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Abstract
A fully coupled high order discontinuous Galerkin (DG) solver for viscoelastic
Oldroyd B fluid flow problems is presented. Contrary to known methods com-
bining DG for the discretization of the convective terms of the material model
with standard finite element methods (FEM) and using elastic viscous stress
splitting (EVSS) and its derivatives, a local discontinuous Galerkin (LDG) for-
mulation first described for hyperbolic convection-diffusion problems is used.
The overall scheme is described, including temporal and spatial discretization
as well as solution strategies for the nonlinear system, based on incremental
increase of the Weissenberg number. The solvers suitability is demonstrated
for the two-dimensional confined cylinder benchmark problem. The cylinder is
immersed in a narrow channel with a blocking ratio of 1:2 and the drag force
of is compared to results from the literature. Furthermore, steady and unsteady
calculations give a brief insight into the characteristics of instabilities due to
boundary layer phenomena caused by viscoelasticity arising in the narrowing
between channel and cylinder.
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1 INTRODUCTION

In many flow processes, the behavior of the fluid is non-Newtonian. Especially in biological flow and environmental or
chemical processes, such as blood flow,1,2 sedimentation processes,3 or polymer melts,4 we can observe viscoelastic flow
phenomena like the characteristic fading memory effect.

The simulation of fluids with viscoelastic behavior is particularly challenging due to two major issues: First, the proper
modeling of the physical characteristics and the right choice of a viscoelastic model is crucial in order to not develop
unphysical models or even ill-posed problems with non-unique or even without solutions.5 Existing models such as the
Oldroyd B model used in this study are convection-dominated with a missing diffusion term in the constitutive equations.
Thus, they are of hyperbolic nature.6 Second, the numerical method has to deal with stability and accuracy problems
caused by a strong variation of length scales within the thin boundary layer, where velocity gradients and stresses can
rapidly change their values by several orders of magnitude.7 Both leads to a loss of convergence even for minimal elastic
behavior in the fluid.
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medium, provided the original work is properly cited and is not used for commercial purposes.
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A good approach is the use of the discontinuous Galerkin (DG) method having discontinuous elements with appropri-
ate flux functions for the edges, which is more robust against numerical oscillations compared to, for example, continuous
Galerkin methods. Within the last 25 years, the DG method has been successfully established for solving hyperbolic con-
servation laws and was first introduced by Fortin and Fortin8 for viscoelastic fluid flow. It is also strongly emerging in
other fields of computational fluid dynamics.9 There are two reasons for this ascent which obviates essential limitations
of classical techniques such as finite volume or finite difference methods. DG cleverly combines an arbitrary order k ∈ N

in the numerical discretization error (hk+1) with a local flux evaluation which is at most to be computed from adjacent
cells. Here, h refers to the local grid spacing, and k to the order of the DG basis polynomials. This is in strong contrast to
the established schemes, which are substantially limited to a convergence order of two on unstructured grids, and even on
Cartesian grids it is rather limited to small values because of the larger stencils required for increasing convergence order.10

In viscoelastic flow, the DG method is often used to obtain stability for the convection-dominated convection-diffusion
problem using a streamline upwinding formulation. To this end, the convective term of the constitutive equations is
discretized by a DG scheme whereas the other variables in the momentum and continuum equation are discretized using
a standard finite element method (FEM). The DG method allows jumps in the boundary conditions and preconditioning
at the elemental level, appropriate flux functions for the edges can be chosen, and velocity-stress compatibility conditions
can be easily satisfied.5 So the DG method is a promising method for convection-dominated problems. However, in the
context of viscoelastic flow, there are few approaches fully based on this method. First ideas for high order DG in a
decoupled scheme can be found in the newer work of Mirzakhalili and Nejat.11

A breakdown in convergence can also occur due to the mixed hyperbolic-elliptic type of the system of equations,
whereas the saddle-point problem of the Navier-Stokes system is of elliptic type. The constitutive equations modeling
the viscoealstic behavior are hyperbolic. As it is shown in Section 2, the viscous part of the momentum equations and of
the constitutive equations are weighted by a material parameter 𝛽. If 𝛽 is close to 1, the contribution of the constitutive
equations is small and we have an elliptic system to solve. If 𝛽 → 0 such that we have a highly elastic fluid for increas-
ing Weissenberg number, a change of type from elliptic to hyperbolic occurs and the numerical solution can become
unstable unless special care is taken.6,12,13 The Weissenberg number relates the elastic to viscous forces such that a large
Weissenberg number describes significant non-Newtonian behavior if the elastic forces outweigh the viscous forces.

There are several approaches in numerical computation for handling the strong mixed hyperbolic-elliptic coupling
between the momentum and constitutive equations by the velocity gradient. In the elastic-viscous stress splitting (EVSS)
method and its derivatives, a second order elliptic term is introduced in the constitutive equations and the depending
variables are changed such that there is no necessity for additional compatibility conditions for the well-posedness of the
discrete system in the Stokesian limit.5,7,14,15 However, this extends the system of equations to be solved by an additional
evolutionary equation for the velocity gradient.

We aim for a solver for viscoelastic flow with an exclusively high order DG scheme for all equations using a local
discontinuous Galerkin (LDG) formulation with penalized fluxes in order to solve the hyperbolic constitutive equations
and using a streamline upwinding for the convective fluxes of the constitutive equations. The solver is embedded in
the open source DG framework called BoSSS, currently under development at the chair of fluid dynamics of Technical
University of Darmstadt, which can be downloaded under https://github.com/FDYdarmstadt/BoSSS.

Since only few analytical solutions exist for complex viscoelastic flow, several benchmark problems have been estab-
lished for validating numerical schemes and models. One of these is the confined cylinder problem in which the flow
around a cylinder immersed in a narrow channel with a blocking ratio of 2:1 is investigated numerically. This bench-
mark has been analysed in numerous works, for example, References 7,16-21, but still, the numerical treatment of this
test case is challenging because there are problems arising in resolving steep gradients in velocity and stress and very
thin boundary layers as well as a very fine nearly singular beam in the wake of the cylinder.20 Without stabilizing tech-
niques, most numerical approaches diverge for Weissenberg numbers (Wi) greater than 0.7, for example, Reference 14.
The lack of convergence is due to either numerical errors propagating into the wake of the cylinder or physical instabil-
ities inherent in the viscoelastic model which lead to an exponential increase of the stresses at the rear stagnation point
behind the cylinder.20 To circumvent this, among other methods, a log-conformation formulation of the stress tensor was
developed,22,23 which leads to higher achievable Weissenberg numbers, but also leads to a higher complexity of the system
and does not avoid the loss of convergence in the wake of the cylinder.

