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Abstract—We study distributed algorithms for seeking a Nash
equilibrium in a class of convex networked Nash games with
strongly monotone mappings. Each player has access to her
own smooth local cost function and can communicate to
her neighbors in some undirected graph. To deal with fast
distributed learning of Nash equilibria under such settings,
we introduce a so called augmented game mapping and
provide conditions under which this mapping is strongly
monotone. We consider a distributed gradient play al-
gorithm for determining a Nash equilibrium (GRANE).
The algorithm involves every player performing a gradient
step to minimize her own cost function while sharing and
retrieving information locally among her neighbors in the
network. Using the reformulation of the Nash equilibrium
problem based on the strong monotone augmented game
mapping, we prove the convergence of this algorithm to
a Nash equilibrium with a geometric rate. Further, we
introduce the Nesterov type acceleration for the gradient
play algorithm. We demonstrate that, similarly to the
accelerated algorithms in centralized optimization and
variational inequality problems, our accelerated algorithm
outperforms GRANE in the convergence rate. Moreover,
to relax assumptions required to guarantee the strongly
monotone augmented mapping, we analyze the restricted
strongly monotone property of this mapping and prove
geometric convergence of the distributed gradient play
under milder assumptions.

I. INTRODUCTION
Game theory provides a framework to deal with optimiza-

tion problems arising in multi-agent systems, where agents’ lo-
cal objective functions are coupled through decision variables
of all agents in a system. The applications of game theoretic
approach include, for example, electricity markets, flow con-
trol problems, communication networks, and the future smart
grids [1], [18], [21]. Nash equilibria in games characterize
desirable and stable solutions to the corresponding multi-agent
optimization problems. Due to emergence of the large-scale
systems and agents’ access only to some partial information
in such systems, fast distributed optimization procedures have
gained a lot of attention over the recent years. The focus of
our paper is on discrete-time algorithms applicable to fast
distributed Nash equilibrium seeking in a class of networked
Nash games with strongly monotone mappings.
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There is a large body of work on Nash equilibrium com-
putation in games. Each approach is based on information
available to agents in a systems and takes into account some
structural properties of agents’ cost functions. For example,
in the case of the convex potential game structure, a central
optimization problem can be formulated whose minimizers
are Nash equilibria in the game. To compute the minima
of the potential function, some distributed communication-
based algorithms can be set up [8]. Moreover, in absence
of communication, so called oracle-based algorithms can be
applied to Nash equilibrium seeking in potential games. In
systems with oracle information each agent can calculate
her current output given any action from her action set.
Various versions of the logit dynamics have been presented to
compute Nash equilibria in such setting in both discrete action
[10], [27] and continuous action [17], [28] games. In some
practical situations agents do not have access to functional
forms of their objectives. Rather, each agent (player) can only
observe obtained payoffs and be aware of her own actions.
Such information structure is usually referred to as payoff-
based. A payoff-based Nash equilibrium learning is proposed
in [11], [32] for discrete action potential games and in [5],
[25], [29] for continuous action convex games. A convergent
asynchronous best-response algorithm is presented in [22]. For
implementation of this procedure agents need to collect the
full information about the actions of their opponents at some
instants of time.
In our work we deal with distributed setting, where each

agent has access only to its own cost function and can get
some partial information on the others’ decisions by means
of communication. Based on this information agents construct
their estimations of the joint decision variables which they use
in local optimization procedures to achieve a common goal,
namely to find a Nash equilibrium state. Many works study
convex networked Nash games where players can exchange
local information on the decision variables with neighbors in
some undirected connected communication graph. The papers
[6], [31] provide continuous-time algorithms for Nash equi-
librium seeking with exponential convergence rates. However,
the theoretical tools used for the analysis in the works above
cannot be applied to discrete-time setting. Distributed discrete-
time algorithms are proposed for aggregative games [4], [7],
[14]. Communication protocols are applied to general convex
games with some convergence guarantees [19], [20], [26].
The work [19] studies distributed Nash equilibrium seeking of
general networked Nash games and proposes a gradient based
gossip algorithm. Under strict convexity, Lipschitz continuity
and bounded gradient assumptions, this algorithm converges
almost surely to the Nash equilibrium, given a diminishing
step size. Under further assumption of strong convexity, with
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some constant step size α, the algorithm converges to an O(α)
neighborhood of the Nash equilibrium in average. The work
[20] develops an algorithm within the framework of inexact-
ADMM and proves its convergence to the Nash equilibrium
with the rate o(1/k) under cocoercivity of the game mapping.
Communication-based algorithms for generalized Nash equi-
librium problems are presented in papers [4], [16].
All aforementioned papers in discrete-time domain focus on

convergence guarantees in different game settings. However,
no distributed algorithm for Nash equilibrium seeking has
been presented so far that provably possesses a geometric
convergence rate. The contributions of this paper are as
follows. To the best of our knowledge, we provide a novel
approach for distributed Nash equilibrium seeking based on
equivalent condition for Nash equilibrium states which uses
so called augmented game mapping. The augmented game
mapping takes into account not only partial derivatives of
the cost functions but also agents’ local information that is
exchanged over a communication graph. Further, similarly to
majority of research on distributed Nash equilibrium seeking,
we consider undirected connected communication graphs and
determine under which assumptions the augmented game
mapping is strongly monotone and Lipschitz continuous. Next,
we apply the standard algorithm to the extended variational
inequality to obtain a distributed gradient play algorithm for
determining a Nash equilibrium (GRANE). We demonstrate
that GRANE converges to the Nash equilibrium with a geo-
metric rate, given strongly monotone and Lipschitz continuous
augmented game mapping. Moreover, using the results for
strongly monotone variational inequalities presented in [13],
we consider the Nesterov type acceleration for the gradient
play algorithm. Similarly to the classical methods for solving
variational inequalities, the corresponding accelerated gradient
play algorithm (Acc-GRANE) outperforms GRANE in the
convergence rate. However, the assumptions under which the
augmented game mapping is strongly monotone restrict the
class of games where Acc-GRANE can be applied. To rectify
this issue we consider a relaxed assumption implying the
restricted strongly monotone game mapping. Although Acc-
GRANE is not applicable in this case, we demonstrate that
GRANE converges to the Nash equilibrium with a geometric
rate under this milder assumption. A preliminary and brief
version of our work will appear in Conference on Decision
and Control 2018 [30]. In the current paper, we extend our
past work in the following ways. Firstly, we provide all
proofs omitted in the conference paper. Secondly, we relax the
assumption for the augmented mapping to be able to consider
a broader class of games where geometric convergence to
a Nash equivilibrium takes place. Finally, we discuss how
communication topology affects the convergence rate of the
distributed algorithms.
Notations. The set {1, . . . , n} is denoted by [n]. We use 0

and 1 to denote a vector or a matrix with all entries equal to
0 and 1 respectively. For any function f : K → R, K ⊆ R

n,
∇if(x) = ∂f(x)

∂xi
is the partial derivative taken in respect to

the ith coordinate of the vector variable x ∈ R
n. For any

real vector space Ẽ its dual space is denoted by Ẽ∗ and the
inner product is denoted by 〈u, v〉, u ∈ Ẽ∗, v ∈ Ẽ. Some

operator B : Ẽ → Ẽ∗ is positive definite if 〈Bv, v〉 > 0 for
all v ∈ Ẽ \ {0}. Some operator B : Ẽ → Ẽ∗ is self-adjoint if
〈Bv, v′〉 = 〈Bv′, v〉 for all v′, v ∈ Ẽ. Given a positive definite
and self-adjoint operator B, we define the Euclidean norm on
Ẽ as ‖v‖= 〈Bv, v〉1/2. Any mapping g : Ẽ → Ẽ∗ is said to
be strongly monotone with the constant µ > 0 on Q ⊆ Ẽ, if
〈g(u) − g(v), u − v〉 ≥ µ‖u − v‖2 for any u, v ∈ Q, where
‖·‖ is the corresponding norm in Ẽ. We consider real vector
space E, which is either space of real vectors E = E∗ = R

n

or the space of real matrices E = E∗ = R
n×n. In the case

E = R
n×n the inner product 〈u, v〉 ,

√

trace(uT v) is the
Frobenius inner product on R

n×n. In the case E = R
n we use

‖·‖2 to denote the Euclidean norm induced by the standard
dot product in R

n, whereas in the case E = R
n×n we use

‖·‖Fro to denote the Frobenius norm induced by the Frobenius
inner product, i.e., ‖v‖Fro,

