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Abstract— We consider an optimization problem with
strongly convex objective and linear inequalities constraints.
To be able to deal with a large number of constraints we
provide a penalty reformulation of the problem. As penalty
functions we use a version of the one-sided Huber losses.
The smoothness properties of these functions allow us to
choose time-varying penalty parameters in such a way that the
incremental procedure with the diminishing step-size converges
to the exact solution with the rate O(1/

√
k). To the best of our

knowledge, we present the first result on the convergence rate
for the penalty-based gradient method, in which the penalty
parameters vary with time.

I. INTRODUCTION

In this paper, we study the problem of minimizing a convex
function f : Rn → R over a convex and closed set X that
is the intersection of finitely many sets Xi, represented by
linear inequalities, i = 1, . . . ,m (where m ≥ 2 is large), i.e.,

minimize f(x)
subject to x ∈ X = ∩mi=1Xi. (1)

Throughout the paper, the function f is assumed to be
µ-strongly convex over Rn. Optimization problems of the
form (1) arise in many areas of research, such as digital filter
settings in communication systems [1], energy consumption
in Smart Grids [7], convex relaxations of various combinato-
rial optimization problems in machine learning applications
[17], [26].

Our interest is in case when m is large, which prohibits
us from using projected gradient and augmented Lagrangian
methods [2], which require either computation of the (Eu-
clidean) projection or an estimation of the gradient for the
sum of many functions, at each iteration. To reduce the com-
plexity, one may consider a method that operates on a single
set Xi from the constraint set collection {X1, . . . , Xm} at
each iteration. Algorithms using random constraint sampling
for general convex optimization problems (1) have been
first considered in [18] and were extended in [24] to a
broader class of randomization over the sets of constraints.
Moreover, the convergence rate analysis is performed in [24]
to demonstrate that the optimality error diminishes to zero
with the rate of O(1/

√
k).

In this work, we present an alternative penalty-based
approach to guarantee convergence to the optimum while
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processing a single set Xi per iteration. A possible reformu-
lation of the problem (1) is through the use of the indicator
functions of the constraint sets, resulting in the following
unconstrained problem

min
x∈Rn

m∑
i=1

{
1

m
f(x) + χi(x)

}
, (2)

where χi(·) : Rn → R ∪ {+∞} is the indicator function of
the set Xi (taking value 0 at the points x ∈ Xi and, other-
wise, taking value +∞). The advantage of this reformulation
is that the objective function is the sum of convex functions
and incremental methods can be employed that compute
only a (sub)-gradient of one of the component functions
at each iteration. The traditional incremental methods do
not have memory, and their origin can be traced back to
work of Kibardin [13]. They have been studied for smooth
least-square problems [3], [16], for training the neural net-
works [9], [10], for smooth convex problems [21], [23]
and for non-smooth convex problems [8], [11], [12], [25]
(see [5] for a more comprehensive survey of these methods).
However, no rate of convergence to the exact solution has
been obtained for such procedures. Reformulation (2) has
been considered in [14] as a departure point toward an
exact penalty reformulation using the set-distance functions.
This exact penalty formulation has been motivated by a
simple exact penalty model proposed in [4] (using only the
set-distance functions) and a more general penalty model
considered in [5]. In [14], a lower bound on the penalty
parameter has been identified guaranteeing that the optimal
solutions of the penalized problem are also optimal solutions
of the original problem (2). However, this bound depends
on a so-called regularity constant for the constraint set,
which might be difficult to estimate. Moreover, the proposed
approaches in [14] do not utilize incremental processing, but
rather primal-dual approaches where a full (sub)-gradient of
the penalized function is used.