In newer times, the physical instabilities in the viscoelastic flow around the cylinder have come into focus of
research. Experimentally, such instabilities were confirmed and analyzed in detail earlier.24 There seems to be an unsta-
ble detaching boundary layer on the cusp of the cylinder leading to a transitional flow which is unsteady beyond Wi= 1
and three-dimensional structures arise. This means that with increasing Weissenberg number, a convergent numerical
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solution cannot be found, especially when fine meshes and high-order accurate methods try to capture the evolving
structures close to the cylinder. This could be the reason why solutions on coarser meshes might have less difficulty to
converge.20

In this work, we introduce in a first step the high order LDG method for viscoelastic flow. We then present some
results for the confined cylinder benchmark problem. If there are problems finding a convergent solution, we can use a
cell indicator combined with artificial diffusion. This method was originally developed similar to the LDG formulation
for DG methods for compressible Navier-Stokes applications.25 In the last part of this work, results for the steady and
unsteady viscoelastic flow around the cylinder are shown and compared to results obtained by other numerical methods.
In the end the reader will find some concluding remarks concerning the solver and the confined cylinder benchmark
problem.

2 GOVERNING EQUATIONS

We consider two-dimensional incompressible viscoelastic Oldroyd B fluid flow in dimensionless variables consisting of
the continuity equation

∇ ⋅ u = 0, (1)

the momentum equations including the solvent part of the fluid

Re
(
𝜕u
𝜕t

+ u ⋅ ∇u
)
= −∇p + 𝛽Δu + ∇ ⋅ 𝝉 , (2)

and the constitutive equations for the polymeric part of the Oldroyd B fluid

𝝉 + Wi
∇
𝝉 = (1 − 𝛽)

(
∇u + (∇u)T) . (3)

In this system, we have the dependent variables u: velocity vector, p: pressure, and 𝝉 : extra stress tensor, the inde-
pendent variables t: time, the Laplace operator Δ = ∇2, the nabla operator ∇ = 𝜕

𝜕x
, and x: position vector, and the

dimensionless parameters Re: Reynolds number, Wi: Weissenberg number, 𝛽: ratio between solvent and total viscosity
(𝛽 = 𝜂s

𝜂0
, (1 − 𝛽) = 𝜂p

𝜂0
). We use the upper convected objective derivative:

∇
𝝉 = 𝜕𝝉

𝜕t
+ u ⋅ ∇𝝉 − ∇u ⋅ 𝝉 − 𝝉 ⋅ (∇u)T . (4)

The constitutive model reduces to the upper convected Maxwell model (Maxwell fluid B) if 𝛽 = 0 and to a Newtonian
fluid if 𝛽 = 1 which means that the polymeric viscosity is zero. If the Weissenberg number is chosen to be zero, this
leads to a Newtonian formulation as well. The system (1)–(3) is of mixed type: the Stokes part in (1), (2), neglecting the
left-hand-side of (2) is elliptic. If a temporal derivative is considered, it is parabolic, while the convective part on the
left-hand-side of (2) is hyperbolic. The Oldroyd B model (3)) is also of mixed type; Joseph13 shows that it can be hyperbolic
under certain circumstances, but it can also be parabolic in other regions. However, it is obvious that (1)–(3) is a highly
nonlinear, coupled problem. In combination with its non-hyperbolic nature, this requires an implicit non-linear solver.

3 COMPUTATIONAL METHODS

If we want to discretize the governing equations (1)–(3), we need to define initial and boundary conditions on the bound-
ary 𝜕Ω of a physical domain Ω ⊂ R2 for the dependent variables in order to obtain a well-posed problem. The initial
conditions are:

u = u0, 𝝉 = 𝝉0 for t = t0. (5)
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KIKKER et al. 1739

On Dirichlet boundaries 𝜕ΩD, we define:

u = uD on 𝜕ΓD, (6)

on boundaries with a condition of the Neumann type 𝜕ΓN we have:

(
−pI + 𝛽(∇u + (∇u)T) + 𝝉

)
n𝜕Ω = 0 on 𝜕ΩN , (7)

and we introduce a free slip boundary condition on 𝜕ΓS with:

u ⋅ n𝜕Ω = 0 and
PS

(
𝛽(∇u + (∇u)T) + 𝝉

)
n𝜕Ω = 0 on 𝜕ΩS, (8)

where PS = I − n𝜕Ω ⊗ n𝜕Ω denotes the orthogonal projection onto the boundary 𝜕ΩS.

3.1 Discretization

Before describing the DG discretization of the system of equations, we first introduce some definitions.26

Corresponding to the physical domain defined above, we have a computational domain Ωh ⊂ R2 with its boundary
𝜕Ωh which must be polygonal and simply connected. On Ωh, we have a space filling triangulation as a numerical grid
with geometry-conforming non-overlapping elements Kh = {K1, … , KN } with a characteristic mesh size h. So the phys-
ical domain Ω is approximated by the union of all elements: Ω ≈ Ωh =

⋃N
i=1 Ki, whereas Γ =

⋃
j𝜕Kj is the union of all

edges or the skeleton of the grid and ΓI = Γ ⧵ 𝜕Ωh is the union of all interior edges. Furthermore, we have ΓD,h ⊂ Ωh and
ΓD,h ≈ ΓD, ΓN,h ⊂ Ωh and ΓN,h ≈ ΓN , and ΓS,h ⊂ Ωh and ΓS,h ≈ ΓS for the Dirichlet, Neumann, and free slip boundary,
respectively.

We denote a normal field nΓ, on 𝜕Ωh it defines an outer normal. We now can define the direction of information
transfer. Therefore, the superscript u− defines the information in the interior of an element while the superscript u+

defines the exterior information of the neighboring cell for a field u ∈ C0 (Ωh ⧵ ΓI) with:

u− = lim
𝜉↘0

u (x − 𝜉nΓ) for x ∈ Γ (9)

u+ = lim
𝜉↘0

u (x + 𝜉nΓ) for x ∈ ΓI . (10)

Since n− =−n+, the jump and mean values of a component of a tensor of arbitrary order on inner edges ΓI are,
respectively:

⟦u⟧ = u+ − u− (11)

{u} = 1
2
(
u− + u+) . (12)

The jump and mean values on boundary edges 𝜕Ωh are, respectively:

⟦u⟧ = u− (13)

{u} = u−. (14)

We now define the broken polynomial space of total degree k as

Pk(Kh) = {f ∈ L2 (Ωh) ; ∀K ∈ Kh ∶ f |Kh is polynomial and deg
(

f |Kh

) ≤ k}, (15)
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1740 KIKKER et al.

and the function space for test and trial functions for Dv dependent variables with discretization of different polynomial
degree k. Therefore, we define the degree-vector k =

(
k1, … , kDv

)
and get:

Vk =
Dv∏
i=1

Pki(Kh). (16)

We define for uK , vK ∈ Vk a local inner product and a local L2(Kh) norm on each element:

(uK , vK)K = ∫K
uKvK dx ||uK||2K = (uK ,uK)K , (17)

and for uh, vh ∈ Vk, a global broken inner product and a global broken norm:

(uh, vh)Ωh
=

N∑
i=1

(uh, vh)K ||uh||2Ωh
= (uh,uh)Ωh

. (18)

For uh ∈ C1 (Ωh), the broken gradient is defined by ∇huh on the domain Ωh where differentiation at the jumps on Γ
is excluded and analogously, ∇h ⋅uh is the broken divergence.