√

trace(vT v). We use PΩ {v}
to denote the projection of v ∈ E to a set Ω ⊆ E. The
largest singular value of a matrix A is denoted by σmax{A}.
The smallest nonzero eigenvalue of a positive semidefinite
matrix A 6= 0 is denoted by λ̃min{A}, which is positive. For
a matrix A ∈ R

m×n, null{A} , {x ∈ R
n|Ax = 0} is the

null space of A and span{A} , {y ∈ R
m|y = Ax, ∀x ∈ R

n}
is the linear span of all the columns of A. For any matrix
A ∈ R

n×n we use diag(A) to denote its diagonal vector, i.e.
diag(A) = (a11, . . . , ann). For any vector a ∈ R

n we use
Diag(a) to denote the diagonal matrix with the vector a on
its diagonal. We call a matrix A consensual, if it has equal
row vectors. Assuming that Ω ⊆ R

n, we define the indicator
function IΩ(x) of the set Ω such that IΩ(x) = 0, if x ∈ Ω,
and IΩ(x) = +∞, otherwise.

II. NASH EQUILIBRIUM SEEKING

A. Problem Formulation
We consider a networked Nash game between n players.

Let Ji and Ωi ⊆ R
1 denote respectively the cost function and

the feasible action set of the player i. We denote the joint
action set by Ω = Ω1 × . . .× Ωn. Each function Ji(xi, x−i),
i ∈ [n], depends on xi and x−i, where xi ∈ Ωi is the action of
the player i and x−i ∈ Ω−i = Ω1 × . . .×Ωi−1 × Ωi+1 ×Ωn

denotes the joint action of all players except for the player
i. We assume that the players can interact over an undirected
communication graph G([n],A), where the set of nodes repre-
sents the set of the player [n] and the set of arcs A is such that
(i, j) ∈ A if and only if (j, i) ∈ A. Thus, some information
(message) can be passed from the player i to the player j and
vice versa. For each player i the set Ni is the set of neighbors
in the graph G([n],A), namely Ni , {j ∈ [n] : (i, j) ∈ A}.
We assume each player to be the neighbor for itself. Let us
denote the game introduced above by Γ(n, {Ji}, {Ωi},A). We
make the following assumptions regarding the game Γ.

Assumption 1. The game under consideration is convex.
Namely, for all i ∈ [n], the set Ωi is convex and closed, the cost
function Ji(xi, x−i) is convex in xi over Ωi and continuously

1All results below are applicable for games with different dimensions {di}
of the action sets {Ωi}. The one-dimensional case is considered for the sake
of notation simplicity.



differentiable in xi for each fixed x−i. Moreover, the partial
derivatives ∇iJi(xi, x−i), i ∈ [n], are continuous functions in
the whole x.

Under Assumption 1, we can define the game mapping.

Definition 1. The game mapping F(x) : Ω → R
n is defined

as follows:

F(x) , [∇1J1(x1, x−1), . . . ,∇nJn(xn, x−n)]
T . (1)

Assumption 2. The game mapping is strongly monotone
on Ω with the constant µF. Moreover, each cost function
Ji(xi, x−i), i ∈ [n], is defined on the set R× . . .×Ωi× . . .×R

and is strongly convex in xi over Ωi for any fixed x−i ∈ R
n−1

with the constant µF.

Remark 1. Note that Assumption 2 above implies strong con-
vexity of each cost function Ji(xi, x−i) in xi over Ωi for any
fixed x−i with the constant µF. Thus, the convexity condition
in Assumption 1 holds. However, we consider Assumptions 1
and 2 separately, to be able to emphasize what conditions are
required in each of the results presented further in the paper.
An example of the cost functions satisfying Assumptions 1
and 2 can be found in the class of aggregative games (see
[4], [7], [14]) with Ji(xi, x−i) = ci(xi) + li(x−i)xi, where
ci is a strongly convex function over Ωi and li is a linear
function defined on the set Rn−1.
If the cost functions Ji, i ∈ [n], are defined only on the set

Ω, we assume that for each fixed xi ∈ Ωi they can be extended
to the whole Rn−1 and the strongly convex property in respect
to xi can be preserved.

Assumption 3. For every i ∈ [n] the function ∇iJi(xi, x−i)
is uniformly Lipschitz continuous in xi on Ωi, that is, there
exists some constant Li ≥ 0 such that for any x−i ∈ R

n−1

we have for all xi, yi ∈ Ωi,

|∇iJi(xi, x−i)−∇iJi(yi, x−i)| ≤ Li|xi − yi|.

Moreover, for every i ∈ [n] the function ∇iJi(xi, x−i) is
uniformly Lipschitz continuous in x−i on R

n−1, that is, there
exists some constant L−i ≥ 0 such that for every fixed xi ∈ Ωi

we have

|∇iJi(xi, x−i)−∇iJi(xi, y−i)| ≤ L−i‖x−i − y−i‖2,
∀ x−i,y−i ∈ R

n−1.

We consider a symmetric non-negative mixing matrix W =
[wij ] ∈ R

n×n associated with the communication graph
G([n],A). Its elements define the weights on the undirected
arcs such that wij = wji > 0 if and only if (i, j) ∈ A. Finally,
we make the following assumption on the communication
graph and the associated matrix, which guarantees sufficient
and balanced information ”mixing” in the network.

Assumption 4. The underlying undirected communication
graph G([n],A) is connected. Moreover, the associated matrix
W is symmetric and column-stochastic, namely

∑n
i=1 wij =

1, ∀j ∈ [n].

Remark 2. Note that there are some simple strategies for
generating symmetric mixing matrices for which Assumption 4
holds (see Section 2.4 in [23] for a summary of strategies).

Assumption 4 implies the following properties of the mixing
matrix W (see [3]):

n
∑

i=1

wij =

n
∑

j=1

wij = 1, ∀i, j ∈ [n] (2a)

I −W < 0; (2b)
null{I −W} = span{1}, (2c)

One of the solution concepts for a game Γ is a Nash equilib-
rium defined below.

Definition 2. A vector x∗ = [x∗
1, x

∗
2, · · · , x∗

n]
T ∈ Ω is a Nash

equilibrium if for any i ∈ [n] and xi ∈ Ωi

Ji(x
∗
i , x

∗
−i) ≤ Ji(xi, x

∗
−i).

In this work, we are interested in distributed seeking of
a Nash equilibrum in a game Γ(n, {Ji}, {Ωi},A) for which
Assumptions 1-4 hold.

B. Existence and Uniqueness of the Nash Equilibrium
In this subsection, we demonstrate the existence and unique-

ness of the Nash equilibrium for Γ(n, {Ji}, {Ωi},A) under
Assumptions 1 and 2. For this purpose we recall the results
connecting Nash equilibria and solutions of variational in-
equalities [15].

Definition 3. For a set Q ⊆ R
d and a mapping g: Q → R

d

the variational inequality problem V I(Q, g) is formulated as
follows:

Find q∗ ∈ Q : 〈g(q∗), q − q∗〉 ≥ 0 for all q ∈ Q.

