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Learning Generalized Nash Equilibria in a Class of
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Abstract—We consider multi-agent decision making where
each agent optimizes its convex cost function subject to individual
and coupling constraints. The constraint sets are compact convex
subsets of a Euclidean space. To learn Nash equilibria, we propose
a novel distributed payoff-based algorithm, where each agent uses
information only about its cost value and the constraint value
with its associated dual multiplier. We prove convergence of this
algorithm to a Nash equilibrium, under the assumption that the
game admits a strictly convex potential function. In the absence
of coupling constraints, we prove convergence to Nash equilibria
under significantly weaker assumptions, not requiring a potential
function. Namely, strict monotonicity of the game mapping is
sufficient for convergence. We also derive the convergence rate
of the algorithm for strongly monotone game maps.

Index Terms—learning in games, payoff-based learning, multi-
agent decision making, distributed algorithms

I. INTRODUCTION

Decision making in multi-agent systems arises in engineer-
ing applications ranging from electricity markets to telecom-
munication and transportation networks [2, 37, 40]. Game
theory provides a powerful framework for analyzing and
optimizing decisions in multi-agent systems. The notion of an
equilibrium in a game characterizes stable solutions to multi-
agent decision making problems. In this work, we design a
distributed learning algorithm to converge to Nash equilibria
for a class of non-cooperative games modeled by convex
objective functions and coupling constraints.

There is a large body of work on computation of Nash
equilibria. The approaches differ mainly by the particular
structure of agents’ cost functions as well as the information
available to each agent. In a so-called potential game, a central
optimization problem can be formulated whose minimizers
coincide with a subset of the Nash equilibria of the game.
One can then leverage distributed optimization algorithms
to compute the minima of the potential function [21, 38],
despite agents’ limited information of others’ cost functions
or action sets. Distributed algorithms have also been designed
for the class of aggregative games [14, 31]. In general, for
implementation of the aforementioned distributed algorithms
each agent needs to know the structure of its cost function or
its derivative. Furthermore, agents may need to communicate
with each other or with a central entity, even if their strategy
spaces are decoupled.
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In contrast to deterministic distributed optimization ap-
proaches, learning approaches start with the assumption that
the each agent’s objective function or its derivative may not be
known to the agent itself nor to the other agents. They attempt
to compute Nash equilibria by sampling agents’ actions from a
set of probability distributions. These probability distributions
are updated based on the information available in the system.
In particular, most of the past work has focused on algorithms
that require the ability of each agent to evaluate its cost
function at any feasible point, given fixed actions of all other
agents, and convergence is established for the subclass of
potential games [24, 33, 45, 47].

In many practical situations the agents do not know func-
tional form of their objectives and can only access the values
of their objective functions at a played action. Such situations
arise, for example, in electricity markets (unknown price func-
tions or constraints) [26, 50], network routing (unknown traffic
demands/constraints) [5, 25], and sensor coverage problems
(unknown density function on the mission space) [55]. In such
cases, the information structure is referred to as payoff-based,
that is, each agent can only observe its obtained payoffs and be
aware of its local actions. A payoff-based learning algorithm
in potential games is proposed in [23] with the guarantee of
stochastic stability of potential function minimizers. However,
to implement this payoff-based algorithm agents need to have
some memory. Other algorithms requiring only payoff-based
information and memory are proposed in [10] and [55]. These
learning procedures assume a potential game and guarantee
convergence to a distribution over potential function minimiz-
ers in total variation. In [42] the idea of dynamic feedback is
utilized for matrix games and an extension of fictitious play is
proposed that considers empirical frequencies and their deriva-
tives. The convergence to Nash equilibrium in this setting is
established. Learning based approaches are also proposed in
[34] for non-potential games, where stochastic convergence to
the Nash equilibrium maximizing social welfare is guaranteed.

The above payoff-based procedures are applicable to games
with finite action spaces. For games with uncountable action
spaces, a payoff-based approach was developed based on ex-
tremum seeking [8]. The extremum seeking approach designs
a dynamic update law for the actions based on sinusoidally
perturbed measured payoffs. If the amplitude and frequency
of this sinusoid are chosen properly, locally asymptotically
stable equilibria of this dynamical system will correspond to
Nash equilibria of the game. This approach was extended
to account for stochastic noise affecting measurements of
the cost functions [44]. Given strongly convex cost functions
almost sure convergence to a Nash equilibrium was proven.
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An alternative payoff-based approach, inspired by the logit
dynamics in finite action games [4], was proposed in [46] in
a potential game setting. This approach considered sampling
agents’ actions from a Gaussian distribution. The result was
generalized to arbitrary games (not necessarily potential) with
uncoupled action sets in [48].

Despite considerable progress in learning algorithms for
games, the work on payoff-based learning has not considered
convex cost functions and coupling constraints on agents’
actions. In several realistic scenarios in which players share
resources each player’s feasible strategy space depends on
the other players’ actions. For example, in an electricity
market, there are coupling constraints due to the underly-
ing physical electricity network. Similar constraints exist in
a transportation or telecommunication network and general
deregulated economy problems [41]. The Nash equilibria in a
game with coupling constraints are referred to as generalized
Nash equilibria. Ensuring uniqueness of these equilibria and
computing them is a lively research topic [6].

We focus on learning equilibria in a subset of generalized
Nash equilibrium problems in which the coupling constraint
is shared among the agents and is jointly convex (convex in
all actions). In this setting, one can formulate a variational
equilibrium problem to characterize a subset of the generalized
Nash equilibria, referred to as variational equilibria [6]. In
addition to computational advantages, variational equilibria
present few desired practical properties. For example, since
in this equilibrium, the dual multiplier associated to the joint
constraint is equal across all players, there is a well-defined
cost associated to constraint violation. Note that variational
equilibria are also a subset of the normalized equilibria, intro-
duced in the seminal work [36], where the normalizing coeffi-
cients considered in [36] would be constant across all players.
The authors in [20] further derived theoretical connections
between variational equilibria and generalized Nash equilibria
and showed that in the interior of the shared constraint sets,
the two equilibria concepts are equivalent.

Recent research has focused on distributed algorithms for
computing generalized Nash equilibria. Authors in [53] con-
sider variational equilibria in monotone games and propose a
primal-dual distributed algorithm. Similarly, [30, 9] addresses
decentralized computation of variational equilibria for ag-
gregative games. In [39] a distributed primal-dual algorithm
for computing generalized Nash equilibria is proposed for a
network game. In the network game setting, it is assumed that
there exists a communication graph through which each player
can share its strategy information with its neighbors. Hence,
some coordination between agents is needed. In all the above
work, each agent needs to know the functional form of their
cost function or its gradient. The work in [54] suppresses this
requirement and develops a primal-dual algorithm for learning
generalized Nash equilibria. Nevertheless, players need to
exchange information with their neighbors according to the
network graph. As such, they can estimate the gradients of
their cost functions online using neighborhood information.

The approach to estimate the gradient of a cost function
online is well-studied in the stochastic optimization literature
[28]. In the game setting however, this approach necessitates

some coordination between agents. This is because for a given
player to estimate the gradient of its cost function, it needs
to evaluate this cost function at at least two points of its
strategy space while other agents who influence the player’s
cost function should not change their actions (otherwise, the
player cannot attribute the decrease/increase of its cost to its
own actions and hence, the gradient cannot be estimated). Our
goal is to develop a payoff-based algorithm that bypasses the
need for coordination or information exchange during each
step of the algorithm. Naturally however, similar to all past
algorithms, the agents must agree to implement the algorithm.

Our contributions are as follows. First, we develop a payoff-
based approach for computing Nash equilibria in a class
of convex games with jointly convex coupling constraints.
Second, we prove almost sure convergence of the algorithm
to variational Nash equilibria, under the existence of a strictly
convex potential function. Third, in the absence of coupling
constraints, we prove almost sure convergence to variational
Nash equilibria, relaxing the requirement of existence of a
potential function. Fourth, for this latter setup, we quantify
the convergence rate of the payoff-based algorithm if the
game map is strongly monotone. While our setup is similar
to [36, 53, 54, 30], in contrast to the above work we do
not require knowledge of the cost functions, constraints or
their gradients [30, 53]. Also, we require neither information
exchange between players [39, 54], nor knowledge of a norm
bound on the dual multipliers of the coupling constraints [54].

Our approach is detailed as follows. We extend the game
to define a player corresponding to the dual multiplier of
the coupling constraints, similar to [53, 54, 30, 9]. We then
develop a novel sampling based approach, in which the prob-
ability distributions from which agents sample their actions
are Gaussian, inspired by the literature on learning automata
[51]. The mean of the distribution is updated iteratively by
each agent based only on its own current payoff and local
constraint set. The dual player, on the other hand, updates its
action deterministically by measuring constraint violation at
each time step. Notice that similar to [30, 54] the dual player
is a fictitious player. It can refer to a central coordinator who
measures the constraint violation at each step. Alternatively,
if each agent can locally measure the constraint violation, it
can update its dual variable. Furthermore, similar to primal-
dual algorithms in [30, 53, 54] constraints are satisfied upon
convergence of the algorithm. To prove convergence of our
algorithm we leverage results on Robbins-Monro stochastic
approximation [3, 29]. We quantify the convergence rate based
on rate estimates in stochastic projection algorithms [43].

