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What is effective transfinite recursion in reverse mathematics?
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In the context of reverse mathematics, effective transfinite recursion refers to a principle that allows us to con-
struct sequences of sets by recursion along arbitrary well orders, provided that each set is �0

1-definable relative
to the previous stages of the recursion. It is known that this principle is provable in ACA0. In the present note,
we argue that a common formulation of effective transfinite recursion is too restrictive. We then propose a more
liberal formulation, which appears very natural and is still provable in ACA0.
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Effective transfinite recursion is a method from computability theory, which goes back to work of Church, Kleene
and Rogers (cf. [4, Section I.3]). It does also have important applications in reverse mathematics (cf., e.g., [3]).
In [1], one can find an explicit formulation of effective transfinite recursion in reverse mathematics, together with
a detailed proof in ACA0. It appears to be open whether the principle can be proved in RCA0.

In the present note, we propose a formulation of effective transfinite recursion that appears stronger than the
one in [1]. We shall argue that this is “the correct” formulation of the principle in reverse mathematics: It is very
convenient for applications, seems to be as general as possible, and is still provable in ACA0.

To avoid misunderstanding, we point out that our aim is rather pragmatic: In recent work on fixed points of well
ordering principles (cf. [2, proof of Theorem 5.11 & paragraph before Definition 6.1]), we have found it difficult
to use effective transfinite recursion as formulated in [1]. The present note is supposed to provide a formulation
that is easier to apply. We do not know whether it is more general in a strict sense, i.e., whether our formulation
and the one from [1] can be separated over RCA0.

Let us recall the formulation of transfinite recursion in reverse mathematics. Working in second order arith-
metic, we consider a well order X = (X,<X ). A family of setsYx ⊆ N indexed by x ∈ X can be coded into the sin-
gle setY = {(x, n) | x ∈ X and n ∈ Yx}. More officially, any such family will be given as a setY ⊆ N, so that n ∈ Yx
becomes an abbreviation for (x, n) ∈ Y . We write Yx = {(x′, n) ∈ Y | x′ <X x} for the subfamily of sets with index
below x ∈ X . In a recursive construction, one defines Yx relative toYx, by stipulatingYx = {n ∈ N | ϕ(n, x,Y x)} for
some formula ϕ, possibly with further parameters. To express that Y is the family defined by this recursive clause,
we write

Hϕ (X,Y ) :⇐⇒ Y = {(x, n) | x ∈ X and ϕ(n, x,Yx)}, (1)

adopting the notation from [1]. From Hϕ (X,Y ) and Hϕ (X,Y ′) we can infer Y = Y ′, since a minimal element of
the set {x ∈ X |Yx �= Y ′

x} would lead to a contradiction. Principles of transfinite recursion assert that there is a setY
with Hϕ (X,Y ), for any well order X and each formula ϕ from a certain class. For effective transfinite recursion,
the idea is that ϕ should express a �0

1-property. Specifically, [1, Definition 6.5] requires that ϕ is a �0
1-formula

and that we have a further �0
1-formula ψ with

∀x ∈ X∀Z ⊆ N∀n ∈ N(ϕ(n, x,Z) ↔ ¬ψ (n, x,Z)). (2)

However, the condition that this must hold for all Z ⊆ N appears too strong: For many �0
1-definable notions, the

�0
1-definition and the �0

1-definition are only equivalent for objects from a certain class.

Example 1 For a total function F : N → N, the iterates F (m) with m ∈ N are given by F (0)(n) := n and
F (m+1)(n) := F (F (m)(n)). The functionsFk : N → N at the finite stages of the fast growing hierarchy are defined by
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the clausesF0(n) := n+ 1 andFk+1(n) := F (n)
k (n). Let us discuss whether the hierarchy of functionsFk can be con-

structed by effective recursion on k ∈ X = N, say, over ACA0. To describe Fk+1 relative to Fk, we need to express
the definition of iterates: If F : N → N is total, then F (m)(n) = n′ is equivalent to the following: We have n′ = nm
for some—or equivalently every—sequence 〈n0, . . . , nm〉 with n0 = n and F (ni) = ni+1 for all i < m. Based on
this observation, one readily constructs �0

1-formulas ϕ(n, x,Z) and ψ (n, x,Z) with the following properties:

1. If we have Hϕ (N,Y ), then Yk is the graph of Fk.

2. The equivalence ∀n ∈ N(ϕ(n, x,Z) ↔ ¬ψ (n, x,Z)) holds for x = 0, and for x > 0 when Zx−1 is the graph
of a total function.