The set of solutions to the variational inequality problem
V I(Q, g) is denoted by SOL(Q, g).

Remark 3. One of the equivalent reformulation of the solution
q∗ in the definition above is the following one (see [15],
Chapter 1.1):

Find q∗ ∈ Q : 0 ∈ g(q∗) +N (q∗, Q),

where N (q∗, Q) is a normal cone to Q at q∗, which is defined
as the set of the subgradients of the indicator function IQ(q∗)
for the set Q at the point q∗.

The following theorem is the well-known result on the
connection between Nash equilibria in games and solutions
of a definite variational inequality (see Proposition 1.4.2 in
[15]).

Theorem 1. Consider a networked Nash game Γ. Suppose
that the action sets of the players {Ωi} are closed and convex,
the cost functions {Ji(xi, x−i)} are continuously differentiable
and convex in xi for every fixed x−i from Ω−i. Then, a vector
x∗ ∈ Ω is a Nash equilibrium for the Γ if and only if x∗ ∈
SOL(Ω,F), where F is the game mapping defined by (1).

The following result holds for variational inequalities with
strongly monotone mappings (see Proposition 2.3.3 in [15]).



Theorem 2. Given the V I(Q, g), suppose that Q is a closed
convex set and the mapping g is continuous and strongly
monotone. Then, the solution set SOL(Q, g) is nonempty and
is a singleton.

Taking into account Theorems 1 and 2, we obtain the
following results.

Theorem 3. Let Γ(n, {Ji}, {Ωi},A) be a game for which
Assumptions 1-2 hold. Then, there exists a unique Nash
equilibrium in Γ. Moreover, the Nash equilibrium in Γ is the
solution of V I(Ω,F), where F is the game mapping (see (1)).

Finally, if Assumption 2 does not hold, but in addition to
Assumption 1 all action sets are compact, then, Corollary 2.2.5
in [15] guarantees only existence of a Nash equilibrium in the
game under consideration:

Theorem 4 (Corollary 2.2.5 in [15]). Let Γ(n, {Ji}, {Ωi},A)
be a game for which Assumption 1 holds and Ωi is a compact
set for all i ∈ [n]. Then, there exists a Nash equilibrium in
Γ. Moreover, any Nash equilibrium in Γ is the solution of
V I(Ω,F), where F is the game mapping (see (1)).

Thus, if Assumptions 1-2 hold, we can guarantee exis-
tence and uniqueness of the Nash equilibrium in the game
Γ(n, {Ji}, {Ωi},A) under consideration. However, the refor-
mulation of the Nash equilibrium in terms of the solution
of the variational inequality V I(Ω,F) does not take into
account the distributed setting of the problem presented in
the previous subsection. Hence, to let the players learn the
unique Nash equilibrium in a distributed way, we need to
find an alternative condition which allows us to determine the
Nash equilibrium in presence of partial information exchange
over the communication graph G with the associated mixing
matrix W . In the next section, we provide such a condition
and present distributed algorithms for computing the Nash
Equilibrium.

III. EQUIVALENT CONDITION FOR NASH EQUILIBRIA AND
AUGMENTED GAME MAPPING

A. Nash Equilibria in Distributed Settings

To deal with the partial information available to players
and exchanged among them over the communication graph,
we assume that each player i maintains a local variable

x(i) = [x̃(i)1, · · · , x̃(i)i−1, xi, x̃(i)i+1, · · · , x̃(i)n]
T ∈ R

n, (3)

which is her estimation of the joint action x =
[x1, x2, · · · , xn]

T ∈ Ω. Here x̃(i)j ∈ R is the player i’s
estimate of xj and x̃(i)i = xi ∈ Ωi. Also, we compactly
denote the estimates of other players’ actions by the player i
as

x̃−i = [x̃(i)1, · · · , x̃(i)i−1, x̃(i)i+1, · · · , x̃(i)n]
T ∈ R

n−1, (4)

and the estimates of the player j’s action xj by all players as

x̃(:)j = [x̃(1)j , · · · , x̃(j−1)j , xj , x̃(j+1)j , · · · , x̃(n)j ]
T ∈ R

n.

Thus, we can define the estimation matrix x ∈ R
n×n, where

the ith row is equal to the estimation vector x(i), i ∈ [n],
namely

x ,











— xT
(1) —

— xT
(2) —
...

— xT
(n) —











.

Note that the estimation matrix belongs to a subset of the space
R

n×n that we denote by Ωa. The set Ωa consists of matrices
whose diagonal vectors are from the set of joint action set Ω,
i.e. Ωa , {x ∈ R

n×n : diag(x) ∈ Ω}. Indeed, the definition
of the domain Ωa for estimation matrices x is based on the
assumption that each agent i knows its own action set Ωi, but
not the action set Ωj of other agents j ∈ [n] \ i. Finally, for
any given estimation matrix, we define the diagonal matrix
F̃(x) ∈ R

n×n with F̃(x)ii = ∇iJi(x(i)), i ∈ [n], namely

F̃(x) , Diag(∇1J1(x(1)), . . . ,∇nJn(x(n))). (5)

Now we are ready to state the proposition providing a
necessary and sufficient condition for a joint action x∗ to be
a Nash equilibrium in the game Γ(n, {Ji}, {Ωi},A).

Proposition 1. Let us consider the game Γ(n, {Ji}, {Ωi},A)
for which Assumptions 1 and 4 hold. Then the following
statements are equivalent
1) The vector x∗ = [x∗

1, . . . , x
∗
n]

T is a Nash equilibrium in
Γ(n, {Ji}, {Ωi},A).

2) There exists an estimation matrix x∗ ∈ Ωa with the
diagonal vector x∗ = [x∗

1, . . . , x
∗
n]

T ∈ Ω and corre-
sponding diagonal matrix F̃(x∗) (see (5)) such that for
any x ∈ Ωa the following holds:

〈(I −W )x∗ + ΛF̃(x∗),x− x∗〉 ≥ 0,

where Λ = Diag(α1, . . . , αn) ∈ R
n×n is an arbitrary

diagonal matrix with αi > 0, ∀i ∈ [n].

Proof. From the definition of Nash equilibrium (see De-
finition 2) and Assumption 1 we conclude that x∗ =
[x∗

1, . . . , x
∗
n]

T is a Nash equilibrium in Γ(n, {Ji}, {Ωi},A) if
and only if there exists the estimation vector x∗

(i) ∈ R
n, ∀i ∈

[n], such that

〈∇iJi(x
∗
(i)), xi − x∗

i 〉 ≥ 0, ∀xi ∈ Ωi, (6a)
x∗
(1) = x∗

(2) = . . . = x∗
(n). (6b)

Now we proceed with showing the equivalence (6) ⇔ 2).
The implication (6) ⇒ 2) holds, if we take x∗ to be the

matrix with each row equal to transpose of x∗. Indeed, in this
case (I −W )x∗ = 0 (since

∑n
i=1 wij = 1, ∀j ∈ [n], due to

Assumption 4) and, according to (6), ∇iJi(x
∗)(xi − x∗

i ) ≥ 0
for all i ∈ [n].
To show 2) ⇒ (6) we refer to Remark 3. According to

this remark, the variational inequality in 2) implies existence
of a subgradient ∇̃IΩi

(x∗
i ) of the indicator function IΩ(x∗

i )
of the set Ωi at x∗

i for all i ∈ [n] such that, given the
diagonal matrix G(x∗) = Diag(∇̃IΩ1

(x∗
1), . . . , ∇̃IΩn

(x∗
n)),

the following equality holds:

(I −W )x∗ + Λ(F̃(x∗) +G(x∗)) = 0. (7)



Recall that the j-th column of x∗ is denoted by x̃∗
(:)j . Thus,

for any j ∈ [n] the matrix equation (7) implies the following
system of the linear equations
{

[I −W ]−j x̃
∗
(:)j = 0,

〈[I −W ]j , x̃
∗
(:)j〉+ αj(∇jJj(x

∗
(j)) + IΩj

(x∗
j )) = 0,

(8)

where [I − W ]−j ∈ R
(n−1)×n denotes the matrix obtained

from I − W by discarding the jth row and [I − W ]j ∈ R
n

denotes the jth row of the matrix I −W . By discarding the
last equation in (8) we obtain the subsystem

[I −W ]−j x̃
∗
(:)j = 0,

which holds for all j ∈ [n]. According to (2c), the matrix
[I − W ]−j has full row rank for any j ∈ [n]. Thus, only
vectors x̃∗

(:)j ∈ span{1}, j ∈ [n], are solutions to the systems
of the linear equations above.
Therefore, (I − W )x∗ = 0 and (6b) holds. From (7) we

have F̃(x∗) +G(x∗) = 0 and, thus, (6a) follows.