3.1.1 Temporal discretization

Although most numerical examples presented here (cf. Section 4) are steady-state solutions, temporally dependent solu-
tions, such as shown in Section 4.3 (see also Figure 11), can be obtained by using a backward difference method of second
order (BDF2) for the temporal discretization of Equations (2) and (3). In the examples investigated, we found BDF2 to
be a reasonable compromise between temporal accuracy and stability of the temporal integration. Furthermore, it is also
easy to implement. This leads to the following system:

∇ ⋅ un+1 = 0

Re
(

3un+1

2Δt
+ un+1 ⋅ ∇un+1

)
+ ∇pn+1 − 𝛽Δun+1 − ∇ ⋅ 𝝉n+1 = Re

Δt

(
2un − 1

2
un−1

)
𝝉

n+1 + Wi
(

3𝝉n+1

2Δt
+ un+1 ⋅ ∇𝝉n+1 − ∇un+1 ⋅ 𝝉n+1 − 𝝉

n+1 ⋅
(
un+1)T

)
− (1 − 𝛽)

(
∇un+1 +

(
∇un+1)T

)
= Wi

Δt
(
2𝝉n − 𝝉

n−1) . (19)

3.1.2 Spatial discretization

Since we need to satisfy the Ladyzenskaja-Babuska-Brezzi (LBB) condition for the Stokes system with 𝛽 = 1, we use
polynomials of degree k for velocity and stresses and of degree k′ = k− 1 for the pressure.27,28 Detailed work on the stability
of the DG method for the Stokes and Navier-Stokes System can be found in Girault et al.29

Regarding the temporal discretization, to simplify the notation, let all properties in (19) which are related to times tn

and tn− 1 (e.g., un and un− 1), be absorbed in the right-hand sides. For steady-state simulations, one can assume the limit
Δt → ∞, that is, 1∕Δt = 0. Then, the DG discretization of the governing system of equations is: Find (uh, ph, 𝝉h) ∈ Vk
such that for all (vh, qh,𝝈h = 𝝈

T
h ) ∈ Vk:

b(uh, qh) + s2(ph, qh) = r1(qh), (20)

3Re
2Δt

(uh, vh) + c(uh,uh, vh) + b(ph, vh) − a(uh, vh) − d′(vh, 𝝉h) + s1(uh, vh) = r2(vh), (21)(
1 + 3Wi

2Δt

)
(𝝉h,𝝈h) + f (uh, 𝝉h,𝝈h) − g(uh, 𝝉h,𝝈h) − g(uh, 𝝉h,𝝈

T
h)

− d(uh,𝝈h) − d(uh,𝝈
T
h ) = r3(𝝈h). (22)
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KIKKER et al. 1741

For the trilinear form of the convective term in the momentum equations, we use a Lax-Friedrichs flux:30

c(wh,uh, vh) = −∫Ωh

Re(uh ⊗ wh) ∶ ∇hvh dV − ∮Γ⧵ΓD,h⧵ΓS,h

Re
(
{uh ⊗ wh} nΓ −

𝛾1

2
⟦uh⟧) ⋅ ⟦vh⟧ dS. (23)

Further information about the choice of the Lax-Friedrichs parameter 𝛾1 in the DG discretization are given in Shahbazi
et al.30,31 For the bilinear form of the pressure gradient as well as for the velocity divergence in the continuity equation,
we use

b(ph, vh) = −∫Ωh

ph ∇h ⋅ vh dV − ∮Γ⧵ΓN,h

⟦vh⟧ ⋅ nΓ {ph} dS. (24)

The Laplacian in the momentum equations is discretized using the symmetric interior penalty (SIP) method:31

a(uh, vh) = −∫Ωh

𝛽(∇huh ∶ ∇hvh) dV + ∮Γ⧵ΓN,h⧵ΓS,h

𝛽{∇huh} nΓ ⋅ ⟦vh⟧ dS

+ ∮Γ⧵ΓN,h⧵ΓS,h

𝛽{∇hvh} nΓ ⋅ ⟦uh⟧ dS − ∮Γ⧵ΓN,h⧵ΓS,h

𝛾2⟦uh⟧ ⋅ ⟦vh⟧ dS + aS(uh, vh). (25)

The penalty parameter 𝛾2 has to be chosen large enough to ensure coercivity while it should be as small as possible
since over-penalization increases the approximation error. Further information about the choice of this penalty parameter
being proportional to (p+ 1)2) in the BoSSS framework are given in the work of Hillewaert.32 The free slip boundary
condition in the SIP flux a(uh, vh)S for ΓS,h reads:

aS(u, v) = ∮ΓS,h

𝛽 nΓS,h ⋅
(
{∇huh} nΓS,h

) ⟦vh⟧ ⋅ nΓS,h dS

+ ∮ΓS,h

𝛽 nΓS,h ⋅
(
{∇hvh} nΓS,h

) ⟦uh⟧ ⋅ nΓS,h dS − ∮ΓS,h

𝛾2⟦uh⟧ ⋅ nΓS,h⟦vh⟧ ⋅ nΓS,h dS. (26)

For the stress divergence in the momentum equations and the gradient of velocity in the constitutive equations, we
have structurally the same weak formulation, for the stress divergence it reads:

d′(𝝉h, vh) = −∫Ωh

𝝉h ∶ ∇hvh dV + ∮Γ⧵ΓN,h⧵ΓS,h

{𝝉h} nΓ ⋅ ⟦vh⟧ dS + dS(𝝉h, vh), (27)

and for the gradient of velocity in the constitutive equations, it is:

d(uh,𝝈h) = −∫Ωh

(1 − 𝛽) uh ⋅ ∇h ⋅ 𝝈h dV + ∮Γ
(1 − 𝛽) ({uh}⊗ nΓ) ∶ ⟦𝝈h⟧ dS. (28)

In case of the stress divergence, we need to define a free slip boundary condition dS(𝝉h, vh) at ΓS,h:

dS(𝝉h, vh) = ∮ΓS,h

nΓS,h ⋅
(
{𝝉h} nΓS,h

) ⟦vh⟧ ⋅ nΓS,h dS. (29)

The trilinear form for the convective term in the constitutive equations including the streamline upwinding8 is

f (wh, 𝝉h,𝝈h) = −∫Ωh

Wi (wh ⋅ ∇h𝝉h) ∶ 𝝈h dV − ∮ΓI

Wi
(
{wh} ⋅ nΓI

) (⟦𝝉h⟧ ∶
(

f2𝝈
+
h − f1𝝈

−
h
))

dS, (30)
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1742 KIKKER et al.

with the following functions depending on the upwind parameter 0 ≤ 𝛼 ≤ 1:

f1(𝛼) =

{
𝛼, if {wh} ⋅ nΓI < 0,
1 − 𝛼, if {wh} ⋅ nΓI ≥ 0

,

f2(𝛼) =

{
𝛼, if {wh} ⋅ nΓI < 0,
1 − 𝛼, if {wh} ⋅ nΓI ≥ 0

. (31)