In contrast to the works mentioned above, this paper deals
with a penalized reformulation of the problem (1), where the
penalty parameter can be gradually increased to guarantee
convergence of the incremental procedure to the exact so-
lution. The corresponding penalty functions correspond to a
version of the one-sided Huber losses [15], which are smooth
and possess Lipschitz continuous gradients. In our previous
work [22], we have demonstrated existence of the settings for
this penalized reformulation under which the fast incremental
algorithms can be applied to achieve convergence to a
predefined feasible neighborhood of the optimum with a
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linear rate. However, to guarantee this convergence, we need
to know some problem specific parameters. These parameters
might be difficult to estimate in practice. That is why in
this work, we study some new properties of these penalty
functions which allow us to set up the time-dependent
parameters of the reformulated unconstrained problem such
that convergence to the exact optimum with the average rate
O(1/

√
k) is guaranteed. To the best of our knowledge, this is

the first result on the convergence rate for the penalty-based
optimization with time-varying parameters.

II. PROBLEM FORMULATION AND ITS PENALTY-BASED
REFORMULATION

We consider the following optimization problem:

minimize f(x)
subject to 〈ai, x〉 − bi ≤ 0, i = 1, . . . ,m, (3)

where the vectors ai, i = 1, . . . ,m, are nonzero. We
will assume that the problem is feasible. Associated with
problem (3), we consider a penalized problem

minimize Fγδ(x)
subject to x ∈ Rn, (4)

where

Fγδ(x) = f(x) +
γ

m

m∑
i=1

hδ (x; ai, bi) . (5)

Here, γ > 0 and δ ≥ 0 are penalty parameters. The vectors
ai and scalars bi are the same as those characterizing the
constraints in problem (3). For a given nonzero vector a ∈
Rn and b ∈ R, the penalty function hδ(·; a, b) is given by1

hδ(x; a, b) =


〈a,x〉−b
‖a‖ if 〈a, x〉 − b > δ,

(〈a,x〉−b+δ)2
4δ‖a‖ if − δ ≤ 〈a, x〉 − b ≤ δ,

0 if 〈a, x〉 − b < −δ,
(6)

(see Figure 1 for an illustration). For any δ ≥ 0, the function
hδ(x; a, b) satisfies the following relations:

hδ(x; a, b) ≥ 0 for all x ∈ Rn, (7)

hδ(x; a, b) ≤ δ

4‖a‖
, when 〈a, x〉 ≤ b, (8)

hδ(x; a, b) >
δ

4‖a‖
, when 〈a, x〉 > b. (9)

Observe that hδ(x; a, b) can be viewed as a composition
of a scalar function

pδ(s) =


s if s > δ,
(s+δ)2

4δ if − δ ≤ s ≤ δ,
0 if s < −δ,

(10)

1A version of the one-sided Huber losses [15].
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Fig. 1. Penalty functions hδ(x; 1, 1) for the constraint x− 1 ≤ 0, x ∈ R,
with δ ∈
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with a linear function x 7→ 〈a, x〉 − b, which is scaled by
1
‖a‖ . In particular, we have

hδ(x; a, b) =
1

‖a‖
pδ(〈a, x〉 − b). (11)

The function pδ(s) is convex on R for any δ ≥ 0. Thus,
the function hδ(x; a, b) is convex on Rn, implying that the
objective function (5) of the penalized problem (4) is convex
over Rn for any δ ≥ 0 and γ > 0.

Furthermore, the function pδ(·) is twice differentiable for
any δ > 0, with the first and second derivatives given by

p′δ(s) =


1 if s > δ,
(s+δ)
2δ if − δ ≤ s ≤ δ,

0 if s < −δ,
(12)

p′′δ (s) =

{
1
2δ if − δ ≤ s ≤ δ,
0 if s < −δ or s > δ.

Thus, the function p(s) has Lipschitz continuous derivatives
with constant 1

2δ . Hence, the function hδ(·; a, b) is differen-
tiable for any δ > 0, and its gradient is given by

∇hδ(x; a, b) =
1

‖a‖
p′δ(〈a, x〉 − b)a, (13)

which is Lipschitz continuous with a constant ‖a‖2δ , i.e.,

‖∇hδ(x; a, b)−∇hδ(y; a, b)‖≤ ‖a‖
2δ
‖x− y‖ (14)

for all x, y ∈ Rn. In view of the definition of the penalty
function Fγδ in (5) and relation (13), we can see that the
magnitude of the “slope” of the penalty function is controlled
by the parameter γ > 0, while the ratio of the parameters γ
and δ is controlling the “curvature” of the penalty function.

