{EE}+10 \% \mathrm{MeOH}$). The pure product 133 is obtained as a yellow solid.

Yield 100 mg (50\%).
TLC (EE +10\% MeOH): $\mathrm{R}_{f}(133)=0.42$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.87-8.73(\mathrm{~m}, 2 \mathrm{H}), 8.58-8.39(\mathrm{~m}, 2 \mathrm{H}), 7.74-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.06$ $(\mathrm{m}, 2 \mathrm{H}), 3.31(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.06(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 197.71,151.12,149.90,149.80,142.36,123.92,120.98,39.25,28.81$.
LC-MS (0-100\% B, 19 min$): \mathrm{t}_{R}(133)=1.78 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=213.25[\mathrm{M}+\mathrm{H}]^{+}$,
found $=213.26[\mathrm{M}+\mathrm{H}]^{+}$.

(R)-3-(pyridin-4-yl)-1-(pyridin-4-yl)propan-1-ol (AV765)

Chemical Formula: $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}$
Exact Mass: 214,11
Molecular Weight: 214,26

133 ($30 \mathrm{mg}, 0.14 \mathrm{mmol}, 1.0 \mathrm{eq}$) is dissolved in 5 mL THF. Then a 1 M solution of KOtBu in tBuOH ($140 \mu \mathrm{~L}, 0.14 \mathrm{mmol}, 1.0 \mathrm{eq}$) is added and the solution is sparged with argon for 5 min . $\mathrm{RuCl}_{2}[(S)$-(DM-SEGPHOS)][(S)-DAIPEN] ($7 \mathrm{mg}, 0.006 \mathrm{mmol}, 0.04 \mathrm{eq}$) is added. The slurry is sparged with H_{2} for 5 min and the reaction is stirred at 1 bar H_{2} at r.t. overnight. The solvent is removed under reduced pressure. The crude product is purified by column chromatography ($\mathrm{EE}+10 \% \mathrm{MeOH}$). The pure product 134 is obtained as a white oil.

Yield 14 mg (47\%).
TLC (EE + 10\% MeOH): $\mathrm{R}_{f}(134)=0.20$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.54-8.47(\mathrm{~m}, 2 \mathrm{H}), 8.44-8.39(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.13-7.08$
(m, 2H), 4.69 (dd, J = 4.8, 7.9 Hz, 1H), 2.85-2.69 (m, 2H), 2.13-1.94 (m, 2H).
${ }^{13}$ C-NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 153.81,150.79,149.94,149.74,124.07,120.94,71.77,39.23,31.15$.
LC-MS (0-100\% B, $19 \mathbf{m i n}): \mathrm{t}_{R}(\mathbf{1 3 4})=1.48 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=215.11[\mathrm{M}+\mathrm{H}]^{+}$,
found $=215.18[\mathrm{M}+\mathrm{H}]^{+}$.

(E)-3-(pyridin-4-yl)-1-(pyridin-3-yl)prop-2-en-1-one (AV747)

Chemical Formula: $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}$
Exact Mass: 210,08
Molecular Weight: 210,23

135

Pyridine-4-carboxaldehyde ($1.00 \mathrm{~g}, 9.3 \mathrm{mmol}, 1 \mathrm{eq}$) and 3-acetylpyridine ($1.13 \mathrm{~g}, 9.3 \mathrm{mmol}, 1 \mathrm{eq}$) are dissolved in $40 \mathrm{~mL} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$. The solution is cooled to $0^{\circ} \mathrm{C}$ for 15 min , then $\mathrm{Na}_{2} \mathrm{CO}_{3}(4.00 \mathrm{~g}, 37.3 \mathrm{mmol}, 4 \mathrm{eq})$ dissolved in $36 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$ is added. The reaction is stopped after the formation of a precipitate is observed $(10 \mathrm{~min})$. The mixture is extracted with DCM $(3 \times 20 \mathrm{~mL})$, the combined organic phases are washed with brine $(1 \times 50 \mathrm{~mL})$, dried with MgSO_{4}, filtered and the crude loaded directly onto SiO_{2}. The dry-load is then heated under stirring to $120^{\circ} \mathrm{C}$ for 1 h . The now yellow silica is cooled and directly used as dry-load for a silica column chromatography ($\mathrm{EE}+3 \% \mathrm{MeOH}$). Compound 135 is obtained as a yellow oil.

Yield 1.3 g (66\%).
TLC (EE + 2\% MeOH): $\mathrm{R}_{f}(135)=0.20$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.22(\mathrm{dd}, \mathrm{J}=0.9,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.81(\mathrm{dd}, \mathrm{J}=1.7,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.72-8.65$ $(\mathrm{m}, 2 \mathrm{H}), 8.33-8.25(\mathrm{~m}, 1 \mathrm{H}), 7.78-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.51-7.41(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13}$ C-NMR (126 MHz, CDCl $)$: $\delta 188.62,153.76,150.86,149.92,142.77,141.68,136.04,132.96,125.41$, 123.91, 122.15.

LC-MS (0-100\% B, 19 min$): \mathrm{t}_{\mathrm{R}}(135)=6.24 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=211.08[\mathrm{M}+\mathrm{H}]^{+}$, found $=211.24[\mathrm{M}+\mathrm{H}]^{+}$.

3-(pyridin-4-yl)-1-(pyridin-3-yl)propan-1-one (AV753)

Chemical Formula: $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}$
Exact Mass: 212,09
Molecular Weight: 212,25
136
135 ($200 \mathrm{mg}, 1.0 \mathrm{mmol}, 1.0 \mathrm{eq}$) is dissolved in 5 mL MeOH and sparged for 5 min with argon. Then $10 \mathrm{wt} \% \mathrm{Pd} / \mathrm{C}(100 \mathrm{mg}, 0.1 \mathrm{eq})$ is added and the slurry sparged with H_{2} for 5 min . The mixture is filtered
after 5 min and washed with MeOH . The solvent is removed under reduced pressure. The crude is purified by column chromatography ($\mathrm{EE}+6 \% \mathrm{MeOH}$). The pure product 136 is obtained as a yellow solid.

Yield 50 g (25\%).
TLC (EE + 6\% MeOH): $\mathrm{R}_{f}(136)=0.25$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.20-9.11(\mathrm{~m}, 1 \mathrm{H}), 8.77(\mathrm{dd}, \mathrm{J}=1.7,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.54-8.44(\mathrm{~m}, 2 \mathrm{H})$,
$8.21(\mathrm{dt}, \mathrm{J}=2.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{ddd}, \mathrm{J}=0.9,4.8,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.10(\mathrm{~m}, 2 \mathrm{H}), 3.33(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}$, $2 H$), 3.08 ($\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}$).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 197.12,153.85,149.98,149.92,149.61,135.40,131.93,123.96,123.84$, 39.23, 28.93.

LC-MS (0-100\% B, 19 min$): \mathrm{t}_{R}(136)=1.98 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=213.25[\mathrm{M}+\mathrm{H}]^{+}$, found $=213.23[\mathrm{M}+\mathrm{H}]^{+}$.

(R)-3-(pyridin-4-yl)-1-(pyridin-3-yl)propan-1-ol (AV761)

Chemical Formula: $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}$
Exact Mass: 214,11
Molecular Weight: 214,26
$136(30 \mathrm{mg}, 0.14 \mathrm{mmol}, 1.0 \mathrm{eq})$ is dissolved in 5 mL THF. Then a 1 M solution of KOtBu in tBuOH ($140 \mu \mathrm{~L}, 0.14 \mathrm{mmol}, 1.0 \mathrm{eq}$) is added and the solution is sparged with argon for 5 min . $\mathrm{RuCl}_{2}[(S)$-(DM-SEGPHOS)][(S)-DAIPEN] ($7 \mathrm{mg}, 0.006 \mathrm{mmol}, 0.04 \mathrm{eq}$) is added. The slurry is sparged with H_{2} for 5 min and the reaction is stirred at 1 bar H_{2} at r.t. overnight. The solvent is removed under reduced pressure. The crude product is purified by column chromatography ($\mathrm{EE}+10 \% \mathrm{MeOH}$). The pure product 137 is obtained as a white oil.

Yield 10 mg (33\%).
TLC (EE + 10\% MeOH): $\mathrm{R}_{f}(137)=0.20$.
LC-MS (0-100\% B, 19 min$): \mathrm{t}_{\mathrm{R}}(137)=1.83 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=215.34[\mathrm{M}+\mathrm{H}]^{+}$,
found $=215.26[\mathrm{M}+\mathrm{H}]^{+}$.

(E)-3-(3,4-dimethoxyphenyl)-1-(2-hydroxyphenyl)prop-2-en-1-one (AV623/AV628)

Chemical Formula: $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{4}$ Exact Mass: 284,10
Molecular Weight: 284,31
138

2-Hydroxy acetophenone ($4.10 \mathrm{~g}, 30 \mathrm{mmol}, 1 \mathrm{eq}$) and 3,4-dimethoxybenzaldehyde ($5.00 \mathrm{~g}, 30 \mathrm{mmol}$, $1 \mathrm{eq})$ are dissolved in 90 mL EtOH. $\mathrm{NaOH}(2.41 \mathrm{~g}, 60 \mathrm{mmol}, 2.0 \mathrm{eq})$ dissolved in 6 mL EtOH is dropwise added in 10 min . The reaction is stirred for 2 d . The precipitate is filtered and washed with cooled EtOH. The solvent is removed and the crude product is purified by recrystallization in EtOH. The crystals are filtered off, dissolved in 70 mL 1 M HCl and extracted with DCM ($3 \times 50 \mathrm{~mL}$), the combined organic phases dried with MgSO_{4} and the solvent removed under reduced pressure. Compound $\mathbf{1 3 8}$ is obtained as yellow solid.

Yield 2.89 g (33\%).
TLC (CH/EE, 3/1, v/v): $\mathrm{R}_{f}(138)=0.34$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}\right.$, CDCl $\left._{3}\right): \delta 12.90(\mathrm{~s}, 1 \mathrm{H}), 7.95-7.85(\mathrm{~m}, 2 \mathrm{H}), 7.56-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.25(\mathrm{~m}$, $1 \mathrm{H}), 7.18(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{dd}, \mathrm{J}=1.2,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.99-6.89(\mathrm{~m}, 2 \mathrm{H}), 3.97(\mathrm{~s}, 3 \mathrm{H}), 3.94(\mathrm{~s}$, 3 H).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 193.73,163.72,152.01,149.51,145.80,136.31,129.68,127.79,123.72$, $120.27,118.88,118.77,117.99,111.37,110.53,56.19$.

LC-MS (30-100\% B, $19 \mathbf{m i n}): \mathrm{t}_{R}(\mathbf{1 3 8})=10.65 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=285.31[\mathrm{M}+\mathrm{H}]^{+}$, found $=285.17[\mathrm{M}+\mathrm{H}]^{+}$.
RP-HPLC ($\mathbf{3 0} \mathbf{- 1 0 0 \%}$ B, $1.5 \mathrm{~mL} / \mathrm{min}, 15 \mathrm{~min}, 220 \mathrm{~nm}): \mathrm{t}_{R}(138)=10.43 \mathrm{~min}(98 \%$ Purity) .

3-(3,4-dimethoxyphenyl)-1-(2-hydroxyphenyl)propan-1-one (AV499/AV632)

Chemical Formula: $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{4}$ Exact Mass: 286,12
Molecular Weight: 286,32

138 ($700 \mathrm{mg}, 1.7 \mathrm{mmol}, 1.0 \mathrm{eq}$) is dissolved in 40 mL THF and flushed with argon for 5 min . Then 10 $w t \% \mathrm{Pd} / \mathrm{C}(30 \mathrm{mg}, 0.01 \mathrm{eq})$ is added and the mixture flushed with H_{2} for 10 min . The reaction is stirred under 1 atm H_{2} for 60 min , then filtered over celite, the solvent removed and the crude product recrystallized in MeOH . The pure product 139 is obtained as a white solid.

Yield 605 mg (86\%).
TLC (CH/EE, 4/1, v/v): $\mathrm{R}_{f}(139)=0.30$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 12.23(\mathrm{~s}, 1 \mathrm{H}), 7.67(\mathrm{dd}, \mathrm{J}=1.6,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{ddd}, J=1.7,7.2,8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 6.91$ (ddd, $J=0.4,1.2,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.81$ (ddd, $J=1.2,7.2,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{q}, J=1.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.69$ $(\mathrm{d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.27-3.17(\mathrm{~m}, 2 \mathrm{H}), 2.95(\mathrm{dd}, J=6.9,8.3 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13}$ C-NMR (75 MHz, CDCl ${ }_{3}$): $\delta 205.59,162.47,149.00,147.57,136.37,133.37,129.85,120.25,119.34$, 118.94, 118.58, 111.95, 111.55, 55.99, 55.90, 40.28, 29.81.

LC-MS (30-100\% B, 19 min$): \mathrm{t}_{\mathrm{R}}(139)=10.18 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=287.12[\mathrm{M}+\mathrm{H}]^{+}$, found $=287.16[\mathrm{M}+\mathrm{H}]^{+}$.

RP-HPLC ($\mathbf{3 0} \mathbf{- 1 0 0 \%}$ B, $1.5 \mathrm{~mL} / \mathrm{min}, \mathbf{2 0} \mathbf{~ m i n}, 254 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}(\mathbf{1 3 9})=11.36 \mathrm{~min}(99 \%$ Purity $)$.
(R)-2-(3-(3,4-dimethoxyphenyl)-1-hydroxypropyl)phenol (AV634/AV645)

Chemical Formula: $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{4}$ Exact Mass: 288,14
Molecular Weight: 288,34
140
S-CBS (31 mg, $0.11 \mathrm{mmol}, 0.1 \mathrm{eq}$) is dissolved in 3.7 mL dry THF and added to a flask under argon atmosphere. $55 \mu \mathrm{~L}(0.1 \mathrm{eq})$ of a $2 \mathrm{M} \mathrm{BH}_{3}{ }^{*} \mathrm{SMe}_{2}$ solution in THF is added. 139 ($315 \mathrm{mg}, 1.10 \mathrm{mmol}$, 1.0 eq) is dissolved in 2.70 mL dry THF and added to the catalyst. Then $825 \mu \mathrm{~L}$ (1.5 eq) of a 2 M $\mathrm{BH}_{3}{ }^{*} \mathrm{SMe}_{2}$ solution in THF is added dropwise in 1 h . After complete addition, the reaction is further stirred for 2 h , then stopped by the addition of MeOH and quenched for 1 h . The solvent is removed under reduced pressure. The crude product is purified by silica column chromatography (CH/EE, 4/1). The pure product 140 is obtained as a colorless solid.

Yield 170 mg (53\%).
TLC (CH/EE, 4/1): $\mathrm{R}_{f}(140)=0.25$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.89(\mathrm{~s}, 1 \mathrm{H}), 7.19-7.14(\mathrm{~m}, 1 \mathrm{H}), 6.90(\mathrm{ddd}, \mathrm{J}=1.3,7.9,27.8 \mathrm{~Hz}, 2 \mathrm{H})$,
$6.86-6.77(\mathrm{~m}, 2 \mathrm{H}), 6.76-6.71(\mathrm{~m}, 2 \mathrm{H}), 4.84(\mathrm{dd}, \mathrm{J}=5.3,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~d}, \mathrm{~J}=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 3.85(\mathrm{~d}$, $J=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 2.78-2.62(\mathrm{~m}, 2 \mathrm{H}), 2.30-2.05(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13}$ C-NMR (126 MHz, CDCl_{3}): $\delta 155.71,149.09,147.48,133.99,129.12,127.43,127.26,120.38,119.90$, $117.38,111.90,111.52,75.57,56.09,56.01,38.66,31.70$.

LC-MS (30-100\% B, $19 \mathbf{m i n}): \mathrm{t}_{\mathrm{R}}(\mathbf{1 4 0})=7.25 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=269.32\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$, found $=269.44\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$.

RP-HPLC ($\mathbf{3 0} \mathbf{- 1 0 0 \%}$ B, $1.5 \mathrm{~mL} / \mathrm{min}, 15 \mathrm{~min}, 220 \mathrm{~nm}$): $\mathrm{t}_{R}(\mathbf{1 4 0})=6.18 \mathrm{~min}(99 \%$ Purity).

tert-butyl 2-(2-(3-(3,4-dimethoxyphenyl)propanoyl)phenoxy)acetate (AV534/AV541/AV554)

Chemical Formula: $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{O}_{6}$
Exact Mass: 400,19
Molecular Weight: 400,46
$139(86 \mathrm{mg}, 0.30 \mathrm{mmol}, 1.0 \mathrm{eq})$ is dissolved in 3 mL MeCN. $\mathrm{K}_{2} \mathrm{CO}_{3}(83 \mathrm{mg}, 0.6 \mathrm{mmol}, 2.0 \mathrm{eq})$ and tertbutyl bromoacetate ($53 \mu \mathrm{~L} 0.36 \mathrm{mmol}, 1.2 \mathrm{eq}$) is added. The reaction is stirred at $70^{\circ} \mathrm{C}$ overnight. After complete conversion, the suspension is filtered, washed with MeCN and the solvent removed under reduced pressure. The crude product 141 is obtained as a colorless oil and used without further purification.

Yield 120 mg (quant.).
$\operatorname{TLC}(C H / E E, 2 / 1): \mathrm{R}_{f}(141)=0.33$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.68(\mathrm{dd}, \mathrm{J}=1.9,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.38(\mathrm{~m}, 1 \mathrm{H}), 7.06-6.97(\mathrm{~m}, 1 \mathrm{H})$, $6.82-6.78(\mathrm{~m}, 4 \mathrm{H}), 4.58(\mathrm{~s}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~d}, \mathrm{~J}=0.5 \mathrm{~Hz}, 3 \mathrm{H}), 3.42(\mathrm{dd}, \mathrm{J}=7.1,8.2 \mathrm{~Hz}, 2 \mathrm{H})$, $2.99(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.45(\mathrm{~d}, J=0.6 \mathrm{~Hz}, 9 \mathrm{H})$.
${ }^{13}$ C-NMR (126 MHz, CDCl 3): $\delta 201.98,167.28,156.77,148.95,147.34,134.52,133.26,130.75,129.07$, $121.71,120.42,112.17,112.13,111.41,82.80,66.07,56.08,55.93,45.73,30.18,28.15$.

LC-MS (50-100\% B, 19 min$): \mathrm{t}_{R}(141)=8.03 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=423.15[\mathrm{M}+\mathrm{Na}]^{+}$, found $=422.98[\mathrm{M}+\mathrm{Na}]^{+}$.
tert-butyl 2-(2-(3-(3,4-dimethoxyphenyl)-1-hydroxypropyl)phenoxy)acetate (AV539/AV542)

Chemical Formula: $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{O}_{6}$
Exact Mass: 402,20
Molecular Weight: 402,48

142

141 ($10 \mathrm{mg}, 0.03 \mathrm{mmol}, 1.0 \mathrm{eq}$) is dissolved in $2 \mathrm{~mL} \mathrm{MeOH} . \mathrm{CeCl}_{3}(12 \mathrm{mg}, 0.03 \mathrm{mmol}, 1.2 \mathrm{eq})$ and subsequently $\mathrm{NaBH}_{4}(1.8 \mathrm{mg}, 0.05 \mathrm{mmol}, 2.0 \mathrm{eq})$ is added and the reaction stirred at r.t. overnight. The mixture is diluted with 2 mL MeOH and quenched with a few drops of glacial acetic acid. The solvent is removed under reduced pressure. The crude product is purified by column chromatography (CH/EE, $3 / 1$). The pure product 142 is obtained as a colorless oil.

Yield 7 mg (70\%).
$\operatorname{TLC}(C H / E E, 3 / 1): \mathrm{R}_{f}(142)=0.25$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.30-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.22(\mathrm{td}, \mathrm{J}=1.8,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{tq}, J=1.3,7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 6.81-6.73(\mathrm{~m}, 4 \mathrm{H}), 4.87(\mathrm{dd}, J=5.1,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.62-4.51(\mathrm{~m}, 2 \mathrm{H}), 3.86(\mathrm{t}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 3.85$ $(\mathrm{d}, \mathrm{J}=0.9 \mathrm{~Hz}, 3 \mathrm{H}), 2.87-2.57(\mathrm{~m}, 2 \mathrm{H}), 2.30-2.06(\mathrm{~m}, 2 \mathrm{H}), 1.50-1.47(\mathrm{~m}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): ~ \delta 168.16,155.61,148.94,147.24,135.08,133.12,128.50,127.89,121.92$, $120.39,112.10,112.01,111.40,82.99,71.30,66.07,56.10,55.96,38.64,32.24,28.22$.

LC-MS (50-100\% B, $19 \mathbf{m i n}): \mathrm{t}_{R}(\mathbf{1 4 2})=6.78 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=425.19[\mathrm{M}+\mathrm{Na}]^{+}$, found $=425.20[\mathrm{M}+\mathrm{H}]^{+}$.

RP-HPLC ($\mathbf{3 0} \mathbf{- 1 0 0 \%}$ B, $1.0 \mathrm{~mL} / \mathrm{min}, 15 \mathrm{~min}, 220 \mathrm{~nm}$): $\mathrm{t}_{R}(\mathbf{1 4 2})=10.25 \mathrm{~min}$ (96% Purity).
Chiral-HPLC (20\% iPrOH in n-Hexane, isocratic, $1.0 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}(\mathbf{1 4 2})=10.21 \mathrm{~min}$, 12.13 min .

(R)-tert-butyl 2-(2-(3-(3,4-dimethoxyphenyl)-1-hydroxypropyl)phenoxy)acetate

 (AV543/AV557)

Chemical Formula: $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{O}_{6}$
Exact Mass: 402,20
Molecular Weight: 402,48
$\mathrm{K}_{2} \mathrm{CO}_{3}(100 \mathrm{mg}, 0.60 \mathrm{mmol}, 2.0 \mathrm{eq})$ is filled into an autoclave (Roth, Model II). 141 ($120 \mathrm{mg}, 0.30 \mathrm{mmol}$, 1.0 eq) is dissolved in 20 mL iPrOH and added to the autoclave. The solution is sparged with argon for 10 min , then $\mathrm{RuCl}_{2}[(S)$-(DM-SEGPHOS)][(S)-DAIPEN] ($20 \mathrm{mg}, 0.02 \mathrm{mmol}, 0.05 \mathrm{eq}$) is added and the autoclave closed, then flushed $3 x$ with H_{2} and 10 bar H_{2} applied. After 5 d reaction time, the mixture is transferred to a beaker and filtered through celite and washed with MeOH . The solvent is removed under reduced pressure. The crude product is purified by column chromatography ($C H / E E, 4 / 1$). The pure product 143 is obtained as a colorless oil.

Yield 95 mg (78\%).
$\operatorname{TLC}(C H / E E, 2 / 1): \mathrm{R}_{f}(143)=0.33$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.31-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.22(\mathrm{td}, J=1.8,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $6.83-6.70(\mathrm{~m}, 5 \mathrm{H}), 4.87(\mathrm{dd}, \mathrm{J}=5.2,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.62-4.50(\mathrm{~m}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~s}, 4 \mathrm{H}), 2.73$ (dddd, $J=6.0,10.0,14.1,77.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.39-2.06(\mathrm{~m}, 2 \mathrm{H}), 1.48(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}, 9 \mathrm{H})$.
${ }^{13}$ C-NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 168.16,155.61,148.94,147.23,135.08,133.12,128.50,127.89,121.92$, $120.39,112.10,112.01,111.40,82.99,71.30,66.07,56.10,55.96,38.64,32.24,29.85,28.22$.

LC-MS (50-100\% B, 19 min$): \mathrm{t}_{R}(143)=6.78 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=425.19[\mathrm{M}+\mathrm{Na}]^{+}$, found $=425.16[\mathrm{M}+\mathrm{Na}]^{+}$.
RP-HPLC ($\mathbf{5 0} \mathbf{- 1 0 0 \%}$ B, $1.5 \mathrm{~mL} / \mathrm{min}, 20 \mathrm{~min}, 220 \mathrm{~nm}$): $\mathrm{t}_{R}(\mathbf{1 4 3})=6.65 \mathrm{~min}(95 \%$ Purity).
Chiral-HPLC (20\% iPrOH in n-Hexane, isocratic, $1.0 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}(\mathbf{7})=10.25 \mathrm{~min}(\mathrm{er}=$ 81.57/18.43).

(R)-allyl 2-(2-(3-(3,4-dimethoxyphenyl)-1-hydroxypropyl)phenoxy)acetate (AV635/AV647)

Chemical Formula: $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{6}$ Exact Mass: 386,17
Molecular Weight: 386,44

144

$140(145 \mathrm{mg}, 0.5 \mathrm{mmol}, 1.0 \mathrm{eq})$ is dissolved in 10 mL MeCN and $\mathrm{K}_{2} \mathrm{CO}_{3}(140 \mathrm{mg}, 1 \mathrm{mmol}, 2.0 \mathrm{eq})$ and $69(120 \mathrm{mg}, 0.65 \mathrm{mmol}, 1.3 \mathrm{eq})$ are added. The reaction is stirred at r.t. overnight. The slurry is filtered and the solvent is removed under reduced pressure. The crude product is purified by column chromatography (CH/EE, 2/1). The pure product 144 is obtained as a colorless oil.

Yield 131 mg (67\%).
$\operatorname{TLC}(C H / E E, 2 / 1): \mathrm{R}_{f}(144)=0.30$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.31$ (dd, J = 1.7, $7.6 \mathrm{~Hz}, 1 \mathrm{H}$), $7.25-7.12(\mathrm{~m}, 1 \mathrm{H}), 7.00(\mathrm{td}, \mathrm{J}=1.0,7.5 \mathrm{~Hz}$, 1H), 6.89 (ddd, J = 1.4, 7.9, $24.5 \mathrm{~Hz}, 1 \mathrm{H}$), $6.84-6.70(\mathrm{~m}, 3 \mathrm{H}), 5.91$ (ddt, J = 5.9, 10.4, $16.6 \mathrm{~Hz}, 1 \mathrm{H}$), 5.33 (dq, J = 1.5, 17.2 Hz, 1H), $5.27(d q, J=1.3,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(d d, J=5.1,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{~m}, 4 \mathrm{H})$, $3.85(\mathrm{~m}, 6 \mathrm{H}), 2.84-2.59(\mathrm{~m}, 2 \mathrm{H}), 2.29-2.02(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13}$ C-NMR (126 MHz, CDCl $)$: $\delta 168.76,155.28,148.91,147.21,134.99,133.23,131.36,128.53,127.85$, $122.16,120.36,119.47,112.07,111.94,111.39,70.88,66.18,65.53,56.07,55.93,38.72,32.15$.

LC-MS (50-100\% B, 19 min$): \mathrm{t}_{R}(144)=9.55 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=369.42[\mathrm{M}-\mathrm{OH}+\mathrm{H}]^{+}$, found $=369.33[\mathrm{M}-\mathrm{OH}+\mathrm{H}]^{+}$.

RP-HPLC ($\mathbf{3 0} \mathbf{- 1 0 0 \%}$ B, $1.5 \mathrm{~mL} / \mathrm{min}, 15 \mathrm{~min}, 220 \mathrm{~nm}$): $\mathrm{t}_{R}(144)=8.91 \mathrm{~min}$ (98% Purity).

allyl 2-(2-(3-(3,4-dimethoxyphenyl)-1-hydroxypropyl)phenoxy)acetate (AV637/AV640/AV642)

Chemical Formula: $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{6}$
Exact Mass: 386,17
Molecular Weight: 386,44

145

144 ($15 \mathrm{mg}, 0.04 \mathrm{mmol}, 1.0 \mathrm{eq}$) is dissolved in 2 mL dry THF. $\mathrm{CeCl}_{3}(14 \mathrm{mg}, 0.04 \mathrm{mmol}, 1.0 \mathrm{eq})$ and subsequently $\mathrm{NaBH}_{4}(1.5 \mathrm{mg}, 0.05 \mathrm{mmol}, 1.0 \mathrm{eq})$ is added and the reaction stirred for 5 min . The mixture is diluted with 2 mL MeOH and quenched with a few drops of glacial acetic acid. The solvent is removed under reduced pressure. The crude product is purified by column chromatography (CH/EE, $2 / 1$). The pure product 145 is obtained as a colorless oil.

Yield 15 mg (quant.).
$\operatorname{TLC}(C H / E E, 2 / 1): \mathrm{R}_{f}(145)=0.31$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.32$ (dd, J = $1.7,7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.23 (ddd, J = 1.7, 7.4, 8.1 Hz, 1H), 7.00 (td, $\mathrm{J}=1.0,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.80-6.74(\mathrm{~m}, 4 \mathrm{H}), 5.91(\mathrm{ddt}, \mathrm{J}=5.9,10.5,17.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.34(\mathrm{dq}, \mathrm{J}=1.5,17.2 \mathrm{~Hz}$, $1 \mathrm{H}), 5.27(\mathrm{dq}, \mathrm{J}=1.2,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.93(\mathrm{dd}, \mathrm{J}=5.1,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.76-4.66(\mathrm{~m}, 4 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.85$ (s, 3H), 2.73 (dddd, J = 5.9, 10.0, 13.9, $74.0 \mathrm{~Hz}, 2 \mathrm{H}$), $2.26-2.08$ (m, 2H).
${ }^{13}$ C-NMR (126 MHz, CDCl 3): $\delta 168.74,155.29,148.93,147.23,135.02,133.30,131.39,128.53,127.86$, $122.17,120.37,119.47,112.08,111.93,111.39,70.86,66.18,65.55,56.09,55.95,38.75,32.18$.

LC-MS (50-100\% B, $19 \mathbf{m i n}): \mathrm{t}_{R}(145)=9.64 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=369.42[\mathrm{M}-\mathrm{OH}+\mathrm{H}]^{+}$,
found $=369.29[\mathrm{M}-\mathrm{OH}+\mathrm{H}]^{+}$.

(E)-3-(3,4-dimethoxyphenyl)-1-(4-hydroxyphenyl)prop-2-en-1-one (AV553/AV559)

Chemical Formula: $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{4}$
Exact Mass: 284,10
Molecular Weight: 284,31
146

3,4-Dimethoxybenzaldehyde ($5.0 \mathrm{~g}, 30 \mathrm{mmol}, 1 \mathrm{eq}$) and 4'-hydroxyacetophenon ($4.1 \mathrm{~g}, 30 \mathrm{mmol}, 1 \mathrm{eq}$) are dissolved in 70 mL EtOH . $\mathrm{KOH}(13.5 \mathrm{~g}, 240 \mathrm{mmol}, 8.0 \mathrm{eq}$) is added directly. The reaction is stirred over two days. The mixture is cooled to $0^{\circ} \mathrm{C}$, diluted with $\mathrm{H}_{2} \mathrm{O}(200 \mathrm{~mL})$ and acidified with conc. HCl until precipitation is observed. After stirring overnight, the precipitate is filtered, washed with $\mathrm{H}_{2} \mathrm{O}$, dissolved in EE , dried with MgSO_{4}, filtered and the solvent removed under reduced pressure. The product 146 is used as crude in further reactions.

Yield 6.4g (75\%).
TLC (CH/EE, 2/1, v/v): $\mathrm{R}_{f}(146)=0.20$.
${ }^{1} \mathrm{H}-$ NMR ($\mathbf{5 0 0} \mathrm{MHz}$, DMSO- $_{6}$): $\delta 10.38(\mathrm{~s}, 1 \mathrm{H}), 8.12-8.01(\mathrm{~m}, 2 \mathrm{H}), 7.80(\mathrm{dd}, \mathrm{J}=1.3,15.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.65$ (dd, $J=1.3,15.4 \mathrm{~Hz}, 1 \mathrm{H}$), $7.52(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{dt}, J=1.6,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{dd}, J=1.3,8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 6.91(\mathrm{dd}, J=1.4,8.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.86(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 3.81(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C-NMR (126 MHz, DMSO- \boldsymbol{d}_{6}): δ 187.05, 161.99, 151.01, 149.01, 143.17, 131.03, 129.36, 127.73, $123.57,119.67,115.29,111.55,110.65,55.72,55.56$.

LC-MS (30-100\% B, $19 \mathbf{m i n}$): $\mathrm{t}_{\mathrm{R}}(\mathbf{1 4 6})=7.25 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=285.31[\mathrm{M}+\mathrm{H}]^{+}$, found $=285,23[\mathrm{M}+\mathrm{H}]^{+}$.
RP-HPLC ($\mathbf{3 0} \mathbf{- 1 0 0 \%}$ B, $1.5 \mathrm{~mL} / \mathrm{min}, 20 \mathrm{~min}, 254 \mathrm{~nm}): \mathrm{t}_{R}(\mathbf{1 4 6})=6.39 \mathrm{~min}(99 \%$ Purity).

3-(3,4-dimethoxyphenyl)-1-(4-hydroxyphenyl)propan-1-one (AV565)

Chemical Formula: $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{4}$
Exact Mass: 286,12
Molecular Weight: 286,32
147
Zn powder ($11.50 \mathrm{~g}, 180 \mathrm{mmol}, 10.0 \mathrm{eq}$) and $\mathrm{NH}_{4} \mathrm{Cl}(9.41 \mathrm{~g}, 180 \mathrm{mmol}, 10.0 \mathrm{eq})$ are added to a flask and suspended in $50 \mathrm{~mL} \mathrm{MeOH} .146(5.00 \mathrm{~g}, 18 \mathrm{mmol}, 1.0 \mathrm{eq})$ is dissolved in 50 mL THF and diluted
with 50 mL MeOH, then added dropwise to the vigorously stirring suspension in 40 min . After complete addition, the mixture is filtered and washed with MeOH . The mixture is then concentrated by 100 mL under reduced pressure. $100 \mathrm{mLH}_{2} \mathrm{O}$ is added, to precipitate the product. The crude product is filtered and recrystallized in MeOH . The pure product 147 is obtained as a white solid.

Yield $2.55 \mathrm{~g}(51 \%)$.
TLC (CH/EE, 2/1, v/v): $\mathrm{R}_{f}(147)=0.23$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}\right.$, DMSO- \boldsymbol{d}_{6}): $\delta 10.30(\mathrm{~s}, 1 \mathrm{H}), 7.97-7.78(\mathrm{~m}, 2 \mathrm{H}), 6.87(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~s}$, $1 \mathrm{H}), 6.84-6.80(\mathrm{~m}, 2 \mathrm{H}), 6.75(\mathrm{dd}, J=2.0,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 3 \mathrm{H}), 3.70(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 3 \mathrm{H})$, $3.21(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.84(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13}$ C-NMR (126 MHz, DMSO- \boldsymbol{d}_{6}): δ 197.38, 161.90, 148.61, 147.02, 133.88, 130.43, 128.31, 120.06, $115.15,112.45,111.90,55.54,55.40,29.47$.

LC-MS (30-100\% B, $19 \mathbf{m i n}): \mathrm{t}_{\mathrm{R}}(\mathbf{1 4 7})=7.32 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=287.12[\mathrm{M}+\mathrm{H}]^{+}$, found $=287.13[\mathrm{M}+\mathrm{H}]^{+}$.

RP-HPLC ($\mathbf{3 0} \mathbf{- 1 0 0 \%}$ B, $1.5 \mathrm{~mL} / \mathrm{min}, 15 \mathrm{~min}, 220 \mathrm{~nm}): \mathrm{t}_{R}(147)=6.04 \mathrm{~min}(79 \%$ Purity).

4-(3-(3,4-dimethoxyphenyl)-1-hydroxypropyl)phenol (AV572)

Chemical Formula: $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{4}$ Exact Mass: 288,14
Molecular Weight: 288,34

147 ($50 \mathrm{mg}, 0.17 \mathrm{mmol}, 1.0 \mathrm{eq}$) is dissolved in 2 mL iPrOH. $\mathrm{CeCl}_{3}(68 \mathrm{mg}, 0.17 \mathrm{mmol}, 1.0 \mathrm{eq})$ and subsequently $\mathrm{NaBH}_{4}(12 \mathrm{mg}, 0.34 \mathrm{mmol}, 2.0 \mathrm{eq})$ is added and the reaction stirred at r.t. overnight. The mixture is diluted with 2 mL MeOH and quenched with a few drops of glacial acetic acid. The solvent is removed under reduced pressure. The crude product is purified by column chromatography (CH/EE, $2 / 1)$. The pure product 148 is obtained as a white solid.

Yield 50 mg (quant.).
TLC (CH/EE, 1/2): $\mathrm{R}_{f}(148)=0.50$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.23-7.18(\mathrm{~m}, 2 \mathrm{H}), 6.83-6.76(\mathrm{~m}, 3 \mathrm{H}), 6.73-6.68(\mathrm{~m}, 2 \mathrm{H}), 4.62(\mathrm{dd}, \mathrm{J}$ $=5.6,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 6 \mathrm{H}), 2.62(\mathrm{dddd}, J=6.1,9.5,14.0,39.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.17-1.91(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13}$ C-NMR (126 MHz, CDCl 3): $\delta 155.49,148.97,147.32,136.62,134.56,127.58,120.38,115.50,112.00$, 111.50, 73.78, 56.09, 55.97, 40.54, 31.86, 29.84.

LC-MS (30-100\% B, $19 \mathbf{~ m i n}): \mathrm{t}_{R}(\mathbf{1 4 8})=5.50 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=270.12\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$, found $=269.45\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$.

RP-HPLC ($\mathbf{3 0} \mathbf{- 1 0 0 \%}$ B, $1.0 \mathrm{~mL} / \mathrm{min}, 15 \mathrm{~min}, 220 \mathrm{~nm}$): $\mathrm{t}_{R}(148)=4.71 \mathrm{~min}$ (96% Purity).
Chiral-HPLC (20\% iPrOH in n-Hexane, isocratic, $1.0 \mathrm{~mL} / \mathrm{min}, \mathbf{2 2 0} \mathbf{n m}$): $\mathrm{t}_{\mathrm{R}}(\mathbf{1 4 8})=19.88 \mathrm{~min}$, 20.24 min.

(R)-4-(3-(3,4-dimethoxyphenyl)-1-hydroxypropyl)phenol (AV570)

Chemical Formula: $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{4}$
Exact Mass: 288,14
Molecular Weight: 288,34
149
$147(300 \mathrm{mg}, 1 \mathrm{mmol}, 1.0 \mathrm{eq})$ is dissolved in 10 mL iPrOH. Then $\mathrm{KOtBu}(117 \mu \mathrm{~L}, 1 \mathrm{mmol}, 1 \mathrm{eq})$ is added and the solution is sparged with argon for 5 min . $\mathrm{RuCl}_{2}[(\mathrm{~S})$-(DM-SEGPHOS)][(S)-DAIPEN] (25 mg , $0.02 \mathrm{mmol}, 0.02 \mathrm{eq}$) is added and the solution sparged with H_{2} for 5 min , then the reaction stirred at 1 bar H_{2} at r.t. over three days. The solvent is removed under reduced pressure. The crude product is purified by column chromatography ($\mathrm{CH} / \mathrm{EE}, 3 / 1$). The pure product 149 is obtained as a white solid.

Yield 254 mg (84\%).
$\operatorname{TLC}(C H / E E, 1 / 1, v / v): R_{f}(149)=0.29$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.26(\mathrm{~d}, \mathrm{~J}=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.21(\mathrm{~m}, 2 \mathrm{H}), 6.84-6.80(\mathrm{~m}, 1 \mathrm{H}), 6.79(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.74-6.69(\mathrm{~m}, 2 \mathrm{H}), 4.63(\mathrm{dd}, J=5.5,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.91-3.81(\mathrm{~m}, 6 \mathrm{H}), 2.71-2.55(\mathrm{~m}$, 2H), $2.19-1.93$ (m, 2H).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 136.87,134.58,127.57,120.36,115.48,111.98,111.48,73.71,60.58$, 56.10, 55.98, 40.64, 31.89, 21.19, 14.34.

LC-MS (30-100\% B, 19 min$): \mathrm{t}_{\mathrm{R}}(\mathbf{1 4 9})=5.42 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=270.12\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$, found $=269.40\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$.

RP-HPLC ($\mathbf{3 0} \mathbf{- 1 0 0 \%}$ B, $1.0 \mathrm{~mL} / \mathrm{min}, 15 \mathrm{~min}, 220 \mathrm{~nm}$): $\mathrm{t}_{R}(\mathbf{1 4 8})=4.71 \mathrm{~min}$ (99% Purity).
Chiral-HPLC (20\% iPrOH in n-Hexane, isocratic, $1.0 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}(\mathbf{1 4 9})=19.83 \mathrm{~min}(\mathrm{er}=$ 94.44/5.56).

(R)-tert-butyl 2-(4-(3-(3,4-dimethoxyphenyl)-1-hydroxypropyl)phenoxy)acetate (AV582)

 150
$149(30 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.0 \mathrm{eq})$ is dissolved in $3 \mathrm{~mL} \mathrm{MeCN} . \mathrm{K}_{2} \mathrm{CO}_{3}(29 \mathrm{mg}, 0.2 \mathrm{mmol}, 2.0 \mathrm{eq})$ and tertbutyl bromoacetate ($18 \mu \mathrm{~L} 0.12 \mathrm{mmol}, 1.2 \mathrm{eq}$) is added. The reaction is stirred at r.t. overnight. After complete conversion, the suspension is filtered, washed with MeCN and the solvent removed under reduced pressure. The crude product 150 is obtained as a colorless oil and used without further purification.

Yield 41 mg (quant.).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.29-7.24(\mathrm{~m}, 2 \mathrm{H}), 6.88(\mathrm{dt}, J=1.7,8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.78(\mathrm{dd}, J=0.8,8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.74-6.68(\mathrm{~m}, 2 \mathrm{H}), 4.66-4.60(\mathrm{~m}, 1 \mathrm{H}), 4.50(\mathrm{~d}, \mathrm{~J}=0.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.87-3.83(\mathrm{~m}, 6 \mathrm{H}), 2.71-2.54$ $(\mathrm{m}, 2 \mathrm{H}), 2.16-1.92(\mathrm{~m}, 2 \mathrm{H}), 1.48(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 9 \mathrm{H})$.
${ }^{13}$ C-NMR (126 MHz, CDCl_{3}): $\delta 168.14,157.60,149.00,147.34,137.76,134.55,127.35,120.32,114.74$, 111.94, 111.45, 82.51, 73.57, 65.91, 56.08, 55.97, 40.66, 31.84, 28.19, 27.95.

LC-MS (50-100\% B, $19 \mathbf{m i n}): \mathrm{t}_{R}(\mathbf{1 4 1})=6.00 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=425.19[\mathrm{M}+\mathrm{Na}]^{+}$, found $=425.40[\mathrm{M}+\mathrm{Na}]^{+}$.
(R)-allyl 2-(4-(3-(3,4-dimethoxyphenyl)-1-hydroxypropyl)phenoxy)acetate (AV608)
 151

149 ($30 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.0 \mathrm{eq}$) is dissolved in $3 \mathrm{~mL} \mathrm{MeCN}. \mathrm{~K}_{2} \mathrm{CO}_{3}$ ($29 \mathrm{mg}, 0.21 \mathrm{mmol}, 2.0 \mathrm{eq}$) and 69 $(23 \mathrm{mg} 0.13 \mathrm{mmol}, 1.2 \mathrm{eq})$ are added. The reaction is stirred at r.t. overnight. After complete conversion, the suspension is filtered, washed with MeCN and the solvent removed under reduced
pressure. The crude product 151 is purified by silica column chromatography ($\mathrm{CH} / \mathrm{EE}, 2 / 1$) and obtained as a colorless oil.

Yield 28 mg (70\%).
TLC (CH/EE, 3/2): $\mathrm{R}_{f}(\mathbf{1 5 1})=0.35$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.24-7.17(\mathrm{~m}, 3 \mathrm{H}), 6.85-6.80(\mathrm{~m}, 2 \mathrm{H}), 6.71(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{~d}$, $J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.85(\mathrm{ddt}, \mathrm{J}=5.8,10.2,16.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{dd}, \mathrm{J}=1.5,17.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.22-5.15(\mathrm{~m}, 1 \mathrm{H})$, $4.67-4.60(\mathrm{~m}, 2 \mathrm{H}), 4.58(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~d}, \mathrm{~J}=1.5 \mathrm{~Hz}, 6 \mathrm{H}), 2.55(\mathrm{tdd}, \mathrm{J}=7.2,11.3,14.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.10-$ $1.83(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$-NMR (126 MHz, CDCl_{3}): $\delta 168.73,157.45,149.01,147.36,138.08,134.50,131.54,127.42,120.32$, $119.25,114.83,111.94,111.46,73.52,65.99,65.57,56.08,55.97,40.67,31.82$.

LC-MS (50-100\% B, 19 min$): \mathrm{t}_{R}(151)=4.70 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=404.20\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$, found $=404.65\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$.

(E)-3-(3,4-dimethoxyphenyl)-1-(furan-2-yl)prop-2-en-1-one (MedChem19_CS2_14)

Chemical Formula: $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{4}$ Exact Mass: 258,09
Molecular Weight: 258,27
152

3,4 -Dimethoxybenzaldehyde ($1.50 \mathrm{~g}, 9 \mathrm{mmol}, 1 \mathrm{eq}$) and 4'-Hydroxyacetophenon ($0.91 \mathrm{~mL}, 9 \mathrm{mmol}$, 1 eq) are dissolved in 30 mL EtOH and cooled to $0^{\circ} \mathrm{C} . \mathrm{KOH}(2.04 \mathrm{~g}, 36 \mathrm{mmol}, 4.0 \mathrm{eq})$ is dissolved in $20 \mathrm{~mL} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$, cooled and added slowly to the solution. The reaction is stirred for 2 h , then ice added and acidified with conc. HCl . The resulting precipitate is filtered and washed with $\mathrm{H}_{2} \mathrm{O}$, then dissolved in EE , dried with MgSO_{4}, filtered and the solvent removed under reduced pressure. The product 152 is obtained as yellow solid and used as crude in further reactions.

Yield 1.64 g (70\%).
TLC (CH/EE, 1/1, v/v): $\mathrm{R}_{f}(\mathbf{1 5 2)}=0.25$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.74(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{dd}, J=0.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.20(\mathrm{~m}$, $2 \mathrm{H}), 7.15(\mathrm{dd}, J=2.0,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{dd}, J=1.7,3.6$ $\mathrm{Hz}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): ~ \delta 178.14,153.96,151.63,149.36,146.34,144.18,127.85,123.44,119.16$, 117.20, 112.57, 111.25, 110.29, 56.09.

LC-MS (0-100\% B, 19 min$): \mathrm{t}_{R}(152)=8.23 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=259.27[\mathrm{M}+\mathrm{H}]^{+}$, found $=259.20[\mathrm{M}+\mathrm{H}]^{+}$.

3-(3,4-dimethoxyphenyl)-1-(furan-2-yl)propan-1-one (MedChem19_Zn1_14)

Chemical Formula: $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{4}$
Exact Mass: 260,10
Molecular Weight: 260,29

153

Zn powder ($6.42 \mathrm{~g}, 120 \mathrm{mmol}, 10.0 \mathrm{eq}$) and $\mathrm{NH}_{4} \mathrm{Cl}(7.85 \mathrm{~g}, 120 \mathrm{mmol}, 10.0 \mathrm{eq})$ are added to a flask and suspended in 50 mL MeOH .152 ($3.10 \mathrm{~g}, 12 \mathrm{mmol}, 1.0 \mathrm{eq}$) is dissolved in 200 mL MeOH , then added dropwise to the vigorously stirring suspension in 2 h . After complete addition, the mixture is filtered and washed with MeOH . The filtrate is concentrated under reduced pressure, then diluted with 100 mL $\mathrm{H}_{2} \mathrm{O}$ and extracted with DCM $(3 \times 100 \mathrm{~mL})$. The combined organic layers are dried with MgSO_{4}, filtered and the solvent removed under reduced pressure. The crude product is purified by column chromatography (CH/EE, 3/1). The pure product 153 is obtained as a white solid.

Yield 740 mg (24\%).
TLC (CH/EE, 3/1, v/v): $\mathrm{R}_{f}(153)=0.22$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.56(\mathrm{dd}, J=0.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{dd}, \mathrm{J}=0.8,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.80-6.73$ $(\mathrm{m}, 3 \mathrm{H}), 6.51(\mathrm{dd}, J=1.7,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.15-3.09(\mathrm{~m}, 2 \mathrm{H}), 2.98(\mathrm{dd}, J=6.8$, $8.3 \mathrm{~Hz}, 2 \mathrm{H}$).
${ }^{13}$ C-NMR (126 MHz, CDCl 3): $\delta 188.66,152.86,149.06,147.60,146.38,133.75,120.33,117.06,112.30$, 112.04, 111.55, 56.06, 55.97, 40.50, 29.77.

LC-MS (0-100\% B, 19 min$): \mathrm{t}_{\mathrm{R}}(153)=7.98 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=261.29[\mathrm{M}+\mathrm{H}]^{+}$, found $=261.01[\mathrm{M}+\mathrm{H}]^{+}$.

3-(3,4-dimethoxyphenyl)-1-(furan-2-yl)propan-1-ol (AV573)

Chemical Formula: $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{4}$
Exact Mass: 262,12
Molecular Weight: 262,30
$153(20 \mathrm{mg}, 0.08 \mathrm{mmol}, 1.0 \mathrm{eq})$ is dissolved in $2 \mathrm{~mL} \mathrm{iPrOH} . \mathrm{NaBH}_{4}(3 \mathrm{mg}, 0.08 \mathrm{mmol}, 1.0 \mathrm{eq})$ is added and the reaction stirred at r.t. overnight. The mixture is diluted with 2 mL MeOH and quenched with a few drops of glacial acetic acid. The solvent is removed under reduced pressure. The crude product is purified by column chromatography (CH/EE, 3/1). The pure product 154 is obtained as a colorless oil.

Yield 19 mg (95\%).
$\operatorname{TLC}(C H / E E, 3 / 1): \mathrm{R}_{f}(154)=0.20$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathbf{3 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.45-7.35(\mathrm{~m}, 1 \mathrm{H}), 6.85-6.69(\mathrm{~m}, 3 \mathrm{H}), 6.34(\mathrm{dd}, \mathrm{J}=1.9,3.3 \mathrm{~Hz}, 1 \mathrm{H})$, $6.25(\mathrm{~d}, \mathrm{~J}=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{q}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 2.80-2.59(\mathrm{~m}, 2 \mathrm{H}), 2.23-$ 2.09 ($\mathrm{m}, 2 \mathrm{H}$).
${ }^{13}$ C-NMR (75 MHz, CDCl $_{3}$): $\delta 156.75,149.06,147.46,142.14,134.24,120.42,112.01,111.50,110.30$, 106.11, 67.15, 56.10, 55.98, 37.33, 31.50.

LC-MS (30-100\% B, $19 \mathbf{m i n}): \mathrm{t}_{R}(154)=7.05 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=245.10[\mathrm{M}-\mathrm{OH}]^{+}$, found $=245.20[\mathrm{M}-\mathrm{OH}]^{+}$.
RP-HPLC ($\mathbf{3 0} \mathbf{- 1 0 0 \%}$ B, $1.0 \mathrm{~mL} / \mathrm{min}, 15 \mathrm{~min}, 220 \mathrm{~nm}$): $\mathrm{t}_{R}(\mathbf{1 5 4})=6.03 \mathrm{~min}(99 \%$ Purity).

(R)-3-(3,4-dimethoxyphenyl)-1-(furan-2-yl)propan-1-ol (MedChem19_chir_14/AV571)

Chemical Formula: $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{4}$ Exact Mass: 262,12
Molecular Weight: 262,30
155
S-CBS ($21 \mathrm{mg}, 0.07 \mathrm{mmol}, 0.1 \mathrm{eq}$) is dissolved in 2.6 mL dry THF and added to a flask under argon atmosphere. $40 \mu \mathrm{~L}(0.1 \mathrm{eq})$ of a $2 \mathrm{M} \mathrm{BH}_{3}{ }^{*} \mathrm{SMe}_{2}$ solution in THF is added. $153(200 \mathrm{mg}, 0.70 \mathrm{mmol}$, 1.0 eq) is dissolved in 2.6 mL dry THF and added to the catalyst. Then $600 \mu \mathrm{~L}(1.5 \mathrm{eq})$ of a $2 \mathrm{M} \mathrm{BH}_{3} * \mathrm{SMe}_{2}$ solution in THF is added dropwise in 1 h . After complete addition, the reaction is further stirred for 2 h , then stopped by the addition of MeOH and quenched for 1 h . The solvent is removed under reduced pressure. The crude product 155 is obtained as a yellow oil and used without purification.

Yield 170 mg (84\%).
TLC (CH/EE, 3/1, v/v): $\mathrm{R}_{f}(155)=0.14$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.38(\mathrm{dd}, \mathrm{J}=0.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.84-6.70(\mathrm{~m}, 3 \mathrm{H}), 6.34(\mathrm{dd}, \mathrm{J}=1.8,3.3$ $\mathrm{Hz}, 1 \mathrm{H}), 6.24(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.68(\mathrm{td}, J=3.9,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 2.79-2.57(\mathrm{~m}$, $2 \mathrm{H}), 2.16(\mathrm{td}, J=6.5,7.8 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13}$ C-NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 156.75,149.04,147.44,142.12,134.24,120.41,112.00,111.49,110.30$, 106.10, 67.14, 56.09, 55.97, 37.32, 31.49.

LC-MS (0-100\% B, 19 min$): \mathrm{t}_{\mathrm{R}}(155)=7.15 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=245.29[\mathrm{M}-\mathrm{OH}]^{+}$, found $=245.22[\mathrm{M}-$ $\mathrm{OH}]^{+}$.
(E)-3-(3,4-dimethoxyphenyl)-1-(thiophen-2-yl)prop-2-en-1-one (MedChem19_CS_12)

156

3,4-Dimethoxybenzaldehyde $(6.54 \mathrm{~g}, 40 \mathrm{mmol}, 1 \mathrm{eq})$ and 1-(thiophene-2-yl)ethanone (5.00 g , $40 \mathrm{mmol}, 1 \mathrm{eq}$) are dissolved in 30 mL EtOH and cooled to $0^{\circ} \mathrm{C}$. $\mathrm{KOH}(2.04 \mathrm{~g}, 36 \mathrm{mmol}, 4.0 \mathrm{eq})$ is dissolved in $20 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$, cooled and added slowly to the solution. The reaction is stirred for 4 h , then ice is added and acidified to $\mathrm{pH}=1$ with conc. $\mathrm{HCl} .50 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$ is added to the mixture, then extracted with $\mathrm{DCM}(3 \times 100 \mathrm{~mL})$, dried with MgSO_{4}, filtered and the solvent removed under reduced pressure. The product 156 is obtained as yellow solid and used as crude in further reactions.

Yield 10.89 g. (10.97 max. yield)
TLC (DCM + 0.1\% MeOH): $\mathrm{R}_{f}(156)=0.23$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.85-7.70(\mathrm{~m}, 1 \mathrm{H}), 7.68-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.41(\mathrm{dd}, \mathrm{J}=1.9,8.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.36(\mathrm{~d}, \mathrm{~J}=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.15(\mathrm{~m}, 1 \mathrm{H}), 7.15-7.09(\mathrm{~m}, 1 \mathrm{H}), 6.93(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H})$, 3.89 (s, 3H).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.61,149.75,144.29,133.83,133.63$, 132.52, 131.60, 130.27, 128.25, 128.18, 126.93, 123.25, 119.65, 111.30, 110.53, 110.42, 109.10, 56.11.

LC-MS (30-100\% B, $19 \mathbf{m i n}): \mathrm{t}_{\mathrm{R}}(\mathbf{1 5 6})=9.07 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=275.07[\mathrm{M}+\mathrm{H}]^{+}$, found $=275.29[\mathrm{M}+\mathrm{H}]^{+}$.

3-(3,4-dimethoxyphenyl)-1-(thiophen -2-yl)propan-1-one (MedChem19_Zn_12/AV589)

157
$156(220 \mathrm{mg}, 0.80 \mathrm{mmol}, 1.0 \mathrm{eq})$ is added to a flask under argon atmosphere and dissolved in 5 mL dry $\mathrm{MeOH} .10 \mathrm{wt} \% \mathrm{Pd}$ on carbon ($42 \mathrm{mg}, 0.04 \mathrm{mmol}, 0.05 \mathrm{eq}$) is added to the solution. The mixture is sparged with H_{2} for 5 min then stirred at 1 atm H_{2} for 1 h . After complete conversion, the reaction is filtered, washed with DCM and the solvent removed under reduced pressure. The crude product is purified by column chromatography (CH/EE, 4/1). The pure product 157 is obtained as a white solid.

Yield 77 mg (35\%).
TLC (CH/EE, 3/1, v/v): $\mathrm{R}_{f}(157)=0.29$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.67$ (dd, $J=1.1,3.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.60 (dd, $J=1.2,4.9 \mathrm{~Hz}, 1 \mathrm{H}$), 7.09 ($\mathrm{dd}, J=$ $3.7,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{ddd}, J=1.5,7.4,10.9 \mathrm{~Hz}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.19(\mathrm{dd}, J=6.9,8.3 \mathrm{~Hz}$, 2 H), 3.01 (dd, $J=6.9,8.3 \mathrm{~Hz}, 2 \mathrm{H}$).
${ }^{13} \mathrm{C}$-NMR (126 MHz, CDCl_{3}): $\delta 192.34,149.00,147.54,144.30,133.69,133.62,131.89,128.15,120.28$, $111.97,111.48,56.00,55.91,41.44,30.19$.

LC-MS (30-100\% B, $19 \mathbf{m i n}): \mathrm{t}_{R}(\mathbf{1 5 7})=8.92 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=277.08[\mathrm{M}+\mathrm{H}]^{+}$, found $=277.03[\mathrm{M}+\mathrm{H}]^{+}$.

RP-HPLC ($\mathbf{3 0} \mathbf{- 1 0 0 \%}$ B, $1.5 \mathrm{~mL} / \mathrm{min}, 15 \mathrm{~min}, 220 \mathrm{~nm}$): $\mathrm{t}_{R}(157)=8.02 \mathrm{~min}(99 \%$ Purity).

3-(3,4-dimethoxyphenyl)-1-(thiophen -2-yl)propan-1-ol (MedChem19_rac_12/AV593)

Chemical Formula: $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{~S}$
Exact Mass: 278,10
Molecular Weight: 278,37

158

157 ($20 \mathrm{mg}, 0.07 \mathrm{mmol}, 1.0 \mathrm{eq}$) is dissolved in $2 \mathrm{~mL} \mathrm{iPrOH} . \mathrm{NaBH}_{4}(3 \mathrm{mg}, 0.08 \mathrm{mmol}, 1.0 \mathrm{eq})$ is added and the reaction stirred at r.t. for 1 h . The mixture is diluted with 2 mL MeOH and quenched with two
drops sat. $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The solvent is removed under reduced pressure. The crude product is purified by column chromatography (CH/EE, 3/1). The pure product 158 is obtained as a colorless oil.

Yield 20 mg (quant.).
$\operatorname{TLC}(C H / E E, 3 / 1): \mathrm{R}_{f}(158)=0.60$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.26(\mathrm{dd}, J=1.7,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.04-6.95(\mathrm{~m}, 3 \mathrm{H}), 6.80(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.77-6.69(\mathrm{~m}, 2 \mathrm{H}), 4.96-4.89(\mathrm{~m}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 2.70(q d d, J=6.3,9.2,13.9 \mathrm{~Hz}, 2 \mathrm{H})$, 2.26-2.07 (m, 2H).
${ }^{13}$ C-NMR (126 MHz, CDCl_{3}): $\delta 149.04,148.68,147.43,134.18,126.79,124.78,124.00,120.40,111.98$, 111.49, 69.63, 56.08, 55.97, 41.01, 31.75.

LC-MS (30-100\% B, 19 min$): \mathrm{t}_{R}(158)=7.97 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=261.08[\mathrm{M}-\mathrm{OH}]^{+}$, found $=261.28[\mathrm{M}-\mathrm{OH}]^{+}$.

RP-HPLC (0 - 100\% B, $1.0 \mathrm{~mL} / \mathrm{min}, 15 \mathrm{~min}, 220 \mathrm{~nm}$): $\mathrm{t}_{R}(158)=10.37 \mathrm{~min}$ (99% Purity) .
Chiral-HPLC (20\% iPrOH in n-Hexane, isocratic, $1.0 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}$): $\mathrm{t}_{R}(\mathbf{1 5 8})=13.40 \mathrm{~min}$, 13.98 min .

(R)-3-(3,4-dimethoxyphenyl)-1-(thiophen -2-yl)propan-1-ol (MedChem19_chir_12)

Chemical Formula: $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{~S}$
Exact Mass: 278,10
Molecular Weight: 278,37

159
S-CBS ($6 \mathrm{mg}, 0.02 \mathrm{mmol}, 0.1 \mathrm{eq}$) is dissolved in $100 \mu \mathrm{~L}$ dry THF and added to a flask under argon atmosphere. $11 \mu \mathrm{~L}(0.1 \mathrm{eq})$ of a $2 \mathrm{M} \mathrm{BH}_{3}{ }^{*} \mathrm{SMe}_{2}$ solution in THF is added. 157 ($64 \mathrm{mg}, 0.23 \mathrm{mmol}, 1.0 \mathrm{eq}$) is dissolved in $750 \mu \mathrm{~L}$ dry THF and added to the catalyst. Then $170 \mu \mathrm{~L}(1.5 \mathrm{eq})$ of a $2 \mathrm{M} \mathrm{BH}_{3}{ }^{*} \mathrm{SMe}_{2}$ solution in THF is added dropwise in 1 h . After complete addition, the reaction is further stirred for 2 h , then stopped by the addition of MeOH and quenched for 1 h . The solvent is removed under reduced pressure. The crude product is purified by column chromatography ($\mathrm{DCM}+1 \% \mathrm{MeOH}$). The pure product 159 is obtained as a colorless oil.

Yield 23 mg (35\%).
$\mathrm{TLC}(\mathrm{DCM}+\mathbf{1 \%} \mathbf{M e O H}): \mathrm{R}_{f}(159)=0.37$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.28-7.27(\mathrm{~m}, 1 \mathrm{H}), 6.98(\mathrm{~d}, \mathrm{~J}=4.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.80(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.74$ $(d, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.93(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 2.69(\mathrm{p}, J=7.2,7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.20$ (s, 2H).

LC-MS (0-100\% B, 19 min$): \mathrm{t}_{R}(159)=8.07 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=261.08[\mathrm{M}-\mathrm{OH}]^{+}$, found $=261.08[\mathrm{M}-$ $\mathrm{OH}]^{+}$.

Chiral-HPLC (20\% iPrOH in n-Hexane, isocratic, $1.0 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}): \mathrm{t}_{\mathrm{R}}(\mathbf{1 5 9})=13.99 \mathrm{~min}(\mathrm{er}=$ 94.86/5.14).

(E)-3-(furan-2-yl)-1-(3-methoxyphenyl)prop-2-en-1-one (MedChem19_CS_11)

Chemical Formula: $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{3}$
Exact Mass: 228,08
Molecular Weight: 228,24
160

Furan-2-carbaldehyde ($3.20 \mathrm{~g}, 33 \mathrm{mmol}, 1 \mathrm{eq}$) and 3'-methoxyacetophenon ($5.00 \mathrm{~g}, 33 \mathrm{mmol}, 1 \mathrm{eq}$) are dissolved in 150 mL EtOH and cooled to $0^{\circ} \mathrm{C}$. $\mathrm{KOH}(2.04 \mathrm{~g}, 36 \mathrm{mmol}, 4.0 \mathrm{eq})$ is dissolved in $100 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$, cooled and added slowly to the solution. The reaction is stirred for 3 , then ice added and acidified with conc. HCl . The resulting precipitate is filtered and washed with $\mathrm{H}_{2} \mathrm{O}$, then dissolved in DCM , dried with MgSO_{4}, filtered and the solvent removed under reduced pressure. The product $\mathbf{1 6 0}$ is obtained as a yellow oil and used as crude in further reactions.

Yield 7.40 g (7.45 g max. yield).
TLC (DCM/MeOH, 100/1, v/v): $\mathrm{R}_{f}(\mathbf{1 6 0})=0.60$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.50-7.43(\mathrm{~m}, 1 \mathrm{H}), 7.42-7.37(\mathrm{~m}, 1 \mathrm{H}), 7.38-7.31(\mathrm{~m}, 1 \mathrm{H}), 7.29(\mathrm{~s}$, $1 \mathrm{H}), 7.27-7.18(\mathrm{~m}, 1 \mathrm{H}), 6.95(\mathrm{ddt}, J=1.0,2.7,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{~d}, \mathrm{~J}=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.36(\mathrm{~s}, 0 \mathrm{H}), 3.71$ (s, 3H).
${ }^{13}$ C-NMR (75 MHz, CDCl $_{3}$): $\delta 160.03,151.81,145.05,139.69,130.80,129.67,121.12,119.52,119.48$, $116.32,112.83,112.79,55.58,55.55$.

LC-MS (30-100\% B, 19 min$): \mathrm{t}_{\mathrm{R}}(\mathbf{1 6 0})=10.15 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=229.24[\mathrm{M}+\mathrm{H}]^{+}$, found $=229.15[\mathrm{M}+\mathrm{H}]^{+}$.

