APPENDIX

Raman cross-section

For Q-branch diagonal elements ${ }^{[112]}, \mathrm{S}$ and O branch from ${ }^{[3]}: \alpha$ and γ are the invariants of the polarizability tensor. Only $\Delta v=1$ transitions (which are the strongest). For $\alpha_{\|}$, i.e. parallel polarization of pump and probe:

$$
\begin{align*}
&\left.\frac{\delta \sigma}{\delta \Omega}\right|_{\substack{v+1 \leftarrow v \\
J-2 \leftarrow J}}=\frac{\hbar \omega_{s}^{4}}{2 \omega_{e} c^{4} M} \times\left(\frac{2}{15} b_{J, J}^{O} F_{\gamma}^{O} \gamma^{2}\right)(v+1) \\
&\left.\frac{\delta \sigma}{\delta \Omega}\right|_{\substack{v+1 \leftarrow v \\
J \leftarrow J}}=\frac{\hbar \omega_{s}^{4}}{2 \omega_{e} c^{4} M} \times\left(F_{\alpha}^{Q} \alpha^{2}+\frac{4}{45} b_{J, J}^{Q} F_{\gamma}^{Q} \gamma^{2}\right)(v+1) \tag{1}\\
&\left.\frac{\delta \sigma}{\delta \Omega}\right|_{\substack{v+1 \leftarrow v \\
J+2 \leftarrow J}}=\frac{\hbar \omega_{s}^{4}}{2 \omega_{e} c^{4} M} \times\left(\frac{2}{15} b_{J, J}^{S} F_{\gamma}^{S} \gamma^{2}\right)(v+1)
\end{align*}
$$

For α_{\perp}, i.e. orthogonal polarization of pump and probe ${ }^{[1]}$:

$$
\begin{align*}
& \left.\frac{\delta \sigma}{\delta \Omega}\right|_{\substack{v+1 \leftarrow v \\
J-2 \leftarrow J}}=\frac{\hbar \omega_{s}^{4}}{2 \omega_{e} c^{4} M} \times\left(\frac{1}{10} b_{J^{\prime}, J}^{O} F_{\gamma}^{O} \gamma^{2}\right)(v+1) \quad \mathrm{O} \\
& \left.\frac{\delta \sigma}{\delta \Omega}\right|_{\substack{v+1 \leftarrow v \\
J \leftarrow J}}=\frac{\hbar \omega_{s}^{4}}{2 \omega_{e} c^{4} M} \times\left(\frac{1}{15} b_{J^{\prime}, J}^{Q} F_{\gamma}^{Q} \gamma^{2}\right)(v+1) \quad \mathrm{Q} \tag{2}\\
& \left.\frac{\delta \sigma}{\delta \Omega}\right|_{\substack{v+1 \leftarrow v \\
J+2 \leftarrow J}}=\frac{\hbar \omega_{s}^{4}}{2 \omega_{e} c^{4} M} \times\left(\frac{1}{10} b_{J^{\prime}, J}^{S} F_{\gamma}^{S} \gamma^{2}\right)(v+1)
\end{align*}
$$

Where

$$
\begin{equation*}
F_{\alpha} \alpha^{2}=\langle v, J| \alpha\left|v^{\prime}, J^{\prime}\right\rangle^{2}, \quad F_{\gamma} \gamma^{2}=\langle v, J| \gamma\left|v^{\prime}, J^{\prime}\right\rangle^{2} \tag{3}
\end{equation*}
$$

from the definition of the Hermann-Wallis-Factors, which account for the branch dependent vibration-rotation interaction, ${ }^{[2]}$ and the Placzek-Teller-coefficients (after some simple math from ${ }^{[1]}$)

$$
\begin{equation*}
b_{J^{\prime}, J}^{O}=\frac{J(J-1)}{(2 J-1)(2 J+1)}, \quad b_{J^{\prime}, J}^{Q}=\frac{J(J+1)}{(2 J-1)(2 J+3)}, \quad b_{J^{\prime}, J}^{S}=\frac{(J+1)(J+2)}{(2 J+3)(2 J+1)} \tag{4}
\end{equation*}
$$

for each branch.
After some transformations, the equation for the amplitudes of the resonant third order susceptibility ?? reads as follows:

$$
a_{q}^{\|, \perp}=10^{18} N \Delta_{q}(v+1) \frac{\zeta^{2}}{4 \pi c} \begin{cases}\frac{2}{15} \xi^{2} b_{J, J}^{O} F_{\gamma}^{O} & \mathrm{O}_{\|} \tag{5}\\ \frac{3}{4} \mathrm{O}_{\|} & \mathrm{O}_{\perp} \\ \left(1+\frac{4}{45} \xi^{2} b_{J^{\prime}, J}^{Q}\right) F^{Q} & \mathrm{Q}_{\|} \\ \frac{1}{15} \xi^{2} b_{J^{\prime}, J}^{Q} F^{Q} & \mathrm{Q}_{\perp} \\ \frac{2}{15} \xi^{2} b_{J, J}^{S} F_{\gamma}^{S} & \mathrm{~S}_{\|} \\ \frac{3}{4} \mathrm{~S}_{\|} & \mathrm{S}_{\perp}\end{cases}
$$

where $\xi=\gamma / \alpha$ corresponds to $A G$ in CARSFT ${ }^{[4]}$, i.e. the ratio of the anisotropy of the polarizability derivative to the mean polarizability derivative and ζ is the mean polarizability derivative α divided by $\sqrt{2 \pi c \omega_{e} M}$, corresponding to $A C 1$. This was chosen to be compatible with the definitions in CARSFT's molecular parameter files ${ }^{[4]}$. Also: multiply by 10^{18} to have the same units as $\chi_{N R}$ in cars.mol. For these equations, $F_{\gamma}^{Q}=F_{\alpha}^{Q}=F^{Q}$ [1].

The angles Φ and Θ denote the angle between pump and probe and the angle of a polarizer in front of the spectrometer.

$$
\begin{equation*}
a_{q}=\cos (\Phi) \cos (\Theta) a_{q}^{\|}+\sin (\Phi) \sin (\Theta) a_{q}^{\perp} \tag{6}
\end{equation*}
$$

Hermann-Wallis-Factors

Judging from the list of references in ${ }^{[4]}$, CARSFT originally uses the James-Klemperer-Model ${ }^{[1]}$ for Q-branch HW-Factors and the Buckingham-Model for O- and S-Branches ${ }^{[3]}$. In addition to those implemented in CARSFT, other Q-branch HW factors have been implemented, see equation 8 (taken from ${ }^{[2]}$, primary sources in equations).

$$
\begin{array}{rlr}
F^{O} & =\left(1-4 \frac{B_{e} \gamma}{\omega_{e} \frac{\delta \gamma}{\delta r} r}(2 J+3)\right)^{2}, \quad F^{S}=\left(1-4 \frac{B_{e}}{\omega_{e} \frac{\delta \gamma}{\delta r} r}(2 J-1)\right)^{2} \\
F_{J K}^{Q} & =1-3 \eta J(J+1) / 2 & \text { James et al. } \\
F_{L B Y}^{Q} & =\left[1-3 \eta^{2}\left(a_{1}+1\right) J(J+1) / 4\right]^{2} & \text { Bouanich et al. } \\
F_{T B}^{Q} & \left.=1-\left[3\left(a_{1}+1\right) / 2-4 p_{2} / p_{1}\right] \eta^{2} J(J+1) / 4\right]^{2} & \text { Tipping et al. } \\
\text { where } \eta & =\frac{2 B_{e}}{\omega_{e}} &
\end{array}
$$

For HW factors other than James-Klemperer, S and O branch will still use Buckingham as the others do not provide corrections for these branches (which are not so significant in ro-vib cars anyway).

References

[1] TC James, W Klemperer, J. Chem. Phys. 1959, 31 (1), 130-134.
[2] M Marrocco, J. Raman Spectrosc. 2009, 40 (7), 741-747.
[3] AD Buckingham, A Szabo, J. Raman Spectrosc. 1978, 7 (1), 46-48.
[4] RE Palmer, The carsft computer code calculating coherent anti-stokes raman spectra: User and programmer information, , Sandia National Labs., Livermore, CA (USA), 1989.
[5] JP Bouanich, C Brodbeck, J. Quant. Spectrosc. Radiat. Transfer 1976, 16 (2), 153-163.
[6] RH Tipping, JP Bouanich, J. Quant. Spectrosc. Radiat. Transfer 2001, 71 (1), 99-103.