Our choice of the penalty function is motivated by a desire
to have the minimizers of the penalized problem (4) being
feasible for the original problem (3). Note that the penalty
function proposed above is a version of the one-sided Huber
losses. Originally, the Huber loss functions were introduced
in applications of robust regression models to make them
less sensitive to outliers in data in comparison with the
squared error loss [15]. In contrast, we use this type of
penalty function to smoothen the exact penalties based on
the distance to the sets Xi proposed in [5]. Furthermore,



an appropriate choice of the parameter δ ≥ 0 allows us to
overcome the limitation of the smooth penalties based on
the squared distances to the sets Xi, which typically provide
an infeasible solution (for the original problem), due to a
small penalized value around an optimum lying close to the
feasibility set boundary [20].

In what follows, we let ΠY [x] denote the (Euclidean)
projection of a point x on a convex closed set Y , i.e.,
dist(x, Y ) = ‖x−ΠY [x]‖.

The following lemma and its corollary provide some
additional properties of the penalty function hδ(x; a, b) that
we will use later on. The proof can be found in [22].

Lemma 1. Given a nonzero vector a ∈ Rn and a scalar
b ∈ R, consider the penalty function hδ(x; a, b) defined in (6)
with δ ≥ 0. Let Y = {x | 〈a, x〉 − b ≤ 0}. Then, we have
for δ = 0, h0(x; a, b) = dist(x, Y ) for all x ∈ Rn and for
any 0 < δ ≤ δ′, hδ(x; a, b) ≤ hδ′(x; a, b) for all x ∈ Rn.

The following corollary shows that choosing f(x̂), for any
feasible x̂, can be used to construct non-empty level sets of
Fγδ and f .

Corollary 1. Let γ > 0 and δ ≥ 0 be arbitrary, and let x̂ be
a feasible point for the original problem (3). Then, for the
scalar tγδ(x̂) defined by tγδ(x̂) = f(x̂)+ γδ

4min1≤i≤m‖ai‖ , the
level set {x ∈ Rn | Fγδ(x) ≤ tγδ(x̂)} is nonempty and the
solution set X∗γδ of the penalized problem (4) is contained
in the level set {x ∈ Rn | f(x) ≤ tγδ(x̂)}.

In the next section, we will consider the settings for the
penalty parameters under which the incremental gradient-
based procedure for the unconstrained problem (4) leads
to the solution of the original constrained problem (3).
Moreover, we will establish the convergence rate of this
procedure.

III. PENALIZED OPTIMIZATION WITH TIME-VARYING
PARAMETERS

We consider sequences {δk} and {γk} of positive scalars,
and we denote the corresponding penalty function Fδkγk(x)
simply by Fk, i.e.,

Fk(x) = f(x) +
γk
m

m∑
i=1

hk (x; ai, bi) , (15)

where we use hk to denote the function hδk . When f is
strongly convex, each of these penalty functions has a unique
solution, denoted by x∗k, and the original problem also has a
unique solution x∗ ∈ X .

First, we derive an upper bound for the distance between
x∗k and x∗k+1. To provide such a bound, we use some
properties of the gradients of hk, as given in the following
lemma.

Lemma 2. Consider the function hδ(·; a, b) as given in (6).
Then, we have

‖∇hδ(x; a, b)‖≤ 1 for all x ∈ Rn.

If δ1 ≥ δ2, then

max
x∈Rn
‖∇hδ1(x; a, b)−∇hδ2(x; a, b)‖≤ δ1 − δ2

2δ1
.

Proof. Can be found in [19].

Our next lemma provides an upper bound on ‖x∗k+1 −
x∗k‖, which is critical for establishing the convergence of the
method later on.

Lemma 3. Let f be strongly convex with a constant µ > 0.
Let {γk} and {δk} be sequences of positive scalars, such
that γk+1 ≥ γk, δk+1 ≤ δk for all k ≥ 1. Then, we have for
all k ≥ 1

µ‖x∗k − x∗k+1‖≤ (γk+1 − γk) + γk
δk − δk+1

2δk
.

