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We consider singularly perturbed convection–diffusion equations on
one-dimensional networks (metric graphs) as well as the transport problems
arising in the vanishing diffusion limit. Suitable coupling conditions at inner
vertices are derived that guarantee conservation of mass and dissipation of a
mathematical energy which allows us to prove stability and well-posedness. For
single intervals and appropriately specified initial conditions, it is well-known
that the solutions of the convection–diffusion problem converge to that of the
transport problem with order O(

√
𝜖) in the L∞(L2)-norm with diffusion 𝜖→ 0.

In this paper, we prove a corresponding result for problems on one-dimensional
networks. The main difficulty in the analysis is that the number and type of
coupling conditions changes in the singular limit which gives rise to additional
boundary layers at the interior vertices of the network. Since the values of the
solution at these network junctions are not known a priori, the asymptotic
analysis requires a delicate choice of boundary layer functions that allows to
handle these interior layers.
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1 INTRODUCTION

The transport and diffusion of a chemical substance in the stationary flow of an incompressible fluid through a pipe can
be described by

a𝜕tu𝜖(x, t) + b𝜕xu𝜖(x, t) = 𝜖𝜕xxu𝜖(x, t), (1)

which is assumed to hold for x∈ (0,𝓁) and t> 0. Here, u is the concentration of the substance, a and 𝓁 are the cross-section
and length of the pipe, b is the constant flow rate, and 𝜖 > 0 is the diffusion coefficient. The system is complemented by
boundary conditions

u𝜖(0, t) = û0
𝜖(t) and u𝜖(𝓁, t) = û𝓁

𝜖 (t), (2)
and by specifying u𝜖(x, 0) at initial time t = 0. A typical application we have in mind is some contaminant transported by
water flowing through a pipe network. Then, u denotes the concentration of the contaminant and b the flow rate of the

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
© 2020 The Authors. Mathematical Methods in the Applied Sciences published by John Wiley & Sons Ltd

wileyonlinelibrary.com/journal/mmaMath Meth Appl Sci. 2021;44:5005–5020. 5005

https://doi.org/10.1002/mma.7084
https://orcid.org/0000-0003-3769-8791
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fmma.7084&domain=pdf&date_stamp=2020-12-09


EGGER AND PHILIPPI

background flow.1 Another application would be the mixing of gas in a gas transport network2; then, b is the volume flow
rate of the steady gas flow, and u is the volume fraction of one of the components in the gas mixture.

In the vanishing diffusion limit 𝜖→ 0, the flow of the substance in the fluid is characterized by the transport equation

a𝜕tu(x, t) + b𝜕xu(x, t) = 0. (3)

Assuming b> 0, this system is to be complemented by an inflow boundary condition

u(0, t) = û0(t) at x = 0, (4)

while the condition at x = 𝓁 becomes obsolete. For small 𝜖 > 0, the second boundary condition in (2) therefore gives rise
to a boundary layer at the outflow boundary x = 𝓁. In general, the solutions of (1)–(2) may also exhibit initial layers,
whose presence can however be avoided by appropriate specification of initial values.

The asymptotic limit of convection–diffusion problems as 𝜖→ 0 has been studied intensively in the literature, both from
an analytical and a numerical point of view; for details, one may refer, for example, to previous studies.3-7 Problems with
other types of boundary conditions have been considered, for example, in Chacón Rebollo et al.8 For appropriate initial
and boundary data, the solutions of (1)–(2) and (3)–(4) can be shown to satisfy the asymptotic estimate

||u𝜖(·, t) − u(·, t)||L2(0,𝓁) ≤ C
√
𝜖, (5)

with a constant C independent of 𝜖 and t. By considering the corresponding stationary problem, the rate
√
𝜖 can also be

seen to be optimal.
In this paper, we consider convection–diffusion problems in one-dimensional pipe networks. In that case, Equations (1)

and (3) are assumed to hold for every single pipe while the boundary conditions (2) and (4) have to be augmented by
appropriate coupling conditions at pipe junctions. These can be chosen in order to guarantee conservation of mass across
network junctions as well as dissipation of a mathematical energy, which is utilized to ensure the well-posedness of the
problems. We refer to previous studies9-12 for background material on the analysis of partial-differential equations on
networks.

The main result of our paper, stated in Theorem 10, is to show that an estimate analogous to (5) also holds for singularly
perturbed convection–diffusion problems on networks. One of the main difficulties in the asymptotic analysis here is
that the number and type of coupling conditions changes in the singular limit 𝜖→ 0. This gives rise to additional internal
layers at pipe junctions that need to be handled appropriately. Since the nodal values û𝜖 , û in Equations (2) and (4) are
part of the solution and not prescribed a priori, like the boundary values on a single pipe, a somewhat delicate choice of
boundary layer functions at network junctions is required.

The remainder of the manuscript is organized as follows: in Section 2, we introduce our basic notation and then study
the convection–diffusion and the transport problem on networks. The choice of suitable coupling conditions ensures con-
servation of mass at network junctions and dissipation of a mathematical energy, which in turn allows us to establish
well-posedness of the problems by semigroup theory. In Section 3, we state and prove our main result, namely, a quantita-
tive estimate similar to (5) for the convergence of solutions to the convection–diffusion problem with vanishing diffusion
𝜖→ 0 towards that of the corresponding transport problem. The presentation closes with a short summary.

2 NOTATION AND PRELIMINARIES

After introducing our basic notation, we formally state the convection–diffusion and the limiting transport problem and
study their well-posedness.

2.1 Basic notation
Following Egger and Kugler,13 the network is represented by a finite, directed, and connected graph with vertices  =
{v1, … , vn} and edges  = {e1, … , em} ⊂  ×  . We do not assume a specific topology, and, in particular, circles are
admissible. For every edge e = (vi, v𝑗), we define two numbers

ne(vi) = −1 and ne(v𝑗) = 1 (6)
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FIGURE 1 A network with three edges e1 = (v1, v3), e2 = (v2, v3), and e3 = (v3, v4);
inner vertex 0 = {v3}; and boundary vertices 𝜕 = {v1, v2, v4}. The set
(v3) = {e1, e2, e3} denotes the edges adjacent to the junction v3. Let the arrows depict
the flow direction. Then, we split the set of boundary vertices by  in

𝜕
= {v1, v2} and

out
𝜕

= {v4} into inflow and outflow vertices. Similarly, we can split the set (v3) by
 in(v3) = {e1, e2} and out(v3) = {e3} into edges that go into or out of the vertex v3

to indicate the start and end point of the edge, and we set ne(v) = 0 if v ∈ ∖{vi, v𝑗}. For any v ∈  , we define the set
of incident edges (v) ∶= {e ∈  ∶ ne(v) ≠ 0} and distinguish between inner vertices 0 ∶= {v ∈  ∶ |(v)| ≥ 2} and
boundary vertices 𝜕 ∶= ∖0; see Figure 1 for an illustration.