Note that, regarding conditions for the communication
graph, to prove the proposition above we used only assumption
on stochastic rows of the matrix W and condition (2c),
which can correspond to any directed strongly connected
communication graph. Thus, the equivalent reformulation of
Nash equilibria presented in Proposition 1 holds also for
any convex game Γ(n, {Ji}, {Ωi},A), where the graph G is
possibly directed, strongly connected and the mixing matrix
W is row stochastic, i.e.

∑n
i=1 wij = 1, ∀j ∈ [n].

Moreover, in proof of Proposition 1 we did not use Assump-
tion 2 requiring strongly monotone game mapping. However,
we need this assumption in the next subsections, where we
present distributed algorithms and prove their convergence to
the Nash Equilibrium with a geometric rate.

B. Augmented Mapping
According to Proposition 1, to determine a Nash equilibrium

in the game Γ(n, {Ji}, {Ωi},A) under consideration we need
to find an estimation matrix x∗ that solves the following
variational inequality:

〈(I −W )x∗ + ΛF̃(x∗),x− x∗〉 ≥ 0, ∀x ∈ Ωa. (9)

where Λ ∈ R
n×n is an arbitrary diagonal matrix Λ =

Diag(α1, . . . , αn), αi > 0, ∀i ∈ [n]. Due to Proposition 1,
any solution matrix x∗ of the variational inequality above is
consensual and its diagonal vector, as well as any row, repre-
sents a Nash equilibrium in Γ. Further we call such estimation
matrix x∗ the Nash equilibrium matrix. Note that (9) is defined
in terms of the matrix mapping Fa : Rn×n → R

n×n:

Fa(x) = (I −W )x+ ΛF̃(x). (10)

We refer to Fa(x) above as to the augmented mapping
of the game Γ(n, {Ji}, {Ωi},A). In contrast to the game
mapping F̃(x) (see (1)), the augmented mapping allows us
to take into account the partial information exchange among
the players over the graph G. To set up efficient distributed

procedures with fast convergence rates, we leverage the results
on centralized algorithms for classical variational inequalities
with strongly monotone and Lipschitz continuous mappings
obtained in [13]. The summary of these results and cor-
responding algorithms for distributed settings are presented
in the next subsections. We conclude this subsection by
formulating conditions under which the augmented mapping is
Lipschitz continuous, strongly monotone, or restricted strongly
monotone and, thus, the results from [13] can be applied to
the game Γ(n, {Ji}, {Ωi},A).

Lemma 1. Under Assumption 3, the augmented mapping
Fa(x) of the game Γ(n, {Ji}, {Ωi},A) is Lipschitz continuous
on Ωa with the Lipschitz constant LΛF+σmax{I −W}, where
LΛF = max

i

{

αi

√

L2
i + L2

−i

}

.

Proof. By Assumption 3, we see that ∀x, y ∈ R
n such that

xi, yi ∈ Ωi and x−i, y−i ∈ R
n−1, we have

‖∇iJi(xi, x−i)−∇iJi(yi, y−i)‖2
= ‖∇iJi(xi, x−i)−∇iJi(yi, x−i)

+∇iJi(yi, x−i)−∇iJi(yi, y−i)‖2
≤ (β‖∇iJi(xi, x−i)−∇iJi(yi, x−i)‖22

+
β

β − 1
‖∇iJi(yi, x−i)−∇iJi(yi, y−i)‖22)

1

2

(for any β > 1)

≤
(

βL2
i ‖xi − yi‖22+

β

β − 1
L2
−i‖x−i − y−i‖22

)
1

2

(choose β = 1 +
L2

−i

L2

i

)

=
√

L2
i + L2

−i‖x− y‖2, L(i)‖x− y‖2,

therefore,

‖F̃(x)− F̃(y)‖Fro≤ LF‖x− y‖Fro, ∀ x, y, (11)

where LF = max
i

{

L(i)

}

.
Thus, we have

‖Λ(F̃(x)− F̃(y)) + (I −W )(x− y)‖Fro
≤ (LΛF + σmax{I −W}) ‖x− y‖Fro, ∀ x, y,

where LΛF = max
i

{

αiL(i)

}

.

Further on, we consider the case, where the diagonal matrix
Λ has equal diagonal entries, i.e., Λ = Diag(α, . . . , α) with
α > 0. Next, given Assumptions 2–4, let us define Lm =
maxi L−i and

a1 = λ̃min{I −W}

− αmax

{

µF − Lm
√
n− 1,

Lm

2
√
n− 1

}

, (12a)

a2 =
α

2n

[

µF − 2Lm
√
n− 1

]

. (12b)

The following assumption formulates the condition on the
parameters a1, a2 under which we will further prove the
strongly monotone property of the augmented game mapping.

Assumption 5. Assume that min{a1, a2} > 0.



With this assumption we can now prove the following result.

Lemma 2. Under Assumptions 2, 3, 4, and 5, the augmented
mapping Fa(x) of the game Γ(n, {Ji}, {Ωi},A) is strongly
monotone over Ωa with the constant µFa

= min{a1, a2}.

Proof. Let x,y ∈ Ωa be arbitrary but fixed matrices. By the
definition of the mapping F̃ in (5) and our choice of the matrix
Λ (i.e., Λ = αI), we have

〈Λ(F̃(x)− F̃(y)),x − y〉

= α

n
∑

i=1

〈∇iJi(xi, x̃−i)−∇iJi(yi, ỹ−i), xi − yi〉

= α
n
∑

i=1

〈∇iJi(xi, x̃−i)−∇iJi(yi, x̃−i), xi − yi〉

+ α

n
∑

i=1

〈∇iJi(yi, x̃−i)−∇iJi(yi, ỹ−i), xi − yi〉.