This paper is organized as follows. In Section II, we set
up the game under consideration. In Section III, we pro-
pose our payoff-based approach and present its convergence
result. Section IV develops the proof of the main result
using supporting theorems on stochastic random variables. In
Section V, we relax the coupling constraint and consequently,
the requirements for convergence of the proposed algorithm.
Furthermore, we provide a convergence rate for this latter case.
A case study is provided in Section VI based on a game arising
in a classical Cournot economic model. In Section VII, we
summarize the result and discuss future work.
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Notations and basic definitions. The set {1, . . . , N} is de-
noted by [N ]. Boldface is used to distinguish between vectors
in a multi-dimensional space and scalars. Given N vectors
xi ∈ Rd, i ∈ [N ], [xi]Ni=1 := [x1>, . . . ,xN

>
]> ∈ RNd;

x−i := [x1, . . . ,xi−1,xi+1, . . . ,xN ] ∈ R(N−1)d. Rd+ and
Z+ denote respectively, vectors from Rd with non-negative
coordinates and non-negative whole numbers. The standard
inner product on Rd is denoted by (·, ·): Rd ×Rd → R, with
associated norm ‖x‖ :=

√
(x,x). We let Rd≤K = {x ∈ Rd :

‖x‖ ≤ K}. Id represents the d-dimensional identity matrix
and 1N represents the N -dimensional vector of unit entries.
Given some matrix A ∈ Rd×d, A � (�)0, if and only if
x>Ax ≥ (>)0 for all x 6= 0.

Given a function g(x,y) : Rd1 × Rd2 → R, we define the
mapping ∇xg(x,y) : Rd1 × Rd2 → Rd1 component-wise as
[∇xg(x,y)]i := ∂g(x,y)

∂xi . We use the big-O notation, that is,
the function f(x) : R → R is O(g(x)) as x → a, f(x) =
O(g(x)) as x → a, if limx→a

|f(x)|
|g(x)| ≤ K for some positive

constant K. We say that a function f(x) grows not faster than
a function g(x) as x→∞, if there exists a positive constant
Q such that f(x) ≤ g(x) for any x with ‖x‖ ≥ Q.

Definition 1: The mapping M : Rd → Rd is called pseudo-
monotone over X ⊆ Rd, if (M(y),x − y) ≥ 0 implies
(M(x),x− y) ≥ 0 for every x,y ∈ X .

Definition 2: The mapping M : Rd → Rd is called strongly
monotone over X ⊆ Rd with constant κ > 0, if (M(x) −
M(y),x − y) ≥ κ‖x − y‖2 for any x,y ∈ X . It is strictly
monotone if (M(x)−M(y),x− y) > 0 for any x,y ∈ X .

Definition 3: Let C be a convex constraint set described by
a finite set of convex inequality constraints C = {x ∈ Rd :
f i(x) ≤ 0, i ∈ [m]}. The Slater’s constraint qualification
consists in existence of a strictly feasible point x∗ ∈ C,
f i(x∗) < 0 for i ∈ [m].

II. PROBLEM FORMULATION

A. Convex games with coupling constraints

We consider a game Γ(N, {Ai}, {Ji}, C) with N players.
We assume that the action of the ith player is locally con-
strained to ai ∈ Ai ⊂ Rd and that the vector of joint actions1,
a = [a1 . . . ,aN ] ∈ A = A1 × . . . × AN , has to belong to a
global coupling constraint set C, namely

a ∈ C = {a ∈ A : g(a) ≤ 0}, (1)

where g : RNd → Rn with coordinates gi(a), i ∈ [n]. Let
Q = A∩C, Qi(a−i) = {ai ∈ Ai : g(ai,a−i) ≤ 0}. The cost
functions Ji : RNd → R indicate the cost Ji(a) the agent
i has to pay, given any joint action a ∈ Q. Throughout this
paper we assume Ai to be compact for all i ∈ [N ].

A generalized Nash equilibrium (GNE) in a game Γ with
coupled actions represents a joint action from which no player
has any incentive to unilaterally deviate.

Definition 4: A point a∗ ∈ Q is called a generalized Nash
equilibrium (GNE) if for any i ∈ [N ] and ai ∈ Qi(a∗−i)

Ji(a
∗i,a∗−i) ≤ Ji(ai,a∗−i).

1All results below are applicable for games with different dimensions {di}
of the action sets {Ai}.

If C = RNd then Qi(a−i) = {ai : ai ∈ Ai} and any a∗ for
which the inequality above holds is a Nash equilibrium (NE).

We consider convex games as follows.
Assumption 1: The game under consideration is convex.

Namely, for all i ∈ [N ] the set Ai is convex and compact,
the cost function Ji(ai,a−i) is defined on RNd, continuously
differentiable in a and convex in ai for fixed a−i. The
coupling constraint function g : RNd → Rn is continuously
differentiable and has convex coordinates gi(a), i ∈ [n].

Given differentiable cost functions, we define the game
mapping and the extended game mapping.

Definition 5: The mapping M : RNd → RNd, referred to
as the game mapping of Γ(N, {Ai}, {Ji}, C) is defined by

M(a) =

[M1,1(a), . . . ,M1,d(a), . . . ,MN,1(a), . . . ,MN,d(a)]>,

Mi,k(a) =
∂Ji(a)

∂aik
, a ∈ Q = A ∩ C, i ∈ [N ], k ∈ [d]. (2)

Definition 6: The mapping M0 : RNd+n →
RNd+n, referred to as the extended game mapping of
Γ(N, {Ai}, {Ji}, C) with coupled actions, is defined by

M0(a,λ) = [M0
1(a,λ), . . . ,M0

N (a,λ),−g(a)]>,

M0
i (a,λ) = [M0

i,1(a,λ), . . . ,M0
i,d(a,λ)], i ∈ [N ],

M0
i,k(a,λ) = Mi,k(a) +

∂
(
λ,g(a)

)
∂aik

, a ∈ Q = A ∩ C,

i ∈ [N ], k ∈ [d]. (3)

To design an algorithm with bounded iterates, we need the
following standard assumptions [30, 53, 54, 6].

Assumption 2: The coordinates M0
i (a,λ) : RNd+n → Rd

of extended mapping M0(a,λ) : RNd+n → RNd+n of a
game Γ(N, {Ai}, {Ji}, C) with coupled actions are Lipschitz
on RNd with respect to coordinates a with a linear function
Li(λ) . The function g(a) is Lipschitz on RNd. Moreover,
the extended game mapping M0(a,λ) is pseudo-monotone
on Q× Rn+ = (A ∩ C)× Rn+.

Assumption 3: The sets Ai, i ∈ [N ], A, and Q satisfy the
Slater’s constraint qualification (see Definition 3).

Assumption 4: The cost functions Ji(a), i ∈ [N ], grow not
faster than a quadratic function of ai as ‖ai‖ → ∞.

Let us provide some insight on the assumptions above.
Remark 1: If agents’ cost functions are quadratic and

coupling constraints are linear, the extended game mapping
is affine, namely M0(a,λ) = M [a,λ]> + m, where M ∈
R(Nd+n)×(Nd+n) andm ∈ RNd+n. The affine mapping above
is pseudo-monotone if M is positive semi-definite [11]. This
is in particular fulfilled if the quadratic forms of the cost func-
tions are positive definite or semi-definite (see [31] and [48],
respectively). However, if the affine map is pseudo-monotone
for every m then M is positive semi-definite and hence the
map is also monotone [11]. In general, monotonicity implies
pseudo-monotonicity and the former is more stringent2.

Remark 2: Since the extended mapping M0(a,λ) is affine
in λ, the Lipschitz condition for M0(a,λ) in Assumption 2

2As an example, gradient of any pseudo-convex function such as x3 + x
is pseudo-monotone but not necessarily monotone.
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above holds if the coordinates M i(a), i ∈ [N ], of game map-
ping M(a) and the functions ∂gj(a)

∂aik
, j ∈ [n], i ∈ [N ], k ∈ [d],

are Lipschitz with respect to their argument a = (a1, . . . ,aN )
with some constants li, lkj,i respectively.

Remark 3: Given Lipschitz continuity of g on RNd, the
functions gi(a), i ∈ [n], grow not faster than a linear function
of a as ‖a‖ → ∞. Furthermore, since the action sets are
compact, we can always approximate Ji outside Ai by a
quadratic function without loss of generality.

B. Generalized Nash equilibria and Variational Inequalities

Here, we prove that the set of GNE is nonempty,
given fulfillment of Assumptions 1-3 for the game
Γ(N, {Ai}, {Ji}, C). This result will be obtained through con-
necting generalized Nash equilibria and solutions of variational
inequalities. Moreover, we model an uncoupled action game
associated with the game Γ and establish the relation between
its Nash equilibria and the GNE of the game Γ. Existence
of such an uncoupled action game will allow us to present a
payoff-based approach to learning GNE in the initial game Γ.