The objective terms of the constitutive equations consist of the following trilinear form:

g(wh, 𝝉h,𝝈h) = −∫Ωh

Wi (∇hwh ⋅ 𝝉h) ∶ 𝝈h dV. (32)

In the LDG method, we need a penalty flux to ensure the stability of the system.9 The bilinear form read

s1(uh, vh) = −∮Γ⧵ΓN,h⧵ΓS,h

𝛾3

hmin
⟦uh⟧ ⋅ ⟦vh⟧ dS. (33)

The right-hand sides of the problem include the Dirichlet boundary values and all values from the BDF2 discretization
of time level tn and tn− 1. The right-hand side for the continuity equation is:

r1(qh) = −∮ΓD,h

qh uD ⋅ nΓD,h dS. (34)

The right-hand side of the momentum equations is:

r2(vh) = ∮ΓD,h

((uD ⊗ uD) nΓD,h∪ΓS,h +
𝛾1

2
uD) ⋅ ⟦vh⟧ dS − ∮ΓD,h

uD ⋅
(
𝛽{∇hvh} nΓD,h − 𝛾2⟦vh⟧) dS

− ∮ΓD,h

𝛾3

hmin
uD ⋅ ⟦vh⟧ dS + Re

Δt∫Ωh

(
2un − 1

2
un−1

)
⋅ vh dV. (35)

It includes the Dirichlet boundary condition for the convective part, for the Laplace term and for the penalty flux s1
and the values for the velocities from the BDF2 discretization of time level tn and tn− 1.

The right-hand side for the constitutive equations consists of a Dirichlet boundary for the velocities in the gradient of
velocity and the values for the stresses from the BDF2 discretization of time level tn and tn− 1:

r3(𝝈h) = −∮ΓD,h

(1 − 𝛽) uD ⊗ nΓ ∶ ⟦𝝈h⟧ dS − ∮ΓD,h

(1 − 𝛽) uD ⊗ nΓ ∶ ⟦𝝈T
h⟧ dS + Wi

Δt ∫Ωh

(
2𝝉n − 1

2
𝝉

n−1
)
∶ 𝝈h dV. (36)

Since the stress tensor is symmetric and we choose the test function to be 𝝈h = 𝝈
T
h , we can omit the constitutive

equation for 𝜏21 and therefore, neglect all terms belonging to 𝜏21 in the discretized system.

3.2 Nonlinear solver

The presented solver, which is exclusively using a DG scheme in the context of viscoelastic flow, is implemented in the
software framework BoSSS33 and due to its future application in multiphase flows embedded in the extended discontin-
uous Galerkin (XDG) solver presented by Kummer.26 The overall solver consist of several levels with different iteration
schemes:

1. a BDF2-time stepping scheme for transient simulations (cf. Section 4.3), where the limit 1∕Δt = 0 yields a stationary
solver,

2. a homotopy scheme with slowly increasing Weissenberg number, and
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KIKKER et al. 1743

3. a Newton scheme, employing a Dogleg-globalization, see References 34 and 35, and a direct sparse solver for the
linearized system.

3.2.1 Preparations

In order to solve the nonlinear variational problem (20)–(22) by a Newton method, it is helpful to first convert it
into a more compact notation: First, we note that Equations (20)–(22) can be written in the following form: Find
Uh ∈ Vk

 (Uh,Vh) = 0 ∀ Vh ∈ Vk, (37)

where, for Uh = (uh, ph, 𝝉h) and Vh = (vh, qh,𝝈h), the form  (Uh,Vh) is the sum over all left-hand-sides minus the
sum over all right-hand-sides of Equations (20)–(22). We assume a basis 𝚽 = (𝚽1, … ,𝚽L) of Vk, written as a row
vector, with L ∶= dim(Vk). Then Uh can be represented as Uh = 𝚽 ⋅ U. The nonlinear problem (37) can then be
written as

(U) = 0, (38)

with the nonlinear function RL ∋ U → (U) ∈ RL. The ith component of (U) can be defined by  (−,−) through the
relation [(U)]i =  (𝚽 ⋅ U,𝚽i).

3.2.2 The Jacobian of 

In order to formulate a Newton method, one also requires the Jacobian matrix 𝜕 of , defined as

𝜕ij(U) ∶= 𝜕i

𝜕Uj
(U). (39)

Its computation is quite straightforward, but lengthy; the BoSSS code is capable of evaluating the Jacobian matrix
automatically from the expressions given in Section 3.1.2. We note that one could write (U) as

[(U)]i =  (Uh,𝚽i) = ∫Ωh

N1(x⃗,Uh,∇Uh) ⋅𝚽i + N2(x⃗,Uh,∇Uh) ⋅ ∇𝚽idV + ∮Γ
… dS. (40)

The edge integral, which is left out in Equation (40), can be written in analog fashion as the volume integral, that is,
as a sum over four nonlinear functions, multiplied by 𝚽+

i , 𝚽−
i , ∇𝚽+

i , and ∇𝚽−
i , respectively. These functions themselves

may depend on x⃗, U+
h , U−

h , ∇U+
h , and ∇U−

h . For sake of compactness, this part is skipped. Realizing that 𝜕Uh
𝜕Uj

= 𝚽j and by
application of the chain rule, one derives

𝜕ij(U) = ∫Ωh

(𝜕Uh N1(x⃗,Uh,∇Uh)𝚽j + 𝜕∇Uh N1(x⃗,Uh,∇Uh)∇𝚽j) ⋅𝚽i + … dV + ∮Γ
… dS. (41)

All skipped terms in Equation (41) can be derived in the same way as the contributions for N1. In the
BoSSS code, derivatives 𝜕Uh N1(… ) and 𝜕∇Uh N1(… ) are approximated by a finite difference, using a pertubation by√
eps in the respective argument, where eps= 2.22044604925031 ⋅ 10−16 is the floating point accuracy for double

precision.
This notation allows to describe the Newton-Dogleg method which has been sufficient to solve all Newtonian setups

presented in this work. However, with increasing Weissenberg number, finding a convergent solution without an initial
guess becomes difficult: the Newton-Dogleg method may not diverge, but it stalls at a high residual. Therefore, for such
cases we use a homotopy method, starting with a Newtonian solution and slowly increasing Weissenberg number within
the time step for steady calculations, cf. Section 3.4.
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1744 KIKKER et al.

3.3 Newton-Dogleg method

Given is a linearization of Equation (38) around Un,

(Un) + 𝜕(Un)(Un+1 − Un)
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

=∶s′n

= 0. (42)

By repeatedly solving this system, one obtains a standard Newton scheme for Equation (38), yielding a sequence of
approximate solutions U0, U1, U2, … obtained from an initial guess U0 through the iteration scheme Un+1 = Un + s′n.
In the (classical, un-damped) Newton method, the correction step sn′ is set to be the Newton-step, that is, sn′ = sn
with

sn ∶= −𝜕(Un)−1(Un). (43)

To compute sn, we use the sparse direct solver PARDISO, originally developed by Schenk et al.,36-38 from the “Intel(R)
Parallel Studio XE 2018 Update 3 Cluster Edition for Windows” library collection to solve the linear system.