Using the strong monotonicity and Lipschitz gradient prop-
erties of functions Ji (see Assumptions 2 and 3), we obtain

〈Λ(F̃(x)− F̃(y)),x − y〉

≥ α

n
∑

i=1

µF(xi − yi)
2 − α

n
∑

i=1

L−i‖x̃−i − ỹ−i‖2·|xi − yi|

≥ α

n
∑

i=1

µF(xi − yi)
2

− α

n
∑

i=1

(

L−iβi

2
‖x̃−i − ỹ−i‖22+

L−i

2βi
(xi − yi)

2

)

,

where βi > 0 are arbitrary for all i ∈ [n] . Let z = x − y,
and consider the following decomposition of the matrix z:
z = c + n, where c = 1

n11
Tz, n = z − c. The matrix c

has identical rows, where each row is equal to the average
row entries of z. Moreover, we have c′n = 0, implying that
〈c,n〉 = 0. Therefore,

‖z‖2Fro= ‖c‖2Fro+‖n‖2Fro. (13)

Using the same notation ci, ni and c̃−i, ñ−i for the matrices c,
n and taking into account that xi−yi = ci+ni and x̃−i−ỹ−i =
c̃−i + ñ−i, we further obtain

〈Λ(F̃(x) − F̃(y)),x − y〉

≥ α

[

µF −max
i

L−i

2βi

] n
∑

i=1

(ci + ni)
2

− α

n
∑

i=1

L−iβi

2
‖c̃−i + ñ−i‖22

≥ α

[

µF −max
i

L−i

2βi

] n
∑

i=1

(ci + ni)
2

− αmax
i

L−iβi

n
∑

i=1

(‖c̃−i‖22+‖ñ−i‖22),

where in the last inequality we use the relation −‖c̃−i +
ñ−i‖22≥ −2(‖c̃−i‖22+‖ñ−i‖22). Let βi = 1

2
√
n−1

for all i
and note that, in view of Assumption 5, it follows that µF −

maxi
L

−i

2βi
> 0. Thus, using the relation (ci+ni)

2 ≥ 1
2c

2
i −n2

i

and the notation Lm = maxi L−i, we obtain

〈Λ(F̃(x) − F̃(y)),x − y〉

≥ α
[

µF − Lm
√
n− 1

] 1

2

n
∑

i=1

c2i − αLm 1

2
√
n− 1

n
∑

i=1

‖c̃−i‖22

− α
[

µF − Lm
√
n− 1

]

n
∑

i=1

n2
i − αLm 1

2
√
n− 1

n
∑

i=1

‖ñ−i‖22,

Next, due to the fact that n
∑n

i=1 c
2
i = ‖c‖2Fro and

∑n
i=1‖c̃−i‖22= (n− 1)

∑n
i=1 c

2
i , we obtain

〈Λ(F̃(x)− F̃(y)),x − y〉
≥ α

2n

[

µF − 2Lm
√
n− 1

]

‖c‖2Fro

− αmax

{

µF − Lm
√
n− 1,

Lm

2
√
n− 1

}

‖n‖2Fro.

By Assumption 4, we have that (I−W )c = 0, implying that

〈(I −W )z, z〉 ≥ λ̃min{I −W}‖n‖2Fro.

Thus, it follows that

〈Fa(x) − Fa(y),x − y〉
≥ α

2n

[

µF − 2Lm
√
n− 1

]

‖c‖2Fro

+

(

λ̃min{I −W} − αmax

{

µF − Lm
√
n− 1,

Lm

2
√
n− 1

})

× ‖n‖2Fro
≥ min{a1, a2}(‖c‖2Fro+‖n‖2Fro) = min{a1, a2}‖z‖2Fro

= µFa
‖x− y‖2Fro,

where the first equality is due to (13).

Remark 4. Note that if the second part of Assumption 2
does not hold and one only assumes strongly monotone game
mapping F over Ω, then the arguments used in the proof of
Lemma 2 would imply that the augmented mapping Fa is
strongly monotone over the matrix set Ωa

′, which is defined
by matrices whose rows belong to the joint action set Ω.

Remark 5. Lemma 2 holds for games with µF > 2
√
n− 1L−i

for all i. Intuitively speaking, this means that, the strong
monotonicity of the game mapping should be strong enough
while for each player i, its local objective’s dependency on
other player’s strategies should be less than quadratically
or have small enough quadratic terms. To make this easier
to imagine, let us consider a class of game with objectives
in the form of Ji(xi, x−i) = fi(xi) + li(x−i)xi, where fi’s
are twice differentiable and strongly convex while li(x−i)’s
are linear in x−i. For this special case, the Jacobian of the
game mapping F(x) is always positive definite as long as
the strong convexity constant of fi(xi)’s are large enough
because the Jacobian’s off-diagonal entries are all bounded.
Meanwhile, in this case, the Lipschitz constant L−i is any
number that satisfies |li(x−i) − li(y−i)|≤ L−i‖x−i − y−i‖2
for all x−i, y−i ∈ R

n−1. This is fulfilled by any Lipschitz



continuous function and linear function is obviously one of
the members.

To rectify the issue pointed out in Remark 5 and, thus, to
broaden the class of games under consideration, let us relax
Assumption 2. Namely, instead of the assumption on strongly
monotone game mapping F, let us introduce the following
assumption of restricted strongly monotone game mapping.

Assumption 6. The game mapping F is restricted strongly
monotone over Rn in respect to any Nash equilibrium x∗ ∈ Ω
with the constant µr > 0, namely for any x ∈ R

n

〈F(x)− F(x∗), x− x∗〉 ≥ µr‖x− x∗‖22.

Next, we show that under Assumption 6 there exist settings
such that the resulting augmented mapping Fa is restricted
strongly monotone with respect to the Nash equilibrium matrix
x∗. In the case when Assumption 6 holds, to set up the
augmented mapping Fa(x) we use the diagonal matrix Λ such
that αi = α for all i ∈ [n].

Lemma 3. Under Assumptions 3, 4, and 6, there exist settings
with Λ = Diag(α, . . . , α), α > 0, such that the the resulting
augmented mapping Fa(x) of the game Γ(n, {Ji}, {Ωi},A)
is restricted strongly monotone over Ωa with respect to any
Nash equilibrium matrix x∗ = 1(x∗)T with the constant

µr,Fa
= min{b1, b2},

b1 = α
(µr

n
− LF(β

2 + 2β)
)

,

b2 =
λ̃min{I −W}

1 + 1
β2

− αLF,

where LF = αmax
i

{√

L2
i + L2

−i

}

and β > 0 is such that
min{b1, b2} > 0.

Proof. Analogously to the proof of Lemma 2, for any matrix
x ∈ Ωa, we consider the following orthogonal decomposition
x = c+n, where c = 1

n11
Tx, and n = x−c. Thus, 〈c,n〉 =

0. Since x∗ = 1(x∗)T, it can be seen that 〈c − x∗,n〉 = 0.
Thus, we get

‖x− x∗‖2Fro= ‖c− x∗‖2Fro+‖n‖2Fro. (14)

Let c = diag(c) ∈ R
n be the vector in rows of the matrix c.

Due to Assumption 6 and given αi = α for all i ∈ [n], we
obtain

〈Λ(F̃(c) − F̃(x∗)), c− x∗〉

=
n
∑

i=1

αi(∇iJi(c)−∇iJi(x
∗))(ci − x∗

i )

≥ α〈F(c) − F(x∗), c− x∗〉
≥ αµr‖c− x∗‖22= α

µr

n
‖c− x∗‖2Fro. (15)

Since F̃ is Lipschitz continuous on Ωa with the constant
LF = max

i

{

α
√

L2
i + L2

−i

}

(see equation (11) in the proof

of Lemma 1), we conclude that

〈Λ(F̃(c)− F̃(x∗)),x− c〉 ≥ − αLF‖c− x∗‖Fro‖x− c‖Fro
=− αLF‖c− x∗‖Fro‖n‖Fro,

(16a)
〈Λ(F̃(x)− F̃(c)), c − x∗〉 ≥ − αLF‖x− c‖Fro‖c− x∗‖Fro,

(16b)
〈Λ(F̃(x)− F̃(c)),x − c〉 ≥ − αLF‖x− c‖2Fro

= −αLF‖n‖2Fro.
(16c)

Next, taking into account inequalities (15) and (16), we obtain

〈Λ(F̃(x)− F̃(x∗)),x− x∗〉 = 〈Λ(F̃(c)− F̃(x∗)), c − x∗〉
+ 〈Λ(F̃(c)− F̃(x∗)),x − c〉+ 〈Λ(F̃(x) − F̃(c)), c − x∗〉

+ 〈Λ(F̃(x) − F̃(c)),x − c〉
≥ α

(µr

n
‖c− x∗‖2Fro−LF‖n‖Fro(2‖c− x∗‖Fro+‖n‖Fro)

)

.