Proof. Consider an arbitrary k ≥ 1 and assume without loss
of generality that x∗k 6= x∗k+1 (for otherwise the stated rela-
tion holds trivially). The optimality conditions ∇Fk(x∗k) = 0
and ∇Fk+1(x∗k+1) = 0 yield, respectively,

∇f(x∗k) +
γk
m

m∑
i=1

∇hk (x∗k; ai, bi) = 0,

∇f(x∗k+1) +
γk+1

m

m∑
i=1

∇hk+1

(
x∗k+1; ai, bi

)
= 0.

By subtracting the last relation from the preceding one, and
by re-arranging the terms, we obtain

∇f(x∗k)−∇f(x∗k+1) =
γk+1

m

m∑
i=1

∇hk+1

(
x∗k+1; ai, bi

)
− γk
m

m∑
i=1

∇hk (x∗k; ai, bi) .

By adding and subtracting γk
m

∑m
i=1∇hk+1

(
x∗k+1; ai, bi

)
,

we have

∇f(x∗k)−∇f(x∗k+1) =
γk+1 − γk

m

m∑
i=1

∇hk+1

(
x∗k+1; ai, bi

)
+
γk
m

m∑
i=1

(
∇hk+1

(
x∗k+1; ai, bi

)
−∇hk (x∗k; ai, bi)

)
.

Hence,

〈∇f(x∗k)−∇f(x∗k+1), x∗k − x∗k+1〉

=
γk+1 − γk

m

m∑
i=1

〈∇hk+1

(
x∗k+1; ai, bi

)
, x∗k − x∗k+1〉+

γk
m

×
m∑
i=1

〈∇hk+1

(
x∗k+1; ai, bi

)
−∇hk (x∗k; ai, bi) , x

∗
k − x∗k+1〉.

By the strong convexity of f , it follows that

µ‖x∗k − x∗k+1‖2

≤ γk+1 − γk
m

m∑
i=1

〈∇hk+1

(
x∗k+1; ai, bi

)
, x∗k − x∗k+1〉+

γk
m

×
m∑
i=1

〈∇hk+1

(
x∗k+1; ai, bi

)
−∇hk (x∗k; ai, bi) , x

∗
k − x∗k+1〉.



By adding and subtracting ∇hk+1 (x∗k; ai, bi) in the last
terms, we obtain

µ‖x∗k − x∗k+1‖2

≤ γk+1 − γk
m

m∑
i=1

〈∇hk+1

(
x∗k+1; ai, bi

)
, x∗k − x∗k+1〉+

γk
m

×
m∑
i=1

〈∇hk+1

(
x∗k+1; ai, bi

)
−∇hk+1 (x∗k; ai, bi) , x

∗
k − x∗k+1〉

+
γk
m

m∑
i=1

〈∇hk+1 (x∗k; ai, bi)−∇hk (x∗k; ai, bi) , x
∗
k − x∗k+1〉.

By the convexity of hk+1, we have for all i,

〈∇hk+1

(
x∗k+1; ai, bi

)
−∇hk+1 (x∗k; ai, bi) , x

∗
k − x∗k+1〉 ≤ 0,

implying that

µ‖x∗k − x∗k+1‖2

≤ γk+1 − γk
m

m∑
i=1

〈∇hk+1

(
x∗k+1; ai, bi

)
, x∗k − x∗k+1〉

+
γk
m

m∑
i=1

〈∇hk+1 (x∗k; ai, bi)−∇hk (x∗k; ai, bi) , x
∗
k − x∗k+1〉.

Since γk+1 ≥ γk > 0, by using Cauchy-Schwarz inequality,
we obtain

µ‖x∗k − x∗k+1‖2

≤ γk+1 − γk
m

m∑
i=1

‖∇hk+1

(
x∗k+1; ai, bi

)
‖ ‖x∗k − x∗k+1‖

+
γk
m

m∑
i=1

‖∇hk+1 (x∗k; ai, bi)−∇hk (x∗k; ai, bi) ‖

× ‖x∗k − x∗k+1‖.