Definition 7: Consider a mapping T (·): Rd → Rd and a
set Y ⊆ Rd. The solution set SOL(Y,T ) to the variational
inequality problem V I(Y,T ) is a set of vectors y∗ ∈ Y such
that (T (y∗),y − y∗) ≥ 0, for all y ∈ Y .
Given V I(Y,T ), suppose that the set Y is compact, convex
and that the mapping T is continuous. Then, SOL(Y,T ) is
nonempty and compact (see Corollary 2.2.5 in [32]. )

For a game Γ(N, {Ai}, {Ji}, C) with coupled actions Q =
A ∩ C, we can define V I(Q,M), where M is the game
mapping defined in (2). Under Assumption 1, Theorem 2.1
in [7] implies that SOL(Q,M) is non-empty and if a∗ ∈
SOL(Q,M), then a∗ is a GNE in the game Γ.

A challenge in developing a payoff-based learning based
algorithm lies in the coupling constraint C. Hence, our goal
is to develop a game with uncoupled actions whose equilibria
can be used to find those of the original game Γ. To do so,
we first define an associated game Γa(A× Rn+) as follows:

Γa(A× Rn+) = Γa(N + 1, {J0
i }i∈[N+1], {{Ai}i∈[N ],Rn+}),

(4)

with N +1 players. The first N players are called regular and
the (N + 1)th player is called dual. The action sets of the
regular players coincide with the local action sets {Ai} of the
players in the initial game Γ, whereas the action set of the
dual player is the set Rn+. The cost functions of the players in
Γa(A× Rn+) are defined as follows:

J0
i (ai,a−i,λ) = Ji(a

i,a−i) + (λ,g(ai,a−i)), i ∈ [N ],

J0
N+1(a,λ) = −(λ,g(a)). (5)

So, the cost function of each regular player i ∈ [N ] in the
game Γa(A×Rn+) is composed of two terms: the original cost
function from the game Γ plus an additional term that depends
on the strategy λ of the dual player and on the influence of
the current joint action in the coupling constraint. As λ ≥ 0,
the latter can be interpreted as a term penalizing violations of
the global constraint by the given joint action.

Lemma 1: Let Γ(N, {Ai}, {Ji}, C) be a game for which
Assumptions 1-3 hold. Then,

1) [a∗,λ∗] ∈ A×Rn+ is a Nash equilibrium in Γa(A×Rn+),
if and only if [a∗,λ∗] ∈ SOL(A× Rn+,M

0),
2) if [a∗,λ∗] is a Nash equilibrium in Γa(A × Rn+), then
a∗ is a GNE of Γ,

3) there exists a Nash equilibrium [a∗,λ∗] in Γa(A×Rn+),
4) for any Nash equilibrium [a∗,λ∗] in Γa(A× Rn+) there

exists a constant K > 0 such that ‖λ∗‖ ≤ K.
Please refer to the appendix for the proof of the above lemma.

III. PAYOFF-BASED ALGORITHM

Let xi(t) = [xi1(t), . . . , xid(t)]
> ∈ Rd denote the stra-

tegy of player i at iteration t referred to as its state and
Ĵ0
i (t) = J0

i (x1(t), . . . ,xN (t),λ(t)) the current value of its
cost at a joint state. Each regular player i ∈ [N ], “mixes”
its state, namely, it chooses its state xi(t) randomly accord-
ing to the multidimensional normal distribution N(µi(t) =
[µi1(t), . . . , µid(t)]

>, σi(t)) with density:

pi(x
i
1, . . . , x

i
d;µ

i(t), σi(t))

=
1

(
√

2πσi(t))d
exp

{
−

d∑
k=1

(xik − µik(t))2

2σ2
i (t)

}
,

where i ∈ [N ]. Our choice of Gaussian distribution is based
on the idea of Continuous Action-set Learning Automaton
presented in the literature on learning automata [51].

The mean µi(t) of the state’s distribution is considered an
action of the regular agent i and is updated as follows:

µi(t+ 1) = (6)

ProjAi

[
µi(t)− γi(t+ 1)σ2

i (t+ 1)Ĵ0
i (t)

xi(t)− µi(t)
σ2
i (t)

]
,

where i ∈ [N ], γi(t + 1) is a step-size parameter chosen by
player i and ProjAi [·] denotes the projection on set Ai. The
initial value of µ(0) can be set to any finite value arbitrarily.

As for the dual player N + 1, it updates its current action
λ(t) based only on the observation of the violation of the
constraint C, namely based on the actual value ĝ(t), of the
function g(x1(t), . . . ,xN (t)) at the current joint state of the
regular players as follows:

λ(t+ 1) = ProjRn+ [λ(t) + β0(t+ 1)ĝ(t)], (7)

where β0(t + 1) is a step-size parameter chosen by the dual
player N + 1. The initial value of λ(0) can be arbitrarily set
to any finite value.

Note that in contrast to the approach in computing general-
ized Nash equilibria presented in [54], our proposed payoff-
based algorithm does not rely on the specified bound K
of the dual variable λ∗ in the associated bounded game
Γab(A×Rn≤K+r), nor does it assume a communication graph
between agents to estimate local gradients.

To analyze the convergence of this algorithm, we show that
this algorithm is analogous to the Robbins-Monro stochastic
approximation procedure [3].
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Given σ = (σ1, . . . , σN ), for any j ∈ [N + 1] define

J̃0
j (µ1, . . . ,µN ,λ,σ) =

∫
RNd

J0
j (x,λ)p(µ,x,σ)dx,

p(µ,x,σ) =

N∏
j=1

pj(x
j
1, . . . , x

j
d;µ

j , σj).

For j ∈ [N +1], J̃0
j can be interpreted as the jth player’s cost

function in mixed strategies of the regular players, given that
the mixed strategies of these players are multivariate normal
distributions {N(µi, σi)}i∈[N ]. It follows that the second terms
inside the projections in (6) and (7) are samples of the gradient
of the cost function with respect to these mixed strategies. In
particular, we can verify that for all µ ∈ A3

Ex(t){Ĵ0
i (t)

xik(t)− µik(t)

σ2
i (t)

} (8)

=E{J0
i (x1(t), . . . ,xN (t),λ(t))

xik(t)− µik(t)

σ2
i (t)

|

xik(t) ∼ N(µik(t), σi(t)), i ∈ [N ], k ∈ [d]}

=
∂J̃0

i (µ1(t), . . . ,µN (t),λ(t),σ(t))

∂µik
, ∀i ∈ [N ], k ∈ [d],

Ex(t){ĝ(t)} = E{g(x1(t), . . . ,xN (t))| (9)

xik(t) ∼ N(µik(t), σi(t)), i ∈ [N ], k ∈ [d]}
=−∇λJ̃0

N+1(µ1(t), . . . ,µN (t),λ(t),σ(t)).

Using the notation η(t) = [µ(t),λ(t)], we can rewrite the
algorithm steps (6)-(7) in the following form:

µi(t+ 1) = ProjA[µi(t)− γi(t+ 1)σ2
i (t+ 1) (10)

×
(
M0

i (η(t)) +Qi(η(t),σ(t)) +Ri(η(t),x(t),σ(t))
)
],

λ(t+ 1) = ProjRn+ [λ(t)− β0(t+ 1)×
(
− g(µ(t)) (11)

+QN+1(η(t),σ(t)) +RN+1(η(t),x(t),σ(t))
)
],

where for i ∈ [N ]

Qi(η(t),σ(t)) = M̃
0

i (η(t),σ(t))−M0
i (η(t)),

Ri(x(t),η(t),σ(t)) = F i(x(t),η(t),σ(t))− M̃0

i (η(t), σ(t)),

F i(x(t),η(t),σ(t)) = Ĵ0
i (t)

xi(t)− µi(t)
σ2
i (t)

,

and M̃
0

i (·) = [M̃0
i,1(·), . . . , M̃0

i,d(·)]> is the d-dimensional
mapping with the following elements:

M̃0
i,k(η(t),σ(t)) =

∂J̃0
i (η(t),σ(t))

∂µik
, for k ∈ [d]. (12)

Furthermore,

QN+1(η(t),σ(t)) = M̃
0

N+1(η(t),σ(t)) + g(µ(t)),

RN+1(x(t),η(t),σ(t)) = −ĝ(t)− M̃0

N+1(η(t),σ(t)),

and M̃
0

N+1(η(t),σ(t)) = ∇λJ̃0
N+1(η(t),σ(t)). The algo-

rithm (10)-(11) falls under the framework of Robbins-Monro
stochastic approximations procedure [3], where

M0(η(t)) = [M0
1(η(t)), . . . ,M0

N (η(t)),−g(µ(t))],

3Assumption 4 and compact set A justify differentiation under the integral
sign of J̃0

i (µ
1(t), . . . ,µN (t),λ(t),σ(t)).

corresponds to the gradient term in stochastic approximation
procedures. Furthermore,

Q(η(t),σ(t)) = [Q1(η(t),σ(t)), . . . ,QN (η(t),σ(t)),

QN+1(η(t),σ(t))],

is a disturbance of the gradient term, and

R(x(t),η(t),σ(t)) = [R1(x(t),η(t),σ(t)), . . . ,

RN (x(t),η(t),σ(t)),RN+1(x(t),η(t),σ(t))],

is a Martingale difference. Namely, according to (8) and (9),

Ri(x(t),η(t),σ(t)) = F i(x(t),η(t),σ(t)) (13)
− Ex(t){F i(x(t),η(t),σ(t))}, i ∈ [N ],