Every edge e ∈  has a positive length 𝓁e, and we identify e with the interval (0,𝓁e). The Lebesgue measure on (0,𝓁e)
then induces a metric on e, and we denote by L2(e) = L2(0,𝓁e) the space of square integrable functions on the edge e. We
further use

L2() = L2(e1) × … × L2(em) = {u ∶ ue ∈ L2(e) for all e ∈ }
to denote the space of square integrable functions on the network. Here and below, ue =u|e is the restriction of a function
u defined on the whole network to a single edge e. The natural norm and scalar product of the space L2() are given by

||u||2L2() =
∑

e∈ ||ue||2L2(e) and (u,w)L2() =
∑

e∈ (u
e,we)L2(e).

We will further make use of the broken Sobolev spaces

Hs
pw() = {u ∈ L2() ∶ ue ∈ Hs(e) for all e ∈ },

which are again equipped with the canonical norms and scalar products, defined by

||u||2Hs
pw() =

∑
e∈ ||ue||2Hs(e) and (u,w)Hs

pw() =
∑

e∈ (u
e,we)Hs(e).

Here, Hs(e)≃Hs(0,𝓁e), s≥ 0, are the usual Sobolev spaces on the interval (0,𝓁e) and || · ||Hs(e) are the canonical norms; see
Evans14 for details. Note that for s> 1/2, the functions u ∈ Hs

pw() are continuous along edges e ∈  , while they may be
discontinuous across junctions v ∈ 0. The subspace of functions that are also continuous across junctions is denoted by
H1(). Elements of H1() have a unique value u(v) for every vertex v ∈  , and we write 𝓁2() for the set of possible vertex
values.

2.2 Convection–diffusion problem
We now formally introduce the convection–diffusion problem on networks to be studied, as well as our basic assump-
tions on the model parameters. A similar problem has been considered in Oppenheimer;1 also see Mugnolo12 for further
examples.

The transport of the substance along every edge e ∈  shall be described by

ae𝜕tue
𝜖(x, t) + be𝜕xue

𝜖(x, t) − 𝜖e𝜕xxue
𝜖(x, t) = 0, x ∈ e, e ∈  , (7)

where ae, be, and 𝜖e are appropriate constants; see Assumption 1 below. We further assume the concentration u to be
continuous across vertices, that is,

ue
𝜖(v, t) = ûv

𝜖(t), v ∈  , e ∈ (v), (8)

for some auxiliary functions ûv
𝜖(t), v ∈  to be determined by the following additional coupling conditions: At pipe

junctions v ∈ 0, we require that

∑
e∈(v)

(
beue

𝜖(v, t) − 𝜖e𝜕xue
𝜖(v, t)

)
ne(v) = 0, v ∈ 0, (9)
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which expresses the conservation of mass at pipe junctions, and at boundary vertices v ∈ 𝜕 , we explicitly prescribe the
concentration by

ûv
𝜖(t) = gv(t), v ∈ 𝜕, (10)

with gv denoting the specified boundary values. The above equations are considered for t> 0 and complemented by initial
conditions

ue
𝜖(x, 0) = ue

0(x), x ∈ e, e ∈  . (11)

For the analysis of the convection–diffusion problem (7)–(11) which is developed in the rest of the paper, we make the
following assumptions on the model parameters.

Assumption 1. On every edge e ∈  , the functions a, b, and 𝜖 are constant and uniformly positive, and at pipe
junctions v ∈ 0, the flow rate satisfies the conservation condition

∑
e∈(v)b

ene(v) = 0, v ∈ 0, (12)

which corresponds to incompressibility of the background flow. We further assume that the diffusion coefficient is
bounded by 0<𝜖 ≤ 1.

Remark 2. The assumption that a and 𝜖 are piecewise constant could be relaxed with minor changes in the arguments.
Since the flow direction changes when changing the orientation of the edge e, the sign of b can always be adopted
as desired by appropriate orientation of the edges. The basic assumption on b, therefore, is that it does not vanish.
Otherwise, the transport problem (3) degenerates to an ordinary differential equation.

The following theorem establishes well-posedness of the problem under consideration.

Theorem 3. Let Assumption 1 hold and T> 0. Then, for any u0 ∈ H1() ∩ H2
pw() and g ∈ C2([0,T];𝓁2(𝜕))

satisfying (8)–(10) for some û0 ∈ 𝓁2(), the system (7)–(11) has a unique classical solution

u𝜖 ∈ C1([0,T];L2()) ∩ C0([0,T];H1() ∩ H2
pw())

with ûv
𝜖(t) = u𝜖(v, t) defined by (8). Moreover, any solution of (7)–(11) satisfies

d
dt∫

au𝜖 dx =
∑
v∈𝜕

(
−begv + 𝜖e𝜕xu𝜖(v)

)
ne(v),

that is, mass is conserved up to flow over the boundary, as well as the energy identity

1
2

d
dt
||a1∕2u𝜖||2L2() = −||𝜖1∕2𝜕xu𝜖||2L2() +

∑
v∈𝜕

(
−1

2
begv + 𝜖e𝜕xu𝜖(v)

)
gv ne(v).

Proof. For later reference, we sketch the main arguments, which allow to apply the Lumer–Phillips theorem of
semigroup theory; related results can also be found in previous studies.12,15,16

Step 1 (Homogenization of boundary values). Let w(t) ∈ H1() ∩ H2
pw() be the unique function that is affine linear

on every edge and satisfies w(v, t)= gv(t) for all v ∈ 𝜕 as well as w(v, t) = 0 for v ∈ 0. Then, any solution
of the problem can be split into u𝜖 =w− z with z(v, t) = 0 for all v ∈ 𝜕 , t> 0, and using the linearity of the
problem, one can see that z satisfies

ae𝜕tze + be𝜕xze − 𝜖e𝜕xxze = 𝑓 e, x ∈ e, e ∈  , t > 0, (13)

with right-hand side 𝑓 e = ae𝜕twe + be𝜕xwe, as well as the coupling conditions

ze(v, t) = ẑv(t), v ∈  , e ∈ (v), t > 0. (14)
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The auxiliary functions ẑv(t) = ûv(t) are here defined by the conservation condition

∑
e∈(v)

(
beze(v, t) − 𝜖e𝜕xze(v, t)

)
ne(v) = 0, v ∈ 0, (15)

at pipe junctions v ∈ 0, and by homogeneous boundary conditions

ẑv(t) = 0, v ∈ 𝜕, (16)

for the remaining vertices v ∈ 𝜕 . In addition, there holds

ze(x, 0) = ze
0(x), x ∈ e, e ∈  , (17)

with ze
0(x) = we(x, 0) − ue

0(x). Let us note that by construction and the regularity assumption on u0, we have
z0 ∈ H1() ∩ H2

pw() and z0(v) = 0 for all v ∈ 𝜕 .
Step 2 (Generation of a contraction semigroup). Now, set  = L2() with norm and scalar product defined by

||u|| ∶= ||a1∕2u||L2() and (u,w) ∶= (au,w)L2().