Unfortunately, convergence of the Newton method for any starting value U0 is not guaranteed. In order to increase
robustness when the distance between U0 and the exact solution U is large, we employ a globalization approach, presented
by Pawlowski et al.,34,35 known as the Dogleg-method, respectively, Newton-Dogleg method. Here, we intend to give only
the central ideas of method and refer to the original works for further details.

Obviously, the exact solution of Equation (38) is also the minimum of the functional

f (U) ∶= 1
2
‖(U)‖2

2 . (44)

One observes that ∇f (U) = 𝜕(U)T(U). For Un, the approximate Cauchy point, with respect to the 2-norm, is
defined as the minimizer gn of ‖‖(Un) + 𝜕(Un)gn

‖‖2 in the direction of steepest decent, that is, gn = 𝜆∇f (Un), 𝜆 ∈ R.
Substituting w ∶= −𝜕(Un)∇f (Un), gn is given as

gn = (Un) ⋅ w
w ⋅ w

∇f (Un). (45)

For the Newton-Dogleg method, the correction step s′n is chosen along the so-called Dogleg curve, which is the
piece-wise linear curve from the origin to gn and further to sn. The selection of s′n on this curve is determined by the
trust-region diameter 𝛿 > 0:

• If ||sn||2 ≤ 𝛿, s′n = sn.
• If ||gn||2 ≤ 𝛿 and ||sn||2 > 𝛿, s′n is chosen on the linear interpolation from gn to sn so that ||s′n||2 = 𝛿: For the Ansatz

s′n = 𝜏sn + (1 − 𝜏)gn, the interpolation factor 𝜏 is given as 𝜏 = (a2 − c +
√
(A2 + B2 − 2c)𝛿2 − a2b2 + c2)∕(a2 + b2 − 2c)

with a= ||gn||2, b= ||sn||2 and c= gn ⋅ sn.
• If ||gn||2 > 𝛿, gn = (𝛿∕||gn||2)gn.

The choice, respectively, the adaptation of the trust region diameter 𝛿 throughout the Newton-Dogleg proce-
dure follows a sophisticated heuristic, mainly based on comparing the actual residual reduction aredn ∶= ||(Un)||2 −||(Un + s′n)||2 with the predicted residual reduction predn ∶= ||(Un)||2 − ||(Un) + 𝜕(Un)s′n||2; for the direct
solver used in this work predn simplifies to predn ∶= ||(Un)||2. We replicate the algorithm here, for the sake of
completeness:

1. Set n= 0, 𝛿n = min(1010,max(2 ⋅ 10−6, ||s0||2)).
2. Compute the Newton step sn and the Cauchy point gn and find s′n on the Dogleg curve w.r.t. the recent 𝛿n.
3. While aredn ≤ predn do: Update trust region diameter 𝛿n ← 0.5 𝛿n and re-compute s′n. If 𝛿n < 10−6 terminate abnor-

mally and mark the computation as failed.
4. If the convergence criterion (see below) is fulfilled, terminate and mark the computation as success.

 10970363, 2021, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/fld.4950 by T

echnische U
niversitat D

arm
stadt, W

iley O
nline L

ibrary on [02/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



KIKKER et al. 1745

5. Perform a final update of the trust region: Set

𝛿n+1 =

⎧⎪⎪⎨⎪⎪⎩

max(10−6, ||sn||2) if aredn∕predn < 0.1 and ||sn||2𝛿n

max(10−6, 0.25 ⋅ 𝛿n) else, if aredn∕predn < 0.1
min(1010, 4 ⋅ 𝛿n) else, if aredn∕predn > 0.75
𝛿n otherwise

Set Un+1 = Un + s′n, update n←n+ 1 and return to step (2).

All constants used in the algorithm above have been taken from the work of Pawlowski et al. For a detailed description
of the underlying ideas, we also refer to these works, which in turn are based on algorithms from Dennis and Schnabel’s
textbook.

3.3.1 Termination criterion

A simple approach to determine that the Newton-Dogleg loop can be terminated would be to check whether the residual
norm has fallen below a certain threshold, that is, ||(Un)|| ≤ tol. A universal choice for tol is indeed difficult, especially
for investigations of convergence properties (cf. Section 4.1). If chosen to low, the algorithm may never terminate, since
numerical round-of errors are dominating. If chosen to high, the error of the premature termination may dominate the
spatial discretization and one cannot take the full advantage from the high-order method. Therefore the goal is to continue
the Newton-Dogleg method until the lowest possible limit given by the floating point accuracy is reached. To identify this
in a robust way, we first define the residual-norm skyline as

srn ∶= min
j≤n

||(Uj)|| (46)

and, for n≥ 2, the averaged reduction factor

arfn ∶= 1
2

(
srn−2

max{srn−1, 10−100}
+ srn−1

max{srn, 10−100}

)
. (47)

The Newton-Dogleg method is terminated if

n ≥ 2 and srn ≤ 10−5 + 10−5||Un||2 and arfn < 1.5. (48)

At least for the computations in this work, this choice guarantees that the nonlinear system is solved as accurately as
possible within the given floating-point accuracy. Thus, the numerical error is dominated by the spatial or temporal dis-
cretization and not by the termination criterion of the Newton-Dogleg method. The skyline-approach ensures robustness
against oscillations close to the lower limit.

3.4 Homotopy method

Although the Newton-Dogleg method works pretty well for a variety of cases, it failed to converge (within a maximum
of 100 iterations) for several cases in the convergence study presented in Section 4.1. In particular, the Newton-Dogleg
method failed for cases with Wi= 0.2 and polynomial degree k≥ 3 on all meshes, as well as for k= 2 on meshes 2 and 3,
cf. Tables 1 and 2. In such cases, we increased the Weissenberg number by the following strategy, which is loosely based
on ideas from the textbook of Deuflhard,39 chapter 5.

Let

wi∗ (U) = 0, (49)
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1746 KIKKER et al.

mesh NX1 NX2 NX3 NX4 NY1 NY1b NY2

mesh_0 20 4 6 20 4 6 4

mesh_1 30 8 12 30 8 12 8

mesh_2 45 16 24 45 16 24 16

mesh_3 68 32 48 68 32 48 32

factor 1.5 2 2 1.5 2 2 2

T A B L E 1 Amount of nodes of the
computational meshes in different
regions for the convergence study

mesh no of cells k = 1 k = 2 k = 3 k = 4

mesh_0 320 5120 10,560 17,920 27,200

mesh_1 1208 19,328 39,864 67,648 102,680

mesh_2 4252 68,032 140,316 238,112 361,420

mesh_3 14,712 235,392 485,496 823,872 1,250,520

T A B L E 2 Number of cells and of degrees
of freedom for different mesh sizes and
polynomial degrees with k for the velocity and
stresses and k− 1 for the pressure

be the discretized system for a certain intermediate Weissenberg number wi*, between 0 and the “target” Weissenberg
number Wi, that is, 0≤wi* ≤Wi. Furthermore, let Uwi,𝜖 be an approximate solution to the problem (49) at Weissenberg
number wi* =wi, up to a tolerance 𝜖, that is,

‖‖wi(Uwi,𝜖)‖‖2 ≤ 𝜖. (50)

(For the sake of the algorithm which follows below, we distinct between the intermediate Weissenberg number wi
for which we assume to already have found an acceptable solution and the next Weissenberg number wi*, that we are
currently trying to find a solution for.) For any wi* <Wi, we set 𝜖 = 10−5‖‖wi∗(Uwi,𝜖)‖‖2, that is, we aim for a residual
norm reduction of at least 5 magnitudes with respect to the initial residual norm. If wi* =Wi, the termination criterion
presented in Section 3.3 is applied.

