CHEMNANOMAT

Supporting Information

Deal;Designing Structurally Ordered Pt/Sn Nanoparticles in Ionic Liquids and their Enhanced Catalytic Performance

Christine Dietrich, Martin Hähsler, Wu Wang, Christian Kübel, and Silke Behrens*

License: CC BY-NC-ND 4.0 International - Creative Commons, Attribution - NonCommercial - NoDerivatives

Materials: All chemicals were dried in vacuum for 3 h prior to use. Metal salt precursors $(PdCl_2, Sn(ac)_2 \text{ and } SnCl_2)$ were purchased from Acros, Strem, and Sigma Aldrich, respectively. (*Trans*)-cinnamaldehyde and KBEt₃H (1M in THF) were purchased from Sigma Aldrich. Anhydrous THF was purchased from Sigma Aldrich and stored over molecular sieve (3 Å). [OMA]Br was purchased from Sigma Aldrich and dried under vacuum at room temperature (16-32 h, 10⁻³ mbar), then at 70 °C (0.5-1 h, 10⁻³ mbar). ILs ([OMA][NTf₂], [BMIm][NTf₂], [BMIm][BF₄], [BMIm][NTf₂], and [BMIm][PF₆]) were obtained from loLiTec (H₂O content <100 ppm; halide content <100 ppm) and dried in vacuum prior to use (at 70 °C for 3 h, 10⁻³ mbar, then at room temperature for 16 h, 10⁻⁵ mbar).

Synthesis of [OMA][BEt₃H] and [BMIm][BEt₃H]: At room temperature, K[BEt₃H] (100 mL of a 1 M solution in THF) was added to the solution of 50 g [OMA]Br or 50 g [BMIm]Cl, accordingly, in 100 mL THF. The reaction mixture was stirred for 3 h. KBr or KCl was removed by filtration after storing the solution at -40 °C overnight to yield [OMA][BEt₃H]_{THF} or [BMIm][BEt₃H]_{THF}, respectively, as a clear, colorless to yellowish solution in THF (1.5 M).

UV-vis absorption spectroscopy: 0.25 mmol metal precursor salts (Pt:Sn 3.1; Pt:Sn 1:1) were dissolved in 4 mL IL and then diluted 1:2 by addition of the respective IL.

Figure S 1. UV-vis absorbance spectra of a) pure ILs ([BMIm][PF₆], [BMIm][BF₄], [OMA][NTf₂]) (spectra measured against air as a reference)) and of b) PtCl₂, SnCl₂, and PtCl₂ + SnCl₂ 3:1 in [BMIm][BF₄] (respective IL was used as a reference).

Precursor	IL	Absorption maxima	Composition
PtCl ₂	[OMA][NTf ₂]	435 nm	-
SnCl ₂		280 nm, 316 nm	-
PtCl ₂ :SnCl ₂ (3:1)		359 nm	Pt₃Sn / PtSn / Pt
PtCl ₂ :SnCl ₂ (3:2)		353 nm	Pt₃Sn / PtSn
PtCl ₂		451 nm	-
SnCl ₂	[BMIm][BF₄]	-	-
PtCl ₂ :SnCl ₂ (3:1)		397 nm	PtSn

Indexed XRD patterns (References from Joint Committee of Powder Diffraction Standards (JCPDS) data base: Pt (JCPD 03-065-2868), Pt₃Sn (JCPD 03-065-0958), and PtSn (JCPD 03-065-0959), SnO₂ (JCPD 00-046-1088):

Figure S2. XRD pattern of NPs 4 (references: Pt (black), PtSn (blue)).

Figure S3. Indexed XRD pattern of NPs 1 (Pt (black), SnO₂ (green), Pt₃Sn (red)).

Figure S4. Indexed XRD pattern of NPs 2 (Pt₃Sn (red), PtSn (blue) and Pt (black))

Figure S5. Indexed XRD pattern of a) NPs 3 and b) NPs 8a and 8b (Pt₃Sn (red), PtSn (blue)).

Figure S6. Indexed XRD pattern of (PtSn (blue)).