However, the given �0
1- and �0

1-definitions of F
(m)(n) = n′ need not agree when F fails to be total. Hence the

equivalence in (2) may not hold for arbitrary Z ⊆ N. In the present case, this is easy to repair: The functions Fk
are increasing, so that any sequence 〈n0, . . . , nm〉 that witnesses an equation F (m)

k (n) = n′ in the aforementioned
sense must satisfy n0, . . . , nm ≤ n′. This bound allows us to turn ϕ into a �0

0-formula (in the original language or
in a harmless extension, depending on our encoding of sequences). If we now set ψ := ¬ϕ, then the equivalence
in (2) does clearly hold for all Z ⊆ N. Nevertheless, it would be preferable if we could apply effective transfinite
recursion without proving monotonicity—in particular this would allows us to replace F0 by a base function that
is not monotone.

As the example suggests, the equivalence ∀n ∈ N(ϕ(n, x,Z) ↔ ¬ψ (n, x,Z)) in the premise of effective trans-
finite recursion should not be required for arbitrary Z ⊆ N. In concrete applications, it will usually be clear which
properties Z needs to have. To find a general condition, we anticipate the construction of a set Y with Hϕ (X,Y ).
Intuitively, the equivalence in question is only needed for Z = Yx. To make this precise, we abbreviate

X�x := {x′ ∈ X | x′ <X x} (3)

for each element x of our well order X . Note that Hϕ (X,Y ) entails Hϕ (X�x,Yx), which determines Yx uniquely.
This suggests the following:

Definition 2 Effective transfinite recursion is the following principle, where ϕ and ψ range over �0
1-formulas:

If X is a well order and we have

∀x ∈ X∀Z ⊆ N(Hϕ (X�x,Z) → ∀n ∈ N(ϕ(n, x,Z) ↔ ¬ψ (n, x,Z))), (4)

then there is a set Y with Hϕ (X,Y ).

Let us now show how our version of effective transfinite recursion can be applied:

Example 3 We take up the discussion from Example 1, still over ACA0. If we have Hϕ (N�x,Z), an in-
duction over y < x shows that Zy is the graph of a total function. As we have seen, this property ensures
∀n ∈ N(ϕ(n, x,Z) ↔ ¬ψ (n, x,Z)). Hence the hierarchy of functions Fk with k ∈ N can be constructed by the
principle of effective (transfinite) recursion, as specified in Definition 2.

The given example of effective transfinite recursion is typical: We want to construct a hierarchy with certain
properties—in this case, a hierarchy of total functions. The very same properties are supposed to ensure that the
recursion step is given by a�0

1-definable relation. Since the hierarchy is constructed by recursion, the obvious way
to establish the required properties is by induction. To apply effective transfinite recursion, we simply anticipate
the inductive argument. On an informal level, this justifies our claim that Definition 2 provides the most general
formulation of effective transfinite recursion in reverse mathematics.

Even though our approach sounds quite canonical, it does have some limitations: It is known that the relation
Fk(n) = n′ is �0

1-definable over RCA0 (even when we replace k ∈ N by ordinals α < ε0; cf., e.g., [6]). Working
in RCA0, we can thus form the hierarchy of functions Fk and prove basic facts about it. What we cannot show
is that all functions Fk are total (since k �→ Fk(k) is closely related to the Ackermann function). In view of this
fact, the construction from Example 3 cannot be directly implemented in RCA0 (even when all we want is a
hierarchy of partial functions). To avoid this issue, we have used ACA0 as base theory for our example. In fact,
the extension of RCA0 by �0

2-induction would have done equally well. As mentioned before, it is open whether
RCA0 (or its extension by �0

2-induction) proves the principle of effective transfinite recursion itself—but this is a
different matter.
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It is natural to ask whether our version of effective transfinite recursion entails the analogous principle with
H¬ψ at the place ofHϕ (and vice versa). We do not know the answer overRCA0, whileACA0 allows us to formalize
the following:

Remark 4 Consider �0
1-formulas ϕ and ψ . We assume that X is a well order and that we have

∀x ∈ X∀Z ⊆ N(H¬ψ (X�x,Z) → ∀n ∈ N(ϕ(n, x,Z) ↔ ¬ψ (n, x,Z))). (5)

In order to apply effective transfinite recursion as formulated in Definition 2, we show that H¬ψ (X�x,Z) fol-
lows from Hϕ (X�x,Z). The latter entails Hϕ (X�y,Zy) for all y <X x. By transfinite induction over y <X x we can
establish the arithmetical statement H¬ψ (X�y,Zy). Indeed, the induction hypothesis and (5) yield

∀z <X y∀n ∈ N(ϕ(n, z,Zz) ↔ ¬ψ (n, z,Zz)). (6)

In view of (1), we can now infer H¬ψ (X�y,Zy) from Hϕ (X�y,Zy). Having shown that H¬ψ (X�y,Zy) holds for
all y <X x, one can use the same argument to deduce H¬ψ (X�x,Z) from Hϕ (X�x,Z). As noted above, we can
now apply the recursion principle from Definition 2, which provides a set Y with Hϕ (X,Y ). Another transfinite
induction yields H¬ψ (X�x,Yx) for all x ∈ X , and then H¬ψ (X,Y ).