3-(furan-2-yl)-1-(3-methoxyphenyl)propan-1-one (MedChem19_Zn_11)

Chemical Formula: $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{3}$
Exact Mass: 230,09
Molecular Weight: 230,26
161

Zn powder ($10.03 \mathrm{~g}, 153 \mathrm{mmol}, 10.0 \mathrm{eq}$) and $\mathrm{NH}_{4} \mathrm{Cl}(8.20 \mathrm{~g}, 153 \mathrm{mmol}, 10.0 \mathrm{eq})$ are added to a flask and suspended in 30 mL MeOH. 160 ($3.50 \mathrm{~g}, 15 \mathrm{mmol}, 1.0 \mathrm{eq}$) is dissolved in 35 mL MeOH and added dropwise to the vigorously stirring suspension over 2 h . After complete addition, the mixture is filtered and washed with MeOH . The filtrate is concentrated under reduced pressure, then diluted with 100 mL $\mathrm{H}_{2} \mathrm{O}$ and extracted with DCM $(3 \times 100 \mathrm{~mL})$. The combined organic layers are dried with MgSO_{4}, filtered and the solvent removed under reduced pressure. The crude product is purified by column chromatography (CH/DCM, 1/1 then CH/DCM, 1/4). The pure product 161 is obtained as grey oil.

Yield 1.26 g (37\%).
$\operatorname{TLC}(C H / D C M, 1 / 4): \mathrm{R}_{f}(161)=0.44$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.54$ (ddd, $J=1.0,1.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}$), $7.51-7.48(\mathrm{~m}, 1 \mathrm{H}), 7.36$ (ddd, $J=0.4$, $7.6,8.1 \mathrm{~Hz}, 1 \mathrm{H}$), $7.30(\mathrm{dd}, J=0.9,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{ddd}, J=1.0,2.7,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.28(\mathrm{dd}, J=1.9,3.2$ $\mathrm{Hz}, 1 \mathrm{H}), 6.05(\mathrm{dq}, J=0.9,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.34-3.27(\mathrm{~m}, 2 \mathrm{H}), 3.13-3.04(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13}$ C-NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 198.47,159.97,154.84,141.17,138.23,129.67,120.73,119.67,112.41$, 110.33, 105.40, 55.50, 37.11, 22.66.

LC-MS (0-100\% B, 19 min$): \mathrm{t}_{\mathrm{R}}(161)=12.67 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=231.26[\mathrm{M}+\mathrm{H}]^{+}$, found $=231.17[\mathrm{M}+\mathrm{H}]^{+}$.

3-(furan-2-yl)-1-(3-methoxyphenyl)propan-1-ol (MedChem19_rac_11)

Chemical Formula: $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{3}$
Exact Mass: 232,11
Molecular Weight: 232,28
162
$161(100 \mathrm{mg}, 0.43 \mathrm{mmol}, 1.0 \mathrm{eq})$ is dissolved in $5 \mathrm{~mL} \mathrm{iPrOH} . \mathrm{NaBH}_{4}(33 \mathrm{mg}, 0.43 \mathrm{mmol}, 1.0 \mathrm{eq})$ is added and the reaction stirred at r.t. overnight. The mixture is diluted with 2 mL MeOH and quenched with a
few drops conc. HCl . The solvent is removed under reduced pressure. The crude product is purified by column chromatography (CH/EE, 3/1). The pure product $\mathbf{1 6 2}$ is obtained as a grey oil.

Yield 91 mg (91\%).
$\operatorname{TLC}(C H / E E, 2 / 1): \mathrm{R}_{f}(162)=0.50$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.22(\mathrm{dd}, \mathrm{J}=0.9,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.12(\mathrm{~m}, 1 \mathrm{H}), 6.84$ (ddt, J=0.7, 2.5, $5.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.74(\mathrm{ddd}, J=1.1,2.5,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{dd}, J=1.9,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.92(\mathrm{dq}, J=0.9,3.3 \mathrm{~Hz}$, $1 \mathrm{H}), 4.60(\mathrm{dd}, \mathrm{J}=5.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 2.69-2.58(\mathrm{~m}, 2 \mathrm{H}), 2.13-1.90(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 159.97,155.67,146.22,141.07,129.67,118.32,113.26,111.53,110.25$, 105.15, 73.74, 55.37, 37.26, 24.53.

LC-MS (30-100\% B, $19 \mathbf{m i n}): \mathrm{t}_{\mathrm{R}}(\mathbf{1 6 2})=8.78 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=233.28[\mathrm{M}+\mathrm{H}]^{+}$, found $=233.13[\mathrm{M}+\mathrm{H}]^{+}$.
Chiral-HPLC (20\% iPrOH in n-Hexane, isocratic, $1.0 \mathrm{~mL} / \mathrm{min}, \mathbf{2 2 0} \mathrm{nm}): \mathrm{t}_{R}(\mathbf{1 6 2})=6.75 \mathrm{~min}, 7.25 \mathrm{~min}$.

(R)-3-(furan-2-yl)-1-(3-methoxyphenyl)propan-1-ol (MedChem19_chiral_11)

Chemical Formula: $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{3}$
Exact Mass: 232,11
Molecular Weight: 232,28

163

S-CBS ($24 \mathrm{mg}, 0.08 \mathrm{mmol}, 0.1 \mathrm{eq}$) is dissolved in 2.9 mL dry THF and added to a flask under argon atmosphere. $50 \mu \mathrm{~L}(0.1 \mathrm{eq})$ of a $2 \mathrm{M} \mathrm{BH}_{3}{ }^{*} \mathrm{SMe}_{2}$ solution in THF is added. 161 ($200 \mathrm{mg}, 0.90 \mathrm{mmol}$, $1.0 \mathrm{eq})$ is dissolved in 2.9 mL dry THF and added to the catalyst. Then $650 \mu \mathrm{~L}(1.5 \mathrm{eq})$ of a $2 \mathrm{M} \mathrm{BH}_{3} * \mathrm{SMe}_{2}$ solution in THF is added dropwise in 1.5 h . After complete addition, the reaction is further stirred for 2 h , then stopped by the addition of MeOH and quenched for 1 h . The solvent is removed under reduced pressure. The crude product is purified by column chromatography ($\mathrm{CH} / \mathrm{EE}, 4 / 1$). The pure product 163 is obtained as grey oil.

Yield 176 mg (86\%).
TLC (CH/EE, 2/1, v/v): $\mathrm{R}_{f}(\mathbf{1 6 3})=0.45$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.22(\mathrm{dd}, J=0.9,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.14(\mathrm{~m}, 1 \mathrm{H}), 6.84(\mathrm{ddt}, \mathrm{J}=0.8,2.5$, $5.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.74(\mathrm{ddd}, J=1.1,2.5,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{dd}, J=1.9,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.92(\mathrm{dq}, J=0.9,3.2 \mathrm{~Hz}$, $1 \mathrm{H}), 4.60(\mathrm{dd}, J=5.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 2.70-2.59(\mathrm{~m}, 2 \mathrm{H}), 2.12-1.94(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 159.97,155.67,146.22,141.08,129.67,118.32,113.26,111.53,110.25$, 105.16, 73.74, 55.37, 37.26, 24.52.

LC-MS (30-100\% B, $19 \mathbf{m i n}): \mathrm{t}_{\mathrm{R}}(\mathbf{1 6 3})=8.78 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=215.36[\mathrm{M}-\mathrm{OH}]^{+}$,
found $=215.36[\mathrm{M}-\mathrm{OH}]^{+}$.
Chiral-HPLC (20\% iPrOH in n-Hexane, isocratic, $1.0 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}): \mathrm{t}_{\mathrm{R}}(\mathbf{1 6 3})=7.25 \mathrm{~min}(e r=$ 95.31/4.69).

(E)-3-(thiophen-2-yl)-1-(3-methoxyphenyl)prop-2-en-1-one (MedChem19_CS_22)

Chemical Formula: $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{~S}$
Exact Mass: 244,06
Molecular Weight: 244,31
164

Thiophen-2-carbaldehyde ($5.00 \mathrm{~g}, 45 \mathrm{mmol}, 1 \mathrm{eq}$) and 3^{\prime}-methoxyacetophenon ($6.70 \mathrm{~g}, 45 \mathrm{mmol}$, 1 eq) are dissolved in 150 mL EtOH and cooled to $0^{\circ} \mathrm{C}$. $\mathrm{KOH}(10.00 \mathrm{~g}, 178 \mathrm{mmol}, 4.0 \mathrm{eq})$ is dissolved in $100 \mathrm{~mL} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$, cooled and added slowly to the solution. The reaction is stirred overnight, then ice added and acidified with conc. $\mathrm{HCl} .100 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$ is added, then the mixture extracted with DCM $(3 \times 100 \mathrm{~mL})$. The combined organic phases are dried with MgSO_{4}, filtered and the solvent removed under reduced pressure. The product 164 is obtained brown oil and used as crude in further reactions.

Yield $9.78 \mathrm{~g}(84 \%)$.
TLC (CH/EE, 2/1, v/v): $\mathrm{R}_{f}(164)=0.58$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathbf{3 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.92(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.38(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H})$,
$7.35-7.28(m, 2 H), 7.15-7.00(m, 2 H), 3.84(d, J=1.3 \mathrm{~Hz}, 3 H)$.
${ }^{13}$ C-NMR (75 MHz, CDCl ${ }_{3}$): $\delta 189.52,159.92,140.40,139.54,137.19,132.06,129.60,128.89,128.39$, 120.96, 120.84, 119.24, 112.87, 55.47.

LC-MS (0-100\% B, $19 \mathbf{m i n}): \mathrm{t}_{\mathrm{R}}(\mathbf{1 6 4})=12.83 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=245.31[\mathrm{M}+\mathrm{H}]^{+}$,
found $=245.17[\mathrm{M}+\mathrm{H}]^{+}$.

3-(thiophen -2-yl)-1-(3-methoxyphenyl)propan-1-one (MedChem19_Zn_22)

Chemical Formula: $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{~S}$
Exact Mass: 246,07
Molecular Weight: 246,32

Zn powder ($13.10 \mathrm{~g}, 200 \mathrm{mmol}, 10.0 \mathrm{eq}$) and $\mathrm{NH}_{4} \mathrm{Cl}(10.70 \mathrm{~g}, 200 \mathrm{mmol}, 10.0 \mathrm{eq})$ are added to a flask and suspended in $40 \mathrm{~mL} \mathrm{MeOH} .164(3.10 \mathrm{~g}, 12 \mathrm{mmol}, 1.0 \mathrm{eq})$ is dissolved in 40 mL MeOH , then added dropwise to the vigorously stirring suspension in 2 h . After complete addition, the mixture is filtered and washed with MeOH . The filtrate is diluted with $100 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$ and extracted with DCM ($3 \times 100 \mathrm{~mL}$). The combined organic layers are dried with MgSO_{4}, filtered and the solvent removed under reduced pressure. The crude product is purified by column chromatography $(\mathrm{CH} / \mathrm{EE}, 15 / 1)$. The pure product 165 is obtained as a yellow oil.

Yield $2.13 \mathrm{~g}(45 \%)$.
$\operatorname{TLC}(C H / E E, 10 / 1, v / v): R_{f}(165)=0.27$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.55(\mathrm{dt}, J=1.2,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{t}, \mathrm{J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.16-7.08(\mathrm{~m}, 2 \mathrm{H}), 6.92(\mathrm{dd}, \mathrm{J}=3.4,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, \mathrm{~J}=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.41-3.25$ ($\mathrm{m}, 4 \mathrm{H}$).
${ }^{13}$ C-NMR (75 MHz, CDCl ${ }_{3}$): $\delta 198.50,160.02,144.00,138.27,129.74,126.98,124.81,123.51,120.80$, 119.80, 112.42, 55.59, 40.79, 24.42.

LC-MS (0-100\% B, 19 min$): \mathrm{t}_{\mathrm{R}}\left(\mathbf{1 6 5)}=10.93 \mathrm{~min}, \mathrm{~m} / \mathrm{z}\right.$: calculated $=247.32[\mathrm{M}+\mathrm{H}]^{+}$, found $=247.23[\mathrm{M}+\mathrm{H}]^{+}$.

3-(thiophen -2-yl)-1-(3-methoxyphenyl)propan-1-ol (MedChem19_rac_22)

Chemical Formula: $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{~S}$
Exact Mass: 248,09
Molecular Weight: 248,34

166

$165(100 \mathrm{mg}, 0.41 \mathrm{mmol}, 1.0 \mathrm{eq})$ is dissolved in $5 \mathrm{~mL} \mathrm{THF} . \mathrm{NaBH}_{4}(31 \mathrm{mg}, 0.82 \mathrm{mmol}, 1.0 \mathrm{eq})$ is added and the reaction stirred at r.t. overnight. The mixture is diluted with 2 mL MeOH and quenched with a few drops conc. HCl . The mixture is extracted with $\mathrm{DCM}(3 \times 20 \mathrm{~mL})$ and the combined organic layers are dried with MgSO_{4}, filtered and the solvent removed under reduced pressure. The crude product is purified by column chromatography $(\mathrm{CH} / \mathrm{EE}, 15 / 1)$. The pure product 166 is obtained as an orange oil. Yield 100 mg (quant.).
$\operatorname{TLC}(C H / E E, 10 / 1): R_{f}(166)=0.20$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathbf{3 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.31-7.19(\mathrm{~m}, 1 \mathrm{H}), 7.12(\mathrm{dd}, J=1.2,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.97-6.88(\mathrm{~m}, 3 \mathrm{H})$, $6.87-6.80(\mathrm{~m}, 2 \mathrm{H}), 4.71(\mathrm{dd}, \mathrm{J}=5.3,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 2.94(\mathrm{dddd}, J=0.9,3.2,7.0,8.1 \mathrm{~Hz}, 2 \mathrm{H})$, $2.29-2.06(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 160.01,146.25,144.75,129.72,126.90,124.45,123.22,118.33,113.31$, 111.55, 73.60, 55.39, 40.79, 26.35.

LC-MS (0-100\% B, 19 min$): \mathrm{t}_{R}(166)=9.44 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=231.07[\mathrm{M}-\mathrm{OH}]^{+}$, found $=231.26[\mathrm{M}-$ $\mathrm{OH}]^{+}$.

Chiral-HPLC (20\% iPrOH in n-Hexane, isocratic, $\mathbf{1 . 0} \mathbf{~ m L} / \mathrm{min}, 220 \mathrm{~nm}): \mathrm{t}_{R}(\mathbf{1 6 6})=9.18 \mathrm{~min}, 9.49 \mathrm{~min}$.

(R)-3-(thiophen -2-yl)-1-(3-methoxyphenyl)propan-1-ol (MedChem19_chiral_22)

Chemical Formula: $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{~S}$
Exact Mass: 248,09
Molecular Weight: 248,34
167
S-CBS ($23 \mathrm{mg}, 0.10 \mathrm{mmol}, 0.1 \mathrm{eq}$) is dissolved in 3.20 mL dry THF and added to a flask under argon atmosphere. $48 \mu \mathrm{~L}(0.1 \mathrm{eq})$ of a $2 \mathrm{M} \mathrm{BH}_{3} * \mathrm{SMe}_{2}$ solution in THF is added. $165(200 \mathrm{mg}, 0.81 \mathrm{mmol}$, 1.0 eq) is dissolved in 2.70 mL dry THF and added to the catalyst. Then $610 \mu \mathrm{~L}(1.5 \mathrm{eq})$ of a 2 M $\mathrm{BH}_{3}{ }^{*} \mathrm{SMe}_{2}$ solution in THF is added dropwise in 1.5 h . After complete addition, the reaction is further stirred for 2 h , then stopped by the addition of MeOH and quenched for 1 h . The solvent is removed under reduced pressure. The crude product is purified by column chromatography ($C H / E E, 15 / 1$). The pure product 167 is obtained as a colorless oil.

Yield 125 mg (63\%).
$\operatorname{TLC}(C H / E E, 10 / 1, v / v): R_{f}(167)=0.15$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.31-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.12(\mathrm{dd}, \mathrm{J}=1.2,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.96-6.90(\mathrm{~m}, 3 \mathrm{H})$, $6.88-6.79(\mathrm{~m}, 2 \mathrm{H}), 4.72(\mathrm{ddd}, \mathrm{J}=2.5,4.9,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.05-2.84(\mathrm{~m}, 2 \mathrm{H}), 2.26-2.01$ ($m, 2 \mathrm{H}$).
${ }^{13}$ C-NMR (75 MHz, CDCl_{3}): $\delta 160.01,146.25,144.75,129.73,126.90,124.46,123.23,118.33,113.31$, 111.55, 73.61, 55.40, 40.79, 26.35 .

LC-MS ($0-100 \%$ B, 19 min$): \mathrm{t}_{\mathrm{R}}(167)=9.51 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=231.07[\mathrm{M}-\mathrm{OH}]^{+}$, found $=231.06[\mathrm{M}-$ $\mathrm{OH}]^{+}$.

Chiral-HPLC (20\% iPrOH in n-Hexane, isocratic, $1.0 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}): \mathrm{t}_{\mathrm{R}}(\mathbf{1 6 7})=9.87 \mathrm{~min}(\mathrm{er}=$ 95.49/4.51).

(E)-3-(3,4-dimethoxyphenyl)-1-(thiazol-2-yl)prop-2-en-1-one (AV578)

168

3,4 -Dimethoxybenzaldehyde ($13.07 \mathrm{~g}, 78 \mathrm{mmol}, 2 \mathrm{eq}$) is dissolved in 200 mL EtOH and cooled in an ice bath to $0^{\circ} \mathrm{C}$. Cooled $\mathrm{KOH}(8.83 \mathrm{~g}, 156 \mathrm{mmol}, 4.0 \mathrm{eq})$ dissolved in 100 mL H O is added. 2-Acetylthiazol $(5.0 \mathrm{~g}, 39 \mathrm{mmol}, 1 \mathrm{eq})$ is dissolved in 50 mL EtOH and added dropwise in 1 h . The reaction is checked by $\operatorname{TLC}(C H / E E, 2 / 1)$. After 6 h the mixture is acidified with 3 M HCl to $\mathrm{pH}=3$. The resulting precipitate is filtered and washed with $\mathrm{H}_{2} \mathrm{O}$, dissolved in EE , dried with MgSO_{4}, filtered and the solvent removed. The crude product is recrystallized in MeOH . Compound $\mathbf{1 6 8}$ is obtained as yellow crystals.

Yield 7.9 g (73\%).
$\operatorname{TLC}(C H / E E, 2 / 1, v / v): R_{f}(168)=0.35$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.08(\mathrm{dd}, J=1.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{dd}, J=0.9$, $15.9 \mathrm{~Hz}, 1 \mathrm{H}$), $7.71(\mathrm{dd}, J=0.9,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.24(\mathrm{~m}, 3 \mathrm{H}), 6.92(\mathrm{dd}, J=0.9,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{~d}, J$ $=0.9 \mathrm{~Hz}, 3 \mathrm{H}), 3.95(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 181.63,169.18,152.09,149.46,144.72,127.88,126.33,124.43,118.39$, 111.20, 110.25, 56.16.

LC-MS (30-100\% B, $19 \mathbf{m i n}): \mathrm{t}_{\mathrm{R}}(\mathbf{1 6 8})=8.66 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=276.32[\mathrm{M}+\mathrm{H}]^{+}$, found $=276.06[\mathrm{M}+\mathrm{H}]^{+}$.

3-(3,4-dimethoxyphenyl)-1-(thiazol-2-yl)propan-1-one (AV576/AV583/AV586/AV587/AV588)

169
$168(240 \mathrm{mg}, 0.87 \mathrm{mmol}, 1.0 \mathrm{eq})$ is dissolved in 5 mL dry MeOH and added to a dried flask under argon atmosphere. $10 \mathrm{wt} \% \mathrm{Pd} / \mathrm{C}(46 \mathrm{mg}, 0.04 \mathrm{mmol}, 0.05 \mathrm{eq})$ is added and the solution sparged with H_{2} for

5 min . The reaction is stirred at 1 bar H_{2} for 1 h , then filtered and washed with DCM. The solvent is removed under reduced pressure and the crude product purified by column chromatography (CH/EE, $3 / 1$). The pure product 169 is obtained as a white solid.

Yield 150 mg (62\%).
TLC (CH/EE, 3/1, v/v): $\mathrm{R}_{f}(169)=0.20$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.98(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 3 \mathrm{H})$, $3.86(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.48(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.04(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13}$ C-NMR (126 MHz, CDCl_{3}): $\delta 193.18,167.15,149.01,147.57,144.82,133.46,126.33,120.41,111.97$, 111.46, 56.05, 55.96, 40.39, 29.64.

LC-MS (30-100\% B, $19 \mathbf{m i n}): \mathrm{t}_{\mathrm{R}}\left(\mathbf{1 6 9)}=8.20 \mathrm{~min}, \mathrm{~m} / \mathrm{z}\right.$: calculated $=278.08[\mathrm{M}+\mathrm{H}]^{+}$, found $=277.94[\mathrm{M}+\mathrm{H}]^{+}$.
RP-HPLC ($\mathbf{3 0} \mathbf{- 1 0 0 \%}$ B, $1.5 \mathrm{~mL} / \mathrm{min}, 15 \mathrm{~min}, 220 \mathrm{~nm}$): $\mathrm{t}_{R}(169)=7.34 \mathrm{~min}(99 \%$ Purity) .

(R)-3-(3,4-dimethoxyphenyl)-1-(thiazol-2-yl)propan-1-ol (AV592)

Chemical Formula: $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}_{3} \mathrm{~S}$
Exact Mass: 279,09
Molecular Weight: 279,35
170
$169(20 \mathrm{mg}, 0.07 \mathrm{mmol}, 1.0 \mathrm{eq})$ is dissolved in 5 mL THF. $\mathrm{NaBH}_{4}(3 \mathrm{mg}, 0.07 \mathrm{mmol}, 1.0 \mathrm{eq})$ is added and the reaction stirred at r.t. overnight. The mixture is quenched with a few drops sat. $\mathrm{NH}_{4} \mathrm{Cl}$ and the solvent removed under reduced pressure. The crude product is purified by column chromatography (CH/EE, 2/1). The pure product 171 is obtained as a white oil.

Yield 17 mg (85\%).
$\operatorname{TLC}(C H / E E, 2 / 1): \mathrm{R}_{f}(171)=0.15$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.72(\mathrm{~d}, \mathrm{~J}=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~d}, \mathrm{~J}=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.80-6.73(\mathrm{~m}, 4 \mathrm{H}), 5.02$ (dd, J = 4.3, 8.3 Hz, 1H), $3.86(\mathrm{~s}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 2 \mathrm{H}), 2.84-2.69(\mathrm{~m}, 2 \mathrm{H}), 2.32-2.11(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13}$ C-NMR (126 MHz, CDCl 3): $\delta 175.18,149.07,147.49,142.35,133.97,120.46,119.09,112.02,111.53$, 71.32, 56.08, 55.98, 40.09, 31.21.

LC-MS (30-100\% B, $19 \mathbf{m i n}): \mathrm{t}_{\mathrm{R}}(\mathbf{1 7 1})=5.27 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=280.09[\mathrm{M}+\mathrm{H}]^{+}$, found $=280.14[\mathrm{M}+\mathrm{H}]^{+}$.

Chiral-HPLC ($\mathbf{2 0 \%}$ iPrOH in n -Hexane, isocratic, $\mathbf{1 . 0} \mathbf{~ m L} / \mathbf{m i n}, \mathbf{2 2 0} \mathbf{n m}$): $\mathrm{t}_{R}(\mathbf{1 7 1})=19.05 \mathrm{~min}$, 19.73 min.

3-(3,4-dimethoxyphenyl)-1-(thiazol-2-yl)propan-1-ol (AV591)

Chemical Formula: $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}_{3} \mathrm{~S}$
Exact Mass: 279,09
Molecular Weight: 279,35

171

169 ($50 \mathrm{mg}, 0.11 \mathrm{mmol}, 1.0 \mathrm{eq}$) is dissolved in 5 mL iPrOH. Then KOtBu ($20 \mathrm{mg}, 0.18 \mathrm{mmol}, 1.0 \mathrm{eq}$) is added and the solution is sparged with argon for 5 min . $\mathrm{RuCl}_{2}[(S)$-(DM-SEGPHOS)][(S)-DAIPEN] (2.7 mg , $0.002 \mathrm{mmol}, 0.02 \mathrm{eq}$) is added and the solution sparged with H_{2} for 5 min , then the reaction stirred at 1 bar H_{2} at r.t. overnight. After full conversion the solvent is removed under reduced pressure. The crude product is purified by column chromatography ($\mathrm{CH} / \mathrm{EE}, 2 / 1$). The pure product 171 is obtained as a white oil.

Yield 38 mg (76\%).
TLC (CH/EE, 2/1, v/v): $\mathrm{R}_{f}(\mathbf{1 7 1})=0.16$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.74-7.68(\mathrm{~m}, 1 \mathrm{H}), 7.31-7.27(\mathrm{~m}, 1 \mathrm{H}), 6.81-6.73(\mathrm{~m}, 3 \mathrm{H}), 5.05-4.98$ $(\mathrm{m}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 2.85-2.68(\mathrm{~m}, 2 \mathrm{H}), 2.35-2.06(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13}$ C-NMR (126 MHz, CDCl $)$: $\delta 175.18,149.07,147.49,142.35,133.97,120.46,119.08,112.03,111.53$, 71.33, 56.08, 55.98, 40.09, 31.21.

LC-MS (30-100\% B, $19 \mathbf{m i n}): \mathrm{t}_{\mathrm{R}}(\mathbf{1 7 1})=5.29 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=280.09[\mathrm{M}+\mathrm{H}]^{+}$, found $=280.11[\mathrm{M}+\mathrm{H}]^{+}$.

RP-HPLC ($\mathbf{3 0} \mathbf{- 1 0 0 \%}$ B, $1.5 \mathrm{~mL} / \mathrm{min}, 20 \mathrm{~min}, 254 \mathrm{~nm}$): $\mathrm{t}_{R}(\mathbf{1 7 3})=3.82 \mathrm{~min}$ (99% Purity).
Chiral-HPLC (20\% iPrOH in n-Hexane, isocratic, $1.0 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}(\mathbf{1 6 7})=19.02 \mathrm{~min}(\mathrm{er}=$ 76.07/23.93).

(E)-3-(3,4-dimethoxyphenyl)-1-(3-nitrophenyl)prop-2-en-1-one (AV480)

Chemical Formula: $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NO}_{5}$ Exact Mass: 313,10
Molecular Weight: 313,30
172

3,4 -Dimethoxybenzaldehyde ($5.00 \mathrm{~g}, 30 \mathrm{mmol}, 1 \mathrm{eq}$) and 1-(3-nitrophenyl)ethanone ($4.95 \mathrm{~g}, 30 \mathrm{mmol}$, $1 \mathrm{eq})$ are dissolved in 150 mL EtOH and cooled in an ice bath to $0^{\circ} \mathrm{C}$. Cooled $\mathrm{KOH}(6.80 \mathrm{~g}, 120 \mathrm{mmol}$, 4.0 eq) dissolved in $100 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$ is added slowly in 20 min . After 6 h the mixture is acidified with 3 M HCl to $\mathrm{pH}=1$. The resulting precipitate is filtered and washed with $\mathrm{H}_{2} \mathrm{O}$, dissolved in DCM, dried with MgSO_{4}, filtered and the solvent removed. The product is used as crude in further reactions. Compound 172 is obtained as brown solid.

Yield $6.47 \mathrm{~g}(69 \%)$.
$\operatorname{TLC}(C H / E E, 1 / 1, v / v): R_{f}(172)=0.54$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathbf{5 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.80(\mathrm{t}, \mathrm{J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.45-8.27(\mathrm{~m}, 2 \mathrm{H}), 7.83(\mathrm{~d}, \mathrm{~J}=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.69$ $(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.21(\mathrm{~m}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=8.3$ $\mathrm{Hz}, 1 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C-NMR (126 MHz, CDCl 3): $\delta 188.08,152.19,149.51,148.50,147.07,139.96,134.17,129.94,127.44$, $126.94,123.93,123.26,118.63,111.33,110.43,56.17$.

LC-MS (30-100\% B, $19 \mathbf{m i n}): \mathrm{t}_{\mathrm{R}}\left(\mathbf{1 7 2)}=10.17 \mathrm{~min}, \mathrm{~m} / \mathrm{z}\right.$: calculated $=314.30[\mathrm{M}+\mathrm{H}]^{+}$, found $=314.24[\mathrm{M}+\mathrm{H}]^{+}$.

1-(3-aminophenyl)-3-(3,4-dimethoxyphenyl)propan-1-one (AV503)

Chemical Formula: $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{3}$
Exact Mass: 285,14
Molecular Weight: 285,34

Zn powder ($2.10 \mathrm{~g}, 32 \mathrm{mmol}, 10.0 \mathrm{eq}$) and $\mathrm{NH}_{4} \mathrm{Cl}(1.71 \mathrm{~g}, 32 \mathrm{mmol}, 10.0 \mathrm{eq})$ are added to a flask and suspended in $20 \mathrm{~mL} \mathrm{MeOH}$.172 (1.00 g , $3.2 \mathrm{mmol}, 1.0 \mathrm{eq}$) is dissolved in 50 mL MeOH and 20 mL THF, then added dropwise to the vigorously stirring suspension in 1 h . After complete addition, the mixture
is filtered and washed with MeOH . The filtrate is concentrated under reduced pressure, then diluted with $100 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$ and extracted with DCM $(3 \times 100 \mathrm{~mL})$. The combined organic layers are dried with MgSO_{4}, filtered and the solvent removed under reduced pressure. The crude product is purified by column chromatography (CH/EE, $2 / 1+2 \%$ TEA). The pure product 173 is obtained as brown solid.

Yield 310 mg (34\%).
TLC (CH/EE, 2/1, v/v + 2\% TEA): $\mathrm{R}_{f}(\mathbf{1 7 3})=0.15$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.28-7.08(\mathrm{~m}, 3 \mathrm{H}), 6.78(\mathrm{ddd}, J=1.1,2.5,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{dd}, J=2.1$, $4.6 \mathrm{~Hz}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.15(\mathrm{dd}, J=7.0,8.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.91(\mathrm{dd}, J=6.8,8.4 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13}$ C-NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 199.70,149.02,147.50,146.78,138.14,134.12,129.55,120.28,119.71$, $118.56,114.05,112.02,111.52,56.06,55.96,40.84,29.99$.

LC-MS (30-100\% B, $19 \mathbf{m i n}): \mathrm{t}_{R}(\mathbf{1 7 3})=6.00 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=286.14[\mathrm{M}+\mathrm{H}]^{+}$, found $=286.02[\mathrm{M}+\mathrm{H}]^{+}$.

RP-HPLC (0 - 100\% B, $1.5 \mathrm{~mL} / \mathrm{min}, 20 \mathrm{~min}, 220 \mathrm{~nm}): \mathrm{t}_{R}(\mathbf{1 7 3})=8.55 \mathrm{~min}(99 \%$ Purity) .
tert-butyl (3-(3-(3,4-dimethoxyphenyl)propanoyl)phenyl)carbamate (AV504/AV508)

Chemical Formula: $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{NO}_{5}$ Exact Mass: 385,19
Molecular Weight: 385,45
174

173 ($310 \mathrm{mg}, 1 \mathrm{mmol}, 1.0 \mathrm{eq}$) is dissolved in 20 mL dry DCM under argon atmosphere. Boc2O (1 mL , $4 \mathrm{mmol}, 4.0 \mathrm{eq}$) is added and the reaction heated to $50^{\circ} \mathrm{C}$ for 2 h . The solvent is removed under reduced pressure. The crude product is purified by column chromatography $(\mathrm{CH} / \mathrm{EE}, 3 / 1)$. The pure product $\mathbf{1 7 4}$ is obtained as brown solid.

Yield 140 mg (33\%).
TLC (CH/EE, 3/1, v/v): $\mathrm{R}_{f}(\mathbf{1 7 4})=0.35$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathbf{3 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.88-7.84(\mathrm{~m}, 1 \mathrm{H}), 7.59-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.29(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~d}, \mathrm{~J}$ $=2.0 \mathrm{~Hz}, 3 \mathrm{H}), 6.58(\mathrm{~s}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.24-3.16(\mathrm{~m}, 2 \mathrm{H}), 2.99-2.87(\mathrm{~m}, 2 \mathrm{H}), 1.45(\mathrm{~s}$, 9 H).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 199.12,152.61,148.92,147.41,138.92,137.66,133.88,129.24,122.92$, $122.56,120.22,117.84,111.92,111.40,55.95,55.84,40.79,29.85,28.30,27.92$.

LC-MS (50-100\% B, $19 \mathbf{m i n}): \mathrm{t}_{\mathrm{R}}(174)=7.40 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=286.14[\mathrm{M}+\mathrm{H}]^{+}$, found $=286.36[\mathrm{M}+\mathrm{H}]^{+}$.

RP-HPLC (50-100\% B, $1.5 \mathrm{~mL} / \mathrm{min}, 20 \mathrm{~min}, 220 \mathrm{~nm}): \mathrm{t}_{R}(174)=7.37 \mathrm{~min}(92 \%$ Purity).

ert-butyl (3-(3-(3,4-dimethoxyphenyl)-1-hydroxypropyl)phenyl)carbamate (AV521)

Chemical Formula: $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{NO}_{5}$
Exact Mass: 387,20
Molecular Weight: 387,47

175
$174(20 \mathrm{mg}, 0.05 \mathrm{mmol}, 1.0 \mathrm{eq})$ is dissolved in 1 mL iPrOH. $\mathrm{NaBH}_{4}(2 \mathrm{mg}, 0.05 \mathrm{mmol}, 1.0 \mathrm{eq})$ is added and the reaction stirred at r.t. overnight. The mixture is diluted with 2 mL MeOH and the solvent removed under reduced pressure. The crude product is purified by column chromatography ($\mathrm{CH} / \mathrm{EE}$, $4 / 1)$. The pure product 175 is obtained as a colorless oil.

Yield 15 mg (75\%).
$\operatorname{TLC}(C H / E E, 3 / 1): \mathrm{R}_{f}(175)=0.14$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.29-7.15(\mathrm{~m}, 2 \mathrm{H}), 7.09(\mathrm{dt}, J=1.7,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{t}, \mathrm{J}=1.9 \mathrm{~Hz}, 1 \mathrm{H})$, $6.75-6.59(\mathrm{~m}, 3 \mathrm{H}), 4.54(\mathrm{dd}, \mathrm{J}=5.2,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 2.67-2.44(\mathrm{~m}, 2 \mathrm{H}), 2.06-$ $1.81(\mathrm{~m}, 2 \mathrm{H}), 1.36(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 154.44,152.16,149.02,147.37,145.72,138.93,134.38,128.98,126.82$, $125.56,125.27,120.35,111.95,111.46,83.50,73.42,56.07,55.96,40.77,31.70,28.09$.

LC-MS (50-100\% B, 19 min$): \mathrm{t}_{\mathrm{R}}(175)=5.45 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=410.19[\mathrm{M}+\mathrm{Na}]^{+}$, found $=410.14[\mathrm{M}+\mathrm{Na}]^{+}$.

Chiral-HPLC (20\% iPrOH in n-Hexane, isocratic, $\mathbf{1 . 0} \mathbf{~ m L} / \mathrm{min}, \mathbf{2 2 0} \mathbf{n m}): \mathrm{t}_{\mathrm{R}}(\mathbf{1 7 5})=19.54 \mathrm{~min}$, 23.22 min .
(R)-tert-butyl (3-(3-(3,4-dimethoxyphenyl)-1-hydroxypropyl)phenyl)carbamate (AV530)

Chemical Formula: $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{NO}_{5}$
Exact Mass: 387,20
Molecular Weight: 387,47
$174(30 \mathrm{mg}, 0.08 \mathrm{mmol}, 1.0 \mathrm{eq})$ is dissolved in 5 mL iPrOH. Then $\mathrm{KOtBu}(80 \mu \mathrm{~L}, 0.08 \mathrm{mmol}, 1 \mathrm{eq})$ is added and the solution is sparged with argon for 5 min . $\mathrm{RuCl}_{2}[(S)$-(DM-SEGPHOS)][(S)-DAIPEN] (2.7 mg , $0.002 \mathrm{mmol}, 0.03 \mathrm{eq}$) is added and the solution sparged with H_{2} for 5 min , then the reaction stirred at 1 bar H_{2} at r.t. overnight. After full conversion, the solvent is removed under reduced pressure. The crude product is purified by column chromatography (CH/EE, 4/1). The pure product 176 is obtained as a colorless oil.

Yield 23 mg (76\%).
TLC (CH/EE, 3/1): $\mathrm{R}_{f}(\mathbf{1 7 6})=0.14$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.41(\mathrm{~s}, 1 \mathrm{H}), 7.29-7.17(\mathrm{~m}, 2 \mathrm{H}), 7.02(\mathrm{dt}, J=1.4,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{dd}, J$ $=1.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{dt}, J=1.8,11.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.55(\mathrm{~s}, 1 \mathrm{H}), 4.66(\mathrm{dd}, J=5.2,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H})$, $3.85(\mathrm{~s}, 3 \mathrm{H}), 2.76-2.54(\mathrm{~m}, 2 \mathrm{H}), 2.15-1.93(\mathrm{~m}, 2 \mathrm{H}), 1.51(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13}$ C-NMR (126 MHz, CDCl 3): $\delta 152.88,148.99,147.32,145.89,138.67,134.55,129.23,120.66,120.35$, $117.86,116.24,111.96,111.46,80.71,73.91,56.07,55.96,40.74,31.79,29.83,28.47$.
LC-MS (30-100\% B, $19 \mathbf{m i n}): \mathrm{t}_{\mathrm{R}}(\mathbf{1 7 6})=9.58 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=410.19[\mathrm{M}+\mathrm{Na}]^{+}$, found $=410.10[\mathrm{M}+\mathrm{Na}]^{+}$.
Chiral-HPLC (20\% iPrOH in n-Hexane, isocratic, $1.0 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}): \mathrm{t}_{\mathrm{R}}(\mathbf{1 7 6})=23.60 \mathrm{~min}(\mathrm{er}=$ 97.60/2.40).

(E)-3-(3-(3,4-dimethoxyphenyl)acryloyl)benzonitrile (MedChem19_17)

Chemical Formula: $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{NO}_{3}$
Exact Mass: 293,11
Molecular Weight: 293,32
177

3,4-Dimethoxybenzaldehyde ($4.67 \mathrm{~g}, 25 \mathrm{mmol}, 1 \mathrm{eq}$) and 3-acetylbenzonitrile ($4.95 \mathrm{~g}, 25 \mathrm{mmol}, 1 \mathrm{eq}$) are dissolved in 120 mL EtOH and cooled in an ice bath to $0^{\circ} \mathrm{C}$ for 15 min . Cooled $\mathrm{KOH}(6.19 \mathrm{~g}$, $100 \mathrm{mmol}, 4.0 \mathrm{eq}$) dissolved in $80 \mathrm{~mL} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$ is added slowly in 5 min . A yellow precipitate is observed. After 30 min the mixture is acidified with 3 M HCl to $\mathrm{pH}=1$. The resulting precipitate is filtered and washed with $\mathrm{H}_{2} \mathrm{O}$, dissolved in DCM , dried with MgSO_{4}, filtered and the solvent removed. The product recrystallized in MeOH. Compound 177 is obtained as an orange-yellow solid.

Yield 65.44 g (72\%).
$\operatorname{TLC}(C H / E E, 1 / 5, v / v): R_{f}(177)=0.45$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.26-8.09(\mathrm{~m}, 2 \mathrm{H}), 7.80-7.66(\mathrm{~m}, 2 \mathrm{H}), 7.56(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~d}, \mathrm{~J}$ $=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.14(\mathrm{~m}, 1 \mathrm{H}), 7.10(\mathrm{~d}, \mathrm{~J}=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.86$ (s, 3H).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): ~ \delta 188.30,152.12,149.49,146.82,139.43,135.49,132.49,132.12,129.72$, $127.45,123.91,118.70,118.22,113.11,111.30,110.24,56.15$.

LC-MS (0-100\% B, 19 min$): \mathrm{t}_{\mathrm{R}}(177)=5.43 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=294.31[\mathrm{M}+\mathrm{H}]^{+}$, found $=294.21[\mathrm{M}+\mathrm{H}]^{+}$.

3-(3-(3,4-dimethoxyphenyl)propanoyl)benzonitrile (AV500)

Chemical Formula: $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NO}_{3}$
Exact Mass: 295,12
Molecular Weight: 295,33

178

Zn powder ($4.46 \mathrm{~g}, 70 \mathrm{mmol}, 10.0 \mathrm{eq}$) and $\mathrm{NH}_{4} \mathrm{Cl}(3.65 \mathrm{~g}, 70 \mathrm{mmol}, 10.0 \mathrm{eq})$ are added to a flask and suspended in 25 mL MeOH. 177 ($1.00 \mathrm{~g}, 3.2 \mathrm{mmol}, 1.0 \mathrm{eq}$) is dissolved in 150 mL MeOH and 50 mL DMF, then added dropwise to the vigorously stirring suspension in 1 h . After complete addition, the mixture is filtered and washed with MeOH . The filtrate is concentrated under reduced pressure, then diluted with $100 \mathrm{~mL} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$ and extracted with DCM $(3 \times 100 \mathrm{~mL})$. The combined organic layers are dried with MgSO_{4}, filtered and the solvent removed under reduced pressure. The crude product is purified by column chromatography ($\mathrm{CH} / \mathrm{EE}, 2 / 1+2 \% \mathrm{TEA}$). The pure product 178 is obtained as a white solid.

Yield 240 mg (12\%).
TLC (CH/EE, 3/1, v/v): $\mathrm{R}_{f}(\mathbf{1 7 8})=0.25$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.14(\mathrm{t}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.09(\mathrm{dt}, J=1.5,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{dt}, J=1.4,7.7$ $\mathrm{Hz}, 1 \mathrm{H}), 7.52(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.78-6.62(\mathrm{~m}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.21(\mathrm{dd}, \mathrm{J}=6.9,8.1 \mathrm{~Hz}$, 2 H), 2.96 ($\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}$).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): ~ \delta 197.21,149.01,147.61,137.61,135.90,133.24,131.91,131.75,129.66$, $120.21,117.87,113.21,111.88,111.46,55.95,55.88,40.75,29.53$.

LC-MS (30-100\% B, $19 \mathbf{m i n}): \mathrm{t}_{\mathrm{R}}(\mathbf{1 7 8})=9.20 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=296.12[\mathrm{M}+\mathrm{H}]^{+}$, found $=296.13[\mathrm{M}+\mathrm{H}]^{+}$.

RP-HPLC ($\mathbf{3 0} \mathbf{- 1 0 0 \%}$ B, $1.5 \mathrm{~mL} / \mathrm{min}, 20 \mathrm{~min}, 220 \mathrm{~nm}): \mathrm{t}_{R}(\mathbf{1 7 8})=9.54 \mathrm{~min}(99 \%$ Purity) .

3-(3-(3,4-dimethoxyphenyl)-1-hydroxypropyl)benzonitrile (AV517)

Chemical Formula: $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}_{3}$ Exact Mass: 297,14
Molecular Weight: 297,35
179
$178(20 \mathrm{mg}, 0.07 \mathrm{mmol}, 1.0 \mathrm{eq})$ is dissolved in $1 \mathrm{~mL} \mathrm{iPrOH} . \mathrm{NaBH}_{4}(3 \mathrm{mg}, 0.07 \mathrm{mmol}, 1.0 \mathrm{eq})$ is added and the reaction stirred at r.t. overnight. The mixture is diluted with 2 mL MeOH and the solvent removed under reduced pressure. The crude product is purified by column chromatography ($C H / E E$, $2 / 1)$. The pure product 179 is obtained as a white solid.

Yield 20 mg (quant.).
$\operatorname{TLC}(C H / E E, 2 / 1): \mathrm{R}_{f}(179)=0.43$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.66(\mathrm{t}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{ddt}, J=1.5,7.6,9.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{t}, \mathrm{J}=7.7$ $\mathrm{Hz}, 1 \mathrm{H}), 6.80(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.76-6.68(\mathrm{~m}, 2 \mathrm{H}), 4.74(\mathrm{dd}, J=4.9,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.86(\mathrm{~s}$, 3H), 2.68 (dddd, $J=6.4,9.1,14.0,23.0 \mathrm{~Hz}, 2 \mathrm{H}$), $2.12-1.92$ (m, 3H).
${ }^{13}$ C-NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 149.15,146.30,133.81,131.31,130.43,129.71,129.40,120.34,118.92$, 112.70, 111.89, 111.56, 72.94, 56.11, 56.02, 40.94, 31.60, 29.85.

LC-MS (30-100\% B, $19 \mathbf{m i n}): \mathrm{t}_{\mathrm{R}}(\mathbf{1 7 9})=7.87 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=298.14[\mathrm{M}+\mathrm{H}]^{+}$, found $=298.47[\mathrm{M}+\mathrm{H}]^{+}$.

Chiral-HPLC (20\% iPrOH in n-Hexane, isocratic, $\mathbf{1 . 0} \mathbf{~ m L} / \mathrm{min}, 220 \mathrm{~nm}): \mathrm{t}_{\mathrm{R}}(\mathbf{1 7 9})=15.15 \mathrm{~min}$, 16.32 min .

(R)-3-(3-(3,4-dimethoxyphenyl)-1-hydroxypropyl)benzonitrile (AV532)

180
$178(60 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0 \mathrm{eq})$ is dissolved in 10 mL iPrOH. Then $\mathrm{KOtBu}(200 \mu \mathrm{~L}, 0.20 \mathrm{mmol}, 1 \mathrm{eq})$ is added and the solution is sparged with argon for 5 min . $\mathrm{RuCl}_{2}[(S)$-(DM-SEGPHOS)][(S)-DAIPEN] (3 mg , $0.002 \mathrm{mmol}, 0.03 \mathrm{eq}$) is added and the solution sparged with H_{2} for 5 min , then the reaction stirred at

1 bar H_{2} at r.t. overnight. After full conversion, the solvent is removed under reduced pressure. The crude product is purified by column chromatography ($\mathrm{CH} / \mathrm{EE}, 3 / 1$). The pure product 180 is obtained as a white solid.

Yield 34 mg (56\%).
TLC (CH/EE, 2/1): $\mathrm{R}_{f}(\mathbf{1 8 0})=0.23$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.64(\mathrm{q}, \mathrm{J}=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.44(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.79$ (dd, $J=0.9,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.75-6.66(\mathrm{~m}, 2 \mathrm{H}), 4.72(\mathrm{dd}, J=4.8,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H})$, 2.67 (dqd, J = 6.5, 14.2, $20.9 \mathrm{~Hz}, 2 \mathrm{H}$), $2.12-1.87(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13}$ C-NMR (126 MHz, CDCl ${ }_{3}$): $\delta 149.07,147.50,146.35,133.85,131.21,130.43,129.66,129.34,120.32$, $118.91,112.55,111.88,111.54,72.82,56.06,55.97,40.90,31.54,29.80$.

LC-MS (30-100\% B, $19 \mathbf{m i n}): \mathrm{t}_{R}(\mathbf{1 8 0})=7.83 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=298.14[\mathrm{M}+\mathrm{H}]^{+}$, found $=298.17[\mathrm{M}+\mathrm{H}]^{+}$.
Chiral-HPLC (20\% iPrOH in n-Hexane, isocratic, $\mathbf{1 . 0} \mathbf{~ m L} / \mathrm{min}, 220 \mathrm{~nm}): \mathrm{t}_{R}(\mathbf{1 8 0})=14.22 \mathrm{~min}(\mathrm{er}=$ 86.59/13.41).

(E)-1-(3-bromophenyl)-3-(3,4-dimethoxyphenyl)prop-2-en-1-one (MedChem19_15)

Chemical Formula: $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{BrO}_{3}$
Exact Mass: 346,02
Molecular Weight: 347,20

3,4-Dimethoxybenzaldehyde ($820 \mathrm{mg}, 5 \mathrm{mmol}, 1 \mathrm{eq}$) and 1-(3-bromophenyl)ethanone ($664 \mu \mathrm{~L}$, $5 \mathrm{mmol}, 1 \mathrm{eq}$) are dissolved in 30 mL EtOH and cooled in an ice bath to $0^{\circ} \mathrm{C}$ for 15 min . Cooled KOH $(1.12 \mathrm{~g}, 20 \mathrm{mmol}, 4.0 \mathrm{eq})$ dissolved in 20 mL H H O is added slowly in 5 min . A yellow precipitate is observed. After 30 min the mixture is acidified with 3 M HCl to $\mathrm{pH}=1$. The resulting precipitate is filtered and washed with $\mathrm{H}_{2} \mathrm{O}$, dissolved in DCM , dried with MgSO_{4}, filtered and the solvent removed. Compound 181 is obtained as an orange-yellow solid.

Yield $1.52 \mathrm{~g}(87 \%)$.
TLC (CH/EE, 2/1, v/v): $\mathrm{R}_{f}(\mathbf{1 8 1})=0.33$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.04(\mathrm{t}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{ddd}, J=1.0,1.6,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=$ $15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{ddd}, \mathrm{J}=1.0,2.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.17(\mathrm{~m}, 2 \mathrm{H}), 7.17-7.12(\mathrm{~m}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=$ $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): ~ \delta 189.15,151.90,149.50,146.01,140.49,135.49,131.53,130.27,127.78$, $127.05,123.57,123.03,119.52,111.35,110.42,56.17$.

LC-MS (0-100\% B, 19 min$): \mathrm{t}_{\mathrm{R}}(\mathbf{1 8 1})=11.46 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=347.02[\mathrm{M}+\mathrm{H}]^{+}$, found $=347.39[\mathrm{M}+\mathrm{H}]^{+}$.

1-(3-bromophenyl)-3-(3,4-dimethoxyphenyl)propan-1-one (MedChem19_Zn_15)

Chemical Formula: $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{BrO}_{3}$
Exact Mass: 348,04
Molecular Weight: 349,22

182

Zn powder ($2.28 \mathrm{~g}, 35 \mathrm{mmol}, 10.0 \mathrm{eq}$) and $\mathrm{NH}_{4} \mathrm{Cl}(1.90 \mathrm{~g}, 35 \mathrm{mmol}, 10.0 \mathrm{eq})$ are added to a flask and suspended in 10 mL MeOH. 181 ($1.20 \mathrm{~g}, 3.5 \mathrm{mmol}, 1.0 \mathrm{eq}$) is dissolved in 15 mL MeOH and 15 mL DMF, then added dropwise to the vigorously stirring suspension in 2 h . After complete addition, the mixture is filtered and washed with MeOH . The filtrate is concentrated under reduced pressure. The product is then precipitated by the addition of $100 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$. The precipitate is filtered, dissolved in DCM, dried with MgSO_{4}, filtered and the solvent removed under reduced pressure. The crude product is purified by column chromatography ($\mathrm{CH} / \mathrm{EE}, 2 / 1$). The pure product 182 is obtained as a colorless oil.

Yield 590 mg (48\%).
TLC (CH/EE, 2/1, v/v): $\mathrm{R}_{f}(\mathbf{1 8 2})=0.39$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.07(\mathrm{t}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.86$ (ddd, $\left.J=1.1,1.6,7.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.68$ (ddd, $J=$ 1.1, 2.0, $7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.84-6.73(\mathrm{~m}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.30-3.22$ (m, 2H), 3.01 (dd, J=6.9, 8.1 Hz, 2H).
${ }^{13}$ C-NMR (75 MHz, CDCl $_{3}$): $\delta 198.07,149.18,147.72,138.83,136.03,133.75,131.31,130.34,126.67$, $123.13,120.37,112.10,111.65,56.13,56.04,40.92,29.84$.

LC-MS (0-100\% B, $19 \mathbf{m i n}): \mathrm{t}_{\mathrm{R}}(\mathbf{1 8 2})=11.18 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=349.04[\mathrm{M}+\mathrm{H}]^{+}$, found $=349.37[\mathrm{M}+\mathrm{H}]^{+}$.

1-(3-bromophenyl)-3-(3,4-dimethoxyphenyl)propan-1-ol (MedChem19_rac_15)

Chemical Formula: $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{BrO}_{3}$
Exact Mass: 350,05
Molecular Weight: 351,23

183

182 ($50 \mathrm{mg}, 0.14 \mathrm{mmol}, 1.0 \mathrm{eq}$) is dissolved in 3 mL THF. $\mathrm{NaBH}_{4}(13 \mathrm{mg}, 0.28 \mathrm{mmol}, 2.0 \mathrm{eq})$ is added and the reaction stirred at r.t. overnight. The mixture is diluted with 2 mL MeOH and quenched with a few drops conc. HCl . The mixture is extracted with DCM $(3 \times 20 \mathrm{~mL})$ and the combined organic layers are dried with MgSO_{4}, filtered and the solvent removed under reduced pressure. The crude product is purified by column chromatography (CH/EE, 3/1). The pure product 183 is obtained as black oil.

Yield 32 mg (64\%).
$\operatorname{TLC}(C H / E E, 3 / 1): \mathrm{R}_{f}(183)=0.19$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.42(\mathrm{t}, \mathrm{J}=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{dt}, J=1.8,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.16(\mathrm{~m}, 1 \mathrm{H})$, $7.16-7.08(\mathrm{~m}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{t}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{ddd}, \mathrm{J}$ $=2.8,4.7,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 2.68-2.43(\mathrm{~m}, 2 \mathrm{H}), 2.07-1.89(\mathrm{~m}, 2 \mathrm{H})$
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 149.06,147.45,147.12,134.16,130.75,130.21,129.19,124.63,122.76$, $120.34,111.93,111.51,73.30,56.09,55.99,40.77,31.66,27.06$

LC-MS (0-100\% B, $19 \mathbf{m i n}): \mathrm{t}_{\mathrm{R}}(\mathbf{1 8 3})=9.93 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=333.03[\mathrm{M}-\mathrm{OH}]^{+}$, found $=333.31[\mathrm{M}-$ $\mathrm{OH}]^{+}$.

Chiral-HPLC (20\% iPrOH in n-Hexane, isocratic, $1.0 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}): \mathrm{t}_{R}(\mathbf{1 8 3})=10.33 \mathrm{~min}$, 11.77 min.
(R)-1-(3-bromophenyl)-3-(3,4-dimethoxyphenyl)propan-1-ol (MedChem19_chir_15)

Chemical Formula: $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{BrO}_{3}$ Exact Mass: 350,05

Molecular Weight: 351,23
S-CBS ($16 \mathrm{mg}, 0.06 \mathrm{mmol}, 0.1 \mathrm{eq}$) is dissolved in 2 mL dry THF and added to a flask under argon atmosphere. $30 \mu \mathrm{~L}(0.1 \mathrm{eq})$ of a $2 \mathrm{M} \mathrm{BH}_{3}{ }^{*} \mathrm{SMe}_{2}$ solution in THF is added. $182(210 \mathrm{mg}, 0.57 \mathrm{mmol}$,
1.0 eq) is dissolved in 2 mL dry THF and added to the catalyst. Then $430 \mu \mathrm{~L}(1.5 \mathrm{eq})$ of a $2 \mathrm{M} \mathrm{BH}_{3}{ }^{*} \mathrm{SMe}_{2}$ solution in THF is added dropwise in 1 h . After complete addition, the reaction is further stirred for 2 h , then stopped by the addition of MeOH and quenched for 1 h . The solvent is removed under reduced pressure. The crude product is purified by column chromatography (CH/EE, 3/1). The pure product 184 is obtained as a white solid.

Yield 210 mg (quant.).
TLC (CH/EE, 3/1, v/v): $\mathrm{R}_{f}(\mathbf{1 8 4})=0.18$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.51(\mathrm{q}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{dt}, J=1.7,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.12(\mathrm{~m}, 2 \mathrm{H})$, $6.86-6.67(\mathrm{~m}, 3 \mathrm{H}), 4.65(\mathrm{ddd}, \mathrm{J}=1.5,5.2,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 4 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 2.76-2.55(\mathrm{~m}, 2 \mathrm{H})$, $2.19-1.89(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13}$ C-NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 149.08,147.47,147.15,134.18,130.73,130.20,129.19,124.62,122.75$, $120.35,111.98,111.57,73.29,56.09,55.99,40.76,31.65$.
LC-MS (0-100\% B, $19 \mathbf{m i n}): \mathrm{t}_{R}(184)=9.86 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=333.03[\mathrm{M}-\mathrm{OH}]^{+}$, found $=333.24[\mathrm{M}-$ $\mathrm{OH}]^{+}$.
Chiral-HPLC (20\% iPrOH in n-Hexane, isocratic, $1.0 \mathrm{~mL} / \mathrm{min}, \mathbf{2 2 0} \mathbf{n m}$): $\mathrm{t}_{\mathrm{R}}(\mathbf{1 8 4})=11.38 \mathrm{~min}(\mathrm{er}=$ 91.21/8.79).

(E)-1-(3-fluorophenyl)-3-(3,4-dimethoxyphenyl)prop-2-en-1-one (MedChem19_CS_13)

Chemical Formula: $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{FO}_{3}$
Exact Mass: 286,10
Molecular Weight: 286,30
185
3,4-Dimethoxybenzaldehyde ($1.20 \mathrm{~g}, 7 \mathrm{mmol}, 1 \mathrm{eq}$) and 3'-fluoro acetophenone ($888 \mu \mathrm{~L}, 7 \mathrm{mmol}, 1 \mathrm{eq}$) are dissolved in 30 mL EtOH and cooled in an ice bath to $0^{\circ} \mathrm{C}$ for 15 min . Cooled $\mathrm{KOH}(1.62 \mathrm{~g}, 28 \mathrm{mmol}$, 4.0 eq) dissolved in $20 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$ is added slowly in 5 min . After 2 h the mixture is acidified with 3 M HCl to $\mathrm{pH}=1$. The mixture is extracted with DCM $(3 \times 20 \mathrm{~mL})$. The combined organic phases are dried with MgSO_{4}, filtered and the solvent removed. Compound 185 is obtained as a yellow oil and used crude in further reactions.

Yield 1.69 g (95\%).
TLC (CH/EE, 2/1, v/v): $\mathrm{R}_{f}(\mathbf{1 8 1})=0.27$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.69-7.65(\mathrm{~m}, 1 \mathrm{H}), 7.63-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.23-6.99$ (m, 3H), $6.80(\mathrm{dd}, J=8.2,23.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 3 \mathrm{H}), 3.79(\mathrm{~d}, J=0.6 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 190.67,164.35,161.07,154.40,151.61,149.52,149.22,145.55,140.55$, $140.46,130.19,130.14,130.09,130.04,127.55,126.62,124.00,123.96,123.32,120.05,119.77$, $119.49,119.25,119.20,115.18,114.88,114.58,111.11,110.37,110.18,108.95,55.99,55.83$.

LC-MS (0-100\% B, 19 min$): \mathrm{t}_{\mathrm{R}}(\mathbf{1 8 1})=10.55 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=287.10[\mathrm{M}+\mathrm{H}]^{+}$, found $=287.21[\mathrm{M}+\mathrm{H}]^{+}$.

1-(3-fluorophenyl)-3-(3,4-dimethoxyphenyl)propan-1-one (MedChem19_Zn_13)

Chemical Formula: $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{FO}_{3}$ Exact Mass: 288,12
Molecular Weight: 288,31

186

Zn powder ($9.14 \mathrm{~g}, 140 \mathrm{mmol}, 10.0 \mathrm{eq})$ and $\mathrm{NH}_{4} \mathrm{Cl}(7.48 \mathrm{~g}, 140 \mathrm{mmol}, 10.0 \mathrm{eq})$ are added to a flask and suspended in 40 mL MeOH. $185(4.00 \mathrm{~g}, 14 \mathrm{mmol}, 1.0 \mathrm{eq})$ is dissolved in 50 mL MeOH , then added dropwise to the vigorously stirring suspension in 30 min . After complete addition, the mixture is filtered and washed with MeOH . The filtrate is concentrated under reduced pressure. The product is then precipitated by the addition of $100 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$. The precipitate is filtered, dissolved in DCM, dried with MgSO_{4}, filtered and the solvent removed under reduced pressure. The crude product is purified by column chromatography ($\mathrm{CH} / \mathrm{EE}, 2 / 1$). The pure product 186 is obtained as a slightly yellow oil.

Yield 1.29 mg (32\%).
TLC (CH/EE, 2/1, v/v): $\mathrm{R}_{f}(186)=0.29$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.72$ (ddd, $\left.J=1.0,1.6,7.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.66-7.57(\mathrm{~m}, 1 \mathrm{H}), 7.43$ (dddd, $\mathrm{J}=$ $0.4,5.6,7.7,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.17(\mathrm{~m}, 1 \mathrm{H}), 6.81-6.74(\mathrm{~m}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.30-3.23$ $(\mathrm{m}, 2 \mathrm{H}), 3.04-2.98(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13}$ C-NMR (75 MHz, CDCl ${ }_{3}$): $\delta 198.16,164.66,161.37,149.15,147.69,133.78,130.44,130.34,123.90$, 123.86, 120.34, 120.03, 115.07, 114.77, 112.09, 111.63, 56.11, 56.02, 40.96, 29.85.

LC-MS (0-100\% B, 19 min$): \mathrm{t}_{\mathrm{R}}(\mathbf{1 8 6})=10.18 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=289.12[\mathrm{M}+\mathrm{H}]^{+}$, found $=289.04[\mathrm{M}+\mathrm{H}]^{+}$.

1-(3-fluorophenyl)-3-(3,4-dimethoxyphenyl)propan-1-ol (MedChem19_rac_13)

Chemical Formula: $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{FO}_{3}$ Exact Mass: 290,13
Molecular Weight: 290,33

187

186 ($100 \mathrm{mg}, 0.35 \mathrm{mmol}, 1.0 \mathrm{eq}$) is dissolved in 5 mL THF. $\mathrm{NaBH}_{4}(26 \mathrm{mg}, 0.70 \mathrm{mmol}, 2.0 \mathrm{eq})$ is added and the reaction stirred at r.t. overnight. The mixture is diluted with 2 mL MeOH and quenched with a few drops conc. HCl . The mixture is extracted with $\mathrm{DCM}(3 \times 20 \mathrm{~mL})$ and the combined organic layers are dried with MgSO_{4}, filtered and the solvent removed under reduced pressure. The crude product is purified by column chromatography (CH/EE, 2/1). The pure product 187 is obtained as a colorless oil. Yield 80 mg (80\%).

TLC (CH/EE, 2/1, v/v): $\mathrm{R}_{f}(\mathbf{1 8 7})=0.18$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.30(\mathrm{td}, J=5.8,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.14-7.04(\mathrm{~m}, 2 \mathrm{H}), 6.96$ (tdd, $J=1.0,2.6$, $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.82-6.69(\mathrm{~m}, 3 \mathrm{H}), 4.69(\mathrm{dd}, \mathrm{J}=5.2,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 2.78-2.55(\mathrm{~m}$, 2H), $2.14-1.87(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13}$ C-NMR (75 MHz, CDCl ${ }_{3}$): $\delta 164.77,161.51,149.09,147.55,147.47,134.27,130.16,130.05,121.59$, $121.55,120.36,114.64,114.36,113.07,112.78,111.99,111.56,73.36,56.10,55.99,40.78,31.66$.

LC-MS ($0-100 \%$ B, 19 min): $\mathrm{t}_{R}(187)=8.88 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=273.11[\mathrm{M}-\mathrm{OH}]^{+}$, found $=273.21[\mathrm{M}-$ $\mathrm{OH}]^{+}$.

Chiral-HPLC (20\% iPrOH in n-Hexane, isocratic, $\mathbf{1 . 0} \mathbf{~ m L} / \mathbf{m i n}, 220 \mathrm{~nm}): \mathrm{t}_{R}(\mathbf{1 8 7})=9.51 \mathrm{~min}, 10.20 \mathrm{~min}$.

(R)-1-(3-fluorophenyl)-3-(3,4-dimethoxyphenyl)propan-1-ol (MedChem19_chir_13)

Chemical Formula: $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{FO}_{3}$
Exact Mass: 290,13
Molecular Weight: 290,33
188

S-CBS ($19 \mathrm{mg}, 0.07 \mathrm{mmol}, 0.1 \mathrm{eq}$) is dissolved in 2.3 mL dry THF and added to a flask under argon atmosphere. $35 \mu \mathrm{~L}(0.1 \mathrm{eq})$ of a $2 \mathrm{M} \mathrm{BH}_{3}{ }^{*} \mathrm{SMe}_{2}$ solution in THF is added. 186 ($200 \mathrm{mg}, 0.69 \mathrm{mmol}$, $1.0 \mathrm{eq})$ is dissolved in 2.3 mL dry THF and added to the catalyst. Then $520 \mu \mathrm{~L}(1.5 \mathrm{eq})$ of a $2 \mathrm{M} \mathrm{BH}_{3}{ }^{*} \mathrm{SMe}_{2}$
solution in THF is added dropwise in 1 h . After complete addition, the reaction is further stirred for 2 h , then stopped by the addition of MeOH and quenched for 1 h . The solvent is removed under reduced pressure. The crude product is purified by column chromatography (CH/EE, 2/1). The pure product 188 is obtained as a colorless oil.

Yield 200 mg (quant.).
TLC (CH/EE, 2/1, v/v): $\mathrm{R}_{f}(\mathbf{1 8 8})=0.24$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.34-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.14-7.04(\mathrm{~m}, 2 \mathrm{H}), 7.01-6.88(\mathrm{~m}, 1 \mathrm{H}), 6.82-6.69$ $(\mathrm{m}, 3 \mathrm{H}), 4.68(\mathrm{dd}, J=5.3,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.86-3.84(\mathrm{~m}, 6 \mathrm{H}), 2.75-2.56(\mathrm{~m}, 2 \mathrm{H}), 2.15-1.94(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 164.75,161.48,149.05,147.57,147.48,147.43,134.25,130.14,130.03$, $121.58,121.54,120.33,114.61,114.33,113.06,112.77,111.93,111.50,73.32,56.06,55.95,40.78$, 31.65.