(17)

Moreover, due to (14),

〈(I −W )(x− x∗),x− x∗〉 ≥ λ̃min{I −W}‖n‖2Fro, (18)

since (I −W )(c − x∗) = 0 (see (2c)). Summing inequalities
(17) and (18), we conclude that

〈Fa(x) − Fa(x
∗),x− x∗〉 ≥ λ̃min{I −W}‖n‖2Fro

+ α
(µr

n
‖c− x∗‖2Fro−LF‖n‖Fro(2‖c− x∗‖Fro+‖n‖Fro)

)

.

(19)

Let us fix some positive β > 0.
(i) If ‖n‖Fro≤ β‖c − x∗‖Fro, then, according to (19) and

(14),

〈Fa(x)− Fa(x
∗),x− x∗〉 ≥ λ̃min{I −W}‖n‖2Fro

+ α
(µr

n
− LF(β

2 + 2β)
)

‖c− x∗‖2Fro
≥ b1‖x− x∗‖2Fro, (20)

where

b1 = min
{

α
(µr

n
− LF(β

2 + 2β)
)

, λ̃min{I −W}
}

.

(ii) If ‖n‖Fro≥ β‖c − x∗‖Fro, then, according to (19) and
(14) and since F̃ is Lipschitz continuous with the constant LF,
we obtain

〈Fa(x)− Fa(x
∗),x− x∗〉 ≥ λ̃min{I −W}‖n‖2Fro

− αLF‖x− x∗‖2Fro
= −αLF‖x− x∗‖2Fro

+ λ̃min{I −W}
(

β2‖n‖2Fro
1 + β2

+
‖n‖2Fro
1 + β2

)

≥ −αLF‖x− x∗‖2Fro
+ λ̃min{I −W}

(

β2‖n‖2Fro
1 + β2

+
β2‖c− x∗‖2Fro

1 + β2

)

= b2‖x− x∗‖2Fro, (21)

where b2 = λ̃min{I−W}
1+ 1

β2

− αLF.



Thus, combining (20) and (21), we conclude that µr,Fa
=

min{b1, b2}. We proceed with showing existence of settings
under which µr,Fa

> 0. Indeed, we can choose β such that
b1 = α

(

µr

n − LF(β
2 + 2β)

)

is positive. It holds, for example,
if β2 + 2β = µr

2nLF

. Note that as µr

2nLF

> 0, there exists
some positive β > 0 solving the equation above. Further,
based on the choice of β > 0, we can proceed with settings
for α > 0. With these settings we need to guarantee that
b2 = λ̃min{I−W}

1+ 1

β2

− αLF > 0. It holds, for example, if

α = λ̃min{I−W}
2LF(1+ 1

β2
)
.

IV. GRADIENT ALGORITHMS WITH GEOMETRIC RATES

A. Gradient and Accelerated Gradient Algorithms for Strongly
Monotone Variational Inequalities
In this subsection we summarize the results presented in

[13] that allow us to set up distributed procedures with
geometric convergence to the Nash Equilibrium in games with
strongly monotone mappings.
Let Q ⊆ R

d be some convex closed subset of Rd and g :
Q → R

d be some operator on Q. The goal is to solve the
corresponding variational inequality problem V I(Q, g) (see
Definition 3). The paper [13] proposes the following standard
iterative gradient-type method to solve V I(Q, g):

x0 = x ∈ Q,

xk+1 = PQ

{

xk − λg(xk)
}

, k ≥ 0, (22)

where λ is some stepsize. Let the operator g be strongly
monotone with the constant µ and Lipschitz continuous with
the constant L over the set Q. Let γ = L

µ ≥ 1 be the condition
number of the operator g. In this case, given an optimal setting
of the stepsize λ, the procedure above converges to the unique
solution of V I(Q, g) with a geometric rate.

Theorem 5. ( [13]) Let the operator g be continuous, strongly
monotone with some constant µ > 0, and Lipschitz continuous
with some constant L > 0. Let x∗ be the unique solution
of V I(Q, g), where Q is convex and closed. Then, given the
optimal stepsize λ = µ

L2 , the following holds for the gradient
algorithm (22): ‖xk − x∗‖2≤ exp

{

− k
γ2

}

‖x0 − x∗‖2.
According to Theorem 5, the convergence rate of the

procedure (22) depends on the squared condition number γ2.
As γ > 1, the convergence rate would be faster, if the constant
factor γ2 is replaced by γ. To obtain this better dependence
of the rate on the condition number, namely to accelerate the
algorithm (22), the paper [13] follows the idea of the Nesterov
type acceleration in optimization of strongly convex functions
with Lipshitz continuous gradients (see [12], Section 2.2). For
this purpose the authors use the sequence of positive weights
{λt}, Sk =

∑k
t=0 λ

t, and the following functions:

ψβ
y (x) = 〈g(y), y − x〉 − 0.5β‖x− y‖2, (β > 0),

Ψk(x) =

k
∑

t=0

λtψµ
yt(x), (23)

where yt is some sequence generated by the corresponding
iterative process. The accelerated algorithm is based on the

definitions above and can be presented by the following
iterations:

λ0 = 1, y0 ∈ Q,

xk = argmax
x∈Q

Ψk(x),

yk+1 = argmax
x∈Q

ψL
xk(x),

λk+1 =
1

γ
· Sk, k ≥ 0. (24)

The following result holds for the procedure above.

Theorem 6. ( [13], Theorem 3) Let the operator g be
continuous, strongly monotone with some constant µ > 0, and
Lipschitz continuous with some constant L > 0. Let x∗ be the
unique solution of V I(Q, g), where Q is convex and closed.
Let the output of the algorithm (24) be ỹk = 1

Sk

∑k
t=0 λ

tyt.
Then 0.5µ‖ỹk − x∗‖2≤ f(y0) · γ2 exp

{

− k
γ+1

}

, where
f(y0) = supy∈Q{〈g(y), y0 − y〉+ 0.5µ‖y0 − y‖2}.
In the next section we apply the results above to set up and

accelerate distributed Nash equilibrium seeking in the case of
strongly monotone game mappings.

B. Distributed Algorithms for Nash Equilibrium Seeking
Recall that in Proposition 1 we obtained the following result

for the game Γ(n, {Ji}, {Ωi},A):

x∗ is a Nash Equilibrium ⇔ 〈Fa(x
∗),x− x∗〉 ≥ 0,

∀x ∈ Ωa, (25)

where Fa is defined in (10) and x∗ is the Nash equilibrium
matrix. Moreover, it was shown in Lemmas 1 and 2 that under
Assumptions 2 and 3 there are settings for the parameters αi,
i ∈ [n], such that the mapping Fa is Lipschitz continuous and
strongly monotone on Ωa with the constants LFa

and µFa

respectively (see also Remark 5). Thus, we can apply the re-
sults from [13] discussed in the preceding section to distributed
Nash equilibrium seeking in the game Γ(n, {Ji}, {Ωi},A).
We start with adapting the process (22) to V I(Ωa,Fa) in

(25) with the mappingFa(x) = (I−W )x+ΛF̃(x). Analogous
to notations in Subsection IV-A, we use the upper index to
denote the iteration index. By writing down the kth iteration
for each row in the estimation matrix xk we get the following
Algorithm 1.