An approximate solution for the target Weissenberg number is found by the following recipe:

1. Set wi= 0, that is, start by obtaining an (approximate) solution U0,𝜖 to the Newtonian problem.
2. Search for a an increased Weissenberg number wi*: Find the minimal i≥ 0 so that for wi∗ = 1

2i (Wi − wi) + wi one
has ‖‖wi∗ (Uwi,𝜖)‖‖2 ≤ 𝛿max‖‖wi(Uwi,𝜖)‖‖2 Here, 𝜁max is the maximal allowed increase of the residual for an increased
Weissenberg number wi*; 𝜁max is adapted in the following steps, as an initial guess we used 𝜁max = 106.

3. Use the Newton-Dogleg method to compute an approximate solution to the problem (49), for Weissenberg number
wi*, using the solution Uwi,𝜖 as an initial guess.

• If the Newton-Dogleg method did not converge successfully within 10 steps, the Weissenberg number
increase from wi to wi* was probably to large. Set 𝜁max ← 0.2 ⋅ 𝜁max and go to step 2.

• If the Newton-Dogleg method reached its convergence criterion and if the target Weissenberg number is
reached, that is, wi* =Wi, the algorithm has successfully found an approximate solution forWi(U) = 0 and
can terminate.

• Otherwise, if the Newton-Dogleg method converged successfully, but is below the target Weissenberg num-
ber Accept the solution and set wi←wi*. If the Newton-Dogleg method took less than 3 iterations to reach
the convergence criterion, set 𝜁max ← 8 ⋅ 𝜁max. Return to step 2.

An exemplary run of the solver is shown in Figure 1.

4 NUMERICAL RESULTS

We consider the confined cylinder benchmark problem. It is a two dimensional numerical simulation of viscoelastic flow
around a cylinder (radius R= 1) immersed in a narrow channel (height H = 4) with a blocking ratio of R

H
= 1

2
(Figure 2).
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KIKKER et al. 1747

F I G U R E 1 Convergence behavior of the homotopy method, for degree k= 4 on mesh_3. One observes that the residual ‖wi∗ (Un)‖2 is
initially high, and the trust region 𝛿 is reduced below 1.0, which forces the Newton-Dogleg method to pick s′n close to the origin of the Dogleg
curve and later between the Cauchy point and the Newton step. Slowly, the convergent region of the Newton method is approached, while 𝛿

is carefully increased. From iteration 8 on, the solver performs full Newton steps, that is, s′n = sn. The Weissenberg number is increased for
iterations 11, 14, and 15, causing the residual to grow. From iteration 17 to 19, the lower limit imposed by floating point accuracy is reached

F I G U R E 2 Computational domain with boundary conditions for velocities

The inflow Dirichlet boundary condition for the velocity is:

u = 3
2

(
1 −

y2

4

)
, v = 0, (51)

such that the mean velocity ⟨u⟩ is 1 at the inflow. We have no Dirichlet values for the stresses since in all boundary
fluxes we only use the inner value 𝝉

− resulting from the velocity field. Since we expect the flow to be symmetric for
the steady-state case, we consider only half of the channel with a free-slip boundary condition at the centre-line in
order to save computational time. At the walls of the channel and on the cylinder surface, we have a no-slip boundary
condition with an impermeable wall. The outflow is a pressure outlet, with the pressure and the velocity gradients set
to zero.

We use a body-fitted curved elements grid with polynomial order five, which is non-equidistant with gradients toward
the cylinder (Figure 3). In case of curved elements grids, the polynomial order of the polygons in the grid needs to
be higher than the computational polynomial order.40 For the convergence study, we have different refinement levels
starting from 16 elements dividing the channel height at the inlet up to 128 elements for the finest grid. The amount
of nodes of the coarsest grid is doubled for each refinement level. Only for the parts in x-direction of the channel we
choose a refinement factor of 1.5. An overview over the different meshes can be seen in Table 1. The resulting degrees
of freedom (DOF) are listed in Table 2. Since our system is fully coupled we have, especially for finer meshes and
high polynomial orders, increasing DOFs which causes memory issues at computation. This is particularly the case
for the direct solvers when decomposing the comparably dense matrix of the non-saddle-point problem. To solve this
in future, iterative linear solvers for high-performance computing are currently under development within the BoSSS
framework.

The dimensionless parameters are defined as follows:

Re =
𝜌⟨u⟩r
𝜂0

, Wi = 𝜆1
⟨u⟩

r
. (52)
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1748 KIKKER et al.

F I G U R E 3 Mesh mesh_1 with location of number of nodes as referred to in Table 1 [Colour figure can be viewed at
wileyonlinelibrary.com]

EOCu EOCp EOC
𝝉

k Wi= 0 Wi= 0.2 Wi= 0 Wi= 0.2 Wi= 0 Wi= 0.2

1 2.17 2.20 1.76 1.76 1.11 1.28

2 3.46 2.58 2.03 2.27 2.02 1.87

3 4.12 3.64 2.76 2.79 2.92 2.84

4 5.27 4.92 4.08 4.17 4.03 4.44

T A B L E 3 Polynomial degree of the
discretizaion and experimental order of
convergence (EOC) for both Weissenberg
numbers and different dependent
variables

They are chosen, if not stated differently, as follows: 𝛽 = 0.59, Re= 0, 0.01, 0.1, 1, Wi= 0, … , 1. Apart from the con-
vergence study (Section 4.1), all calculations were made with the comparably coarse mesh_1 and a polynomial degree for
the velocity and stresses of k= 4. For all calculations apart from Section 4.4, we have Re= 0. For all steady calculations,
we use an implicit Euler scheme with one pseudo time step of Δt = 106; for the unsteady calculations in Section 4.3, we
use the BDF2 scheme (Equation 19) with a time step size of Δt = 10−2.

4.1 Convergence study

We examine our solver in the case of the confined cylinder problem for convergence against the solution of the finest grid
for different polynomial degrees in the approximation spaces (k= 1 … 4) for Re= 0. For Wi= 0 (i.e., a Newtonian fluid
flow) and Wi= 0.2 the results are shown in Figure 4 and the convergence rates are listed in Table 3. For the Newtonian
case, all convergence rates for the L2-norm are equal or greater than k+ 1 for the velocity and pressure or k for the stress,
as is expected for the LDG scheme used for discretization.9 For the viscoelastic case, there are small deviations in the
L2-error for the finer grids and higher polynomial degrees such that the convergence rates of k+ 1 and k cannot be satisfied
completely for all dependent variables.