LC-MS (0-100\% B, 19 min$): \mathrm{t}_{R}(188)=8.84 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=273.11[\mathrm{M}-\mathrm{OH}]^{+}$, found $=273.13[\mathrm{M}-$ $\mathrm{OH}]^{+}$.

Chiral-HPLC (20\% iPrOH in n-Hexane, isocratic, $1.0 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}): \mathrm{t}_{\mathrm{R}}(\mathbf{1 8 8})=10.42 \mathrm{~min}(e r=$ 96.65/3.35).

(E)-1-(3-chlorophenyl)-3-(3,4-dimethoxyphenyl)prop-2-en-1-one (MedChem19_CS_20)

Chemical Formula: $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{ClO}_{3}$
Exact Mass: 302,07
Molecular Weight: 302,75

189

3,4-Dimethoxybenzaldehyde ($5.34 \mathrm{~g}, 32 \mathrm{mmol}, 1 \mathrm{eq}$) and 1-(3-chlorophenyl)ethanone (4.20 mL , $32 \mathrm{mmol}, 1 \mathrm{eq}$) are dissolved in 150 mL EtOH and cooled in an ice bath to $0^{\circ} \mathrm{C}$ for 15 min . Cooled KOH ($7.29 \mathrm{~g}, 128 \mathrm{mmol}, 4.0 \mathrm{eq}$) dissolved in $100 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$ is added slowly in 5 min . A yellow precipitate is observed. After reaction overnight the mixture is acidified with 3 M HCl to $\mathrm{pH}=1$. The resulting precipitate is filtered and washed with $\mathrm{H}_{2} \mathrm{O}$, dissolved in DCM, dried with MgSO_{4}, filtered and the solvent removed. Compound 189 is obtained as yellow solid.

Yield $7.90 \mathrm{~g}(76 \%)$.
$\operatorname{TLC}(C H / E E, 1 / 1, v / v): R_{f}(181)=0.46$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.89(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.84-7.76(\mathrm{~m}, 1 \mathrm{H}), 7.70(\mathrm{~d}, \mathrm{~J}=15.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.52-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.13(\mathrm{~m}, 2 \mathrm{H}), 7.08(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H})$, $3.86(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 189.24,151.85,149.45,145.98,140.24,134.96,132.57,130.01,128.60$, 127.74, 126.60, 123.57, 119.51, 111.30, 110.32, 56.14.

LC-MS (0-100\% B, 19 min$): \mathrm{t}_{\mathrm{R}}(\mathbf{1 8 1})=11.08 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=303.07[\mathrm{M}+\mathrm{H}]^{+}$, found $=303.30[\mathrm{M}+\mathrm{H}]^{+}$.

1-(3-chlorophenyl)-3-(3,4-dimethoxyphenyl)propan-1-one (MedChem19_Zn_20)

Chemical Formula: $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{ClO}_{3}$ Exact Mass: 304,09 Molecular Weight: 304,77

Zn powder ($5.66 \mathrm{~g}, 90 \mathrm{mmol}, 10.0 \mathrm{eq}$) and $\mathrm{NH}_{4} \mathrm{Cl}(4.62 \mathrm{~g}, 90 \mathrm{mmol}, 10.0 \mathrm{eq})$ are added to a flask and suspended in 40 mL MeOH. 189 ($2.62 \mathrm{~g}, 9 \mathrm{mmol}, 1.0 \mathrm{eq}$) is dissolved in 200 mL MeOH, then added dropwise to the vigorously stirring suspension in 30 min . After complete addition, the mixture is filtered and washed with MeOH . The filtrate is concentrated under reduced pressure. The product is then precipitated by the addition of $100 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$. The precipitate is filtered, dissolved in DCM, dried with MgSO_{4}, filtered and the solvent removed under reduced pressure. The crude product is purified by column chromatography ($\mathrm{CH} / \mathrm{EE}, 5 / 1$). The pure product 190 is obtained as slightly yellow resin.

Yield 1.25 g (48\%).
TLC (CH/EE, 5/1, v/v): $\mathrm{R}_{f}(\mathbf{1 9 0})=0.35$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.91(\mathrm{t}, \mathrm{J}=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{dt}, J=1.3,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.52$ (ddd, J=1.1, $2.1,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.85-6.75(\mathrm{~m}, 4 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.25(\mathrm{dd}, J=6.9$, $8.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.01(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13}$ C-NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 198.13,149.14,147.69,138.60,135.09,133.73,133.07,130.06,128.31$, 126.20, 120.34, 112.07, 111.63, 56.10, 56.01, 40.91, 29.81.

LC-MS (0-100\% B, 19 min$): \mathrm{t}_{\mathrm{R}}(\mathbf{1 9 0})=11.12 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=305.09[\mathrm{M}+\mathrm{H}]^{+}$, found $=305.00[\mathrm{M}+\mathrm{H}]^{+}$.

1-(3-chlorophenyl)-3-(3,4-dimethoxyphenyl)propan-1-ol (MedChem19_rac_20)

Chemical Formula: $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{ClO}_{3}$ Exact Mass: 306,10
Molecular Weight: 306,78 191
$190(100 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.0 \mathrm{eq})$ is dissolved in 5 mL THF. $\mathrm{NaBH}_{4}(25 \mathrm{mg}, 0.6 \mathrm{mmol}, 2.0 \mathrm{eq})$ is added and the reaction stirred at $r . t$. overnight. The mixture is diluted with 2 mL MeOH and quenched with a few drops conc. HCl . The mixture is extracted with $\mathrm{DCM}(3 \times 20 \mathrm{~mL})$ and the combined organic layers are dried with MgSO_{4}, filtered and the solvent removed under reduced pressure. The crude product is purified by column chromatography (CH/EE, 5/1). The pure product 191 is obtained as a colorless resin.

Yield 63 mg (63\%).
$\operatorname{TLC}(C H / E E, 5 / 1): \mathrm{R}_{f}(191)=0.32$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.27(\mathrm{q}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.11(\mathrm{~m}, 3 \mathrm{H}), 6.72(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.67$
$-6.60(\mathrm{~m}, 2 \mathrm{H}), 4.59(\mathrm{dd}, \mathrm{J}=5.3,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 4 \mathrm{H}), 2.72-2.49(\mathrm{~m}, 2 \mathrm{H}), 2.06-1.84$ ($\mathrm{m}, 3 \mathrm{H}$).
${ }^{13}$ C-NMR (75 MHz, CDCl ${ }_{3}$): $\delta 149.06,147.44,146.87,134.52,134.19,129.90,127.81,126.26,124.16$, 120.34, 111.94, 111.52, 73.34, 56.08, 55.98, 40.76, 31.65.

LC-MS (0-100\% B, 19 min$): \mathrm{t}_{R}(191)=9.67 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=289.09[\mathrm{M}-\mathrm{OH}]^{+}$, found $=289.30[\mathrm{M}-$ $\mathrm{OH}]^{+}$.

Chiral-HPLC (20\% iPrOH in n-Hexane, isocratic, $1.0 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}): \mathrm{t}_{\mathrm{R}}(\mathbf{1 9 1})=9.77 \mathrm{~min}, 10.55 \mathrm{~min}$.

(R)-1-(3-chlorophenyl)-3-(3,4-dimethoxyphenyl)propan-1-ol (MedChem19_chir_20)

Chemical Formula: $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{ClO}_{3}$
Exact Mass: 306,10
Molecular Weight: 306,78

192

S-CBS ($18 \mathrm{mg}, 0.07 \mathrm{mmol}, 0.1 \mathrm{eq}$) is dissolved in 2.2 mL dry THF and added to a flask under argon atmosphere. $33 \mu \mathrm{~L}(0.1 \mathrm{eq})$ of a $2 \mathrm{M} \mathrm{BH}_{3}{ }^{*} \mathrm{SMe}_{2}$ solution in THF is added. $190(200 \mathrm{mg}, 0.70 \mathrm{mmol}$, 1.0 eq) is dissolved in 2.2 mL dry THF and added to the catalyst. Then $490 \mu \mathrm{~L}(1.5 \mathrm{eq})$ of a $2 \mathrm{M} \mathrm{BH}_{3}{ }^{*} \mathrm{SMe}_{2}$
solution in THF is added dropwise in 1 h . After complete addition, the reaction is further stirred for 2 h , then stopped by the addition of MeOH and quenched for 1 h . The solvent is removed under reduced pressure. The crude product is purified by column chromatography (CH/EE, 3/1). The pure product 192 is obtained as a yellow oil.

Yield 182 mg (91\%).
TLC (CH/EE, 3/1, v/v): $\mathrm{R}_{f}(192)=0.24$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.28(\mathrm{~d}, \mathrm{~J}=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.09(\mathrm{~m}, 3 \mathrm{H}), 6.72(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.68$
$-6.58(\mathrm{~m}, 2 \mathrm{H}), 4.59(\mathrm{dd}, \mathrm{J}=5.2,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 4 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 2.69-2.48(\mathrm{~m}, 2 \mathrm{H}), 2.10-1.82$ ($\mathrm{m}, 2 \mathrm{H}$).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): ~ \delta 149.06,147.44,146.86,134.52,134.18,129.90,127.80,126.25,124.15$, $120.33,111.93,111.51,73.35,56.08,55.98,40.76,31.65$.

LC-MS (0-100\% B, 19 min$): \mathrm{t}_{\mathrm{R}}(192)=9.66 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=289.09[\mathrm{M}-\mathrm{OH}]^{+}$, found $=289.20[\mathrm{M}-$ $\mathrm{OH}]^{+}$.
Chiral-HPLC (20\% iPrOH in n-Hexane, isocratic, $1.0 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}): \mathrm{t}_{\mathrm{R}}(\mathbf{1 9 2})=10.49 \mathrm{~min}(\mathrm{er}=$ 94.32/5.68).

6.4.2. Final compounds

(S)-(R)-1-(4-(2-(tert-butoxy)-2-oxoethoxy)phenyl)-3-(3,4-dimethoxyphenyl)propyl 1-((S)-2-cyclohexyl-2-(3,4,5-trimethoxyphenyl)acetyl)piperidine-2-carboxylate (AV585)

193
193 is synthesized according to general procedure 5.9.7. Reactants: $77(20 \mathrm{mg}), 226(22 \mathrm{mg})$, DMAP $(224 \mathrm{mg})$ and DIC $(8 \mu \mathrm{~L})$. The pure product is obtained as a white foam.
prep-HPLC ($\mathbf{7 0} \mathbf{- 1 0 0 \%}$ B, $10 \mathrm{~mL} / \mathrm{min}, 10 \mathrm{~min}, 254 \mathrm{~nm}): \mathrm{t}_{\mathrm{R}}(193)=5.61 \mathrm{~min}$.
Yield 20 mg (52\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.33-7.27(\mathrm{~m}, 1 \mathrm{H}), 6.93-6.87(\mathrm{~m}, 1 \mathrm{H}), 6.82-6.75(\mathrm{~m}, 2 \mathrm{H}), 6.74-6.70$ $(\mathrm{m}, 1 \mathrm{H}), 6.69-6.55(\mathrm{~m}, 2 \mathrm{H}), 6.52(\mathrm{~s}, 1 \mathrm{H}), 6.50-6.39(\mathrm{~m}, 1 \mathrm{H}), 5.57(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.47(\mathrm{~d}, \mathrm{~J}=5.5$ $\mathrm{Hz}, 1 \mathrm{H}), 4.55-4.46(\mathrm{~m}, 2 \mathrm{H}), 4.02-3.93(\mathrm{~m}, 5 \mathrm{H}), 3.87-3.81(\mathrm{~m}, 9 \mathrm{H}), 3.78(\mathrm{~s}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 4 \mathrm{H}), 3.39$ $(d, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.69-2.57(\mathrm{~m}, 1 \mathrm{H}), 2.57-2.47(\mathrm{~m}, 0 \mathrm{H}), 2.45-2.36(\mathrm{~m}, 1 \mathrm{H}), 2.36-2.24(\mathrm{~m}, 2 \mathrm{H})$, $2.15-2.01(\mathrm{~m}, 2 \mathrm{H}), 1.98-1.81(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.71(\mathrm{~m}, 0 \mathrm{H}), 1.70-1.55(\mathrm{~m}, 6 \mathrm{H}), 1.49(\mathrm{~s}, 11 \mathrm{H}), 1.43-$ $1.35(\mathrm{~m}, 0 \mathrm{H}), 1.35-1.05(\mathrm{~m}, 4 \mathrm{H}), 0.94-0.55(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13}$ C-NMR (126 MHz, CDCl 3): $\delta 173.12,170.12,168.34,157.74,153.50,153.35,148.93,147.38,137.11$, 133.53, 133.40, 132.95, 128.52, 128.08, 120.40, 120.28, 114.86, 114.55, 111.94, 111.59, 111.53, $111.47,105.84,105.35,82.87,82.76,75.75,65.76,61.04,60.94,56.45,56.31,56.23,56.07,56.07$, 55.93, 55.16, 52.51, 44.19, 41.24, 41.14, 40.26, 37.57, 32.81, 31.14, 30.73, 28.17, 26.64, 26.24, 26.09, 25.64, 24.34, 20.87, 20.63.

LC-MS (50-100\% B, $19 \mathbf{m i n}): \mathrm{t}_{\mathrm{R}}(\mathbf{1 9 3})=8.33 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=804.42[\mathrm{M}+\mathrm{H}]^{+}$, found $=804.99[\mathrm{M}+\mathrm{H}]^{+}$.

HRMS (ESI): calculated $=804.43174[\mathrm{M}+\mathrm{H}]^{+}$, found $=804.43168[\mathrm{M}+\mathrm{H}]^{+}$, err $[\mathrm{ppm}]=0.07$.

RP-HPLC (50 - 100\% B, $1.5 \mathrm{~mL} / \mathrm{min}, 15 \mathrm{~min}, 220 \mathrm{~nm}): \mathrm{t}_{\mathrm{R}}(\mathbf{1 9 3})=13.40 \mathrm{~min}(95 \%$ Purity).

(S)-(R)-1-(4-(2-(allyloxy)-2-oxoethoxy)phenyl)-3-(3,4-dimethoxyphenyl)propyl 1-((S)-2-

 cyclohexyl-2-(3,4,5-trimethoxyphenyl)acetyl)piperidine-2-carboxylate (AV612)

194
194 is synthesized according to general procedure 5.9.7. Reactants: $\mathbf{7 7}$ (16 mg), $\mathbf{1 5 1}$ (15 mg), DMAP $(19 \mathrm{mg})$ and $\operatorname{DIC}(7 \mu \mathrm{~L})$. The pure product is obtained as a white foam.
prep-HPLC (75-90\% B, $10 \mathrm{~mL} / \mathrm{min}, 10 \mathrm{~min}, 254 \mathrm{~nm}): \mathrm{t}_{R}(194)=6.20 \mathrm{~min}$.
Yield 16 mg (52\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.34-7.28(\mathrm{~m}, 1 \mathrm{H}), 6.95-6.89(\mathrm{~m}, 1 \mathrm{H}), 6.76(\mathrm{qd}, \mathrm{J}=2.3,8.7 \mathrm{~Hz}, 4 \mathrm{H})$, $6.67-6.58(\mathrm{~m}, 2 \mathrm{H}), 6.53(\mathrm{~s}, 1 \mathrm{H}), 5.99-5.87(\mathrm{~m}, 1 \mathrm{H}), 5.59(\mathrm{dd}, \mathrm{J}=6.3,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.48(\mathrm{~d}, \mathrm{~J}=5.5 \mathrm{~Hz}$, $1 \mathrm{H}), 5.38-5.24(\mathrm{~m}, 2 \mathrm{H}), 4.71(\mathrm{dt}, \mathrm{J}=1.4,5.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.63(\mathrm{~s}, 1 \mathrm{H}), 3.95(\mathrm{~d}, \mathrm{~J}=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.89-3.69$ $(\mathrm{m}, 15 \mathrm{H}), 3.38(\mathrm{~d}, \mathrm{~J}=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.67-2.58(\mathrm{~m}, 1 \mathrm{H}), 2.58-2.47(\mathrm{~m}, 0 \mathrm{H}), 2.47-2.28(\mathrm{~m}, 2 \mathrm{H}), 2.09$ (dt, J = 12.4, 22.3 Hz, 1H), 1.98-1.83(m,3H), 1.80-1.50(m,6H), $1.43(\mathrm{~s}, 2 \mathrm{H}), 1.22(\mathrm{ddt}, \mathrm{J}=12.6$, $23.4,59.2 \mathrm{~Hz}, 4 \mathrm{H}), 0.94-0.69(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13}$ C-NMR (126 MHz, CDCl 3): $\delta 172.68,170.35,168.73,157.62,153.34,148.98,147.42,137.14,133.66$, $133.34,131.56,128.56,128.09,120.40,119.26,114.94,114.63,111.94,111.45,105.89,105.42$, $75.57,68.13,66.03,65.44,60.95,56.48,56.25,56.08,55.96,55.15,52.32,44.04,41.39,37.79,32.87$, 31.13, 30.76, 30.48, 26.70, 26.29, 26.18, 25.71, 21.00, 1.17.

LC-MS (50-100\% B, 19 min$): \mathrm{t}_{R}(194)=11.79 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=810.38[\mathrm{M}+\mathrm{Na}]^{+}$, found $=810.41[\mathrm{M}+\mathrm{Na}]^{+}$.

HRMS (ESI): calculated $=788.40044[\mathrm{M}+\mathrm{H}]^{+}$, found $=788.40066[\mathrm{M}+\mathrm{H}]^{+}$, $\operatorname{err}[\mathrm{ppm}]=0.28$. RP-HPLC (50 - 100\% B, $1.5 \mathrm{~mL} / \mathrm{min}, 15 \mathrm{~min}, 220 \mathrm{~nm}): \mathrm{t}_{R}(194)=12.16 \mathrm{~min}(98 \%$ Purity).

2-(4-((R)-1-((S)-1-((S)-2-cyclohexyl-2-(3,4,5-trimethoxyphenyl)acetyl)piperidine-2-carbonyl)oxy)-3-(3,4-dimethoxyphenyl)propyl)phenoxy)acetic acid (AV618)

 195
$194(6 \mathrm{mg}, 0.01 \mathrm{mmol}, 1.0 \mathrm{eq})$ is dissolved in 1 mL dry THF. Then $\mathrm{Pd}(\mathrm{OAc})_{2}(0.2 \mathrm{mg}, 0.1 \mathrm{eq}), \mathrm{PPh}_{3}(2 \mathrm{mg}$, $0.01 \mathrm{mmol}, 1.0 \mathrm{eq}$) and morpholine ($1 \mu \mathrm{~L}, 1.0 \mathrm{eq}$) are added. After 30 min the solvent is removed under airstream and the crude product purified by column chromatography $(C H / E E, 2 / 1$, then $E E+10 \%$ $\mathrm{MeOH})$, then preparative HPLC.
prep-HPLC ($80-100 \% \mathrm{~B}, 10 \mathrm{~mL} / \mathrm{min}, 10 \mathrm{~min}, 254 \mathrm{~nm}): \mathrm{t}_{R}(195)=4.88 \mathrm{~min}$.
$\operatorname{TLC}(C H / E E, 1 / 2): \mathrm{R}_{f}(195)=0.05$.
Yield 2 mg (33\%).
LC-MS (50-100\% B, $19 \mathbf{m i n}): \mathrm{t}_{\mathrm{R}}(\mathbf{1 9 5})=9.94 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=765.39\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$, found $=765.52\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$.

HRMS (ESI): calculated $=748.36914[\mathrm{M}+\mathrm{H}]^{+}$, found $=748.36950[\mathrm{M}+\mathrm{H}]^{+}$, err $[\mathrm{ppm}]=0.49$.
RP-HPLC (50-100\% B, $1.5 \mathrm{~mL} / \mathrm{min}, 15 \mathrm{~min}, 220 \mathrm{~nm}): \mathrm{t}_{\mathrm{R}}(195)=8.68 \mathrm{~min}(98 \%$ Purity).
(S)-(R)-1-(2-(2-(tert-butoxy)-2-oxoethoxy)phenyl)-3-(3,4-dimethoxyphenyl)propyl 1-((S)-2-cyclohexyl-2-(3,4,5-trimethoxyphenyl)acetyl)piperidine-2-carboxylate (AV561)
 196

196 is synthesized according to general procedure 5.9.7. Reactants: $\mathbf{7 7}$ (10 mg), $\mathbf{1 4 3}$ (10 mg), DMAP $(12 \mathrm{mg})$ and DIC $(4 \mu \mathrm{~L})$. The pure product is obtained as a white foam.
prep-HPLC (75-90\% B, $10 \mathrm{~mL} / \mathrm{min}, 10 \mathrm{~min}, 254 \mathrm{~nm}): \mathrm{t}_{R}(196)=6.55 \mathrm{~min}$.
Yield 5 mg (25\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.17-7.10(\mathrm{~m}, 1 \mathrm{H}), 6.79-6.72(\mathrm{~m}, 2 \mathrm{H}), 6.72-6.65(\mathrm{~m}, 3 \mathrm{H}), 6.65-6.61$ $(\mathrm{m}, 1 \mathrm{H}), 6.49(\mathrm{~s}, 2 \mathrm{H}), 6.21(\mathrm{dd}, \mathrm{J}=5.0,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.53(\mathrm{~d}, \mathrm{~J}=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.51-4.44(\mathrm{~m}, 1 \mathrm{H}), 3.97(\mathrm{~d}$, $\mathrm{J}=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.85-3.84(\mathrm{~m}, 6 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{~s}, 2 \mathrm{H}), 3.68(\mathrm{~s}, 4 \mathrm{H}), 3.38(\mathrm{~d}, \mathrm{~J}=9.9 \mathrm{~Hz}, 1 \mathrm{H})$, $2.86(t d, J=2.8,13.2 H z, 1 H), 2.72-2.58(\mathrm{~m}, 1 \mathrm{H}), 2.57-2.40(\mathrm{~m}, 1 \mathrm{H}), 2.35-2.28(\mathrm{~m}, 1 \mathrm{H}), 2.28-2.22$ $(\mathrm{m}, \mathrm{OH}), 2.15-1.86(\mathrm{~m}, 12 \mathrm{H}), 1.72-1.57(\mathrm{~m}, 1 \mathrm{H}), 1.47(\mathrm{~s}, 2 \mathrm{H}), 1.43(\mathrm{~s}, 6 \mathrm{H}), 1.38-1.24(\mathrm{~m}, 2 \mathrm{H}), 1.24$ $-1.06(\mathrm{~m}, 2 \mathrm{H}), 1.05-0.84(\mathrm{~m}, 1 \mathrm{H}), 0.82-0.59(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13}$ C-NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 172.56,170.40,167.94,154.30,153.47,153.22,148.90,147.26,137.02$, $134.37,133.65,129.51,128.47,126.78,126.57,121.75,121.63,120.42,120.26,112.02,111.93$, $111.77,111.45,111.34,111.19,105.84,105.48,82.35,72.07,70.73,66.14,66.03,61.06,60.89$, $56.49,56.16,56.08,55.96,55.25,52.29,43.89,41.53,41.28,39.84,37.42,37.19,33.15,33.01,31.14$, 30.82, 28.21, 28.17, 26.96, 26.74, 26.62, 26.35, 26.28, 25.80, 24.58, 21.07.

LC-MS (50-100\% B, 19 min$): \mathrm{t}_{\mathrm{R}}(196)=13.29 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=804.42[\mathrm{M}+\mathrm{H}]^{+}$, found $=804.49[\mathrm{M}+\mathrm{H}]^{+}$.

HRMS (ESI): calculated $=804.43174[\mathrm{M}+\mathrm{H}]^{+}$, found $=804.43169[\mathrm{M}+\mathrm{H}]^{+}$, err $[\mathrm{ppm}]=0.06$.
RP-HPLC (50-100\% B, $1.5 \mathrm{~mL} / \mathrm{min}, 15 \mathrm{~min}, 220 \mathrm{~nm}): \mathrm{t}_{R}(196)=14.02 \mathrm{~min}(95 \%$ Purity) .
(S)-(R)-1-(3-(2-(tert-butoxy)-2-oxoethoxy)phenyl)-3-(3,4-dimethoxyphenyl)propyl 1-((S)-2-cyclohexyl-2-(3,4,5-trimethoxyphenyl)acetyl)piperidine-2-carboxylate (AV603)

197
197 is synthesized according to general procedure 5.9.7. Reactants: 77 (24 mg), (R)-tert-butyl 2-(3-(3-(3,4-dimethoxyphenyl)-1-hydroxypropyl)phenoxy)acetate (23 mg) provided by Michael Bauder, DMAP $(28 \mathrm{mg})$ and DIC $(10 \mu \mathrm{~L})$. The pure product is obtained as a white foam.
prep-HPLC ($75-90 \% \mathrm{~B}, 10 \mathrm{~mL} / \mathrm{min}, 10 \mathrm{~min}, 254 \mathrm{~nm}): \mathrm{t}_{R}(197)=8.02 \mathrm{~min}$.
Yield 20 mg (43\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.10(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.86-6.81(\mathrm{~m}, 0 \mathrm{H}), 6.81-6.74(\mathrm{~m}, 1 \mathrm{H}), 6.74-$ $6.70(\mathrm{~m}, 1 \mathrm{H}), 6.69-6.65(\mathrm{~m}, 1 \mathrm{H}), 6.64-6.58(\mathrm{~m}, 2 \mathrm{H}), 6.49(\mathrm{~s}, 2 \mathrm{H}), 6.46-6.37(\mathrm{~m}, 2 \mathrm{H}), 5.57(\mathrm{dd}, \mathrm{J}=$ $5.8,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.50-5.45(\mathrm{~m}, 1 \mathrm{H}), 4.48(\mathrm{~s}, 2 \mathrm{H}), 4.00-3.94(\mathrm{~m}, 1 \mathrm{H}), 3.85-3.84(\mathrm{~m}, 6 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H})$, $3.72(\mathrm{~s}, 6 \mathrm{H}), 3.39(\mathrm{~d}, \mathrm{~J}=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.81-2.74(\mathrm{~m}, 1 \mathrm{H}), 2.64-2.49(\mathrm{~m}, 1 \mathrm{H}), 2.49-2.40(\mathrm{~m}, 1 \mathrm{H}), 2.39$ - $2.32(\mathrm{~m}, 1 \mathrm{H}), 2.13-2.00(\mathrm{~m}, 2 \mathrm{H}), 1.93(\mathrm{ddd}, \mathrm{J}=5.4,9.6,13.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.86(\mathrm{t}, \mathrm{J}=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.83-$ $1.75(\mathrm{~m}, 1 \mathrm{H}), 1.74-1.51(\mathrm{~m}, 6 \mathrm{H}), 1.47(\mathrm{~d}, \mathrm{~J}=0.8 \mathrm{~Hz}, 8 \mathrm{H}), 1.38-1.23(\mathrm{~m}, 3 \mathrm{H}), 1.14(\mathrm{q}, \mathrm{J}=12.4 \mathrm{~Hz}, 2 \mathrm{H})$, $0.95-0.71(m, 2 H), 0.70-0.52(m, 1 H)$.
${ }^{13}$ C-NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 173.03,170.34,168.24,167.98,158.28,157.91,153.49,153.25,149.12$, 148.99, 147.43, 141.89, 141.55, 137.04, 134.03, 133.54, 133.44, 129.99, 129.73, 120.40, 120.27, 120.05, 119.42, 114.01, 113.91, 113.75, 113.65, 111.93, 111.85, 111.57, 111.47, 105.87, 105.39, 82.63, $75.83,65.85,65.80,61.04,60.93,56.48,56.20,56.11,56.07,56.03,55.96,55.20,52.44,44.04$, $41.35,41.21,40.02,37.99,37.85,33.08,32.90,31.57,31.12,30.80,30.62,28.18,26.83,26.68,26.56$, 26.30, 26.19, 25.65, 24.41, 21.00, 20.79.

LC-MS (70-100\% B, $19 \mathbf{m i n}): \mathrm{t}_{\mathrm{R}}(197)=8.32 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=804.42[\mathrm{M}+\mathrm{H}]^{+}$, found $=804.52[\mathrm{M}+\mathrm{H}]^{+}$.

HRMS (ESI): calculated $=804.43174[\mathrm{M}+\mathrm{H}]^{+}$, found $=804.43215[\mathrm{M}+\mathrm{H}]^{+}$, err $[\mathrm{ppm}]=0.51$. RP-HPLC (50-100\% B, $1.5 \mathrm{~mL} / \mathrm{min}, 15 \mathrm{~min}, 220 \mathrm{~nm}): \mathrm{t}_{R}(197)=13.69 \mathrm{~min}(99 \%$ Purity).

(S)-(R)-1-(2-(2-(allyloxy)-2-oxoethoxy)phenyl)-3-(3,4-dimethoxyphenyl)propyl 1-((S)-2-cyclohexyl-2-(3,4,5-trimethoxyphenyl)acetyl)piperidine-2-carboxylate (AV644)

198
198 is synthesized according to general procedure 5.9.7. Reactants: $\mathbf{7 7}$ (24 mg), $\mathbf{1 4 4}$ (22 mg), DMAP $(28 \mathrm{mg})$ and DIC $(11 \mu \mathrm{~L})$. The pure product is obtained as a white foam.
prep-HPLC ($70-100 \%$ B, $10 \mathrm{~mL} / \mathrm{min}, 10 \mathrm{~min}, 254 \mathrm{~nm})$: $\mathrm{t}_{R}(198)=6.59 \mathrm{~min}$.
Yield 7 mg (16\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.84-6.74(\mathrm{~m}, 2 \mathrm{H}), 6.72-6.68(\mathrm{~m}, 2 \mathrm{H}), 6.66(\mathrm{dd}, \mathrm{J}=2.1,10.1 \mathrm{~Hz}, 3 \mathrm{H})$, $6.49(\mathrm{~s}, 2 \mathrm{H}), 6.21(\mathrm{dd}, \mathrm{J}=5.2,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.95-5.81(\mathrm{~m}, 1 \mathrm{H}), 5.53(\mathrm{~d}, \mathrm{~J}=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.31-5.25(\mathrm{~m}$, $1 \mathrm{H}), 5.25-5.19(\mathrm{~m}, 1 \mathrm{H}), 4.65(\mathrm{dt}, \mathrm{J}=1.4,5.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.97(\mathrm{~d}, \mathrm{~J}=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~d}, \mathrm{~J}=5.6 \mathrm{~Hz}$, $10 \mathrm{H}), 3.68(\mathrm{~s}, 4 \mathrm{H}), 3.38(\mathrm{~d}, \mathrm{~J}=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{t}, \mathrm{J}=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.72-2.50(\mathrm{~m}, 1 \mathrm{H}), 2.50-2.41(\mathrm{~m}$, 1H), $2.35-2.22(\mathrm{~m}, 10 \mathrm{H}), 2.09(\mathrm{~d}, \mathrm{~J}=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.03-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.89(\mathrm{~d}, \mathrm{~J}=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.75$ $-1.50(\mathrm{~m}, 7 \mathrm{H}), 1.46(\mathrm{t}, \mathrm{J}=12.9 \mathrm{~Hz}, 0 \mathrm{H}), 1.40-1.08(\mathrm{~m}, 5 \mathrm{H}), 0.83(\mathrm{dq}, \mathrm{J}=11.4,12.0,72.6 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13}$ C-NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 172.66,170.37,154.22,153.24,147.28,134.31,133.59,131.57,129.73$, $128.62,126.73,121.98,120.40,119.11,112.04,111.94,111.43,111.35,105.85,105.49,70.68,65.89$, $65.61,61.06,60.90,56.50,56.17,55.97,55.27,52.33,45.26,43.93,41.49,41.25,37.44,33.16,33.01$, 31.18, 30.82, 26.97, 26.96, 26.73, 26.35, 26.27, 25.79, 21.06.

LC-MS (70-100\% B, 19 min$): \mathrm{t}_{\mathrm{R}}(\mathbf{1 9 8})=7.65 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=788.40[\mathrm{M}+\mathrm{H}]^{+}$, found $=788.84[\mathrm{M}+\mathrm{H}]^{+}$.

HRMS (ESI): calculated $=788.40044[\mathrm{M}+\mathrm{H}]^{+}$, found $=788.40046[\mathrm{M}+\mathrm{H}]^{+}$, err $[\mathrm{ppm}]=0.03$.

RP-HPLC (50-100\% B, $1.5 \mathrm{~mL} / \mathrm{min}, 15 \mathrm{~min}, 220 \mathrm{~nm}): \mathrm{t}_{\mathrm{R}}(198)=12.74 \mathrm{~min}(96 \%$ Purity).

2-(2-((R)-1-((S)-1-((S)-2-cyclohexyl-2-(3,4,5-trimethoxyphenyl)acetyl)piperidine-2-carbonyl)oxy)-3-(3,4-dimethoxyphenyl)propyl)phenoxy)acetic acid (AV649)
 199
$198(6 \mathrm{mg}, 0.01 \mathrm{mmol}, 1.0 \mathrm{eq})$ is dissolved in 1 mL dry THF. Then $\mathrm{Pd}(\mathrm{OAc})_{2}(0.2 \mathrm{mg}, 0.1 \mathrm{eq}), \mathrm{PPh}_{3}(2 \mathrm{mg}$, $0.01 \mathrm{mmol}, 1.0 \mathrm{eq})$ and morpholine ($1 \mu \mathrm{~L}, 1.0 \mathrm{eq}$) are added. After 15 min the solvent is removed under airstream and the crude product purified by column chromatography ($\mathrm{CH} / \mathrm{EE}, 1 / 3$), then preparative HPLC.
prep-HPLC (70 - 100\% B, $10 \mathrm{~mL} / \mathrm{min}, 10 \mathrm{~min}, 254 \mathrm{~nm})$: $\mathrm{t}_{R}(199)=7.19 \mathrm{~min}$.
Silica column chromatography: $C H / E E, 1 / 3, v / v$.
$\operatorname{TLC}(C H / E E, 1 / 3): \mathrm{R}_{f}(199)=0.25$.
Yield 1.2 mg (20\%).
LC-MS (70-100\% B, 19 min$): \mathrm{t}_{\mathrm{R}}(199)=4.72 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=748.37[\mathrm{M}+\mathrm{H}]^{+}$, found $=748.36924[\mathrm{M}+\mathrm{H}]^{+}$.

HRMS (ESI): calculated $=748.36914[\mathrm{M}+\mathrm{H}]^{+}$, found $=748.36924[\mathrm{M}+\mathrm{H}]^{+}$, err $[\mathrm{ppm}]=0.14$.
RP-HPLC (50-100\% B, $1.5 \mathrm{~mL} / \mathrm{min}, 15 \mathrm{~min}, 220 \mathrm{~nm}): \mathrm{t}_{R}(199)=9.52 \mathrm{~min}$ (97% Purity).

(S)-(R)-3-(3,4-dimethoxyphenyl)-1-(pyridin-2-yl)propyl 1-((S)-2-cyclohexyl-2-(3,4,5-trimethoxyphenyl)acetyl)piperidine-2-carboxylate (AV548)

200
$\mathbf{2 0 0}$ is synthesized according to general procedure 5.9.7. Reactants: $\mathbf{7 7}$ (21 mg), $\mathbf{1 0 2}$ ($\mathbf{1 4} \mathrm{mg}$), DMAP $(253 \mathrm{mg})$ and DIC $(9 \mu \mathrm{~L})$. The pure product is obtained as a white foam.
prep-HPLC ($\mathbf{4 0} \mathbf{- 1 0 0 \% ~ B , ~} 10 \mathrm{~mL} / \mathrm{min}, 10 \mathrm{~min}, 254 \mathrm{~nm}): \mathrm{t}_{R}(200)=6.04 \mathrm{~min}$.
Yield 20 mg (59\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.79(\mathrm{~d}, \mathrm{~J}=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.16(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.37(\mathrm{~d}, 1 \mathrm{H}), 6.74(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.66-6.56(\mathrm{~m}, 2 \mathrm{H}), 6.41(\mathrm{~s}, 2 \mathrm{H}), 6.03(\mathrm{dd}, \mathrm{J}=5.2,7.9 \mathrm{~Hz}, 1 \mathrm{H})$, $5.48-5.43(\mathrm{~m}, 1 \mathrm{H}), 4.00(\mathrm{~d}, \mathrm{~J}=13.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.85-3.84(\mathrm{~m}, 2 \mathrm{H}), 3.84-3.81(\mathrm{~m}, 6 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H})$, $3.70(\mathrm{~s}, 5 \mathrm{H}), 3.44(\mathrm{~d}, \mathrm{~J}=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.03(\mathrm{td}, \mathrm{J}=3.0,13.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.67-2.51(\mathrm{~m}, 2 \mathrm{H}), 2.34-2.26$ $(m, 1 H), 2.26-2.13(m, 2 H), 2.08-1.96(m, 1 H), 1.83-1.62(m, 6 H), 1.61-1.46(m, 1 H), 1.43-1.24$ $(m, 2 H), 1.22-1.04(m, 2 H), 0.98-0.87(m, 1 H), 0.83-0.71(m, 1 H)$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 174.56,169.97,155.42,153.22,149.11,147.73,145.44,142.47,137.00$, $133.02,132.11,125.71,124.08,120.44,111.73,111.61,105.87,105.40,72.61,61.01,56.20,56.07$, $55.93,55.16,52.99,44.28,41.04,36.91,32.70,30.89,30.79,26.67,26.52,26.18,26.08,25.27,20.54$. LC-MS ($\mathbf{7 0 - 1 0 0 \%}$ B, $19 \mathbf{~ m i n}$): $\mathrm{t}_{\mathrm{R}}(\mathbf{2 0 0})=4.57 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=675.36[\mathrm{M}+\mathrm{H}]^{+}$, found $=675.62[\mathrm{M}+\mathrm{H}]^{+}$.

HRMS (ESI): calculated $=675.36399[\mathrm{M}+\mathrm{H}]^{+}$, found $=675.36444[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{err}[\mathrm{ppm}]=0.67$.
RP-HPLC (50-100\% B, $1.5 \mathrm{~mL} / \mathrm{min}, \mathbf{1 5} \mathbf{~ m i n , ~} 220 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}} \mathbf{(2 0 0)}=6.91 \mathrm{~min}(97 \%$ Purity).
(S)-(R)-3-(3,4-dimethoxyphenyl)-1-(pyridin-3-yl)propyl 1-((S)-2-cyclohexyl-2-(3,4,5-trimethoxyphenyl)acetyl)piperidine-2-carboxylate (AV471/AV549)

201
201 is synthesized according to general procedure 5.9.7. Reactants: 77 (23 mg), 98 (12 mg), DMAP $(27 \mathrm{mg})$ and DIC $(9 \mu \mathrm{~L})$. The pure product is obtained as a white foam.
prep-HPLC ($\mathbf{3 0} \mathbf{- 1 0 0 \%}$ B, $10 \mathrm{~mL} / \mathrm{min}, 10 \mathrm{~min}, 254 \mathrm{~nm}): \mathrm{t}_{R}(201)=4.82 \mathrm{~min}$.
Yield 14 mg (38\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.72(\mathrm{~s}, 2 \mathrm{H}), 7.73-7.59(\mathrm{~m}, 2 \mathrm{H}), 6.77(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.68-6.59(\mathrm{~m}$, $2 \mathrm{H}), 6.50(\mathrm{~s}, 2 \mathrm{H}), 5.76(\mathrm{dd}, \mathrm{J}=5.2,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.49-5.44(\mathrm{~m}, 1 \mathrm{H}), 4.03(\mathrm{~d}, \mathrm{~J}=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}$, $6 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{~s}, 5 \mathrm{H}), 3.42(\mathrm{~d}, \mathrm{~J}=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.04(\mathrm{~s}, 1 \mathrm{H}), 2.95(\mathrm{~s}, 1 \mathrm{H}), 2.80-2.71(\mathrm{~m}, 1 \mathrm{H})$, $2.58-2.42(\mathrm{~m}, 2 \mathrm{H}), 2.33-2.23(\mathrm{~m}, 1 \mathrm{H}), 2.13-1.99(\mathrm{~m}, 2 \mathrm{H}), 1.96-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.88-1.82(\mathrm{~m}, 1 \mathrm{H})$, $1.78-1.62(\mathrm{~m}, 6 \mathrm{H}), 1.55-1.44(\mathrm{~m}, 0 \mathrm{H}), 1.38-1.22(\mathrm{~m}, 3 \mathrm{H}), 1.22-1.08(\mathrm{~m}, 2 \mathrm{H}), 1.00-0.71(\mathrm{~m}, 2 \mathrm{H})$. ${ }^{13}$ C-NMR (126 MHz, CDCl ${ }_{3}$): $\delta 173.43,170.28,153.32,149.24,147.85,142.42,141.89,140.86,140.61$, $137.11,133.60,131.97,126.75,120.45,111.74,111.63,105.99,72.12,61.01,56.33,56.08,56.00$, $55.09,52.56,44.30,41.33,37.68,37.53,32.75,30.79,30.73,26.60,26.53,26.23,26.14,25.43,20.86$.

LC-MS (50-100\% B, $19 \mathbf{m i n}$): $\mathrm{t}_{\mathrm{R}}(\mathbf{2 0 1})=7.19 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=675.36[\mathrm{M}+\mathrm{H}]^{+}$, found $=675.59[\mathrm{M}+\mathrm{H}]^{+}$.

HRMS (ESI): calculated $=675.36399[\mathrm{M}+\mathrm{H}]^{+}$, found $=675.36394[\mathrm{M}+\mathrm{H}]^{+}$, err $[\mathrm{ppm}]=0.09$.
RP-HPLC ($\mathbf{3 0} \mathbf{- 1 0 0 \%}$ B, $1.5 \mathrm{~mL} / \mathrm{min}, 15 \mathrm{~min}, 220 \mathrm{~nm}$): $\mathrm{t}_{R}(\mathbf{2 0 1})=9.54 \mathrm{~min}$ (97% Purity).

(S)-(R)-3-(3,4-dimethoxyphenyl)-1-(pyridin-4-yl)propyl 1-((S)-2-cyclohexyl-2-(3,4,5-trimethoxyphenyl)acetyl)piperidine-2-carboxylate (AV550)

202
$\mathbf{2 0 2}$ is synthesized according to general procedure 5.9.7. Reactants: $\mathbf{7 7}$ (20 mg), $\mathbf{2 2 6}$ (13 mg), DMAP $(23 \mathrm{mg})$ and DIC $(8 \mu \mathrm{~L})$. The pure product is obtained as a white foam.
prep-HPLC ($\mathbf{3 0} \mathbf{- 1 0 0 \%}$ B, $10 \mathrm{~mL} / \mathrm{min}, 10 \mathrm{~min}, \mathbf{2 5 4} \mathrm{~nm}): \mathrm{t}_{R}(\mathbf{2 0 2)}=5.17 \mathrm{~min}$.
Yield 18 mg (56\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.75(\mathrm{~d}, \mathrm{~J}=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~d}, \mathrm{~J}=5.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.78(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H})$, $6.62(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.51(\mathrm{~s}, 2 \mathrm{H}), 5.75(\mathrm{dd}, \mathrm{J}=4.8,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.58-5.52(\mathrm{~m}, 1 \mathrm{H}), 4.09(\mathrm{~d}, \mathrm{~J}=13.8$ $\mathrm{Hz}, 1 \mathrm{H}), 3.85(\mathrm{~d}, \mathrm{~J}=0.8 \mathrm{~Hz}, 6 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~s}, 6 \mathrm{H}), 3.45(\mathrm{~d}, \mathrm{~J}=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{td}, \mathrm{J}=2.9$, $13.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.57-2.45(\mathrm{~m}, 2 \mathrm{H}), 2.29(\mathrm{~d}, \mathrm{~J}=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.15-2.04(\mathrm{~m}, 1 \mathrm{H}), 2.04-1.89(\mathrm{~m}, 1 \mathrm{H})$, $1.89-1.82(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.61(\mathrm{~m}, 4 \mathrm{H}), 1.58-1.46(\mathrm{~m}, 1 \mathrm{H}), 1.40-1.23(\mathrm{~m}, 6 \mathrm{H}), 1.22-1.07(\mathrm{~m}, 2 \mathrm{H})$, $0.97-0.72(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13}$ C-NMR (126 MHz, CDCl 3): $\delta 173.81,170.07,160.35,153.40,149.27,147.96,142.29,137.16,133.32$, $131.76,124.18,120.48,111.78,111.69,106.02,73.39,61.02,56.33,56.09,56.02,55.23,52.57$, $44.48,41.16,37.63,32.80,30.69,30.66,26.55,26.42,26.17,26.05,25.39,20.72$.

LC-MS (50-100\% B, $19 \mathbf{~ m i n}): \mathrm{t}_{\mathrm{R}}(\mathbf{2 0 2})=5.50 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=675.36[\mathrm{M}+\mathrm{H}]^{+}$, found $=675.76[\mathrm{M}+\mathrm{H}]^{+}$.

HRMS (ESI): calculated $=675.6399[\mathrm{M}+\mathrm{H}]^{+}$, found $=675.36446[\mathrm{M}+\mathrm{H}]^{+}$, $\operatorname{err}[\mathrm{ppm}]=0.70$.
RP-HPLC ($\mathbf{3 0} \mathbf{- 1 0 0 \%}$ B, $1.5 \mathrm{~mL} / \mathrm{min}, 15 \mathrm{~min}, 220 \mathrm{~nm}$): $\mathrm{t}_{R}(\mathbf{2 0 2)}$ = 9.38 min (98% Purity).
(S)-(R)-1-(3-((tert-butoxycarbonyl)amino)phenyl)-3-(3,4-dimethoxyphenyl)propyl 1-((S)-2-cyclohexyl-2-(3,4,5-trimethoxyphenyl)acetyl)piperidine-2-carboxylate (AV551)

Chemical Formula: $\mathrm{C}_{45} \mathrm{H}_{60} \mathrm{~N}_{2} \mathrm{O}_{10}$ Exact Mass: 788,42 Molecular Weight: 788,97

203

$\mathbf{2 3 3}$ is synthesized according to general procedure 5.9.7. Reactants: $\mathbf{7 7}$ (16 mg), $\mathbf{2 2 6}$ (15 mg), DMAP $(19 \mathrm{mg})$ and $\operatorname{DIC}(7 \mu \mathrm{~L})$. The pure product is obtained as a white foam.
prep-HPLC ($\mathbf{7 0} \mathbf{- 1 0 0 \%} \mathbf{B}, \mathbf{1 0} \mathbf{~ m L} / \mathrm{min}, 10 \mathrm{~min}, \mathbf{2 5 4} \mathbf{n m}): \mathrm{t}_{R}(\mathbf{2 0 3})=9.38 \mathrm{~min}$.
Yield 17 mg (57\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.41(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.95-6.91(\mathrm{~m}, 1 \mathrm{H}), 6.83$ $(\mathrm{s}, 1 \mathrm{H}), 6.79-6.75(\mathrm{~m}, 1 \mathrm{H}), 6.68-6.60(\mathrm{~m}, 2 \mathrm{H}), 6.55-6.50(\mathrm{~m}, 1 \mathrm{H}), 6.50(\mathrm{~s}, 1 \mathrm{H}), 5.57(\mathrm{dd}, \mathrm{J}=5.7,8.1$ $\mathrm{Hz}, 1 \mathrm{H}), 5.47(\mathrm{~d}, \mathrm{~J}=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{~d}, \mathrm{~J}=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.90-3.82(\mathrm{~m}, 11 \mathrm{H}), 3.79(\mathrm{~s}, 2 \mathrm{H}), 3.70(\mathrm{~s}$, $5 \mathrm{H}), 3.40(\mathrm{~d}, \mathrm{~J}=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.74(\mathrm{td}, \mathrm{J}=2.8,13.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.67-2.51(\mathrm{~m}, 1 \mathrm{H}), 2.49-2.40(\mathrm{~m}, 1 \mathrm{H})$, $2.40-2.23(\mathrm{~m}, 2 \mathrm{H}), 2.18-2.03(\mathrm{~m}, 1 \mathrm{H}), 1.95-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.84-1.74(\mathrm{~m}, 1 \mathrm{H}), 1.75-1.54(\mathrm{~m}, 6 \mathrm{H})$, $1.52(\mathrm{~s}, 6 \mathrm{H}), 1.51(\mathrm{~s}, 2 \mathrm{H}), 1.46-1.07(\mathrm{~m}, 5 \mathrm{H}), 0.96-0.71(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13}$ C-NMR (126 MHz, CDCl 3): $\delta 172.80,170.59,153.25,148.99,147.42,145.79,138.69,133.68,133.59$, $129.26,121.35,120.44,111.99,111.46,106.27,75.77,60.95,56.37,56.10,55.97,55.13,52.35$, 44.01, 41.20, 37.54, 32.89, 31.21, 28.54, 28.47, 26.82, 26.71, 26.33, 26.23, 25.65, 20.95.

LC-MS (70-100\% B, $19 \mathbf{m i n}): \mathrm{t}_{\mathrm{R}}(\mathbf{2 0 3})=7.92 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=789.42[\mathrm{M}+\mathrm{H}]^{+}$, found $=789.54[\mathrm{M}+\mathrm{H}]^{+}$.

HRMS (ESI): calculated $=789.43207[\mathrm{M}+\mathrm{H}]^{+}$, found $=789.43276[\mathrm{M}+\mathrm{H}]^{+}$, err $[\mathrm{ppm}]=0.87$.
RP-HPLC (50-100\% B, $1.5 \mathrm{~mL} / \mathrm{min}, 15 \mathrm{~min}, 220 \mathrm{~nm}): \mathrm{t}_{\mathrm{R}}(\mathbf{2 0 3})=13.28 \mathrm{~min}(92 \%$ Purity $)$.
(S)-(R)-1-(3-aminophenyl)-3-(3,4-dimethoxyphenyl)propyl 1-((S)-2-cyclohexyl-2-(3,4,5-trimethoxyphenyl)acetyl)piperidine-2-carboxylate (AV602)

204

$203(10 \mathrm{mg}, 0.013 \mathrm{mmol}, 1 \mathrm{eq})$ is dissolved in 3 mL DCM and $150 \mu \mathrm{~L}$ TFA added. The reaction is stirred for 20 min , then diluted with 50 mL sat. NaHCO_{3} solution and extracted with DCM ($3 \times 20 \mathrm{~mL}$), the combined organic phases dried over MgSO_{4}, filtered and the solvent removed. The crude product is purified by silica column chromatography (CH/EE, 3/2+1\% TEA) providing pure 204.
$\operatorname{TLC}(C H / E E, 3 / 2+1 \% T E A): R_{f}(204)=0.25$.
Yield 6 mg (69\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.00-6.93(\mathrm{~m}, 1 \mathrm{H}), 6.82-6.72(\mathrm{~m}, 1 \mathrm{H}), 6.68-6.63(\mathrm{~m}, 1 \mathrm{H}), 6.66-6.61$ $(\mathrm{m}, 1 \mathrm{H}), 6.54(\mathrm{~s}, 1 \mathrm{H}), 6.54-6.48(\mathrm{~m}, 1 \mathrm{H}), 6.45-6.41(\mathrm{~m}, 0 \mathrm{H}), 6.32-6.26(\mathrm{~m}, 1 \mathrm{H}), 6.20-6.15(\mathrm{~m}, 1 \mathrm{H})$, $5.55(\mathrm{dd}, \mathrm{J}=6.0,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.49(\mathrm{~d}, \mathrm{~J}=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.97-3.90(\mathrm{~m}, 1 \mathrm{H}), 3.88-3.81(\mathrm{~m}, 8 \mathrm{H}), 3.79(\mathrm{~s}$, $2 \mathrm{H}), 3.72(\mathrm{~s}, 4 \mathrm{H}), 3.37(\mathrm{~d}, \mathrm{~J}=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{td}, \mathrm{J}=2.8,13.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.66-2.51(\mathrm{~m}, 1 \mathrm{H}), 2.51-2.32$ $(\mathrm{m}, 2 \mathrm{H}), 2.32-2.22(\mathrm{~m}, 1 \mathrm{H}), 2.19-2.02(\mathrm{~m}, 1 \mathrm{H}), 1.98-1.87(\mathrm{~m}, 2 \mathrm{H}), 1.85-1.74(\mathrm{~m}, 1 \mathrm{H}), 1.73-1.54$ (m, 10H), $1.46-1.22(\mathrm{~m}, 4 \mathrm{H}), 1.24-1.06(\mathrm{~m}, 2 \mathrm{H}), 0.95-0.70(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13}$ C-NMR (126 MHz, CDCl_{3}): $\delta 172.14,170.75,153.19,148.97,147.39,146.70,141.34,137.07,129.35$, $122.31,120.41,116.90,114.75,112.90,112.00,111.42,106.15,105.50,75.98,60.94,56.50,56.32$, 56.09, 55.99, 55.19, 52.13, 43.81, 41.54, 37.93, 32.97, 31.26, 30.80, 26.84, 26.76, 26.31, 25.77, 21.10.

LC-MS (50-100\% B, 19 min$): \mathrm{t}_{\mathrm{R}}(\mathbf{2 0 4})=8.49 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=689.37[\mathrm{M}+\mathrm{H}]^{+}$, found $=689.32[\mathrm{M}+\mathrm{H}]^{+}$.

HRMS (ESI): calculated $=689.37964[\mathrm{M}+\mathrm{H}]^{+}$, found $=689.37987[\mathrm{M}+\mathrm{H}]^{+}$, err $[\mathrm{ppm}]=0.32$.
RP-HPLC ($\mathbf{3 0} \mathbf{- 1 0 0 \%}$ B, $1.5 \mathrm{~mL} / \mathrm{min}, 15 \mathrm{~min}, 220 \mathrm{~nm}): \mathrm{t}_{R}(\mathbf{2 0 4})=9.86 \mathrm{~min}(95 \%$ Purity).

(S)-(R)-1-(3-chlorophenyl)-3-(3,4-dimethoxyphenyl)propyl 1-((S)-2-cyclohexyl-2-(3,4,5trimethoxyphenyl)acetyl) piperidine-2-carboxylate (AV468)

205
205 is synthesized according to general procedure 5.9.7. Reactants: $\mathbf{7 7}$ (75 mg), $\mathbf{1 9 2}$ (50 mg), DMAP $(80 \mathrm{mg})$ and DIC $(28 \mu \mathrm{~L})$. The pure product is obtained as a white foam.
prep-HPLC ($\mathbf{7 0} \mathbf{- 1 0 0 \%} \mathbf{B}, \mathbf{1 0} \mathbf{~ m L} / \mathrm{min}, 10 \mathrm{~min}, \mathbf{2 5 4} \mathrm{~nm}): \mathrm{t}_{R}(205)=6.3 \mathrm{~min}$.
TLC (CH/EE, 1/1): $\mathrm{R}_{f}(\mathbf{2 0 5)}=0.5$.
Yield 20 mg (18\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.36-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.21-7.17(\mathrm{~m}, 1 \mathrm{H}), 7.12(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.03-$ $7.00(\mathrm{~m}, 1 \mathrm{H}), 6.76(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.71-6.68(\mathrm{~m}, 1 \mathrm{H}), 6.65-6.59(\mathrm{~m}, 2 \mathrm{H}), 6.50(\mathrm{~s}, 1 \mathrm{H}), 5.54(\mathrm{dd}, \mathrm{J}$ $=5.8,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.48(\mathrm{~d}, \mathrm{~J}=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.02-3.94(\mathrm{~m}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H})$, 3.73 (s, 6H), $3.39(\mathrm{~d}, \mathrm{~J}=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{td}, \mathrm{J}=2.8,13.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.64-2.51(\mathrm{~m}, 1 \mathrm{H}), 2.49-2.33(\mathrm{~m}$, $2 \mathrm{H}), 2.32-2.24(\mathrm{~m}, 1 \mathrm{H}), 2.16-2.01(\mathrm{~m}, 2 \mathrm{H}), 2.00-1.74(\mathrm{~m}, 3 \mathrm{H}), 1.72-1.51(\mathrm{~m}, 4 \mathrm{H}), 1.47-1.38(\mathrm{~m}$, $1 \mathrm{H}), 1.36-1.21(\mathrm{~m}, 2 \mathrm{H}), 1.22-1.05(\mathrm{~m}, 2 \mathrm{H}), 0.96-0.83(\mathrm{~m}, 1 \mathrm{H}), 0.81-0.70(\mathrm{~m}, 1 \mathrm{H}), 0.64-0.51(\mathrm{~m}$, 1H).
${ }^{13}$ C-NMR (126 MHz, CDCl 3): $\delta 172.80,170.34,153.46,153.24,149.00,147.48,142.28,137.04,134.22$, $133.47,133.19,130.18,129.95,128.79,128.25,126.90,126.83,125.16,124.53,120.38,120.25$, 111.90, 111.81, 111.58, 111.48, 105.84, 105.39, 76.35, 75.17, 61.01, 60.89, 56.46, 56.17, 56.09, $56.04,56.00,55.94,55.17,52.26,43.96,41.39,41.18,39.86,37.87,37.74,33.11,32.88,31.50,31.04$, $30.75,30.61,26.93,26.70,26.66,26.52,26.28,26.18,25.63,24.37,20.98,20.74$.

LC-MS (50-100\% B, $19 \mathbf{m i n}): \mathrm{t}_{\mathrm{R}}\left(\mathbf{2 0 5)}=7.99 \mathrm{~min}, \mathrm{~m} / \mathrm{z}\right.$: calculated $=708.32[\mathrm{M}+\mathrm{H}]^{+}$, found $=708.65[\mathrm{M}+\mathrm{H}]^{+}$.

HRMS (ESI): calculated $=708.32977[\mathrm{M}+\mathrm{H}]^{+}$, found $=708.33011[\mathrm{M}+\mathrm{H}]^{+}$, err $[\mathrm{ppm}]=0.48$.

RP-HPLC (50 - 100\% B, $1.5 \mathrm{~mL} / \mathrm{min}, 15 \mathrm{~min}, 220 \mathrm{~nm}): \mathrm{t}_{\mathrm{R}}(\mathbf{2 0 5)}=13.38 \mathrm{~min}(99 \%$ Purity).

(S)-(R)-1-(3-bromophenyl)-3-(3,4-dimethoxyphenyl)propyl 1-((S)-2-cyclohexyl-2-(3,4,5-trimethoxyphenyl)acetyl)piperidine-2-carboxylate (AV467)

206
206 is synthesized according to general procedure 5.9.7. Reactants: $\mathbf{7 7}$ (66 mg), $\mathbf{1 8 2}$ (50 mg), DMAP $(70 \mathrm{mg})$ and DIC $(24 \mu \mathrm{~L})$. The pure product is obtained as a white foam.
prep-HPLC ($\mathbf{7 0} \mathbf{- 1 0 0 \%} \mathbf{B}, \mathbf{1 0} \mathbf{~ m L} / \mathrm{min}, 10 \mathrm{~min}, \mathbf{2 5 4} \mathrm{~nm}): \mathrm{t}_{R}(206)=6.3 \mathrm{~min}$.
TLC (CH/EE, 2/1): $\mathrm{R}_{f}(\mathbf{2 0 6})=0.27$.
Yield 18 mg (17\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.36(\mathrm{ddd}, \mathrm{J}=1.0,2.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{t}, \mathrm{J}=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{t}, \mathrm{J}=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 6.77(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{dt}, \mathrm{J}=1.3,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.64-6.58(\mathrm{~m}, 2 \mathrm{H}), 6.50(\mathrm{~s}, 2 \mathrm{H}), 5.53$ (dd, J = 6.0, 8.0 Hz, 1H), $5.48(d, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.02-3.98(\mathrm{~m}, 1 \mathrm{H}), 3.87-3.86(\mathrm{~m}, 2 \mathrm{H}), 3.85-3.85$ (m, 5H), 3.79 (s, 2H), 3.73 (s, 5H), 3.40 (d, J = 10.0 Hz, 1H), 2.74 (td, J=2.9, 13.4 Hz, 1H), 2.66-2.51 $(\mathrm{m}, 1 \mathrm{H}), 2.48-2.33(\mathrm{~m}, 2 \mathrm{H}), 2.33-2.25(\mathrm{~m}, 1 \mathrm{H}), 2.15-2.01(\mathrm{~m}, 2 \mathrm{H}), 1.99-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.89-1.82$ $(m, 1 H), 1.83-1.74(m, 1 H), 1.71-1.54(m, 5 H), 1.49-1.39(m, 1 H), 1.38-1.22(m, 3 H), 1.21-1.05$ $(\mathrm{m}, 2 \mathrm{H}), 0.95-0.69(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13}$ C-NMR (126 MHz, CDCl ${ }_{3}$): $\delta 173.40,170.08,153.54,153.30,149.15,149.00,147.72,147.49,142.44$, $142.16,137.22,137.07,133.72,133.19,133.16,133.01,131.83,131.30,130.52,130.31,129.88$, 129.82, 125.67, 124.96, 122.95, 122.42, 120.42, 120.31, 111.91, 111.85, 111.64, 111.54, 105.84, $105.39,76.51,75.33,61.07,60.97,56.51,56.23,56.12,56.08,56.05,55.96,55.28,52.57,44.19$, $41.26,41.12,40.26,37.82,33.10,32.89,31.53,31.06,30.77,30.63,26.94,26.71,26.63,26.50,26.25$, 26.10, 25.59, 24.31, 20.89, 20.65.

LC-MS (50-100\% B, $19 \mathbf{m i n}): \mathrm{t}_{\mathrm{R}}(\mathbf{2 0 6})=8.42 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=752.27[\mathrm{M}+\mathrm{H}]^{+}$, found $=752.77[\mathrm{M}+\mathrm{H}]^{+}$.

HRMS (ESI): calculated $=752.27926[\mathrm{M}+\mathrm{H}]^{+}$, found $=752.27940[\mathrm{M}+\mathrm{H}]^{+}$, err $[\mathrm{ppm}]=0.20$.
RP-HPLC (50-100\% B, $1.5 \mathrm{~mL} / \mathrm{min}, 15 \mathrm{~min}, 220 \mathrm{~nm}): \mathrm{t}_{R}(\mathbf{2 0 6})=13.69 \mathrm{~min}$ (99% Purity).
(S)-(R)-3-(3,4-dimethoxyphenyl)-1-(3-fluorophenyl)propyl 1-((S)-2-cyclohexyl-2-(3,4,5-trimethoxyphenyl)acetyl)piperidine-2-carboxylate (AV466)

Chemical Formula: $\mathrm{C}_{40} \mathrm{H}_{50} \mathrm{FNO}_{8}$
Exact Mass: 691,35
Molecular Weight: 691,83
207
$\mathbf{2 0 7}$ is synthesized according to general procedure 5.9.7. Reactants: $\mathbf{7 7}(80 \mathrm{mg}), \mathbf{2 2 6}(50 \mathrm{mg})$, DMAP $(84 \mathrm{mg})$ and DIC $(30 \mu \mathrm{~L})$. The pure product is obtained as a white foam.
prep-HPLC ($70-100 \% \mathrm{~B}, 10 \mathrm{~mL} / \mathrm{min}, 10 \mathrm{~min}, 254 \mathrm{~nm}): \mathrm{t}_{\mathrm{R}}(207)=5.3 \mathrm{~min}$.
$\operatorname{TLC}(C H / E E, 2 / 1): \mathrm{R}_{f}(207)=0.27$.
Yield 42 mg (35\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.20-7.13(\mathrm{~m}, 1 \mathrm{H}), 6.94-6.87(\mathrm{~m}, 1 \mathrm{H}), 6.77(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.67-$ $6.63(\mathrm{~m}, 1 \mathrm{H}), 6.63-6.58(\mathrm{~m}, 3 \mathrm{H}), 6.51(\mathrm{~s}, 2 \mathrm{H}), 5.58(\mathrm{dd}, \mathrm{J}=7.9,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.50(\mathrm{~d}, \mathrm{~J}=5.5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.01(\mathrm{~d}, \mathrm{~J}=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.87-3.82(\mathrm{~m}, 10 \mathrm{H}), 3.77(\mathrm{~s}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 5 \mathrm{H}), 3.41(\mathrm{~d}, \mathrm{~J}=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.75$ - $2.67(\mathrm{~m}, 1 \mathrm{H}), 2.66-2.52(\mathrm{~m}, 1 \mathrm{H}), 2.47-2.33(\mathrm{~m}, 2 \mathrm{H}), 2.33-2.22(\mathrm{~m}, 1 \mathrm{H}), 2.15-1.99(\mathrm{~m}, 2 \mathrm{H}), 1.97$ $-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.88-1.82(\mathrm{~m}, 1 \mathrm{H}), 1.82-1.73(\mathrm{~m}, 1 \mathrm{H}), 1.73-1.53(\mathrm{~m}, 3 \mathrm{H}), 1.49-1.38(\mathrm{~m}, 1 \mathrm{H}), 1.35$ $-1.21(\mathrm{~m}, 2 \mathrm{H}), 1.20-1.04(\mathrm{~m}, 2 \mathrm{H}), 1.02-0.70(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13}$ C-NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 173.64,173.43,170.20,170.03,163.75,161.79,158.93,158.60,158.27$, $157.95,153.52,153.34,149.12,148.97,147.69,147.46,142.64,142.59,137.18,137.03,133.65$, 133.23, 133.15, 130.58, 130.52, 130.20, 130.14, 122.69, 122.21, 122.19, 120.43, 120.31, 115.76, 115.60, 115.18, 115.01, 113.80, 113.63, 113.49, 113.31, 111.91, 111.84, 111.63, 111.52, 105.73,
$105.33,76.61,75.40,61.05,60.89,56.44,56.26,56.15,56.06,55.93,55.23,52.55,44.24,41.24$, $41.10,40.30,37.77,33.07,32.84,31.50,31.04,30.72,30.59,26.89,26.60,26.47,26.21,26.05,25.58$, 24.27, 20.84, 20.61.