RN+1(x(t),η(t),σ(t)) = −ĝ(t) + Ex(t){ĝ(t)}. (14)

To ensure convergence of the iterates η(t), the step-sizes
β0(t), σi(t), γi(t), i ∈ [N ], need to satisfy certain assump-
tions. Let βi(t) = γi(t)σ

2
i (t), βmin(t) = mini∈{0,[N ]} βi(t),

βmax(t) = maxi∈{0,[N ]} βi(t), γmax(t) = maxi∈[N ] γi(t).
Assumption 5: The variance parameters σi(t) and the step-

size parameters β0(t), γi(t), i ∈ [N ], are chosen such that
1)
∑∞
t=0 βmin(t) =∞,

2)
∑∞
t=0 βmax(t)− βmin(t) <∞,

3)
∑∞
t=0 γ

2
max(t) <∞,

∑∞
t=0 γmax(t)σ3

max(t) <∞.
Remark 4: Similar to [16] the agents choose algorithm

parameters independently and the only coordination is in
Assertion 2) above. An example of sequences γi(t), σi(t),
i ∈ [N ], β0(t) is the protocol for distributed optimization
schemes [16], where each regular agent picks a positive integer
Ri, i ∈ [N ], the dual player picks a positive integer N0,
and γi(t) = 1

(t+Ri)a
, σi(t) = 1

(t+Ri)b
, i ∈ [N ], β0(t) =

1
(t+N0)a+2b , with a+ 2b ∈ (0.5, 1], 2a > 1, and a+ 3b > 1.

For our convergence results under coupling constraints, we
will consider potential games as defined below.

Assumption 6: The game Γ(N, {Ai}, {Ji}, C) admits a
strictly convex potential function f : RNd → R, with
∂f(a)
∂aik

= Mi,k(a). This is equivalent to the Jacobian of the
game mapping M : RNd → RNd being symmetric (Theorem
1.3.1 in [32]. )

Theorem 1: Let Assumptions 1-4, 6 hold in a game
Γ(N, {Ai}, {Ji}, C). Let the regular players choose the
states {xi(t)} at time t according to the normal distribution
N(µi(t), σi(t)), where the mean parameters are updated as in
(6). Let the action λ(t) of the dual player is updated according
to (7). Let the variance parameters and the step-size parameters
satisfy Assumption 5 Then, as t→∞, the mean vector µ(t)
converges almost surely to the generalized Nash equilibrium
µ∗ = a∗ of the game Γ, given any initial vector [µ(0),λ(0)],
and the joint state x(t) converges in probability to a∗.

Remark 5: Analogously to optimization methods based on
the gradient descent iterations, condition 1) in Assumption 5,∑∞
t=0 βmin(t) =∞, guarantees sufficient energy for the time-

step parameter γi(t)σ2
i (t) to let the algorithm (10)-(11) get

to a neighborhood of a desired stationary point for each i,
whereas condition

∑∞
t=0 γ

2
max(t) < ∞ ensures the algorithm

converges as time goes to infinity.
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IV. ANALYSIS OF THE ALGORITHM CONVERGENCE

Our approach in proving Theorem 1 is to first prove
boundedness of the iterates η(t). Next, we show that the limit
of the iterates η(t) exists and satisfies the conditions for being
a variational equilibrium of the game Γ(N, {Ai}, {Ji}, C).

A. Boundedness of the Algorithm Iterates

First, we demonstrate that under conditions of Theorem 1
the vector η(t) stays almost surely bounded for any t ∈ Z+.

Lemma 2: Let Assumptions 1-4 hold in a game
Γ(N, {Ai}, {Ji}, C) with coupled actions and η(t) =
[µ(t),λ(t)] be the vector updated in the run of the payoff-
based algorithm (10)-(11). Let the variance parameters
and the step-size parameters satisfy Assumption 5. Then,
Pr{supt≥0 ‖η(t)‖ <∞} = 1.

Proof: In the following, for simplicity in notation, we
omit the argument σ(t) in the terms M0, M̃

0
, Q, and R.

In certain derivations, for the same reason we omit the time
parameter t as well. According to the vector form of the
algorithm (10)-(11),

µi(t+ 1) =ProjAi [µ
i(t)− βi(t+ 1)(M0

i (η(t)) (15)

+Qi(η(t)) +Ri(η(t),x(t)))],

λ(t+ 1) =ProjRn+ [λ(t)− β0(t+ 1)× (−g(µ(t)) (16)

+QN+1(η(t)) +RN+1(η(t),x(t)))].

Let η∗ = [µ∗,λ∗] ∈ A × Rn+ be a Nash equilibrium of the
associated game Γa(A×Rn+). This equilibrium exists and its
norm is bounded, namely ‖η∗‖ <∞, according to Lemma 1,
Assertions 1) and 3).

Let us define the function V (η) = ‖η−η∗‖2. We consider
the generating operator of the Markov process η(t)

LV (η) = E[V (η(t+ 1)) | η(t) = η]− V (t,η).

Our goal is to show that LV (η(t)) satisfies sufficient decay,
as per results on stability of discrete-time Markov processes
([29], Theorem 2.5.2). That is,

LV (η(t)) ≤ −α(t+ 1)ψ(η(t)) + f(t)(1 + V (η(t))),

where the functions ψ(.) ≥ 0, f(.) > 0 will be identified as per
requirements of ([29], Theorem 2.5.2) (repeated in Theorem 4
in the appendix for completeness).

Taking into account the iterative procedure for the update of
η(t) above and the non-expansion property of the projection
operator on a convex set, we get

‖µi(t+ 1)− µ∗i ‖2 = ‖ProjAi [µi(t)− βi(t+ 1)(M0
i (η(t))

+Qi(η(t)) +Ri(x(t),η(t)))]− µ∗i ‖2

≤ ‖µi(t)− µ∗i − βi(t+ 1)(M0
i (η(t))

+Qi(η(t)) +Ri(x(t),η(t)))‖2

= ‖µi(t)− µ∗i ‖2 − 2βi(t+ 1)(M0(η(t)),µi(t)− µ∗i )
− 2βi(t+ 1)(Qi(η(t)) +Ri(x(t),η(t)),µi(t)− µ∗i )
+ β2

i (t+ 1)‖Gi(x(t),η(t))‖2,
(17)

where, for ease of notation we have defined

Gi(x(t),η(t)) = M0
i (η(t)) +Qi(η(t)) +Ri(x(t),η(t)).

(18)

Similarly, we can bound the dual term

‖λ(t+ 1)− λ∗‖2

= ‖ProjRn+ [λ(t)− β0(t+ 1)(−g(µ(t)) +QN+1(η(t))

+RN+1(η(t),x(t)))]− λ∗‖2

≤ ‖λ(t)− λ∗ − β0(t+ 1)(−g(µ(t)) +QN+1(η(t))

+RN+1(x(t),η(t)))‖2

= ‖λ(t)− λ∗‖2 − 2β0(t+ 1)(−g(µ(t)),λ(t)− λ∗)
− 2β0(t+ 1)(QN+1(η(t)) +RN+1(x(t),η(t)),λ(t)− λ∗)

+ β2
0(t+ 1)‖GN+1(x(t),η(t))‖2, (19)

with

GN+1(x(t),η(t))

= −g(µ(t)) +QN+1(η(t)) +RN+1(x(t),η(t)). (20)

Thus, taking into account the Martingale properties in (13)
and (14) of the terms Rj , j ∈ [N + 1], we obtain

LV (η) = E[‖η(t+ 1)− η∗‖2|η(t) = η]− ‖η − η∗‖2

=

N∑
i=1

(
E[‖µi(t+ 1)− µ∗i ‖2|η(t) = η]− ‖µi − µ∗i ‖2

)
+ E[‖λ(t+ 1)− λ∗‖2|η(t) = η]− ‖λ− λ∗‖

≤ − 2

N∑
i=1

βi(t+ 1)(M0
i (η),µi − µ∗i )

− 2β0(t+ 1)(−g(µ),λ− λ∗)

− 2

N∑
i=1

βi(t+ 1)(Qi(η),µi − µ∗i )

− 2β0(t+ 1)(QN+1(η),λ− λ∗)

+

N∑
i=1

β2
i (t+ 1)E{‖Gi(x(t),η(t))‖2|η(t) = η}

+ β2
0(t+ 1)E{‖GN+1(x(t),η(t))‖2|η(t) = η}.(21)

Now, we bound the first two terms in the last expression above.