Let us now prove the following result, which is the main objective of our paper:

Theorem 5 Each instance of effective transfinite recursion (as formulated in Definition 2) can be proved
in ACA0.

As mentioned above, a detailed proof for an (apparently) weaker form of effective transfinite recursion has
been given in [1, Proposition 6.6]. In the following, we recall this proof (including some notation from [1]) and
modify it in the relevant places. Let us mention that the recursion theorem can be used to give a different proof of
the result (cf. [4, Section I.3]).

P r o o f . For partial functions f , g : N
p−→ {0, 1} we write f � g to express that the graph of f is contained in

the graph of g. To explain f � Z with Z ⊆ N, we agree to identify Z with its (total) characteristic function. From
now on, the letters f , g, h and j are reserved for partial functions with finite domain, which we assume to be coded
by natural numbers. Let us now fix �0

1-formulas ϕ and ψ , which determine an instance of effective transfinite
recursion. The Kleene normal form theorem (cf., e.g., [5, Theorem II.2.7]) provides a �0

0-formula ϕ0 such that
ACA0 (even RCA0) proves

ϕ(n, x,Z) ↔ ∃ f ∈ N( f � Z ∧ ϕ0(n, x, f )) and ϕ0(n, x, f ) ∧ f � g→ ϕ0(n, x, g). (7)

Let ψ0 be related to ψ in the same way. Working in ACA0, we assume that X is a well order and that the premise

∀x ∈ X∀Z ⊆ N(Hϕ (X�x,Z) → ∀n ∈ N(ϕ(n, x,Z) ↔ ¬ψ (n, x,Z))) (8)

of effective transfinite recursion is satisfied. We want to construct finite approximations f � Y to a setY ⊆ N with
Hϕ (X,Y ). In the process, we shall also construct approximations to the sets Yx for x ∈ X . To relate them, we agree

to write f �x for the restriction of f : N
p−→ {0, 1} to arguments (x′, n) with x′ <X x. For f � g, we say that g is

an x-extension of f if the following holds: When g(x′, n) is defined but f (x′, n) is not, then we have x ≤X x′ or
x′ /∈ X , as well as g(x′, n) = 0. As in the proof of [1, Proposition 6.6], a finite partial function f : N

p−→ {0, 1} will
be called an x-approximation if the following conditions are satisfied:

(i) When f (x′, n) is defined with x ≤X x′ or x′ /∈ X , then we have f (x′, n) = 0.

(ii) When we have f (x′, n) = 1 (resp. f (x′, n) = 0) with x′ <X x, we have ϕ0(n, x′, h) (resp. ψ0(n, x′, h)) for
some x′-extension h of f �x′.

For an x-approximation f , one observes the following: If we have x′ <X x, then f �x′ is an x′-approximation; and
if g is an x-extension of f , then g is an x-approximation as well. Consider the following two statements:

(I) If we have ϕ0(n, x, f ) and ψ0(n, x, g) for some n ∈ N, then f and g cannot both be x-approximations.

(II) For any x-approximation h and any n ∈ N, there is an x-approximation f with h � f that satisfies
ϕ0(n, x, f ) or ψ0(n, x, f ).
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To avoid confusion, we note that (II) will often be applied to the empty function h, which is easily seen to be
an x-approximation. In the proof of [1, Proposition 6.6], statements (I) and (II) were established by (separate)
inductions over x ∈ X . Note that the required induction principle is available: Since the conjunction of (I) and (II)
is arithmetical, the set of counterexamples can be formed in ACA0 (but not necessarily in RCA0). The proof
from [1] does not quite establish our version of effective transfinite recursion, since it relies on the assumtion that
ϕ(n, x,Z) ↔ ¬ψ (n, x,Z) holds for all values of the variables. However, we can adapt the argument to establish
(I) and (II) by simultaneous induction: Aiming at a contradiction, assume that x0 ∈ X is minimal such that (I) or
(II) fails. We can then consider the �0

1-definable set

Z = {(x, n) | x <X x0 and ϕ0(n, x, f ) for some x-approximation f }
= {(x, n) | x <X x0 and ψ0(n, x, g) for no x-approximation g}.