LC-MS (70-100\% B, $19 \mathbf{m i n}): \mathrm{t}_{\mathrm{R}}(\mathbf{2 0 7})=7.16 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=692.36[\mathrm{M}+\mathrm{H}]^{+}$,
found $=692.52[\mathrm{M}+\mathrm{H}]^{+}$.
HRMS (ESI): calculated $=692.35932[\mathrm{M}+\mathrm{H}]^{+}$, found $=692.35983[\mathrm{M}+\mathrm{H}]^{+}$, $\operatorname{err}[\mathrm{ppm}]=0.73$.
RP-HPLC ($\mathbf{5 0} \mathbf{- 1 0 0 \%}$ B, $1.5 \mathrm{~mL} / \mathrm{min}, 15 \mathrm{~min}, 220 \mathrm{~nm}$): $\mathrm{t}_{R}(207)=12.42 \mathrm{~min}$ (95% Purity) .
(S)-(R)-1-(3-cyanophenyl)-3-(3,4-dimethoxyphenyl)propyl 1-((S)-2-cyclohexyl-2-(3,4,5trimethoxyphenyl)acetyl) piperidine-2-carboxylate (AV552)

208
$\mathbf{2 0 8}$ is synthesized according to general procedure 5.9.7. Reactants: $\mathbf{7 7}$ (21 mg), $\mathbf{1 8 0}$ ($\mathbf{1 5} \mathrm{mg}$), DMAP $(25 \mathrm{mg})$ and DIC $(9 \mu \mathrm{~L})$. The pure product is obtained as a white foam.
prep-HPLC ($\mathbf{7 0} \mathbf{- 1 0 0 \%}$ B, $10 \mathrm{~mL} / \mathrm{min}, 10 \mathrm{~min}, 254 \mathrm{~nm}): \mathrm{t}_{R}(208)=6.88 \mathrm{~min}$.
Yield 20 mg (57\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.55-7.51(\mathrm{~m}, 1 \mathrm{H}), 7.38-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.31(\mathrm{t}, 1 \mathrm{H}), 7.05-6.98(\mathrm{~m}$, $1 \mathrm{H}), 6.78(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.64-6.58(\mathrm{~m}, 2 \mathrm{H}), 6.51(\mathrm{~s}, 2 \mathrm{H}), 5.59(\mathrm{dd}, \mathrm{J}=5.8,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.49(\mathrm{~d}, \mathrm{~J}=$ $5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{~d}, \mathrm{~J}=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.89-3.83(\mathrm{~m}, 8 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{~s}, 5 \mathrm{H}), 3.41(\mathrm{~d}, \mathrm{~J}=10.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.71(\mathrm{td}, \mathrm{J}=2.9,13.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.63-2.50(\mathrm{~m}, \mathrm{OH}), 2.50-2.33(\mathrm{~m}, 2 \mathrm{H}), 2.33-2.25(\mathrm{~m}, 1 \mathrm{H}), 2.18-$ $2.02(\mathrm{~m}, 2 \mathrm{H}), 2.02-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.91-1.76(\mathrm{~m}, 2 \mathrm{H}), 1.76-1.52(\mathrm{~m}, 4 \mathrm{H}), 1.51-1.40(\mathrm{~m}, 1 \mathrm{H}), 1.39-$ $1.08(\mathrm{~m}, 5 \mathrm{H}), 0.99-0.72(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13}$ C-NMR (126 MHz, CDCl 3): $\delta 173.48,170.06,153.33,149.07,147.60,141.74,137.10,133.24,132.82$, $131.92,130.82,130.29,129.63,120.42,118.46,112.61,111.85,111.57,105.86,105.40,74.94,60.99$,
$56.53,56.27,56.09,55.98,55.25,52.58,44.25,41.27,37.77,32.86,31.00,30.75,26.64,26.62,26.23$, 26.10, 25.56, 20.90.

LC-MS (70-100\% B, 19 min): $\mathrm{t}_{\mathrm{R}}(\mathbf{2 0 8})=6.16 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=699.36[\mathrm{M}+\mathrm{H}]^{+}$, found $=699.64[\mathrm{M}+\mathrm{H}]^{+}$.

HRMS (ESI): calculated $=699.36399[\mathrm{M}+\mathrm{H}]^{+}$, found $=699.36414[\mathrm{M}+\mathrm{H}]^{+}$, err $[\mathrm{ppm}]=0.22$.
RP-HPLC (50-100\% B, $1.5 \mathrm{~mL} / \mathrm{min}, 15 \mathrm{~min}, 220 \mathrm{~nm}): \mathrm{t}_{R}(\mathbf{2 0 8})=11.33 \mathrm{~min}$ (99% Purity).
(S)-(R)-3-(3,4-dimethoxyphenyl)-1-(3-methoxyphenyl)propyl 1-((S)-2-cyclohexyl-2-(3,4,5-trimethoxyphenyl)acetyl)piperidine-2-carboxylate (AV464/AV545)

Chemical Formula: $\mathrm{C}_{41} \mathrm{H}_{53} \mathrm{NO}_{9}$ Exact Mass: 703,37
Molecular Weight: 703,86

209

209 is synthesized according to general procedure 5.9.7. Reactants: $\mathbf{7 7}(42 \mathrm{mg}), \mathbf{8 1}(30 \mathrm{mg})$, DMAP $(50 \mathrm{mg})$ and DIC $(17 \mu \mathrm{~L})$. The pure product is obtained as a white foam.
prep-HPLC ($70-100 \% \mathrm{~B}, 10 \mathrm{~mL} / \mathrm{min}, 10 \mathrm{~min}, 254 \mathrm{~nm}): \mathrm{t}_{\mathrm{R}}(209)=6.8 \mathrm{~min}$.
Yield 26 mg (37\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.11(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.97-6.87(\mathrm{~m}, 1 \mathrm{H}), 6.83-6.74(\mathrm{~m}, 2 \mathrm{H}), 6.64-$ $6.58(\mathrm{~m}, 2 \mathrm{H}), 6.50(\mathrm{~s}, 2 \mathrm{H}), 6.41-6.36(\mathrm{~m}, 1 \mathrm{H}), 5.57(\mathrm{dd}, \mathrm{J}=6.1,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.49(\mathrm{~d}, \mathrm{~J}=5.1 \mathrm{~Hz}, 1 \mathrm{H})$, $4.05-3.98(\mathrm{~m}, 1 \mathrm{H}), 3.87-3.84(\mathrm{~m}, 9 \mathrm{H}), 3.82(\mathrm{~s}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 4 \mathrm{H}), 3.42(\mathrm{~d}, \mathrm{~J}=$ $10.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{td}, \mathrm{J}=2.8,13.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.71-2.51(\mathrm{~m}, 1 \mathrm{H}), 2.48-2.40(\mathrm{~m}, 1 \mathrm{H}), 2.40-2.25(\mathrm{~m}$, $2 \mathrm{H}), 2.18-2.00(\mathrm{~m}, 1 \mathrm{H}), 2.00-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.89-1.76(\mathrm{~m}, 1 \mathrm{H}), 1.75-1.52(\mathrm{~m}, 7 \mathrm{H}), 1.52-1.39(\mathrm{~m}$, 1H), $1.38-1.20(\mathrm{~m}, 3 \mathrm{H}), 1.20-1.05(\mathrm{~m}, 1 \mathrm{H}), 0.96-0.68(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13}$ C-NMR (126 MHz, CDCl 3): $\delta 173.91,170.16,170.02,159.58,158.76,158.43,153.49,153.26,148.86$, 147.31, 141.50, 136.85, 133.57, 133.07, 130.01, 129.71, 120.53, 120.41, 119.22, 118.55, 113.66, $113.23,112.81,111.98,111.57,105.78,105.33,76.40,61.12,60.99,56.45,56.17,56.09,56.04$,
$55.94,55.31,52.90,44.37,41.11,40.61,37.79,32.99,32.84,31.60,31.12,30.75,30.52,26.75,26.58$, 26.42, 26.18, 25.99, 25.54, 24.20, 20.80, 20.51.

LC-MS (50-100\% B, $19 \mathbf{m i n}): \mathrm{t}_{\mathrm{R}}(\mathbf{2 0 9})=6.85 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=704.37[\mathrm{M}+\mathrm{H}]^{+}$,
found $=704.45[\mathrm{M}+\mathrm{H}]^{+}$.
HRMS (ESI): calculated $=704.37931[\mathrm{M}+\mathrm{H}]^{+}$, found $=704.37956[\mathrm{M}+\mathrm{H}]^{+}$, $\operatorname{err}[\mathrm{ppm}]=0.36$.
RP-HPLC (50 - 100\% B, $1.5 \mathrm{~mL} / \mathrm{min}, 15 \mathrm{~min}, 220 \mathrm{~nm}): \mathrm{t}_{R}(209)=12.14 \mathrm{~min}$ (95% Purity) .
(S)-(R)-3-(3,4-dimethoxyphenyl)-1-(thiophen-2-yl)propyl 1-((S)-2-cyclohexyl-2-(3,4,5-trimethoxyphenyl)acetyl)piperidine-2-carboxylate (AV469)

Chemical Formula: $\mathrm{C}_{38} \mathrm{H}_{49} \mathrm{NO}_{8} \mathrm{~S}$
Exact Mass: 679,32
Molecular Weight: 679,86

210

$\mathbf{2 1 0}$ is synthesized according to general procedure 5.9.7. Reactants: $\mathbf{7 7}$ (88 mg), $\mathbf{1 5 9}$ (50 mg), DMAP $(93 \mathrm{mg})$ and DIC $(25 \mu \mathrm{~L})$. The pure product is obtained as a white foam.
prep-HPLC ($70-100 \%$ B w/ TFA, $10 \mathrm{~mL} / \mathrm{min}, 10 \mathrm{~min}, 220 \mathrm{~nm}$, $): \mathrm{t}_{\mathrm{R}}(210)=7.60 \mathrm{~min}$.
$\operatorname{TLC}(C H / E E, 2 / 1): \mathrm{R}_{f}(210)=0.24$.
Yield 4 mg (3\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.20-7.15(\mathrm{~m}, 1 \mathrm{H}), 6.87(\mathrm{dd}, \mathrm{J}=3.5,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.79-6.74(\mathrm{~m}, 2 \mathrm{H})$, $6.66-6.61(\mathrm{~m}, 2 \mathrm{H}), 6.51(\mathrm{~s}, 2 \mathrm{H}), 6.41(\mathrm{~s}, 1 \mathrm{H}), 5.89-5.85(\mathrm{~m}, 1 \mathrm{H}), 5.46(\mathrm{~d}, \mathrm{~J}=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{~d}, \mathrm{~J}=$ $13.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.86-3.85(\mathrm{~m}, 4 \mathrm{H}), 3.85-3.84(\mathrm{~m}, 4 \mathrm{H}), 3.77(\mathrm{~s}, 5 \mathrm{H}), 3.38(\mathrm{~d}, \mathrm{~J}=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.80-2.73$ $(\mathrm{m}, 1 \mathrm{H}), 2.68-2.56(\mathrm{~m}, 2 \mathrm{H}), 2.48-2.33(\mathrm{~m}, 2 \mathrm{H}), 2.32-2.27(\mathrm{~m}, 1 \mathrm{H}), 2.17-2.02(\mathrm{~m}, 1 \mathrm{H}), 2.01-1.92$ $(\mathrm{m}, 1 \mathrm{H}), 1.92-1.85(\mathrm{~m}, 2 \mathrm{H}), 1.73-1.58(\mathrm{~m}, 2 \mathrm{H}), 1.46-1.38(\mathrm{~m}, 2 \mathrm{H}), 1.37-1.21(\mathrm{~m}, 3 \mathrm{H}), 1.22-1.05$ $(m, 3 H), 0.94-0.84(m, 1 H), 0.79-0.70(m, 1 H)$.
${ }^{13}$ C-NMR (126 MHz, CDCl $_{3}$): $\delta 153.20,149.02,133.87,130.40,130.35,126.90,126.62,125.89,125.33$, $120.50,112.02,111.95,111.49,106.03,105.45,70.88,60.95,56.49,56.29,56.08,56.00,55.00$, $52.15,43.85,41.51,37.97,32.83,31.06,30.85,26.94,26.75,26.41,26.35,26.30,25.77,24.48,21.20$.

LC-MS (70-100\% B, $19 \mathbf{m i n}): \mathrm{t}_{\mathrm{R}}(\mathbf{2 1 0})=6.71 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=680.33[\mathrm{M}+\mathrm{H}]^{+}$,
found $=680.49[\mathrm{M}+\mathrm{H}]^{+}$.
HRMS (ESI): calculated $=680.32516[\mathrm{M}+\mathrm{H}]^{+}$, found $=680.32561[\mathrm{M}+\mathrm{H}]^{+}$, err $[\mathrm{ppm}]=0.66$.
RP-HPLC (50-100\% B, $1.5 \mathrm{~mL} / \mathrm{min}, 15 \mathrm{~min}, \mathbf{2 2 0} \mathrm{~nm}): \mathrm{t}_{R}(\mathbf{2 1 0})=11.92 \mathrm{~min}(95 \%$ Purity).
(S)-(R)-3-(3,4-dimethoxyphenyl)-1-(furan-2-yl)propyl 1-((S)-2-cyclohexyl-2-(3,4,5-trimethoxyphenyl)acetyl)piperidine-2-carboxylate (AV470)

Chemical Formula: $\mathrm{C}_{38} \mathrm{H}_{49} \mathrm{NO}_{9}$
Exact Mass: 663,34
Molecular Weight: 663,80

211

211 is synthesized according to general procedure 5.9.7. Reactants: $\mathbf{7 7}$ (40 mg), $\mathbf{1 5 5}$ (22 mg), DMAP $(45 \mathrm{mg})$ and DIC $(12 \mu \mathrm{~L})$. The pure product is obtained as a white foam.
prep-HPLC (70 - 100\% B w/ TFA, $10 \mathrm{~mL} / \mathrm{min}, 10 \mathrm{~min}, 254 \mathrm{~nm}): \mathrm{t}_{R}(211)=7.3 \mathrm{~min}$.
TLC (CH/EE, 5/1 + 1\% MeOH): $\mathrm{R}_{f}(\mathbf{2 1 1})=0.22$.
Yield 4 mg (6\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.29(\mathrm{dd}, \mathrm{J}=0.8,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.79-6.74(\mathrm{~m}, 1 \mathrm{H}), 6.74-6.67(\mathrm{~m}, 1 \mathrm{H})$, $6.62(\mathrm{~s}, 1 \mathrm{H}), 6.49(\mathrm{~s}, 1 \mathrm{H}), 6.42(\mathrm{~s}, 1 \mathrm{H}), 6.25(\mathrm{dd}, \mathrm{J}=1.8,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.10-6.07(\mathrm{~m}, 1 \mathrm{H}), 5.69(\mathrm{t}, \mathrm{J}=7.1$ $\mathrm{Hz}, 1 \mathrm{H}), 5.42(\mathrm{~d}, \mathrm{~J}=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.97-3.91(\mathrm{~m}, 1 \mathrm{H}), 3.86-3.85(\mathrm{~m}, 2 \mathrm{H}), 3.85-3.84(\mathrm{~m}, 2 \mathrm{H}), 3.83(\mathrm{~s}$, $6 \mathrm{H}), 3.78(\mathrm{~s}, 5 \mathrm{H}), 3.37(\mathrm{~d}, \mathrm{~J}=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{td}, \mathrm{J}=2.9,13.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.65-2.52(\mathrm{~m}, 1 \mathrm{H}), 2.48-2.39$ $(\mathrm{m}, 1 \mathrm{H}), 2.39-2.33(\mathrm{~m}, 1 \mathrm{H}), 2.33-2.24(\mathrm{~m}, 1 \mathrm{H}), 2.15-2.06(\mathrm{~m}, 2 \mathrm{H}), 2.02-1.94(\mathrm{~m}, 2 \mathrm{H}), 1.92-1.82$ (m, 2H), $1.72-1.61(\mathrm{~m}, 4 \mathrm{H}), 1.45-1.40(\mathrm{~m}, 1 \mathrm{H}), 1.36-1.29(\mathrm{~m}, 2 \mathrm{H}), 1.22-1.07(\mathrm{~m}, 2 \mathrm{H}), 0.96-0.83$ $(m, 1 H), 0.81-0.69(m, 1 H)$.
${ }^{13}$ C-NMR (126 MHz, CDCl $_{3}$): $\delta 172.62,170.61,153.13,142.41,133.72,133.41,120.47,120.34,112.01$, $111.90,111.58,111.48,110.57,110.31,109.43,108.43,105.99,105.46,68.55,60.93,56.47,56.26$, $56.26,56.08,55.99,55.06,52.25,43.72,41.42,34.23,32.84,31.47,30.88,30.86,30.77,27.03,26.74$, 26.36, 26.32, 25.74, 21.19.

LC-MS (70-100\% B, $19 \mathbf{m i n}): \mathrm{t}_{R}(\mathbf{2 1 1})=6.06 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=664.34[\mathrm{M}+\mathrm{H}]^{+}$, found $=664.65[\mathrm{M}+\mathrm{H}]^{+}$.

HRMS (ESI): calculated $=664.34801[\mathrm{M}+\mathrm{H}]^{+}$, found $=664.34803[\mathrm{M}+\mathrm{H}]^{+}$, $\operatorname{err}[\mathrm{ppm}]=0.04$.
RP-HPLC ($50-100 \%$ B, $1.5 \mathrm{~mL} / \mathrm{min}, 15 \mathrm{~min}, 220 \mathrm{~nm}$): $\mathrm{t}_{R}(211)=11.29 \mathrm{~min}(96 \%$ Purity) .

(S)-(R)-1-(3-methoxyphenyl)-3-(pyridin-4-yl)propyl 1-((S)-2-cyclohexyl-2-(3,4,5-trimethoxyphenyl)acetyl)piperidine-2-carboxylate (AV451)

212
$\mathbf{2 1 2}$ is synthesized according to general procedure 5.9.7. Reactants: $\mathbf{7 7}(86 \mathrm{mg}), \mathbf{1 0 6}(50 \mathrm{mg})$, DMAP $(100 \mathrm{mg})$ and DIC $(35 \mu \mathrm{~L})$. The pure product is obtained as a white foam.

Silica column chromatography: DCM/Ac, 10/1 + 1\% TEA, v/v.
$\operatorname{TLC}(D C M / A c, 10 / 1+1 \% ~ T E A): ~ R_{f}(212)=0.25$.
Yield 50 mg (38\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.52-8.39(\mathrm{~m}, 2 \mathrm{H}), 7.16-7.11(\mathrm{~m}, 2 \mathrm{H}), 6.84-6.78(\mathrm{~m}, 1 \mathrm{H}), 6.71-6.60$ $(\mathrm{m}, 3 \mathrm{H}), 6.43-6.38(\mathrm{~m}, 1 \mathrm{H}), 5.49(\mathrm{dd}, \mathrm{J}=5.0,7.3 \mathrm{~Hz}, 3 \mathrm{H}), 4.22(\mathrm{~d}, \mathrm{~J}=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.83-3.46(\mathrm{~m}$, 10 H), 2.65 (ddd, J = 2.9, 10.4, $15.2 \mathrm{~Hz}, 1 \mathrm{H}$), $2.48-2.31(\mathrm{~m}, 1 \mathrm{H}), 2.23-1.92(\mathrm{~m}, 2 \mathrm{H}), 1.88-1.81(\mathrm{~m}$, $1 \mathrm{H}), 1.75(\mathrm{~d}, \mathrm{~J}=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.70-1.40(\mathrm{~m}, 5 \mathrm{H}), 1.37-1.05(\mathrm{~m}, 6 \mathrm{H}), 1.04-0.97(\mathrm{~m}, 15 \mathrm{H})$.
${ }^{13}$ C-NMR (126 MHz, CDCl 3): $\delta 171.91,170.13,159.07,156.76,152.70,152.51,149.55,149.51,149.47$, 141.49, 136.12, 133.80, 129.60, 129.40, 123.75, 123.66, 118.35, 117.82, 113.55, 113.10, 111.80,
$111.54,105.81,105.36,75.69,74.69,59.96,59.74,55.93,55.60,55.32,54.98,54.93,52.75,51.47$, 43.01, 36.00, 31.74, 30.00, 29.77, 26.25, 26.12, 25.57, 25.12, 23.26, 20.55.

LC-MS (50-100\% B, $19 \mathbf{m i n}): \mathrm{t}_{\mathrm{R}}(\mathbf{2 1 2})=2.43 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=645.35[\mathrm{M}+\mathrm{H}]^{+}$, found $=645.70[\mathrm{M}+\mathrm{H}]^{+}$.
HRMS (ESI): calculated $=654.35343[\mathrm{M}+\mathrm{H}]^{+}$, found $=654.35392[\mathrm{M}+\mathrm{H}]^{+}$, err $[\mathrm{ppm}]=0.77$
RP-HPLC ($\mathbf{3 0} \mathbf{- 1 0 0 \%}$ B, $1.5 \mathrm{~mL} / \mathrm{min}, 15 \mathrm{~min}, \mathbf{2 2 0} \mathrm{~nm}$): $\mathrm{t}_{R}(\mathbf{2 1 2}$) $=10.89 \mathrm{~min}(95 \%$ Purity) .

(S)-(R)-1-(3-methoxyphenyl)-3-(pyridin-3-yl)propyl 1-((S)-2-cyclohexyl-2-(3,4,5-

 trimethoxyphenyl)acetyl)piperidine-2-carboxylate (AV547)

213
$\mathbf{2 1 3}$ is synthesized according to general procedure 5.9.7. Reactants: $\mathbf{7 7}(52 \mathrm{mg}), \mathbf{1 1 4}(30 \mathrm{mg})$, DMAP $(60 \mathrm{mg})$ and DIC $(21 \mu \mathrm{~L})$. The pure product is obtained as a white foam.
prep-HPLC ($\mathbf{3 0} \mathbf{- 1 0 0 \%} \mathbf{B}, 10 \mathrm{~mL} / \mathrm{min}, 10 \mathrm{~min}, 254 \mathrm{~nm}): \mathrm{t}_{R}(\mathbf{2 1 3})=6.68 \mathrm{~min}$.
Yield 31 mg (39\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.70(\mathrm{~d}, \mathrm{~J}=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.58(\mathrm{~s}, 1 \mathrm{H}), 8.08(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{dd}, \mathrm{J}=$ $5.5,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.79-6.73(\mathrm{~m}, 1 \mathrm{H}), 6.60-6.52(\mathrm{~m}, 3 \mathrm{H}), 6.42-6.36(\mathrm{~m}, 1 \mathrm{H})$, $5.57(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.44(\mathrm{~d}, \mathrm{~J}=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{~d}, \mathrm{~J}=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~d}, \mathrm{~J}=10.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.76$ $(d, J=0.8 \mathrm{~Hz}, 3 \mathrm{H}), 3.75(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}, 8 \mathrm{H}), 3.47(\mathrm{~d}, \mathrm{~J}=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{td}, \mathrm{J}=2.9,13.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.64$ (ddd, J = 5.5, 9.4, 14.9 Hz, 1H), 2.51 (ddd, J = 6.9, 9.3, $15.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.27 (d, J = $13.9 \mathrm{~Hz}, 1 \mathrm{H}$), 2.11 (p, J $=9.2,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.98-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.88-1.76(\mathrm{~m}, 2 \mathrm{H}), 1.74-1.53(\mathrm{~m}, 4 \mathrm{H}), 1.50-1.38(\mathrm{~m}, 1 \mathrm{H})$, 1.34 (dd, J = 3.2, $13.1 \mathrm{~Hz}, 2 \mathrm{H}$), $1.17(\mathrm{dq}, \mathrm{J}=12.2,12.8,19.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(q d, J=3.3,12.4 \mathrm{~Hz}, 1 \mathrm{H})$, $0.82-0.66(m, 1 H)$.
${ }^{13}$ C-NMR (126 MHz, CDCl_{3}): $\delta 173.38,170.35,161.20,159.85,153.26,145.40,141.68,141.43,140.27$, 139.64, 137.21, 133.83, 130.02, 126.59, 118.43, 113.47, 112.91, 106.24, 105.36, 75.18, 60.93, 56.45, $56.33,55.31,54.83,52.54,44.29,41.46,36.01,32.64,30.80,28.31,26.62,26.22,26.12,25.56,20.91$. LC-MS (50-100\% B, $19 \mathbf{m i n}): \mathrm{t}_{R}(\mathbf{2 1 3})=8.13 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=645.35[\mathrm{M}+\mathrm{H}]^{+}$, found $=645.68[\mathrm{M}+\mathrm{H}]^{+}$.

HRMS (ESI): calculated $=645.35343[\mathrm{M}+\mathrm{H}]^{+}$, found $=645.35379[\mathrm{M}+\mathrm{H}]^{+}$, $\mathrm{err}[\mathrm{ppm}]=0.57$.
RP-HPLC ($\mathbf{3 0} \mathbf{- 1 0 0 \%}$ B, $1.5 \mathrm{~mL} / \mathrm{min}, 15 \mathrm{~min}, \mathbf{2 5 4} \mathbf{n m}$): $\mathrm{t}_{R}(\mathbf{2 1 3})=9.45 \mathrm{~min}$ (95% Purity) .

(S)-(R)-1-(3-methoxyphenyl)-3-(pyridin-2-yl)propyl 1-((S)-2-cyclohexyl-2-(3,4,5-trimethoxyphenyl)acetyl)piperidine-2-carboxylate (AV546)

214
$\mathbf{2 1 4}$ is synthesized according to general procedure 5.9.7. Reactants: $\mathbf{7 7}$ (52 mg), $\mathbf{1 1 0}(\mathbf{3 0} \mathrm{mg})$, DMAP $(60 \mathrm{mg})$ and DIC $(21 \mu \mathrm{~L})$. The pure product is obtained as a white foam.
prep-HPLC ($40-100 \%$ B, $10 \mathrm{~mL} / \mathrm{min}, 10 \mathrm{~min}, 254 \mathrm{~nm}): \mathrm{t}_{R}(214)=6.71 \mathrm{~min}$.
Yield 35 mg (44\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.76(\mathrm{~s}, 1 \mathrm{H}), 8.22(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{t}, \mathrm{J}=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{~d}, \mathrm{~J}=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{ddd}, \mathrm{J}=0.8,2.6,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.64-6.61(\mathrm{~m}, 1 \mathrm{H}), 6.54(\mathrm{~s}$, $2 \mathrm{H}), 6.49-6.44(\mathrm{~m}, 1 \mathrm{H}), 5.59(\mathrm{dd}, \mathrm{J}=5.8,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.41(\mathrm{~d}, \mathrm{~J}=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{~d}, \mathrm{~J}=13.8 \mathrm{~Hz}, 1 \mathrm{H})$, $3.85-3.81(\mathrm{~m}, 3 \mathrm{H}), 3.74(\mathrm{~s}, 9 \mathrm{H}), 3.46(\mathrm{~d}, \mathrm{~J}=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.97-2.79(\mathrm{~m}, 3 \mathrm{H}), 2.59-2.51(\mathrm{~m}, 0 \mathrm{H})$, $2.51-2.31(\mathrm{~m}, 0 \mathrm{H}), 2.25(\mathrm{~d}, \mathrm{~J}=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.18-1.94(\mathrm{~m}, 3 \mathrm{H}), 1.89-1.78(\mathrm{~m}, 1 \mathrm{H}), 1.76-1.58(\mathrm{~m}$, $6 \mathrm{H}), 1.58-1.50(\mathrm{~m}, 1 \mathrm{H}), 1.50-1.37(\mathrm{~m}, 1 \mathrm{H}), 1.38-1.27(\mathrm{~m}, 2 \mathrm{H}), 1.27-1.03(\mathrm{~m}, 2 \mathrm{H}), 0.98-0.83(\mathrm{~m}$, $1 \mathrm{H}), 0.82-0.71(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 173.29,173.15,170.36,161.35,161.04,160.15,159.81,157.10,156.91$, $153.44,153.15,144.94,144.68,142.78,142.28,140.36,137.08,134.11,133.81,130.22,129.90$,
$126.82,126.23,124.44,124.20,118.82,118.25,117.07,114.76,114.23,113.87,112.34,112.21$, $106.20,105.31,75.85,75.10,61.00,60.89,56.35,56.29,56.21,55.54,55.38,55.27,54.84,52.55$, 44.19, 41.57, 41.16, 40.02, 35.28, 35.05, 33.02, 32.68, 30.81, 30.41, 30.03, 29.44, 26.67, 26.61, 26.46, 26.26, 26.18, 25.54, 24.42, 20.89, 20.70.

LC-MS (30-100\% B, $19 \mathbf{m i n}): \mathrm{t}_{\mathrm{R}}(\mathbf{2 1 4})=8.29 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=645.35[\mathrm{M}+\mathrm{H}]^{+}$, found $=645.59[\mathrm{M}+\mathrm{H}]^{+}$.
HRMS (ESI): calculated $=645.35343[\mathrm{M}+\mathrm{H}]^{+}$, found $=645.35416[\mathrm{M}+\mathrm{H}]^{+}$, $\operatorname{err}[\mathrm{ppm}]=1.13$.
RP-HPLC ($\mathbf{3 0} \mathbf{- 1 0 0 \%}$ B, $1.5 \mathrm{~mL} / \mathrm{min}, 15 \mathrm{~min}, 220 \mathrm{~nm}$): $\mathrm{t}_{R}(\mathbf{2 1 4})=9.61 \mathrm{~min}(95 \%$ Purity) .
(S)-(R)-3-(3,4-diethoxyphenyl)-1-(3-methoxyphenyl)propyl 1-((S)-2-cyclohexyl-2-(3,4,5-trimethoxyphenyl)acetyl)piperidine-2-carboxylate (AV462)

215
215 is synthesized according to general procedure 5.9.7. Reactants: 77 (50 mg), 86 (40 mg), DMAP $(50 \mathrm{mg})$ and DIC $(30 \mu \mathrm{~L})$. The pure product is obtained as a white foam.

Silica column chromatography: $C H / E E, 3 / 1, v / v$.
$\operatorname{TLC}(C H / E E, 3 / 1): \mathrm{R}_{f}(215)=0.29$.
Yield 47 mg (52\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.13-7.08(\mathrm{~m}, 1 \mathrm{H}), 6.96-6.88(\mathrm{~m}, 1 \mathrm{H}), 6.81-6.71(\mathrm{~m}, 2 \mathrm{H}), 6.68-6.58$ $(\mathrm{m}, 3 \mathrm{H}), 6.49(\mathrm{~s}, 1 \mathrm{H}), 6.42(\mathrm{~s}, 1 \mathrm{H}), 5.59-5.54(\mathrm{~m}, 1 \mathrm{H}), 5.48(\mathrm{~d}, \mathrm{~J}=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.10-4.01(\mathrm{~m}, 5 \mathrm{H})$, $3.94(\mathrm{~d}, \mathrm{~J}=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.86-3.82(\mathrm{~m}, 3 \mathrm{H}), 3.82-3.79(\mathrm{~m}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 2 \mathrm{H}), 3.71(\mathrm{~s}$, $4 \mathrm{H}), 3.37(\mathrm{~d}, \mathrm{~J}=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.78(\mathrm{td}, \mathrm{J}=2.9,13.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.71-2.49(\mathrm{~m}, 1 \mathrm{H}), 2.49-2.32(\mathrm{~m}, 1 \mathrm{H})$, $2.32-2.22(\mathrm{~m}, 1 \mathrm{H}), 2.16-2.01(\mathrm{~m}, 1 \mathrm{H}), 2.01-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.76-1.50(\mathrm{~m}, 5 \mathrm{H}), 1.46-1.37(\mathrm{~m}, 8 \mathrm{H})$, $1.37-1.06(m, 5 H), 0.96-0.66(m, 2 H)$.
${ }^{13}$ C-NMR (126 MHz, CDCl $_{3}$): $\delta 172.35,170.73,170.63,159.93,159.56,153.39,153.17,148.94,148.84$, 147.39, 147.14, 141.94, 141.72, 136.98, 134.41, 133.80, 133.73, 133.59, 129.83, 129.60, 120.64, $120.60,120.54,119.09,118.52,118.35,114.31,114.27,114.05,114.01,113.58,113.18,113.13$, $112.54,112.43,111.54,105.88,105.63,105.42,75.84,73.92,64.85,64.82,64.66,61.00,60.86$, $56.44,56.37,56.15,55.94,55.86,55.35,55.26,55.15,52.11,43.75,41.52,41.28,40.69,39.58,38.13$, $37.98,33.10,32.94,31.73,31.58,31.14,30.79,30.59,26.87,26.72,26.55,26.35,26.30,26.22,25.71$, 24.48, 21.10, 20.80, 15.05.

LC-MS (50-100\% B, 19 min$): \mathrm{t}_{\mathrm{R}}(215)=11.96 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=732.40[\mathrm{M}+\mathrm{H}]^{+}$, found $=732.04[\mathrm{M}+\mathrm{H}]^{+}$.

HRMS (ESI): calculated $=732.41061[\mathrm{M}+\mathrm{H}]^{+}$, found $=732.41037[\mathrm{M}+\mathrm{H}]^{+}$, $\operatorname{err}[\mathrm{ppm}]=0.33$.
RP-HPLC (50-100\% B, $1.5 \mathrm{~mL} / \mathrm{min}, 15 \mathrm{~min}, 254 \mathrm{~nm}): \mathrm{t}_{R}(215)=14.12 \mathrm{~min}$ (92% Purity).
(S)-(R)-3-(4-chloro-3-methoxyphenyl)-1-(3-methoxyphenyl)propyl 1-((S)-2-cyclohexyl-2-(3,4,5-trimethoxyphenyl)acetyl)piperidine-2-carboxylate (AV461)

216

216 is synthesized according to general procedure 5.9.7. Reactants: $\mathbf{7 7}$ (100 mg), $\mathbf{9 0}$ (72 mg), DMAP $(100 \mathrm{mg})$ and DIC $(80 \mu \mathrm{~L})$. The pure product is obtained as a white foam.

Silica column chromatography: $\mathrm{CH} / \mathrm{EE}, 3 / 1, \mathrm{v} / \mathrm{v}$.
$\operatorname{TLC}(C H / E E, 3 / 1): \mathrm{R}_{f}(216)=0.31$.
Yield 49 mg (29\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.21(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.95-6.85(\mathrm{~m}, 1 \mathrm{H}), 6.74$ (ddd, J = 0.9, 2.6, 8.3 Hz, 1H), $6.70-6.65(\mathrm{~m}, 1 \mathrm{H}), 6.64-6.58(\mathrm{~m}, 2 \mathrm{H}), 6.51(\mathrm{~s}, 1 \mathrm{H}), 6.39(\mathrm{~d}, \mathrm{~J}=1.1,7.7$ $\mathrm{Hz}, 1 \mathrm{H}), 5.58-5.51(\mathrm{~m}, 1 \mathrm{H}), 5.49-5.45(\mathrm{~m}, 1 \mathrm{H}), 3.97(\mathrm{~d}, \mathrm{~J}=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.84-3.82(\mathrm{~m}$,
$2 \mathrm{H}), 3.76(\mathrm{~s}, 2 \mathrm{H}), 3.74(\mathrm{~s}, 2 \mathrm{H}), 3.71(\mathrm{~s}, 5 \mathrm{H}), 3.39(\mathrm{~d}, \mathrm{~J}=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.78(\mathrm{td}, \mathrm{J}=2.9,13.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.67-$ $2.52(\mathrm{~m}, 1 \mathrm{H}), 2.51-2.33(\mathrm{~m}, 2 \mathrm{H}), 2.32-2.23(\mathrm{~m}, 1 \mathrm{H}), 2.16-2.01(\mathrm{~m}, 2 \mathrm{H}), 1.97-1.75(\mathrm{~m}, 3 \mathrm{H}), 1.75-$ $1.49(\mathrm{~m}, 6 \mathrm{H}), 1.46-1.05(\mathrm{~m}, 5 \mathrm{H}), 0.95-0.70(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13}$ C-NMR (126 MHz, CDCl 3): $\delta 172.43,172.36,170.73,170.64,159.96,159.57,155.03,154.91,153.38$, $153.18,141.61,141.37,141.13,140.93,137.02,134.33,133.77,130.20,130.07,129.90,129.65$, $121.31,121.14,120.33,120.01,119.06,118.47,113.60,113.19,112.63,112.53,112.42,105.89$, $105.40,76.75,75.55,60.98,60.83,56.42,56.18,56.15,55.93,55.84,55.34,55.25,55.04,52.12$, $43.79,41.54,41.24,39.56,37.72,37.59,33.11,32.84,31.87,31.34,30.75,30.56,26.89,26.80,26.68$, 26.53, 26.31, 26.26, 26.19, 25.66, 24.43, 21.06, 20.80.

LC-MS (50-100\% B, $19 \mathbf{m i n}): \mathrm{t}_{\mathrm{R}}\left(\mathbf{2 1 6)}=12.07 \mathrm{~min}, \mathrm{~m} / \mathrm{z}\right.$: calculated $=708.32[\mathrm{M}+\mathrm{H}]^{+}$, found $=708.07[\mathrm{M}+\mathrm{H}]^{+}$.

HRMS (ESI): calculated $=708.32977[\mathrm{M}+\mathrm{H}]^{+}$, found $=708.32966[\mathrm{M}+\mathrm{H}]^{+}$, err $[\mathrm{ppm}]=0.16$.
RP-HPLC (50-100\% B, $1.5 \mathrm{~mL} / \mathrm{min}, 15 \mathrm{~min}, 254 \mathrm{~nm}): \mathrm{t}_{R}(216)=14.28 \mathrm{~min}$ (99% Purity).
(S)-(R)-1-(3-methoxyphenyl)-3-(thiophen-2-yl)propyl 1-((S)-2-cyclohexyl-2-(3,4,5-trimethoxyphenyl)acetyl)piperidine-2-carboxylate (AV465)

217
217 is synthesized according to general procedure 5.9.7. Reactants: $\mathbf{7 7}$ (93 mg), $\mathbf{1 6 7}$ (50 mg), DMAP $(100 \mathrm{mg})$ and DIC $(34 \mu \mathrm{~L})$. The pure product is obtained as a white foam.
prep-HPLC ($\mathbf{7 0} \mathbf{- 1 0 0 \%}$ B, $10 \mathrm{~mL} / \mathrm{min}, 10 \mathrm{~min}, \mathbf{2 5 4} \mathrm{~nm}): \mathrm{t}_{R}(217)=6.5 \mathrm{~min}$.
TLC (CH/EE, 3/1 + 1\% HCOOH): $\mathrm{R}_{f}(\mathbf{2 1 7})=0.15$.
Yield 47 mg (33\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.13-7.08(\mathrm{~m}, 1 \mathrm{H}), 6.96-6.92(\mathrm{~m}, 1 \mathrm{H}), 6.92-6.86(\mathrm{~m}, 2 \mathrm{H}), 6.80-6.75$ $(\mathrm{m}, 1 \mathrm{H}), 6.74-6.71(\mathrm{~m}, 1 \mathrm{H}), 6.64-6.60(\mathrm{~m}, 1 \mathrm{H}), 6.49(\mathrm{~s}, 1 \mathrm{H}), 6.44-6.41(\mathrm{~m}, 1 \mathrm{H}), 5.61(\mathrm{dd}, \mathrm{J}=5.8$,
$8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.49(\mathrm{~d}, \mathrm{~J}=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.03-3.97(\mathrm{~m}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 2 \mathrm{H}), 3.76(\mathrm{~s}$, $2 \mathrm{H}), 3.74(\mathrm{~s}, 4 \mathrm{H}), 3.42(\mathrm{~d}, \mathrm{~J}=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.93-2.77(\mathrm{~m}, 2 \mathrm{H}), 2.75-2.59(\mathrm{~m}, 2 \mathrm{H}), 2.42-2.28(\mathrm{~m}$, $1 \mathrm{H}), 2.27-2.18(\mathrm{~m}, \mathrm{OH}), 2.16-1.95(\mathrm{~m}, 2 \mathrm{H}), 1.95-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.76-1.52(\mathrm{~m}, 5 \mathrm{H}), 1.50-1.39(\mathrm{~m}$, 1H), $1.37-1.22(\mathrm{~m}, 3 \mathrm{H}), 1.05-0.70(\mathrm{~m}, 2 \mathrm{H}), 0.70-0.48(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13}$ C-NMR (126 MHz, CDCl ${ }_{3}$): $\delta 173.96,173.74,170.06,170.00,160.00,159.62,158.56,158.23,153.51$, $153.26,143.36,143.28,141.40,141.16,137.06,136.95,133.64,133.04,130.04,129.74,127.07$, $126.97,124.75,124.66,123.58,123.44,119.05,118.41,116.13,113.78,113.32,112.61,112.56$, $105.79,105.53,105.29,75.90,61.07,60.96,56.42,56.35,56.17,56.04,55.38,55.29,52.75,44.28$, $41.12,40.51,38.05,37.94,33.01,32.85,30.76,30.53,26.78,26.59,26.41,26.20,26.03,25.99,25.74$, 25.56, 24.24, 20.82, 20.50.

LC-MS (50-100\% B, $19 \mathbf{m i n}): \mathrm{t}_{R}(\mathbf{2 1 7})=8.15 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=650.31[\mathrm{M}+\mathrm{H}]^{+}$, found $=650.48[\mathrm{M}+\mathrm{H}]^{+}$.

HRMS (ESI): calculated $=650.31460[\mathrm{M}+\mathrm{H}]^{+}$, found $=650.31482[\mathrm{M}+\mathrm{H}]^{+}$, $\operatorname{err}[\mathrm{ppm}]=0.33$.
RP-HPLC (50 - 100\% B, $1.5 \mathrm{~mL} / \mathrm{min}, 15 \mathrm{~min}, 220 \mathrm{~nm}): \mathrm{t}_{R}(217)=13.40 \mathrm{~min}(99 \%$ Purity) .
(S)-(R)-3-(furan-2-yl)-1-(3-methoxyphenyl)propyl 1-((S)-2-cyclohexyl-2-(3,4,5-trimethoxyphenyl)acetyl)piperidine-2-carboxylate (AV463)

218
218 is synthesized according to general procedure 5.9.7. Reactants: $\mathbf{7 7}$ (100 mg), $\mathbf{1 6 3}$ (50 mg), DMAP $(115 \mathrm{mg})$ and DIC $(36 \mu \mathrm{~L})$. The pure product is obtained as a white foam.

Silica column chromatography: $\mathrm{CH} / \mathrm{EE}, 4 / 1, \mathrm{v} / \mathrm{v}$.
$\operatorname{TLC}(C H / E E, 4 / 1): \mathrm{R}_{f}(218)=0.25$.
Yield 71 mg (52\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.11(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{ddd}, \mathrm{J}=1.0,2.6,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.66-6.61(\mathrm{~m}$, $1 \mathrm{H}), 6.49(\mathrm{~s}, 1 \mathrm{H}), 6.47-6.41(\mathrm{~m}, 1 \mathrm{H}), 6.27-6.22(\mathrm{~m}, 1 \mathrm{H}), 5.97-5.92(\mathrm{~m}, 1 \mathrm{H}), 5.59(\mathrm{dd}, \mathrm{J}=5.7,8.1 \mathrm{~Hz}$, $1 \mathrm{H}), 5.49-5.43(\mathrm{~m}, 1 \mathrm{H}), 3.97-3.89(\mathrm{~m}, 1 \mathrm{H}), 3.83(\mathrm{~d}, \mathrm{~J}=4.2 \mathrm{~Hz}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 1 \mathrm{H}), 3.76(\mathrm{~d}, \mathrm{~J}=1.2 \mathrm{~Hz}$, $4 \mathrm{H}), 3.74(\mathrm{~s}, 4 \mathrm{H}), 3.37(\mathrm{~d}, \mathrm{~J}=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.84-2.71(\mathrm{~m}, 1 \mathrm{H}), 2.70-2.62(\mathrm{~m}, 1 \mathrm{H}), 2.55-2.48(\mathrm{~m}, 1 \mathrm{H})$, $2.35-2.21(\mathrm{~m}, 1 \mathrm{H}), 2.21-2.01(\mathrm{~m}, 2 \mathrm{H}), 2.02-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.92-1.85(\mathrm{~m}, 2 \mathrm{H}), 1.70-1.51(\mathrm{~m}, 4 \mathrm{H})$, $1.48-1.36(\mathrm{~m}, 1 \mathrm{H}), 1.33-1.22(\mathrm{~m}, 3 \mathrm{H}), 1.21-1.07(\mathrm{~m}, 3 \mathrm{H}), 0.95-0.70(\mathrm{~m}, 2 \mathrm{H}), 0.71-0.51(\mathrm{~m}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}$-NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 13C NMR (126 MHz, CDCl3) $\delta 172.38,170.62,159.96,159.60,154.61$, $154.48,153.39,153.17,141.71,141.31,141.16,137.06,136.98,134.42,133.72,129.89,129.64$, $118.99,118.44,113.69,113.28,112.41,112.33,110.35,110.25,105.87,105.63,105.51,105.45$, $105.39,76.59,75.66,61.00,60.87,56.43,56.37,56.16,55.91,55.87,55.35,55.27,55.14,52.08$, $43.76,41.49,41.29,39.60,34.76,34.67,33.09,32.94,30.88,30.80,30.60,26.85,26.72,26.54,26.38$, 26.35, 26.30, 26.21, 25.70, 24.48, 24.43, 24.04, 21.05, 20.75.

LC-MS (50-100\% B, $19 \mathbf{m i n}): \mathrm{t}_{\mathrm{R}}(\mathbf{2 1 8})=12.17 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=634.33[\mathrm{M}+\mathrm{H}]^{+}$, found $=634.49[\mathrm{M}+\mathrm{H}]^{+}$.

HRMS (ESI): calculated $=634.33744[\mathrm{M}+\mathrm{H}]^{+}$, found $=634.33777[\mathrm{M}+\mathrm{H}]^{+}$, err $[\mathrm{ppm}]=0.52$.
RP-HPLC ($60-80 \%$ B, $1.5 \mathrm{~mL} / \mathrm{min}, 15 \mathrm{~min}, 220 \mathrm{~nm}): \mathrm{t}_{R}(\mathbf{2 1 8})=14.48 \mathrm{~min}(97 \%$ Purity) .

(S)-(R)-3-(pyridin-3-yl)-1-(pyridin-4-yl)propyl 1-((S)-2-cyclohexyl-2-(3,4,5-

 trimethoxyphenyl)acetyl)piperidine-2-carboxylate (AV773)

219
219 is synthesized according to general procedure 5.9.7. Reactants: 77 (14 mg), 131 (7 mg), DMAP $(16 \mathrm{mg})$ and DIC $(5 \mu \mathrm{~L})$. The pure product is obtained as a white foam.
prep-HPLC ($0-70 \%$ B, $10 \mathrm{~mL} / \mathrm{min}, 10 \mathrm{~min}, 254 \mathrm{~nm}$): $\mathrm{t}_{R}(219)$.
Yield 2 mg (10\%).

LC-MS (0-100\% B, 19 min$): \mathrm{t}_{\mathrm{R}}(\mathbf{2 1 9})=8.90 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=616.34[\mathrm{M}+\mathrm{H}]^{+}$, found $=616.33[\mathrm{M}+\mathrm{H}]^{+}$(99\% Purity, 93/7 dr).

HRMS (ESI): calculated $=618.33811[\mathrm{M}+\mathrm{H}]^{+}$, found $=618.33797[\mathrm{M}+\mathrm{H}]^{+}$, err $[\mathrm{ppm}]=0.22$.

(S)-(R)-1,3-di(pyridin-3-yl)propyl 1-((S)-2-cyclohexyl-2-(3,4,5-

trimethoxyphenyl)acetyl)piperidine-2-carboxylate (AV769)

Chemical Formula: $\mathrm{C}_{36} \mathrm{H}_{45} \mathrm{~N}_{3} \mathrm{O}_{6}$ Exact Mass: 615,33
Molecular Weight: 615,76
220
$\mathbf{2 2 0}$ is synthesized according to general procedure 5.9.7. Reactants: $\mathbf{7 7}$ (14 mg), $\mathbf{1 2 5}$ (7 mg), DMAP $(16 \mathrm{mg})$ and $\operatorname{DIC}(5 \mu \mathrm{~L})$. The pure product is obtained as a white foam.
prep-HPLC ($0-70 \% \mathrm{~B}, 10 \mathrm{~mL} / \mathrm{min}, 10 \mathrm{~min}, 254 \mathrm{~nm}): \mathrm{t}_{\mathrm{R}}(220)$.
Yield 4 mg (20\%).
LC-MS (0-100\% B, 19 min$): \mathrm{t}_{R}(\mathbf{2 2 0})=9.28 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=616.34[\mathrm{M}+\mathrm{H}]^{+}$,
found $=616.47[\mathrm{M}+\mathrm{H}]^{+}$(99\% Purity, 96/4 dr).
HRMS (ESI): calculated $=618.33811[\mathrm{M}+\mathrm{H}]^{+}$, found $=618.33819[\mathrm{M}+\mathrm{H}]^{+}$, err $[\mathrm{ppm}]=0.12$.
(S)-(R)-1,3-di(pyridin-4-yl)propyl 1-((S)-2-cyclohexyl-2-(3,4,5-trimethoxyphenyl)acetyl)piperidine-2-carboxylate (AV774)

221
221 is synthesized according to general procedure 5.9.7. Reactants: $\mathbf{7 7}$ (27 mg), $\mathbf{1 3 4}$ (14 mg), DMAP $(32 \mathrm{mg})$ and DIC $(9 \mu \mathrm{~L})$. The pure product is obtained as a white foam.
prep-HPLC (0 - 70\% B, $10 \mathrm{~mL} / \mathrm{min}, 10 \mathrm{~min}, 254 \mathrm{~nm}$): $\mathrm{t}_{R}(221)$.
Yield 9 mg (23\%).
LC-MS (0-100\% B, 19 min$): \mathrm{t}_{\mathrm{R}}(\mathbf{2 2 1})=8.67 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=616.34[\mathrm{M}+\mathrm{H}]^{+}$,
found $=616.35[\mathrm{M}+\mathrm{H}]^{+}$(99\% Purity, 95/5 dr).
HRMS (ESI): calculated $=618.33811[\mathrm{M}+\mathrm{H}]^{+}$, found $=618.33822[\mathrm{M}+\mathrm{H}]^{+}$, err $[\mathrm{ppm}]=0.17$.
(S)-(R)-3-(pyridin-2-yl)-1-(pyridin-3-yl)propyl 1-((S)-2-cyclohexyl-2-(3,4,5-trimethoxyphenyl)acetyl)piperidine-2-carboxylate (AV770)

$\mathbf{2 2 2}$ is synthesized according to general procedure 5.9.7. Reactants: $\mathbf{7 7}$ (16 mg), $\mathbf{1 2 8}(8 \mathrm{mg})$, DMAP $(18 \mathrm{mg})$ and DIC $(5 \mu \mathrm{~L})$. The pure product is obtained as white foam.
prep-HPLC ($0-70 \% \mathrm{~B}, 10 \mathrm{~mL} / \mathrm{min}, 10 \mathrm{~min}, 254 \mathrm{~nm}): \mathrm{t}_{R}(222)$.
Yield 6 mg (26\%).
LC-MS (0-100\% B, 19 min$): \mathrm{t}_{R}(\mathbf{2 2 2})=9.55 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=616.34[\mathrm{M}+\mathrm{H}]^{+}$, found $=616.42[\mathrm{M}+\mathrm{H}]^{+}$(99\% Purity, 89/11 dr).

HRMS (ESI): calculated $=618.33811[\mathrm{M}+\mathrm{H}]^{+}$, found $=618.33810[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{err}[\mathrm{ppm}]=0.02$.

((S)-(R)-1-(pyridin-3-yl)-3-(pyridin-4-yl)propyl 1-((S)-2-cyclohexyl-2-(3,4,5-trimethoxyphenyl)acetyl)piperidine-2-carboxylate (AV772)

Chemical Formula: $\mathrm{C}_{36} \mathrm{H}_{45} \mathrm{~N}_{3} \mathrm{O}_{6}$ Exact Mass: 615,33
Molecular Weight: 615,76
223
223 is synthesized according to general procedure 5.9.7. Reactants: $\mathbf{7 7}$ (20 mg), $\mathbf{1 3 7}$ (10 mg), DMAP $(23 \mathrm{mg})$ and $\operatorname{DIC}(7 \mu \mathrm{~L})$. The pure product is obtained as a white foam.
prep-HPLC ($0-70 \%$ B, $10 \mathrm{~mL} / \mathrm{min}, 10 \mathrm{~min}, 254 \mathrm{~nm})$: $\mathrm{t}_{R}(223$.
Yield 7 mg (25\%).
LC-MS (0-100\% B, $19 \mathbf{m i n}): \mathrm{t}_{R}(\mathbf{2 2 3})=9.01 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=616.34[\mathrm{M}+\mathrm{H}]^{+}$, found $=616.44[\mathrm{M}+\mathrm{H}]^{+}$(99\% Purity, 92/8 dr).

HRMS (ESI): calculated $=618.33811[\mathrm{M}+\mathrm{H}]^{+}$, found $=618.33853[\mathrm{M}+\mathrm{H}]^{+}$, err $[\mathrm{ppm}]=0.68$.
(S)-(R)-1-(3-(2-(tert-butoxy)-2-oxoethoxy)phenyl)-3-(pyridin-3-yl)propyl 1-((S)-2-cyclohexyl-2-(3,4,5-trimethoxyphenyl)acetyl)piperidine-2-carboxylate (AV737)

Chemical Formula: $\mathrm{C}_{43} \mathrm{H}_{56} \mathrm{~N}_{2} \mathrm{O}_{9}$
Exact Mass: 744,40
Molecular Weight: 744,91

224

$\mathbf{2 2 4}$ is synthesized according to general procedure 5.9.7. Reactants: $\mathbf{7 7}$ (61 mg), $\mathbf{1 1 9}$ (50 mg), DMAP (71 mg) and DIC $(25 \mu \mathrm{~L})$. The pure product is obtained as a white foam.

Silica column chromatography: $\mathrm{CH} / \mathrm{EE}, 1 / 1,+1 \% \mathrm{MeOH}, \mathrm{v} / \mathrm{v}$.
TLC (CH/EE, 1/1, + 1\% MeOH, v/v): $\mathrm{R}_{f}(\mathbf{2 2 4})=0.25$.
Yield 73 mg (68\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.46-8.39(\mathrm{~m}, 1 \mathrm{H}), 8.37-8.31(\mathrm{~m}, 1 \mathrm{H}), 7.48-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.21-7.14$ $(\mathrm{m}, 1 \mathrm{H}), 7.09(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.75-6.70(\mathrm{~m}, 1 \mathrm{H}), 6.68-6.64(\mathrm{~m}, 1 \mathrm{H}), 6.49(\mathrm{~s}, 2 \mathrm{H}), 6.43-6.35(\mathrm{~m}$, $1 \mathrm{H}), 5.56$ (dd, J = 5.8, $7.8 \mathrm{~Hz}, 1 \mathrm{H}$), $5.44(\mathrm{~d}, \mathrm{~J}=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~d}, \mathrm{~J}=14.2 \mathrm{~Hz}, 0 \mathrm{H}), 4.52-4.46(\mathrm{~m}, 2 \mathrm{H})$, $4.34-4.25(\mathrm{~m}, 2 \mathrm{H}), 3.95(\mathrm{~d}, \mathrm{~J}=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.84-3.78(\mathrm{~m}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 2 \mathrm{H}), 3.70(\mathrm{~s}, 4 \mathrm{H}), 3.37(\mathrm{~d}, \mathrm{~J}=$ $9.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.80-2.72(\mathrm{~m}, 1 \mathrm{H}), 2.66-2.36(\mathrm{~m}, 2 \mathrm{H}), 2.34-2.22(\mathrm{~m}, 1 \mathrm{H}), 2.17-2.03(\mathrm{~m}, 1 \mathrm{H}), 1.98-$ $1.77(\mathrm{~m}, 2 \mathrm{H}), 1.73-1.52(\mathrm{~m}, 4 \mathrm{H}), 1.45(\mathrm{~s}, 6 \mathrm{H}), 1.36-1.27(\mathrm{~m}, 1 \mathrm{H}), 1.10(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 9 \mathrm{H}), 0.94-0.69$ ($\mathrm{m}, 2 \mathrm{H}$).
${ }^{13}$ C-NMR (126 MHz, CDCl_{3}): $\delta 172.49,172.31,170.54,167.97,167.77,158.32,157.99,157.16,153.38$, $153.15,149.94,149.83,147.90,147.69,141.42,141.16,137.01,136.26,135.96,135.74,134.32$, $133.75,130.04,129.79,123.54,123.46,119.88,119.24,114.12,113.93,113.75,113.43,105.95$, 105.59, 105.36, 82.60, 82.42, 76.55, 75.34, 65.81, 65.75, 60.96, 60.85, 60.47, 56.42, 56.34, 56.18, $55.97,55.80,55.03,52.14,43.80,42.12,41.50,41.26,39.57,37.46,37.29,33.12,32.84,30.75,30.59$, 29.09, 28.59, 28.13, 26.96, 26.80, 26.67, 26.54, 26.29, 26.25, 26.18, 25.62, 24.43, 23.60, 21.06, 20.86, 14.29.

LC-MS (50-100\% B, $19 \mathbf{~ m i n}): \mathrm{t}_{\mathrm{R}}(\mathbf{2 2 4})=5.88 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=745.41[\mathrm{M}+\mathrm{H}]^{+}$, found $=745.52[\mathrm{M}+\mathrm{H}]^{+}$.

HRMS (ESI): calculated $=745.40586[\mathrm{M}+\mathrm{H}]^{+}$, found $=745.40617[\mathrm{M}+\mathrm{H}]^{+}$, err $[\mathrm{ppm}]=0.42$.

2-(3-((R)-1-((S)-1-((S)-2-cyclohexyl-2-(3,4,5-trimethoxyphenyl)acetyl)piperidine-2-carbonyl)oxy)-3-(pyridin-3-yl)propyl)phenoxy)acetic acid (AV739)

225
225 (22 mg, $0.03 \mathrm{mmol}, 1.0 \mathrm{eq}$) is dissolved in 1 mL dry THF. Then $\mathrm{Pd}(\mathrm{OAc})_{2}(0.2 \mathrm{mg}, 0.1 \mathrm{eq}), \mathrm{PPh}_{3}$ ($2 \mathrm{mg}, 0.01 \mathrm{mmol}, 1.0 \mathrm{eq}$) and morpholine ($1 \mu \mathrm{~L}, 1.0 \mathrm{eq}$) are added. After 30 min the solvent is removed under airstream and the crude product purified by column chromatography (DCM $+5 \%$ MeOH).

TLC (DCM + 6\% MeOH): $\mathrm{R}_{f}(\mathbf{2 2 5})=0.26$.
Yield 19 mg (95\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}\right.$, DMSO-d $\left.\mathrm{d}_{6}\right): \delta 8.63-8.41(\mathrm{~m}, 2 \mathrm{H}), 7.88-7.78(\mathrm{~m}, 1 \mathrm{H}), 7.58-7.45(\mathrm{~m}, 1 \mathrm{H}), 7.11(\mathrm{t}$, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.81-6.76(\mathrm{~m}, 1 \mathrm{H}), 6.76-6.73(\mathrm{~m}, 1 \mathrm{H}), 6.66-6.60(\mathrm{~m}, 2 \mathrm{H}), 6.44-6.35(\mathrm{~m}, 1 \mathrm{H}), 5.51$ $(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.30-5.25(\mathrm{~m}, 1 \mathrm{H}), 4.71-4.62(\mathrm{~m}, 2 \mathrm{H}), 4.21(\mathrm{~d}, \mathrm{~J}=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.76-3.72(\mathrm{~m}$, $2 \mathrm{H}), 3.60(\mathrm{~s}, 5 \mathrm{H}), 3.53(\mathrm{~s}, 2 \mathrm{H}), 2.72-2.63(\mathrm{~m}, 1 \mathrm{H}), 2.57-2.52(\mathrm{~m}, 1 \mathrm{H}), 2.45-2.37(\mathrm{~m}, 1 \mathrm{H}), 2.23-2.06$ $(\mathrm{m}, 1 \mathrm{H}), 2.07-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.78-1.71(\mathrm{~m}, 1 \mathrm{H}), 1.71-1.41(\mathrm{~m}, 5 \mathrm{H}), 1.41-1.29$ $(\mathrm{m}, 1 \mathrm{H}), 1.29-1.03(\mathrm{~m}, 5 \mathrm{H}), 1.03-0.72(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13}$ C-NMR (126 MHz, DMSO- \boldsymbol{d}_{6}): $\delta 172.04,171.73,170.18,170.10,170.03,169.96,158.02,157.85$, $157.58,152.69,152.50,146.79,144.80,141.51,141.46,139.01,136.17,136.10,134.63,133.80$, $129.62,129.41,118.89,118.24,113.93,113.56,112.65,112.57,105.85,105.41,75.67,74.56,64.45$, 59.99, 59.78, 55.96, 55.64, 52.74, 51.57, 43.04, 40.80, 40.57, 36.67, 36.55, 32.02, 31.73, 29.77, 28.95, 28.25, 27.74, 26.24, 26.11, 25.90, 25.56, 25.06, 20.53.

LC-MS (0-100\% B, $19 \mathbf{m i n}): \mathrm{t}_{\mathrm{R}}(\mathbf{2 2 5})=10.36 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=689.34[\mathrm{M}+\mathrm{H}]^{+}$, found $=689.47[\mathrm{M}+\mathrm{H}]^{+}$.

HRMS (ESI): calculated $=689.34326[\mathrm{M}+\mathrm{H}]^{+}$, found $=689.34358[\mathrm{M}+\mathrm{H}]^{+}$, err $[\mathrm{ppm}]=0.47$.

6.5. A/B ring derivatization through Click reaction

6.5.1. Building blocks

(R)-3-(3,4-dimethoxyphenyl)-1-(3-(prop-2-yn-1-yloxy)phenyl)propan-1-ol (AV563/AV648)

Chemical Formula: $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{4}$
Exact Mass: 326,15
Molecular Weight: 326,39

226

$7(200 \mathrm{mg}, 0.70 \mathrm{mmol}, 1.0 \mathrm{eq})$ is dissolved in 20 mL dry $\mathrm{MeCN} . \mathrm{K}_{2} \mathrm{CO}_{3}(550 \mathrm{~g}, 2.80 \mathrm{mmol}, 4.0 \mathrm{eq})$ and propargyl bromide ($80 \mathrm{wt} \%$ in toluene, $120 \mu \mathrm{~L}, 0.76 \mathrm{mmol}, 1.1 \mathrm{eq}$) is added. The reaction is stirred at room temperature overnight. After complete conversion, the suspension is filtered, washed with MeCN and the solvent removed under reduced pressure. The crude product $\mathbf{2 2 6}$ is obtained as a colorless oil and used without further purification.

Yield 225 mg (quant.).
TLC (CH/EE, 3/1): $\mathrm{R}_{f}(\mathbf{2 2 6})=0.20$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.30-7.26(\mathrm{~m}, 1 \mathrm{H}), 6.99-6.95(\mathrm{~m}, 2 \mathrm{H}), 6.89(\mathrm{dt}, \mathrm{J}=1.7,8.2 \mathrm{~Hz}, 1 \mathrm{H})$,
$6.81-6.69(\mathrm{~m}, 3 \mathrm{H}), 4.71-4.64(\mathrm{~m}, 3 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 2.65(\mathrm{dddd}, J=6.1,9.5,14.0,30.0$ $\mathrm{Hz}, 2 \mathrm{H}), 2.51(\mathrm{td}, J=0.7,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.18-1.93(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13}$ C-NMR (126 MHz, CDCl 3): $\delta 157.86,148.98,147.33,146.57,134.46,129.65,120.31,119.25,113.98$, 112.69, 111.93, 111.44, 78.67, 75.66, 73.79, 56.05, 55.94, 55.91, 40.67, 31.70.

LC-MS (50-100\% B, $19 \mathbf{m i n}): \mathrm{t}_{\mathrm{R}}(\mathbf{2 2 6})=4.42 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=344.18\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$, found $=344.17\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$.

RP-HPLC (50-100\% B, $1.5 \mathrm{~mL} / \mathrm{min}, 15 \mathrm{~min}, 254 \mathrm{~nm}): \mathrm{t}_{R}(\mathbf{2 2 6})=4.08 \mathrm{~min}(98 \%$ Purity).

2-oxo-2-(3,4,5-trimethoxyphenyl)acetic acid (AV657/AV659)

227

3, 4, 5-Trimethoxyacetophenone ($2.93 \mathrm{~g}, 14 \mathrm{mmol}, 1.0 \mathrm{eq}$) is dissolved in 30 mL dry pyridine. SeO_{2} $(2.32 \mathrm{~g}, 21 \mathrm{mmol}, 1.5 \mathrm{eq})$ is added and the mixture heated to reflux overnight. The slurry is filtered over celite and washed with toluene. The solvent is removed under reduced pressure and coevaporated with toluene (1x). The yellow solid is purified by silica column chromatography (EE $+1 \%$ acetic acid). Product 227 is obtained as a slight pink pyridine salt ($\sim 50 \%$ determined by NMR) and used as such in further reactions.