− 2

N∑
i=1

βi(t+ 1)(M0
i (η),µi − µ∗i )

− 2β0(t+ 1)(−g(µ),λ− λ∗)
= −2βmin(t+ 1)(M0(η),η − η∗)

+ 2βmin(t+ 1)(M0(η),η − η∗)

− 2

N∑
i=1

βi(t+ 1)(M0
i (η),µi − µ∗i )

− 2β0(t+ 1)(−g(µ),λ− λ∗)
≤ −2βmin(t+ 1)(M0(η),η − η∗)

+ 2(βmax(t+ 1)− βmin(t+ 1))‖M0(η)‖‖η − η∗‖
≤ −2βmin(t+ 1)(M0(η),η − η∗)

+ 2(βmax(t+ 1)− βmin(t+ 1))k1(1 + V (η)), (22)
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for some constant k1 > 0, where the last inequality is due
to the linear behavior of the mapping M0(η) at infinity (see
Assumption 4). Hence, (21) and (22) imply

LV (η) ≤ −2βmin(t+ 1)(M0(η),η − η∗)
+ 2(βmax(t+ 1)− βmin(t+ 1))k1(1 + V (η))

+ 2

N∑
i=1

βi(t+ 1)‖Qi(η)‖‖µi − µ∗i ‖

+ 2β0(t+ 1)‖QN+1(η)‖‖λ− λ∗‖

+

N∑
i=1

β2
i (t+ 1)E{‖Gi(x(t),η(t))‖2|η(t) = η}

+ β2
0(t+ 1)E{‖GN+1(x(t),η(t))‖2|η(t) = η}.

(23)

Let us analyze the terms containing Qi for i ∈ [N + 1] in
(23). First, we will show that the mapping M̃

0

i (η(t)) (see (12))
evaluated at η(t) is equivalent to the extended game mapping
(see Definition 6) in mixed strategies, that is, for i ∈ [N + 1]

M̃
0

i (η(t)) =

∫
RNd

M0
i (x,λ)p(µ(t),x)dx. (24)

Indeed, using the notations

µi−k = (µi1, . . . , µ
i
k−1, µ

i
k−1, . . . µ

i
d) ∈ Rd−1,

xi−k = (xi1, . . . , x
i
k−1, x

i
k−1, . . . x

i
d) ∈ Rd−1,

p(µi−k, x
i
−k) =

1

(
√

2πσi)d−1
exp

−∑
j 6=k

(xij − µij)2

2σ2
i


p(µ−i,x−i) =

N∏
j 6=i,j=1

1

(
√

2πσj)d
exp

{
−

d∑
k=1

(xjk − µ
j
k)2

2σ2
j

}
,

we can show that for any i ∈ [N ], k ∈ [d], M̃0
i,k(η)

M̃0
i,k(η) = M̃0

i,k(µ,λ)

=
1

σ2
i

∫
RNd

J0
i (x,λ)(xik − µik)p(µ,x)dx

= −
∫
RNd

J0
i (x,λ)p(µi−k, x

i
−k)p(µ−i,x−i)

1√
2πσi

× d

(
e
− (xik−µik)2

2σ2
i

)
dx−i

= −
∫
RNd−1

(
J0
i (x,λ)e

− (xik−µik)2

2σ2
i

)∣∣∣∣∞(xik)

−∞(xik)

× p(µi−k, xi−k)p(µ−i,x−i)
1√

2πσi
dx−i

+

∫
RNd

∂J0
i (x,λ)

∂xik
p(µ,x)dx

=

∫
RNd

∂J0
i (x,λ)

∂xik
p(µ,x)dx. (25)

The above holds since according to Assumption 4,

lim
xik→∞(−∞)

J0
i (x,λ)e

− (xik−µik)2

2σ2
i = 0,

for any fixed µik, x−i, and λ. Thus, (24) holds for each regular
player i ∈ [N ]. Moreover, for the dual player

M̃
0

N+1(η) =

∫
RNd
∇λJ0

N+1(x,λ)p(µ,x)dx

= −
∫
RNd

g(x)p(µ,x)dx. (26)

SinceQi(η(t)) = M̃
0

i (η(t))−M0
i (η(t)) and due to Assump-

tion 2 and equation (24), we obtain the following:

‖Qi(η)‖ = ‖
∫
RNd

[M0
i (x,λ)−M0

i (µ,λ)]p(µ,x)dx‖

≤
∫
RNd
‖M0

i (x,λ)−M0
i (µ,λ)‖p(µ,x)dx

≤
∫
RNd

Li(λ)‖x− µ‖p(µ,x)dx

≤
∫
RNd

Li(λ)

(
N∑
i=1

d∑
k=1

|xik − µik|

)
p(µ,x)dx

= O(

N∑
i=1

σi)(1 + ‖η − η∗‖), (27)

where the last equality is due to the fact that the first
central absolute moment of a random variable with a normal
distribution N(µ, σ) is O(σ) and Li(λ) is a linear function of
λ (see Assumption 2) and, hence, Li(λ) ≤ k(1 + ‖η − η∗‖)
for some constant k. Thus,

‖Qi(η)‖‖µi − µ∗i ‖ ≤ O(

N∑
i=1

σi)(1 + V (η)). (28)

Similarly, using Assumption 2 and equality (26), we have

‖QN+1(η)‖ = ‖M̃0

N+1(η) + g(µ)‖ ≤ O(

N∑
i=1

σi),

‖QN+1(η)‖‖λ− λ∗‖ ≤ O(

N∑
i=1

σi)(1 + V (η)). (29)

Finally, we bound the last two terms in (23). Since E(ξ −
Eξ)2 ≤ Eξ2 and taking into account (13), we have

E{‖Ri(x(t),η(t))‖2|η(t) = η}

≤
d∑
k=1

∫
RNd

J0
i
2
(x,λ)

(xik − µik)2

σ4
i (t)

p(µ,x)dx. (30)

Thus, we can use Assumption 4, Remark 3, and the fact that
J0
i (x,λ) is affine in λ to get the next inequality:

E{‖Ri(x(t),η(t))‖2|η(t) = η}

≤ f(µ,σ(t))

(
1

σ4
i (t)

+ k2V (η)

)
, (31)

where f(µ,σ(t)) is a polynomial of µi and σi(t), i ∈ [N ],
and k2 is some positive constant.
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Furthermore, taking into account boundedness of µ(t) and
affinity of the mapping M0(η) with respect to λ, we obtain
the following bound for any i ∈ [N ]:

β2
i (t+ 1)E{‖Gi(x(t),η(t))‖2|η(t) = η}
≤ β2

i (t+ 1)(‖M0
i (η)‖2 + ‖Qi(η(t))‖2)

+ 2β2
i (t+ 1)‖M0

i (η)‖‖Qi(η)‖
+ β2

i (t+ 1)(E{‖Ri(x(t),η(t))‖2|η(t) = η})
≤ β2

i (t+ 1)(k3 + k4‖λ‖2 +O(σ2
i (t))(1 + ‖η − η∗‖)2)

+ 2β2
i (t+ 1)(k5 + k6‖λ‖)O(σi(t)(1 + ‖η − η∗‖))

+O(γ2i (t+ 1)) +O(β2
i (t+ 1))V (η)

≤ O(β2
i (t+ 1)(1 + σ2

i (t) + σi(t)) + γ2i (t+ 1))

× (1 + V (η)), (32)

where kj , j = 3, . . . , 6, are some positive constants.
For the term E{‖GN+1(x(t),η(t))‖2|η(t) = η} we can

first derive the following bound:

E{‖RN+1(x(t),η(t))‖2|η(t) = η}

≤
∫
RNd
‖g(x)‖2p(µ,x)dx = φ(µ,σ(t)),

where φ(µ,σ(t)) is a polynomial of µi and σi(t), i ∈ [N ] (see
Remark 3). Hence, according to boundedness of µ(t) and the
fact that σ(t) goes to zero, we obtain

β2
0(t+ 1)E{‖GN+1(η(t))‖2|η(t) = η}
≤ β2

0(t+ 1)(‖g(µ)‖2 + ‖QN+1(η(t))‖2)

+ 2β2
0(t+ 1)‖g(µ)‖‖QN+1(η)‖

+ β2
0(t+ 1)(E{‖RN+1(η(t))‖2|η(t) = η})

≤ β2
0(t+ 1)(k7 +O(σ2

max(t)) +O(σmax(t))), (33)

where k7 is some positive constant.
Since η∗ is a NE in Γa(A×Rn+), Assertion 1) in Theorem 1

implies that

(M0(η∗),η − η∗) ≥ 0,

for any η ∈ A × Rn+. According to pseudo-monotonicity of
M0 in Assumption 2, the inequality above implies

(M0(η),η − η∗) ≥ 0 for any η ∈ A× Rn+. (34)

Thus, bringing (23), (28), (29), (32), and (33) together, we get

LV (η) ≤− 2βmin(t+ 1)(M0(η),η − η∗)
+ p(t)(1 + V (η)),

p(t) =O(βmax(t+ 1)− βmin(t+ 1))

+O(βmax(t+ 1)σmax(t) + γ2max(t+ 1)). (35)

Hence, using conditions on parameters in Assumption 5, we
get

∑∞
t=0 p(t) < ∞. Finally, taking into account (34), (35),∑∞

t=0 βmin(t) = ∞, and Theorem 4, we conclude that η(t)
is finite almost surely for any t ∈ Z+ during the run of the
algorithm irrespective of η(0).

B. Convergence of the Algorithm Iterates

Having established boundedness of the iterates in the algo-
rithm (6)-(7), in this subsection we prove Theorem 1.