Algorithm 1: GRANE
Set mixing matrix W ; Choose step size λ > 0;
All players i ∈ [n] pick arbitrary initial x0

(i) ∈ R
n,

where the ith coordinate of x0
(i) is from Ωi;

for k = 0, 1, . . ., all players i ∈ [n] do
xk+1
i = PΩi

{(1− λ)xk
i +

∑

j∈Ni

λwij x̃
k
(j)i

−λαi∇iJi(x
k
i , x̃

k
−i)};

for l = {1, · · · , i− 1, i+ 1, · · · , n}
x̃k+1
(i)l = (1− λ)x̃k

(i)l +
∑

j∈Ni

λwij x̃
k
(j)l;

end for;
end for.



As we can see, to run GRANE, agents start with arbitrary
estimations of the joint action, namely, they do not need
any prior information on the action sets of other players in
the game. As time runs, agents exchange the information
about their current estimations with their neighbors over the
communication graph with the mixing matrix W and update
their action based on local gradient steps. Thus, GRANE is a
distributed gradient algorithm. Moreover, due to the relation
(25), Lemmas 1, 2, and Theorems 3, 5, the following corollary
can be formulated.

Corollary 1. Let us consider the game Γ(n, {Ji}, {Ωi},A)
for which Assumptions 1-4 hold. Then there exists the unique
Nash equilibrium x∗ in Γ. Moreover, given αi, i ∈ [n], such
that µFa

> 0, and the stepsize λ =
µFa

LFa
2 , the estimation matrix

sequence {xk} generated by the algorithm GRANE satisfies

‖xk − x∗‖2Fro≤ exp

{

− k

γ2
Fa

}

‖x0 − x∗‖2Fro,

where γFa
=

LFa

µFa

and x∗ is the Nash equilibrium matrix.

To accelerate GRANE, we apply the updates in (24) to
the augmented game mapping Fa. To set up the accelerated
procedure, agents need to update not only the matrix xk,
but also an auxiliary estimation matrix yk. The matrix y0

is initialized in Ωa. Note that, according to the definition of
the functions ψ and Ψ in (23), the updates of xk and yk+1 in
(24) are equivalent to

xk =PQ

{

1

Sk

k
∑

i=0

[

λiyi − λi

µ
g(yi)

]

}

yk+1 =PQ

{

xk − 1

L
g(xk)

}

, (26)

where, as before, λ0 = 1, Sk =
∑k

t=0 λ
t, λk+1 = Sk

γ , µ
and L are the strong monotonicity and Lipschitz continuity
constants of the mapping g respectively, and γ = L

µ . Thus,
replacingQ and g by Ωa and Fa in (26) respectively, we obtain
the distributed accelerated process presented by Algorithm 2
below2. Similarly to GRANE, Acc-GRANE does not require
players to have any prior information on the action sets of other
players in the game. Taking into account (25), Lemmas 1, 2,
and Theorems 3, 6, we obtain the following corollary.

Corollary 2. Let us consider the game Γ(n, {Ji}, {Ωi},A)
for which Assumptions 1-4 hold. Then there exists the unique
Nash equilibrium x∗ in Γ. Moreover, given αi, i ∈ [n], such
that µFa

> 0, the matrix sequence of outputs {ỹk} generated
by the algorithm Acc-GRANE satisfies

0.5µFa
‖ỹk − x∗‖2Fro≤ F (y0) · γ2

Fa
exp

{

− k

γFa
+ 1

}

,

where γFa
=

LFa

µFa

, x∗ is the Nash equilibrium matrix, and
F (y0) = supy∈Ωa

{〈Fa(y),y
0 − y〉 + 0.5µFa

‖y0 − y‖2Fro}.

2Analogously to (3) and (4), we define vectors y(i) and ỹ
−i in respect to

the matrix y ∈ Ωa.

Remark 6. If in Assumption 2 one only assumes strongly
monotone game mapping F over Ω, then, according to Re-
mark 4, the augmented mapping Fa is strongly monotone over
the matrix set Ωa

′. In this case, if the initial estimations are
such that x0

(i) ∈ Ω and y0(i) ∈ Ω, i ∈ [n], in Algorithms 1
and 2 respectively, then Corollaries 1 and 2 hold, since, due
to the rules of the procedures, all estimations xk

(i), y
k
(i), i ∈ [n]

stay in the set Ω as time runs.

Algorithm 2: Acc-GRANE
Set mixing matrix W ; λ0 = 1;
All players i ∈ [n] pick arbitrary initial y0(i) ∈ R

n,
where the ith coordinate of y0(i) is from Ωi;
for k = 0, 1, . . ., all players i ∈ [n] do
Sk =

∑k
t=0 λ

t;
λk+1 = Sk

γFa

;
xk
i = PΩi

{ 1
Sk

∑k
t=0[λ

t(1− 1
µFa

)yti − λt

µFa

(
∑

j∈Ni

wij ỹ
t
(j)i

−αi∇iJi(y
t
i , ỹ

t
−i))]};

for l = {1, · · · , i− 1, i+ 1, · · · , n}
x̃k
(i)l =

1
Sk

∑k
t=0[λ

tỹt(i)l +
λt

µFa

∑

j∈Ni

λwij ỹ
t
(j)l];

end for;
yk+1
i = PΩi

{(1− 1
LFa

)xk
i − 1

LFa

[
∑

j∈Ni

wij x̃
k
(j)i

−αi∇iJi(x
k
i , x̃

k
−i)]};

for l = {1, · · · , i− 1, i+ 1, · · · , n}
yk+1
(i)l = x̃k

(i)l +
1

LFa

∑

j∈Ni

wij x̃
k
(j)l;

end for;
Output ỹk = 1

Sk

∑k
t=0 λ

tyt;
end for.

As it has been pointed out in Remark 5, the results of Corol-
laries 1 and 2 apply only to the class of games with strongly
monotone mappings that additionally satisfy the condition
µF >

√
n− 1L−i for all i, implying a restrictive structure

of cost functions. To set up the GRANE for a broader class
of games, we use Lemma 3 to get the following result.

Theorem 7. Let us consider the game Γ(n, {Ji}, {Ωi},A)
for which Assumptions 1, 3, 4, and 6 hold. Let each action
set Ωi, i ∈ [n], be compact. Then, there exists a unique
Nash equilibrium x∗ in Γ. Moreover, given αi = α > 0,
i ∈ [n], such that µr,Fa

> 0 in Lemma 3, and the stepsize
λ =

µr,Fa

LFa
2 , the estimation matrix sequence {xk} generated by

the algorithm GRANE satisfies

‖xk − x∗‖2Fro≤ exp

{

− k

γ2
r

}

‖x0 − x∗‖2Fro,

where γr =
LFa

µr,Fa

and x∗ is the Nash equilibrium matrix.

Proof. According to Theorem 4, there exists a Nash equilib-
rium x∗ in the game Γ(n, {Ji}, {Ωi},A) with compact action
sets and satisfying Assumptions 1. Moreover, it can be shown
that under Assumption 6 the Nash equilibrium is unique.
Indeed, due to Theorem 1, any Nash equilibrium x∗ ∈ Ω
solves V I(Ω,F), namely 〈F(x∗), x−x∗〉 ≥ 0 for any x ∈ Ω.
Let us assume there exists another Nash equilibrium y∗ ∈ Ω.