Yield 3.6 g (54\%)
TLC (EE + 1\% acetic acid, v/v): $\mathrm{R}_{f}(\mathbf{2 2 7})=0.18$
${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}$, Chloroform-d) $\delta 14.03(\mathrm{~s}, 1 \mathrm{H}), 8.93(\mathrm{dt}, \mathrm{J}=1.6,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.28-8.20(\mathrm{~m}, 0 \mathrm{H})$, $7.85-7.74(\mathrm{~m}, 1 \mathrm{H}), 7.41(\mathrm{~s}, 2 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 3.88(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13}$ C-NMR (126 MHz, Chloroform-d): $\delta=\delta 188.40,167.52,153.20,142.98,127.92,107.85,61.09$, 56.43.

5-azido-1,2,3-trimethoxybenzene (AV663)

228
3, 4, 5-trimethoxyaniline ($100 \mathrm{mg}, 0.55 \mathrm{mmol}, 1.0 \mathrm{eq}$) is added into a flask and made into a slurry with $2 \mathrm{~mL} 50 \% \mathrm{HCl}$. The slurry is cooled to $0^{\circ} \mathrm{C}$ for 15 min , then a solution of $\mathrm{NaNO}_{2}(56 \mathrm{mg}, 0.82 \mathrm{mmol}$, 1.5 eq) in $1 \mathrm{~mL} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$ added dropwise. After 30 min stirring to the yellow solution is added $\mathrm{NaN}_{3}(42 \mathrm{mg}$, $0.66 \mathrm{mmol}, 1.2 \mathrm{eq}$) dissolved in $1 \mathrm{~mL} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$ slowly dropwise. After full addition of reactants, the ice bath
is removed and the reaction stirred for 3 h . The mixture is extracted with DCM (3 x), the organic phases dried with MgSO_{4}, filtered and the solvent removed. The brown product $\mathbf{2 2 8}$ is used as crude in further reactions.

Yield 100 mg (crude)
TLC (CH/EE, 1/1, v/v): $\mathrm{R}_{f}(\mathbf{2 2 8})=0.82$
${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}$, Chloroform-d) $\delta 6.40$ ($\mathrm{s}, 2 \mathrm{H}$), 3.78 (s, 6H), 3.62 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13}$ C-NMR (126 MHz, Chloroform-d): $\delta 153.77$, 134.98, 134.91, 96.82, 60.14, 56.06.

(S)-1-tert-butyl 2-((R)-3-(3,4-dimethoxyphenyl)-1-(3-(prop-2-yn-1-yloxy)phenyl)propyl) piperidine-1,2-dicarboxylate (AV650)

Chemical Formula: $\mathrm{C}_{31} \mathrm{H}_{39} \mathrm{NO}_{7}$ Exact Mass: 537,27
Molecular Weight: 537,64

229

226 ($570 \mathrm{mg}, 2.0 \mathrm{mmol}, 1.0 \mathrm{eq}$) and Boc-S-pipecolate ($440 \mathrm{mg}, 2.2 \mathrm{mmol}, 1.1 \mathrm{eq}$) are dissolved in 15 mL dry DCM and cooled to $0^{\circ} \mathrm{C}$ for 15 min . DMAP ($40 \mathrm{mg}, 0.4 \mathrm{mmol}, 0.2 \mathrm{eq}$) is added and stirred until dissolved, then DCC ($320 \mathrm{mg}, 1.55 \mathrm{mmol}, 1.1 \mathrm{eq}$) is added. The mixture is stirred for 15 min . Finally, the ice bath is removed and the reaction stirred overnight at r.t. The reaction mixture is filtered, washed with DCM and the solvent removed under reduced pressure. The crude product is purified by silica column chromatography ($\mathrm{CH} / \mathrm{EE}, 3 / 1$) and the pure product $\mathbf{2 2 9}$ is obtained as a colorless oil.

Yield 890 mg (95\%).
TLC (CH/EE, 3/1, v/v): $\mathrm{R}_{f}(\mathbf{2 2 9})=0.35$.
LC-MS (50-100\% B, $19 \mathbf{m i n}): \mathrm{t}_{\mathrm{R}}(\mathbf{2 2 9})=10.89 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=560.26[\mathrm{M}+\mathrm{Na}]^{+}$,
found $=560.32[\mathrm{M}+\mathrm{Na}]^{+}$.
RP-HPLC (50-100\% B, $1.5 \mathrm{~mL} / \mathrm{min}, 20 \mathrm{~min}, 220 \mathrm{~nm}): \mathrm{t}_{\mathrm{R}}(\mathbf{2 2 9})=10.76 \mathrm{~min}(98 \%$ Purity $)$.

(S)-(R)-3-(3,4-dimethoxyphenyl)-1-(3-(prop-2-yn-1-yloxy)phenyl)propyl piperidine-2carboxylate (AV652)

$229(0.83 \mathrm{~g}, 2 \mathrm{mmol}, 1.0 \mathrm{eq})$ is dissolved in 5 mL dry DCM and cooled to $0^{\circ} \mathrm{C}$. TFA ($600 \mu \mathrm{~L}, 8.0 \mathrm{mmol}$, 5.0 eq) is added and the reaction stirred for 1 h under rising temperature. The solution is quenched with sat. aqueous NaHCO_{3} solution and extracted with DCM ($3 \times 50 \mathrm{~mL}$). The combined organic phases are dried with MgSO_{4}, filtered and the solvent removed under reduced pressure. The crude product 230 is used without further purification.

Yield 0.68 g (quant.).
TLC (CH/EE, 3/1, v/v): $\mathrm{R}_{f}(\mathbf{2 3 0})=0.10$.
${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}$, Chloroform-d): $\delta 7.24(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.90-6.86(\mathrm{~m}, 3 \mathrm{H}), 6.78-6.75(\mathrm{~m}, 1 \mathrm{H})$, $6.65-6.61(\mathrm{~m}, 2 \mathrm{H}), 5.65(\mathrm{dd}, \mathrm{J}=6.0,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.28(\mathrm{~s}, 1 \mathrm{H}), 4.67(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.84(\mathrm{~d}, \mathrm{~J}=2.3$ $\mathrm{Hz}, 6 \mathrm{H}), 3.69(\mathrm{dd}, \mathrm{J}=3.4,11.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.23-3.18(\mathrm{~m}, 1 \mathrm{H}), 2.70-2.61(\mathrm{~m}, 1 \mathrm{H}), 2.61-2.44(\mathrm{~m}, 3 \mathrm{H})$, $2.28-2.14(m, 2 H), 2.12-1.99(m, 1 H), 1.96-1.84(m, 1 H), 1.83-1.62(m, 2 H), 1.60-1.42(m, 1 H)$, $1.16-1.06(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13}$ C-NMR (126 MHz, Chloroform-d): $\delta 168.80,157.75,149.04,147.50,140.97,133.33,129.85,120.26$, $119.55,114.46,113.41,111.70,111.43,78.59,77.61,75.72,57.23,56.02,55.94,55.91,44.01,37.64$, 31.21, 26.46, 22.67, 22.21 .

LC-MS (0-100\% B, 19 min$): \mathrm{t}_{\mathrm{R}}(\mathbf{2 3 0})=8.50 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=438.22[\mathrm{M}+\mathrm{H}]^{+}$, found $=438.26[\mathrm{M}+\mathrm{H}]^{+}$.

RP-HPLC (0 - 100\% B, $1.5 \mathrm{~mL} / \mathrm{min}, 20 \mathrm{~min}, 254 \mathrm{~nm}$): $\mathrm{t}_{R}(\mathbf{2 3 0})=10.04 \mathrm{~min}$ (99% Purity).

(3-((1-(4-methoxyphenyl)-1H-1,2,3-triazol-4-yl)methoxy)phenyl)methanol (AV766)

Chemical Formula: $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3}$ Exact Mass: 311,13
Molecular Weight: 311,34

3-Hydroxybenzaldehyde ($50 \mathrm{mg}, 0.41 \mathrm{mmol}, 1.0 \mathrm{eq}$) is dissolved in 5 mL MeCN . Propargylbromide ($80 \mathrm{wt} \%$ in toluene, $30 \mu \mathrm{~L}, 0.49 \mathrm{mmol}, 1.2 \mathrm{eq}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(68 \mathrm{mg}, 0.49 \mathrm{mmol}, 1.2 \mathrm{eq}$) are added and the slurry stirred at r.t. overnight. The mixture is filtered and the solvent removed. The crude is dissolved in $5 \mathrm{~mL} t \mathrm{BuOH}$ and 5 mL H 2 O , then subsequently p -azido anisole ($73 \mathrm{mg}, 0.49 \mathrm{mmol}, 1.2 \mathrm{eq}$), $\mathrm{CuSO}_{4}{ }^{*} 5$ $\mathrm{H}_{2} \mathrm{O}(78 \mathrm{mg}, 0.49 \mathrm{mmol}, 1.2 \mathrm{eq})$ and sodium L-ascorbate ($\left.97 \mathrm{mg}, 0.49 \mathrm{mmol}, 1.2 \mathrm{eq}\right)$ are added. The slurry is stirred at r.t. overnight. The mixture is diluted with $20 \mathrm{~mL} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$ and extracted with DCM $(3 \times 10 \mathrm{~mL})$. The combined organic phases are dried over MgSO_{4}, filtered and the solvent removed. The crude is dissolved in 5 mL THF, then $\mathrm{NaBH}_{4}(16 \mathrm{mg}, 0.41 \mathrm{mmol}, 1.0 \mathrm{eq})$ is added and the reaction stirred at r.t. overnight. The mixture is diluted with $20 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$ and 10 mL brine and extracted with DCM $(3 \times 10 \mathrm{~mL})$. The combined organic phases are dried over MgSO_{4}, filtered and the solvent removed. The product $\mathbf{2 3 1}$ is used as crude in follow up reactions.

Yield 90 mg (71\%).
TLC (CH/EE, 1/1, v/v): $\mathrm{R}_{f}(\mathbf{2 3 1})=0.30$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 7.95(\mathrm{~s}, 1 \mathrm{H}), 7.65-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.05(\mathrm{t}, \mathrm{J}=2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.02-6.98(\mathrm{~m}, 2 \mathrm{H}), 6.97-6.89(\mathrm{~m}, 2 \mathrm{H}), 6.75-6.60(\mathrm{~m}, 1 \mathrm{H}), 5.25(\mathrm{~s}, 2 \mathrm{H}), 4.66(\mathrm{~s}, 2 \mathrm{H}), 3.85(\mathrm{~s}$, 3 H).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 160.02,158.55,144.79,143.04,129.78,122.34,121.26,119.84,114.90$, 114.06, 113.25, 68.06, 65.09, 62.05, 55.74, 25.71.

LC-MS (50-100\% B, $19 \mathbf{~ m i n}): \mathrm{t}_{\mathrm{R}}(\mathbf{2 3 1})=3.22 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=312.13[\mathrm{M}+\mathrm{H}]^{+}$, found $=312.37[\mathrm{M}+\mathrm{H}]^{+}$.
(S)-(R)-3-(3,4-dimethoxyphenyl)-1-(3-(prop-2-yn-1-yloxy)phenyl)propyl 1-(2-oxo-2-(3,4,5-trimethoxyphenyl)acetyl)piperidine-2-carboxylate (AV661)

232
227 ($70 \mathrm{mg}, 1.5 \mathrm{eq}$), HATU ($80 \mathrm{mg}, 1.1 \mathrm{eq}$), HOAt ($20 \mathrm{mg}, 1.1 \mathrm{eq}$) and DIPEA are dissolved in 3 ml dry DCM and 3 ml DMF and stirred for 10 min , Then $\mathbf{2 3 0}(80 \mathrm{mg}, 1.0 \mathrm{eq})$ is added and the reaction is stirred overnight at r.t. The mixture is diluted with DCM and extracted with brine (3x). The organic phase is dried with MgSO , filtered and the solvent removed under reduced pressure. The crude product is purified by silica column chromatography (CH/EE, $4 / 1+1 \%$ FA). Pure product 232 is obtained as a white solid.

Yield 80 mg (67\%).
TLC (CH/EE, 4/1 +1\% TEA + 1\% FA, v/v): $\mathrm{R}_{f}(\mathbf{2 3 2})=0.15$.
${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}$, Chloroform-d): $\delta 7.31-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.16-7.07(\mathrm{~m}, 1 \mathrm{H}), 6.99-6.95(\mathrm{~m}, 2 \mathrm{H})$, $6.95-6.90(\mathrm{~m}, 1 \mathrm{H}), 6.82-6.79(\mathrm{~m}, 1 \mathrm{H}), 6.76-6.63(\mathrm{~m}, 3 \mathrm{H}), 5.75(\mathrm{dd}, \mathrm{J}=5.6,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.46-5.41$ $(\mathrm{m}, 1 \mathrm{H}), 4.73-4.71(\mathrm{~m}, 2 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 3.87-3.85(\mathrm{~m}, 7 \mathrm{H}), 3.81(\mathrm{~s}, 6 \mathrm{H}), 3.52-3.47(\mathrm{~m}, 1 \mathrm{H}), 3.29$ (td, J = 3.3, 13.0 Hz, 1H), 2.69-2.59(m, 1H), $2.59-2.56(m, 1 H), 2.49-2.44(m, 1 H), 2.35-2.25(m$, $1 \mathrm{H}), 2.18-2.08(\mathrm{~m}, 1 \mathrm{H}), 2.05(\mathrm{~s}, 1 \mathrm{H}), 1.93-1.81(\mathrm{~m}, 3 \mathrm{H}), 1.69-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.60-1.52(\mathrm{~m}, 1 \mathrm{H})$, $1.46-1.37(m, 1 H), 1.30-1.23(m, 2 H)$.
${ }^{13}$ C-NMR (126 MHz, Chloroform-d): δ 190.89, 170.01, 167.88, 157.82, 153.58, 149.07, 147.56, 144.05, $141.56,133.45,129.78,128.10,120.26,119.56,114.56,113.19,111.84,111.49,107.07,78.49,75.96$, $61.04,56.38,56.35,56.22,56.04,55.97,55.94,51.88,44.31,38.22,31.45,26.53,24.90,21.35$.

LC-MS (50-100\% B, $19 \mathbf{~ m i n}): \mathrm{t}_{R}(\mathbf{2 3 2})=10.25 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=682.26[\mathrm{M}+\mathrm{H}]^{+}$, found $=682.55[\mathrm{M}+\mathrm{H}]^{+}$.

6.5.2. Final compounds

(S)-(R)-3-(3,4-dimethoxyphenyl)-1-(3-(prop-2-yn-1-yloxy)phenyl)propyl 1-((S)-2-cyclohexyl-2-(3,4,5-trimethoxyphenyl)acetyl)piperidine-2-carboxylate (AV581/AV654)

Chemical Formula: $\mathrm{C}_{43} \mathrm{H}_{53} \mathrm{NO}_{9}$
Exact Mass: 727,37
Molecular Weight: 727,88

233
$\mathbf{2 3 3}$ is synthesized according to general procedure 5.9.7. Reactants: $\mathbf{7 7}(20 \mathrm{mg}), \mathbf{2 2 6}(17 \mathrm{mg})$, DMAP $(23 \mathrm{mg})$ and DIC $(8 \mu \mathrm{~L})$. The pure product is obtained as a white foam.
prep-HPLC ($\mathbf{7 0} \mathbf{- 1 0 0 \%}$ B, $10 \mathrm{~mL} / \mathrm{min}, 10 \mathrm{~min}, \mathbf{2 5 4} \mathrm{~nm}): \mathrm{t}_{R}(\mathbf{2 3 3})=5.94 \mathrm{~min}$.
Yield 20 mg (57\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.13(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.03-6.95(\mathrm{~m}, 1 \mathrm{H}), 6.84(\mathrm{~m}, 1 \mathrm{H}), 6.78(\mathrm{~m}, 1 \mathrm{H})$, $6.73-6.69(\mathrm{~m}, 1 \mathrm{H}), 6.65(\mathrm{~m}, 1 \mathrm{H}), 6.62(\mathrm{~m}, 1 \mathrm{H}), 6.49(\mathrm{~s}, 2 \mathrm{H}), 6.47(\mathrm{dd}, \mathrm{J}=1.2,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.58(\mathrm{dd}, J=$ 5.7, $7.9 \mathrm{~Hz}, 1 \mathrm{H}$), $5.49-5.44(\mathrm{~m}, 1 \mathrm{H}), 4.67-4.65(\mathrm{~m}, 2 \mathrm{H}), 3.96(\mathrm{~d}, \mathrm{~J}=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~m}, 5 \mathrm{H}), 3.77$ $(\mathrm{m}, 2 \mathrm{H}), 3.71(\mathrm{~m}, 5 \mathrm{H}), 3.38(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{td}, J=2.9,13.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.63-2.54(\mathrm{~m}, 1 \mathrm{H}), 2.52$ $(\mathrm{m}, 1 \mathrm{H}), 2.49-2.33(\mathrm{~m}, 2 \mathrm{H}), 2.32-2.25(\mathrm{~m}, 1 \mathrm{H}), 2.16-2.01(\mathrm{~m}, 2 \mathrm{H}), 2.01-1.76(\mathrm{~m}, 4 \mathrm{H}), 1.74-1.48$ $(\mathrm{m}, 3 \mathrm{H}), 1.48-1.38(\mathrm{~m}, 1 \mathrm{H}), 1.38-1.05(\mathrm{~m}, 6 \mathrm{H}), 0.98-0.70(\mathrm{~m}, 2 \mathrm{H}), 0.68-0.52(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13}$ C-NMR (126 MHz, CDCl_{3}) $\delta 172.72,170.52,157.96,157.60,153.45,153.22,149.12,148.99,147.44$, $141.96,141.63,137.02,134.20,133.56,133.37,129.92,129.67,120.39,120.26,120.11,119.44$, $114.49,114.17,113.74,113.51,111.94,111.85,111.56,111.46,105.87,105.62,105.41,78.67,75.89$, $75.74,75.70,61.02,60.90,56.47,56.38,56.19,56.10,56.06,56.02,55.97,55.93,55.19,52.30,43.88$, $41.44,41.23,39.81,38.09,37.90,33.13,32.93,31.56,31.12,30.80,30.63,26.87,26.71,26.58,26.33$, 26.25, 26.20, 25.66, 24.44, 21.04, 20.79.

LC-MS (70-100\% B, $19 \mathbf{m i n}): \mathrm{t}_{\mathrm{R}}(\mathbf{2 3 3})=6.40 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=728.38[\mathrm{M}+\mathrm{H}]^{+}$,
found $=728.34[\mathrm{M}+\mathrm{H}]^{+}$.

HRMS (ESI): calculated $=728.37888[\mathrm{M}+\mathrm{H}]^{+}$, found $=728.37931[\mathrm{M}+\mathrm{H}]^{+}$, $\operatorname{err}[\mathrm{ppm}]=0.58$. RP-HPLC (50-100\% B, $1.5 \mathrm{~mL} / \mathrm{min}, 15 \mathrm{~min}, 220 \mathrm{~nm}): \mathrm{t}_{R}(233)=11.95 \mathrm{~min}(96 \%$ Purity) .
(S)-(R)-1-(3-((1-((R$)-1$-(tert-butoxycarbonyl)pyrrolidin-2-yl)methyl)-1H-1,2,3-triazol-4-yl)methoxy)phenyl)-3-(3,4-dimethoxyphenyl)propyl 1-((S)-2-cyclohexyl-2-(3,4,5-trimethoxyphenyl)acetyl)piperidine-2-carboxylate (AV383)

234
$\mathbf{2 3 4}$ is synthesized according to general procedure 5.9.6. Starting material: $\mathbf{2 3 3}(30 \mathrm{mg})$ and (R)-2-azidoemthyl-1-boc-pyrrolidine (28 mg). The pure product is obtained as a white solid.

Silica column chromatography: $\mathrm{CH} / \mathrm{EE}, 2 / 3, \mathrm{v} / \mathrm{v}$.
TLC (CH/EE, 2/3): $\mathrm{R}_{f}(\mathbf{2 3 4})=0.25$.
Yield 25 mg (64\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.60-7.58(\mathrm{~m}, 1 \mathrm{H}), 7.11(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.01-6.96(\mathrm{~m}, 1 \mathrm{H}), 6.89-$ $6.82(\mathrm{~m}, 1 \mathrm{H}), 6.78-6.74(\mathrm{~m}, 2 \mathrm{H}), 6.63-6.61(\mathrm{~m}, 1 \mathrm{H}), 6.50(\mathrm{~s}, 2 \mathrm{H}), 6.42(\mathrm{~s}, 1 \mathrm{H}), 5.58(\mathrm{dd}, \mathrm{J}=5.6,8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 5.47(\mathrm{~d}, \mathrm{~J}=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{~s}, 2 \mathrm{H}), 4.63-4.56(\mathrm{~m}, 2 \mathrm{H}), 4.15-4.03(\mathrm{~m}, 2 \mathrm{H}), 4.01-3.93(\mathrm{~m}$, $1 \mathrm{H}), 3.87-3.83(\mathrm{~m}, 6 \mathrm{H}), 3.83(\mathrm{~d}, \mathrm{~J}=2.9 \mathrm{~Hz}, 3 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{~s}, 6 \mathrm{H}), 3.38(\mathrm{~d}, \mathrm{~J}=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.27$ - $3.19(\mathrm{~m}, 1 \mathrm{H}), 3.10(\mathrm{~s}, 1 \mathrm{H}), 2.79(\mathrm{td}, \mathrm{J}=2.9,13.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.64-2.49(\mathrm{~m}, 1 \mathrm{H}), 2.50-2.33(\mathrm{~m}, 2 \mathrm{H})$, $2.33-2.24(\mathrm{~m}, 1 \mathrm{H}), 2.16-2.04(\mathrm{~m}, 2 \mathrm{H}), 2.02-1.78(\mathrm{~m}, 6 \mathrm{H}), 1.76-1.61(\mathrm{~m}, 1 \mathrm{H}), 1.48(\mathrm{~s}, 9 \mathrm{H}), 1.36-$ $1.20(\mathrm{~m}, 4 \mathrm{H}), 1.21-1.04(\mathrm{~m}, 2 \mathrm{H}), 0.95-0.82(\mathrm{~m}, 2 \mathrm{H}), 0.80-0.70(\mathrm{~m}, 1 \mathrm{H}), 0.69-0.52(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): ~ \delta 171.27,169.48,157.10,152.25,152.03,147.84,146.28,143.19,140.85$, $135.85,132.63,132.45,128.83,128.59,122.51,119.24,119.10,117.90,112.87,112.28,110.80$, $110.69,110.39,110.30,104.79,104.29,74.56,60.93,59.86,59.75,56.15,55.30,55.05,54.91,54.84$,
$53.98,51.02,46.02,42.65,40.38,37.01,31.77,29.99,29.66,27.48,25.76,25.58,25.21,25.15,24.56$, 22.33, 19.99.

LC-MS (50-100\% B, $19 \mathbf{m i n}): \mathrm{t}_{\mathrm{R}}(\mathbf{2 3 4})=11.03 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=954.52[\mathrm{M}+\mathrm{H}]^{+}$, found $=954.62[\mathrm{M}+\mathrm{H}]^{+}$.

HRMS (ESI): calculated $=954.52228[\mathrm{M}+\mathrm{H}]^{+}$, found $=954.52298[\mathrm{M}+\mathrm{H}]^{+}$, err $[\mathrm{ppm}]=0.73$.
RP-HPLC (50-100\% B, $1.5 \mathrm{~mL} / \mathrm{min}, 20 \mathrm{~min}, 220 \mathrm{~nm}): \mathrm{t}_{R}(234)=15.18 \mathrm{~min}$ (99% Purity) .
(S)-(R)-3-(3,4-dimethoxyphenyl)-1-(3-((1-((R)-pyrrolidin-2-ylmethyl)-1H-1,2,3-triazol-4yl)methoxy)phenyl)propyl 1-((S)-2-cyclohexyl-2-(3,4,5-trimethoxyphenyl)acetyl)piperidine-2-carboxylate (AV478)

$234(5 \mathrm{mg})$ in 1 mL is dissolved in dry DCM and 0.5 mL TFA added. The reaction is stirred at RT for 30 min . The solvent is evaporated under airstream. The crude product is purified by silica column chromatography (DCM $+1 \% \mathrm{MeOH}+1 \%$ TEA). The pure product is obtained as a white solid.

TLC (DCM $+1 \% \mathrm{MeOH}+1 \% \mathrm{TEA}): \mathrm{R}_{f}(\mathbf{2 3 5})=0.30$.
Yield 4 mg (89\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.13(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.88-6.82(\mathrm{~m}, 1 \mathrm{H}), 6.80-6.73(\mathrm{~m}, 1 \mathrm{H}), 6.72-$ $6.69(\mathrm{~m}, 1 \mathrm{H}), 6.67-6.60(\mathrm{~m}, 2 \mathrm{H}), 6.55(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.45(\mathrm{~s}, 2 \mathrm{H}), 5.55(\mathrm{dd}, \mathrm{J}=5.5,8.2 \mathrm{~Hz}, 1 \mathrm{H})$, $5.44(\mathrm{~d}, \mathrm{~J}=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.19-5.07(\mathrm{~m}, 2 \mathrm{H}), 4.96-4.87(\mathrm{~m}, 1 \mathrm{H}), 4.79-4.67(\mathrm{~m}, 1 \mathrm{H}), 4.18(\mathrm{~s}, 1 \mathrm{H}), 3.94$ (d, J = $13.7 \mathrm{~Hz}, 1 \mathrm{H}$), $3.89-3.62(\mathrm{~m}, 15 \mathrm{H}), 3.38(\mathrm{~d}, \mathrm{~J}=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.36-3.27(\mathrm{~m}, 1 \mathrm{H}), 2.83-2.74(\mathrm{~m}$, $1 \mathrm{H}), 2.64-2.20(\mathrm{~m}, 10 \mathrm{H}), 2.13-1.92(\mathrm{~m}, 4 \mathrm{H}), 1.90-1.79(\mathrm{~m}, 2 \mathrm{H}), 1.76-1.59(\mathrm{~m}, 5 \mathrm{H}), 1.58-1.52$ $(\mathrm{m}, 1 \mathrm{H}), 1.48-1.38(\mathrm{~m}, 0 \mathrm{H}), 1.38-1.06(\mathrm{~m}, 4 \mathrm{H}), 1.00-0.71(\mathrm{~m}, 3 \mathrm{H}), 0.61-0.46(\mathrm{~m}, 0 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 172.74,170.69,158.06,153.03,149.01,147.47,142.13,136.75,133.77$, $133.58,129.86,124.78,120.40,119.32,114.16,113.49,111.97,111.50,105.96,75.93,61.64,60.98$, $59.67,56.47,56.17,56.09,56.01,55.15,52.33,50.22,45.88,43.86,41.41,38.13,32.91,31.27,30.82$, 28.13, 26.92, 26.69, 26.32, 25.64, 23.57, 21.10.

LC-MS (30-100\% B, $19 \mathbf{m i n}): \mathrm{t}_{\mathrm{R}}(\mathbf{2 3 5})=7.18 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=854.47[\mathrm{M}+\mathrm{H}]^{+}$, found $=854.89[\mathrm{M}+\mathrm{H}]^{+}$.

HRMS (ESI): calculated $=854.46986[\mathrm{M}+\mathrm{H}]^{+}$, found $=854.47097[\mathrm{M}+\mathrm{H}]^{+}, \operatorname{err}[\mathrm{ppm}]=1.30$.
RP-HPLC ($\mathbf{0} \mathbf{- 1 0 0 \%}$ B, $1.5 \mathrm{~mL} / \mathrm{min}, 20 \mathrm{~min}, 220 \mathrm{~nm}): \mathrm{t}_{R}(\mathbf{2 3 5})=15.30 \mathrm{~min}(99 \%$ Purity).
(S)-(R)-1-(3-((1-(((S)-1-(tert-butoxycarbonyl)pyrrolidin-2-yl)methyl)-1H-1,2,3-triazol-4-yl)methoxy)phenyl)-3-(3,4-dimethoxyphenyl)propyl 1-((S)-2-cyclohexyl-2-(3,4,5-trimethoxyphenyl)acetyl)piperidine-2-carboxylate (AV372)

236
236 is synthesized according to general procedure 5.9.6. Reactants: $233(30 \mathrm{mg})$ and (S)-2-azidomethyl-1-boc-pyrrolidine (27 mg). The pure product is obtained as a white solid.

Silica column chromatography: $\mathrm{CH} / \mathrm{EE}, 2 / 3, \mathrm{v} / \mathrm{v}$.
TLC (CH/EE, 2/3): $\mathrm{R}_{f}(\mathbf{2 3 6})=0.25$.
Yield 10 mg (25\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.63-7.58(\mathrm{~m}, 1 \mathrm{H}), 7.11(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.02-6.94(\mathrm{~m}, 1 \mathrm{H}), 6.84(\mathrm{dd}$, $J=2.5,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.77-6.74(\mathrm{~m}, 2 \mathrm{H}), 6.65-6.61(\mathrm{~m}, 2 \mathrm{H}), 6.50(\mathrm{~s}, 2 \mathrm{H}), 6.45-6.41(\mathrm{~m}, 1 \mathrm{H}), 5.58(\mathrm{dd}$, $J=5.7,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.47(\mathrm{~d}, \mathrm{~J}=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{~s}, 2 \mathrm{H}), 4.63-4.56(\mathrm{~m}, 2 \mathrm{H}), 4.14-4.07(\mathrm{~m}, 2 \mathrm{H}), 3.96$ $(\mathrm{d}, \mathrm{J}=13.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.87-3.85(\mathrm{~m}, 5 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.83-3.82(\mathrm{~m}, 3 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{~s}, 6 \mathrm{H})$, $3.38(\mathrm{~d}, \mathrm{~J}=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.29-3.18(\mathrm{~m}, 1 \mathrm{H}), 3.16-3.06(\mathrm{~m}, 1 \mathrm{H}), 2.78(\mathrm{td}, \mathrm{J}=2.9,13.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.63-$
$2.50(\mathrm{~m}, 0 \mathrm{H}), 2.49-2.33(\mathrm{~m}, 2 \mathrm{H}), 2.33-2.26(\mathrm{~m}, 1 \mathrm{H}), 2.15-2.03(\mathrm{~m}, 2 \mathrm{H}), 1.99-1.79(\mathrm{~m}, 6 \mathrm{H}), 1.74-$ $1.62(\mathrm{~m}, 2 \mathrm{H}), 1.48(\mathrm{~s}, 9 \mathrm{H}), 1.37-1.21(\mathrm{~m}, 3 \mathrm{H}), 1.20-1.09(\mathrm{~m}, 2 \mathrm{H}), 0.96-0.82(\mathrm{~m}, 1 \mathrm{H}), 0.82-0.69$ (m, 1H), $0.68-0.52(m, 1 H)$.
${ }^{13}$ C-NMR (126 MHz, CDCl_{3}): $\delta 171.27,169.48,157.10,152.25,152.03,147.84,146.28,140.86,135.85$, $132.64,132.45,128.83,128.58,122.50,119.24,119.10,117.93,112.88,112.31,110.81,110.69$, $110.39,110.30,104.79,104.30,74.55,60.94,59.86,59.74,56.15,55.31,55.05,54.91,54.84,53.98$, $51.02,50.62,46.02,42.66,40.38,40.14,38.46,37.00,36.82,31.77,30.44,29.98,29.65,27.48,27.20$, $25.75,25.58,25.45,25.20,25.15,24.56,22.33,20.00,19.73$.

LC-MS (50-100\% B, $19 \mathbf{~ m i n}): \mathrm{t}_{R}(\mathbf{2 3 3})=11.83 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=954.52[\mathrm{M}+\mathrm{H}]^{+}$, found $=954.55[\mathrm{M}+\mathrm{H}]^{+}$.

HRMS (ESI): calculated $=954.52228[\mathrm{M}+\mathrm{H}]^{+}$, found $=954.52316[\mathrm{M}+\mathrm{H}]^{+}$, err $[\mathrm{ppm}]=0.92$.
RP-HPLC (50-100\% B, $1.5 \mathrm{~mL} / \mathrm{min}, 20 \mathrm{~min}, 220 \mathrm{~nm}): \mathrm{t}_{R}(\mathbf{2 3 3})=15.16 \mathrm{~min}(99 \%$ Purity) .
(S)-(R)-3-(3,4-dimethoxyphenyl)-1-(3-((1-((S)-pyrrolidin-2-ylmethyl)-1H-1,2,3-triazol-4yl)methoxy)phenyl)propyl 1-((S)-2-cyclohexyl-2-(3,4,5-trimethoxyphenyl)acetyl)piperidine-2-carboxylate (AV474)

237
$\mathbf{2 3 6}(6 \mathrm{mg})$ is dissolved in 1 mL dry DCM and 0.5 mL TFA added. The reaction is stirred at RT for 30 min . The solvent is evaporated under airstream. The crude product is purified by silica column chromatography ($\mathrm{DCM}+1 \% \mathrm{MeOH}+1 \% \mathrm{TEA}$). The pure product is obtained as a white solid.

TLC (DCM + 1\% MeOH + 1\% TEA): $\mathrm{R}_{f}(\mathbf{2 3 7})=0.30$.
Yield 5 mg (93\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.15(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.85-6.80(\mathrm{~m}, 1 \mathrm{H}), 6.80-6.75(\mathrm{~m}, 1 \mathrm{H}), 6.66-$ $6.57(\mathrm{~m}, 4 \mathrm{H}), 6.44(\mathrm{~s}, 3 \mathrm{H}), 5.54(\mathrm{dd}, \mathrm{J}=5.7,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.44(\mathrm{~d}, \mathrm{~J}=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.16-5.04(\mathrm{~m}, 3 \mathrm{H})$, $4.97-4.83(\mathrm{~m}, 1 \mathrm{H}), 4.81-4.66(\mathrm{~m}, 1 \mathrm{H}), 4.18(\mathrm{~s}, 1 \mathrm{H}), 3.95(\mathrm{~d}, \mathrm{~J}=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.86-3.80(\mathrm{~m}, 11 \mathrm{H})$, $3.78(\mathrm{~s}, 3 \mathrm{H}), 3.63(\mathrm{~s}, 5 \mathrm{H}), 3.47-3.41(\mathrm{~m}, 2 \mathrm{H}), 3.38(\mathrm{~d}, \mathrm{~J}=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.78(\mathrm{t}, \mathrm{J}=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.68-$ $2.45(\mathrm{~m}, 2 \mathrm{H}), 2.45-2.35(\mathrm{~m}, 1 \mathrm{H}), 2.35-2.19(\mathrm{~m}, 2 \mathrm{H}), 2.17-1.94(\mathrm{~m}, 4 \mathrm{H}), 1.93-1.81(\mathrm{~m}, 4 \mathrm{H}), 1.75-$ $1.59(\mathrm{~m}, 7 \mathrm{H}), 1.59-1.39(\mathrm{~m}, 1 \mathrm{H}), 1.35-1.19(\mathrm{~m}, 4 \mathrm{H}), 1.19-1.05(\mathrm{~m}, 2 \mathrm{H}), 0.98-0.70(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): ~ \delta 170.47,152.97,149.00,142.14,136.62,133.57,133.49,129.91,120.43$, $119.57,113.94,113.34,111.96,111.52,105.90,76.05,61.36,61.00,59.97,56.21,56.09,55.99$, $55.22,52.50,50.24,46.14,43.98,41.25,38.07,32.89,31.31,30.80,27.96,26.85,26.63,26.28,26.21$, 25.56, 23.53, 20.97.

LC-MS (30-100\% B, $19 \mathbf{m i n}): \mathrm{t}_{R}(\mathbf{2 3 7})=7.12 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=854.56[\mathrm{M}+\mathrm{H}]^{+}$, found $=855.00[\mathrm{M}+\mathrm{H}]^{+}$.

HRMS (ESI): calculated $=854.46986[\mathrm{M}+\mathrm{H}]^{+}$, found $=854.47064[\mathrm{M}+\mathrm{H}]^{+}$, $\operatorname{err}[\mathrm{ppm}]=0.91$.
RP-HPLC ($\mathbf{0} \mathbf{- 1 0 0 \%}$ B, $1.5 \mathrm{~mL} / \mathrm{min}, \mathbf{2 0} \mathbf{~ m i n}, 220 \mathrm{~nm}$): $\mathrm{t}_{R}(\mathbf{2 3 7})=15.40 \mathrm{~min}(95 \%$ Purity) .
(S)-(R)-1-(3-((1-(2-((tert-butoxycarbonyl)amino)ethyl)-1H-1,2,3-triazol-4-yl)methoxy)phenyl)-3-(3,4-dimethoxyphenyl)propyl 1-((S)-2-cyclohexyl-2-(3,4,5-trimethoxyphenyl)acetyl)piperidine-2-carboxylate (AV378)

238
$\mathbf{2 3 8}$ is synthesized according to general procedure 5.9.6. Starting material: $\mathbf{2 3 3}(30 \mathrm{mg})$ and 0.5 M tertbutyl (2-azidoethyl)carbamate solution in $t \mathrm{BuOH}(240 \mu \mathrm{~L})$. The pure product is obtained as a white solid.

Silica column chromatography: $C H / E E, 2 / 1, v / v$.

TLC (CH/EE, 2/1): $\mathrm{R}_{f}(\mathbf{2 3 8})=0.29$.
Yield 37 mg (quant.).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.64(\mathrm{~s}, 1 \mathrm{H}), 7.12(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.01-6.94(\mathrm{~m}, 1 \mathrm{H}), 6.85$ (ddd, J = $0.9,2.6,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.82-6.72(\mathrm{~m}, 2 \mathrm{H}), 6.71-6.60(\mathrm{~m}, 2 \mathrm{H}), 6.48(\mathrm{~s}, 2 \mathrm{H}), 6.47-6.42(\mathrm{~m}, 1 \mathrm{H}), 5.57$ (dd, J = 5.6, 8.1 Hz, 1H), 5.46 (d, J = 5.1 Hz, 1H), 5.19 (d, J = $3.2 \mathrm{~Hz}, 0 \mathrm{H}$), $5.15(\mathrm{~s}, 1 \mathrm{H}), 5.03-4.91(\mathrm{~m}$, 1H), $4.50-4.43(\mathrm{~m}, 2 \mathrm{H}), 3.98-3.91(\mathrm{~m}, 1 \mathrm{H}), 3.86-3.81(\mathrm{~m}, 8 \mathrm{H}), 3.76(\mathrm{~s}, 2 \mathrm{H}), 3.69(\mathrm{~s}, 4 \mathrm{H}), 3.65-3.60$ (m, 2H), 3.37 (d, J = 9.8 Hz, 1H), 2.78 (td, J = 2.9, $13.4 \mathrm{~Hz}, 1 \mathrm{H}$), $2.66-2.51(\mathrm{~m}, 1 \mathrm{H}), 2.50-2.32(\mathrm{~m}, 1 \mathrm{H})$, $2.32-2.22(\mathrm{~m}, 1 \mathrm{H}), 2.19-2.03(\mathrm{~m}, 2 \mathrm{H}), 2.01-1.91(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.79(\mathrm{~m}, 2 \mathrm{H}), 1.74-1.51(\mathrm{~m}, 6 \mathrm{H})$, $1.42(\mathrm{~s}, 9 \mathrm{H}), 1.35-1.19(\mathrm{~m}, 4 \mathrm{H}), 1.20-1.07(\mathrm{~m}, 2 \mathrm{H}), 0.98-0.85(\mathrm{~m}, 1 \mathrm{H}), 0.82-0.47(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$-NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 172.45,170.66,158.63,158.25,155.97,153.40,153.15,149.12,149.00$, $147.64,147.44,144.24,143.95,142.06,141.80,136.95,134.42,133.75,133.58,133.39,130.03$, $129.77,123.66,120.39,120.26,119.67,119.15,114.29,114.15,113.71,113.32,111.96,111.85$, $111.56,111.46,105.92,105.45,75.76,62.05,61.01,60.89,56.44,56.18,56.10,56.07,56.03,55.99$, $55.84,55.16,52.18,50.18,43.79,41.53,41.29,40.62,39.62,38.15,37.94,33.10,32.94,31.59,31.18$, 30.80, 30.61, 29.83, 28.45, 26.91, 26.71, 26.56, 26.36, 26.31, 26.22, 25.69, 24.47, 21.12, 20.82, 1.15.

LC-MS (50-100\% B, $19 \mathbf{~ m i n}$): $\mathrm{t}_{R}(\mathbf{2 3 8})=10.35 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=914.48[\mathrm{M}+\mathrm{H}]^{+}$, found $=914.55[\mathrm{M}+\mathrm{H}]^{+}$.

HRMS (ESI): calculated $=914.49098[\mathrm{M}+\mathrm{H}]^{+}$, found $=914.49176[\mathrm{M}+\mathrm{H}]^{+}$, err $[\mathrm{ppm}]=0.85$.
RP-HPLC ($\mathbf{5 0} \mathbf{- 1 0 0 \%}$ B, $1.5 \mathrm{~mL} / \mathrm{min}, 20 \mathrm{~min}, 220 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}(\mathbf{2 3 8})=12.84 \mathrm{~min}(99 \%$ Purity).
(S)-(R)-1-(3-((1-(2-aminoethyl)-1H-1,2,3-triazol-4-yl)methoxy)phenyl)-3-(3,4dimethoxyphenyl)propyl 1-((S)-2-cyclohexyl-2-(3,4,5-trimethoxyphenyl)acetyl)piperidine-2-carboxylate (AV477)

Chemical Formula: $\mathrm{C}_{45} \mathrm{H}_{59} \mathrm{~N}_{5} \mathrm{O}_{9}$
Exact Mass: 813,43
Molecular Weight: 813,98
$238(7 \mathrm{mg})$ is dissolved in 1 mL dry DCM and 0.5 mL TFA added. The reaction is stirred at RT for 30 min . The solvent is evaporated under airstream. The crude product is purified by semi-preparative HPLC. The pure product is obtained as a white solid.
prep-HPLC ($30-100 \%$ B, $10 \mathrm{~mL} / \mathrm{min}, 10 \mathrm{~min}, 254 \mathrm{~nm})$: $\mathrm{t}_{R}(239)=7.50 \mathrm{~min}$.
Yield 6 mg (96\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1 \mathrm{H}$ NMR (500 MHz , Chloroform-d) $\delta 7.14(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.83-6.74$ $(\mathrm{m}, 3 \mathrm{H}), 6.72-6.68(\mathrm{~m}, 1 \mathrm{H}), 6.68-6.57(\mathrm{~m}, 3 \mathrm{H}), 6.44(\mathrm{~s}, 2 \mathrm{H}), 5.52(\mathrm{dd}, \mathrm{J}=5.5,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.43(\mathrm{~d}, \mathrm{~J}=$ $5.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.11-5.05(\mathrm{~m}, 2 \mathrm{H}), 4.75-4.67(\mathrm{~m}, 3 \mathrm{H}), 3.95(\mathrm{~d}, \mathrm{~J}=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.87-3.82(\mathrm{~m}, 8 \mathrm{H})$, $3.75(\mathrm{~s}, 3 \mathrm{H}), 3.64(\mathrm{~s}, 6 \mathrm{H}), 3.60-3.53(\mathrm{~m}, 2 \mathrm{H}), 3.40(\mathrm{~d}, \mathrm{~J}=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.82(\mathrm{t}, \mathrm{J}=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.58-$ $2.37(\mathrm{~m}, 2 \mathrm{H}), 2.34-2.25(\mathrm{~m}, 2 \mathrm{H}), 2.13-1.93(\mathrm{~m}, 3 \mathrm{H}), 1.93-1.76(\mathrm{~m}, 2 \mathrm{H}), 1.74-1.53(\mathrm{~m}, 7 \mathrm{H}), 1.49-$ $1.39(\mathrm{~m}, 1 \mathrm{H}), 1.35-1.23(\mathrm{~m}, 5 \mathrm{H}), 1.20-1.06(\mathrm{~m}, 2 \mathrm{H}), 0.98-0.68(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13}$ C-NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 172.94,170.79,158.01,152.96,148.99,147.47,142.19,136.58,133.85$, $133.56,129.95,120.44,119.15,114.14,113.39,112.00,111.55,105.93,76.16,61.40,60.96,56.46$, $56.16,56.09,56.01,55.07,52.40,47.42,43.88,41.36,39.66,38.20,32.87,31.31,30.82,26.94,26.65$, 26.28, 25.59, 21.05.

LC-MS (30-100\% B, $19 \mathbf{m i n}): \mathrm{t}_{\mathrm{R}}(\mathbf{2 3 9})=7.00 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=814.44[\mathrm{M}+\mathrm{H}]^{+}$, found $=814.87[\mathrm{M}+\mathrm{H}]^{+}$.

HRMS (ESI): calculated $=814.43855[\mathrm{M}+\mathrm{H}]^{+}$, found $=814.43920[\mathrm{M}+\mathrm{H}]^{+}$, $\operatorname{err}[\mathrm{ppm}]=0.79$.
RP-HPLC ($\mathbf{0} \mathbf{- 1 0 0 \%}$ B, $1.5 \mathrm{~mL} / \mathrm{min}, 20 \mathrm{~min}, 254 \mathrm{~nm}$): $\mathrm{t}_{R}(\mathbf{2 3 9})=15.03 \mathrm{~min}$ (99% Purity).
tert-butyl 4-(4-((3-((R)-1-(((S)-1-((S)-2-cyclohexyl-2-(3,4,5-
trimethoxyphenyl)acetyl)piperidine-2-carbonyl)oxy)-3-(3,4-
dimethoxyphenyl)propyl)phenoxy)methyl)-1H-1,2,3-triazol-1-yl)piperidine-1-carboxylate
(AV374)

Chemical Formula: $\mathrm{C}_{53} \mathrm{H}_{71} \mathrm{~N}_{5} \mathrm{O}_{11}$
Exact Mass: 953,52
Molecular Weight: 954,16

240

$\mathbf{2 4 0}$ is synthesized according to general procedure 5.9.6. Starting material: $\mathbf{2 3 3} \mathbf{(3 0 \mathrm { mg }) \text { and tert-butyl }}$ 4-azidopiperidine-1-carboxylate (14 mg). The pure product is obtained as a colorless oil.

Silica column chromatography: CH/EE, 2/1, v/v.
TLC (CH/EE, 2/1): $\mathrm{R}_{f}(\mathbf{2 4 0})=0.33$.
Yield 33 mg (84\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.65(\mathrm{~s}, 1 \mathrm{H}), 7.16-7.08(\mathrm{~m}, 1 \mathrm{H}), 7.02-6.96(\mathrm{~m}, 1 \mathrm{H}), 6.88-6.82(\mathrm{~m}$, 1H), $6.82-6.72(\mathrm{~m}, 2 \mathrm{H}), 6.69-6.60(\mathrm{~m}, 2 \mathrm{H}), 6.49(\mathrm{~s}, 2 \mathrm{H}), 6.45(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.57(\mathrm{dd}, \mathrm{J}=5.6,8.1$ $\mathrm{Hz}, 1 \mathrm{H}), 5.47(\mathrm{~d}, \mathrm{~J}=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{~d}, \mathrm{~J}=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.64-4.52(\mathrm{~m}, 1 \mathrm{H}), 4.26(\mathrm{~s}, 2 \mathrm{H}), 3.95(\mathrm{~d}, \mathrm{~J}=$ $13.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.88-3.81(\mathrm{~m}, 8 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{~s}, 5 \mathrm{H}), 3.38(\mathrm{~d}, \mathrm{~J}=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.95-2.88(\mathrm{~m}, 3 \mathrm{H})$, $2.83-2.74(\mathrm{~m}, 1 \mathrm{H}), 2.64-2.51(\mathrm{~m}, 0 \mathrm{H}), 2.51-2.42(\mathrm{~m}, 1 \mathrm{H}), 2.43-2.33(\mathrm{~m}, 1 \mathrm{H}), 2.34-2.25(\mathrm{~m}, 1 \mathrm{H})$, $2.24-2.14(\mathrm{~m}, 2 \mathrm{H}), 2.15-2.03(\mathrm{~m}, 1 \mathrm{H}), 2.02-1.90(\mathrm{~m}, 2 \mathrm{H}), 1.92-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.72-1.61(\mathrm{~m}, 1 \mathrm{H})$, $1.48(\mathrm{~s}, 10 \mathrm{H}), 1.37-1.26(\mathrm{~m}, 2 \mathrm{H}), 1.19-1.07(\mathrm{~m}, 2 \mathrm{H}), 0.96-0.72(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13}$ C-NMR (126 MHz, CDCl $)$: $\delta 172.47,170.69,170.08,158.30,154.63,153.43,153.20,147.47,144.18$, $144.08,142.08,133.78,133.60,129.79,123.84,120.76,120.42,119.13,114.00,113.43,111.99$, $111.48,105.95,105.47,80.32,75.73,62.22,60.92,58.45,56.47,56.21,56.09,56.01,55.18,52.19$, $43.81,41.56,38.16,32.96,32.54,31.60,31.18,30.83,29.85,28.56,26.92,26.74,26.39,26.33,26.25$, 25.71, 21.14.

LC-MS (50-100\% B, $19 \mathbf{m i n}): \mathrm{t}_{\mathrm{R}}(\mathbf{2 4 0})=11.64 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=954.52[\mathrm{M}+\mathrm{H}]^{+}$, found $=954.91[\mathrm{M}+\mathrm{H}]^{+}$.

HRMS (ESI): calculated $=954.52228[\mathrm{M}+\mathrm{H}]^{+}$, found $=954.52322[\mathrm{M}+\mathrm{H}]^{+}$, err $[\mathrm{ppm}]=0.98$.
RP-HPLC (50-100\% B, $1.5 \mathrm{~mL} / \mathrm{min}, 15 \mathrm{~min}, 220 \mathrm{~nm}): \mathrm{t}_{R}(\mathbf{2 4 0})=15.01 \mathrm{~min}(97 \%$ Purity) .
(S)-(R)-3-(3,4-dimethoxyphenyl)-1-(3-((1-(piperidin-4-yl)-1H-1,2,3-triazol-4yl)methoxy)phenyl)propyl 1-((S)-2-cyclohexyl-2-(3,4,5-trimethoxyphenyl)acetyl)piperidine-2-carboxylate (AV475)

241
$\mathbf{2 4 0}$ ($5 \mathrm{mg}, 0.01 \mathrm{mmol}$) is dissolved in 1.5 mL DCM/TFA - 2/1. After stirring for 30 min at r.t., the solvent is evaporated under airstream and the crude then purified by silica column chromatography (DCM + $1 \% \mathrm{MeOH}+1 \%$ TEA). Pure 241 is obtained in quantitative yield.

TLC (DCM + 1\% MeOH + 1\% TEA): $\mathrm{R}_{f}(\mathbf{2 4 1})=0.21$.
Yield 4.5 mg (quant.).
LC-MS (30-100\% B, $19 \mathbf{m i n}): \mathrm{t}_{\mathrm{R}}(\mathbf{2 4 1})=7.65 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=854.46[\mathrm{M}+\mathrm{H}]^{+}$, found $=854.89[\mathrm{M}+\mathrm{H}]^{+}$.

HRMS (ESI): calculated $=854.46986[\mathrm{M}+\mathrm{H}]^{+}$, found $=854.47012[\mathrm{M}+\mathrm{H}]^{+}$, err $[\mathrm{ppm}]=0.30$.
RP-HPLC (0 - 100\% B, $1.5 \mathrm{~mL} / \mathrm{min}, 20 \mathrm{~min}, 220 \mathrm{~nm}): \mathrm{t}_{\mathrm{R}}(\mathbf{2 4 1})=15.33 \mathrm{~min}$ (99\% Purity).
(S)-(R)-3-(3,4-dimethoxyphenyl)-1-(3-((1-(4-methoxyphenyl)-1H-1,2,3-triazol-4yl)methoxy)phenyl)propyl 1-((S)-2-cyclohexyl-2-(3,4,5-trimethoxyphenyl)acetyl)piperidine-2-carboxylate (AV380/AV662)

Chemical Formula: $\mathrm{C}_{50} \mathrm{H}_{60} \mathrm{~N}_{4} \mathrm{O}_{10}$
Exact Mass: 876,43
Molecular Weight: 877,03
242
$\mathbf{2 4 2}$ is synthesized according to general procedure 5.9.6. Starting material: $\mathbf{2 3 3}(10 \mathrm{mg})$ and 4 -azidoanisole (3 mg). The pure product is obtained as a colorless oil.

Silica column chromatography: $C H / E E, 2 / 1, v / v$.
$\operatorname{TLC}(C H / E E, 2 / 1): \mathrm{R}_{f}(\mathbf{2 4 2})=0.23$.
Yield 11 mg (92\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.00(\mathrm{~s}, 1 \mathrm{H}), 7.68-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.13(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.04-6.97(\mathrm{~m}$, $3 \mathrm{H}), 6.88$ (ddd, J = 0.9, 2.6, 8.3 Hz, 1H), $6.81-6.71(\mathrm{~m}, 3 \mathrm{H}), 6.67-6.58(\mathrm{~m}, 3 \mathrm{H}), 6.55-6.41(\mathrm{~m}, 4 \mathrm{H})$, $5.59(\mathrm{dd}, \mathrm{J}=5.7,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.48(\mathrm{~d}, \mathrm{~J}=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.88-3.81(\mathrm{~m}, 17 \mathrm{H}), 3.77$ $(\mathrm{s}, 3 \mathrm{H}), 3.70(\mathrm{~s}, 5 \mathrm{H}), 3.38(\mathrm{~d}, \mathrm{~J}=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.78(\mathrm{td}, \mathrm{J}=2.9,13.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.67-2.43(\mathrm{~m}, 2 \mathrm{H}), 2.41-$ $2.26(\mathrm{~m}, 2 \mathrm{H}), 1.90-1.82(\mathrm{~m}, 2 \mathrm{H}), 1.72-1.59(\mathrm{~m}, 4 \mathrm{H}), 1.19-1.05(\mathrm{~m}, 2 \mathrm{H}), 0.98-0.81(\mathrm{~m}, 1 \mathrm{H}), 0.80-$ $0.72(m, 1 H), 0.66-0.51(m, 1 H)$.
${ }^{13}$ C-NMR (126 MHz, CDCl_{3}): $\delta 172.43,170.71,160.05,158.27,153.42,153.20,149.00,147.45,144.71$, 142.06, 137.01, 133.80, 133.59, 130.61, 129.80, 122.40, 121.38, 120.41, 119.24, 114.94, 114.08, $113.46,111.98,111.47,105.94,105.49,75.73,62.12,60.91,56.48,56.20,56.08,56.00,55.78,55.16$, 52.19, 43.83, 41.56, 38.09, 32.94, 31.17, 30.82, 26.89, 26.74, 26.37, 26.32, 25.71, 21.13, 14.35.

LC-MS (50-100\% B, $19 \mathbf{m i n}): \mathrm{t}_{\mathrm{R}}(\mathbf{2 4 2})=12.62 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=877.44[\mathrm{M}+\mathrm{H}]^{+}$, found $=877.70[\mathrm{M}+\mathrm{H}]^{+}$.

HRMS (ESI): calculated $=877.43822[\mathrm{M}+\mathrm{H}]^{+}$, found $=877.43838[\mathrm{M}+\mathrm{H}]^{+}$, err $[\mathrm{ppm}]=0.18$
RP-HPLC (50-100\% B, $1.5 \mathrm{~mL} / \mathrm{min}, 15 \mathrm{~min}, 220 \mathrm{~nm}): \mathrm{t}_{R}(\mathbf{2 4 2})=12.36 \mathrm{~min}(98 \%$ Purity $)$.
(S)-(R)-3-(3,4-dimethoxyphenyl)-1-(3-((1-(quinolin-8-ylmethyl)-1H-1,2,3-triazol-4yl)methoxy)phenyl)propyl 1-((S)-2-cyclohexyl-2-(3,4,5-trimethoxyphenyl)acetyl)piperidine-2-carboxylate (AV376)

243

$\mathbf{2 4 3}$ is synthesized according to general procedure 5.9.6. Starting material: 233 (30 mg) and 8(azidomethyl)quinoline (23 mg). The pure product is obtained as a beige solid.

Silica column chromatography: $C H / E E, 1 / 2, v / v$.
$\operatorname{TLC}(C H / E E, 1 / 2): \mathrm{R}_{f}(243)=0.42$.
Yield 30 mg (81\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.97-8.93(\mathrm{~m}, 1 \mathrm{H}), 8.18(\mathrm{dd}, \mathrm{J}=1.8,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{~s}, 1 \mathrm{H}), 7.85-$ $7.77(\mathrm{~m}, 1 \mathrm{H}), 7.67-7.58(\mathrm{~m}, 1 \mathrm{H}), 7.54-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.09(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.99-6.94(\mathrm{~m}, 1 \mathrm{H}), 6.83$ $-6.80(\mathrm{~m}, 1 \mathrm{H}), 6.77-6.72(\mathrm{~m}, 1 \mathrm{H}), 6.73-6.71(\mathrm{~m}, 1 \mathrm{H}), 6.60(\mathrm{~s}, 1 \mathrm{H}), 6.49(\mathrm{~s}, 1 \mathrm{H}), 6.42(\mathrm{~s}, 1 \mathrm{H}), 6.23(\mathrm{~s}$, $2 \mathrm{H}), 5.58-5.51(\mathrm{~m}, 1 \mathrm{H}), 5.48-5.43(\mathrm{~m}, 1 \mathrm{H}), 5.15-5.07(\mathrm{~m}, 2 \mathrm{H}), 3.94(\mathrm{~d}, \mathrm{~J}=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.85-3.83$ $(\mathrm{m}, 6 \mathrm{H}), 3.81(\mathrm{~s}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 2 \mathrm{H}), 3.69(\mathrm{~s}, 4 \mathrm{H}), 3.37(\mathrm{~d}, \mathrm{~J}=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.80-2.73(\mathrm{~m}, 1 \mathrm{H}), 2.63-2.47$ $(\mathrm{m}, 1 \mathrm{H}), 2.43(\mathrm{t}, \mathrm{J}=5.4,9.3,14.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.39-2.23(\mathrm{~m}, 2 \mathrm{H}), 2.13-1.99(\mathrm{~m}, 1 \mathrm{H}), 1.98-1.84(\mathrm{~m}, 1 \mathrm{H})$, $1.84-1.74(\mathrm{~m}, 1 \mathrm{H}), 1.72-1.46(\mathrm{~m}, 7 \mathrm{H}), 1.45-1.35(\mathrm{~m}, \mathrm{OH}), 1.34-1.18(\mathrm{~m}, 3 \mathrm{H}), 1.18-1.03(\mathrm{~m}, 2 \mathrm{H})$, $0.99-0.82(m, 1 H), 0.81-0.69(m, 1 H), 0.63-0.50(m, 1 H)$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 172.41,170.65,158.35,153.40,153.18,150.38,148.98,147.62,147.42$, 146.02, 143.90, 141.92, 141.63, 136.99, 136.53, 134.44, 133.79, 133.60, 133.38, 130.17, 130.06, 129.94, 129.69, 129.16, 129.09, 128.55, 126.60, 124.02, 121.81, 120.39, 120.25, 119.59, 119.06, $114.27,114.00,113.81,113.49,111.96,111.84,111.54,111.45,105.93,105.44,75.71,62.18,61.02$, $60.89,56.46,56.19,56.11,56.07,56.03,55.98,55.80,55.12,52.17,50.05,43.81,41.54,41.29,39.59$,
38.06, 37.92, 33.08, 32.92, 31.56, 31.11, 30.81, 30.63, 29.84, 27.01, 26.90, 26.73, 26.57, 26.35, 26.30, 25.70, 24.50, 21.13, 20.87, 1.16.

LC-MS (50-100\% B, $19 \mathbf{m i n}): \mathrm{t}_{\mathrm{R}}(\mathbf{2 4 3})=11.12 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=912.45[\mathrm{M}+\mathrm{H}]^{+}$, found $=912.57[\mathrm{M}+\mathrm{H}]^{+}$.
HRMS (ESI): calculated $=912.45421[\mathrm{M}+\mathrm{H}]^{+}$, found $=912.45515[\mathrm{M}+\mathrm{H}]^{+}$, err $[\mathrm{ppm}]=1.04$.
RP-HPLC ($\mathbf{3 0} \mathbf{- 1 0 0 \%}$ B, $1.5 \mathrm{~mL} / \mathrm{min}, 20 \mathrm{~min}, \mathbf{2 2 0} \mathrm{~nm}$): $\mathrm{t}_{R}(\mathbf{2 4 3})=17.22 \mathrm{~min}$ (99% Purity).
(S)-(R)-1-(3-((1-(4-cyanophenyl)-1H-1,2,3-triazol-4-yl)methoxy)phenyl)-3-(3,4dimethoxyphenyl)propyl 1-((S)-2-cyclohexyl-2-(3,4,5-trimethoxyphenyl)acetyl)piperidine-2-carboxylate (AV708)

Chemical Formula: $\mathrm{C}_{50} \mathrm{H}_{57} \mathrm{~N}_{5} \mathrm{O}_{9}$
Exact Mass: 871,42
Molecular Weight: 872,02
$\mathbf{2 4 4}$ is synthesized according to general procedure 5.9.6. Starting material: $\mathbf{2 3 3}(20 \mathrm{mg})$ and 4 azidobenzonitrile (6 mg). The pure product is obtained as a white solid.

Silica column chromatography: $\mathrm{CH} / \mathrm{EE}, 2 / 1, \mathrm{v} / \mathrm{v}$.
TLC (CH/EE, 2/1): $\mathrm{R}_{f}(\mathbf{2 4 4})=0.21$.
Yield 20 mg (87%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.20(\mathrm{~s}, 1 \mathrm{H}), 7.98-7.90(\mathrm{~m}, 2 \mathrm{H}), 7.88-7.80(\mathrm{~m}, 2 \mathrm{H}), 7.14(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}$, 1H), $7.06-6.96(\mathrm{~m}, 1 \mathrm{H}), 6.86$ (ddd, J = 0.9, 2.7, $8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.79-6.73(\mathrm{~m}, 2 \mathrm{H}), 6.65-6.60(\mathrm{~m}, 2 \mathrm{H})$, $6.51-6.47(\mathrm{~m}, 2 \mathrm{H}), 5.58(\mathrm{dd}, \mathrm{J}=5.5,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.49-5.43(\mathrm{~m}, 1 \mathrm{H}), 5.26(\mathrm{~d}, \mathrm{~J}=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{~d}$, $\mathrm{J}=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.88-3.81(\mathrm{~m}, 9 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{~s}, 5 \mathrm{H}), 3.38(\mathrm{~d}, \mathrm{~J}=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.78(\mathrm{td}, \mathrm{J}=2.9$, $13.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.65-2.54(\mathrm{~m}, \mathrm{OH}), 2.52-2.36(\mathrm{~m}, 1 \mathrm{H}), 2.34-2.23(\mathrm{~m}, 1 \mathrm{H}), 2.16-2.03(\mathrm{~m}, 1 \mathrm{H}), 2.02-$ $1.93(\mathrm{~m}, 1 \mathrm{H}), 1.91-1.79(\mathrm{~m}, 2 \mathrm{H}), 1.75-1.50(\mathrm{~m}, 7 \mathrm{H}), 1.49-1.38(\mathrm{~m}, 1 \mathrm{H}), 1.36-1.20(\mathrm{~m}, 3 \mathrm{H}), 1.19-$ $1.03(\mathrm{~m}, 3 \mathrm{H}), 1.00-0.85(\mathrm{~m}, 1 \mathrm{H}), 0.80-0.69(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13}$ C-NMR (126 MHz, CDCl_{3}): $\delta 172.46,170.82,170.74,158.42,158.03,153.44,153.16,149.14,149.01$, 147.69, 147.48, 145.82, 145.61, 142.18, 142.00, 139.90, 136.96, 134.39, 134.09, 134.04, 133.76, $133.51,133.32,130.15,129.86,120.94,120.76,120.40,120.27,119.91,119.40,117.80,114.23$, $114.06,113.75,113.41,112.64,111.98,111.88,111.56,111.46,105.93,105.51,75.68,62.00,61.93$, $61.02,60.90,56.49,56.17,56.11,56.07,56.00,55.89,55.18,52.18,43.80,41.55,41.29,39.64,38.10$, $37.94,33.12,32.94,31.60,31.19,30.80,30.59,26.86,26.71,26.54,26.36,26.31,26.21,25.67,24.46$, 21.09, 20.77.

LC-MS (50-100\% B, $19 \mathbf{m i n}): \mathrm{t}_{\mathrm{R}}(\mathbf{2 4 4})=12.08 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=872.42[\mathrm{M}+\mathrm{H}]^{+}$, found $=872.49[\mathrm{M}+\mathrm{H}]^{+}$(97\% Purity).

HRMS (ESI): calculated $=872.42290[\mathrm{M}+\mathrm{H}]^{+}$, found $=872.42243[\mathrm{M}+\mathrm{H}]^{+}$, err $[\mathrm{ppm}]=0.55$.
(S)-(R)-3-(3,4-dimethoxyphenyl)-1-(3-((1-(4-ethoxyphenyl)-1H-1,2,3-triazol-4yl)methoxy)phenyl)propyl 1-((S)-2-cyclohexyl-2-(3,4,5-trimethoxyphenyl)acetyl)piperidine-2-carboxylate (AV730)

Chemical Formula: $\mathrm{C}_{51} \mathrm{H}_{62} \mathrm{~N}_{4} \mathrm{O}_{10}$
Exact Mass: 890,45
Molecular Weight: 891,06

245

$\mathbf{2 4 5}$ is synthesized according to general procedure 5.9.6. Starting material: $\mathbf{2 3 3} \mathbf{(2 0 ~ m g})$ and 1-azido-4ethoxybenzene (7 mg). The pure product is obtained as a white solid.