Proof of Theorem 1: Under Assumption 6, the game
can be reformulated as a constrained optimization problem.
Indeed, if the game Γ is potential with a strictly convex po-
tential function f(a), then M(a) = ∇f(a) and the problem
of finding a variational equilibrium is equivalent to solving

minimize f(a)

subject to gj(a) ≤ 0, j = 1, . . . ,m

a ∈ A = A1 × . . .×AN ⊆ RNn. (36)

This equivalence follows from the fact that, due to the def-
inition of potential games, the unique minimum solving the
problem above is a variational Nash equilibrium in the game,
whereas strict monotonicity of the game mapping M implies
uniqueness of the solution of V I(Q,M) (see, for example,
[32]) and, thus, uniqueness of the variational generalized Nash
equilibrium. We call the above the primal problem.

Consider the Lagrangian function for the primal problem

L(a,λ) = f(a) + (λ,g(a)). (37)

Then the dual function is defined as supλ∈Rn+ infa∈A L(a,λ).
Given Assumption 6, we conclude that for any primal-dual
optimal pair (a∗,λ∗) the vector a∗ is the unique (due to
strict monotonicity) variational Nash equilibrium in the game
Γ. Under Assumption 3 the Karush-Kuhn-Tucker (KKT) [18]
conditions hold and consequently, (a∗,λ∗) is a primal-dual
optimal pair if and only if:

(1) a∗ is primal feasible and λ∗ ∈ Rn+ (λ∗ is dual feasible);
(2) a∗ attains the minimum in infa∈A L(a,λ∗);
(3) λ∗ attains the maximum in supλ∈Rn+ L(a∗,λ). Using

the above characterization with the bounds derived in the
previous section, we can establish convergence of the algo-
rithm. First, from Inequality (35) we obtain that for any Nash
equilibrium η∗

E{‖η(t+ 1)− η∗‖2|Ft} ≤ ‖η(t)− η∗‖2

−2βmin(t)(M0(η(t)),η(t)− η∗) + h(t), (38)

where Ft is the σ-algebra generated by the random variables
{η(k), k ≤ t} and h(t) = p(t)(1+V (η(t))). Due to Lemma 2,
η(t) is bounded almost surely and, thus, according to the
estimations for p(t) in the proof of Lemma 2,

∑∞
t=0 h(t) <∞.

Second, we will bound the term (M0(η(t)),η(t)−η∗) using
the Lagrangian of the game L(a,λ).

Due to definition of the mapping M0 and Assumption 6,

(M0(η(t)),η(t)− η∗) =(∇µL(µ(t),λ(t)),µ(t)− µ∗)
− (∇λL(µ(t),λ(t)),λ(t)− λ∗),

where L(µ,λ) is the Lagrangian function defined in (37). Due
to convexity of f and g1, . . . , gm, according to KKT optimal
conditions above, we get for any µ ∈ A and λ ∈ Rn+

L(µ,λ∗)− L(µ∗,λ∗) ≥ 0, (39)

L(µ∗,λ∗)− L(µ∗,λ) ≥ 0. (40)
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Due to convexity of L(µ,λ) in µ for any λ ∈ Rn+
(∇µL(µ(t),λ(t)),µ(t)− µ∗) ≥ L(µ(t),λ(t))− L(µ∗,λ(t))

(41)

and due to linearity of L(µ,λ) in λ, we obtain

(∇λL(µ(t),λ(t)),λ(t)− λ∗) = L(µ(t),λ(t))− L(µ(t),λ∗).
(42)

Bringing (41) and (42) together and taking into account (39),
(40), adding and subtracting L(µ∗,λ∗) we conclude that

E{‖η(t+ 1)− η∗‖2|Ft} ≤ ‖η(t)− η∗‖2 − 2βmin(t) (43)
× [L(µ(t),λ∗)− L(µ∗,λ∗) + L(µ∗,λ∗)− L(µ∗,λ(t))]

+ h(t).

Thus, we can apply the result of Robbins and Siegmund
(Lemma 5) to the inequality (43) to conclude that almost surely

1) ‖η(t+ 1)− η∗‖ converges,
2)
∑∞
t=0 βmin(t)(L(µ(t),λ∗) − L(µ∗,λ∗) + L(µ∗,λ∗) −

L(µ∗,λ(t))) <∞.
As

∑∞
t=0 βmin(t) = ∞, 2) implies that there exists a

subsequence η(tl) = (µ(tl),λ(tl)) such that almost surely

lim
l→∞
{[L(µ(tl),λ

∗)− L(µ∗,λ∗)]

+[L(µ∗,λ∗)− L(µ∗,λ(tl))]} = 0.

Since L(µ(tl),λ
∗) − L(µ∗,λ∗) ≥ 0 and L(µ∗,λ∗) −

L(µ∗,λ(tl)) ≥ 0 for any l, the above holds if and only if

lim
l→∞

L(µ(tl),λ
∗) = L(µ∗,λ∗)

lim
l→∞

L(µ∗,λ(tl)) = L(µ∗,λ∗).

As a subsequence of {η(t)}, the sequence η(tl) =
(µ(tl),λ(tl)) is bounded almost surely. Hence, we can
choose an almost surely convergent subsequence η(tls) =
(µ(tls),λ(tls)) such that lims→∞ η(tls) = η̂ = (µ̂, λ̂) with
probability 1, where µ̂ ∈ A and λ̂ ∈ Rn+ (since A and
{λ : λ ∈ Rn+} are closed). Due to the last two equalities
above, almost surely

lim
s→∞

L(µ(tls),λ
∗) = L(µ̂,λ∗) = L(µ∗,λ∗)

lim
s→∞

L(µ∗,λ(tls)) = L(µ∗, λ̂) = L(µ∗,λ∗).

Since f is strictly convex and gi, i = 1, . . . ,m are convex over
A, the equality L(µ̂,λ∗) = L(µ∗,λ∗) = minµ∈A L(µ,λ∗)
implies that µ̂ = µ∗. Moreover, due to dual feasibility of λ̂,
the equality µ̂ = µ∗ together with the equality L(µ∗, λ̂) =
L(µ∗,λ∗) = maxλ∈Rn+ L(µ∗,λ) imply that η̂ = (µ∗, λ̂) is an
optimal primal dual pair and hence, a Nash equilibrium of the
game. Since assertion 1) above holds for any Nash equilibrium
η∗, replacing η∗ by η̂ in (43), we conclude that ‖η(t+ 1)−
η̂‖ converges. Since there exists a subsequence η(tls) which
converges to η̂, we get that almost surely limt→∞ η(t) = η̂.
Hence, Pr{limt→∞ µ(t) = µ∗} = 1.

Finally, Assumption 5 implies that limt→∞ σi(t) = 0 for
all i ∈ [N ]. Taking into account that x(t) ∼ N(µ(t),σ(t)),
we conclude that x(t) converges weakly to a Nash equilibrium
a∗ = µ∗ as time runs. Moreover, according to Portmanteau
Lemma [17], this convergence is also in probability.

V. CONVERGENCE WITH ONLY LOCAL CONSTRAINTS

A. Convergence to Nash equilibria under relaxed conditions

We consider the game without coupling constraints, namely
C = RNd (or equivalently g ≡ 0), and relax the assumption
existence of a potential function in the game Γ. In particular,
Assumptions 1 and 6 are replaced by the following one.

Assumption 7: For all i ∈ [N ] the set Ai is convex and
compact, the cost function Ji(a

i,a−i) is defined on RNd,
continuously differentiable in a and the game mapping M is
strictly monotone.

In this case, as C = RNd, the payoff-based procedure (6)-
(7) is modified as follows:

µi(t+ 1) = (44)

ProjAi

[
µi(t)− γi(t+ 1)σ2

i (t+ 1)Ĵi(t)
xi(t)− µi(t)

σ2
i (t)

]
,

where i ∈ [N ], γi(t + 1) is a step-size parameter chosen by
player i and Ĵi(t) = Ji(x(t)) is the current observation of the
ith player’s cost function in the game Γ.

We make the following assumption regarding parameters
γi(t), σi(t), and βi(t) = γi(t)σ

2
i (t) in the procedure (44).

Assumption 8: The variance parameters σi(t) and the step-
size parameters γi(t), i ∈ [N ], are chosen such that

1)
∑∞
t=0 βmin(t) =∞,

2)
∑∞
t=0 βmax(t)− βmin(t) <∞,

3)
∑∞
t=0 γ

2
max(t)σ2

max(t) <∞,
∑∞
t=0 γmax(t)σ3

max(t) <∞.
Theorem 2: Let Assumptions 2-4, 7, and 8 hold in a

game Γ(N, {Ai}, {Ji},RnN ). Let the players choose the
states {xi(t)} at time t according to the normal distribution
N(µi(t), σi(t)), where the mean parameters are updated as in
(44). Then, as t→∞, the mean vector µ(t) converges almost
surely to the Nash equilibrium µ∗ = a∗ of the game Γ, given
any initial vector µ(0), and the joint state x(t) converges in
probability to a∗.