4.2 Results for steady flow simulation

4.2.1 Cylinder drag

As a measure to compare the accuracy of the method with other methods from literature, the dimensionless drag force
of the cylinder in the flow for different Weissenberg numbers is used:

F = ∫Γ
T ⋅ n dS, (53)

where F is the dimensionless drag force calculated as the surface integral of the total stress tensor

T = −pI + 𝛽

Re
(
∇u + (∇u)T) + 1

Re
𝝉 . (54)
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KIKKER et al. 1749

(A) Velocity, Wi = 0. (d) Velocity, Wi = 0.2.

(B) Pressure, Wi = 0. (E) Pressure,Wi = 0.2.

(C) Stresses, Wi = 0. (F) Stresses, Wi = 0.2.

F I G U R E 4 Convergence study for Wi= 0 (left) and Wi= 0.2 (right) in the L2-norm compared to the degrees of freedom (DOF) of the
finest mesh. The solid lines show the expected convergence rates with k+ 1 for velocity and pressure and k for the stresses
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1750 KIKKER et al.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

116

118

120

122

124

126

128

130

132

134

Wi

Re = 0 , steady
Kim et al. (2004)14

Claus and Phillips (2013)20

Keith et al. (2017)21

F I G U R E 5 Dimensionless drag force of the confined cylinder
for different Weissenberg numbers for steady calculations (+)
compared with unsteady calculations from exemplary
literature.14,20,21 For Wi≤ 0.6, we have good agreement. Afterward,
unsteady effects cause errors in the unstable steady state solution as
expected

Wi F (a) (b) (c)

0 132.357 132.36 — —

0.1 130.363 130.36 130.364 130.3618

0.2 126.625 126.62 126.626 126.6241

0.3 123.188 123.19 123.192 123.1897

0.4 120.577 120.59 120.593 120.5885

0.5 118.789 118.83 118.826 118.8132

0.6 117.680 117.77 117.776 117.7581

0.7 117.079 117.32 117.316 117.2951

0.8 116.844 117.36 117.368 117.3057

0.9 — 117.79 117.812 117.6907

1.0 — 118.49 118.550 118.5970

T A B L E 4 Dimensionless drag force of the confined cylinder for
different Weissenberg numbers for steady calculations compared with
unsteady calculations from exemplary literature (a),14 (b),20 and (c)21

The resulting drag forces for different Weissenberg numbers are plotted in Figure 5, listed in Table 4, and com-
pared to selected literature.14,20,21 For smaller Weissenberg numbers (Wi≤ 0.6), we are in good agreement with the values
obtained in other studies. Our drag force values are lower for the higher Weissenberg numbers due to lower absolute
values for the normal stresses along the cylinder surface where the drag is calculated (Figure 7). This is due to the fact
that our steady simulations naturally do not capture the unsteady behavior which is observed for Wi> 0.6, a transi-
tions to unsteady behavior can be observed. For the same reason, we could not conduct a steady convergent solution for
Wi> 0.8.

4.2.2 Flow behavior

In Figure 6, color plots for the velocity and the stresses for the whole domain are shown. The velocity u becomes larger in
the narrow between the channel wall and the cylinder and we have a small vertical velocity v due to the displacement of
the fluid along the cylinder. At the cusp of the cylinder and at the channel wall, we can see high stress peaks, especially
in the normal stress 𝜏xx, and a second peak in the wake of the cylinder. The values of the normal stress 𝜏xx are magnitudes
greater than the values of 𝜏yy.

The flow behavior of the stress component 𝜏xx along the symmetry line and on the cylinder surface is further investi-
gated. As can be seen in Figure 7, our results are in very good agreement with the work of Claus and Phillips20 concerning
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F I G U R E 6 Color plots
of the stress and velocity
profiles over the domain
−5≤ y≤ 5 for Wi= 0.3. The
acceleration of the fluid and
the high stress peaks in the
narrow at the cusp of the
cylinder as well as the stress
peak in the wake of the
cylinder are clearly visible
[Colour figure can be viewed
at wileyonlinelibrary.com]
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the wake of the cylinder. Along the cylinder surface the resulting normal stress 𝜏xx is for higher Weissenberg numbers not
as high as in the work of Claus and Phillips,20 which can be due to the fact that we are comparing steady solutions with
steady-state solutions from an unsteady computation from literature. The stress component 𝜏xx increases along the cylin-
der surface up to the cusp of the cylinder and then decreases to zero at the rear stagnation point. In the following, a second
steep gradient can be seen, forming a tail in the wake of the cylinder with a peak directly behind the rear stagnation point.
The two peaks grow for increasing Weissenberg numbers.

Dou and Phan-Thien7 developed an inflection point theory for a detaching boundary layer at the cusp of the cylinder
for increasing Wi≥ 0.7. Claus and Phillips20 found many indications supporting that theory. We investigated our results
conducted from steady calculations for these indications and are in good agreement.
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F I G U R E 7 Normal stress 𝝉xx at the
symmetry line and on the cylinder surface
in the interval [−1 … 1]. Obviously, the
steady-state results (solid lines) deviate
significantly from the transient
calculations of Claus and Phillips20

(dashed, marked as CP13), since steady
simulations naturally do not capture the
unsteady behavior which is observed for
Wi> 0.6, where a transitions to unsteady
behavior can be observed. For larger
Wi> 0.8, no steady solution could be
accomplished [Colour figure can be
viewed at wileyonlinelibrary.com]
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F I G U R E 8 Pressure distribution on the cusp of the cylinder.
For Wi> 0.8, no convergent steady solution could be accomplished.
It can be seen that the angle between the cross-stream and the
streamwise pressure derivative becomes larger for higher
Weissenberg numbers [Colour figure can be viewed at
wileyonlinelibrary.com]

Dou and Phan-Thien explained the appearance of an inflection point in the velocity profile in the boundary layer at
the cusp of the cylinder with a non-constant and increasing pressure in the boundary layer for increasing Weissenberg
number. For Wi> 0.6, the resulting pressure gradient from within the shear layer to outside ( 𝜕p

𝜕y
) is large and causes a

maximum in the velocity gradient with a resulting inflection point in the velocity.7 This behavior can be measured by
the ratio between the streamwise and normal energy gradients, which is proportional to the ratio of the corresponding
pressure gradients for negligible kinetic energy. Hence, the angle between cross-stream and streamwise pressure is a
measure for the probability for an inflection point in the velocity.20 In Figure 8, the pressure distribution at the cusp of the
cylinder is shown for different Weissenberg numbers. The angle described above increases for increasing Weissenberg
numbers, which is in good agreement with Claus and Phillips.20