Silica column chromatography: $\mathrm{CH} / \mathrm{EE}, 2 / 1, \mathrm{v} / \mathrm{v}$.
TLC (CH/EE, 2/1): $\mathrm{R}_{f}(\mathbf{2 4 5})=0.30$.
Yield 23 mg (94\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.00(\mathrm{~s}, 1 \mathrm{H}), 7.61(\mathrm{t}, \mathrm{J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{dd}, \mathrm{J}=$ 1.2, $9.0 \mathrm{~Hz}, 2 \mathrm{H}$), 6.88 (ddd, J = 0.9, 2.6, 8.4 Hz, 1H), $6.81-6.75(\mathrm{~m}, 2 \mathrm{H}), 6.65-6.60(\mathrm{~m}, 2 \mathrm{H}), 6.50(\mathrm{~s}$, $2 \mathrm{H}), 6.46(\mathrm{dt}, \mathrm{J}=1.1,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.58(\mathrm{dd}, \mathrm{J}=5.7,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.50-5.46(\mathrm{~m}, 1 \mathrm{H}), 5.24(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}$,
$1 \mathrm{H}), 3.95(\mathrm{~d}, \mathrm{~J}=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.86-3.81(\mathrm{~m}, 10 \mathrm{H}), 3.76(\mathrm{~s}, 2 \mathrm{H}), 3.70(\mathrm{~s}, 5 \mathrm{H}), 3.38(\mathrm{~d}, \mathrm{~J}=9.8 \mathrm{~Hz}, 1 \mathrm{H})$, $2.77(\mathrm{td}, \mathrm{J}=2.9,13.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.65-2.50(\mathrm{~m}, 1 \mathrm{H}), 2.50-2.33(\mathrm{~m}, 2 \mathrm{H}), 2.28(\mathrm{dd}, \mathrm{J}=4.7,11.7 \mathrm{~Hz}, 1 \mathrm{H})$, $2.17-2.01(\mathrm{~m}, 2 \mathrm{H}), 1.96(\mathrm{dtd}, \mathrm{J}=5.5,8.7,13.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.91-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.76-1.50(\mathrm{~m}, 8 \mathrm{H}), 1.36$ - $1.04(\mathrm{~m}, 6 \mathrm{H}), 0.96-0.70(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13}$ C-NMR (126 MHz, CDCl_{3}): $\delta 172.42,170.78,170.69,159.43,158.62,158.26,153.41,153.19,149.12$, $148.99,147.63,147.43,144.79,144.66,144.43,142.04,141.79,136.99,134.43,133.79,133.58$, $133.40,130.43,130.05,129.78,122.36,121.36,121.30,120.40,120.26,119.72,119.22,115.44$, $115.42,114.34,114.07,113.80,113.45,111.96,111.85,111.55,111.45,105.93,105.47,75.71,64.07$, $62.10,62.10,61.01,60.90,56.47,56.19,56.10,56.06,55.98,55.84,55.14,52.17,43.82,41.55,41.30$, $39.61,38.07,37.94,33.11,32.92,31.58,31.15,30.80,30.63,26.94,26.87,26.72,26.58,26.36,26.30$, 26.23, 25.70, 24.49, 21.12.

LC-MS (50-100\% B, $19 \mathbf{~ m i n}): \mathrm{t}_{R}(\mathbf{2 4 5})=13.09 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=891.45[\mathrm{M}+\mathrm{H}]^{+}$, found $=891.92[\mathrm{M}+\mathrm{H}]^{+}$(99\% Purity).
HRMS (ESI): calculated $=891.45387[\mathrm{M}+\mathrm{H}]^{+}$, found $=891.45422[\mathrm{M}+\mathrm{H}]^{+}$, err $[\mathrm{ppm}]=0.39$.
(S)-(R)-3-(3,4-dimethoxyphenyl)-1-(3-((1-(3,5-dimethoxyphenyl)-1H-1,2,3-triazol-4yl)methoxy)phenyl)propyl 1-((S)-2-cyclohexyl-2-(3,4,5-trimethoxyphenyl)acetyl)piperidine-2-carboxylate (AV677)

246

$\mathbf{2 4 6}$ is synthesized according to general procedure 5.9.6. Starting material: $\mathbf{2 3 3}$ (10 mg) and 1-azido-$3,5-$ dimethoxy-benzene (4 mg). The pure product is obtained as a colorless solid.

Silica column chromatography: $C H / E E, 2 / 1, v / v$.
TLC (CH/EE, 2/1): $\mathrm{R}_{f}(\mathbf{2 4 6})=0.25$.

Yield 5 mg (42\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.13-8.03(\mathrm{~m}, 1 \mathrm{H}), 7.14(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.05-6.98(\mathrm{~m}, 1 \mathrm{H}), 6.95-$ $6.84(\mathrm{~m}, 3 \mathrm{H}), 6.80-6.74(\mathrm{~m}, 2 \mathrm{H}), 6.68-6.60(\mathrm{~m}, 2 \mathrm{H}), 6.53-6.50(\mathrm{~m}, 2 \mathrm{H}), 6.49-6.41(\mathrm{~m}, 1 \mathrm{H}), 5.59$ (dd, J = 5.7, $7.9 \mathrm{~Hz}, 1 \mathrm{H}$), $5.50-5.44(\mathrm{~m}, 1 \mathrm{H}), 5.31-5.28(\mathrm{~m}, 1 \mathrm{H}), 5.25-5.21(\mathrm{~m}, 1 \mathrm{H}), 3.95(\mathrm{~d}, \mathrm{~J}=14.2$ $\mathrm{Hz}, 1 \mathrm{H}), 3.87-3.83(\mathrm{~m}, 12 \mathrm{H}), 3.83-3.82(\mathrm{~m}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 2 \mathrm{H}), 3.70(\mathrm{~s}, 4 \mathrm{H}), 3.38(\mathrm{~d}, \mathrm{~J}=9.8 \mathrm{~Hz}, 1 \mathrm{H})$, 2.77 (td, J = 2.8, 13.4 Hz, 1H), 2.51-2.32 (m, 1H), 2.32-2.22 (m, 1H), 2.14-2.03(m, 1H), 2.01-1.92 $(\mathrm{m}, 1 \mathrm{H}), 1.92-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.74-1.52(\mathrm{~m}, 8 \mathrm{H}), 1.48-1.08(\mathrm{~m}, 7 \mathrm{H}), 1.05-0.68(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13}$ C-NMR (126 MHz, CDCl_{3}): $\delta 172.43,170.72,161.70,158.25,153.44,153.22,149.01,147.46,144.82$, $142.08,138.63,137.03,133.82,133.59,129.82,121.34,121.29,120.42,120.27,119.77,119.31$, $114.39,114.08,113.85,113.45,111.98,111.87,111.56,111.47,105.96,105.50,100.84,99.19,75.72$, $62.15,62.07,61.03,60.92,56.50,56.21,56.08,56.00,55.89,55.17,52.19,43.84,41.57,41.30,38.08$, $37.95,33.19,32.95,31.60,31.17,30.82,30.69,29.85,26.88,26.74,26.38,25.72,24.52,21.13,20.87$, 1.17.

LC-MS (50-100\% B, $19 \mathbf{m i n}): \mathrm{t}_{\mathrm{R}}(\mathbf{2 4 6})=12.90 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=907.44[\mathrm{M}+\mathrm{H}]^{+}$, found $=907.57[\mathrm{M}+\mathrm{H}]^{+}$.

HRMS (ESI): calculated $=907.44879[\mathrm{M}+\mathrm{H}]^{+}$, found $=907.44940[\mathrm{M}+\mathrm{H}]^{+}$, err $[\mathrm{ppm}]=0.68$.
RP-HPLC (50 - 100\% B, $1.5 \mathrm{~mL} / \mathrm{min}, 15 \mathrm{~min}, 220 \mathrm{~nm}): \mathrm{t}_{R}(\mathbf{2 4 6})=13.08 \mathrm{~min}$ (97% Purity) .
(S)-(R)-3-(3,4-dimethoxyphenyl)-1-(3-((1-(4-isopropoxyphenyl)-1H-1,2,3-triazol-4yl)methoxy)phenyl)propyl 1-((S)-2-cyclohexyl-2-(3,4,5-trimethoxyphenyl)acetyl)piperidine-2-carboxylate (AV678)

Chemical Formula: $\mathrm{C}_{52} \mathrm{H}_{64} \mathrm{~N}_{4} \mathrm{O}_{10}$
Exact Mass: 904,46
Molecular Weight: 905,09
$\mathbf{2 4 7}$ is synthesized according to general procedure 5.9.6. Starting material: $\mathbf{2 3 3}(10 \mathrm{mg})$ and 1-azido-4-isopropoxy-benzene (4 mg). The pure product is obtained as a colorless solid.

Silica column chromatography: CH/EE, 2/1, v/v.
TLC (CH/EE, 2/1): $\mathrm{R}_{f}(\mathbf{2 4 7})=0.25$.
Yield 10 mg (81\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.99(\mathrm{~s}, 1 \mathrm{H}), 7.65-7.55(\mathrm{~m}, 1 \mathrm{H}), 7.13(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.05-6.97(\mathrm{~m}$, $2 H), 6.90-6.85(\mathrm{~m}, 1 \mathrm{H}), 6.80-6.72(\mathrm{~m}, 2 \mathrm{H}), 6.63(\mathrm{dd}, \mathrm{J}=1.4,6.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.50(\mathrm{~s}, 2 \mathrm{H}), 6.48-6.43(\mathrm{~m}$, 1H), 5.59 (dd, J = 5.7, 8.0 Hz, 1H), $5.52-5.45(\mathrm{~m}, 1 \mathrm{H}), 5.30(\mathrm{~s}, 3 \mathrm{H}), 5.24(\mathrm{~d}, \mathrm{~J}=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.64-4.55$ $(\mathrm{m}, 1 \mathrm{H}), 4.00-3.92(\mathrm{~m}, 1 \mathrm{H}), 3.87-3.80(\mathrm{~m}, 9 \mathrm{H}), 3.77(\mathrm{~s}, 2 \mathrm{H}), 3.70(\mathrm{~s}, 4 \mathrm{H}), 3.38(\mathrm{~d}, \mathrm{~J}=9.8 \mathrm{~Hz}, 1 \mathrm{H})$, $2.78(\mathrm{td}, \mathrm{J}=2.9,13.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.66-2.52(\mathrm{~m}, 1 \mathrm{H}), 2.49-2.33(\mathrm{~m}, 1 \mathrm{H}), 2.32-2.24(\mathrm{~m}, 1 \mathrm{H}), 2.15-2.06$ $(\mathrm{m}, 1 \mathrm{H}), 2.01-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.71-1.51(\mathrm{~m}, 9 \mathrm{H}), 1.37(\mathrm{dd}, \mathrm{J}=1.1,6.1 \mathrm{~Hz}, 6 \mathrm{H})$, $1.27(\mathrm{~d}, 2 \mathrm{H}), 1.21-1.06(\mathrm{~m}, 2 \mathrm{H}), 1.08-0.50(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13}$ C-NMR (126 MHz, CDCl_{3}): $\delta 172.43,170.80,170.71,158.45,158.27,153.42,153.21,149.01,147.45$, 144.66, 144.43, 142.06, 141.81, 137.01, 134.45, 133.80, 133.59, 130.30, 130.20, 130.07, 129.80, 122.42, 121.37, 120.42, 120.27, 119.74, 119.24, 116.70, 114.08, 113.82, 113.47, 111.98, 111.87, $111.56,111.47,105.95,105.48,75.73,70.62,62.19,62.12,61.03,60.91,56.48,56.21,56.08,56.00$, 55.16, 53.56, 52.19, 43.84, 41.56, 41.32, 38.09, 32.94, 31.60, 31.17, 30.82, 26.96, 26.89, 26.74, 26.60, 26.37, 26.32, 26.24, 25.72, 22.08, 21.13, 20.86.

LC-MS (50-100\% B, $19 \mathbf{m i n}): \mathrm{t}_{\mathrm{R}}(\mathbf{2 4 7})=13.58 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=905.46[\mathrm{M}+\mathrm{H}]^{+}$, found $=905.78[\mathrm{M}+\mathrm{H}]^{+}$.

HRMS (ESI): calculated $=905.46952[\mathrm{M}+\mathrm{H}]^{+}$, found $=905.47027[\mathrm{M}+\mathrm{H}]^{+}$, err $[\mathrm{ppm}]=0.83$.
RP-HPLC (50-100\% B, $1.5 \mathrm{~mL} / \mathrm{min}, 15 \mathrm{~min}, 220 \mathrm{~nm}): \mathrm{t}_{\mathrm{R}}(\mathbf{2 4 7})=14.05 \mathrm{~min}(98 \%$ Purity).

(S)-(R)-3-(3,4-dimethoxyphenyl)-1-(3-((1-(3-methoxyphenyl)-1H-1,2,3-triazol-4-

 yl)methoxy)phenyl)propyl 1-((S)-2-cyclohexyl-2-(3,4,5-trimethoxyphenyl)acetyl)piperidine-2-carboxylate (AV728)
$\mathbf{2 4 8}$ is synthesized according to general procedure 5.9.6. Starting material: $\mathbf{2 3 3}$ (20 mg) and 1-azido-3methoxybenzene (6 mg). The pure product is obtained as a white solid.

Silica column chromatography: $\mathrm{CH} / \mathrm{EE}, 2 / 1, \mathrm{v} / \mathrm{v}$.
$\operatorname{TLC}(C H / E E, 2 / 1): \mathrm{R}_{f}(248)=0.26$.
Yield 18 mg (75\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.08(\mathrm{~s}, 1 \mathrm{H}), 7.46-7.37(\mathrm{~m}, 1 \mathrm{H}), 7.37-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.14(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}$, 1H), $7.06-6.94(\mathrm{~m}, 2 \mathrm{H}), 6.88$ (ddd, J = 0.9, 2.6, 8.3 Hz, 1H), $6.76(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.67-6.60(\mathrm{~m}$, $2 \mathrm{H}), 6.50(\mathrm{~s}, 2 \mathrm{H}), 6.47(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.59(\mathrm{dd}, \mathrm{J}=5.7,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.48(\mathrm{~d}, \mathrm{~J}=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{~s}$, $1 \mathrm{H}), 3.96(\mathrm{~d}, \mathrm{~J}=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.87-3.82(\mathrm{~m}, 9 \mathrm{H}), 3.77(\mathrm{~s}, 2 \mathrm{H}), 3.70(\mathrm{~s}, 5 \mathrm{H}), 3.38(\mathrm{~d}, \mathrm{~J}=9.8$ $\mathrm{Hz}, 1 \mathrm{H}), 2.78(\mathrm{t}, \mathrm{J}=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.66-2.51(\mathrm{~m}, 0 \mathrm{H}), 2.51-2.34(\mathrm{~m}, 1 \mathrm{H}), 2.28(\mathrm{~d}, \mathrm{~J}=13.9 \mathrm{~Hz}, 1 \mathrm{H})$, $2.10(q, J=10.4,10.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.90(\mathrm{ddd}, \mathrm{J}=8.8,14.5,25.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.61(\mathrm{q}, \mathrm{J}=7.8,9.6 \mathrm{~Hz}, 9 \mathrm{H}), 1.48-$ $1.03(\mathrm{~m}, 3 \mathrm{H}), 0.76$ (ddt, J = 12.1, 40.6, $64.2 \mathrm{~Hz}, 2 \mathrm{H}$).
${ }^{13}$ C-NMR (126 MHz, CDCl 3): $\delta 172.43,170.71,160.79,158.24,153.43,153.21,149.01,147.45,144.89$, $143.04,142.07,138.17,137.02,136.35,133.80,133.58,130.67,129.80,121.30,120.41,119.29$, $114.89,114.08,113.83,113.45,112.60,111.98,111.57,111.47,106.62,106.55,105.96,105.50$, $75.71,62.07,60.91,56.49,56.20,56.08,56.04,55.99,55.79,55.16,52.19,43.83,43.32,41.56,41.30$, $39.62,38.08,37.94,33.15,32.93,31.16,30.81,26.87,26.73,26.36,26.31,26.25,25.71,21.12$.

LC-MS (50-100\% B, 19 min$): \mathrm{t}_{R}(\mathbf{2 4 8})=12.61 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=877.43[\mathrm{M}+\mathrm{H}]^{+}$, found $=877.66[\mathrm{M}+\mathrm{H}]^{+}$.

HRMS (ESI): calculated $=877.43822[\mathrm{M}+\mathrm{H}]^{+}$, found $=877.43869[\mathrm{M}+\mathrm{H}]^{+}$, err $[\mathrm{ppm}]=0.54$.
RP-HPLC ($\mathbf{5 0} \mathbf{- 1 0 0 \%}$ B, $1.5 \mathrm{~mL} / \mathrm{min}, 15 \mathrm{~min}, 220 \mathrm{~nm}$): $\mathrm{t}_{R}(\mathbf{2 4 8})=12.64 \mathrm{~min}(95 \%$ Purity) .
(S)-(R)-3-(3,4-dimethoxyphenyl)-1-(3-((1-(3,4-dimethoxyphenyl)-1H-1,2,3-triazol-4yl)methoxy)phenyl)propyl 1-((S)-2-cyclohexyl-2-(3,4,5-trimethoxyphenyl)acetyl)piperidine-2-carboxylate (AV704)

249
$\mathbf{2 4 9}$ is synthesized according to general procedure 5.9.6. Starting material: $\mathbf{2 3 3}(\mathbf{2 0} \mathrm{mg})$ and 4-azido-1,2-dimethoxybenzene (7 mg). The pure product is obtained as a white solid.

Silica column chromatography: $C H / E E, 2 / 1, v / v$.
TLC (CH/EE, 2/1): $\mathrm{R}_{f}(\mathbf{2 4 9})=0.25$.
Yield 24 mg (96\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.03(\mathrm{~s}, 1 \mathrm{H}), 7.37-7.33(\mathrm{~m}, 1 \mathrm{H}), 7.21-7.08(\mathrm{~m}, 2 \mathrm{H}), 7.06-6.98(\mathrm{~m}$, $1 \mathrm{H}), 6.93(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.91-6.86(\mathrm{~m}, 1 \mathrm{H}), 6.81-6.72(\mathrm{~m}, 2 \mathrm{H}), 6.72-6.56(\mathrm{~m}, 2 \mathrm{H}), 6.53-6.42$ $(\mathrm{m}, 3 \mathrm{H}), 5.59(\mathrm{dd}, \mathrm{J}=5.7,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.53-5.38(\mathrm{~m}, 1 \mathrm{H}), 5.24(\mathrm{~s}, 2 \mathrm{H}), 3.97-3.92(\mathrm{~m}, 7 \mathrm{H}), 3.88-3.81$ (m, 9H), 3.77 (d, J = $1.8 \mathrm{~Hz}, 3 \mathrm{H}), 3.70(\mathrm{~s}, 5 \mathrm{H}), 3.38(\mathrm{~d}, \mathrm{~J}=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.78(\mathrm{t}, \mathrm{J}=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.65-$ $2.35(\mathrm{~m}, 2 \mathrm{H}), 2.28(\mathrm{~d}, \mathrm{~J}=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.18-2.02(\mathrm{~m}, 1 \mathrm{H}), 1.94-1.73(\mathrm{~m}, 1 \mathrm{H}), 1.60(\mathrm{q}, \mathrm{J}=11.0,12.9$ $\mathrm{Hz}, 8 \mathrm{H}), 1.44-1.08(\mathrm{~m}, 3 \mathrm{H}), 1.04-0.52(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13}$ C-NMR (126 MHz, CDCl ${ }_{3}$): $\delta 172.42,170.70,158.26,153.18,149.95,149.00,147.45,144.75,142.06$, 136.99, 133.78, 133.57, 129.80, 121.41, 120.40, 119.24, 114.02, 113.46, 112.68, 111.98, 111.46, $111.37,105.94,105.49,105.20,75.70,62.11,60.89,56.39,56.35,56.19,56.06,55.99,55.15,52.17$, 43.81, 41.54, 38.08, 32.92, 31.16, 30.80, 26.72, 26.32, 25.69, 21.11.

LC-MS (50-100\% B, $19 \mathbf{m i n}): \mathrm{t}_{R}(\mathbf{2 4 9})=12.10 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=907.44[\mathrm{M}+\mathrm{H}]^{+}$, found $=907.50[\mathrm{M}+\mathrm{H}]^{+}$.
HRMS (ESI): calculated $=907.44879[\mathrm{M}+\mathrm{H}]^{+}$, found $=907.44992[\mathrm{M}+\mathrm{H}]^{+}$, err $[\mathrm{ppm}]=1.25$.
RP-HPLC (50-100\% B, $1.5 \mathrm{~mL} / \mathrm{min}, 15 \mathrm{~min}, 254 \mathrm{~nm}): \mathrm{t}_{R}(\mathbf{2 4 9})=11.57 \mathrm{~min}(98 \%$ Purity).
(S)-(R)-3-(3,4-dimethoxyphenyl)-1-(3-((1-(3,4,5-trimethoxyphenyl)-1H-1,2,3-triazol-4yl)methoxy)phenyl)propyl 1-((S)-2-cyclohexyl-2-(3,4,5-trimethoxyphenyl)acetyl)piperidine-2-carboxylate (AV666)
 250
$\mathbf{2 5 0}$ is synthesized according to general procedure 5.9.6. Starting material: $\mathbf{2 3 3}(\mathbf{1 0 ~ m g})$ and $\mathbf{2 2 8}(4 \mathrm{mg})$. The pure product is obtained as a colorless solid.

Silica column chromatography: $\mathrm{CH} / \mathrm{EE}, 2 / 1, \mathrm{v} / \mathrm{v}$.
TLC (CH/EE, 1/1): $\mathrm{R}_{f}(\mathbf{2 5 0})=0.42$.
Yield 10 mg (77\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 8.02-7.95(\mathrm{~m}, 1 \mathrm{H}), 7.19(\mathrm{~s}, 1 \mathrm{H}), 7.07(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.94-6.88(\mathrm{~m}$, $2 \mathrm{H}), 6.86-6.80(\mathrm{~m}, 1 \mathrm{H}), 6.76-6.63(\mathrm{~m}, 2 \mathrm{H}), 6.65-6.54(\mathrm{~m}, 2 \mathrm{H}), 6.46-6.34(\mathrm{~m}, 3 \mathrm{H}), 5.52(\mathrm{dd}, \mathrm{J}=$ $5.6,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.40(\mathrm{~d}, \mathrm{~J}=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{~d}, \mathrm{~J}=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 6 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.80-3.74$ $(\mathrm{m}, 9 \mathrm{H}), 3.71-3.69(\mathrm{~m}, 3 \mathrm{H}), 3.63(\mathrm{~s}, 4 \mathrm{H}), 3.31(\mathrm{~d}, \mathrm{~J}=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.76-2.65(\mathrm{~m}, 1 \mathrm{H}), 2.57-2.44(\mathrm{~m}$, $\mathrm{OH}), 2.44-2.28(\mathrm{~m}, 1 \mathrm{H}), 2.24-2.16(\mathrm{~m}, 1 \mathrm{H}), 2.07-1.97(\mathrm{~m}, 2 \mathrm{H}), 1.95-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.64-1.43(\mathrm{~m}$, $8 \mathrm{H}), 1.41-1.31(\mathrm{~m}, \mathrm{OH}), 1.31-1.17(\mathrm{~m}, 2 \mathrm{H}), 1.15-1.00(\mathrm{~m}, 2 \mathrm{H}), 0.88-0.63(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$-NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 213.55,211.82,199.34,195.19,194.54,194.29,190.11,188.56,185.99$, 183.20, 179.70, $178.08,174.88,174.65,174.08,171.19,170.93,162.57,161.50,161.36,160.39$, $155.40,155.07,154.94,154.57,153.08,152.97,152.66,152.56,147.04,146.59,139.90,139.84$, $116.80,103.28,103.21,102.30,102.12,102.00,101.63,97.73,97.59,97.29,97.17,97.09,96.28$, $93.29,84.92,82.64,79.18,74.29,74.04,72.70,72.27,71.91,67.99,67.98,67.82,67.47,67.41,66.80$, 62.28, 62.20, 61.94, 55.45.

LC-MS (50-100\% B, $19 \mathbf{~ m i n}): \mathrm{t}_{R}(\mathbf{2 5 0})=12.13 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=937.45[\mathrm{M}+\mathrm{H}]^{+}$, found $=937.71[\mathrm{M}+\mathrm{H}]^{+}$.

HRMS (ESI): calculated $=937.45935[\mathrm{M}+\mathrm{H}]^{+}$, found $=937.45895[\mathrm{M}+\mathrm{H}]^{+}$, err $[\mathrm{ppm}]=0.43$.
RP-HPLC (50-100\% B, $1.5 \mathrm{~mL} / \mathrm{min}, 15 \mathrm{~min}, 220 \mathrm{~nm}): \mathrm{t}_{R}(\mathbf{2 5 0})=12.12 \mathrm{~min}(98 \%$ Purity).
(S)-(R)-3-(3,4-dimethoxyphenyl)-1-(3-((1-(4-methoxybenzyl)-1H-1,2,3-triazol-4yl)methoxy)phenyl)propyl 1-((S)-2-cyclohexyl-2-(3,4,5-trimethoxyphenyl)acetyl)piperidine-2-carboxylate (AV702)
 251

251 is synthesized according to general procedure 5.9.6. Starting material: $\mathbf{2 3 3}$ (20 mg) and 1-(azidomethyl)-4-methoxybenzene (7 mg). The pure product is obtained as a white solid.

Silica column chromatography: $C H / E E, 1 / 1, v / v$.
$\operatorname{TLC}(C H / E E, 1 / 1): \mathrm{R}_{f}(\mathbf{2 5 1})=0.30$.
Yield 14 mg (58\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.51(\mathrm{~s}, 1 \mathrm{H}), 7.23(\mathrm{dd}, \mathrm{J}=2.4,8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.00-$ $6.93(\mathrm{~m}, 1 \mathrm{H}), 6.88(\mathrm{dd}, \mathrm{J}=2.1,8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.86-6.71(\mathrm{~m}, 3 \mathrm{H}), 6.61(\mathrm{~d}, \mathrm{~J}=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{~s}, 2 \mathrm{H})$, $6.47-6.41(\mathrm{~m}, 1 \mathrm{H}), 5.56(\mathrm{dd}, \mathrm{J}=5.7,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.46(\mathrm{~s}, 3 \mathrm{H}), 5.12(\mathrm{~s}, 1 \mathrm{H}), 3.84(\mathrm{q}, \mathrm{J}=3.3 \mathrm{~Hz}, 8 \mathrm{H})$, $3.80(\mathrm{~d}, \mathrm{~J}=9.8 \mathrm{~Hz}, 5 \mathrm{H}), 3.76(\mathrm{~s}, 2 \mathrm{H}), 3.69(\mathrm{~s}, 5 \mathrm{H}), 3.37(\mathrm{~d}, \mathrm{~J}=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.78(\mathrm{td}, \mathrm{J}=2.8,13.4 \mathrm{~Hz}, 1 \mathrm{H})$, $2.63-2.49(\mathrm{~m}, 1 \mathrm{H}), 2.49-2.32(\mathrm{~m}, 2 \mathrm{H}), 2.32-2.22(\mathrm{~m}, 1 \mathrm{H}), 2.14-2.02(\mathrm{~m}, 2 \mathrm{H}), 1.98-1.91(\mathrm{~m}, 1 \mathrm{H})$, $1.91-1.76(\mathrm{~m}, 2 \mathrm{H}), 1.72-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.55(\mathrm{~d}, \mathrm{~J}=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.47-1.36(\mathrm{~m}, 1 \mathrm{H}), 1.36-1.21(\mathrm{~m}$, $3 \mathrm{H}), 1.20-1.02(\mathrm{~m}, 2 \mathrm{H}), 0.90(\mathrm{qd}, \mathrm{J}=3.3,12.5 \mathrm{~Hz}, 1 \mathrm{H}), 0.75(\mathrm{td}, \mathrm{J}=9.1,12.4 \mathrm{~Hz}, 1 \mathrm{H}), 0.64-0.49(\mathrm{~m}$, 1H).
${ }^{13}$ C-NMR (126 MHz, CDCl_{3}): $\delta 172.44,170.77,170.65,160.12,158.28,153.41,153.18,149.12,149.00$, $147.64,147.44,144.48,144.23,142.00,141.71,136.98,134.44,133.76,133.59,133.41,129.99$, $129.86,129.73,126.61,122.58,120.39,120.26,119.66,119.09,114.65,114.21,114.00,113.80$,
$113.44,111.96,111.86,111.55,111.46,105.94,105.45,75.71,62.18,61.02,60.90,56.46,56.19$,
$56.07,55.99,55.83,55.48,55.15,53.93,52.17,43.80,41.53,41.30,39.60,38.11,37.92,33.10,32.94$, $31.57,31.14,30.81,30.63,26.91,26.73,26.58,26.36,26.31,26.22,25.70,24.49,21.13,20.86$.

LC-MS (50-100\% B, $19 \mathbf{m i n}): \mathrm{t}_{\mathrm{R}}(\mathbf{2 5 1})=11.98 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=891.45[\mathrm{M}+\mathrm{H}]^{+}$, found $=891.69[\mathrm{M}+\mathrm{H}]^{+}$.

HRMS (ESI): calculated $=891.45387[\mathrm{M}+\mathrm{H}]^{+}$, found $=891.45475[\mathrm{M}+\mathrm{H}]^{+}$, $\operatorname{err}[\mathrm{ppm}]=0.98$.
RP-HPLC (50-100\% B, $1.5 \mathrm{~mL} / \mathrm{min}, 15 \mathrm{~min}, 220 \mathrm{~nm}): \mathrm{t}_{R}(\mathbf{2 5 1})=11.68 \mathrm{~min}(97 \%$ Purity $)$.

(S)-(R)-3-(3,4-dimethoxyphenyl)-1-(3-((1-(pyridin-4-yl)-1H-1,2,3-triazol-4-

 yl)methoxy)phenyl)propyl 1-((S)-2-cyclohexyl-2-(3,4,5-trimethoxyphenyl)acetyl)piperidine-2-carboxylate (AV714)

252
252 is synthesized according to general procedure 5.9.6. Starting material: 233 (20 mg) and 4azidopyridine $(5 \mathrm{mg})$. The pure product is obtained as a white solid.

Silica column chromatography: CH/EE, $2 / 1+1 \%$ TEA, v/v.
TLC (CH/EE, 2/1 + 1\% TEA): $\mathrm{R}_{f}(\mathbf{2 5 2})=0.25$.
Yield 23 mg (quant.).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.82(\mathrm{~s}, 2 \mathrm{H}), 8.25(\mathrm{~s}, 1 \mathrm{H}), 7.77(\mathrm{~s}, 2 \mathrm{H}), 7.14(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.06-6.94$ $(\mathrm{m}, 1 \mathrm{H}), 6.92-6.82(\mathrm{~m}, 1 \mathrm{H}), 6.80-6.70(\mathrm{~m}, 2 \mathrm{H}), 6.70-6.57(\mathrm{~m}, 2 \mathrm{H}), 6.49(\mathrm{~d}, \mathrm{~J}=2.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.58(\mathrm{dd}$, $J=5.6,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.52-5.40(\mathrm{~m}, 1 \mathrm{H}), 5.26(\mathrm{~d}, \mathrm{~J}=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{~d}, \mathrm{~J}=13.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{q}, \mathrm{J}=$ $2.4 \mathrm{~Hz}, 9 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{~s}, 5 \mathrm{H}), 3.38(\mathrm{~d}, \mathrm{~J}=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\mathrm{t}, \mathrm{J}=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.47(\mathrm{dtq}, \mathrm{J}=$ $7.1,7.8,14.1,34.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{~d}, \mathrm{~J}=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.19-2.01(\mathrm{~m}, 1 \mathrm{H}), 1.98-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.76-$ $1.47(\mathrm{~m}, 13 \mathrm{H}), 1.47-1.06(\mathrm{~m}, 2 \mathrm{H}), 0.82(\mathrm{dq}, \mathrm{J}=11.0,45.5 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$-NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 172.45,170.74,158.03,153.44,153.17,151.85,149.01,147.47,145.82$, 143.09, 142.17, 136.98, 134.38, 133.77, 133.52, 129.85, 120.56, 120.40, 119.43, 114.07, 113.40, $111.98,111.47,105.94,105.52,75.68,61.90,60.90,56.49,56.17,56.07,55.99,55.17,52.19,43.81$, $41.55,38.06,37.93,32.93,31.18,30.80,26.85,26.70,26.34,25.67,21.08$.

LC-MS (30-100\% B, $19 \mathbf{~ m i n}): \mathrm{t}_{\mathrm{R}}(\mathbf{2 5 2})=13.08 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=848.42[\mathrm{M}+\mathrm{H}]^{+}$, found $=848.51[\mathrm{M}+\mathrm{H}]^{+}$.

HRMS (ESI): calculated $=848.42290[\mathrm{M}+\mathrm{H}]^{+}$, found $=848.42336[\mathrm{M}+\mathrm{H}]^{+}$, err $[\mathrm{ppm}]=0.53$.
RP-HPLC ($\mathbf{3 0} \mathbf{- 1 0 0 \%}$ B, $1.5 \mathrm{~mL} / \mathrm{min}, 15 \mathrm{~min}, 220 \mathrm{~nm}$): $\mathrm{t}_{R}(\mathbf{2 5 2})=11.29 \mathrm{~min}(97 \%$ Purity).

(S)-(R)-3-(3,4-dimethoxyphenyl)-1-(3-((1-(pyridin-3-yl)-1H-1,2,3-triazol-4-

yl)methoxy)phenyl)propyl 1-((S)-2-cyclohexyl-2-(3,4,5-trimethoxyphenyl)acetyl)piperidine-2-carboxylate (AV712)

253
$\mathbf{2 5 3}$ is synthesized according to general procedure 5.9.6. Starting material: 233 (20 mg) and 3azidopyridine (5 mg). The pure product is obtained as a white solid.

Silica column chromatography: CH/EE, $2 / 1+1 \%$ TEA, v/v.
TLC (CH/EE, 2/1 + 1\% TEA): $\mathrm{R}_{f}(\mathbf{2 5 3})=0.25$.
Yield 15 mg (65\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.10-8.88(\mathrm{~m}, 1 \mathrm{H}), 8.71(\mathrm{dd}, \mathrm{J}=1.6,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.22-8.07(\mathrm{~m}, 2 \mathrm{H})$, $7.59-7.45(\mathrm{~m}, 1 \mathrm{H}), 7.14(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.06-6.97(\mathrm{~m}, 1 \mathrm{H}), 6.92-6.84(\mathrm{~m}, 1 \mathrm{H}), 6.81-6.70(\mathrm{~m}$, $2 \mathrm{H}), 6.72-6.59(\mathrm{~m}, 2 \mathrm{H}), 6.50(\mathrm{~s}, 2 \mathrm{H}), 5.59(\mathrm{dd}, \mathrm{J}=5.6,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.51-5.43(\mathrm{~m}, 1 \mathrm{H}), 5.27(\mathrm{~s}, 1 \mathrm{H})$, $3.95(\mathrm{~d}, \mathrm{~J}=13.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.88-3.81(\mathrm{~m}, 8 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{~s}, 4 \mathrm{H}), 3.38(\mathrm{~d}, \mathrm{~J}=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\mathrm{t}$,
$J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.64-2.35(\mathrm{~m}, 1 \mathrm{H}), 2.35-2.20(\mathrm{~m}, 1 \mathrm{H}), 2.18-2.02(\mathrm{~m}, 1 \mathrm{H}), 1.97-1.78(\mathrm{~m}, 1 \mathrm{H})$, $1.75-1.50(\mathrm{~m}, 14 \mathrm{H}), 1.20(\mathrm{~d}, \mathrm{~J}=36.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.03-0.49(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$-NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 172.44,172.37,170.74,158.13,153.44,153.19,150.18,149.02,147.48$, $145.57,142.16,141.84,137.19,137.01,133.79,133.55,133.37,129.83,128.25,124.37,121.21$, $120.42,119.37,114.10,113.41,111.99,111.48,105.96,75.69,61.95,60.92,56.50,56.19,56.08$, 56.00, $55.19,52.19,43.82,41.57,38.09,32.94,31.19,30.81,26.87,26.72,26.36,25.70,21.11$.

LC-MS (30-100\% B, $19 \mathbf{~ m i n}): \mathrm{t}_{R}(\mathbf{2 5 3})=13.34 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=848.42[\mathrm{M}+\mathrm{H}]^{+}$, found $=848.42[\mathrm{M}+\mathrm{H}]^{+}$.

HRMS (ESI): calculated $=848.42290[\mathrm{M}+\mathrm{H}]^{+}$, found $=848.42363[\mathrm{M}+\mathrm{H}]^{+}$, $\operatorname{err}[\mathrm{ppm}]=0.86$.
RP-HPLC ($\mathbf{3 0} \mathbf{- 1 0 0 \%}$ B, $1.5 \mathrm{~mL} / \mathrm{min}, 15 \mathrm{~min}, 220 \mathrm{~nm}$): $\mathrm{t}_{R}(\mathbf{2 5 3})=12.93 \mathrm{~min}$ (98% Purity) .
(S)-(R)-3-(3,4-dimethoxyphenyl)-1-(3-((1-(pyridin-2-yl)-1H-1,2,3-triazol-4yl)methoxy)phenyl)propyl 1-((S)-2-cyclohexyl-2-(3,4,5-trimethoxyphenyl)acetyl)piperidine-2-carboxylate (AV710)

254
254 is synthesized according to general procedure 5.9.6. Starting material: 233 (20 mg) and 2azidopyridine $(5 \mathrm{mg})$. The pure product is obtained as a white solid.

Silica column chromatography: $\mathrm{CH} / \mathrm{EE}, 1 / 1+1 \%$ TEA, v/v.
TLC (CH/EE, 1/1 + 1\% TEA): $\mathrm{R}_{f}(\mathbf{2 5 4})=0.30$.
Yield 8 mg (35\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.64(\mathrm{~d}, \mathrm{~J}=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.48$ (ddd, J = 0.9, 1.9, $\left.4.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.19(\mathrm{dt}, \mathrm{J}=$ $1.0,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{ddt}, \mathrm{J}=2.1,7.5,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.31(\mathrm{~m}, 1 \mathrm{H}), 7.13(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.06-$ $6.97(\mathrm{~m}, 1 \mathrm{H}), 6.89(d d d, J=0.9,2.6,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{q}, \mathrm{J}=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.77-6.74(\mathrm{~m}, 1 \mathrm{H}), 6.72-$
$6.63(\mathrm{~m}, 1 \mathrm{H}), 6.62(\mathrm{~s}, 1 \mathrm{H}), 6.51(\mathrm{~s}, 1 \mathrm{H}), 6.44(\mathrm{~d}, \mathrm{~J}=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.59(\mathrm{dd}, \mathrm{J}=5.7,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.48(\mathrm{~d}, \mathrm{~J}$ $=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{~d}, \mathrm{~J}=1.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.96(\mathrm{~d}, \mathrm{~J}=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.88-3.83(\mathrm{~m}, 7 \mathrm{H}), 3.82(\mathrm{~d}, \mathrm{~J}=1.0 \mathrm{~Hz}$, $2 \mathrm{H}), 3.77(\mathrm{~s}, 2 \mathrm{H}), 3.71(\mathrm{~s}, 5 \mathrm{H}), 3.38(\mathrm{~d}, \mathrm{~J}=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{td}, \mathrm{J}=2.9,13.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.65-2.51(\mathrm{~m}$, 1 H), 2.41 (dddd, J = 6.0, 9.1, 14.4, $44.6 \mathrm{~Hz}, 2 \mathrm{H}$), $2.29(\mathrm{~d}, \mathrm{~J}=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.10(\mathrm{q}, \mathrm{J}=11.9,12.5 \mathrm{~Hz}, 2 \mathrm{H}$), $2.01-1.77(\mathrm{~m}, 3 \mathrm{H}), 1.71-1.58(\mathrm{~m}, 2 \mathrm{H}), 1.48-1.37(\mathrm{~m}, 1 \mathrm{H}), 1.37-1.22(\mathrm{~m}, 2 \mathrm{H}), 1.22-1.04(\mathrm{~m}, 2 \mathrm{H})$, $1.00-0.79(\mathrm{~m}, 1 \mathrm{H}), 0.75(\mathrm{q}, \mathrm{J}=10.5,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.67-0.52(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13}$ C-NMR (126 MHz, CDCl $)$: $\delta 172.43,170.68,169.69,158.27,153.41,153.22,149.26,149.00,148.75$, $147.43,144.67,144.44,142.05,139.28,137.04,133.80,133.63,129.79,123.86,123.80,120.50$, $120.41,120.27,119.22,114.09,113.97,113.51,111.97,111.86,111.55,111.47,105.96,105.46$, $75.72,62.06,62.00,61.03,60.92,56.47,56.22,56.08,56.00,55.16,52.19,43.83,41.56,41.32,38.11$, $37.96,33.13,32.94,31.58,31.14,30.83,26.90,26.75,26.35,25.72,24.52,21.14$.

LC-MS (30-100\% B, $19 \mathbf{m i n}): \mathrm{t}_{\mathrm{R}}(\mathbf{2 5 4})=14.29 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=848.42[\mathrm{M}+\mathrm{H}]^{+}$, found $=848.64[\mathrm{M}+\mathrm{H}]^{+}$.

HRMS (ESI): calculated $=848.42290[\mathrm{M}+\mathrm{H}]^{+}$, found $=848.42233[\mathrm{M}+\mathrm{H}]^{+}$, err $[\mathrm{ppm}]=0.67$.
RP-HPLC ($\mathbf{3 0} \mathbf{- 1 0 0 \%}$ B, $1.5 \mathrm{~mL} / \mathrm{min}, 15 \mathrm{~min}, 220 \mathrm{~nm}$): $\mathrm{t}_{R}(\mathbf{2 5 4})=14.66 \mathrm{~min}(97 \%$ Purity).
(S)-(R)-3-(3,4-dimethoxyphenyl)-1-(3-((1-(4-fluorophenyl)-1H-1,2,3-triazol-4yl)methoxy)phenyl)propyl 1-((S)-2-cyclohexyl-2-(3,4,5-trimethoxyphenyl)acetyl)piperidine-2-carboxylate (AV726)

255
$\mathbf{2 5 5}$ is synthesized according to general procedure 5.9.6. Starting material: $\mathbf{2 3 3}(10 \mathrm{mg})$ and 1-azido-4fluorobenzene (6 mg). The pure product is obtained as a white solid.

Silica column chromatography: $C H / E E, 2 / 1, v / v$.

TLC (CH/EE, 2/1): $\mathrm{R}_{f}(\mathbf{2 5 5})=0.18$.
Yield 24 mg (quant.).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 8.05(\mathrm{~s}, 1 \mathrm{H}), 7.77-7.66(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.13(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}$, 1H), 6.87 (ddd, J = 1.0, 2.6, $8.2 \mathrm{~Hz}, 1 \mathrm{H}$), $6.79-6.73(\mathrm{~m}, 2 \mathrm{H}), 6.64-6.60(\mathrm{~m}, 2 \mathrm{H}), 6.50(\mathrm{~s}, 2 \mathrm{H}), 6.49-$ $6.46(\mathrm{~m}, 1 \mathrm{H}), 5.58(\mathrm{dd}, \mathrm{J}=5.6,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.50-5.45(\mathrm{~m}, 1 \mathrm{H}), 5.25(\mathrm{~d}, \mathrm{~J}=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{~d}, \mathrm{~J}=$ $13.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.84-3.82(\mathrm{~m}, 6 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{~s}, 5 \mathrm{H}), 3.38(\mathrm{~d}, \mathrm{~J}=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.84-2.73(\mathrm{~m}, 1 \mathrm{H})$, $2.65-2.51(\mathrm{~m}, 1 \mathrm{H}), 2.51-2.34(\mathrm{~m}, 2 \mathrm{H}), 2.32-2.24(\mathrm{~m}, 1 \mathrm{H}), 2.17-2.04(\mathrm{~m}, 2 \mathrm{H}), 2.01-1.78(\mathrm{~m}, 3 \mathrm{H})$, $1.71-1.46(\mathrm{~m}, 5 \mathrm{H}), 1.48-1.37(\mathrm{~m}, 1 \mathrm{H}), 1.36-1.04(\mathrm{~m}, 6 \mathrm{H}), 0.99-0.69(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 13 \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl} 3$) δ 172.43, $170.70,158.17,153.42,153.18$, $149.00,147.45,145.09,142.10,136.98,133.77,133.55,129.81,122.76,122.69,121.38,120.40$, $120.26,119.27,116.95,116.76,114.06,113.42,111.97,111.86,111.45,105.93,105.48,75.69,62.02$, $61.01,60.89,56.47,56.17,56.10,56.06,55.98,55.16,52.17,43.80,41.54,38.09,32.93,31.17,30.80$, 26.86, 26.71, 26.35, 26.30, 25.68, 21.10.

LC-MS (50-100\% B, $19 \mathbf{~ m i n}$): $\mathrm{t}_{\mathrm{R}}(\mathbf{2 5 5})=12.56 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=865.42[\mathrm{M}+\mathrm{H}]^{+}$, found $=865.59[\mathrm{M}+\mathrm{H}]^{+}$(99\% Purity).

HRMS (ESI): calculated $=865.41823[\mathrm{M}+\mathrm{H}]^{+}$, found $=865.41948[\mathrm{M}+\mathrm{H}]^{+}$, err $[\mathrm{ppm}]=1.44$.

(S)-(R)-3-(3,4-dimethoxyphenyl)-1-(3-((1-(3-fluorophenyl)-1H-1,2,3-triazol-4-

 yl)methoxy)phenyl)propyl 1-((S)-2-cyclohexyl-2-(3,4,5-trimethoxyphenyl)acetyl)piperidine-2-carboxylate (AV724)

256

$\mathbf{2 5 6}$ is synthesized according to general procedure 5.9.6. Starting material: $\mathbf{2 3 3}(20 \mathrm{mg})$ and 1-azido-3fluorobenzene $(6 \mathrm{mg})$. The pure product is obtained as a white solid.

Silica column chromatography: CH/EE, 2/1, v/v.
TLC (CH/EE, 2/1): $\mathrm{R}_{f}(\mathbf{2 5 6})=0.30$.
Yield 15 mg (62\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.16-8.05(\mathrm{~m}, 1 \mathrm{H}), 7.60-7.46(\mathrm{~m}, 3 \mathrm{H}), 7.20-7.10(\mathrm{~m}, 2 \mathrm{H}), 6.90-6.84$ $(\mathrm{m}, 1 \mathrm{H}), 6.79-6.73(\mathrm{~m}, 2 \mathrm{H}), 6.66-6.60(\mathrm{~m}, 2 \mathrm{H}), 6.52-6.49(\mathrm{~m}, 2 \mathrm{H}), 6.49-6.46(\mathrm{~m}, 1 \mathrm{H}), 5.59(\mathrm{dd}, \mathrm{J}=$ $5.7,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.53-5.43(\mathrm{~m}, 1 \mathrm{H}), 5.27-5.22(\mathrm{~m}, 2 \mathrm{H}), 3.95(\mathrm{~d}, \mathrm{~J}=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.88-3.81(\mathrm{~m}, 5 \mathrm{H})$, $3.80-3.75(\mathrm{~m}, 3 \mathrm{H}), 3.72-3.67(\mathrm{~m}, 6 \mathrm{H}), 3.38(\mathrm{~d}, \mathrm{~J}=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\mathrm{td}, \mathrm{J}=2.8,13.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.68-$ $2.50(\mathrm{~m}, 1 \mathrm{H}), 2.52-2.34(\mathrm{~m}, 2 \mathrm{H}), 2.32-2.24(\mathrm{~m}, 1 \mathrm{H}), 2.16-2.03(\mathrm{~m}, 2 \mathrm{H}), 2.02-1.91(\mathrm{~m}, 1 \mathrm{H}), 1.92-$ $1.78(m, 2 H), 1.74-1.50(m, 11 H), 1.49-1.35(m, 1 H), 1.37-1.02(m, 8 H), 1.01-0.82(m, 1 H), 0.82$ $-0.66(m, 1 H)$.
${ }^{13}$ C-NMR (126 MHz, CDCl_{3}): $\delta 172.43,170.73,164.23,162.25,158.15,153.44,153.20,149.01,147.46$, $145.24,142.11,138.24,137.00,133.79,133.56,131.38,131.31,129.82,121.16,120.41,119.34$, $116.00,115.79,114.35,114.09,113.42,111.98,111.87,111.47,108.58,108.37,105.94,105.50$, 75.70, 61.99, 61.02, 60.90, 56.48, 56.19, 56.08, 55.99, 55.86, 55.18, 52.19, 43.83, 41.57, 38.08, 32.94, 31.59, 31.18, 30.81, 26.86, 26.72, 26.36, 26.31, 25.70, 21.11.

LC-MS (50-100\% B, $19 \mathbf{m i n}): \mathrm{t}_{R}(\mathbf{2 5 6})=12.96 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=865.41[\mathrm{M}+\mathrm{H}]^{+}$, found $=865.49[\mathrm{M}+\mathrm{H}]^{+}$(97\% Purity).

HRMS (ESI): calculated $=865.41823[\mathrm{M}+\mathrm{H}]^{+}$, found $=865.41895[\mathrm{M}+\mathrm{H}]^{+}$, err $[\mathrm{ppm}]=0.83$.
(S)-(R)-1-(3-((1-(4-chlorophenyl)-1H-1,2,3-triazol-4-yl)methoxy)phenyl)-3-(3,4dimethoxyphenyl)propyl 1-((S)-2-cyclohexyl-2-(3,4,5-trimethoxyphenyl)acetyl)piperidine-2-carboxylate (AV720)

$\mathbf{2 5 7}$ is synthesized according to general procedure 5.9.6. Starting material: $\mathbf{2 3 3} \mathbf{(2 0 ~ m g})$ and 1-azido-4chlorobenzene $(6 \mathrm{mg})$. The pure product is obtained as a white solid.

Silica column chromatography: $\mathrm{CH} / \mathrm{EE}, 2 / 1, \mathrm{v} / \mathrm{v}$.
TLC (CH/EE, 2/1): $\mathrm{R}_{f}(\mathbf{2 5 7})=0.26$.
Yield 13 mg (54\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.08(\mathrm{~s}, 1 \mathrm{H}), 7.73-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.58-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.14(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}$, 1H), $7.05-6.94(\mathrm{~m}, 1 \mathrm{H}), 6.92-6.80(\mathrm{~m}, 1 \mathrm{H}), 6.79-6.74(\mathrm{~m}, 2 \mathrm{H}), 6.70-6.61(\mathrm{~m}, 2 \mathrm{H}), 6.50(\mathrm{~s}, 2 \mathrm{H})$, $5.59(\mathrm{dd}, \mathrm{J}=5.7,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.47(\mathrm{~d}, \mathrm{~J}=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{~s}, 1 \mathrm{H}), 3.95(\mathrm{~d}, \mathrm{~J}=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.89-3.82$ $(\mathrm{m}, 9 \mathrm{H}), 3.77(\mathrm{~d}, \mathrm{~J}=1.8 \mathrm{~Hz}, 3 \mathrm{H}), 3.69(\mathrm{~s}, 4 \mathrm{H}), 3.38(\mathrm{~d}, \mathrm{~J}=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.78(\mathrm{t}, \mathrm{J}=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.64-$ $2.35(\mathrm{~m}, 1 \mathrm{H}), 2.28(\mathrm{~d}, \mathrm{~J}=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.19-2.02(\mathrm{~m}, 0 \mathrm{H}), 1.96-1.77(\mathrm{~m}, 1 \mathrm{H}), 1.61(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 7 \mathrm{H})$, $1.28(\mathrm{t}, \mathrm{J}=46.3 \mathrm{~Hz}, 5 \mathrm{H}), 0.99-0.50(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): ~ \delta 172.45,170.72,158.16,153.19,152.62,142.12,133.56,130.09,129.83$, $121.88,121.13,120.41,119.31,114.09,113.43,111.99,111.47,105.95,105.51,75.71,60.91,60.91$, 56.19, 56.00, 55.18, 52.19, 43.82, 41.56, 38.10, 32.95, 31.18, 26.36, 25.70.

LC-MS (50-100\% B, $19 \mathbf{m i n}): \mathrm{t}_{\mathrm{R}}(\mathbf{2 5 7})=13.37 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=881.38[\mathrm{M}+\mathrm{H}]^{+}$, found $=881.71[\mathrm{M}+\mathrm{H}]^{+}$.

HRMS (ESI): calculated $=881.38868[\mathrm{M}+\mathrm{H}]^{+}$, found $=881.38898[\mathrm{M}+\mathrm{H}]^{+}$, err $[\mathrm{ppm}]=0.34$.
RP-HPLC ($\mathbf{5 0} \mathbf{- 1 0 0 \%}$ B, $1.5 \mathrm{~mL} / \mathrm{min}, 15 \mathrm{~min}, 220 \mathrm{~nm}$): $\mathrm{t}_{R}(257)=13.55 \mathrm{~min}$ (98% Purity) .
(S)-(R)-1-(3-((1-(3-chlorophenyl)-1H-1,2,3-triazol-4-yl)methoxy)phenyl)-3-(3,4dimethoxyphenyl)propyl 1-((S)-2-cyclohexyl-2-(3,4,5-trimethoxyphenyl)acetyl)piperidine-2-carboxylate (AV722)

$\mathbf{2 5 8}$ is synthesized according to general procedure 5.9.6. Starting material: $\mathbf{2 3 3} \mathbf{(2 0 ~ m g})$ and 1-azido-3chlorobenzene (6 mg). The pure product is obtained as a white solid.

Silica column chromatography: CH/EE, 2/1, v/v.
$\operatorname{TLC}(C H / E E, 2 / 1): \mathrm{R}_{f}(\mathbf{2 5 8})=0.22$.
Yield 24 mg (quant.).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.11(\mathrm{~s}, 1 \mathrm{H}), 7.82(\mathrm{t}, \mathrm{J}=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.69-7.64(\mathrm{~m}, 1 \mathrm{H}), 7.48-7.39(\mathrm{~m}$, $2 H), 7.13(t, J=7.9 H z, 1 H), 7.05-6.98(m, 1 H), 6.87(d d d, J=0.9,2.6,8.2 H z, 1 H), 6.78-6.74(m$, $2 H), 6.65-6.60(\mathrm{~m}, 2 \mathrm{H}), 6.50(\mathrm{~s}, 1 \mathrm{H}), 6.49-6.46(\mathrm{~m}, 1 \mathrm{H}), 5.61-5.54(\mathrm{~m}, 1 \mathrm{H}), 5.50-5.46(\mathrm{~m}, 1 \mathrm{H})$, $5.24(\mathrm{~d}, \mathrm{~J}=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{~d}, \mathrm{~J}=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.87-3.81(\mathrm{~m}, 10 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{~s}, 4 \mathrm{H}), 3.38$ $(d, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\mathrm{td}, \mathrm{J}=2.8,13.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.64-2.51(\mathrm{~m}, 1 \mathrm{H}), 2.51-2.34(\mathrm{~m}, 2 \mathrm{H}), 2.33-2.22$ $(\mathrm{m}, 1 \mathrm{H}), 2.17-2.02(\mathrm{~m}, 2 \mathrm{H}), 2.02-1.91(\mathrm{~m}, 1 \mathrm{H}), 1.91-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.72-1.50(\mathrm{~m}, 5 \mathrm{H}), 1.48-1.36$ $(m, 1 H), 1.36-1.22(m, 2 H), 1.21-1.04(m, 2 H), 1.04-0.82(m, 1 H), 0.82-0.69(m, 1 H)$.
${ }^{13}$ C-NMR (126 MHz, CDCl_{3}): $\delta 172.43,170.72,158.15,153.43,153.19,149.00,147.45,145.26,142.11$, $137.98,136.99,135.76,133.79,133.56,133.37,130.98,130.10,129.81,129.11,129.03,121.16$, $120.95,120.40,120.26,119.81,119.33,118.66,114.34,114.09,113.40,111.97,111.46,105.94$, $105.50,75.69,62.09,61.98,61.02,60.91,56.49,56.19,56.07,55.99,55.86,55.17,52.19,43.82$, $41.57,41.28,38.09,37.94,33.17,32.93,31.59,31.17,30.80,30.65,26.87,26.72,26.36,26.31,25.69$, 24.50, 21.11, 20.81

LC-MS (50-100\% B, $19 \mathbf{m i n}): \mathrm{t}_{\mathrm{R}}(\mathbf{2 5 8})=13.43 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=881.38[\mathrm{M}+\mathrm{H}]^{+}$,
found $=881.51[\mathrm{M}+\mathrm{H}]^{+}$(94\% Purity).
HRMS (ESI): calculated $=881.38868[\mathrm{M}+\mathrm{H}]^{+}$, found $=881.38941[\mathrm{M}+\mathrm{H}]^{+}$, err $[\mathrm{ppm}]=0.82$.
(S)-(R)-1-(3-((1-(4-bromophenyl)-1H-1,2,3-triazol-4-yl)methoxy)phenyl)-3-(3,4dimethoxyphenyl)propyl 1-((S)-2-cyclohexyl-2-(3,4,5-trimethoxyphenyl)acetyl)piperidine-2-carboxylate (AV716)
 259
$\mathbf{2 5 9}$ is synthesized according to general procedure 5.9.6. Starting material: $\mathbf{2 3 3}(20 \mathrm{mg})$ and 1-azido-4bromobenzene $(8 \mathrm{mg})$. The pure product is obtained as a white solid.

Silica column chromatography: $C H / E E, 2 / 1, v / v$.
$\operatorname{TLC}(C H / E E, 2 / 1): \mathrm{R}_{f}(259)=0.30$.
Yield 25 mg (quant.).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.70(\mathrm{~s}, 1 \mathrm{H}), 7.26(\mathrm{~s}, 2 \mathrm{H}), 6.87(\mathrm{~s}, 1 \mathrm{H}), 6.75(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.68-6.56$ $(\mathrm{m}, 1 \mathrm{H}), 6.48(\mathrm{dd}, \mathrm{J}=2.5,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.42-6.32(\mathrm{~m}, 2 \mathrm{H}), 6.31-6.19(\mathrm{~m}, 2 \mathrm{H}), 6.11(\mathrm{~s}, 2 \mathrm{H}), 6.12-6.01$ $(\mathrm{m}, 1 \mathrm{H}), 5.20(\mathrm{dd}, \mathrm{J}=5.6,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.13-5.04(\mathrm{~m}, 1 \mathrm{H}), 4.86(\mathrm{~s}, 1 \mathrm{H}), 3.56(\mathrm{~d}, \mathrm{~J}=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.50-$ $3.41(\mathrm{~m}, 10 \mathrm{H}), 3.38(\mathrm{~s}, 3 \mathrm{H}), 3.31(\mathrm{~s}, 5 \mathrm{H}), 2.99(\mathrm{~d}, \mathrm{~J}=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{t}, \mathrm{J}=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.28-1.94$ $(\mathrm{m}, 1 \mathrm{H}), 1.98-1.82(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.61-1.35(\mathrm{~m}, 2 \mathrm{H}), 1.35-1.11(\mathrm{~m}, 7 \mathrm{H}), 1.09-0.62$ (m, 5H), $0.62-0.10(m, 1 H)$.
${ }^{13}$ C-NMR (126 MHz, CDCl ${ }_{3}$): $\delta 172.44,170.70,158.14,153.42,153.17,149.00,147.46,145.25,142.10$, $136.98,136.09,134.40,133.77,133.55,133.04,129.81,122.63,122.09,121.05,120.40,119.31$, $114.08,113.41,111.97,111.87,111.56,111.46,105.94,105.49,75.69,62.00,61.02,60.89,56.48$, $56.18,56.07,55.99,55.17,52.18,43.81,41.55,38.09,32.94,31.17,30.80,26.87,26.72,26.35,25.68$, 21.11.

LC-MS (50-100\% B, 19 min$): \mathrm{t}_{R}(\mathbf{2 5 9})=13.64 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=925.34[\mathrm{M}+\mathrm{H}]^{+}$, found $=925.60[\mathrm{M}+\mathrm{H}]^{+}$.

HRMS (ESI): calculated $=925.33817[\mathrm{M}+\mathrm{H}]^{+}$, found $=925.33817[\mathrm{M}+\mathrm{H}]^{+}$, err $[\mathrm{ppm}]=0.0$.

RP-HPLC (50-100\% B, $1.5 \mathrm{~mL} / \mathrm{min}, 15 \mathrm{~min}, 220 \mathrm{~nm}): \mathrm{t}_{R}(\mathbf{2 5 9})=13.83 \mathrm{~min}(95 \%$ Purity).
(S)-(R)-1-(3-((1-(3-bromophenyl)-1H-1,2,3-triazol-4-yl)methoxy)phenyl)-3-(3,4dimethoxyphenyl)propyl 1-((S)-2-cyclohexyl-2-(3,4,5-trimethoxyphenyl)acetyl)piperidine-2-carboxylate (AV718)

260

$\mathbf{2 6 0}$ is synthesized according to general procedure 5.9.6. Starting material: $\mathbf{2 3 3} \mathbf{(2 0 ~ m g})$ and 1-azido-3bromobenzene (8 mg). The pure product is obtained as a white solid.

Silica column chromatography: $C H / E E, 2 / 1, v / v$.
$\operatorname{TLC}(C H / E E, 2 / 1): R_{f}(\mathbf{2 6 0})=0.25$.
Yield 21 mg (83\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.11(\mathrm{~s}, 1 \mathrm{H}), 7.97(\mathrm{t}, \mathrm{J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.72-7.66(\mathrm{~m}, 1 \mathrm{H}), 7.59-7.53(\mathrm{~m}$, 1H), $7.44-7.35(m, 1 H), 7.14(t, J=7.9 H z, 1 H), 7.05-6.95(m, 1 H), 6.89-6.84(m, 1 H), 6.78-6.74$ (m, 2H), $6.66-6.60(\mathrm{~m}, 2 \mathrm{H}), 6.50(\mathrm{~s}, 1 \mathrm{H}), 6.49-6.45(\mathrm{~m}, 1 \mathrm{H}), 5.59(\mathrm{dd}, \mathrm{J}=5.6,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.49-5.45$ $(\mathrm{m}, 1 \mathrm{H}), 5.29(\mathrm{~d}, \mathrm{~J}=1.9 \mathrm{~Hz}, 0 \mathrm{H}), 5.24(\mathrm{~d}, \mathrm{~J}=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.00-3.92(\mathrm{~m}, 1 \mathrm{H}), 3.87-3.81(\mathrm{~m}, 9 \mathrm{H}), 3.77$ (s, 2H), 3.70 (s, 4H), 3.38 (d, J = 9.9 Hz, 1H), 2.77 (td, J = 2.8, 13.3 Hz, 1H), 2.66-2.52 (m, 1H), $2.51-$ $2.36(\mathrm{~m}, 1 \mathrm{H}), 2.32-2.22(\mathrm{~m}, 1 \mathrm{H}), 2.15-2.03(\mathrm{~m}, 1 \mathrm{H}), 2.02-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.92-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.73-$ $1.50(\mathrm{~m}, 7 \mathrm{H}), 1.48-1.37(\mathrm{~m}, 1 \mathrm{H}), 1.37-1.22(\mathrm{~m}, 2 \mathrm{H}), 1.21-1.05(\mathrm{~m}, 2 \mathrm{H}), 0.95-0.84(\mathrm{~m}, 1 \mathrm{H}), 0.83-$ 0.68 ($\mathrm{m}, 1 \mathrm{H}$).
${ }^{13}$ C-NMR (126 MHz, CDCl 3): $\delta 172.43,170.72,158.15,153.43,153.19,149.01,147.46,145.27,142.11$, $141.85,138.06,137.00,134.41,133.79,133.56,133.38,131.99,131.21,130.10,129.82,123.79$, $123.48,121.15,120.41,119.82,119.34,119.17,114.36,114.10,113.82,113.39,111.97,111.47$, $105.94,105.51,75.69,62.09,61.99,61.03,60.92,56.50,56.19,56.08,55.99,55.86,55.18,52.19$,
$43.82,41.57,41.28,38.09,33.18,32.94,31.59,31.17,30.81,30.66,26.88,26.72,26.60,26.37,26.31$, 26.24, 25.70, 21.11, 20.82.

LC-MS (50-100\% B, $19 \mathbf{m i n}): \mathrm{t}_{\mathrm{R}}(\mathbf{2 6 0})=13.61 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=925.34[\mathrm{M}+\mathrm{H}]^{+}$,
found $=925.44[\mathrm{M}+\mathrm{H}]^{+}$(97\% purity).
HRMS (ESI): calculated $=925.33817[\mathrm{M}+\mathrm{H}]^{+}$, found $=925.33864[\mathrm{M}+\mathrm{H}]^{+}$, $\mathrm{err}[\mathrm{ppm}]=0.51$.