We further introduce the dense subspace

(𝜖) ∶= {z ∈ H2
pw() ∶ z satisfies (14)–(16) with some ẑ ∈ 𝓁2()},

on which we formally define the linear operator

𝜖 ∶ (𝜖) ⊂  →  , 𝜖z|e ∶= − 1
ae

(
be𝜕xze − 𝜖e𝜕xxze) . (18)

Problem (13)–(17) can then be written as an abstract evolution problem in  , namely,

𝜕tz(t) = 𝜖z(t) + 𝑓 (t), t > 0, (19)

z(0) = z0. (20)

By construction of f and z0 and the assumptions on the data, one can immediately see that 𝑓 ∈ C1([0,T];)
and z0 ∈ (𝜖). Moreover, the operator 𝜖 satisfies

(𝜖z, z) = (−b𝜕xz + 𝜖𝜕xxz, z)L2() =
∑

e∈ (−be𝜕xze + 𝜖e𝜕xxze, ze)L2(e)

=
∑

e∈ (b
eze − 𝜖e𝜕xze, 𝜕xze)L2(e) +

∑
v∈

∑
e∈(v)

(
−beze(v) + 𝜖e𝜕xze(v)

)
ze(v)ne(v).

The first term in the last line can be estimated by

(i) =
∑

e∈ (b
eze − 𝜖e𝜕xze, 𝜕xze)L2(e)

=
∑

v∈
∑

e∈(v)
1
2

be|ze(v)|2ne(v) −
∑

e∈𝜖
e||𝜕xze||2L2(e) = (iii) + (iv).

By rearranging the order of summation and use of the coupling and boundary conditions specified in (14)–(16)
as well as the conservation condition (12) for the flow rates, one can see that (iii) = 1

2

∑
v∈ |ẑv|2∑e∈(v)bene(v) =

0, and hence,

(i) = (iv) = −||𝜖1∕2𝜕xz||2L2().
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The second term in the above expression for (𝜖z, z) can be further evaluated by

(ii) =
∑

v∈
∑

e∈(v)
(
−beze(v) + 𝜖e𝜕xze(v)

)
ze(v)ne(v)

=
∑

v∈ ẑv
∑

e∈(v)
(
−beze(v) + 𝜖e𝜕xze(v)

)
ne(v) = 0,

where we again used the coupling and boundary conditions (14)–(16) appearing in the definition of the space
(𝜖). In summary, we thus have shown that

(𝜖z, z) ≤ −||𝜖1∕2𝜕xz||2L2() ≤ 0 for all z ∈ (𝜖), (21)

from which we deduce that 𝜖 ∶ (𝜖) ⊂  →  is dissipative, since

||(𝜆 −𝜖)z|| ||z|| ≥ ((𝜆 −𝜖)z, z) = (𝜆z, z) − (𝜖z, z) ≥ 𝜆||z||2 (22)

for all 𝜆> 0 and z ∈ (𝜖). From (22) and the Lax–Milgram lemma, one can further deduce that for any
𝑓 ∈  = L2(), the problem 𝜆z − 𝜖z = 𝑓 has a unique weak solution z ∈ H1

0() = {w ∈ H1() ∶
w|v = 0∀v ∈ 𝜕} and ||z||H1() ≤ C(𝜖)||𝑓 ||L2(). Moreover, the nodal values ẑ = z| are well-defined by the
trace theorem for H1(). By integrating (7) on each edge e ∈  , one can further see that z ∈ H2

pw() as well,
and thus, z ∈ (𝜖); hence, 𝜆 − 𝜖 ∶ (𝜖) →  is surjective for any 𝜆> 0. We can now apply Engel
and Nagel,17, cor. 3.20 which is a variant of the Lumer–Phillips theorem for reflexive Banach spaces, to verify
that 𝜖 is the generator of a contraction semigroup. This implies the existence of a unique classical solution
z ∈ C1([0,T];) ∩ C([0,T];(𝜖)) for (19)–(20); see, for example,17,18 for details.

Step 3 (Well-posedness). By combination with the regularity estimate for w constructed in Step 1, one can see that
u=w− z is a solution to (7)–(11) with the required regularity. Uniqueness follows by observing that the differ-
ence z = u1 − u2 of any two solutions of (7)–(11) would solve (19)–(20) with 𝑓 = 0 and z0 = 0, which implies
u1 −u2 ≡ 0.

Step 4 (Conservation of mass and energy identity). Mass conservation follows by integrating (7) over all pipes, sum-
ming up, and using the coupling and boundary conditions (8)–(10) as well as the balance condition (12) for
the flow rates, more precisely

d
dt∫

au𝜖 dx = − ∫
b𝜕xu𝜖 dx + ∫

𝜖𝜕xxu𝜖 dx

=
∑

v∈
∑

e∈(v)
(
−beue

𝜖(v) + 𝜖e𝜕xue
𝜖(v)

)
ne(v)

=
∑

v∈𝜕

(
−begv + 𝜖e𝜕xue

𝜖(v)
)

ne(v).

To show the energy identity, we apply similar arguments that have already been used to establish dissipativity
of the operator 𝜖 above. By first multiplying (7) with ue

𝜖 , integrating over the edges e, applying integration by
parts, and using the coupling and boundary conditions (8)–(10), we obtain

1
2

d
dt
||a1∕2u𝜖||2L2() =(a𝜕tu𝜖,u𝜖)L2() = −(b𝜕xu𝜖,u𝜖)L2() + (𝜖𝜕xxu𝜖,u𝜖)L2()

=(bu𝜖, 𝜕xu𝜖)L2() − (𝜖𝜕xu𝜖, 𝜕xu𝜖)L2()
+
∑

v∈
∑

e∈(v)
(
−beue

𝜖(v) + 𝜖e𝜕xue
𝜖(v)

)
ue
𝜖(v)ne(v)

= − ||𝜖1∕2𝜕xu𝜖||2L2() +
∑

v∈𝜕

(
−1

2
begv + 𝜖e𝜕xue

𝜖(v)
)

gvne(v).