By Lemma 2, we have that ‖∇hk+1

(
x∗k+1; ai, bi

)
‖≤ 1

implying that

µ‖x∗k − x∗k+1‖2≤ (γk+1 − γk)‖x∗k − x∗k+1‖+
γk
m

×
m∑
i=1

‖∇hk+1 (x∗k; ai, bi)−∇hk (x∗k; ai, bi) ‖ ‖x∗k − x∗k+1‖.

Since δk+1 ≤ δk, by Lemma 2 we have that for all i,

max
x∈Rn
‖∇hδk(x; ai, bi)−∇hδk+1

(x; ai, bi)‖≤
δk − δk+1

2δk
.

Hence,

µ‖x∗k − x∗k+1‖2

≤ (γk+1 − γk)‖x∗k − x∗k+1‖+γk
δk − δk+1

2δk
‖x∗k − x∗k+1‖.

Dividing by ‖x∗k − x∗k+1‖, we obtain the result.

Our next result provides relations for the points x∗k and
the optimal solution x∗ of the original problem.

Lemma 4. Let f be strongly convex with a constant µ > 0.
Assume that the sequence {δk} and {γk} are such that
γk > 0, δk > 0 and γkδk ≤ c for all k. Then, the

sequence {x∗k} of solutions (to the corresponding penal-
ized problems minx∈Rn Fk(x)) is contained in the level set{
x ∈ Rn | f(x) ≤ f(x∗) + c

4αmin

}
, where x∗ is the solu-

tion of the original problem and αmin = min1≤i≤m‖ai‖. In
particular, the sequence {x∗k} is bounded.

Proof. Can be found in [19].

We next consider a set of conditions on parameters δk and
γk that will ensure that the sequence {x∗k} converges to x∗

as k → ∞. In what follows, we will use the projections
of the points x∗k on the feasible set, which we denote by
pk, i.e., pk = ΠX [x∗k]. Under the assumptions of Lemma 4,
the sequence{x∗k} is bounded, and so is the sequence {pk}
of the projections of x∗k’s on X . Let R be large enough so
that {xk} ⊂ B(0, R) and {pk} ⊂ B(0, R), where B(0, R)
denotes the ball centered at the origin with the radius R.
The subgradients of f(x) for x ∈ B(0, R) are bounded, and
let L be the maximum norm of the subgradients of f(x) over
x ∈ B(0, R), i.e.,

L = max
‖x‖≤R

‖∇f(x)‖. (16)

We have the following lemma.

Lemma 5. Let f be strongly convex with a constant µ > 0.
Assume that the sequence {δk} and {γk} are such that γk >
0, δk > 0 and γkδk ≤ c for all k. Let L be given by (16).
Then, for all k, we have

µ

2
‖x∗ − x∗k‖2+

µ

2
‖x∗ − pk‖2+

(
γk

4mβ
− L

)
dist(x∗k, X)

≤ γkδk
4αmin

,

where pk = ΠX [x∗k] for all k, and αmin = min1≤i≤m‖ai‖.

Proof. Can be found in [19].

Lemma 5 indicates that, when γk → +∞, for all large
enough k, we will have γk

4mβ > L, implying that

dist(x∗k, X) ≤ γkδk

4αmin

(
γk

4mβ − L
) ≈ O(δk).

Thus, if δk → 0, the distance of x∗k to the feasible set X will
go to 0 at the rate of O(δk). Lemma 5 also indicates that
‖x∗−x∗k‖2≤

γkδk
2µαmin

for large enough k. Thus, if γkδk → 0,
then the points x∗k approach the optimal solution x∗ of the
original problem, with the rate of O(γkδk).

To summarize, Lemma 5 characterizes the behavior of the
sequence {x∗k} in terms of the penalty parameters {γk} and
{δk}. It shows that under conditions γk → ∞, δk → 0 and
γkδk → 0, we have ‖x∗k−x∗‖→ 0. Based on Lemma 5, one
can construct a two-loop approach to compute the optimal
point x∗ of the original problem, where for every outer loop
k, we have an inner loop of iterations to compute x∗k. This,
however, will be quite inefficient. In the next section, we
propose a more efficient single-loop algorithm, where at each
iteration k we use the gradient of the penalty function Fk.



