
Received: 13 May 2020 Accepted: 26 November 2020

DOI: 10.1002/pamm.202000012

Application of a reduced basis method for an efficient treatment of
structural mechanics problems

Sophia Bremm1,∗, Philipp L. Rosendahl2, and Wilfried Becker1

1 Technical University of Darmstadt, Department of Mechanical Engineering, Institute of Structural Mechanics,
Franziska-Braun-Str. 7, 64287 Darmstadt

2 Technical University of Darmstadt, Department of Civil and Environmental Engineering Sciences, Institute of Structural
Mechanics and Design, Franziska-Braun-Str. 3, 64287 Darmstadt

For numerous problems in structural mechanics, a repeated solution of partial differential equations (PDEs), varying certain
input parameters, is necessary. Solving the PDE for a large number of different input parameter sets using a full-dimensional
finite element method, requires repeated solving of large systems of equations and, thus, leads to a high computational effort.
The aim of model order reduction techniques is to reduce the computational complexity in such calculations. In order to
achieve this, the idea of the reduced basis method [1–3] is to replace the high-dimensional model with a lower dimensional
model, which is realized by forming a basis of solutions of the full problem for selected parameter sets. Key to determining
suitable parameter sets is an appropriate error estimator.
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1 Introduction

The reduced basis method (RBM) can be applied to various problems in structural mechanics. For instance, Huynh [4, 5]
makes use of the method to calculate stress intensity factors efficiently, and for an application to fracture problems. In this
work, the RBM is employed for the optimization of functionally graded adhesive joint designs with regard to the minimization
of stress peaks and gradients within the adhesive. The stresses can be calculated rapidly for a large number of material
parameter variations so that the Young’s modulus distribution within the adhesive is optimized efficiently.

2 Reduced Basis Method for functionally graded single lap joints
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Fig. 1: Single-lap joint with graded adhesive. Domain Ω =
⋃p+1

q=1 Ωq . Parameters used for the calculation are F = 500 N, L = 20 mm,
d = 2 mm, h = 5 mm, plane strain with unit out-of-plane width, Esteel = 210 GPa, Eadhesive ∈ [2500 MPa, 6500 MPa], ν = 0.3.

At the bi-material notch of adhesive joints, high stress concentrations (singularities) are expected. The state of the art is the
gradation of the adhesive in order to reduce stress peaks. Specifically, this requires a repeated solution of a partial differential
equation (PDE) for different Young’s modulus distributions within the adhesive. Let µ = [E1, E2, . . . , Ep] ∈ P be the
parameter vector, where Eq is the Young’s modulus in domain Ωq and P := [Emin, Emax]p is the set of possible parameter
combinations. Then the weak form of the parametrized PDE reads:

Find u ∈ X with a(u,v;µ) = f(v;µ) ∀v ∈ X, (1)

where a(u,v;µ) =

∫

Ω

(C(µ) : ε(u)) : ε(v) dΩ and f(v) =

∫

ΓN

t∗ · v dΓN. (2)

An important requirement for the application of the RBM is the parameter separability of the bilinear and linear form in (2).
The linear form f(·) does not depend on µ and the bilinear form can be written as

a(u,v;µ) =

p+1∑

q=1

Eq

∫

Ωq

(Cred : ε(u)) : ε(v) dΩq. (3)

Then the high-fidelity discretization reads AH(µ)uH(µ) = fH with AH(µ) =
∑p+1
q=1 Eq Aq

H , where Aq
H is parameter-

independent and has to be assembled only once. Using that, solution snapshots {uH(µ(1)), . . . ,uH(µ(N))} are generated,
where µ(1), . . . ,µ(N) are chosen by evaluating an efficient a-posteriori error estimator. The reduced system matrix is obtained
from the projection: AN (µ) = ΦT

NAH(µ)ΦN , where ΦN contains coefficients of snapshots in terms of high-dimensional
basis. Then, the low dimensional RB system reads AN (µ)uN (µ) = fN , where N � H .

∗ Corresponding author: e-mail bremm@fsm.tu-darmstadt.de
This is an open access article under the terms of the Creative Commons Attribution License, which permits use,
distribution and reproduction in any medium, provided the original work is properly cited.

PAMM · Proc. Appl. Math. Mech. 2020;20:1 e202000012. www.gamm-proceedings.com 1 of 3

https://doi.org/10.1002/pamm.202000012 © 2021 The Authors Proceedings in Applied Mathematics & Mechanics published by Wiley-VCH GmbH



2 of 3 Section 4: Structural mechanics
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Fig. 2: Stress curves σ12, σ22 and maximum principal stress σI (left axes) for constant and optimized distribution of Young’s moduli (right
axes) within the adhesive. The stresses are evaluated along the vertical center of the adhesive.

3 Results and discussion
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Fig. 3: Estimated and actual error.

Fig. 2 shows the shear and normal stresses σ12 and σ22 as well as the maximum prin-

cipal stress σI := σ22

2 +

√(
σ22

2

)2
+ (σ12)2 along the length of the adhesive. The

adhesive is divided into p = 9 subdomains, which equals the length of the parameter
vector µ = [E1, ..., E9]. The first and second column show the stress curves for con-
stant Young’s moduli of the adhesive, specifically the lower and upper bound of the
accepted interval P . The third column shows the optimized distribution of Young’s
moduli and the associated stress curves. The maximum principal stress σI, in regard
to which the optimization has been performed, is much smoother than in the constant
cases. Especially, the peaks near the bi-material notches are reduced considerably.
Within the optimization, the repeated solution of the parametrized PDE has been per-
formed using the RBM. Fig. 3 shows the development of the error estimator and the
actual error of the RBM in comparison to a high-dimensional finite element method
(FEM) with H = 955 degrees of freedom. It can be seen that the error estimator
works well as an upper bound for the actual error and the error decreases by increas-
ing the number of basis elements within the reduced basis (RB). It is remarkable that

a RB with dimension N = 13 yields a sufficiently small error, so that only 13 high dimensional FEMs are necessary for
a varying parameter-set µ of 9 Young’s moduli. Once the RB has been created, only linear equation systems of dimension
13× 13 have to be solved for each desired parameter configuration.

4 Conclusion and outlook

The Reduced Basis Method is very efficient for the repeated solution of parametrized PDE. The idea is to create a model with
reduced dimension instead of solving the full-dimensional model frequently. The method works well for the optimization of
the stress distribution in functionally graded adhesive joints. In further works, the transfer to other parametrized structural
mechanics problems is conceivable. For example, fracture mechanics problems with crack length ∆a as parameter could be
treated by transformation from a parameter independent to a dependent domain Ω→ Ω(∆a).
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