Proof: As before, let V (µ) = ‖µ − µ∗‖2, where µ∗ is
the unique Nash equilibrium in the game Γ (existence and
uniqueness of µ∗ follows from Proposition 2.3.3 in [32]).
Following the discussion in the proof of Lemma 2, we can
rewrite the inequality (23) as follows

LV (µ) ≤ −2βmin(t+ 1)(M(µ),µ− µ∗) (45)
+ 2(βmax(t+ 1)− βmin(t+ 1))k1(1 + V (µ))

+ 2

N∑
i=1

βi(t+ 1)‖Q0
i (µ)‖‖µi − µ∗i ‖

+

N∑
i=1

β2
i (t+ 1)E{‖G0

i (x(t),µ(t))‖2|µ(t) = µ},where

G0
i (x(t),µ(t)) = M i(µ(t)) +Q0

i (µ(t)) +R0
i (x(t),µ(t)),

(46)

and Q0
i (µ(t)), R0

i (x(t),µ(t)) are obtain from Qi(η(t)),
Ri(x(t),η(t)) by letting g ≡ 0. Similarly to (27) and (28),

‖Q0
i (µ)‖ = O(

N∑
i=1

σi) (47)
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‖Q0
i (µ)‖‖µi − µ∗i ‖ ≤ O(

N∑
i=1

σi)(1 + V (µ)). (48)

Moreover, similarly to (30), we conclude that

E{‖Ri(x(t),µ(t))‖2|µ(t) = µ}

≤
d∑
k=1

∫
RNd

Ji
2(x)

(xik − µik)2

σ4
i (t)

p(µ,x)dx. (49)

Thus, we can use Assumption 4 to get

E{‖Ri(x(t),µ(t))‖2|µ(t) = µ} ≤ f(µ,σ(t))

σ2
i (t)

, (50)

where f(µ,σ(t)) is a quadratic function of µi and polynomial
in σi(t), i ∈ [N ]. Taking into account (46)-(50) and Assump-
tion 4, we conclude that for some positive constants k2, k3

β2
i (t+ 1)E{‖Gi(x(t),µ(t))‖2|µ(t) = µ}
≤ β2

i (t+ 1)(‖M i(µ)‖2 + ‖Q0
i (µ(t))‖2)

+ 2β2
i (t+ 1)‖M i(µ)‖‖Q0

i (µ)‖
+ β2

i (t+ 1)(E{‖Ri(x(t),µ(t))‖2|µ(t) = µ})
≤ β2

i (t+ 1)(k2 +O(σ2
i (t))(1 + ‖µ− µ∗‖)2)

+ 2β2
i (t+ 1)k3(1 + ‖µ− µ∗‖)O(σi(t))

+O(γ2i (t+ 1)σ2
i (t+ 1))(1 + V (µ))

≤ O(β2
i (t+ 1) + γ2i (t+ 1)σ2

i (t+ 1))(1 + V (µ)). (51)

Next, bringing estimations (48) and (51) into (45), we obtain

LV (µ) ≤− 2βmin(t+ 1)(M(µ),µ− µ∗)
+O(s(t))(1 + V (µ)), (52)

where s(t) = βmax(t) − βmin(t) + γmax(t)σ3
max(t) +

γ2max(t)σ2
max(t). Taking into account that A is compact, we

conclude that

E{‖µ(t+ 1)− µ∗‖2|Ft} ≤ ‖µ(t)− µ∗‖2

− 2βmin(t+ 1)(M(µ(t)),µ(t)− µ∗)
+O(s(t)). (53)

Moreover, for any t we have (M(µ(t)),µ(t) − µ∗) >
(M(µ∗)),µ(t) − µ∗) ≥ 0, due to pseudo-monotonicity of
M and the fact that µ∗ is the Nash equilibrium. Thus, using
Theorem 5 we conclude that almost surely

1) ‖µ(t+ 1)− µ∗‖ converges,
2)
∑∞
t=0 βmin(t)(M(µ(t)),µ(t)− µ∗) <∞.

As
∑∞
t=0 βmin(t) = ∞, 2) implies that there exists a

subsequence µ(tl) such that almost surely

lim
l→∞

(M(µ(tl)),µ(tl)− µ∗) = 0. (54)

Since µ(tl) is bounded almost surely for any l, we can choose
a convergent subsequence µ(tls) such that lims→∞ µ(tls) =
µ′ for some µ′. Hence, due to (54),

(M(µ′),µ′ − µ∗) = 0, (55)

which together with strict monotonicity of M implies µ′ =
µ∗. Thus, as ‖µ(t+1)−µ∗‖ converges almost surely and there
exists a subsequence µ(tls) which converges to µ∗ almost
surely, we get that Pr{limt→∞ µ(t) = µ∗} = 1. Finally,

Assumption 5 implies that limt→∞ σi(t) = 0 for all i ∈ [N ].
Taking into account that x(t) ∼ N(µ(t),σ(t)), we conclude
that x(t) converges weakly to a Nash equilibrium a∗ = µ∗ as
time runs. Moreover, according to Portmanteau Lemma [17],
this convergence is also in probability.

Remark 6: In a prior work [48], we showed convergence to
Nash equilibria under pseudo-monotonicity of the game map-
ping, leveraging the proof technique in [54]. Recently, in [12]
it was shown with a counterexample that pseudo-monotonicity
is not sufficient for the convergence results in [54]. This im-
plies that our payoff-based algorithm also would not converge
to a Nash equilibrium under merely the pseudo-monotonicity
assumption. However, a closer look at the required conditions
following Equation (55) reveals that the proof remains valid if
instead of strictly monotone, the game mapping is a) pseudo-
monotone and additionally satisfies b) ∀µ ∈ A and µ∗ Nash
equilibrium, (M(µ′),µ′ − µ∗) = 0 ⇒ µ′ = µ∗. This latter
condition holds for example, when M is pseudo-monotone
and co-coercive. Hence, our new proof method of Theorem 2
corrects our mistake in [48].

The challenge in generalizing the proof of Theorem 1 to
non-potential games lies in the fact that the extended game
mapping M0 cannot be strictly monotone, nor can it be
co-coercive. This implies that convergence of a subsequence
of {η(t)} will not suffice to establish convergence of the
sequence to a Nash equilibrium. Nevertheless, given a strictly
convex potential function in the game we could use equiva-
lence of the variational Nash equilibrium to an optimal primal
dual pair for the Lagrangian, and establish convergence of the
sequence of iterates to the variational Nash equilibrium.

B. Convergence rate of the algorithm

Below, we show that if the strict monotonicity condition for
the game mapping in Assumption 7 is strengthened to strong
monotonicity, we obtain a convergence rate for the procedure
(44) as a function of the stepsize and variance parameters.

Theorem 3: Let Assumptions 2-4, and 7 hold and M be
strongly monotone with strong monotonicity constant κ > 1.
Furthermore, assume the time step and variance parameters are
chosen as γi(t) = 1

(t+Ri)a
, σi(t) = 1

(t+Ri)b
, i ∈ [N ], where

a + 2b ∈ (0.5, 1], 2a > 1, and a + 3b > 1. Then in the long
run of the algorithm (10)-(11)

E{‖µ(t)− µ∗‖2} ≤ C

t2(a+b)−1
= O(1/t2(a+b)−1), (56)

where C is some positive constant and µ∗ is the unique
equilibrium of the game Γ to which the vector µ(t) converges
almost surely.

Proof: We we will use the following lemma.
Lemma 3: Let the sequence {at}, at ≥ 0 t ∈ Z+, satisfy

the following iteration:

at+1 ≤ (1− κ/t)at + ψ/tc,

for some constants 1 < c ≤ 2, κ > 1, ψ > 0. Then, at ≤ C
tc−1 ,

where C = max{a0, ψ
κ−1}.

Please see the appendix for the proof.
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Using estimation (53) and the fact that (M(µ∗),µ(t) −
µ∗) ≥ 0 for any t, we obtain

E{‖µ(t+ 1)− µ∗‖2|Ft} ≤ ‖µ(t)− µ∗‖2

− 2βmin(t+ 1)(M(µ(t))−M(µ∗),µ(t)− µ∗)
+O(s(t))

≤
(

1− κ

t

)
‖µ(t)− µ∗‖2 +

ψ

t2(a+b)
, (57)

where in the last inequality we used the strong monotonicity of
the map M over A, conditions for the parameters γi(t), σi(t),
and definition of βi, which implies that there exists t0 such
that βmin(t) ≥ 1

2t for any t ≥ t0. Finally, taking into account
that 1 < 2(a + b) ≤ 2 and using Lemma 3 for c = 2(a + b),
we conclude that E{‖µ(t) − µ∗‖2} ≤ C/t2(a+b)−1, where
C = max{E{‖µ(0)− µ∗‖2}, ψ

κ−1}.
The result above demonstrates that the convergence rate

of the proposed payoff-based learning procedure is sublinear.
This is consistent with the results on related optimization
algorithms based on the stochastic approximation techniques
[15, 49]. Note also that Theorem 3 presents the asymptotic
estimation of the convergence rate, whereas its tightness and
more details on characterization of the constant C need to be
analyzed separately and are subject of our future work.

VI. NUMERICAL CASE STUDY

We illustrate the proposed payoff-based learning approach
through a game arising in a classical Cournot economic model.
There are N firms, each producing a good and each needs
to determine its production amount. Each firm (referred to
also as a player or an agent) has an individual production
cost Qi(ai) and receives a payment p(a)ai for the quantity
produced ai. The price p(a) depends on the total production
of all firms. The production of the firms is coupled by the fact
that there is a network capacity constraint [1]. Such constraints
may arise from the amount that can be delivered through a link
to the consumers (consider for example an electricity network
with line limits). In contrast to past approaches on computing
Nash equilibria, we consider a scenario in which the form
of the price function p is unknown to agents and there is no
communication graph between the agents.