This yields the desired energy identity and completes the proof of the assertions.
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EGGER AND PHILIPPI

Remark 4. The energy identity of Theorem 3 yields uniform bounds

1
2
||a1∕2u𝜖||L∞(0,T;L2()) + ||𝜖1∕2𝜕xu𝜖||L2(0,T;L2()) ≤ C(u0, g),

which allow to deduce existence and uniqueness of solutions also for less regular boundary and initial data. Sim-
ilar results could be established alternatively also by Galerkin approximation; see Evans14, ch. 7 or Dautray and
Lions.19, ch. XVIII

2.3 Limiting transport problem
We now turn to the vanishing diffusion limit 𝜖→ 0. Since we assumed be > 0 on every edge e = (v1, v2), it is natural to
call v1 the inflow and v2 the outflow vertex of the edge. For any v ∈  , we denote by  in(v) = {e ∈  ∶ e = (·, v)} and
out(v) = {e ∈  ∶ e = (v, ·)} the edges that carry flow into or out of the vertex v, and we further split the boundary vertices
into the sets  in

𝜕
= {v ∈ 𝜕 ∶ |out(v)| = 1} and out

𝜕
= {v ∈ 𝜕 ∶ | in(v)| = 1}; see Figure 1 for an illustration. We then

consider the following problem; see Dorn et al.20 and Egger and Philippi21 for related results. On every edge e ∈  , the
transport is described by

ae𝜕tue(x, t) + be𝜕xue(x, t) = 0, x ∈ e, e ∈  . (23)

In contrast to the convection–diffusion problem, we now only need one boundary condition at the inflow boundary of
each edge, and accordingly, we set

ue(v, t) = ûv(t), v ∈  , e ∈ out(v), (24)

with auxiliary values ûv determined by the conservation condition

∑
e∈ in(v)

beue(v, t)ne(v) +
∑

e∈out(v)
beûv(t)ne(v) = 0, v ∈ 0, (25)

at inner vertices. Note that the vertices in 0 have at least one inflow and one outflow edge. On the inflow boundary
vertices, which only have one outflow edge, we set

ûv(t) = gv(t), v ∈  in
𝜕
. (26)

The above equations are assumed to hold for t> 0 and complemented by initial conditions

ue(x, 0) = ue
0(x), x ∈ e, e ∈  . (27)

From Equation (25) and the conservation condition (12) for the flow rate b, one can deduce that the nodal values ûv

at inner vertices v ∈ 0 are convex combinations of the concentrations ue(v), e ∈  in(v) entering the junction v. These
mixtures serve as inflow values for the pipes e ∈ out(v) with flow leaving the corresponding vertex.

Remark 5. For the asymptotic analysis given in Section 3, it will be convenient to additionally define values ûv for the
outflow vertices by

ûv(t) = gv(t), v ∈ out
𝜕

, (28)

where gv, v ∈ 𝜕 are the same boundary data as for the convection–diffusion problem. Note that the values ûv, v ∈ out
𝜕

do not appear in the other equations and therefore are not required for the analysis of the transport problem presented
in the sequel.

With similar arguments as in the analysis of the convection–diffusion problem (7)–(11), we can also obtain a
well-posedness result for the transport problem (23)–(27).

Theorem 6. Let Assumption 1 hold and T> 0 be given. Then, for any u0 ∈ H1
pw() and g ∈ C2([0,T];𝓁2( in

𝜕
)),

satisfying (24)–(26) at t = 0 with some û0 ∈ 𝓁2(∖out
𝜕

), the system (23)–(27) has a unique classical solution

u ∈ C1([0,T];L2()) ∩ C0([0,T];H1
pw())
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EGGER AND PHILIPPI

with û ∈ C0([0,T];𝓁2( ∖ out
𝜕

)) defined by (24). Moreover, the solution satisfies

d
dt∫

audx =
∑

v∈ in
𝜕

begv −
∑

v∈out
𝜕

beue(v),

that is, mass is conserved up to flow over the boundary, as well as the energy identity

d
dt
||a1∕2u||2L2() =

∑
v∈ in

𝜕

be|gv|2 −∑
v∈out

𝜕

be|ue(v)|2
−
∑

v∈0

∑
e∈ in(v)

be |ue(v) − ûv|2.

Proof. One can proceed with similar arguments as in the proof of Theorem 3, and we therefore only sketch the basic
steps and the main differences.

Step 1 (Homogenization of boundary values). The solution can again be split into two parts u=w− z where w(t),
t> 0 is a prescribed piecewise linear function in space that satisfies the inflow boundary conditions as well
as we(v) = 0 for all v ∈  ∖  in

𝜕
, e ∈ (v), and the function z satisfies the equations with inhomogeneous

right-hand side and zero inflow boundary conditions.
Step 2 (Generation of a contraction semigroup). We set  = L2() as before and define the dense subspace

() = {z ∈ H1
pw() ∶ z satisfies (24)–(25) for some ẑ ∈ 𝓁2(∖out

𝜕
)

with ẑv = 0 for v ∈  in
𝜕
},

on which we formally define the linear operator

 ∶ () ⊂  →  , z|e = − 1
ae be𝜕xze.

The transport problem (23)–(27) can then be written as an abstract evolution problem

𝜕tz(t) = z(t) + 𝑓 (t), t > 0, (29)

z(0) = z0, (30)

with 𝑓 (t) = a𝜕tw(t) + b𝜕xw(t) and z0 =w(0)−u0 given. Due to the choice of w and the assumptions on
the problem data, one can guarantee that 𝑓 ∈ C1([0,T];) and z0 ∈ (). Using similar arguments as
in the proof of Theorem 3, one can further show that

(z, z) = −
∑

e∈ (b
e𝜕xze, ze)L2(e)

= −1
2
∑

e∈be(|ze(ve
o)|2 − |ze(ve

i )|2),
where ve

i and ve
o denote the inflow and outflow vertex of the edge e = (ve

i , ve
o). By exchanging the order of

summation and using the coupling condition (24), we then get

(z, z) = 1
2
∑

v∈
(∑

e∈out(v)
be|ẑv|2 −∑

e∈ in(v)
be|ze(v)|2) .