IV. CONVERGENCE RATE OF INCREMENTAL GRADIENT
ALGORITHM

The results of Lemma 3 and Lemma 5 are useful for
analyzing the convergence behavior of an incremental al-
gorithm that, when the iterate xk is available at iteration k,
uses only one randomly chosen constraint (indexed by ik) to
estimate the gradient ∇Fk(xk). This estimation is employed
to construct xk+1, as opposed to determining x∗k for each
function Fk. We illustrate this on a simple incremental
gradient-based method, given by: for k ≥ 1,

xk+1 = xk − sk[∇f(xk) + γk∇hk(xk; aik , bik)], (17)

where x1 is an initial point, sk > 0 is a stepsize, and
the index ik is chosen uniformly at random. Note that
∇f(xk) + γk∇hk(xk; aik , bik) can be considered an unbi-
ased estimation of ∇Fk(xk), since by the choice of ik for
k ≥ 1 we have E [∇f(xk) + γk∇hk(x; aik , bik)|Fk−1] =
∇Fk(xk), where Fk−1 is σ-algebra generated by the random
variables {ij , 1 ≤ j ≤ k − 1}.

The idea behind the analysis of the method (17) is
resting on a relation of the form E [‖xk+1 − x∗‖] ≤
qk E [‖xk − x∗‖] + rk for some qk and rk and explores the
conditions on qk and rk, for which the following Chung’s
lemma [6] ensures the convergence of ‖xk − x∗‖ to 0, as
k →∞ with some definite convergence rate.

Lemma 6. Let {uk} be a nonnegative scalar sequence and
k0 be such that uk+1 ≤

(
1− a

ks

)
uk + O

(
b

ks+t

)
for all

k > k0, where 0 < s ≤ 1, a > 0, b > 0, and t > 0. Then,
we have uk = O

(
1
kt

)
.

With Lemma 3, Lemma 5, and Lemma 6 in place, we next
establish a set of conditions on {γk} and {δk} that ensure
convergence of the iterates produced by the method (17).

Proposition 1. Let f be strongly convex with a constant
µ > 0 and have Lipschitz continuous gradients with a con-
stant Lf . Let the sequences {γk} and {δk} satisfy γk = kg ,
δk = 1

kd
, where g > 0 and d > 0 are such that {γkδk} is

nonincreasing. Consider the method (17) with the stepsize
sk = 1

ks with s > 0. Then, as k →∞,

E‖xk − x∗‖2 = O

(
1

kmin{s−2g,2−2s+2g} +
1

kd−g

)
.

In particular, when s = 1, g = 1
4 , and d ≥ 3

4 the
iterates {xk} the method (17) converge to the solution x∗

of the original problem (in expectation) and E‖xk − x∗‖2=

O
(

1

k
1
2

)
.

Proof. For any k ≥ 0, for the iterates of the method we have

‖xk+1 − x∗k‖2= ‖xk − x∗k‖2 − 2sk〈gk(xk), xk − x∗k〉
+ s2k‖gk(xk)‖2,

where gk(xk) = ∇f(xk) + γk∇hk(xk; aik , bik). By the
strong convexity of Fk and the fact ∇Fk(x∗k) = 0, it follows
that

E‖xk+1 − x∗k‖2≤ (1− 2skµ)E‖xk − x∗k‖2+s2kE‖gk(xk)‖2.
(18)

For ‖gk(xk)‖2 we write

E‖gk(xk)‖2≤ 2E‖∇f(xk)‖2+2E ‖γk∇hk (xk; aik , bik)‖
≤ 2E‖∇f(xk)‖2+2γ2k,

where the last inequality is obtained by using the con-
vexity of the squared-norm function and the fact that
‖∇hk (x; ai, bi) ‖≤ 1 for any x and i (see Lemma 2). We
further estimate E‖∇f(xk)‖2 as follows:

E‖∇f(xk)‖2≤2E‖∇f(xk)−∇f(x∗)‖2+2‖∇f(x∗)‖2

≤2L2
fE‖xk − x∗‖2+2‖∇f(x∗)‖2,

where in the last inequality we use the Lipschitz gra-
dient property of f . Thus, E‖gk(xk)‖2≤ 4L2

fE‖xk −
x∗‖2+4‖∇f(x∗)‖2+2γ2k. Further, we have E‖xk − x∗‖2≤
2E‖xk − x∗k‖2+2‖x∗k − x∗‖2, so that

E‖gk(xk)‖2≤ 8L2
fE‖xk − x∗k‖2 + 8L2

f‖x∗k − x∗‖2

+ 4‖∇f(x∗)‖2+2γ2k.

By Lemma 5 for sufficiently large k we have

‖x∗k − x∗‖2≤
γkδk

2µαmin
. (19)

By combining the preceding two relations with relation (18)
we obtain

E‖xk+1 − x∗k‖2≤(1− 2skµ+ 8L2
fs

2
k)E‖xk − x∗k‖2

+ s2k

(
4L2

fγkδk

µαmin
+ 4‖∇f(x∗)‖2+2γ2k

)
.

We next consider ‖xk+1 − x∗k+1‖2 for which we write

‖xk+1 − x∗k+1‖2≤(1 + skµ)‖xk+1 − x∗k‖2

+ (1 + s−1k µ−1)‖x∗k − x∗k+1‖2.

Combining the preceding two relations, we obtain

E‖xk+1 − x∗k+1‖2

≤ (1 + skµ)(1− 2skµ+ 8L2
fs

2
k)E‖xk − x∗k‖2

+ (1 + skµ)s2k

(
2L2

fγkδk

µαmin
+ 4‖∇f(x∗)‖2+2γ2k

)
+ (1 + s−1k µ−1)‖x∗k − x∗k+1‖2. (20)

Next we use Lemma 3 to upper bound ‖x∗k − x∗k+1‖2.
Thus, we obtain for large enough k,

E‖xk+1 − x∗k+1‖2

≤ (1 + skµ)(1− 2skµ+ 8L2
fs

2
k)E‖xk − x∗k‖2

+ (1 + skµ)s2k

(
2L2

fγkδk

µαmin
+ 4‖∇f(x∗)‖2+2γ2k

)

+
1 + s−1k µ−1

µ2

(
γk+1 − γk + γk

δk − δk+1

2δk

)2

. (21)

The rest of the proof is verifying that Lemma 6 can be
applied to the preceding inequality. Indeed, let

uk = E‖xk−x∗k‖2, qk = (1+skµ)(1−2skµ+8L2
fs

2
k),



rk =(1 + skµ)s2k

(
2L2

fγkδk

µαmin
+ 4‖∇f(x∗)‖2+2γ2k

)

+
1 + s−1k µ−1

µ2

(
γk+1 − γk + γk

δk − δk+1

2δk

)2

.

Consider the coefficient qk, for which we have for sufficiently
large k, qk ≥ 1 − µ

2 sk, where in the last inequality we use
the fact that sk → 0 as k → ∞. For the coefficient rk,
since γkδk is nonincreasing and γk →∞ we have for large
enough k,

rk ≈ O(s2kγ
2
k) +O


(
γk+1 − γk + γk

δk−δk+1

2δk

)2
sk

 .

Next, taking into account the settings sk = 1
ks , γk = kg ,

δ = 1
kd

, we obtain

uk+1 ≤
(

1− µ

2

1

ks

)
uk +O

(
1

k2s−2g

)

+O

 1

k2g−s

(1 +
1

k

)g
− 1 +

1−
(

1− 1
k+1

)d
2


2
 .

Due to the fact that
(
1 + 1

k

)g
= O

(
1 + g

k

)
and(

1− 1
k+1

)d
= O

(
1− d

k+1

)
, we conclude that

uk+1 ≤
(

1− µ

2

1

ks

)
uk +O

(
1

k2s−2g
+

1

k2−s+2g

)
.