Then, the inequality above implies 〈F(x∗), y∗ − x∗〉 ≥ 0 and
〈F(y∗), x∗ − y∗〉 ≥ 0. Hence, 〈F(x∗)−F(y∗), x∗ − y∗〉 ≤ 0,
which together with Assumption 6 implies x∗ = y∗.
According to the previous discussion, the distributed set-

ting of the GRANE presented in Algorithm 1 can be ex-
pressed in terms of updates of estimation matrices follows:
xk+1 = PΩa

{

xk − λFa(x
k)
}

, k ≥ 0 for some x0 =
x ∈ Ωa. Moreover, since the Nash equilibrium matrix x∗

solves V I(Ωa,Fa) (see Proposition 1), we conclude that
x∗ = PΩa

{x∗ − λFa(x
∗)} for any λ > 0. Thus, we get the

following estimation for the distance to x∗ ∈ Ωa:

‖xk+1−x∗‖2Fro≤ ‖xk − λFa(x
k)− x∗ + λFa(x

∗)‖2Fro
= ‖xk − x∗‖2Fro+λ2‖Fa(x

k)− Fa(x
∗)‖2Fro

− 2λ〈Fa(x
k)− Fa(x

∗),xk − x∗〉. (27)

Next, according to Lemma 3, there exists α > 0
such that Fa is restricted strongly monotone in re-
spect to x∗ with some µr,Fa

> 0 and, hence,
λ〈Fa(x

k) − Fa(x
∗),xk − x∗〉 ≥ µr,Fa

‖xk − x∗‖2Fro.
Thus, taking into account Lemma 1, we obtain from (27)
that ‖xk+1 − x∗‖2Fro≤ (1 + LF

2λ2 − 2µr,Fa
λ)‖xk − x∗‖2Fro.

Hence, under the optimal choice of λ =
µr,Fa

LFa
2 , we conclude

that ‖xk+1 −x∗‖2Fro≤
(

1− 1
γ2
r

)

‖xk − x∗‖2Fro, and, thus, the
result follows.

Remark 7. Theorem 7 holds for games whose mapping is
restricted strongly monotone. Every strongly monotone map-
ping is restricted strongly monotone. Thus, for example, the
game of n = 3 players with the cost functions J1(x1, x−1) =
0.5x2

1 − x1x2, J2(x2, x−2) = 0.5x2
2 + x1x2 + x3x2, and

J3(x3, x−3) = 0.5x2
3 + x2x3 defined on the whole R

3 pos-
sesses the strongly monotone mapping with µF = 1. Note
that Assumption 3 holds as well with L−1 = L−3 = 1 and
L−2 ≥ 1. Thus, the result from Theorem 7 applies to this
game. However, Theorem 2 does not hold in this case, as
µF <

√
2L−i for all i (see Remark 5).

C. Discussion

In this section, we study how the functional conditions (Lip-
schitz constants, strong convexity, etc.), the graph topology
(algebraic connectivity), and the ratio parameter α affect the
convergence speed of the algorithms.
As illustrated in the above results, to reach ǫ-accuracy,

GRANE requires O(γ2
r log(1/ǫ)) iterations (Theorem 7) in

the case of the restricted strongly monotone augmented
game mapping Fa with the constant µr,Fa

, while Acc-
GRANE is applicable in the case of the strongly mono-
tone augmented game mapping Fa with the constant µFa

and needs O(γFa

[

log(2F (y0)) + log(γ2
Fa

/µFa
) + log(1/ǫ)

]

)
(Theorem 2), where we usually consider log(2F (y0)) and
log(γ2

Fa
/µFa

) to be negligible compared to log(1/ǫ). Thus, the
major factor that impacts the convergence rates/complexities
is γr and γFa

equal to LFa

µr,Fa

and LFa
/µFa

respectively.
First, let us consider the constant γFa

defining the conver-
gence rate of Acc-GRANE. We assume that Λ = αI and

denote H = maxi{L−i}. Then the condition number can be
expressed as follows:

γFa
= max

{

αLF+σmax{I−W}
λ̃min{I−W}−0.5α(

√
µ2

F
+H2−µF)

,

αLF+σmax{I−W}
α(µF−H

√
n−1)/n

}

.

By restricting to a smaller class of problems where H ≤
0.5µF/

√
n− 1, we are able to obtain that

γFa
≤ max

{

αLF+σmax{I−W}
λ̃min{I−W}−αµF/(16(n−1))

,

αLF+σmax{I−W}
αµF/(2n)

}

.
(28)

Note that in Lemma 2, Remark 5, and Theorem 2, the applica-
ble class of games is restricted to those withH ≤ µF/

√
n− 1.

In the following, we discuss the results under different choices
of α. Let us denote C = 16(n−1)λ̃min{I−W}

µF

.
If we choose α = C

9 , then

γFa
≤ 2nLF

µF

+ 9
8
λmax{I−W}
λ̃min{I−W} , (29)

where γF , LF/µF can be understood as the con-
dition number of the game mapping F and γG ,
λmax{I −W}/λ̃min{I −W} is strongly dependent on the
algebraic connectivity of the graph. When W is chosen in
the form of W = I − tL where L is the Laplacian matrix
of the graph G and t ∈ (0, 2/λmax{L}), we have γG =
λmax{L}/λ̃min{L} which coincides with the conventional
condition number of the Laplacian. An unpleasant comment
for (29) is that the number of nodes has a linear multiplicative
effect on the functional condition number γF, which implies
either the bound is not tight or the algorithm may suffer
slow convergence when the number of nodes becomes large.
Nonetheless an inspiring observation on (29) is that the condi-
tion number γFa

is upper bounded by the weighted sum of γG
and γF. This is very different from what many other decen-
tralized algorithms illustrate in the literature. For example, in
reference [24] for consensus optimization employing ADMM,
the analogous complexity derived under our notation would be
O((γ2

G + γGγF) log(1/ǫ)) where a multiplicative coupling of
γG and γF is noticed. More examples of such multiplicative
coupling can be found in Table II of reference [9].
By (28), if we choose α = rC where r ∈

(

0, 19
)

, then

γFa
≤ 2nLF

µF

+ 1
8r

n
n−1

λmax{I−W}
λ̃min{I−W} . (30)

If we choose α = rC where r ∈
(

1
9 , 1

)

, then

γFa
≤ r

1−r16n
LF

µF

+ 1
1−r

λmax{I−W}
λ̃min{I−W} . (31)

Note that the right-hand-sides of (30) and (31) are both larger
than the right-hand-side of (29). We can see that for any
absolute constant r ∈ (0, 1), we have γFa

= O(nγF + γG).
Furthermore, too large α or too small α can both lead to poor
scalability and slow convergence while a theoretically optimal
α is provided as α = C

9 .
Similarly to the discussion above, we can obtain the follow-

ing estimation for the constant γr from Theorem 7. Indeed,
under the choice of the parameters β and α as in Lemma 3,



γr ≤ max
{

αLF+σmax{I−W}
αμr,Fa

/2n , αLF+σmax{I−W}
λ̃min{I−W}

}
γr ≤ 2n LF

μr,Fa

+ λmax{I−W}
λ̃min{I−W}
γFa

γr =
O(nγr + γG)

{1, 2, . . . , 20} i ∈ [20]
xi

Ji(xi, x−i) = fi(xi) + li(x)xi

fi(xi) = 0.5aix
2
i xi

li(x) =
∑

j∈[20] cijxj

i
[0, di] di

[50, 100]

cij i
j cij 
= cji

C cij
[10, 20]

[1, 5] C
C

αi = α
ai i

x∗

12000 x∗

‖xk − x∗‖2Fro/‖xk − x0‖2Fro
α μFa

λ λ = 0.04
α

ai cij i, j = 1, . . . , 20
μFa

> 0

α

α
ai cij i, j = 1, . . . , 20 mini ai > 0

ai
bi cij α

Fa
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Fa

R
e
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v
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o
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to a better dependence on the condition number. Future works
can be devoted to the investigation of modifications for the
accelerated algorithm to make it applicable in games without
assumption on strongly monotone augmented game mappings.
Another future direction is to adapt the procedures to settings
that do not require knowledge of the strong monotonicity
constant and the Lipschitz continuity constant of the game
mapping.
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