Using the fact that ẑv for v ∈ 0 is a convex combination of the values ze(v), e ∈  in(v), we can estimate
the first term in this identity by Jensen's inequality, which yields

∑
e∈out(v)

be|ẑv|2 ≤ ∑
e∈ in(v)

be|ze(v)|2
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EGGER AND PHILIPPI

for all v ∈ 0. As a consequence, we obtain the inequality

(z, z) ≤ 1
2
∑

v∈ in
𝜕

be|ze(v)|2 − 1
2
∑

v∈out
𝜕

be|ze(v)|2 ≤ 0, (31)

where we used that z vanishes at the inflow vertices v ∈  in
𝜕

in the last inequality. From this estimate and
the same argument as in (22), we deduce that  is dissipative. We now show that 𝜆 − is surjective for
𝜆> 0. For any 𝑓 ∈  and given nodal values ẑv, v ∈ 0 ∪ in

𝜕
, we can solve 𝜆ze + 1

ae be𝜕xze = 𝑓 e analytically
by integration on every edge e = (ve

i , ve
o) ≃ (0,𝓁e). This yields

ze(x) = ẑve
i e−

ae

be 𝜆x + ∫
x

0

ae

be 𝑓 (s)e−
ae

be 𝜆(x−s) ds =∶ ẑve
i e−

ae

be 𝜆x + Fe(x), (32)

where we used the coupling condition (24) to specify the constant of integration. Using ẑv = 0 for v ∈  in
𝜕

and inserting these local solutions into the flux balance condition (25) leads to a linear system of equations
for ẑv, v ∈ 0, given by

∑
e∈out(v)

beẑv −
∑

e∈ in(v)
beẑve

i e−
ae

be 𝜆𝓁
e
=
∑

e∈ in(v)
Fe(𝓁e), v ∈ 0.

Due to condition (12), the system matrix for this linear system can be seen to be strictly diagonally dom-
inant, and hence, the nodal values ẑv, v ∈ 0 are uniquely determined. By construction, the function
z defined by (32) lies in () and 𝜆z − z = 𝑓 , which shows that 𝜆−A is surjective. By Engel and
Nagel,17, cor. 3.20 we thus know that  is the generator of a contraction semigroup which guarantees the
existence of a unique classical solution z ∈ C1([0,T];X) ∩ C([0,T];()) of (23)–(27).

Steps 3 and 4 (Existence, uniqueness, and further properties). The existence of a unique solution u=w− z for
problem (23)–(27) is now established with the same arguments as in the proof of Theorem 3. Mass con-
servation again directly follows by integrating (23) over all pipes, summing up, and using the coupling
and inflow boundary conditions (24)–(26) as well as conservation condition (12), more precisely

d
dt∫

audx = ∫
b𝜕xudx

=
∑

v∈
∑

e∈(v)b
eue(v)ne(v) =

∑
v∈ in

𝜕

begv −
∑

v∈out
𝜕

beue(v).

The energy identity can be derived by multiplying (23) with ue, integrating over all edges, summing up, and again
using the coupling and inflow boundary conditions (24)–(26) as well as (12). This yields

d
dt
||a1∕2u||2L2() =2 (a𝜕tu,u)L2() = −2 (b𝜕xu,u)L2() = −

∑
v∈

∑
e∈(v)b

e|ue(v)|2
=
∑

v∈
(∑

e∈out(v)
be|ûv|2 −∑

e∈ in(v)
be|ue(v)|2) .

By the coupling condition (25) and the conservation condition (12) for the flow field, one can see that at inner vertices
v ∈ 0, there holds

∑
e∈out(v)

be|ûv|2 −∑
e∈ in(v)

be|ue(v)|2 =
∑

e∈ in(v)
be (|ûv|2 − |ue(v)|2)

= −
∑

e∈ in(v)
be|ue(v) − ûv|2,

where we used the fact that ∑
e∈ in(v)

be|ûv|2 =
∑

e∈ in(v)
beue(v)ûv.

Together with the inflow boundary conditions (26), we then obtain the energy identity.
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EGGER AND PHILIPPI

FIGURE 2 Snapshots of typical solutions u and u𝜖 of the transport problem (blue) and the convection–diffusion problem (red, dashed) for
different values of 𝜖 (left, large; right, small). The different continuity conditions and the occurrence of boundary layers for small 𝜖 are clearly
visible [Colour figure can be viewed at wileyonlinelibrary.com]

2.4 Comparison of the coupling conditions
Before we proceed, let us briefly comment on the coupling conditions. For the convection–diffusion problem with 𝜖 > 0,
the number of coupling conditions at a junction v ∈ 0 is |(v)|+1, which suffices to guarantee continuity of the solution
and conservation of mass at the junction. For the transport problem, on the other hand, the number of coupling conditions
is |out(v)| + 1 which only suffices to guarantee conservation of mass at the junction and to prescribe the concentrations
at the outflow edges. The concentration ue(v), e ∈  in(v) on edges with flows into the junctions will however usually
deviate from the mixing value ûv. In this case, the mixing at pipe junctions generates dissipation, which amounts to the
inequality resulting from the application of Jensen's inequality in Step 2 of the proof of the previous lemma. In Figure 2,
we display typical solutions u𝜖 and u for the convection–diffusion and the limiting transport problem. One can clearly see
the generation of boundary layers in u𝜖 as 𝜖→ 0 and the fact that transport solutions u are usually discontinuous across
junctions.

3 ASYMPTOTIC ANALYSIS

We will now show that the solutions of the convection–diffusion problem (7)–(11) converge to that of the transport
problem (23)–(27) with rate (√𝜖). We will closely follow the arguments of the proof for the corresponding result for a
single edge, which can be found in Roos et al.6, pp159–166; see Bobisud22 for the original reference. Following Roos et al.,6
we start with establishing some preliminary results that will be required for the proof.

3.1 Auxiliary results
As a first step, we establish a weak maximum principle for solutions of convection–diffusion problems on networks.
Without further mentioning, we will always assume that Assumption 1 holds in the following auxiliary results.

Lemma 7. Let u ∈ C1([0,T];L2()) ∩ C0([0,T];H1() ∩ H2
pw()) satisfy

ae𝜕tue + be𝜕xue − 𝜖e𝜕xxue ≥ 0, e ∈  , (33)

∑
e∈(v)𝜖

e𝜕xue(v)ne(v) = 0, v ∈ 0, (34)

u(v) ≥ 0, v ∈ 𝜕, (35)
for all 0< t<T, as well as the initial conditions

ue(x, 0) ≥ 0, x ∈ e, e ∈  . (36)

Then, the function u is nonnegative, that is, u≥ 0 on  for all t∈ [0, T].