Next, we write ‖xk − x∗‖2≤ 2‖xk − x∗k‖2+2‖x∗k − x∗‖2,
which together with (19) implies

E‖xk − x∗‖2= O

(
1

kmin{s−2g,2−2s+2g} +
1

kd−g

)
.

By optimizing the parameters s, g, and d , we get s = 1,
g = 1

4 , and d ≥ 3
4 . Under this setting E‖xk − x∗‖2=

O
(

1

k
1
2

)
, and the iterates {xk} the method (17) converge, in

the expectation, to the solution x∗ of the original problem.

V. CONCLUSION

In this work we considered penalty reformulation of
optimization problems with strongly convex objectives and
linear constraints. We proposed using Huber losses as penalty
functions. The properties of these functions allowed us to set
up the penalty parameter and the step-size of the standard
incremental gradient-based optimization procedure to guar-
antee convergence to the solution. Moreover, we provided
the estimation of the convergence rate for this algorithm.
In the future work, we will investigate applicability of
accelerated incremental algorithms for the proposed penalty
reformulation in the case of both strongly and non-strongly
convex optimization.

REFERENCES

[1] J. W. Adams. FIR digital filters with least-squares stopbands subject
to peak-gain constraints. IEEE Transactions on Circuits and Systems,
38(4):376–388, Apr 1991.

[2] D. P. Bertsekas. Constrained Optimization and Lagrange Multiplier
Methods (Optimization and Neural Computation Series). Athena
Scientific, 1 edition, 1996.

[3] D. P. Bertsekas. A hybrid incremental gradient method for least
squares. SIAM Journal on Optimization, 7:913–926, 1997.

[4] D. P. Bertsekas. Incremental proximal methods for large scale convex
optimization. Mathematical Programming, 129(2):163–195, 2011.

[5] D. P. Bertsekas. Incremental gradient, subgradient, and proximal
methods for convex optimization: A survey. available on arxiv at
https://arxiv.org/abs/1507.01030, 2015.

[6] K. L. Chung. On a stochastic approximation method. Ann. Math.
Statist., 25(3):463–483, 09 1954.

[7] G. Dorini, P. Pinson, and H. Madsen. Chance-constrained optimization
of demand response to price signals. IEEE Transactions on Smart
Grid, 4(4):2072–2080, Dec 2013.

[8] M. Gaudioso, G. Giallombardo, and G. Miglionico. An incremental
method for solving convex finite min-max problems. Mathematics of
Operations Research, 31:173–187, 2006.

[9] L. Grippo. A class of unconstrained minimization methods for neural
network training. Optimization Methods and Software, 4:135–150,
1994.

[10] L. Grippo. Convergent on-line algorithms for supervised learning in
neural networks. IEEE Transactions on Neural Networks, 11:1284–
1299, 2000.

[11] E. S. Helou and A. R. De Pierro. Incremental subgradients for con-
strained convex optimization, a unified framework and new methods.
SIAM Journal on Optimization, 20:1547–1572, 2009.

[12] B. Johansson, M. Rabi, and M. Johansson. A randomized incremental
subgradient method for distributed optimization in networked systems.
SIAM Journal on Optimization, 20:1157–1170, 2009.

[13] V. M. Kibardin. Decomposition into functions in the minimization
problem. Automation and Remote Control, 40:1311–1323, 1980.

[14] A. Kundu, F. Bach, and C. Bhattacharyya. Convex optimiza-
tion over intersection of simple sets: improved convergence rate
guarantees via an exact penalty approach. available on arxiv at
https://arxiv.org/abs/1710.06465, 2017.

[15] W. Li and J. Swetits. The linear l1 estimator and the huber m-estimator.
SIAM Journal on Optimization, 8(2):457–475, 1998.

[16] Z. Q. Luo. On the convergence of the lms algorithm with adaptive
learning rate for linear feedforward networks. Neural Computation,
3:226–245, 1991.

[17] C. Mathieu and W. Schudy. Correlation clustering with noisy input.
In SODA, pages 712–728. SIAM, 2010.
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