(S)-3-((1-(4-methoxyphenyl)-1H-1,2,3-triazol-4-yl)methoxy)benzyl 1-((S)-2-cyclohexyl-2-(3,4,5-trimethoxyphenyl)acetyl)piperidine-2-carboxylate (AV778)

Chemical Formula: $\mathrm{C}_{40} \mathrm{H}_{48} \mathrm{~N}_{4} \mathrm{O}_{8}$
Exact Mass: 712,35
Molecular Weight: 712,83
261
$\mathbf{2 6 1}$ is synthesized according to general procedure 5.9.6. Starting material: $\mathbf{2 6 3}(12 \mathrm{mg})$ and 1-azido-4fluorobenzene (5 mg). The pure product is obtained as a white solid.
prep-HPLC ($80-100 \%$ B, $10 \mathrm{~mL} / \mathrm{min}, 10 \mathrm{~min}, 254 \mathrm{~nm}): \mathrm{t}_{\mathrm{R}}(261)$.
Yield 20 mg (63\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}\right.$, DMSO- $\left.\boldsymbol{d}_{6}\right): \delta 8.05-7.97(\mathrm{~m}, 1 \mathrm{H}), 7.64-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.19(\mathrm{~s}, 1 \mathrm{H}), 7.15(\mathrm{t}, \mathrm{J}=7.9$ $\mathrm{Hz}, 1 \mathrm{H}), 7.00-6.91(\mathrm{~m}, 3 \mathrm{H}), 6.76-6.66(\mathrm{~m}, 1 \mathrm{H}), 6.48-6.24(\mathrm{~m}, 2 \mathrm{H}), 5.38-5.30(\mathrm{~m}, 1 \mathrm{H}), 5.29-5.11$ $(\mathrm{m}, 3 \mathrm{H}), 5.01(\mathrm{~d}, \mathrm{~J}=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.86(\mathrm{~d}, \mathrm{~J}=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~d}, \mathrm{~J}=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.78-$ $3.74(\mathrm{~m}, 6 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.34(\mathrm{~d}, \mathrm{~J}=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{td}, \mathrm{J}=2.9,13.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{~s}, 2 \mathrm{H}), 2.22(\mathrm{~d}, \mathrm{~J}$ $=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.01-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.81-1.74(\mathrm{~m}, 1 \mathrm{H}), 1.66-1.54(\mathrm{~m}, 5 \mathrm{H}), 1.54-1.44(\mathrm{~m}, 1 \mathrm{H}), 1.30$ - $1.17(m, 2 H), 1.14-0.98(m, 1 H), 0.88-0.78(m, 1 H), 0.78-0.61(m, 1 H)$.
${ }^{13}$ C-NMR (126 MHz, DMSO- \boldsymbol{d}_{6}): $\delta 174.19,170.54,160.65,159.30,158.33,158.11,153.14,137.42$, $136.86,133.66,132.89,130.21,130.00,122.60,121.97,121.16,115.13,114.60,114.40,105.89$, $105.26,67.48,66.64,61.24,61.01,56.42,56.24,55.85,55.42,53.12,44.28,41.10,40.61,39.38$, 32.90, 30.83, 30.64, 26.89, 26.59, 26.24, 26.11, 25.42, 24.33, 22.90, 20.88, 20.61.

LC-MS (50-100\% B, $19 \mathbf{~ m i n}): \mathrm{t}_{R}(\mathbf{2 6 1})=10.86 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=713.35[\mathrm{M}+\mathrm{H}]^{+}$, found $=713.54[\mathrm{M}+\mathrm{H}]^{+}$.

HRMS (ESI): calculated $=713.35449[\mathrm{M}+\mathrm{H}]^{+}$, found $=713.35490[\mathrm{M}+\mathrm{H}]^{+}$, err $[\mathrm{ppm}]=0.57$.
(S)-(R)-3-(3,4-dimethoxyphenyl)-1-(3-((1-(4-methoxyphenyl)-1H-1,2,3-triazol-4yl)methoxy)phenyl)propyl 1-(2-oxo-2-(3,4,5-trimethoxyphenyl)acetyl)piperidine-2carboxylate (AV664)

262
$\mathbf{2 6 2}$ is synthesized according to general procedure 5.9.6. Starting material: $\mathbf{2 3 2}(20 \mathrm{mg})$ and 4 -azidoanisole (7 mg). The pure product is obtained as a colorless solid.

Silica column chromatography: CH/EE, 2/1, v/v.
$\operatorname{TLC}(C H / E E, 2 / 1): \mathrm{R}_{f}(\mathbf{2 6 2})=0.25$.
Yield 20 mg (82\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.02(\mathrm{~s}, 1 \mathrm{H}), 7.64-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.12-7.03(\mathrm{~m}$, 1H), $7.03-6.95(\mathrm{~m}, 4 \mathrm{H}), 6.87-6.80(\mathrm{~m}, 1 \mathrm{H}), 6.75-6.66(\mathrm{~m}, 2 \mathrm{H}), 5.77(\mathrm{dd}, \mathrm{J}=5.6,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.45$ (d, J = 5.8 Hz, 1H), $5.32(\mathrm{~s}, 2 \mathrm{H}), 5.26-5.17(\mathrm{~m}, 0 \mathrm{H}), 3.93(\mathrm{~s}, 2 \mathrm{H}), 3.89-3.87(\mathrm{~m}, 9 \mathrm{H}), 3.81(\mathrm{~s}, 5 \mathrm{H}), 3.55$ $-3.47(\mathrm{~m}, 1 \mathrm{H}), 3.34-3.26(\mathrm{~m}, 1 \mathrm{H}), 2.70-2.55(\mathrm{~m}, 2 \mathrm{H}), 2.48(\mathrm{~d}, \mathrm{~J}=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.36-2.26(\mathrm{~m}, 1 \mathrm{H})$, $2.21-2.10(\mathrm{~m}, 1 \mathrm{H}), 2.07(\mathrm{~s}, 1 \mathrm{H}), 1.92-1.83(\mathrm{~m}, 2 \mathrm{H}), 1.71-1.53(\mathrm{~m}, 3 \mathrm{H}), 1.48-1.38(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13}$ C-NMR (126 MHz, CDCl_{3}): $\delta 190.98,170.11,167.98,160.01,158.63,153.61,149.12,147.61,144.65$, 144.08, 141.72, 133.50, 130.54, 129.90, 128.17, 122.34, 121.32, 120.29, 119.44, 114.95, 114.91, $114.41,113.18,111.88,111.52,107.10,62.25,61.09,60.52,56.43,56.26,56.10,56.03,55.75,51.96$, 44.36, 38.30, 31.51, 26.54, 24.94, 21.39, 14.35.

LC-MS (50-100\% B, $19 \mathbf{~ m i n}): \mathrm{t}_{\mathrm{R}}\left(\mathbf{2 6 2)}=10.33 \mathrm{~min}, \mathrm{~m} / \mathrm{z}\right.$: calculated $=809.33[\mathrm{M}+\mathrm{H}]^{+}$, found $=809.52[\mathrm{M}+\mathrm{H}]^{+}$.

HRMS (ESI): calculated $=809.33923[\mathrm{M}+\mathrm{H}]^{+}$, found $=809.33952[\mathrm{M}+\mathrm{H}]^{+}$, err $[\mathrm{ppm}]=0.36$.

RP-HPLC (50 - 100\% B, $1.5 \mathrm{~mL} / \mathrm{min}, 15 \mathrm{~min}, 220 \mathrm{~nm})$: t_{R} (262) = $9.76 \mathrm{~min}(99 \%$ Purity).

(S)-prop-2-yn-1-yl 1-((S)-2-cyclohexyl-2-(3,4,5-trimethoxyphenyl)acetyl)piperidine-2carboxylate (AV562/AV564/AV575/AV577/AV698/AV740)

263
77 ($20 \mathrm{mg}, 0.05 \mathrm{mmol}, 1.0 \mathrm{eq}$) is dissolved in 5 mL dry MeCN. DIPEA ($9 \mu \mathrm{~L}, 0.05 \mathrm{mmol}, 1.0 \mathrm{eq}$) and $80 \mathrm{wt} \%$ propargyl bromide in toluene $(6 \mu \mathrm{~L}, 0.05 \mathrm{mmol}, 1.0 \mathrm{eq})$ are added. The mixture is stirred overnight at room temperature. After complete conversion, the solvent is removed and the crude product filtered through a silica column (CH/EE, 4/1). The pure product $\mathbf{2 6 3}$ is obtained as a colorless oil.
$\operatorname{TLC}(C H / E E, 4 / 1): R_{f}(263)=0.70$.
Yield 19 mg (90\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.45(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.39-5.30(\mathrm{~m}, 1 \mathrm{H}), 4.83-4.75(\mathrm{~m}, 1 \mathrm{H}), 4.61-$ $4.49(\mathrm{~m}, 2 \mathrm{H}), 3.96-3.87(\mathrm{~m}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 6 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.37(\mathrm{~d}, \mathrm{~J}=9.6 \mathrm{~Hz}, 0.7 \mathrm{H}), 3.12(\mathrm{~d}, \mathrm{~J}=9.7$ $\mathrm{Hz}, 0.3 \mathrm{H}$), 2.94 (td, J = 3.1, $13.2 \mathrm{~Hz}, 0.7 \mathrm{H}$), 2.63 (td, J = 3.0, 13.3 Hz, 0.3H), 2.51 (td, J = 0.9, 2.5 Hz , 0.3 H), 2.38 (td, $J=0.9,2.4 \mathrm{~Hz}, 0.7 \mathrm{H}), 2.25(\mathrm{~d}, J=13.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.13-2.03(\mathrm{~m}, 1 \mathrm{H}), 1.93(\mathrm{~d}, J=13.0 \mathrm{~Hz}$, $0.3 \mathrm{H}), 1.88(\mathrm{~d}, \mathrm{~J}=12.6 \mathrm{~Hz}, 0.7 \mathrm{H}), 1.75-1.51(\mathrm{~m}, 9 \mathrm{H}), 1.33(\mathrm{~m}, 2 \mathrm{H}), 1.27-1.08(\mathrm{~m}, 2 \mathrm{H}), 0.99-0.67$ ($m, 2 H$).
${ }^{13}$ C-NMR (126 MHz, CDCl 3) $\delta 172.83,170.68,153.46,153.09,136.95,134.40,133.40,106.03,105.39$, $75.59,75.00,60.97,56.47,56.33,55.92,55.70,55.38,52.95,52.42,52.31,43.80,41.26,39.62,33.00$, 30.89, 30.79, 27.07, 26.96, 26.90, 26.74, 26.41, 26.38, 26.28, 25.57, 24.52, 21.10, 20.88.

LC-MS (50-100\% B, $19 \mathbf{m i n}): \mathrm{t}_{\mathrm{R}}(\mathbf{2 6 3})=8.37 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=458.25[\mathrm{M}+\mathrm{H}]^{+}$, found $=458.46[\mathrm{M}+\mathrm{H}]^{+}$.

HRMS (ESI): calculated $=458.2535[\mathrm{M}+\mathrm{H}]^{+}$, found $=458.2537[\mathrm{M}+\mathrm{H}]^{+}$, $\operatorname{err}[\mathrm{ppm}]=0.39$.
RP-HPLC (50-100\% B, $1.5 \mathrm{~mL} / \mathrm{min}, 15 \mathrm{~min}, 254 \mathrm{~nm}): \mathrm{t}_{R}(\mathbf{2 6 3})=7.90 \mathrm{~min}(97 \%$ Purity).

tert-butyl 4-(4-(((S)-1-((S)-2-cyclohexyl-2-(3,4,5-trimethoxyphenyl)acetyl)piperidine-2-carbonyl)oxy)-1H-1,2,3-triazol-1-yl)piperidine-1-carboxylate (AV484)

Chemical Formula: $\mathrm{C}_{36} \mathrm{H}_{53} \mathrm{~N}_{5} \mathrm{O}_{8}$ Exact Mass: 683,39
Molecular Weight: 683,83
$\mathbf{2 6 4}$ is synthesized according to general procedure 5.9.6. Starting material: $\mathbf{2 6 3}(\mathbf{3 0} \mathrm{mg})$ and tert-butyl 4-azidopiperidine-1-carboxylate (22 mg). The pure product is obtained as a white solid.

Silica column chromatography: CH/EE, 1/1, v/v.
$\operatorname{TLC}(C H / E E, 1 / 1): \mathrm{R}_{f}(\mathbf{2 6 4})=0.21$.
Yield 27 mg (60\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.35(\mathrm{~s}, 1 \mathrm{H}), 6.45(\mathrm{~s}, 2 \mathrm{H}), 5.34-5.28(\mathrm{~m}, 2 \mathrm{H}), 5.23(\mathrm{~d}, \mathrm{~J}=12.9 \mathrm{~Hz}, 1 \mathrm{H})$, $5.05(\mathrm{~d}, \mathrm{~J}=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.67-4.48(\mathrm{~m}, 1 \mathrm{H}), 4.25(\mathrm{~s}, 2 \mathrm{H}), 3.90-3.85(\mathrm{~m}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 2 \mathrm{H}), 3.81(\mathrm{~s}$, $5 \mathrm{H}), 3.36(\mathrm{~d}, \mathrm{~J}=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.11-3.03(\mathrm{~m}, 1 \mathrm{H}), 2.99-2.85(\mathrm{~m}, 3 \mathrm{H}), 2.25-2.01(\mathrm{~m}, 4 \mathrm{H}), 2.01-1.89$ $(m, 2 H), 1.88-1.77(m, 1 H), 1.72-1.52(m, 6 H), 1.47(\mathrm{~s}, 9 \mathrm{H}), 1.37-1.04(\mathrm{~m}, 3 \mathrm{H}), 0.93-0.60(\mathrm{~m}, 4 \mathrm{H})$. ${ }^{13}$ C-NMR (126 MHz, CDCl_{3}): $\delta 172.89,172.29,171.25,154.63,153.44,153.07,142.64,142.31,137.10$, $136.84,134.34,133.63,121.71,121.48,106.00,105.36,80.40,80.23,61.02,60.95,58.76,58.53$, $58.35,57.73,56.47,56.29,55.92,55.56,55.26,52.55,43.80,41.40,39.61,33.07,32.96,32.55,32.44$, $30.88,30.73,29.84,28.55,26.96,26.71,26.40,26.37,25.54,24.53,21.06,20.91$.

LC-MS (50-100\% B, $19 \mathbf{m i n}): \mathrm{t}_{\mathrm{R}}(\mathbf{2 6 4})=9.45 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=684.40[\mathrm{M}+\mathrm{H}]^{+}$, found $=684.63[\mathrm{M}+\mathrm{H}]^{+}$.

HRMS (ESI): calculated $=684.39669[\mathrm{M}+\mathrm{H}]^{+}$, found $=684.39716[\mathrm{M}+\mathrm{H}]^{+}$, err $[\mathrm{ppm}]=0.68$.
RP-HPLC (50-100\% B, $1.5 \mathrm{~mL} / \mathrm{min}, 20 \mathrm{~min}, 220 \mathrm{~nm}): \mathrm{t}_{R}(\mathbf{2 6 4)}$ = $10.33 \mathrm{~min}(98 \%$ Purity).

(S)-1-(piperidin-4-yl)-1H-1,2,3-triazol-4-yl 1-((S)-2-cyclohexyl-2-(3,4,5-trimethoxyphenyl)acetyl)piperidine-2-carboxylate (AV488)

265
$264(5 \mathrm{mg}, 0.01 \mathrm{mmol})$ is dissolved in 1.5 mL DCM/TFA - 2/1. After stirring for 30 min at $\mathrm{r} . \mathrm{t}$. the solvent is evaporated under airstream. The crude is purified by silica column chromatography (DCM $+3 \%$ $\mathrm{MeOH}+2 \%$ TEA) and preparative HPLC and 265 obtained as a colorless solid.
prep-HPLC ($\mathbf{3 0} \mathbf{- 1 0 0 \%}$ B, $10 \mathrm{~mL} / \mathrm{min}, 10 \mathrm{~min}, 254 \mathrm{~nm}): \mathrm{t}_{R}(265)=7.60 \mathrm{~min}$.
TLC (DCM + 3\% MeOH + 2\% TEA): $\mathrm{R}_{f}(\mathbf{2 6 5})=0.25$.
Yield 6 mg (47\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathbf{5 0 0} \mathrm{MHz}\right.$, CDCl $\left._{3}\right): \delta 7.03(\mathrm{~s}, 1 \mathrm{H}), 6.53(\mathrm{~s}, 2 \mathrm{H}), 5.45-5.39(\mathrm{~m}, 1 \mathrm{H}), 5.35-5.24(\mathrm{~m}, 1 \mathrm{H}), 5.03$ $(d, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.70-4.61(\mathrm{~m}, 1 \mathrm{H}), 3.95(\mathrm{~d}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 9 \mathrm{H}), 3.64-3.53(\mathrm{~m}, 2 \mathrm{H}), 3.39(\mathrm{~d}, \mathrm{~J}=9.8$ $\mathrm{Hz}, 1 \mathrm{H}$), $3.23(\mathrm{~s}, 2 \mathrm{H}), 2.88(\mathrm{ddd}, \mathrm{J}=2.8,12.9,15.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.41-2.24(\mathrm{~m}, 3 \mathrm{H}), 2.25-1.98(\mathrm{~m}, 6 \mathrm{H})$, $1.85(\mathrm{~d}, \mathrm{~J}=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.78-1.52(\mathrm{~m}, 7 \mathrm{H}), 1.51-1.39(\mathrm{~m}, 1 \mathrm{H}), 1.39-1.24(\mathrm{~m}, 3 \mathrm{H}), 1.23-1.05(\mathrm{~m}$, $2 H), 0.97-0.85(m, 1 H), 0.82-0.63(m, 1 H)$.
${ }^{13} \mathrm{C}$-NMR (126 MHz, CDCl_{3}): $\delta 172.62,171.20,153.45,152.98,136.13,134.69,121.14,105.92,105.37$, $61.17,58.76,56.34,54.93,54.70,52.50,44.03,42.62,41.70,32.85,30.88,29.13,28.90,26.92,26.65$, 26.31, 26.28, 25.64, 21.08.

LC-MS (30-100\% B, $19 \mathbf{m i n}): \mathrm{t}_{R}(\mathbf{2 6 5})=4.95 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=584.34[\mathrm{M}+\mathrm{H}]^{+}$, found $=584.64[\mathrm{M}+\mathrm{H}]^{+}$.

HRMS (ESI): calculated $=584.34426[\mathrm{M}+\mathrm{H}]^{+}$, found $=584.34466[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{err}[\mathrm{ppm}]=0.68$.
RP-HPLC ($\mathbf{3 0} \mathbf{- 1 0 0 \%}$ B, $1.5 \mathrm{~mL} / \mathrm{min}, 15 \mathrm{~min}, 220 \mathrm{~nm}$): $\mathrm{t}_{R}(\mathbf{2 6 5})=6.84 \mathrm{~min}(97 \%$ Purity).

(S)-1-(quinolin-5-ylmethyl)-1H-1,2,3-triazol-4-yl 1-((S)-2-cyclohexyl-2-(3,4,5-trimethoxyphenyl)acetyl)piperidine-2-carboxylate (AV375)

Chemical Formula: $\mathrm{C}_{36} \mathrm{H}_{43} \mathrm{~N}_{5} \mathrm{O}_{6}$
Exact Mass: 641,32
Molecular Weight: 641,76

266 is synthesized according to general procedure 5.9.6. Starting material: $\mathbf{2 6 3}$ (30 mg) and 8(azidomethyl)quinoline (36 mg). The pure product is obtained as a white solid.

Silica column chromatography: $C H / E E, 1 / 2, v / v$.
TLC (CH/EE, 1/2): $\mathrm{R}_{f}(\mathbf{2 6 6})=0.44$.
Yield 35 mg (84\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.24-9.16(\mathrm{~m}, 1 \mathrm{H}), 8.53-8.42(\mathrm{~m}, 1 \mathrm{H}), 7.99(\mathrm{~d}, 1 \mathrm{H}), 7.83-7.81(\mathrm{~m}$, $1 \mathrm{H}), 7.80(\mathrm{~s}, 1 \mathrm{H}), 7.71-7.66(\mathrm{~m}, 2 \mathrm{H}), 6.44(\mathrm{~s}, 2 \mathrm{H}), 6.32-6.21(\mathrm{~m}, 2 \mathrm{H}), 5.35-5.30(\mathrm{~m}, 1 \mathrm{H}), 5.21-5.02$ $(\mathrm{m}, 2 \mathrm{H}), 3.93(\mathrm{~d}, \mathrm{~J}=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.84-3.79(\mathrm{~m}, 9 \mathrm{H}), 3.39(\mathrm{~d}, \mathrm{~J}=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{td}, \mathrm{J}=2.9,13.2 \mathrm{~Hz}$, 1 H), $2.25-2.19(\mathrm{~m}, 1 \mathrm{H}), 2.10-1.97(\mathrm{~m}, 2 \mathrm{H}), 1.82(\mathrm{~d}, \mathrm{~J}=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.74-1.53(\mathrm{~m}, 5 \mathrm{H}), 1.53-1.37$ $(\mathrm{m}, 1 \mathrm{H}), 1.35-1.24(\mathrm{~m}, 1 \mathrm{H}), 1.24-0.98(\mathrm{~m}, 2 \mathrm{H}), 0.95-0.83(\mathrm{~m}, 1 \mathrm{H}), 0.80-0.71(\mathrm{~m}, 1 \mathrm{H}), 0.70-0.53$ ($\mathrm{m}, 1 \mathrm{H}$).
${ }^{13}$ C-NMR (126 MHz, CDCl_{3}): $\delta 173.63,173.25,170.69,160.07,159.75,153.48,153.06,149.36,148.86$, $142.24,142.12,140.84,139.97,136.79,133.94,133.30,133.23,132.92,130.82,130.60,129.96$, $129.78,129.12,128.10,127.79,125.60,125.09,122.06,121.96,105.87,105.23,61.00,57.89,57.60$, $56.38,56.24,56.12,55.41,55.24,52.78,50.29,50.13,44.04,41.19,41.12,40.10,32.86,30.85,30.54$, 26.89, 26.76, 26.64, 26.56, 26.31, 26.22, 26.06, 25.45, 24.42, 20.88, 20.71.

LC-MS (50-100\% B, $19 \mathbf{m i n}): \mathrm{t}_{R}(\mathbf{2 6 6})=8.56 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=642.32[\mathrm{M}+\mathrm{H}]^{+}$, found $=642.64[\mathrm{M}+\mathrm{H}]^{+}$.

HRMS (ESI): calculated $=642.32861[\mathrm{M}+\mathrm{H}]^{+}$, found $=642.32917[\mathrm{M}+\mathrm{H}]^{+}$, err $[\mathrm{ppm}]=0.86$.
RP-HPLC (50-100\% B, $1.5 \mathrm{~mL} / \mathrm{min}, 15 \mathrm{~min}, 220 \mathrm{~nm}): \mathrm{t}_{\mathrm{R}}(\mathbf{2 6 6})=7.56 \mathrm{~min}$ (98% Purity).
(S)-(R)-1-(3-((1-(((S)-1-(tert-butoxycarbonyl)pyrrolidin-2-yl)methyl)-1H-1,2,3-triazol-4-yl)methoxy)phenyl)-3-(3,4-dimethoxyphenyl)propyl 1-((S)-2-cyclohexyl-2-(3,4,5-trimethoxyphenyl)acetyl)piperidine-2-carboxylate (AV371)

267
267 is synthesized according to general procedure 5.9.6. Reactants: 263 (30 mg) and (R)-2-azidoemthyl-1-boc-pyrrolidine (45 mg). The pure product is obtained as a white solid.

Silica column chromatography: $C H / E E, 2 / 3, v / v$.
TLC (CH/EE, 2/3): $R_{f}(\mathbf{2 6 7})=0.30$.
Yield 12 mg (27\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.64-7.32(\mathrm{~m}, 1 \mathrm{H}), 6.45(\mathrm{~d}, \mathrm{~J}=5.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.36-5.29(\mathrm{~m}, 2 \mathrm{H}), 5.13(\mathrm{q}$, $J=13.5,14.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{dd}, \mathrm{J}=14.7,29.1 \mathrm{~Hz}, 3 \mathrm{H}), 4.10(\mathrm{dp}, \mathrm{J}=4.3,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~d}, \mathrm{~J}=15.5$ $\mathrm{Hz}, 2 \mathrm{H}$), 3.83 (d, J = $2.5 \mathrm{~Hz}, 9 \mathrm{H}$), $3.36(\mathrm{~d}, \mathrm{~J}=9.5 \mathrm{~Hz}, 1 \mathrm{H}$), $3.32-3.06(\mathrm{~m}, 1 \mathrm{H}), 3.03-2.90(\mathrm{~m}, 1 \mathrm{H}), 2.24$ - 2.14 (m, 1H), 2.13-1.99 (m, 1H), 1.98-1.79 (m, 2H), 1.74-1.55 (m, 9H), 1.49 (s, 9H), 1.37-1.01 $(\mathrm{m}, 4 \mathrm{H}), 0.99-0.61(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13}$ C-NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$):) $\delta 172.93,172.24,171.16,167.91,153.43,153.06,142.86,136.93$, $133.53,124.45,106.02,105.36,61.03,60.98,58.13,57.22,56.47,56.33,55.95,55.59,55.27,52.50$, $47.17,43.76,41.39,39.58,33.03,32.97,30.91,30.73,28.64,27.04,26.96,26.73,26.41,25.57,24.53$, 23.52, 21.13, 20.94.

LC-MS (50-100\% B, $19 \mathbf{~ m i n}): \mathrm{t}_{\mathrm{R}}(\mathbf{2 6 7})=9.80 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=684.39[\mathrm{M}+\mathrm{H}]^{+}$, found $=684.33[\mathrm{M}+\mathrm{H}]^{+}$.

HRMS (ESI): calculated $=628.33409[\mathrm{M}+\mathrm{H}]^{+}$, found $=628.33449[\mathrm{M}+\mathrm{H}]^{+}$, err $[p p m]=0.64$.
RP-HPLC ($\mathbf{3 0} \mathbf{- 1 0 0 \%}$ B, $\mathbf{1 . 5} \mathbf{~ m L} / \mathrm{min}, \mathbf{2 0} \mathbf{~ m i n , ~} 220 \mathrm{~nm}$): $\mathrm{t}_{R}(\mathbf{2 6 7})=15.12 \mathrm{~min}(98 \%$ Purity).
(S)-1-((S)-pyrrolidin-2-ylmethyl)-1H-1,2,3-triazol-4-yl 1-((S)-2-cyclohexyl-2-(3,4,5-trimethoxyphenyl)acetyl)piperidine-2-carboxylate (AV473)

Chemical Formula: $\mathrm{C}_{31} \mathrm{H}_{45} \mathrm{~N}_{5} \mathrm{O}_{6}$
Exact Mass: 583,34
Molecular Weight: 583,72
$267(5 \mathrm{mg})$ is dissolved in 1 mL dry DCM and 0.5 mL TFA added. The reaction is stirred at RT for 30 min . The solvent is evaporated under airstream. The crude product is purified by silica column chromatography (DCM $+1 \% \mathrm{MeOH}+1 \%$ TEA). The pure product is obtained as a white solid.

TLC (DCM $+1 \% \mathrm{MeOH}+1 \% \mathrm{TEA}): \mathrm{R}_{f}(\mathbf{2 6 8})=0.25$.
Yield 4 mg (93\%).
LC-MS (30-100\% B, $19 \mathbf{~ m i n}): \mathrm{t}_{R}(\mathbf{2 6 8})=4.65 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=584.34[\mathrm{M}+\mathrm{H}]^{+}$,
found $=584.70[\mathrm{M}+\mathrm{H}]^{+}$.
HRMS (ESI): calculated $=584.34426[\mathrm{M}+\mathrm{H}]^{+}$, found $=584.34453[\mathrm{M}+\mathrm{H}]^{+}$, err $[\mathrm{ppm}]=0.27$.
RP-HPLC (0 - 100\% B, $1.5 \mathrm{~mL} / \mathrm{min}, 20 \mathrm{~min}, \mathbf{2 2 0 n m}$): $\mathrm{t}_{R}(\mathbf{2 6 8})=12.51 \mathrm{~min}$ (95% Purity) .
(S)-1-(((R)-1-(tert-butoxycarbonyl)pyrrolidin-2-yl)methyl)-1H-1,2,3-triazol-4-yl 1-((S)-2-cyclohexyl-2-(3,4,5-trimethoxyphenyl)acetyl)piperidine-2-carboxylate (AV580)

269 is synthesized according to general procedure 5.9.6. Starting material: $\mathbf{2 6 3}$ (10 mg) and (R)-2-azidomethyl-1-boc-pyrrolidine (7 mg). The pure product is obtained as a white solid.
prep-HPLC (50-100\% B, $10 \mathrm{~mL} / \mathrm{min}, 10 \mathrm{~min}, 254 \mathrm{~nm}): \mathrm{t}_{R}(269)=7.71 \mathrm{~min}$.
Yield 10 mg (67\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.55-7.36(\mathrm{~m}, 1 \mathrm{H}), 6.44(\mathrm{~s}, 2 \mathrm{H}), 5.37-5.28(\mathrm{~m}, 1 \mathrm{H}), 5.22-5.06(\mathrm{~m}$, $2 \mathrm{H}), 4.65-4.49(\mathrm{~m}, 2 \mathrm{H}), 4.10(\mathrm{~s}, 1 \mathrm{H}), 3.88(\mathrm{~d}, \mathrm{~J}=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.84-3.82(\mathrm{~m}, 9 \mathrm{H}), 3.36(\mathrm{~d}, \mathrm{~J}=9.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.31-3.11(\mathrm{~m}, 1 \mathrm{H}), 2.98(\mathrm{t}, \mathrm{J}=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{~s}, 6 \mathrm{H}), 2.20(\mathrm{~d}, \mathrm{~J}=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.14-2.01(\mathrm{~m}$, $2 \mathrm{H}), 1.95-1.79(\mathrm{~m}, 2 \mathrm{H}), 1.74-1.57(\mathrm{~m}, 5 \mathrm{H}), 1.49(\mathrm{~s}, 9 \mathrm{H}), 1.38-1.28(\mathrm{~m}, 1 \mathrm{H}), 1.30-1.02(\mathrm{~m}, 2 \mathrm{H})$, $0.98-0.70(m, 2 H), 0.70-0.60(m, 1 H)$.
${ }^{13}$ C-NMR (126 MHz, CDCl_{3}): $\delta 173.06,172.43,171.07,153.44,153.07,142.78,136.92,133.47,106.00$, $105.35,61.03,60.98,58.43,58.01,57.24,56.46,56.32,55.98,55.55,55.28,52.55,43.79,41.35$, $32.96,30.91,30.70,28.61,27.02,26.71,26.38,26.29,25.55,24.52,21.12,20.93$.

LC-MS (50-100\% B, $19 \mathbf{m i n}): \mathrm{t}_{R}(\mathbf{2 6 9})=9.50 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=684.39[\mathrm{M}+\mathrm{H}]^{+}$, found $=684.52[\mathrm{M}+\mathrm{H}]^{+}$.

HRMS (ESI): calculated $=684.39669[\mathrm{M}+\mathrm{H}]^{+}$, found $=684.39699[\mathrm{M}+\mathrm{H}]^{+}$, $\operatorname{err}[\mathrm{ppm}]=0.44$.
RP-HPLC ($\mathbf{5 0} \mathbf{- 1 0 0 \%}$ B, $1.5 \mathrm{~mL} / \mathrm{min}, 15 \mathrm{~min}, 220 \mathrm{~nm}$): $\mathrm{t}_{R}(\mathbf{2 6 9})=9.18 \mathrm{~min}$ (99% Purity).
(S)-1-((R)-pyrrolidin-2-ylmethyl)-1H-1,2,3-triazol-4-yl 1-((S)-2-cyclohexyl-2-(3,4,5trimethoxyphenyl)acetyl) piperidine-2-carboxylate (AV590)
 270
$269(7 \mathrm{mg})$ is dissolved in 1 mL dry DCM and 0.5 mL TFA added. The reaction is stirred at RT for 30 min . The solvent is evaporated under airstream. The crude product is purified by semi-preparative HPLC. The pure product is obtained as a white solid.
prep-HPLC ($\mathbf{3 0} \mathbf{- 1 0 0 \%} \mathbf{B}, 10 \mathrm{~mL} / \mathrm{min}, 10 \mathrm{~min}, 254 \mathrm{~nm}): \mathrm{t}_{R}(270)=6.77 \mathrm{~min}$.
Yield 4 mg (67\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.18(\mathrm{~s}, 1 \mathrm{H}), 6.49(\mathrm{~s}, 2 \mathrm{H}), 5.43-5.37(\mathrm{~m}, 1 \mathrm{H}), 5.23(\mathrm{~d}, \mathrm{~J}=13.2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.94(\mathrm{~d}, \mathrm{~J}=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.80-4.63(\mathrm{~m}, 2 \mathrm{H}), 4.08-4.02(\mathrm{~m}, 1 \mathrm{H}), 3.98-3.89(\mathrm{~m}, 1 \mathrm{H}), 3.85-3.79(\mathrm{~m}$, 9 H), $3.51-3.38(\mathrm{~m}, 1 \mathrm{H}), 3.37(\mathrm{~d}, \mathrm{~J}=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{td}, \mathrm{J}=2.8,12.7,13.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.35-2.23(\mathrm{~m}$,
$2 \mathrm{H}), 2.16-1.98(\mathrm{~m}, 3 \mathrm{H}), 1.91-1.79(\mathrm{~m}, 2 \mathrm{H}), 1.75-1.58(\mathrm{~m}, 12 \mathrm{H}), 1.37-1.21(\mathrm{~m}, 3 \mathrm{H}), 1.21-1.08$ $(m, 1 H), 0.97-0.66(m, 2 H)$.
${ }^{13}$ C-NMR (126 MHz, CDCl 3): $\delta 171.27,152.92,150.27,136.13,134.42,131.10,124.08,105.83,105.36$, $61.12,59.48,58.29,56.29,55.01,52.45,50.06,45.74,43.99,41.48,32.86,30.82,28.22,26.90,26.67$, 26.32, 26.26, 25.59, 23.67, 21.08 .

LC-MS (30-100\% B, $19 \mathbf{m i n}): \mathrm{t}_{R}(\mathbf{2 7 0})=4.98 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=584.34[\mathrm{M}+\mathrm{H}]^{+}$,
found $=584.58[\mathrm{M}+\mathrm{H}]^{+}$.
HRMS (ESI): calculated $=584.34426[\mathrm{M}+\mathrm{H}]^{+}$, found $=584.34483[\mathrm{M}+\mathrm{H}]^{+}$, err $[\mathrm{ppm}]=0.97$.
RP-HPLC (0 - 100\% B, $1.5 \mathrm{~mL} / \mathrm{min}, 15 \mathrm{~min}, 220 \mathrm{~nm}$): $\mathrm{t}_{R}(\mathbf{2 7 0})=10.47 \mathrm{~min}$ (98% Purity) .
(S)-1-(2-((tert-butoxycarbonyl)amino)ethyl)-1H-1,2,3-triazol-4-yl 1-((S)-2-cyclohexyl-2-(3,4,5-trimethoxyphenyl)acetyl)piperidine-2-carboxylate (AV377)

Chemical Formula: $\mathrm{C}_{33} \mathrm{H}_{49} \mathrm{~N}_{5} \mathrm{O}_{8}$
Exact Mass: 643,36
Molecular Weight: 643,77
271
$\mathbf{2 7 1}$ is synthesized according to general procedure 5.9.6. Starting material: $\mathbf{2 6 3}(30 \mathrm{mg})$ and 0.5 M tertbutyl (2-azidoethyl)carbamate solution in $t \mathrm{BuOH}(400 \mu \mathrm{~L})$. The pure product is obtained as a white solid.

Silica column chromatography: CH/EE, 2/1, v/v.
$\operatorname{TLC}(C H / E E, 2 / 1): \mathrm{R}_{f}(271)=0.25$.
Yield 36 mg (85\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.63(\mathrm{~s}, \mathrm{OH}), 7.25(\mathrm{~s}, 1 \mathrm{H}), 6.45(\mathrm{~s}, 2 \mathrm{H}), 5.35-5.29(\mathrm{~m}, 1 \mathrm{H}), 5.25(\mathrm{~d}, \mathrm{~J}=$ $12.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{~s}, 1 \mathrm{H}), 5.01(\mathrm{~d}, \mathrm{~J}=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{~d}, \mathrm{~J}=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.88(\mathrm{~d}, \mathrm{~J}=14.3 \mathrm{~Hz}, 1 \mathrm{H})$, $3.85-3.80(\mathrm{~m}, 4 \mathrm{H}), 3.81(\mathrm{~s}, 5 \mathrm{H}), 3.68-3.51(\mathrm{~m}, 2 \mathrm{H}), 3.35(\mathrm{~d}, \mathrm{~J}=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{t}, \mathrm{J}=13.3 \mathrm{~Hz}, 1 \mathrm{H})$, $2.23(\mathrm{~d}, \mathrm{~J}=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.05(\mathrm{td}, \mathrm{J}=6.3,10.7,11.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.85(\mathrm{~d}, \mathrm{~J}=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.76-1.50(\mathrm{~m}$, $6 \mathrm{H}), 1.45-1.39(\mathrm{~m}, 9 \mathrm{H}), 1.35-1.23(\mathrm{~m}, 3 \mathrm{H}), 1.22-1.02(\mathrm{~m}, 2 \mathrm{H}), 0.95-0.69(\mathrm{~m}, 2 \mathrm{H}), 0.71-0.59(\mathrm{~m}$, OH).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 172.77,171.21,155.95,153.03,142.84,142.45,137.08,136.72,134.37$, 133.74, 124.60, 123.71, 105.94, 105.36, 79.96, 61.02, 60.98, 58.60, 58.40, 56.46, 56.31, 55.93, 55.54, $55.21,52.62,50.17,43.91,41.40,41.26,40.61,39.61,33.05,32.92,30.86,30.70,28.46,26.91,26.88$, 26.69, 26.36, 26.33, 26.30, 25.57, 24.52, 21.11, 20.91.

LC-MS (50-100\% B, $19 \mathbf{~ m i n}): \mathrm{t}_{R}(\mathbf{2 7 1})=8.75 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=644.36[\mathrm{M}+\mathrm{H}]^{+}$, found $=644.31[\mathrm{M}+\mathrm{H}]^{+}$.

HRMS (ESI): calculated $=588.30279[\mathrm{M}+\mathrm{H}]^{+}$, found $=588.30282[\mathrm{M}+\mathrm{H}]^{+}$, err $[\mathrm{ppm}]=0.05$.
RP-HPLC ($\mathbf{3 0} \mathbf{- 1 0 0 \%}$ B, $1.5 \mathrm{~mL} / \mathrm{min}, 15 \mathrm{~min}, 220 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}(\mathbf{2 7 1})=13.23 \mathrm{~min}$ (99% Purity) .

(S)-1-(2-aminoethyl)-1H-1,2,3-triazol-4-yl 1-((S)-2-cyclohexyl-2-(3,4,5-trimethoxyphenyl)acetyl)piperidine-2-carboxylate (AV476)

272
$271(4 \mathrm{mg})$ is dissolved in 1 mL dry DCM and 0.5 mL TFA added. The reaction is stirred at RT for 30 min . The solvent is evaporated under airstream. The crude product is purified by silica column chromatography (DCM $+1 \%$ TEA $+1 \% \mathrm{MeOH})$. The pure product is obtained as a white solid.

Silica column chromatography: $\mathrm{DCM}+1 \%$ TEA $+1 \% \mathrm{MeOH}, \mathrm{v} / \mathrm{v}$.
TLC (DCM + 1\% TEA + 1\% MeOH): $\mathrm{R}_{f}(\mathbf{2 7 2})=0.25$.
Yield 3 mg (quant.).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.31(\mathrm{~s}, 1 \mathrm{H}), 6.47(\mathrm{~s}, 2 \mathrm{H}), 5.68(\mathrm{~s}, 4 \mathrm{H}), 5.41(\mathrm{~d}, \mathrm{~J}=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{~d}, \mathrm{~J}=$ $13.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.95(\mathrm{~d}, \mathrm{~J}=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.84-4.69(\mathrm{~m}, 1 \mathrm{H}), 3.92(\mathrm{~d}, \mathrm{~J}=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.85-3.81(\mathrm{~m}$, $9 H), 3.53-3.49(\mathrm{~m}, 2 \mathrm{H}), 3.36(\mathrm{~d}, \mathrm{~J}=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{dd}, \mathrm{J}=11.2,13.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.31-2.22(\mathrm{~m}, 1 \mathrm{H})$, $2.12-2.03(\mathrm{~m}, 1 \mathrm{H}), 1.92-1.82(\mathrm{~m}, 1 \mathrm{H}), 1.38-1.06(\mathrm{~m}, 10 \mathrm{H}), 0.94-0.68(\mathrm{~m}, 2 \mathrm{H})$.

LC-MS (30-100\% B, $19 \mathbf{~ m i n}): \mathrm{t}_{R}(\mathbf{2 7 2})=4.37 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=544.31[\mathrm{M}+\mathrm{H}]^{+}$, found $=544.44[\mathrm{M}+\mathrm{H}]^{+}$.

HRMS (ESI): calculated $=544.31296[\mathrm{M}+\mathrm{H}]^{+}$, found $=544.31332[\mathrm{M}+\mathrm{H}]^{+}, \operatorname{err}[\mathrm{ppm}]=0.36$.
RP-HPLC ($30-100 \%$ B, $1.5 \mathrm{~mL} / \mathrm{min}, 20 \mathrm{~min}, 254 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}(\mathbf{2 7 2)}=7.00 \mathrm{~min}$ (97% Purity).
(S)-1-(4-methoxyphenyl)-1H-1,2,3-triazol-4-yl 1-((S)-2-cyclohexyl-2-(3,4,5-trimethoxyphenyl)acetyl)piperidine-2-carboxylate (AV379)

273
$\mathbf{2 7 3}$ is synthesized according to general procedure 5.9.6. Starting material: 263 (30 mg) and 4Azidoanisole (12 mg). The pure product is obtained as a white solid.

Silica column chromatography: CH/EE, 1/1, v/v.
$\operatorname{TLC}(C H / E E, 1 / 1): \mathrm{R}_{f}(273)=0.32$.
Yield 31 mg (78\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.89(\mathrm{~s}, 1 \mathrm{H}), 7.67-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.07-6.97(\mathrm{~m}, 2 \mathrm{H}), 6.44(\mathrm{~s}, 2 \mathrm{H}), 5.42-$ $5.27(\mathrm{~m}, 2 \mathrm{H}), 5.13(\mathrm{~d}, \mathrm{~J}=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 6 \mathrm{H}), 3.37(\mathrm{~d}, \mathrm{~J}=9.6 \mathrm{~Hz}, 1 \mathrm{H})$, 2.97 (td, J = 3.1, $13.1 \mathrm{~Hz}, 1 \mathrm{H}$), 2.10-2.03 (m, 2H), 1.72-1.62 (m, 9H), $1.58-1.50(\mathrm{~m}, 1 \mathrm{H}), 1.49-1.38$ $(\mathrm{m}, 1 \mathrm{H}), 1.37-1.22(\mathrm{~m}, 3 \mathrm{H}), 1.22-1.06(\mathrm{~m}, 2 \mathrm{H}), 1.03-0.82(\mathrm{~m}, 1 \mathrm{H}), 0.81-0.71(\mathrm{~m}, 1 \mathrm{H}), 0.70-0.55$ ($m, 1 H$).
${ }^{13}$ C-NMR (126 MHz, CDCl 3): $\delta 173.13,172.36,171.34,160.02,153.43,153.08,143.51,136.91,133.46$, $130.50,122.26,121.88,115.03,114.93,106.02,105.33,60.97,58.66,58.14,56.46,56.27,55.95$, $55.78,55.60,55.36,52.68,43.82,41.38,41.29,39.63,33.10,32.98,30.89,30.70,26.91,26.72,26.61$, 26.43, 26.35, 25.48, 24.53, 21.03, 20.92, 1.16.

LC-MS (50-100\% B, $19 \mathbf{m i n}): \mathrm{t}_{\mathrm{R}}(\mathbf{2 7 3})=11.78 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=607.31[\mathrm{M}+\mathrm{H}]^{+}$, found $=607.44[\mathrm{M}+\mathrm{H}]^{+}$.

HRMS (ESI): calculated $=607.31263[\mathrm{M}+\mathrm{H}]^{+}$, found $=607.31340[\mathrm{M}+\mathrm{H}]^{+}$, err $[\mathrm{ppm}]=1.27$.
RP-HPLC ($\mathbf{3 0} \mathbf{- 1 0 0 \%}$ B, $1.5 \mathrm{~mL} / \mathrm{min}, 15 \mathrm{~min}, 220 \mathrm{~nm}$): $\mathrm{t}_{R}(\mathbf{2 7 3})=14.57 \mathrm{~min}(96 \%$ Purity).

(S)-(1-(3,4-dimethoxyphenyl)-1H-1,2,3-triazol-4-yl)methyl 1-((S)-2-cyclohexyl-2-(3,4,5-trimethoxyphenyl)acetyl)piperidine-2-carboxylate (AV703)

Chemical Formula: $\mathrm{C}_{34} \mathrm{H}_{44} \mathrm{~N}_{4} \mathrm{O}_{8}$
Exact Mass: 636,32
Molecular Weight: 636,74
$\mathbf{2 7 4}$ is synthesized according to general procedure 5.9.6. Starting material: $\mathbf{2 6 3}(12 \mathrm{mg})$ and 4-azido-1,2-dimethoxybenzene (7 mg). The pure product is obtained as a white solid.

Silica column chromatography: $\mathrm{CH} / \mathrm{EE}, 3 / 1, \mathrm{v} / \mathrm{v}$.
TLC (CH/EE, 3/1): $\mathrm{R}_{f}(\mathbf{2 7 4})=0.37$.
Yield 15 mg (71\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.91(\mathrm{~s}, 1 \mathrm{H}), 7.37(\mathrm{~d}, \mathrm{~J}=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{dd}, \mathrm{J}=2.5,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~d}$, $\mathrm{J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.44(\mathrm{~s}, 2 \mathrm{H}), 5.39(\mathrm{~s}, 1 \mathrm{H}), 5.36-5.29(\mathrm{~m}, 2 \mathrm{H}), 5.12(\mathrm{~d}, \mathrm{~J}=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{~s}, 4 \mathrm{H})$, $3.94(\mathrm{~s}, 4 \mathrm{H}), 3.83(\mathrm{~s}, 5 \mathrm{H}), 3.78(\mathrm{~s}, 5 \mathrm{H}), 3.37(\mathrm{~d}, \mathrm{~J}=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.03-2.89(\mathrm{~m}, 1 \mathrm{H}), 2.29-2.15(\mathrm{~m}, 1 \mathrm{H})$, $2.15-1.99(\mathrm{~m}, 1 \mathrm{H}), 1.94-1.77(\mathrm{~m}, 1 \mathrm{H}), 1.76-1.47(\mathrm{~m}, 8 \mathrm{H}), 1.45-1.02(\mathrm{~m}, 1 \mathrm{H}), 1.00-0.85(\mathrm{~m}, 1 \mathrm{H})$, $0.85-0.57(m, 1 H)$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): ~ \delta 173.14,171.36,153.10,143.56,133.46,121.93,112.60,111.40,106.05$, $105.37,105.08,60.98,58.09,56.43,56.36,56.27,55.62,55.37,52.69,43.82,41.37,33.68,32.98$, 30.89, 26.92, 26.72, 26.42, 26.36, 25.49, 21.05.

LC-MS (50-100\% B, $19 \mathbf{m i n}): \mathrm{t}_{\mathrm{R}}(\mathbf{2 7 4})=9.11 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=637.32[\mathrm{M}+\mathrm{H}]^{+}$, found $=637.39[\mathrm{M}+\mathrm{H}]^{+}$.

HRMS (ESI): calculated $=637.32319[\mathrm{M}+\mathrm{H}]^{+}$, found $=637.32335[\mathrm{M}+\mathrm{H}]^{+}$, $\operatorname{err}[\mathrm{ppm}]=0.25$.
RP-HPLC (50 - 100\% B, $1.5 \mathrm{~mL} / \mathrm{min}, 15 \mathrm{~min}, 220 \mathrm{~nm}): \mathrm{t}_{R}(274)=7.75 \mathrm{~min}$ (96% Purity).

(S)-(1-(4-bromophenyl)-1H-1,2,3-triazol-4-yl)methyl 1-((S)-2-cyclohexyl-2-(3,4,5-

 trimethoxyphenyl)acetyl)piperidine-2-carboxylate (AV715)

275

$\mathbf{2 7 5}$ is synthesized according to general procedure 5.9.6. Starting material: $\mathbf{2 6 3}(10 \mathrm{mg})$ and 1-azido-4bromobenzene (8 mg). The pure product is obtained as a white solid.

Silica column chromatography: CH/EE, 2/1, v/v.
$\operatorname{TLC}(C H / E E, 2 / 1): \mathrm{R}_{f}(275)=0.35$.
Yield $14 \mathrm{mg}(66 \%)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}\right.$, CDCl $\left._{3}\right): \delta 7.95(\mathrm{~s}, 1 \mathrm{H}), 7.66(\mathrm{~s}, 4 \mathrm{H}), 6.43(\mathrm{~s}, 2 \mathrm{H}), 5.37(\mathrm{~d}, \mathrm{~J}=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.31(\mathrm{~s}$, $1 \mathrm{H}), 5.10(\mathrm{~d}, \mathrm{~J}=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~d}, \mathrm{~J}=2.6 \mathrm{~Hz}, 5 \mathrm{H}), 3.76(\mathrm{~s}, 5 \mathrm{H}), 3.37(\mathrm{~d}, \mathrm{~J}=$ $9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.94(\mathrm{td}, \mathrm{J}=3.0,13.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.23(\mathrm{~d}, \mathrm{~J}=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.05(\mathrm{t}, \mathrm{J}=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.87(\mathrm{~d}, \mathrm{~J}=$ $13.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.76-1.49(\mathrm{~m}, 7 \mathrm{H}), 1.49-1.03(\mathrm{~m}, 3 \mathrm{H}), 0.99-0.55(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 173.16,171.36,153.08,144.02,133.46,133.19,133.04,122.02,121.58$, 106.03, 105.36, 60.97, 57.96, 56.26, 55.37, 52.72, 43.85, 41.35, 32.97, 30.88, 26.84, 26.71, 26.43, 25.45, 20.99.

LC-MS (50-100\% B, $19 \mathbf{m i n}): \mathrm{t}_{\mathrm{R}}\left(\mathbf{2 7 5)}=11.30 \mathrm{~min}, \mathrm{~m} / \mathrm{z}\right.$: calculated $=655.21[\mathrm{M}+\mathrm{H}]^{+}$, found $=655.64[\mathrm{M}+\mathrm{H}]^{+}$.

HRMS (ESI): calculated $=655.212570\left[\mathrm{M}+\mathrm{H}^{+}\right.$, found $=655.21261[\mathrm{M}+\mathrm{H}]^{+}$, err $[\mathrm{ppm}]=0.06$.
RP-HPLC (50-100\% B, $1.5 \mathrm{~mL} / \mathrm{min}, 15 \mathrm{~min}, 220 \mathrm{~nm}): \mathrm{t}_{\mathrm{R}}(\mathbf{2 7 5})=10.41 \mathrm{~min}(97 \%$ Purity $)$.
(S)-(1-(4-ethoxyphenyl)-1H-1,2,3-triazol-4-yl)methyl 1-((S)-2-cyclohexyl-2-(3,4,5-trimethoxyphenyl)acetyl)piperidine-2-carboxylate (AV729)

276

$\mathbf{2 7 6}$ is synthesized according to general procedure 5.9.6. Starting material: $\mathbf{2 6 3}(12 \mathrm{mg})$ and 1-azido-4ethoxybenzene (6 mg). The pure product is obtained as a white solid.

Silica column chromatography: CH/EE, 2/1, v/v.
TLC (CH/EE, 2/1): $\mathrm{R}_{f}(\mathbf{2 7 6})=0.35$.
Yield 15 mg (76\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.88(\mathrm{~s}, 1 \mathrm{H}), 7.62(\mathrm{dd}, \mathrm{J}=2.4,9.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.05-6.94(\mathrm{~m}, 2 \mathrm{H}), 6.44(\mathrm{~d}, \mathrm{~J}=$ $2.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.42-5.30(\mathrm{~m}, 2 \mathrm{H}), 5.14(\mathrm{~d}, \mathrm{~J}=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 0 \mathrm{H}), 3.83(\mathrm{~d}, \mathrm{~J}=1.7 \mathrm{~Hz}, 5 \mathrm{H}), 3.78(\mathrm{~s}$, 4 H), $3.37(\mathrm{~d}, \mathrm{~J}=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.02-2.86(\mathrm{~m}, 1 \mathrm{H}), 2.23(\mathrm{~d}, \mathrm{~J}=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.06(\mathrm{t}, \mathrm{J}=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.87$ (d, J = 12.6 Hz, 1H), 1.61 (dd, J = 12.0, 25.3 Hz, 6H), 1.46-1.02 (m, 8H), $0.87(q, J=6.7 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13}$ C-NMR (126 MHz, CDCl 3): $\delta 173.14,171.35,169.36,153.10,133.47,122.25,121.88,115.44,106.05$, $64.09,60.98,58.16,56.28,52.69,41.39,32.99,29.85,26.93,26.45,21.04,14.88,14.26,1.17$.

LC-MS (50-100\% B, $19 \mathbf{m i n}): \mathrm{t}_{\mathrm{R}}(\mathbf{2 7 6})=10.76 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=621.33[\mathrm{M}+\mathrm{H}]^{+}$, found $=621.65[\mathrm{M}+\mathrm{H}]^{+}$.

HRMS (ESI): calculated $=621.32828[\mathrm{M}+\mathrm{H}]^{+}$, found $=621.32890[\mathrm{M}+\mathrm{H}]^{+}$, err $[\mathrm{ppm}]=1.0$.
RP-HPLC ($\mathbf{5 0} \mathbf{- 1 0 0 \%}$ B, $1.5 \mathrm{~mL} / \mathrm{min}, 15 \mathrm{~min}, 220 \mathrm{~nm}$): $\mathrm{t}_{R}(\mathbf{2 7 6})=9.63 \mathrm{~min}(95 \%$ Purity).

(S)-(1-(4-cyanophenyl)-1H-1,2,3-triazol-4-yl)methyl 1-((S)-2-cyclohexyl-2-(3,4,5trimethoxyphenyl)acetyl) piperidine-2-carboxylate (AV707)

277 is synthesized according to general procedure 5.9.6. Starting material: $\mathbf{2 6 3}(12 \mathrm{mg})$ and 4azidobenzonitrile (6 mg). The pure product is obtained as a white solid.

Silica column chromatography: $\mathrm{CH} / \mathrm{EE}, 2 / 1, \mathrm{v} / \mathrm{v}$.
TLC (CH/EE, 2/1): $\mathrm{R}_{f}(\mathbf{2 7 7})=0.25$.
Yield 15 mg (86\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.04(\mathrm{~s}, 1 \mathrm{H}), 7.96(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.84(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.42(\mathrm{~d}, \mathrm{~J}=$ $1.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.44-5.35(\mathrm{~m}, 1 \mathrm{H}), 5.33-5.28(\mathrm{~m}, 1 \mathrm{H}), 5.07(\mathrm{~d}, \mathrm{~J}=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~d}, \mathrm{~J}=13.4 \mathrm{~Hz}, 1 \mathrm{H})$, $3.83(\mathrm{~s}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 5 \mathrm{H}), 3.37(\mathrm{~d}, \mathrm{~J}=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{td}, \mathrm{J}=3.1,13.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.24(\mathrm{~d}, \mathrm{~J}=$ $13.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.07(\mathrm{~d}, \mathrm{~J}=11.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.87(\mathrm{~d}, \mathrm{~J}=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.74-1.59(\mathrm{~m}, 4 \mathrm{H}), 1.51-1.39(\mathrm{~m}$, $1 \mathrm{H}), 1.38-1.21(\mathrm{~m}, 3 \mathrm{H}), 1.15(\mathrm{q}, \mathrm{J}=12.4,12.8 \mathrm{~Hz}, 2 \mathrm{H}), 0.98-0.83(\mathrm{~m}, 1 \mathrm{H}), 0.76(\mathrm{q}, \mathrm{J}=12.4,13.2 \mathrm{~Hz}$, 1 H).
${ }^{13} \mathrm{C}$-NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 173.20,171.40,153.07,144.53,139.81,136.84,134.05,133.48,121.48$, $120.72,117.89,112.60,106.03,105.37,60.97,58.37,57.82,56.49,56.24,55.67,55.37,52.77,43.89$, $41.35,33.16,32.96,30.87,30.72,26.85,26.76,26.70,26.62,26.43,26.31,25.42,24.50,20.95$.

LC-MS (50-100\% B, $19 \mathbf{~ m i n}): \mathrm{t}_{R}(277)=9.59 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=602.30[\mathrm{M}+\mathrm{H}]^{+}$, found $=602.56[\mathrm{M}+\mathrm{H}]^{+}$(95\% Purity)

HRMS (ESI): calculated $=602.29731[\mathrm{M}+\mathrm{H}]^{+}$, found $=602.29741[\mathrm{M}+\mathrm{H}]^{+}, \operatorname{err}[\mathrm{ppm}]=0.17$.

(S)-(1-(3,5-dimethoxyphenyl)-1H-1,2,3-triazol-4-yl)methyl 1-((S)-2-cyclohexyl-2-(3,4,5-trimethoxyphenyl)acetyl)piperidine-2-carboxylate (AV741)

278
$\mathbf{2 7 8}$ is synthesized according to general procedure 5.9.6. Starting material: $\mathbf{2 6 3}(15 \mathrm{mg})$ and 1-azido-3,5-dimethoxy-benzene (18 mg). The pure product is obtained as a white solid.

Silica column chromatography: $\mathrm{CH} / \mathrm{EE}, 2 / 1, \mathrm{v} / \mathrm{v}$.
TLC (CH/EE, 2/1): $\mathrm{R}_{f}(\mathbf{2 7 8})=0.23$.
Yield 16 mg (76\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.99(\mathrm{~s}, 1 \mathrm{H}), 6.92(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{t}, \mathrm{J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.47-6.40$ $(\mathrm{m}, 2 \mathrm{H}), 5.44-5.26(\mathrm{~m}, 2 \mathrm{H}), 5.12(\mathrm{~d}, \mathrm{~J}=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{~d}, \mathrm{~J}=5.5 \mathrm{~Hz}, 0 \mathrm{H}), 4.60(\mathrm{~d}, \mathrm{~J}=13.7 \mathrm{~Hz}, 0 \mathrm{H})$, $3.86(\mathrm{~s}, 7 \mathrm{H}), 3.85-3.81(\mathrm{~m}, 5 \mathrm{H}), 3.77(\mathrm{~s}, 4 \mathrm{H}), 3.37(\mathrm{~d}, \mathrm{~J}=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.97(\mathrm{td}, \mathrm{J}=3.1,13.1 \mathrm{~Hz}, 1 \mathrm{H})$, $2.29-2.19(\mathrm{~m}, 1 \mathrm{H}), 2.15-2.00(\mathrm{~m}, 2 \mathrm{H}), 1.96-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.74-1.51(\mathrm{~m}, 7 \mathrm{H}), 1.51-1.05(\mathrm{~m}, 5 \mathrm{H})$, $1.02-0.53(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13}$ C-NMR (126 MHz, CDCl $_{3}$): $\delta 173.20,172.34,171.35,161.77,161.69,153.43,153.09,143.67,142.96$, $138.51,138.36,136.92,134.37,133.40,122.32,121.87,106.02,105.34,100.85,99.10,99.04,61.02$, $60.96,58.54,58.01,56.47,56.25,55.94,55.88,55.63,55.44,52.73,43.82,41.31,39.63,33.09,33.00$, 30.89, 30.71, 26.89, 26.73, 26.62, 26.40, 26.36, 26.26, 25.46, 24.52, 21.02, 20.92.

LC-MS (50-100\% B, $19 \mathbf{~ m i n}): \mathrm{t}_{R}(\mathbf{2 7 8})=10.20 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=637.32[\mathrm{M}+\mathrm{H}]^{+}$, found $=637.54[\mathrm{M}+\mathrm{H}]^{+}$(99\% Purity)

HRMS (ESI): calculated $=637.32319[\mathrm{M}+\mathrm{H}]^{+}$, found $=637.32335[\mathrm{M}+\mathrm{H}]^{+}$, err $[\mathrm{ppm}]=0.25$.

(S)-(1-(4-isopropoxyphenyl)-1H-1,2,3-triazol-4-yl)methyl 1-((S)-2-cyclohexyl-2-(3,4,5-trimethoxyphenyl)acetyl)piperidine-2-carboxylate (AV733)

279

$\mathbf{2 7 9}$ is synthesized according to general procedure 5.9.6. Starting material: $\mathbf{2 6 3}$ (6 mg) and 1-azido-4-isopropoxy-benzene (4 mg). The pure product is obtained as a white solid.

Silica column chromatography: CH/EE, 3/1, v/v.
$\operatorname{TLC}(C H / E E, 3 / 1): \mathrm{R}_{f}(279)=0.22$.
Yield 5 mg (60\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.88(\mathrm{~s}, 1 \mathrm{H}), 7.61(\mathrm{dd}, \mathrm{J}=3.5,9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.03-6.96(\mathrm{~m}, 2 \mathrm{H}), 6.44(\mathrm{~d}, \mathrm{~J}=$ $5.7 \mathrm{~Hz}, 2 \mathrm{H}$), $5.39(\mathrm{~s}, 1 \mathrm{H}), 5.35-5.27(\mathrm{~m}, 1 \mathrm{H}), 5.14(\mathrm{~d}, \mathrm{~J}=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{ddp}, \mathrm{J}=2.9,6.0,9.0 \mathrm{~Hz}$, 1 H), 3.88 (d, J = $13.3 \mathrm{~Hz}, 1 \mathrm{H}$), $3.85-3.80(\mathrm{~m}, 5 \mathrm{H}), 3.79(\mathrm{~s}, 4 \mathrm{H}), 3.37(\mathrm{~d}, \mathrm{~J}=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.97(\mathrm{td}, \mathrm{J}=3.0$, $13.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.23(\mathrm{~d}, \mathrm{~J}=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.07(\mathrm{q}, \mathrm{J}=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.85(\mathrm{t}, \mathrm{J}=16.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.73-1.58(\mathrm{~m}$, $4 \mathrm{H}), 1.56(\mathrm{~s}, 4 \mathrm{H}), 1.37(\mathrm{dd}, \mathrm{J}=1.1,6.1 \mathrm{~Hz}, 6 \mathrm{H}), 1.35-1.20(\mathrm{~m}, 2 \mathrm{H}), 1.20-1.05(\mathrm{~m}, 1 \mathrm{H}), 0.93(\mathrm{tdd}, \mathrm{J}=$ $5.8,9.2,15.8 \mathrm{~Hz}, 1 \mathrm{H}), 0.76(\mathrm{q}, \mathrm{J}=12.8,13.5 \mathrm{~Hz}, 1 \mathrm{H}), 0.70-0.54(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13}$ C-NMR (126 MHz, CDCl_{3}): $\delta 173.13,172.37,171.34,158.42,153.44,153.10,143.48,142.87,134.38$, $133.47,130.20,122.29,121.88,116.70,106.04,105.35,70.67,70.61,61.03,60.98,58.69,58.17$, $56.47,56.28,55.95,55.62,55.37,52.68,43.82,41.39,41.31,39.63,33.12,32.99,30.91,30.71,26.93$, 26.73, 26.62, 26.44, 26.37, 26.27, 25.50, 24.54, 22.08, 21.05, 20.92.

LC-MS (50-100\% B, $19 \mathbf{m i n}): \mathrm{t}_{\mathrm{R}}(\mathbf{2 7 9})=11.53 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=635.34[\mathrm{M}+\mathrm{H}]^{+}$, found $=635.77[\mathrm{M}+\mathrm{H}]^{+}$(95\% Purity).

HRMS (ESI): calculated $=635.34444[\mathrm{M}+\mathrm{H}]^{+}$, found $=635.34393[\mathrm{M}+\mathrm{H}]^{+}$, err $[\mathrm{ppm}]=0.80$.

(S)-(1-(4-methoxybenzyl)-1H-1,2,3-triazol-4-yl)methyl 1-((S)-2-cyclohexyl-2-(3,4,5-trimethoxyphenyl)acetyl)piperidine-2-carboxylate (AV701)

280

280 is synthesized according to general procedure 5.9.6. Starting material: $\mathbf{2 6 3}(12 \mathrm{mg})$ and 1 -(azidomethyl)-4-methoxybenzene (6 mg). The pure product is obtained as a colorless solid.

Silica column chromatography: $\mathrm{CH} / \mathrm{EE}, 1 / 1, \mathrm{v} / \mathrm{v}$.
TLC (CH/EE, 1/1): $\mathrm{R}_{f}(\mathbf{2 8 0})=0.28$.
Yield 11 mg (69\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 7.31(\mathrm{~s}, 1 \mathrm{H}), 7.24-7.19(\mathrm{~m}, 2 \mathrm{H}), 6.90-6.85(\mathrm{~m}, 2 \mathrm{H}), 6.44-6.40(\mathrm{~m}$, $2 \mathrm{H}), 5.47-5.40(\mathrm{~m}, 2 \mathrm{H}), 5.33-5.28(\mathrm{~m}, 1 \mathrm{H}), 5.18(\mathrm{~d}, \mathrm{~J}=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{~d}, \mathrm{~J}=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~s}$, $3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.81-3.77(\mathrm{~m}, 8 \mathrm{H}), 3.35(\mathrm{~d}, \mathrm{~J}=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{td}, \mathrm{J}=2.9,13.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.22-2.13$ $(\mathrm{m}, 1 \mathrm{H}), 2.10-2.01(\mathrm{~m}, 1 \mathrm{H}), 1.89-1.78(\mathrm{~m}, 1 \mathrm{H}), 1.73-1.47(\mathrm{~m}, 8 \mathrm{H}), 1.37-1.24(\mathrm{~m}, 2 \mathrm{H}), 1.23-1.03$ $(m, 3 H), 0.98-0.85(m, 1 H), 0.81-0.62(m, 1 H)$.
${ }^{13} \mathrm{C}$-NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 172.88,172.29,171.21,160.22,160.03,153.42,153.04,143.11,142.72$, $136.84,134.37,133.55,129.81,129.76,126.88,126.38,123.58,123.18,114.71,114.57,105.97$, $105.35,61.02,60.97,58.63,58.21,56.46,56.27,55.89,55.46,55.26,54.00,53.77,52.49,43.76$, $41.35,39.56,32.97,30.89,30.70,26.94,26.71,26.40,26.37,26.29,25.53,24.50,21.03,20.87$.