5014
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EGGER AND PHILIPPI

Proof. We multiply the differential inequality (33) by the test function w ∶= min(0,u) ≤ 0, integrate over all edges
e ∈  , and use integration-by-parts for the spatial derivative terms, similar as in the proof of Theorems 3 and 6. This
leads to

0 ≥ (a𝜕tu,w)L2() + (b𝜕xu,w)L2() − (𝜖𝜕xxu,w)L2()
= (a𝜕tu,w)L2() − (bu, 𝜕xw)L2() + (𝜖𝜕xu, 𝜕xw)L2(),

where we used continuity of u and w across junctions, the conservation condition (12) for the flow rates, as well as (34)
and the fact that u≥ 0 on the boundary, and hence, w = 0 at vertices v ∈ 𝜕 . Next, observe that w(t)≡ 0, and thus, also
𝜕xw(t)≡ 0, on the set where u is nonnegative, and w≡u on the complement −(t) = {x ∶ u(x, t) < 0}. From this and
the previous inequality, we immediately deduce that

0 ≥ (a𝜕tu,u)L2(−(t)) − (bu, 𝜕xu)L2(−(t)) + (𝜖𝜕xu, 𝜕xu)L2(−(t)) ≥ (a𝜕tu,u)L2(−(t)),

where we used that bu𝜕xu = b
2
𝜕x|u|2 and the fact that possible coupling and boundary terms appearing when integrat-

ing this expression drop out due to continuity of u across junctions; furthermore, we employed the flow conservation
condition (12) for b and the fact that u = 0 on the boundary of − due to its definition and (35). Let us note that
−(0) = ∅, since u(0)≥ 0. By the fundamental theorem of calculus, we thus obtain

∫−(t)
a|u(t)|2 dx = ∫

t

0

d
dt∫−(s)

a|u(s)|2 dx ds = ∫
t

0
2 (a𝜕tu(s),u(s))−(s) ds ≤ 0,

where we used that u = 0 on the boundary of −(s) for the second identity. As a consequence, we obtain −(t) = ∅,
and hence, u(t)≥ 0 for all 0≤ t≤T.

Using the weak maximum principle, we can show the following uniform bounds.

Lemma 8. The solution of problem (7)–(11) is uniformly bounded by |u𝜖(x, t) |+ |𝜕tu𝜖(x, t) |≤Cu for all x ∈  , t∈ [0, T]
with Cu independent of 𝜖.

Proof. The boundedness of u𝜖 follows from the weak maximum principle with the usual arguments; see, for example,
Evans.14, ch. 7 By defining we(x, t) ∶= max(||u0||∞,max |gv(t)|)±ue

𝜖(x, t), we immediately see that w satisfies all con-
ditions of Lemma 7 and is thus nonnegative. Consequently, u𝜖 is bounded independently of 𝜖. By linearity of the
problem, one can further see that z𝜖 = 𝜕tu𝜖 again solves (7)–(11), but with with boundary data z(v) = 𝜕tgv on 𝜕 and
initial data ze

𝜖(0) = 𝜕tue
𝜖(0) = − 1

ae

(
be𝜕xue

0 − 𝜖e𝜕xxue
0
)
. The boundedness of z𝜖 = 𝜕tu𝜖 then follows from the assumptions

on the problem data with the same reasoning as above.

Lemma 9. Let u𝜖 denote the solution of problem (7)–(11). Then,

|𝜕xue
𝜖(ve

i , t)| ≤ K, t ∈ (0,T),

for all edges e = (ve
i , ve

o) with uniform constant K independent of 𝜖.

Proof. For every edge e = (ve
i , ve

o) ≃ (0,𝓁e), we define we(x, t) ∶= Kx+ûve
i
𝜖 (t)−ue

𝜖(x, t), where K is a positive constant to be
chosen later. From Lemma 8, we know that u𝜖 and 𝜕tu𝜖 and hence by (8) also ûv

𝜖 and 𝜕tûv
𝜖 are bounded independently

of 𝜖 by a uniform constant Cu. Then, for any K ≥ ae

be Cu, we have

ae𝜕twe + be𝜕xwe − 𝜖e𝜕xxwe = ae𝜕tû
ve

i
𝜖 + beK ≥ 0.

If we further assume that K ≥ maxx∈ |𝜕xu0(x)|, then

we(x, 0) = Kx + ûve
i
𝜖 (0) − ue

𝜖(x, 0) = Kx + ue
0(0) − ue

0(x)

= Kx − ∫
x

0
𝜕xue

0(s)ds ≥ Kx − max
x∈e

|𝜕xu0(x)|x ≥ 0.
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EGGER AND PHILIPPI

Using Lemma 8, we may further assume K ≥ 2Cu∕mine∈𝓁e, and deduce that

we(ve
i , t) = 0 and we(ve

o, t) = K · 𝓁e + ûve
i
𝜖 (t) − ue

𝜖(ve
o, t) ≥ 0,

since u𝜖 is assumed to be continuous across network junctions. The weak maximum principle then yields we ≥ 0 for
all t∈ [0, T], and consequently,

ue
𝜖(x, t) − ûve

i
𝜖 (t) ≤ Kx.

This implies that 𝜕xue
𝜖(ve

i , t) = limx→0
ue
𝜖
(x,t)−û

ve
i
𝜖 (t)

x
≤ K for all t∈ (0, T). From the construction, one can see that K can

be chosen independent of 𝜖. In a similar manner, by defining we(x, t) ∶= Kx + ue
𝜖(x, t) − ûve

i
𝜖 (t), one can show that

−𝜕xue
𝜖(ve

i , t) ≤ K for all t∈ (0, T). In summary, we thus have proven that |𝜕xue
𝜖(ve

i , t)| ≤ K for all t∈ (0, T) with a constant
K that is independent of 𝜖. Since the network is finite, K can be chosen independent of e ∈  as well.

3.2 Asymptotic estimates
With the auxiliary results derived in the previous section, we are now in the position to prove our main result.

Theorem 10. Let Assumption 1 hold. Further, let u𝜖 be the solution of problem (7)–(11) and u be the solution of the
corresponding limit problem (23)–(28). Then,

||u𝜖 − u||L∞(0,T;L2()) ≤ C(T)
√
𝜖, (37)

with a constant C(T) depending on T but not on the parameter 0<𝜖 ≤ 1.