Further indication for the appearance of a velocity inflection is given by the behavior of the velocity itself at the cusp
of the cylinder. The distribution of the velocity uy increases for increasing Weissenberg number close to the cusp of the
cylinder and decreases in the upper part close to the channel wall (Figure 9). At y≈ 1.01, there is a kink in the slope of the
velocity when leaving the boundary layer. This kink is not at a discontinuous element edge but within a cell and was also
detected by Dou and Phan-Thien7 and Claus and Phillips,20 but at y≈ 1.02, so that it is possibly no numerical artifact. This
change in slope increases for increasing Weissenberg numbers. Dou and Phan-Thien assume that it causes fluid elements
to leave the boundary layer and therefore, disturb the flow. This kind of disturbance can be transported downstream and
amplified, leading to a transition to unsteady behavior behind the cylinder.
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F I G U R E 9 Distribution of the
velocity uy on the cusp of the
cylinder. For larger Wi> 0.8, no
convergent steady solution could be
accomplished. It can be seen in the
detail plot that there is a kink in the
distribution close to the cylinder wall
[Colour figure can be viewed at
wileyonlinelibrary.com]
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F I G U R E 10 Distribution of
the velocity ux on the cusp of the
cylinder. For larger Wi> 0.8, no
convergent steady solution could be
accomplished. On the detail plots, it
can be seen that the maximum
velocity increases for increasing Wi
and the velocity decreases at the cusp
of the cylinder [Colour figure can be
viewed at wileyonlinelibrary.com]
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Considering the distribution of the velocity ux (Figure 10), it can be seen that the maximum velocity increases with
increasing Weissenberg numbers. Furthermore, the velocity is decreased close to the cylinder surface with increasing
Weissenberg number.

4.3 Results for unsteady flow simulation

For Wi≥ 0.5, we performed unsteady simulations with a BDF2 scheme and Δt = 10−2. Whereas for Wi= 0.5, a stable
steady state solution can be achieved over a long time period; for higher Weissenberg numbers, the simulation stops
converging at a certain time step without diverging (Figure 11). For Wi= 0.6, this can be observed at time step 1586,
whereas for Wi= 1.0 this time step is already time step 864.

As can be seen in detail in Figure 11, for the lower Weissenberg numbers up to Wi= 0.7, an apparent steady-state
solution is reached before the solution stops converging, but for the higher Weissenberg numbers, the drag coefficient
starts to oscillate immediately.

Further investigation about the lack of convergence for unsteady calculation with higher Weissenberg numbers is
needed.
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F I G U R E 11 Evolution in
time of the drag force of the
confined cylinder for different
Weissenberg numbers for
unsteady calculations. For higher
Wi≥ 0.6, there is in the detail
plot an oscillatory behavior
which might be caused by
unsteady effects due to velocity
inflection in the boundary layer
[Colour figure can be viewed at
wileyonlinelibrary.com]
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F I G U R E 12 Drag coefficient depending on the
Weissenberg number for different Reynolds numbers [Colour
figure can be viewed at wileyonlinelibrary.com]

4.4 Results for different Reynolds numbers

In this section, we show the behavior of the steady solution for increasing Reynolds number and, therefore, examine the
influence of inertia on the flow. As we can see in Figure 12, the drag of the cylinder increases for higher Reynolds numbers
and the drag reduction effect caused by the viscoelasticity is reduced. This is due to the increased velocity gradients
caused by the inertia of the fluid. For lower Weissenberg numbers, our steady results are in good agreement with the
literature14,20,21 (Table 5).

All further studies were made for Wi= 0.6. The velocity uy increases for increasing Reynolds number close to the cusp
of the cylinder and decreases with increasing Reynolds number close to the channel wall. This behavior is amplified for
viscoelastic flow as showed in Figure 13. Here, the effect is shown for a Newtonian fluid as well as the Oldroyd B fluid
with Wi= 0.6.

The normal stress 𝜏xx in Figure 14 decreases only slightly with increasing Reynolds number at the cusp of the cylinder,
but in the wake of the cylinder a large decrease is notable for Re= 1.
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T A B L E 5 Dimensionless drag force of the confined cylinder for different Weissenberg numbers for steady calculations for different
Reynolds numbers compared with unsteady calculations from exemplary literature (a)20 and (b)21

Wi Re= 0.01 (a) (b) Re= 0.1 (a) (b) Re= 1 (a) (b)

0.1 130.363 130.364 130.363 130.367 130.368 130.367 130.607 130.609 130.608

0.2 126.626 126.627 126.626 126.635 126.636 126.635 126.936 126.938 126.937

0.3 123.189 123.194 123.192 123.206 123.211 123.210 123.593 123.597 123.596

0.4 120.579 120.595 120.593 120.606 120.622 120.620 121.093 121.106 121.106

0.5 118.792 118.831 118.827 118.830 118.868 118.865 119.423 119.460 119.457

0.6 117.685 117.781 117.775 117.734 117.831 117.823 118.424 118.542 118.538

0.7 117.085 117.323 117.308 117.143 117.387 117.372 117.918 118.233 118.222

0.8 116.851 117.379 117.277 116.920 117.459 117.373 — 118.455 118.397

0.9 116.878 117.827 117.559 — 117.925 117.684 — 119.096 118.874

1.0 — 118.563 118.130 — 118.697 118.224 — 120.057 120.146

F I G U R E 13 Distribution of the velocity uy on the cusp of the
cylinder for Wi= 0.6 and Newtonian flow for different Reynolds
numbers [Colour figure can be viewed at wileyonlinelibrary.com]
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5 CONCLUSION

In this work, we present a DG method for solving viscoelastic Oldroyd B fluid flow. We use a LDG formulation with penal-
ization terms in the fluxes to stabilize the system. It is used in combination with an SIP formulation for the Newtonian
contribution. The nonlinear system can be solved using an Newton method.

Because of the new approach using LDG and a fully coupled system, there is no need for hyperbolic-elliptic stabiliza-
tion methods like (D)EVSS. Hence, there is no need for additional equations for the velocity gradient. Further investigation
about the convergence behavior for unsteady calculations with higher Weissenberg numbers is needed. One possible
remedy it is the introduction of the log-confromation formulation presented by Fattal and Kupfermann.41

Since this work intends to present the DG method, the results are kept short and the physical phenomena are not
analyzed in detail. Since a direct sparse solver is used in the Newton iteration, the fully coupled system has a high mem-
ory demand for the sparse LU-factorization of the operator matrix, and thus can only be used on high performance
computers with a large memory. Furthermore, direct sparse solvers are known to scale not particularly well with more
CPU cores, since the parallelization of several stages is rather difficult. The use of iterative linear solvers, which are cur-
rently under development, could alleviate the memory demands and should open the door for MPI-parallel computation
across multiple compute nodes. Furthermore, an adaptive mesh refinement strategy, which is already implemented in
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F I G U R E 14 Normal stress 𝝉xx at the symmetry line and on
the cylinder surface in the interval [−1 … 1] for Wi= 0.6 for
different Reynolds numbers [Colour figure can be viewed at
wileyonlinelibrary.com]

BoSSS, can be useful in combination an appropriate refinement indicator to provide a reasonable distribution of grid
resolution among the computational domain, that is, refinement in regions with boundary layers or other phenomena of
interest.
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