LC-MS (50-100\% B, $19 \mathbf{~ m i n}): \mathrm{t}_{R}(\mathbf{2 8 0})=9.46 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=621.32[\mathrm{M}+\mathrm{H}]^{+}$, found $=621.52[\mathrm{M}+\mathrm{H}]^{+}$.
HRMS (ESI): calculated $=621.32828[\mathrm{M}+\mathrm{H}]^{+}$, found $=621.32887[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{err}[\mathrm{ppm}]=0.96$.
RP-HPLC (50 - 100\% B, $1.5 \mathrm{~mL} / \mathrm{min}, 15 \mathrm{~min}, 220 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}(\mathbf{2 8 0})=8.07 \mathrm{~min}(96 \%$ Purity).

(S)-(1-(4-fluorophenyl)-1H-1,2,3-triazol-4-yl)methyl 1-((S)-2-cyclohexyl-2-(3,4,5-trimethoxyphenyl)acetyl)piperidine-2-carboxylate (AV725)

Chemical Formula: $\mathrm{C}_{32} \mathrm{H}_{39} \mathrm{FN}_{4} \mathrm{O}_{6}$
Exact Mass: 594,29
Molecular Weight: 594,67

281

$\mathbf{2 8 1}$ is synthesized according to general procedure 5.9.6. Starting material: $\mathbf{2 6 3}$ (12 mg) and 1-azido-4fluorobenzene (5 mg). The pure product is obtained as a white solid.

Silica column chromatography: $C H / E E, 2 / 1, v / v$.
$\operatorname{TLC}(C H / E E, 2 / 1): \mathrm{R}_{f}(\mathbf{2 8 1})=0.35$.
Yield 9 mg (56\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.93(\mathrm{~s}, 1 \mathrm{H}), 7.79-7.72(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.18(\mathrm{~m}, 2 \mathrm{H}), 6.43(\mathrm{~s}, 2 \mathrm{H}), 5.37$ $(\mathrm{d}, \mathrm{J}=26.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.34-5.29(\mathrm{~m}, 2 \mathrm{H}), 5.12(\mathrm{~d}, \mathrm{~J}=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.93-3.85(\mathrm{~m}, 1 \mathrm{H}), 3.84-3.83(\mathrm{~m}$, $3 \mathrm{H}), 3.83-3.81(\mathrm{~m}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 4 \mathrm{H}), 3.38(\mathrm{~d}, \mathrm{~J}=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.95(\mathrm{td}, \mathrm{J}=3.1,13.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.23(\mathrm{~d}, \mathrm{~J}=$ $13.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.12-2.00(\mathrm{~m}, 2 \mathrm{H}), 1.89-1.82(\mathrm{~m}, 1 \mathrm{H}), 1.76-1.58(\mathrm{~m}, 4 \mathrm{H}), 1.39-1.05(\mathrm{~m}, 5 \mathrm{H}), 1.05-$ 0.69 ($\mathrm{m}, 2 \mathrm{H}$).
${ }^{13}$ C-NMR (126 MHz, CDCl $)$: $\delta 173.16,171.37,171.21,163.61,153.46,153.09,143.89,136.90,133.47$, $122.67,122.60,122.34,121.90,117.13,116.95,116.77,106.04,105.36,61.04,60.97,58.03,56.48$, $56.26,55.95,55.64,55.38,52.72,43.85,41.38,41.27,32.98,30.89,30.72,26.87,26.72,26.62,26.44$, 25.47, 21.01.

LC-MS (50-100\% B, $19 \mathbf{m i n}): \mathrm{t}_{R}(\mathbf{2 8 1})=10.11 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=595.29[\mathrm{M}+\mathrm{H}]^{+}$, found $=595.38[\mathrm{M}+\mathrm{H}]^{+}$(95\% Purity) .

HRMS (ESI): calculated $=595.29264[\mathrm{M}+\mathrm{H}]^{+}$, found $=595.29306[\mathrm{M}+\mathrm{H}]^{+}$, err $[\mathrm{ppm}]=0.71$.

(S)-(1-(4-chlorophenyl)-1H-1,2,3-triazol-4-yl)methyl 1-((S)-2-cyclohexyl-2-(3,4,5-trimethoxyphenyl)acetyl)piperidine-2-carboxylate (AV719)

282

$\mathbf{2 8 2}$ is synthesized according to general procedure 5.9.6. Starting material: $\mathbf{2 6 3}(12 \mathrm{mg})$ and 1-azido-4chlorobenzene (6 mg). The pure product is obtained as a white solid.

Silica column chromatography: CH/EE, 2/1, v/v.
TLC (CH/EE, 2/1): $\mathrm{R}_{f}(\mathbf{2 8 2})=0.30$.
Yield 16 mg (81\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathbf{3 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.95(\mathrm{~s}, 1 \mathrm{H}), 7.77-7.64(\mathrm{~m}, 2 \mathrm{H}), 7.57-7.45(\mathrm{~m}, 2 \mathrm{H}), 6.43(\mathrm{~s}, 2 \mathrm{H}), 5.38$ (d, J = $11.8 \mathrm{~Hz}, 1 \mathrm{H}$), $5.32(\mathrm{~s}, 1 \mathrm{H}), 5.10(\mathrm{~d}, \mathrm{~J}=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~d}, \mathrm{~J}=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~d}, \mathrm{~J}=2.6 \mathrm{~Hz}$, 5 H), $3.77(\mathrm{~s}, 5 \mathrm{H}), 3.37(\mathrm{~d}, \mathrm{~J}=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.95(\mathrm{td}, \mathrm{J}=3.1,12.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.23(\mathrm{~d}, \mathrm{~J}=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.16-$ $1.96(\mathrm{~m}, 2 \mathrm{H}), 1.93-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.68(\mathrm{t}, \mathrm{J}=11.8 \mathrm{~Hz}, 5 \mathrm{H}), 1.53-1.21(\mathrm{~m}, 2 \mathrm{H}), 1.23-1.06(\mathrm{~m}, 2 \mathrm{H})$, $1.04-0.82(\mathrm{~m}, 1 \mathrm{H}), 0.71(\mathrm{dq}, \mathrm{J}=11.0,11.4,34.3 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13}$ C-NMR (126 MHz, CDCl_{3}): $\delta 153.09,133.46,130.08,121.79,106.04,60.97,57.98,56.26,52.73$, 43.85, 41.37, 32.98, 30.89, 26.86, 26.44, 21.01.

LC-MS (50-100\% B, 19 min$): \mathrm{t}_{\mathrm{R}}(\mathbf{2 8 2})=11.10 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=611.26[\mathrm{M}+\mathrm{H}]^{+}$, found $=611.52[\mathrm{M}+\mathrm{H}]^{+}$.

HRMS (ESI): calculated $=611.26309[\mathrm{M}+\mathrm{H}]^{+}$, found $=611.26336[\mathrm{M}+\mathrm{H}]^{+}$, err $[\mathrm{ppm}]=0.44$.
RP-HPLC (50-100\% B, $1.5 \mathrm{~mL} / \mathrm{min}, 15 \mathrm{~min}, \mathbf{2 2 0} \mathrm{~nm}): \mathrm{t}_{R}(\mathbf{2 8 2})=10.07 \mathrm{~min}(95 \%$ Purity) .

(S)-(1-(3-methoxyphenyl)-1H-1,2,3-triazol-4-yl)methyl 1-((S)-2-cyclohexyl-2-(3,4,5-

 trimethoxyphenyl)acetyl)piperidine-2-carboxylate (AV727)
$\mathbf{2 8 3}$ is synthesized according to general procedure 5.9.6. Starting material: $\mathbf{2 6 3}(12 \mathrm{mg})$ and 1-azido-3methoxybenzene (6 mg). The pure product is obtained as a white solid.

Silica column chromatography: $C H / E E, 2 / 1, v / v$.
TLC (CH/EE, 2/1): $\mathrm{R}_{f}(\mathbf{2 8 3})=0.34$.
Yield 4 mg (23\%).
LC-MS (50-100\% B, $19 \mathbf{~ m i n}): \mathrm{t}_{R}(\mathbf{2 8 3})=10.26 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=607.31[\mathrm{M}+\mathrm{H}]^{+}$,
found $=607.46[\mathrm{M}+\mathrm{H}]^{+}$.
HRMS (ESI): calculated $=607.31263[\mathrm{M}+\mathrm{H}]^{+}$, found $=607.31311[\mathrm{M}+\mathrm{H}]^{+}$, err $[\mathrm{ppm}]=0.79$.
RP-HPLC (50-100\% B, $1.5 \mathrm{~mL} / \mathrm{min}, 15 \mathrm{~min}, 220 \mathrm{~nm}): \mathrm{t}_{R}(\mathbf{2 8 3})=7.60 \mathrm{~min}(95 \%$ Purity).
(S)-(1-(3,4,5-trimethoxyphenyl)-1H-1,2,3-triazol-4-yl)methyl 1-((S)-2-cyclohexyl-2-(3,4,5-trimethoxyphenyl)acetyl)piperidine-2-carboxylate (AV731)

284

$\mathbf{2 8 4}$ is synthesized according to general procedure 5.9.6. Starting material: $\mathbf{2 6 3}$ (6 mg) and $\mathbf{2 2 8}(4 \mathrm{mg})$. The pure product is obtained as a white solid.

Silica column chromatography: $\mathrm{CH} / \mathrm{EE}, 2 / 1, \mathrm{v} / \mathrm{v}$.
$\operatorname{TLC}(C H / E E, 2 / 1): \mathrm{R}_{f}(\mathbf{2 8 4})=0.21$.
Yield 5 mg (57\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.94(\mathrm{~s}, 1 \mathrm{H}), 7.03-6.91(\mathrm{~m}, 2 \mathrm{H}), 6.48-6.41(\mathrm{~m}, 2 \mathrm{H}), 5.42-5.29(\mathrm{~m}$, $2 \mathrm{H}), 5.09(\mathrm{~d}, \mathrm{~J}=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.97-3.93(\mathrm{~m}, 6 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 4 \mathrm{H})$, $3.37(\mathrm{~d}, \mathrm{~J}=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{td}, \mathrm{J}=3.0,13.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.24(\mathrm{~d}, \mathrm{~J}=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.11-2.03(\mathrm{~m}, 2 \mathrm{H})$, $1.96-1.75(\mathrm{~m}, 1 \mathrm{H}), 1.74-1.59(\mathrm{~m}, 3 \mathrm{H}), 1.56(\mathrm{~s}, 5 \mathrm{H}), 1.48-1.38(\mathrm{~m}, 0 \mathrm{H}), 1.37-1.23(\mathrm{~m}, 2 \mathrm{H}), 1.22-$ $1.06(\mathrm{~m}, 1 \mathrm{H}), 1.03-0.82(\mathrm{~m}, 1 \mathrm{H}), 0.83-0.56(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13}$ C-NMR (126 MHz, CDCl 3): $\delta 173.19,171.39,154.09,153.46,153.11,143.68,138.56,136.92,134.33$, $133.45,132.88,131.08,121.96,106.04,105.38,98.59,61.21,60.98,58.55,57.95,56.66,56.49$, 56.27, 55.95, 55.42, 52.74, 43.84, 41.31, 39.66, 33.10, 32.98, 30.87, 30.71, 26.90, 26.71, 26.65, 26.39, 26.30, 25.49, 21.05, 20.91.

LC-MS (50-100\% B, 19 min$): \mathrm{t}_{\mathrm{R}}(\mathbf{2 8 4})=9.70 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=667.33[\mathrm{M}+\mathrm{H}]^{+}$, found $=667.60[\mathrm{M}+\mathrm{H}]^{+}$(95\% Purity).

HRMS (ESI): calculated $=667.33376[\mathrm{M}+\mathrm{H}]^{+}$, found $=667.33405[\mathrm{M}+\mathrm{H}]^{+}$, err $[\mathrm{ppm}]=0.45$.

(S)-(1-(pyridin-4-yl)-1H-1,2,3-triazol-4-yl)methyl 1-((S)-2-cyclohexyl-2-(3,4,5-trimethoxyphenyl)acetyl)piperidine-2-carboxylate (AV713)

$\mathbf{2 8 5}$ is synthesized according to general procedure 5.9.6. Starting material: $\mathbf{2 6 3}$ (10 mg) and 4azidopyridine (5 mg). The pure product is obtained as a white solid.

Silica column chromatography: CH/EE, 1/1+1\% TEA, v/v.
TLC (CH/EE, 1/1 + 1\% TEA): $\mathrm{R}_{f}(\mathbf{2 8 5})=0.22$.
Yield 15 mg (81\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.83(\mathrm{~s}, 2 \mathrm{H}), 8.12(\mathrm{~s}, 1 \mathrm{H}), 7.78(\mathrm{~s}, 2 \mathrm{H}), 6.42(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.40(\mathrm{~d}, \mathrm{~J}=$ $4.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.36-5.25(\mathrm{~m}, 1 \mathrm{H}), 5.08(\mathrm{~d}, \mathrm{~J}=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 1 \mathrm{H}), 3.82(\mathrm{~d}, \mathrm{~J}=4.7 \mathrm{~Hz}, 4 \mathrm{H}), 3.75(\mathrm{~s}$, $5 \mathrm{H}), 3.37(\mathrm{~d}, \mathrm{~J}=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.01-2.85(\mathrm{~m}, 1 \mathrm{H}), 2.23(\mathrm{~d}, \mathrm{~J}=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.08(\mathrm{~d}, \mathrm{~J}=11.0 \mathrm{~Hz}, 1 \mathrm{H})$, $1.88(\mathrm{~d}, \mathrm{~J}=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.77-1.50(\mathrm{~m}, 8 \mathrm{H}), 1.44(\mathrm{~d}, \mathrm{~J}=12.8 \mathrm{~Hz}, 0 \mathrm{H}), 1.40-1.04(\mathrm{~m}, 4 \mathrm{H}), 0.79$ (ddt, J $=10.9,36.0,59.0 \mathrm{~Hz}, 2 \mathrm{H}$).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 173.24,171.39,153.08,133.43,121.18,106.03,60.96,57.78,56.49$, 56.24, 55.39, 52.79, 43.89, 41.34, 32.97, 30.86, 26.75, 26.43, 25.41, 20.93.

LC-MS (30-100\% B, $19 \mathbf{~ m i n}): \mathrm{t}_{\mathrm{R}}\left(\mathbf{2 8 5)}=10.70 \mathrm{~min}, \mathrm{~m} / \mathrm{z}\right.$: calculated $=578.30[\mathrm{M}+\mathrm{H}]^{+}$, found $=578.34[\mathrm{M}+\mathrm{H}]^{+}$.

HRMS (ESI): calculated $=578.29731[\mathrm{M}+\mathrm{H}]^{+}$, found $=578.29698[\mathrm{M}+\mathrm{H}]^{+}$, err $[\mathrm{ppm}]=0.57$.
RP-HPLC ($\mathbf{3 0} \mathbf{- 1 0 0 \%}$ B, $1.5 \mathrm{~mL} / \mathrm{min}, 15 \mathrm{~min}, 220 \mathrm{~nm}): \mathrm{t}_{R}(\mathbf{2 8 5)}=7.92 \mathrm{~min}$ (94% Purity).

(S)-(1-(pyridin-3-yl)-1H-1,2,3-triazol-4-yl)methyl 1-((S)-2-cyclohexyl-2-(3,4,5-trimethoxyphenyl)acetyl)piperidine-2-carboxylate (AV711)

286

286 is synthesized according to general procedure 5.9.6. Starting material: $\mathbf{2 6 3}(12 \mathrm{mg})$ and 3azidopyridine (5 mg). The pure product is obtained as a white solid.

Silica column chromatography: CH/EE, $2 / 1+1 \%$ TEA, v / v.
TLC (CH/EE, 2/1 + 1\% TEA): $\mathrm{R}_{f}(\mathbf{2 8 6})=0.30$.
Yield 9 mg (48%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathbf{3 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.06(\mathrm{~d}, \mathrm{~J}=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.71(\mathrm{dd}, \mathrm{J}=1.5,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.19-8.10(\mathrm{~m}, 1 \mathrm{H})$, $8.01(\mathrm{~s}, 1 \mathrm{H}), 7.57-7.43(\mathrm{~m}, 1 \mathrm{H}), 6.44(\mathrm{~s}, 2 \mathrm{H}), 5.40(\mathrm{~d}, \mathrm{~J}=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.33(\mathrm{~s}, 1 \mathrm{H}), 5.10(\mathrm{~d}, \mathrm{~J}=12.9$ $\mathrm{Hz}, 1 \mathrm{H}), 3.89(\mathrm{~d}, \mathrm{~J}=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 5 \mathrm{H}), 3.37(\mathrm{~d}, \mathrm{~J}=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.00-$ $2.90(\mathrm{~m}, 1 \mathrm{H}), 2.24(\mathrm{~d}, \mathrm{~J}=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.08(\mathrm{q}, \mathrm{J}=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.87(\mathrm{~d}, \mathrm{~J}=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.69(\mathrm{~d}, \mathrm{~J}=$ $16.6 \mathrm{~Hz}, 6 \mathrm{H}), 1.58(\mathrm{~s}, 2 \mathrm{H}), 1.52-1.23(\mathrm{~m}, 2 \mathrm{H}), 1.15(\mathrm{q}, \mathrm{J}=11.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.00-0.67(\mathrm{~m}, 1 \mathrm{H}), 0.68-$ 0.51 ($\mathrm{m}, 1 \mathrm{H}$).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 173.13,171.35,153.08,150.14,144.24,141.87,133.48,128.17,124.33$, $121.72,106.05,105.37,60.96,57.82,56.28,55.36,52.74,43.89,41.30,32.97,30.88,26.85,26.41$, 25.48, 21.04.

LC-MS (30-100\% B, $19 \mathbf{~ m i n}$): $\mathrm{t}_{R}(\mathbf{2 8 6})=11.18 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=578.30[\mathrm{M}+\mathrm{H}]^{+}$, found $=578.39[\mathrm{M}+\mathrm{H}]^{+}$.
HRMS (ESI): calculated $=578.29865[\mathrm{M}+\mathrm{H}]^{+}$, found $=579.29802[\mathrm{M}+\mathrm{H}]^{+}$, err $[\mathrm{ppm}]=1.08$.
RP-HPLC ($\mathbf{3 0} \mathbf{- 1 0 0 \%}$ B, $1.5 \mathrm{~mL} / \mathrm{min}, \mathbf{1 5} \mathbf{~ m i n}, 220 \mathrm{~nm}$): $\mathrm{t}_{R}(\mathbf{2 8 6})=9.46 \mathrm{~min}(95 \%$ Purity) .

(S)-(1-(pyridin-2-yl)-1H-1,2,3-triazol-4-yl)methyl 1-((S)-2-cyclohexyl-2-(3,4,5-trimethoxyphenyl)acetyl)piperidine-2-carboxylate (AV709)

$\mathbf{2 8 7}$ is synthesized according to general procedure 5.9.6. Starting material: $\mathbf{2 6 3}$ (12 mg) and 2azidopyridine (5 mg). The pure product is obtained as a white solid.

Silica column chromatography: $\mathrm{CH} / \mathrm{EE}, 1 / 1+1 \%$ TEA.
TLC (CH/EE, 1/1 + 1\% TEA): $\mathrm{R}_{f}(\mathbf{2 8 7})=0.25$.
Yield 5 mg (31\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.52(\mathrm{~s}, 1 \mathrm{H}), 8.52-8.48(\mathrm{~m}, 1 \mathrm{H}), 8.23-8.15(\mathrm{~m}, 1 \mathrm{H}), 7.97-7.87(\mathrm{~m}$, 1H), 7.36 (dddd, J = 1.0, 4.9, 7.5, $12.3 \mathrm{~Hz}, 1 \mathrm{H}$), 6.46 (s, 2H), 5.43 (s, 1H), $5.37-5.33(\mathrm{~m}, 1 \mathrm{H}), 5.31-$ $5.18(\mathrm{~m}, 1 \mathrm{H}), 3.89(\mathrm{~d}, \mathrm{~J}=13.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.85-3.78(\mathrm{~m}, 9 \mathrm{H}), 3.37(\mathrm{~d}, \mathrm{~J}=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{td}, \mathrm{J}=3.1$, $13.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.29-2.18(m, 1H), 2.07 (td, J = 7.1, 13.6, $15.4 \mathrm{~Hz}, 2 \mathrm{H}$), $1.90-1.79(\mathrm{~m}, 1 \mathrm{H}), 1.74-1.57$ $(\mathrm{m}, 6 \mathrm{H}), 1.48-1.23(\mathrm{~m}, 3 \mathrm{H}), 1.23-1.06(\mathrm{~m}, 1 \mathrm{H}), 1.02-0.84(\mathrm{~m}, 1 \mathrm{H}), 0.84-0.56(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13}$ C-NMR (126 MHz, CDCl 3): $\delta 173.01,171.13,153.42,153.09,149.20,148.84,148.77,143.35,139.37$, $139.24,136.97,134.43,133.46,124.02,123.83,121.45,121.07,113.98,106.05,105.34,61.03,60.96$, $58.55,58.05,56.46,56.33,55.96,55.37,52.57,43.78,41.37,39.62,33.07,33.01,30.92,30.70,27.02$, 26.74, 26.60, 26.42, 26.23, 25.56, 24.54, 21.16, 20.92.

LC-MS (30-100\% B, $19 \mathbf{m i n}): \mathrm{t}_{\mathrm{R}}(\mathbf{2 8 7})=12.30 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=578.30[\mathrm{M}+\mathrm{H}]^{+}$, found $=578.62[\mathrm{M}+\mathrm{H}]^{+}$.

HRMS (ESI): calculated $=578.29731[\mathrm{M}+\mathrm{H}]^{+}$, found $=578.29643[\mathrm{M}+\mathrm{H}]^{+}$, err $[\mathrm{ppm}]=1.53$.
RP-HPLC ($\mathbf{3 0} \mathbf{- 1 0 0 \%}$ B, $1.5 \mathrm{~mL} / \mathrm{min}, 15 \mathrm{~min}, 220 \mathrm{~nm}$): $\mathrm{t}_{R}(287)=11.51 \mathrm{~min}(95 \%$ Purity) .

(S)-(1-(3-bromophenyl)-1H-1,2,3-triazol-4-yl)methyl 1-((S)-2-cyclohexyl-2-(3,4,5-trimethoxyphenyl)acetyl)piperidine-2-carboxylate (AV717)

Chemical Formula: $\mathrm{C}_{32} \mathrm{H}_{39} \mathrm{BrN}_{4} \mathrm{O}_{6}$
Exact Mass: 654,21
Molecular Weight: 655,58

288

$\mathbf{2 8 8}$ is synthesized according to general procedure 5.9.6. Starting material: $\mathbf{2 6 3} \mathbf{(1 2 \mathrm { mg })}$ and 1-azido-3bromobenzene (8 mg). The pure product is obtained as a white solid.

Silica column chromatography: $\mathrm{CH} / \mathrm{EE}, 2 / 1, \mathrm{v} / \mathrm{v}$.
TLC (CH/EE, 2/1): $\mathrm{R}_{f}(\mathbf{2 8 8})=0.23$.
Yield 12 mg (71\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): ~ \delta 8.03-7.97(\mathrm{~m}, 1 \mathrm{H}), 7.71$ (dddd, J=0.9, 2.1, 8.0, 13.1 Hz, 1H), 7.59 (dddd, J = 0.9, 1.9, 8.1, 14.2 Hz, 1H), $7.41(q, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.43(\mathrm{~s}, 2 \mathrm{H}), 5.42-5.33(\mathrm{~m}, 1 \mathrm{H}), 5.31$ (dd, $\mathrm{J}=2.8,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{~d}, \mathrm{~J}=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{dd}, \mathrm{J}=11.0,14.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~d}, \mathrm{~J}=1.1 \mathrm{~Hz}, 5 \mathrm{H})$, $3.76(\mathrm{~s}, 4 \mathrm{H}), 3.37(\mathrm{~d}, \mathrm{~J}=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.99-2.88(\mathrm{~m}, 1 \mathrm{H}), 2.26-2.19(\mathrm{~m}, 1 \mathrm{H}), 2.15-2.01(\mathrm{~m}, 2 \mathrm{H}), 1.85$ (dd, J = 12.2, $24.9 \mathrm{~Hz}, 1 \mathrm{H}$), 1.74-1.61 (m, 6H), $1.57(\mathrm{~d}, \mathrm{~J}=15.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.43$ (ttd, J = 3.9, 7.8, 8.3, 11.5 $\mathrm{Hz}, 1 \mathrm{H}), 1.38-1.23(\mathrm{~m}, 2 \mathrm{H}), 1.15(\mathrm{ttd}, \mathrm{J}=5.1,9.2,22.8 \mathrm{~Hz}, 2 \mathrm{H}), 0.92(\mathrm{dtd}, \mathrm{J}=7.9,10.6,11.6,22.8 \mathrm{~Hz}$, 1 H), 0.76 (td, J = 9.0, $12.2 \mathrm{~Hz}, 1 \mathrm{H}$).
${ }^{13} \mathrm{C}$-NMR (126 MHz, CDCl_{3}): $\delta 173.19,171.36,153.45,153.09,144.02,137.96,136.88,133.43,132.28$, $131.95,131.32,131.20,123.72,123.46,122.17,121.69,119.07,106.03,105.36,60.99,58.46,57.87$, $56.48,56.26,55.94,55.66,55.43,52.77,43.86,41.28,39.65,32.99,30.88,26.83,26.73,26.63,26.42$, 26.38, 25.45, 21.00.

LC-MS (50-100\% B, $19 \mathbf{m i n}): \mathrm{t}_{R}(\mathbf{2 8 8})=11.33 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=655.21[\mathrm{M}+\mathrm{H}]^{+}$, found $=655.70[\mathrm{M}+\mathrm{H}]^{+}$(95\% Purity).

HRMS (ESI): calculated $=655.21257[\mathrm{M}+\mathrm{H}]^{+}$, found $=655.21292[\mathrm{M}+\mathrm{H}]^{+}$, err $[\mathrm{ppm}]=0.52$.

(S)-(1-(3-chlorophenyl)-1H-1,2,3-triazol-4-yl)methyl 1-((S)-2-cyclohexyl-2-(3,4,5-trimethoxyphenyl)acetyl)piperidine-2-carboxylate (AV721)

 289
$\mathbf{2 8 9}$ is synthesized according to general procedure 5.9.6. Starting material: $\mathbf{2 6 3}$ (12 mg) and 1-azido-3chlorobenzene (6 mg). The pure product is obtained as a white solid.

Silica column chromatography: $C H / E E, 2 / 1, v / v$.
$\operatorname{TLC}(C H / E E, 2 / 1): \mathrm{R}_{f}(\mathbf{2 8 9})=0.21$.
Yield 13 mg (81\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.94(\mathrm{~s}, 1 \mathrm{H}), 7.79(\mathrm{t}, \mathrm{J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.63-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.43-7.33(\mathrm{~m}$, $2 \mathrm{H}), 7.19(\mathrm{~s}, 1 \mathrm{H}), 6.36(\mathrm{~s}, 2 \mathrm{H}), 5.35-5.26(\mathrm{~m}, 1 \mathrm{H}), 5.25-5.18(\mathrm{~m}, 1 \mathrm{H}), 5.01(\mathrm{~d}, \mathrm{~J}=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.86-$ $3.78(\mathrm{~m}, 1 \mathrm{H}), 3.78-3.74(\mathrm{~m}, 5 \mathrm{H}), 3.69(\mathrm{~s}, 4 \mathrm{H}), 3.30(\mathrm{~d}, \mathrm{~J}=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{td}, \mathrm{J}=3.1,13.0 \mathrm{~Hz}, 1 \mathrm{H})$, $2.20-2.12(\mathrm{~m}, 1 \mathrm{H}), 2.07-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.86-1.73(\mathrm{~m}, 1 \mathrm{H}), 1.66-1.43(\mathrm{~m}, 8 \mathrm{H}), 1.31-1.14(\mathrm{~m}, 3 \mathrm{H})$, $1.13-0.99(\mathrm{~m}, 2 \mathrm{H}), 0.95-0.77(\mathrm{~m}, 1 \mathrm{H}), 0.75-0.49(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13}$ C-NMR (126 MHz, CDCl_{3}): $\delta 173.20,171.36,153.45,153.09,144.03,137.88,136.88,135.74,134.32$, 133.42, 131.10, 130.96, 129.32, 128.99, 122.15, 121.69, 120.89, 118.56, 106.02, 105.35, 61.03, 60.97, $58.46,57.89,56.47,56.24,55.94,55.65,55.43,52.77,43.85,41.28,39.65,33.13,32.99,30.87,30.72$, 26.82, 26.72, 26.61, 26.41, 26.38, 25.44, 24.51, 20.99, 20.91.

LC-MS (50-100\% B, $19 \mathbf{m i n}): \mathrm{t}_{\mathrm{R}}(\mathbf{2 8 9})=11.16 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=611.26[\mathrm{M}+\mathrm{H}]^{+}$, found $=611.57[\mathrm{M}+\mathrm{H}]^{+}$(95\% Purity).

HRMS (ESI): calculated $=611.26309[\mathrm{M}+\mathrm{H}]^{+}$, found $=611.26298[\mathrm{M}+\mathrm{H}]^{+}$, err $[\mathrm{ppm}]=0.18$.

(S)-(1-(3-fluorophenyl)-1H-1,2,3-triazol-4-yl)methyl 1-((S)-2-cyclohexyl-2-(3,4,5-

 trimethoxyphenyl)acetyl)piperidine-2-carboxylate (AV723)

290

$\mathbf{2 9 0}$ is synthesized according to general procedure 5.9.6. Starting material: $\mathbf{2 6 3}$ (12 mg) and 1-azido-3fluorobenzene (5 mg). The pure product is obtained as a white solid.

Silica column chromatography: $\mathrm{CH} / \mathrm{EE}, 2 / 1, \mathrm{v} / \mathrm{v}$.
$\operatorname{TLC}(C H / E E, 2 / 1): \mathrm{R}_{f}(\mathbf{2 9 0})=0.31$.
Yield 10 mg (67\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.02(\mathrm{~s}, 1 \mathrm{H}), 7.59(\mathrm{dt}, \mathrm{J}=2.3,9.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.56$ (ddd, J = 1.0, 2.0, 8.0 Hz, $1 \mathrm{H}), 7.53-7.47(\mathrm{~m}, 1 \mathrm{H}), 7.21-7.02(\mathrm{~m}, 1 \mathrm{H}), 6.43(\mathrm{~d}, \mathrm{~J}=1.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.42-5.32(\mathrm{~m}, 1 \mathrm{H}), 5.30(\mathrm{dd}, \mathrm{J}=$ 2.7, $6.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{~d}, \mathrm{~J}=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.91-3.86(\mathrm{~m}, 1 \mathrm{H}), 3.84-3.80(\mathrm{~m}, 5 \mathrm{H}), 3.76(\mathrm{~s}, 5 \mathrm{H}), 3.37(\mathrm{~d}$, $J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.03-2.86(\mathrm{~m}, 1 \mathrm{H}), 2.26-2.19(\mathrm{~m}, 1 \mathrm{H}), 2.13-2.00(\mathrm{~m}, 2 \mathrm{H}), 1.85(\mathrm{dd}, \mathrm{J}=12.4,25.2$ $\mathrm{Hz}, 1 \mathrm{H}), 1.72-1.47(\mathrm{~m}, 4 \mathrm{H}), 1.39-1.05(\mathrm{~m}, 4 \mathrm{H}), 1.03-0.61(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13}$ C-NMR (126 MHz, CDCl_{3}): $\delta 173.22,171.38,164.24,162.27,153.45,153.09,144.05,143.39,138.22$, $136.90,133.42,131.37,131.30,122.15,121.71,115.92,115.75,108.51,108.30,106.03,105.35$, $60.95,58.48,57.94,56.48,56.24,55.94,55.66,55.43,52.77,43.85,41.33,39.65,33.14,33.00,30.89$, 30.72, 26.82, 26.73, 26.61, 26.40, 25.44, 24.52, 20.98.

LC-MS (50-100\% B, $19 \mathbf{m i n}): \mathrm{t}_{R}(\mathbf{2 9 0})=10.37 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=595.29[\mathrm{M}+\mathrm{H}]^{+}$, found $=595.63[\mathrm{M}+\mathrm{H}]^{+}$(95\% LCMS)

HRMS (ESI): calculated $=595.29264[\mathrm{M}+\mathrm{H}]^{+}$, found $=595.29247[\mathrm{M}+\mathrm{H}]^{+}$, err $[\mathrm{ppm}]=0.28$.

6.6. SAFit tracers (tool compounds)

4(5)-((2-(2-(3-((R)-1-(((S)-1-((S)-2-cyclohexyl-2-(3,4,5-trimethoxyphenyl)acetyl)piperidine-2-carbonyl)oxy)-3-(3,4-dimethoxyphenyl)propyl)phenoxy)ethoxy)ethyl)carbamoyl)-2-(6-hydroxy-3-oxo-3H-xanthen-9-yl)benzoic acid (AV155)

291
NG72 ($7 \mathrm{mg}, 0.01 \mathrm{mmol}, 1.0 \mathrm{eq}$) is dissolved in $500 \mu \mathrm{~L}$ DMF and transferred to a dried flask under argon atmosphere. TEA ($6 \mu \mathrm{~L}, 0.04 \mathrm{mmol}, 5.0 \mathrm{eq}$) and 5(6)-NHS-fluoresceine ($4 \mathrm{mg}, 0.01 \mathrm{mmol}, 1.0 \mathrm{eq}$) are added. The reaction is stirred for 2 h at r.t. then the solvent removed under reduced pressure. The crude product is purified by manual column chromatography ($\mathrm{DCM}+10 \% \mathrm{MeOH}$).

Yield 9 mg (quant.).
TLC (DCM + 10\% MeOH): $\mathrm{R}_{f}(291)=0.30$.
LC-MS (0-100\% B, 19 min$): \mathrm{t}_{R}(\mathbf{2 9 1})=11.49 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=1135.48[\mathrm{M}+\mathrm{H}]^{+}$, found $=1135.46[\mathrm{M}+\mathrm{H}]^{+}$.

HRMS (ESI): calculated $=1135.47981[\mathrm{M}+\mathrm{H}]^{+}$, found $=1135.48027[\mathrm{M}+\mathrm{H}]^{+}$, err $[\mathrm{ppm}]=0.41$.
RP-HPLC (50-100\% B, $1.5 \mathrm{~mL} / \mathrm{min}, 20 \mathrm{~min}, 220 \mathrm{~nm}$): $\mathrm{t}_{R}(\mathbf{2 9 1})=11.26 \mathrm{~min}(95 \%$ Purity).

N-(9-(2-carboxy-4(5)-((2-(2-(3-((R)-1-(()S)-1-((S)-2-cyclohexyl-2-(3,4,5-trimethoxyphenyl)acetyl)piperidine-2-carbonyl)oxy)-3-(3,4-dimethoxyphenyl)propyl)phenoxy)ethoxy)ethyl)carbamoyl)phenyl)-6-(dimethylamino)-3H-xanthen-3-ylidene)- N -methylmethanaminium (AV289)

292
NG72 ($5 \mathrm{mg}, 0.006 \mathrm{mmol}, 1.0 \mathrm{eq}$) is dissolved in $500 \mu \mathrm{~L}$ DMF and transferred to a dried flask under argon atmosphere. TEA ($4 \mu \mathrm{~L}, 0.03 \mathrm{mmol}, 5.0 \mathrm{eq}$) and 5(6)-NHS-TAMRA ($3 \mathrm{mg}, 0.006 \mathrm{mmol}, 1.0 \mathrm{eq}$) are added. The reaction is stirred overnight at r.t., then the solvent removed under reduced pressure. The crude product is purified by manual column chromatography ($\mathrm{DCM}+10 \% \mathrm{MeOH}$).

Yield 2.5 mg (35\%).
TLC (DCM + 20\% MeOH): $\mathrm{R}_{f}(292)=0.75$.
LC-MS (50-100\% B, $19 \mathbf{~ m i n}): \mathrm{t}_{\mathrm{R}}(\mathbf{2 9 2})=5.73 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=1190.57[\mathrm{M}+\mathrm{H}]^{+}$,
found $=1190.06[\mathrm{M}+\mathrm{H}]^{+}$.
HRMS (ESI): calculated $=1189.57438[\mathrm{M}+\mathrm{H}]^{+}$, found $=1189.57460[\mathrm{M}+\mathrm{H}]^{+}$, err $[\mathrm{ppm}]=0.18$.
RP-HPLC ($\mathbf{3 0} \mathbf{- 1 0 0 \%}$ B, $1.5 \mathrm{~mL} / \mathrm{min}, 20 \mathrm{~min}, 220 \mathrm{~nm}$): $\mathrm{t}_{R}(\mathbf{2 9 2})=15.49 \mathrm{~min}(95 \%$ Purity) .

N-(9-(2-carboxy-4(5)-((2-(3-((R)-1-(()S)-1-((S)-2-cyclohexyl-2-(3,4,5-

trimethoxyphenyl)acetyl)piperidine-2-carbonyl)oxy)-3-(3,4-
dimethoxyphenyl)propyl)phenoxy)ethyl)carbamoyl)phenyl)-6-(dimethylamino)-3H-
xanthen-3-ylidene)-N-methylmethanaminium (AV290)

293
NG67 ($2 \mathrm{mg}, 0.002 \mathrm{mmol}, 1.0 \mathrm{eq}$) is dissolved in $500 \mu \mathrm{~L}$ DMF and transferred to a dried flask under argon atmosphere. TEA ($2 \mu \mathrm{~L}, 0.01 \mathrm{mmol}, 5.0 \mathrm{eq}$) and 5(6)-NHS-TAMRA ($1 \mathrm{mg}, 0.002 \mathrm{mmol}, 1.0 \mathrm{eq}$) are added. The reaction is stirred overnight at r.t., then the solvent removed under reduced pressure. The crude product is purified by manual column chromatography ($\mathrm{DCM}+10 \% \mathrm{MeOH}$).

Yield 2.7 mg (quant.).
TLC (DCM + 10\% MeOH): $\mathrm{R}_{f}(292)=0.25$.
LC-MS (50-100\% B, $19 \mathbf{m i n}): \mathrm{t}_{\mathrm{R}}(\mathbf{2 9 2})=5.58 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$: calculated $=1145.55[\mathrm{M}+\mathrm{H}]^{+}$,
found $=1145.98[\mathrm{M}+\mathrm{H}]^{+}$.
HRMS (ESI): calculated $=1145.54816[\mathrm{M}+\mathrm{H}]^{+}$, found $=1145.54844[\mathrm{M}+\mathrm{H}]^{+}$, err $[\mathrm{ppm}]=0.24$.
RP-HPLC ($\mathbf{3 0} \mathbf{- 1 0 0 \%}$ B, $\mathbf{1 . 5} \mathbf{~ m L} / \mathrm{min}, \mathbf{2 0} \mathbf{~ m i n}, \mathbf{2 2 0} \mathbf{n m}$): $\mathrm{t}_{R}(\mathbf{2 9 2})=15.63 \mathrm{~min}(95 \%$ Purity).

7. Supplement

Figure 19. The FP-assay binding curves of macrocyclic compound 28.

8. Curriculum Vitae

Personal information

Name: Andreas Voll

Date and place of birth: $26^{\text {th }}$ November 1992, Munich
Citizenship: German

Education

1/2017-6/2020:

Doctoral thesis in medicinal chemistry: Design and synthesis of novel FKBP51 ligands, Technical University Darmstadt, Chemistry, Prof. Felix Hausch.

10/2014-10/2016:

Master thesis in organic and biological chemistry: Design and synthesis of selective FKBP51 inhibitors, Max Planck Institute for Psychiatry and Technical University Munich, Chemistry, Dr. Felix Hausch and Prof. Sieber.

```
10/2011 - 9/2014:
```

Bachelor thesis: Synthesis and biological evaluation of N -methylated cyclo-pentapeptides as integrin ligands, Technical University Munich, Chemistry, Prof. Kessler.

8/2003-7/2011:

A-Level, Gymnasium Gars am Inn.

Publications

Original research articles:

1. Tietze, D.; Kaufmann, D.; Tietze, A. A.; Voll, A. M.; Reher, R.; Konig, G.; Hausch, F., Structural and Dynamical Basis of G Protein Inhibition by YM-254890 and FR900359: An Inhibitor in Action. J Chem Inf Model 2019, 59 (10), 4361-4373.
2. Konig, L.; Kalinichenko, L. S.; Huber, S. E.; Voll, A. M.; Bauder, M.; Kornhuber, J.; Hausch, F.; Muller, C. P., The selective FKBP51 inhibitor SAFit2 reduces alcohol consumption and reinstatement of conditioned alcohol effects in mice. Addict Biol 2019, e12758.

Review:

3. Kolos, J. M.; Voll, A. M.; Bauder, M.; Hausch, F., FKBP Ligands-Where We Are and Where to Go? Front Pharmacol 2018, 9.

Poster and oral presentation:

4. Bauder, M.; Voll, A. M.; Feng X.; Gaali S.; Hausch F., The drug target FKBP51 - Selective inhibition and structure-based ligand optimization. Frontiers in Medicinal Chemistry 2019 (Würzburg) 2019.
5. Voll, A. M.; Heymann, T.; Knaup, F. H.; Hausch, F., PainStop - Pioneer Fund, TU Startup + Innovation Day (Darmstadt) 2019.

9．Acknowledgments

First and foremost I would like to thank my family for their continued and loving support during my education and doctoral thesis．I thank especially Prof．Dr．Felix Hausch，who provided the subject of my thesis and gave me the chance to learn more about the world of science，medicinal and organic chemistry．I am indebted to all my colleagues for being there for me when I needed help，an after－work beer，and a good conversation．My gratitude especially goes to Jürgen Kolos who has been a great colleague flatmate and fellow＂foreigner＂in Hesse．I only want to mention Fleischkäsebrötchen，a delicacy which I and Jürgen would call Leberkäs－Semmel．Big thanks go to Michael Bauder，Patrick Purder，Tim Heymann，Fabian Knaup，and Michael Walz for being able to discuss challenging tasks or troubleshoot difficult reactions．Special thanks deserve Steffanie Merz，Tim Heymann and Patrick Purder for measuring from time to time quite troublesome FP－assays．Dr．Christian Meyners deserves thanks for always being a calm center in the group and sharing his excellent knowledge in biophysics． Many thanks go to the biochemists Andreas Hähle，Anna Charalampidou，Martha Taubert and Thomas Geiger for their continued support．I would also like to thank my master students Tim Heymann， Matthias Roth，Niklas Gutfreund and Desiree Claus who were my first guinea pigs to learn to supervise， teach and manage people．It has been a laborious but in the end very educational and fun three and a half years．
＂Success is the ability to go from one failure to another with no loss of enthusiasm．＂
－Winston Churchill

10. References

[1] Kolos, J.M., et al., FKBP Ligands-Where We Are and Where to Go? Frontiers in Pharmacology, 2018. 9.
[2] Hahle, A., et al., The Many Faces of FKBP51. Biomolecules, 2019. 9(1).
[3] Riggs, D.L., et al., The Hsp90-binding peptidylprolyl isomerase FKBP52 potentiates glucocorticoid signaling in vivo. EMBO J, 2003. 22(5): p. 1158-67.
[4] Dunyak, B.M. and J.E. Gestwicki, Peptidyl-Proline Isomerases (PPlases): Targets for Natural Products and Natural Product-Inspired Compounds. J Med Chem, 2016. 59(21): p. 9622-9644.
[5] Storer, C.L., et al., FKBP51 and FKBP52 in signaling and disease. Trends Endocrinol Metab, 2011. 22(12): p. 481-90.
[6] O'Leary, J.C., 3rd, et al., A new anti-depressive strategy for the elderly: ablation of FKBP5/FKBP51. PLoS One, 2011. 6(9): p. e24840.
[7] Touma, C., et al., FK506 binding protein 5 shapes stress responsiveness: modulation of neuroendocrine reactivity and coping behavior. Biol Psychiatry, 2011. 70(10): p. 928-36.
[8] Hartmann, J., et al., The involvement of FK506-binding protein 51 (FKBP5) in the behavioral and neuroendocrine effects of chronic social defeat stress. Neuropharmacology, 2012. 62(1): p. 332-339.
[9] Klengel, T., et al., Allele-specific FKBP5 DNA demethylation mediates gene-childhood trauma interactions. Nat Neurosci, 2013. 16(1): p. 33-41.
[10] Albu, S., et al., Deficiency of FK506-binding protein (FKBP) 51 alters sleep architecture and recovery sleep responses to stress in mice. J Sleep Res, 2014. 23(2): p. 176-85.
[11] Hoeijmakers, L., et al., Depletion of FKBP51 in female mice shapes HPA axis activity. PLoS One, 2014. 9(4): p. e95796.
[12] Zannas, A.S., et al., Epigenetic upregulation of FKBP5 by aging and stress contributes to NF-kappaB-driven inflammation and cardiovascular risk. Proc Natl Acad Sci U S A, 2019. 116(23): p. 11370-11379.
[13] Gaali, S., et al., Selective inhibitors of the FK506-binding protein 51 by induced fit. Nat Chem Biol, 2015. 11(1): p. 33-37.
[14] Stechschulte, L.A., et al., FKBP51 Null Mice Are Resistant to Diet-Induced Obesity and the PPARgamma Agonist Rosiglitazone. Endocrinology, 2016. 157(10): p. 3888-3900.
[15] Balsevich, G., et al., Stress-responsive FKBP51 regulates AKT2-AS160 signaling and metabolic function. Nat Commun, 2017. 8(1): p. 1725.
[16] Maiaru, M., et al., The stress regulator FKBP51 drives chronic pain by modulating spinal glucocorticoid signaling. Science Trans/ational Medicine, 2016. 8(325).
[17] Linnstaedt, S.D., et al., A Functional riboSNitch in the 3 ' Untranslated Region of FKBP5 Alters MicroRNA-320a Binding Efficiency and Mediates Vulnerability to Chronic Post-Traumatic Pain. Journal of Neuroscience, 2018. 38(39): p. 8407-8420.
[18] Maiaru, M., et al., The stress regulator FKBP51: a novel and promising druggable target for the treatment of persistent pain states across sexes. Pain, 2018. 159(7): p. 1224-1234.
[19] Cheung-Flynn, J., et al., Physiological role for the cochaperone FKBP52 in androgen receptor signaling. Mol Endocrinol, 2005. 19(6): p. 1654-66.
[20] Yang, Z., et al., FK506-binding protein 52 is essential to uterine reproductive physiology controlled by the progesterone receptor A isoform. Mol Endocrinol, 2006. 20(11): p. 2682-94.
[21] Schmidt, M.V., et al., The Prospect of FKBP51 as a Drug Target. ChemMedChem, 2012. 7(8): p. 1351-1359.
[22] Konig, L., et al., The selective FKBP51 inhibitor SAFit2 reduces alcohol consumption and reinstatement of conditioned alcohol effects in mice. Addict Biol, 2019: p. e12758.
[23] Griffith, J.P., et al., X-Ray Structure of Calcineurin Inhibited by the Immunophilin Immunosuppressant Fkbp12-Fk506 Complex. Cell, 1995. 82(3): p. 507-522.
[24] Rosen, M.K. and S.L. Schreiber, Natural Products as Probes of Cellular Function: Studies of Immunophilins. Angewandte Chemie International Edition in English, 1992. 31(4): p. 384-400.
[25] Liang, J., J. Choi, and J. Clardy, Refined structure of the FKBP12-rapamycin-FRB ternary complex at 2.2 A resolution. Acta Crystallogr D Biol Crystallogr, 1999. 55(Pt 4): p. 736-44.
[26] Demetris, A.J., et al., Pathologic observations in human allograft recipients treated with FK 506. Transplant Proc, 1990. 22(1): p. 25-34.
[27] Abou-Jaoude, M.M., I. Ghantous, and W.Y. Almawi, Tacrolimus (FK506) versus cyclosporin A microemulsion (Neoral) maintenance immunosuppression: effects on graft survival and function, infection, and metabolic profile following kidney transplantation (KT). Mol Immunol, 2003. 39(17-18): p. 1095-100.
[28] Burke, G.W., et al., The use of FK506 in simultaneous pancreas/kidney transplantation: rescue, induction, and maintenance immunosuppression. Transplant Proc, 1995. 27(6): p. 3123-4.
[29] Banaszynski, L.A., C.W. Liu, and T.J. Wandless, Characterization of the FKBP.rapamycin.FRB ternary complex. J Am Chem Soc, 2005. 127(13): p. 4715-21.
[30] Zhang, Z.H., et al., Sirolimus in Liver Transplant Recipients with Hepatocellular Carcinoma: An Updated Meta-Analysis. J Invest Surg, 2019. 32(7): p. 632-641.
[31] Yan, Z., et al., Structure of the rabbit ryanodine receptor RyR1 at near-atomic resolution. Nature, 2015. 517(7532): p. 50-+.
[32] Dhindwal, S., et al., A cryo-EM-based model of phosphorylation- and FKBP12.6-mediated allosterism of the cardiac ryanodine receptor. Sci Signal, 2017. 10(480).
[33] Steele, T.W.E. and M. Samso, The FKBP12 subunit modifies the long-range allosterism of the ryanodine receptor. J Struct Biol, 2019. 205(2): p. 180-188.
[34] Shou, W.N., et al., Cardiac defects and altered ryanodine receptor function in mice lacking FKBP12. Nature, 1998. 391(6666): p. 489-492.
[35] Sun, X., et al., A chemical approach for global protein knockdown from mice to non-human primates. Cell Discov, 2019. 5: p. 10.
[36] Yan, Z., et al., Structure of the rabbit ryanodine receptor RyR1 at near-atomic resolution. Nature, 2015. 517(7532): p. 50-55.
[37] des Georges, A., et al., Structural Basis for Gating and Activation of RyR1. Cell, 2016. 167(1): p. 145-157 e17.
[38] Holt, D.A., et al., Design, synthesis, and kinetic evaluation of high-affinity FKBP ligands and the X-ray crystal structures of their complexes with FKBP12. Journal of the American Chemical Society, 1993. 115(22): p. 9925-9938.
[39] Clackson, T., et al., Redesigning an FKBP-ligand interface to generate chemical dimerizers with novel specificity. Proc Natl Acad Sci U S A, 1998. 95(18): p. 10437-42.
[40] Feng, X., et al., Structure-Affinity Relationship Analysis of Selective FKBP51 Ligands. J Med Chem, 2015. 58(19): p. 7796-806.
[41] Feng, X., et al., A Novel Decalin-Based Bicyclic Scaffold for FKBP51-Selective Ligands. J Med Chem, 2019.
[42] Gaali, S., et al., Rapid, Structure-Based Exploration of Pipecolic Acid Amides as Novel Selective Antagonists of the FK506-Binding Protein 51. Journal of Medicinal Chemistry, 2016. 59(6): p. 2410-2422.
[43] Giordanetto, F. and J. Kihlberg, Macrocyclic drugs and clinical candidates: what can medicinal chemists learn from their properties? J Med Chem, 2014. 57(2): p. 278-95.
[44] Yudin, A.K., Macrocycles: lessons from the distant past, recent developments, and future directions. Chem Sci, 2015. 6(1): p. 30-49.
[45] Marsault, E. and M.L. Peterson, Macrocycles Are Great Cycles: Applications, Opportunities, and Challenges of Synthetic Macrocycles in Drug Discovery. Journal of Medicinal Chemistry, 2011. 54(7): p. 1961-2004.
[46] Driggers, E.M., et al., The exploration of macrocycles for drug discovery - an underexploited structural class. Nature Reviews Drug Discovery, 2008. 7(7): p. 608-624.
[47] Luengo, J.I., et al., Synthesis and Structure-Activity-Relationships of Macrocyclic Fkbp Ligands. Bioorganic \& Medicinal Chemistry Letters, 1994. 4(2): p. 321-324.
[48] Steadman, V.A., et al., Discovery of Potent Cyclophilin Inhibitors Based on the Structural Simplification of Sanglifehrin A. J Med Chem, 2017. 60(3): p. 1000-1017.
[49] Mackman, R.L., et al., Discovery of a Potent and Orally Bioavailable Cyclophilin Inhibitor Derived from the Sanglifehrin Macrocycle. J Med Chem, 2018.
[50] Guo, Z.F., et al., Rapamycin-inspired macrocycles with new target specificity. Nature Chemistry, 2019. 11(3): p. 254-263.
[51] Roth, M., Design \& synthesis of meta-bisubstituted SAFit analogs and cyclic variants. Clemens-Schöpf-Institute, Chemistry. Master. 2018, Technical University Darmstadt.
[52] Sakaguchi, S., T. Yamaga, and Y. Ishii, Iridium-catalyzed transfer hydrogenation of alpha,betaunsaturated and saturated carbonyl compounds with 2-propanol. J Org Chem, 2001. 66(13): p. 4710-2.
[53] Shevlin, M., et al., Nickel-Catalyzed Asymmetric Alkene Hydrogenation of alpha,betaUnsaturated Esters: High-Throughput Experimentation-Enabled Reaction Discovery, Optimization, and Mechanistic Elucidation. J Am Chem Soc, 2016. 138(10): p. 3562-9.
[54] Ding, B., et al., Chemoselective transfer hydrogenation of alpha,beta-unsaturated ketones catalyzed by pincer-Pd complexes using alcohol as a hydrogen source. Org Lett, 2013. 15(14): p. 3690-3.
[55] Prasanna, R., S. Guha, and G. Sekar, Proton-Coupled Electron Transfer: Transition-Metal-Free Selective Reduction of Chalcones and Alkynes Using Xanthate/Formic Acid. Org Lett, 2019. 21(8): p. 2650-2653.
[56] Lator, A., et al., Iron-Catalyzed Chemoselective Reduction of alpha,beta-Unsaturated Ketones. Chemistry, 2018. 24(22): p. 5770-5774.
[57] Jorgensen, F.P. and M. Bols, An Inexpensive and Scalable Synthesis of Shld. J Org Chem, 2018.
[58] Zhou, Y.B., Y.L. Wang, and J.Y. Wang, Selective reduction of carbon-carbon double bonds of aryl substituted chalcones with $\mathrm{Zn} / \mathrm{CH} 3 \mathrm{COONH} 4 / \mathrm{C} 2 \mathrm{H} 5 \mathrm{OH} / \mathrm{H} 2 \mathrm{O}$. Journal of Chemical ResearchS, 2004(2): p. 118-119.
[59] Li, J.P., Y.X. Zhang, and Y. Ji, Selective 1,4-reduction of chalcones with $\mathrm{Zn} / \mathrm{NH} 4 \mathrm{Cl} / \mathrm{C} 2 \mathrm{H} 5 \mathrm{OH} / \mathrm{H} 2 \mathrm{O}$. Journal of the Chinese Chemical Society, 2008. 55(2): p. 390-393.
[60] Gaali, S., Design and Synthesis of Selective Ligands for the FK506-binding Protein 51. MPI for psychiatry2012, LMU.
[61] Lee, C.W. and R.H. Grubbs, Formation of Macrocycles via Ring-Closing Olefin Metathesis. The Journal of Organic Chemistry, 2001. 66(21): p. 7155-7158.
[62] Miller, D.G. and D.D.M. Wayner, Improved Method for the Wacker Oxidation of Cyclic and Internal Olefins. Journal of Organic Chemistry, 1990. 55(9): p. 2924-2927.
[63] Cadot, C., P.I. Dalko, and J. Cossy, Olefin isomerization by a ruthenium carbenoid complex. Cleavage of allyl and homoallyl groups. Tetrahedron Letters, 2002. 43(10): p. 1839-1841.
[64] Hong, S.H., et al., Prevention of undesirable isomerization during olefin metathesis. J Am Chem Soc, 2005. 127(49): p. 17160-1.
[65] Kozany, C., et al., Fluorescent Probes to Characterise FK506-Binding Proteins. Chembiochem, 2009. 10(8): p. 1402-1410.
[66] Chatterjee, J., F. Rechenmacher, and H. Kessler, N-Methylation of Peptides and Proteins: An Important Element for Modulating Biological Functions. Angewandte Chemie International Edition, 2013. 52(1): p. 254-269.
[67] Chatterjee, J., B. Laufer, and H. Kessler, Synthesis of N-methylated cyclic peptides. Nat Protoc, 2012. 7(3): p. 432-44.
[68] Räder, A., Entwicklung und Synthese von Aminosäure-modifizierten Liganden für die FK506bindenden Proteine 51 und 52. MPI for Psychiatry2011, Technische Universität München.
[69] Pomplun, S., et al., Chemogenomic Profiling of Human and Microbial FK506-Binding Proteins. J Med Chem, 2018. 61(8): p. 3660-3673.

References

[70] Blackburn, E.A. and M.D. Walkinshaw, Targeting FKBP isoforms with small-molecule ligands. Curr Opin Pharmacol, 2011. 11(4): p. 365-71.
[71] Carpino, L.A., et al., Peptide synthesis via amino acid halides. Accounts of Chemical Research, 1996. 29(6): p. 268-274.
[72] Henklein, P., N α-Arensulfonyl-Aminosäurechloride - Kupplung sterisch stark gehinderter Komponenten in der Peptidsynthese. Mathematisch-Naturwissenschaftlichen Fakultät I , Chemie. PhD. 2000, Humboldt Universität Berlin.
[73] Bracher, A., et al., Structural characterization of the PPlase domain of FKBP51, a cochaperone of human Hsp90. Acta Crystallogr D Biol Crystallogr, 2011. 67(Pt 6): p. 549-59.
[74] Jagtap, P.K.A., et al., Selective Inhibitors of FKBP51 Employ Conformational Selection of Dynamic Invisible States. Angew Chem Int Ed Engl, 2019. 58(28): p. 9429-9433.
[75] Marz, A.M., et al., Large FK506-binding proteins shape the pharmacology of rapamycin. Mol Cell Biol, 2013. 33(7): p. 1357-67.
[76] Krieger, E. and G. Vriend, YASARA View - molecular graphics for all devices - from smartphones to workstations. Bioinformatics, 2014. 30(20): p. 2981-2.
[77] Krieger, E. and G. Vriend, New ways to boost molecular dynamics simulations. J Comput Chem, 2015. 36(13): p. 996-1007.
[78] Patil, C.B., Chalcone: A Versatile Molecule. Journal of Pharmaceutical Sciences and Research, 2009. 1(3): p. 11-22.
[79] Greene, P.G.M.W.T.W., Protection for the carboxyl group, in Greene's Protective Groups in Organic Synthesis. 2006. p. 533-646.
[80] Basnet, A., et al., 2,4,6-Trisubstituted pyridines: Synthesis, topoisomerase I and II inhibitory activity, cytotoxicity, and structure-activity relationship. Bioorganic \& Medicinal Chemistry, 2007. 15(13): p. 4351-4359.
[81] Jeong, B.S., et al., Synthesis of 2,4,6-Tripyridyl Pyridines, and Evaluation of Their Antitumor Cytotoxicity, Topoisomerase I and II Inhibitory Activity, and Structure-activity Relationship. Bulletin of the Korean Chemical Society, 2011. 32(10): p. 3566-3570.
[82] Vatsadze, S.Z., et al., New aspects of the aldol condensation of acetylpyridines with aromatic aldehydes. Russian Chemical Bulletin, 2004. 53(4): p. 911-915.
[83] Meanwell, N.A., Synopsis of Some Recent Tactical Application of Bioisosteres in Drug Design. Journal of Medicinal Chemistry, 2011. 54(8): p. 2529-2591.
[84] Odlo, K., et al., 1,5-disubstituted 1,2,3-triazoles as cis-restricted analogues of combretastatin A-4: Synthesis, molecular modeling and evaluation as cytotoxic agents and inhibitors of tubulin. Bioorganic \& Medicinal Chemistry, 2008. 16(9): p. 4829-4838.
[85] Gopalakrishnan, R., et al., Evaluation of synthetic FK506 analogues as ligands for the FK506binding proteins 51 and 52. J Med Chem, 2012. 55(9): p. 4114-22.
[86] Gutfreund, N., Entwicklung eines intrazellulären Bindungsassays für das FK506-bindende Protein 51. Clemens-Schöpf-Institute, Chemistry. Master. 2017, Technical University Darmstadt.
[87] Fehr, T., et al., Antascomicins A, B, C, D and E. Novel FKBP12 binding compounds from a Micromonospora strain. J Antibiot (Tokyo), 1996. 49(3): p. 230-3.
[88] Taniguchi, M., et al., YM-254890, a novel platelet aggregation inhibitor produced by Chromobacterium sp. QS3666. J Antibiot (Tokyo), 2003. 56(4): p. 358-63.
[89] Kawasaki, T., et al., Antithrombotic and thrombolytic efficacy of YM-254890, a G q/11 inhibitor, in a rat model of arterial thrombosis. Thromb Haemost, 2003. 90(3): p. 406-13.
[90] Nishimura, A., et al., Structural basis for the specific inhibition of heterotrimeric Gq protein by a small molecule. Proc Natl Acad Sci U S A, 2010. 107(31): p. 13666-71.
[91] Tietze, D., et al., Structural and Dynamical Basis of G Protein Inhibition by YM-254890 and FR900359: An Inhibitor in Action. J Chem Inf Model, 2019. 59(10): p. 4361-4373.
[92] Annala, S., et al., Direct targeting of Galphaq and Galpha11 oncoproteins in cancer cells. Sci Signal, 2019. 12(573).
[93] Protein Data Bank - Structure Factor Conversion and Validation - Version 2.03. 2017.
[94] Potterton, E., et al., A graphical user interface to the CCP4 program suite. Acta Crystallographica Section D, 2003. 59(7): p. 1131-1137.
[95] Winn, M.D., et al., Overview of the CCP4 suite and current developments. Acta Crystallographica Section D, 2011. 67(4): p. 235-242.
[96] Emsley P, L.B., Scott WG, Cowtan K, Features and development of Coot. Acta Crystallogr D Biol Crystallogr, 2010. 66(Pt 4): p. 486-501.
[97] Murshudov, G.N., et al., REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallographica Section D, 2011. 67(4): p. 355-367.
[98] Murshudov GN, S.P., Lebedev AA, Pannu NS, Steiner RA, Nicholls RA, Winn MD, Long F, Vagin AA, REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr D Biol Crystallogr, 2011. 67(Pt 4): p. 355-367.
[99] Nicholls RA, L.F., Murshudov GN, Low-resolution refinement tools in REFMAC5. Acta Crystallogr D Biol Crystallogr, 2012. 68(Pt 4): p. 404-17.
[100] Vagin AA, S.R., Lebedev AA, Potterton L, McNicholas S, Long F, Murshudov GN, REFMAC5 dictionary: organization of prior chemical knowledge and guidlines for its use. Acta Crystallogr D Biol Crystallogr, 2004. 60(Pt 12 Pt 1): p. 2184-95.
[101] Winn MD, M.G., Papiz MZ, Macromolecular TLS refinement in REFMAC at moderate resolution. Methods Enzymol, 2003. 374: p. 300-21.
[102] Murshudov GN, V.A., Dodson EJ, Refinement of macromolecular structures by the maximumlikelihood method. Acta Crystallogr D Biol Crystallogr, 1997. 53(Pt 3): p. 240-55.
[103] van Aalten, D.M.F., et al., PRODRG, a program for generating molecular topologies and unique molecular descriptors from coordinates of small molecules. Journal of Computer-Aided Molecular Design, 1996. 10(3): p. 255-262.
[104] Deller, M.C. and B. Rupp, Models of protein-ligand crystal structures: trust, but verify. Journal of Computer-Aided Molecular Design, 2015. 29(9): p. 817-836.
[105] Adams, P.D., et al., PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallographica Section D, 2010. 66(2): p. 213-221.
[106] Chen, V.B., et al., MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallographica Section D, 2010. 66(1): p. 12-21.
[107] Kabsch, W., Xds. Acta Crystallogr D Biol Crystallogr, 2010. 66(Pt 2): p. 125-32.
[108] Potterton, L., et al., CCP4i2: the new graphical user interface to the CCP4 program suite. Acta Crystallogr D Struct Biol, 2018. 74(Pt 2): p. 68-84.
[109] Evans, P.R., An introduction to data reduction: space-group determination, scaling and intensity statistics. Acta Crystallogr D Biol Crystallogr, 2011. 67(Pt 4): p. 282-92.
[110] Evans, P.R. and G.N. Murshudov, How good are my data and what is the resolution? Acta Crystallographica Section D-Biological Crystallography, 2013. 69: p. 1204-1214.
[111] Lebedev, A.A., A.A. Vagin, and G.N. Murshudov, Model preparation in MOLREP and examples of model improvement using X-ray data. Acta Crystallographica Section D-Structural Biology, 2008. 64: p. 33-39.
[112] Vagin, A. and A. Teplyakov, Molecular replacement with MOLREP. Acta Crystallographica Section D-Biological Crystallography, 2010. 66: p. 22-25.