Proof. The proof follows the arguments given in Roos et al.6, pp159–166. Since we require particular boundary layer
functions for junctions v ∈ 0, we present the result in detail.

Step 1. For every e ∈  with e = (ve
i , ve

o) ≃ (0,𝓁e), we define a boundary layer function

we
𝜖(x, t) =

(
ûve

o(t) − ue(ve
o, t)

)
e−be(𝓁e−x)∕𝜖e ; (38)

see Figure 2 for an illustration of the boundary layers in the solution of problem (7)–(11) that motivates
this particular construction. We immediately obtain

be𝜕xwe
𝜖 − 𝜖e𝜕xxwe

𝜖 = 0, (39)

and ||w𝜖||L∞(0,T;L2()) ≤ C
√
𝜖, where we used that u, and thus, also ûv are uniformly bounded according to

Theorem 6. Further estimates for w𝜖 and its spatial derivatives can be found in Dobrowolski and Roos.23

The error between u𝜖 and u can then be split into

||u𝜖 − u||L∞(0,T;L2()) ≤ ||u𝜖 − u − w𝜖||L∞(0,T;L2()) + ||w𝜖||L∞(0,T;L2())
≤ ||u𝜖 − u − w𝜖||L∞(0,T;L2()) + C

√
𝜖.

Step 2. For ease of notation, we introduce 𝜂𝜖:=u𝜖 −u−w𝜖 and investigate the values of 𝜂𝜖 at time t = 0 and at
the vertices v ∈  of the network. For t = 0, we have

𝜂e
𝜖(x, 0) = ue

𝜖(x, 0) − ue(x, 0) −
(

ûve
o (0) − ue(ve

o, 0)
)

e−be(𝓁e−x)∕𝜖e (40)

= ue
0(x) − ue

0(x) −
(

ue
0(v

e
o) − ue

0(v
e
o)
)

e−be(𝓁e−x)∕𝜖e = 0,
where we used that u𝜖 and u have the same initial value u0 which is continuous across junctions v ∈ 0
and gv(0)=u0(v) for v ∈ 𝜕 due to the compatibility conditions of initial and boundary values. For inflow
boundary vertices v ∈  in

𝜕
and e = (v, ve

o), we obtain

𝜂e
𝜖(v, t) = gv(t) − gv(t) −

(
ûve

o (t) − ue(ve
o, t)

)
e−be𝓁e∕𝜖e ≤ C′𝜖, (41)
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EGGER AND PHILIPPI

where C′ is a constant independent of 𝜖. For outflow boundary vertices v ∈ out
𝜕

and the corresponding
edge e = (ve

i , v), we obtain

𝜂e
𝜖(v, t) = gv(t) − ue(v, t) −

(
gv(t) − ue(v, t)

)
= 0. (42)

At inner vertices v ∈ 0, on the other hand, there holds

𝜂e
𝜖(v, t) = ûv

𝜖(t) − ûv(t), e = (ve
i , v) ∈  in(v), (43)

𝜂e
𝜖(v, t) = ûv

𝜖(t) − ûv(t) −
(

ûve
o (t) − ue(ve

o, t)
)

e−be𝓁e∕𝜖e
, e = (v, ve

o) ∈ out(v). (44)

Step 3. Inserting 𝜂𝜖 into the convection–diffusion equation (7) and testing with 𝜂𝜖 yield

(a𝜕t𝜂𝜖, 𝜂𝜖)L2() = −(b𝜕x𝜂𝜖, 𝜂𝜖)L2() + (𝜖𝜕xx𝜂𝜖, 𝜂𝜖)L2() + (𝜖𝜕xxu, 𝜂𝜖)L2()
− (a𝜕tw𝜖, 𝜂𝜖)L2() = (i) + (ii) + (iii) + (iv),

where we used the identity (39). The individual terms are now estimated separately.
Step 3(i). The first term can be transformed into

(i) = −
∑

v∈
∑

e∈(v)
1
2

be|𝜂e
𝜖(v)|2ne(v) =

∑
v∈ (∗).

For internal vertices v ∈ 0 using (43)–(44), we obtain

(∗) =
∑

e∈out(v)
1
2

be(ûv
𝜖 − ûv −

(
ûve

o − ue(ve
o)
)

e−be𝓁e∕𝜖e)2

−
∑

e∈ in(v)
1
2

be(ûv
𝜖 − ûv)2

=
∑

e∈out(v)
1
2

be(ûv
𝜖 − ûv)2 −

∑
e∈ in(v)

1
2

be(ûv
𝜖 − ûv)2

−
∑

e∈out(v)
be (ûv

𝜖 − ûv) (ûve
o − ue(ve

o)
)

e−be𝓁e∕𝜖e

+
∑

e∈out(v)
1
2

be(ûve
o − ue(ve

o)
)2e−2be𝓁e∕𝜖e

≤ C
∑

e∈out(v)
be(e−be𝓁e∕𝜖e + e−2be𝓁e∕𝜖e ) ≤ C′𝜖.

Here, we additionally used the conservation property (12) of the volume flow rates and the uniform
boundedness of u𝜖 stated in Lemma 8. For inflow boundary vertices v ∈  in

𝜕
, we know from (41) that

𝜂e
𝜖(v, t) ≤ C′𝜖 on e = (v, ve

o), and hence (∗)≤Cbe𝜖, and for outflow boundary vertices v ∈ out
𝜕

, we have
𝜂e
𝜖(v, t) = 0 by (42), and thus, (∗) = 0 there. In summary, we thus obtain (i)≤C′′𝜖 with constant C′′

independent of 𝜖.
Step 3(ii). Using integration-by-parts, we can transform the second term into

(ii) = −
∑

e∈ (𝜖
e𝜕x𝜂

e
𝜖, 𝜕x𝜂

e
𝜖)L2(e) +

∑
v∈

∑
e∈(v)𝜖

e𝜕x𝜂
e
𝜖(v)𝜂e

𝜖(v)ne(v)

≤ ∑
v∈

∑
e∈(v)𝜖

e𝜕x𝜂
e
𝜖(v)𝜂e

𝜖(v)ne(v) =
∑

v∈ (∗∗).