Let ai = [ai1, . . . , a
i
d]
> ∈ Rd denote the decision variable

of firm i (also referred to as player or agent), i ∈ [N ], which
is its production level over a horizon of d steps4. Each player
has a limit on maximum production at each step

0 ≤aik ≤ āi for k = 1, . . . , d. (58)

The convex and compact set defined by the constraints above
is considered the action set Ai for player i. The coupling
constraints arising from a network capacity limit is

N∑
i=1

aik ≤ āk for k = 1, . . . , d. (59)

For the simulations, we consider a linear price function
and quadratic production cost functions, which are standard

4The formulation here also can be interpreted as production levels of each
firm at d different locations [1].
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Fig. 1. Relative error ‖µ(t)−a
∗‖

‖a∗‖ during the payoff-based algorithm, N = 3

(blue line), N = 10 (green line), N = 30 (red line).

assumptions in Cournot models [19, 13, 22, 30]. The function
to be minimized by each agent can then be compactly written
as

Ji(a
i,a−i) = Qi(ai)− p(a)ai (60)

= ai>Qiai + 2(C
1

N

N∑
j=1

aj + c)>ai,

with Qi, C ∈ Rd×d, c ∈ Rd for all i ∈ [N ]. The production
cost is assumed convex and hence Qi ∈ Rn+, whereas C ∈ Rn+
follows from the fact that the price is a decreasing function
of total production [13, 52, 1, 19, 27, 32]. It is readily
verified that the resulting game mapping (see Definition (2))
is affine and, hence, Lipschitz on RNd. Moreover, the game
mapping is symmetric positive definite and hence, the game
admits a strongly convex potential function. Consequently,
Assumptions 1-6 hold.

We let the agents follow the payoff-based algorithm de-
scribed by (6)-(7) to find their Nash equilibrium strategies.
Each player submits its proposed production profile over time
horizon of d units, xi(t) = [xi1(t), . . . , xid(t)]

> at iteration
t. It then observes J0

i consisting of the cost functions corre-
sponding to prices of the good, the violation of the coupling
constraint, as well as its individual production cost.

For the simulation, we let d = 4, the matrices Qi, i ∈ [N ]
and C, in (60) are the identity matrices in Rd×d, and the vector
c ∈ Rd is chosen randomly according to a normal distribution.
The action set Ai for each player i ∈ [N ] is defined by (58)-
(59), where āi = 9 and āk is a random variable taking values
in the interval (3N, 3N+100). The initial vector (µ(0),λ(0))
is chosen from a uniform distribution on A× [0, 5].

Figure 1 presents the relative error ‖µ(t)−a
∗‖

‖a∗‖ during the
algorithm’s run for N = 3, 10, 30, where a∗ is the unique
generalized Nash equilibrium of the game. We see that after
the first iteration the iterates quickly approach the Nash
equilibrium. However, convergence of the error to zero is slow.
The slow decrease of the relative error after the first iteration
can be explained by the choice of the rapidly decreasing
parameter σ(t) and γ(t). The convergence is also slower for
increasing number of players in the game. It is interesting
to derive explicit dependence of the convergence rate derived
based on the number of players.
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VII. CONCLUSION

We proposed a novel payoff-based learning approach for
convergence to variational Nash equilibria in convex games
with jointly convex coupling constraints. In this approach, each
agent determined its next state by sampling from a Gaussian
distribution, whose mean was updated using the payoff in-
formation. We proved almost sure convergence of the means
of the distributions to a variational Nash equilibrium, given
appropriate choice of algorithms’ step-sizes and variances of
the distributions. The convergence result relied on existence
of a strictly convex potential function. In the absence of
coupling constraint, convergence to a Nash equilibrium was
established based on strict monotonicity of the game mapping.
Furthermore, in this case, under strong monotonicity of the
game mapping, the convergence rate of the algorithm was
derived. Further relaxing conditions for convergence of the
payoff-based algorithm with and without coupling constraint is
subject of our current work. We are also developing algorithms
that ensure constraint satisfaction during the algorithm iterates.
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APPENDIX

A. Proofs

Proof of Lemma 1: Assume the set Y is compact and is
expressed by the following inequality constraints: Y = {y ∈
Rd : h(y) = [h1(y), . . . , hm(y)]T ≤ 0}, where hi : Rd → R,
i ∈ [m], are convex functions defined on Rd. Then, using
Slater’s condition for the set Y and continuity of T , conditions
analogous to the Karush-Kuhn-Tucker ones can be formulated
for SOL(Y,T ) (see Proposition 1.3.4 in [32]). Namely, y∗ ∈
SOL(Y,T ) if and only if there exists ν ∈ Rm such that

0 = T (y∗) +

m∑
i=1

(νi,∇hi(y∗)),

0 = (ν,h(y∗)), ν ≥ 0, h(y∗) ≤ 0. (61)

Thus, we can associate a multiplier ν with any solution y∗ of
V I(Y,T ). We further call the vector (y∗,ν) a KKT tuple.

Now consider the associated game Γa(A×Rn+) defined in
(4). Note that the variational equilibria in game Γ are charac-
terized as SOL(Q,M). Hence, a∗ is a variational equilibrium
in Γ if and only if (a∗,ν) is a KKT tuple for V I(Q,M). And
from Lemma 3 in [30], under Assumptions 1 and 3, (a∗,ν)
is a KKT tuple for the V I(Q,M) if and only if the pair
[a∗,λ∗] is a Nash equilibrium of the game Γa(A×Rn+), where
λ∗ denotes the coordinate of the multiplier ν corresponding
to the constraint g(a) ≤ 0. Thus, Assertion 1) and 2) are
proven. Furthermore, taking into account Propositions 1.3.4
and 1.4.2 in [32] such a KKT tuple exists since V I(Q,M)
has a solution. It follows that there exists a Nash equilibrium
in Γa(A×Rn+) and Assertion 3) is proven. Finally, Assertion
4) holds since under Assumptions 1 and 3, Lemma 5.1 in [54]
shows that ‖λ∗‖ is bounded.

Proof of Lemma 3: The proof is based on a standard rate
estimate, analogous to the result in (5.292) in [43]. We prove
the claim by induction. Let us assume that a0 ≥ ψ

κ−1 . Then,
according to the induction step,

at+1 ≤
(

1− κ

t

) a0
tc−1

+
ψ

tc
.

Thus, it suffices to show that the right-hand-side of the
inequality above is not more than a0

(t+1)c−1 . As ψ
a0
− κ ≤ −1,

(
1− κ

t

) a0
tc−1

+
ψ

tc
=
a0
tc

(
t− κ+

ψ

a0

)
≤ a0
tc

(t− 1)

≤ a0
(t+ 1)c−1

,

since a0 > 0 and
(
1 + 1

t

)c−1 ≤ (1 + 1
t−1

)
. The case a0 ≤

ψ
κ−1 can be considered analogously.

B. Supporting Theorems

Let {X(t)}t, t ∈ Z+, be a discrete-time Markov process on
some state space E ⊆ Rd, namely X(t) = X(t, ω) : Z+ ×
Ω→ E, where Ω is the sample space of the probability space
on which the process X(t) is defined. The transition function
of this chain, namely Pr{X(t+1) ∈ Γ|X(t) = X}, is denoted
by P (t,X, t+ 1,Γ), Γ ⊆ E.

Definition 8: The operator L defined on the set of measur-
able functions V : Z+ × E → R, X ∈ E, by

LV (t,X) =

∫
P (t,X, t+ 1, dy)[V (t+ 1, y)− V (t,X)]

= E[V (t+ 1,X(t+ 1)) | X(t) = X]− V (t,X),

is called a generating operator of a Markov process {X(t)}t.
Next, we formulate the following theorem for discrete-time
Markov processes, which is proven in [29], Theorem 2.5.2.

Theorem 4: Consider a Markov process {X(t)}t and sup-
pose that there exists a function V (t,X) ≥ 0 such that
inft≥0 V (t,X)→∞ as ‖X‖ → ∞ and

LV (t,X) ≤ −α(t+ 1)ψ(t,X) + f(t)(1 + V (t,X)),

where ψ ≥ 0 on R×Rd, f(t) > 0,
∑∞
t=0 f(t) <∞. Let α(t)

be such that α(t) > 0,
∑∞
t=0 α(t) = ∞. Then, almost surely

supt≥0 ‖X(t, ω)‖ = R(ω) <∞.
The following is a well-known result of Robbins and

Siegmund on non-negative random variables [35].
Theorem 5: Let (Ω, F, P ) be a probability space and F1 ⊂

F2 ⊂ . . . a sequence of sub-σ-algebras of F . Let zt, bt, ξt, and
ζt be non-negative Ft-measurable random variables satisfying

E(zt+1|Ft) ≤ zt(1 + bt) + ξt − ζt.

Then, almost surely limt→∞ zt exists and is finite for the case
in which {

∑∞
t=1 bt < ∞,

∑∞
t=1 ξt < ∞}. Moreover, in this

case,
∑∞
t=1 ζt <∞ almost surely.
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