At inner vertices v ∈ 0, we again use (43)–(44) to obtain

(∗∗) =
∑

e∈(v)𝜖
e𝜕xue

𝜖(v)(ûv
𝜖 − ûv)ne(v) −

∑
e∈out(v)

𝜖e𝜕x𝜂
e
𝜖(v)we

𝜖(v)

−
∑

e∈(v)𝜖
e(𝜕xue(v) + 𝜕xwe

𝜖(v))(ûv
𝜖 − ûv)ne(v) = (a) + (b) + (c).
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From (8), (9), and (12), we deduce that

∑
e∈(v)𝜖

e𝜕xue
𝜖(v, t)ne(v) = 0, for all v ∈ 0, (45)

and hence, the the term (a) vanishes. Inserting the definition of 𝜂𝜖 , we further obtain

(b) = −
∑

e∈out(v)
𝜖e (𝜕xue

𝜖(v) − 𝜕xue(v) − 𝜕xwe
𝜖(v)

)
we
𝜖(v).

From Lemma 9, we know that 𝜕xue
𝜖(v) is bounded uniformly for all e ∈ out(v), and the derivative

𝜕xue is also bounded independently of 𝜖. Furthermore, the spatial derivative 𝜕xwe
𝜖(v) can be bounded by

(C∕𝜖e)e−be𝓁e∕𝜖e for all e ∈ out(v); see (47). From these bounds, we conclude that (b) ≤ C(𝜖e + 1)e−be𝓁e∕𝜖e ≤
C′𝜖 with constant C′ independent of 𝜖. To estimate the term (c), we observe that 𝜕xu and û𝜖 are bounded
independently of 𝜖; see Theorem 6 and Lemma 8. Consequently,

(c1) = −
∑

e∈(v)𝜖
e𝜕xue(v)(ûv

𝜖 − ûv)ne(v) ≤ C𝜖.

For the spatial derivative 𝜕xwe
𝜖(v), we further obtain

𝜕xwe
𝜖(v) =

be

𝜖e (û
v − ue(v)), e ∈  in(v), (46)

𝜕xwe
𝜖(v) =

be

𝜖e (û
ve

o − ue(ve
o))e−be𝓁e∕𝜖e

, e ∈ out(v), (47)

which allows us to rewrite

(c2) = −
∑

e∈(v)𝜖
e𝜕xwe

𝜖(v)(ûv
𝜖 − ûv)ne(v)

= −
∑

e∈ in(v)
be(ûv − ue(v))(ûv

𝜖 − ûv)

+
∑

e∈out(v)
be(ûve

o − ue(ve
o))e−be𝓁e∕𝜖e (ûv

𝜖 − ûv).

Now, the first term on the right-hand side vanishes due to the coupling conditions (24)–(25) and the
conservation condition (12) for the flow rates. The uniform bounds for u, ûv and u𝜖 , ûv

𝜖 then allow to
bound (c2)≤C′𝜖, and hence, (c)≤C′′𝜖 with C′′ independent of 𝜖. By combination of the estimates for (a),
(b), and (c), we obtain

∑
v∈0

(∗∗) ≤ C𝜖. For the remaining boundary vertices v ∈ 𝜕 , we use (41)–(42) to
see that ∑

v∈𝜕

(∗∗) =
∑

v∈ in
𝜕

𝜖e𝜕x𝜂
e
𝜖(v)𝜂e(v)ne(v) ≤ C′𝜖,

since 𝜕x𝜂
e
𝜖(v), v ∈  in

𝜕
is bounded independently of 𝜖 by Theorem 6, Lemma 9, and (47). In summary, we

thus obtain (ii)≤C𝜖 with a constant C independent of 𝜖.
Step 3(iii). Integration-by-parts and Young's inequality yield

(iii) = −(𝜖𝜕xu, 𝜕x𝜂𝜖)L2() +
∑

v∈
∑

e∈(v)𝜖
e𝜕xue(v)𝜂e

𝜖(v)ne(v)

≤ 1
2
||𝜖1∕2𝜕xu||2L2() +

1
2
||𝜖1∕2𝜕x𝜂𝜖||2L2() +

∑
v∈

∑
e∈(v)𝜖

e𝜕xue(v)𝜂e
𝜖(v)ne(v).

The first term is bounded by C𝜖, the second term can be absorbed into (ii), and the boundary terms can
be estimated by C𝜖, since 𝜕xu and 𝜂𝜖 are uniformly bounded; see Theorem 6 and (41)–(44). In summary,
we thus obtain (iii)≤C𝜖.

Step 3(iv). Using Young's inequality, we have

−(a𝜕tw𝜖, 𝜂𝜖)L2() ≤ 1
2
||a1∕2𝜕tw𝜖||2L2() +

1
2
||a1∕2𝜂𝜖||2L2().
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By the uniform bounds for 𝜕tu and 𝜕tu𝜖 , we can estimate the first term by

||a1∕2𝜕tw𝜖||2L2(e) = ∫
𝓁e

0
ae(𝜕tûve

o(t) − 𝜕tue(ve
o, t)

)2e−2be(𝓁e−x)∕𝜖e dx ≤ C′𝜖,

and since the graph is finite, this estimate translates to the whole network.
Step 4. By combination of the estimates for the terms (i)–(iv), we finally obtain

1
2

d
dt
||a1∕2𝜂𝜖||2L2() = (a𝜕t𝜂𝜖, 𝜂𝜖)L2() ≤ C′𝜖 + 1

2
||a1∕2𝜂𝜖||2L2().

An application of Gronwall's lemma then immediately yields

||𝜂𝜖(t)||L2() ≤ 2a−1
minC′et𝜖 ≤ C(T)𝜖,

with amin = mine∈ae and constant C(T) = 2a−1
minC′eT that is independent of 𝜖 and t. Together with Step 1,

this completes the proof of the theorem.

3.3 Summary
The previous theorem shows that the asymptotic analysis of convection–diffusion problems can be extended almost ver-
batim to networks, if appropriate coupling conditions and corresponding boundary layer functions are defined at the
network junctions. By considering stationary problems or networks consisting only of a single pipe, one can see that the
rate of the theorem can again not be improved.

Before closing the presentation, let us mention some directions for further research: a natural next step would be to
consider numerical approximations for singularly perturbed convection–diffusion problems on networks. Based on the
analysis given in this paper, we would expect that most of the results available for a single pipe, see Roos et al.6 and
the references given there, can be extended to networks. We would also expect that the convergence of the semigroup
approach of Bardos24 can be extended to the network setting quite naturally. Another point of interest might be to consider
nonlinear problems and the asymptotic convergence in different metrics, which should be possible in the framework of
entropy methods; we refer to Jüngel25 for an introduction to the field.
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