(9)

In order to complete our induction, we must show that (I) and (II) hold for x0. For this purpose, we will want to
know that ∀n ∈ N(ϕ(n, x0,Z) ↔ ¬ψ (n, x0,Z)) holds for the set Z that we have just defined. Due to the premise
of effective transfinite recursion, the desired equivalence reduces to Hϕ (X�x0,Z). The latter will be established
by another induction. As before, we write Zx = {(x′, n) ∈ Z | x′ <X x} for x <X x0. Let us extend this notation
by setting Zx := Z for x = x0. We now establish Hϕ (X�x,Zx) by induction over x ≤X x0. Due to the induction
hypothesis, we can use the premise of effective transfinite recursion, which yields

∀y <X x∀n ∈ N(ϕ(n, y,Zy) ↔ ¬ψ (n, y,Zy)). (10)

To establish Hϕ (X�x,Zx), we must prove that

(y, n) ∈ Z ⇐⇒ ϕ(n, y,Zy) (11)

holds for all y <X x. As preparation, let us show that we have f � Zy for any y-approximation f . For later refer-
ence, we point out that the following goes through for any y ≤X x0. Given a value f (y′, n) = 1 (necessarily with
y′ <X y), we obtain ϕ0(n, y′, h) for some y′-extension h of f �y′. As noted above, it follows that f �y′ and h are
y′-approximations. Hence h witnesses (y′, n) ∈ Z. Together with y′ <X y we get (y′, n) ∈ Zy, as required. Now
consider a value f (y′, n) = 0. If we have y ≤X y′ or y′ /∈ X , then (y′, n) /∈ Zy is immediate. Hence we may assume
y′ <X y. We then obtain ψ0(n, y′, h) for some y′-approximation h. This yields (y′, n) /∈ Z and hence (y′, n) /∈ Zy.
In order to deduce equivalence (11), now for y <X x ≤X x0, we first assume (y, n) ∈ Z. Then ϕ0(n, y, f ) holds for
some y-approximation f . As we have seen, we get f � Zy. Due to equivalence (7), this yields ϕ(n, y,Zy). For the
converse direction, we assume that ϕ(n, y,Zy) holds. By statement (II) above, we may pick a y-approximation f
with ϕ0(n, y, f ) or ψ0(n, y, f ). Aiming at a contradiction, we assume that ψ0(n, y, f ) holds. Since f is a y-
approximation, we get f � Zy and hence ψ (n, y,Zy). In view of (10), this contradicts the assumption that we
have ϕ(n, y,Zy). So we must have ϕ0(n, y, f ), which yields (y, n) ∈ Z. For x = x0, the result of the induction is
Hϕ (X�x0,Z). Using the premise of effective transfinite recursion again, we get

∀n ∈ N(ϕ(n, x0,Z) ↔ ¬ψ (n, x0,Z)), (12)

for Z as defined above. We now deduce that statements (I) and (II) hold for x = x0. To establish (I), assume that
we have ϕ0(n, x0, f ) and ψ0(n, x0, g). If f and gwere x0-approximations, then we would get f , g � Z, as we have
seen above. This would entail ϕ(n, x0,Z) and ψ (n, x0,Z), which contradicts the equivalence that we have just
established. To establish (II), we consider an x0-approximation h and a number n ∈ N. Due to the last equivalence,
we have ϕ(n, x0,Z) or ψ (n, x0,Z), which yields ϕ0(n, x0, g) or ψ0(n, x0, g) for some g � Z. Note that g and h are
compatible (i.e., have equal values whenever they are both defined) because of h � Z. By the monotonicity of ϕ0

andψ0, it suffices to construct an x0-approximation f that satisfies g∪ h � f . Let us enumerate the domain of g∪ h
as {(yi, ni) | i < k}. Following a hint by the referee, we simplify the argument by assuming y0 ≤X · · · ≤X yk−1. We
shall construct x0-approximations f0 � · · · � fk such that the domain of fi+1 contains (yi, ni) but no elements
(x′,m) with yi <X x′. Note that g∪ h � fk is automatic due to fk � Z. The construction proceeds exactly as in [1];
we recall details in order to keep our presentation self-contained. To start the construction, let f0 be the empty
x0-approximation. Assuming that fi is already defined, we construct fi+1 by case distinction:We can put fi+1 := fi
when (yi, ni) is already contained in the domain of fi; in the following we assume that this is not the case. If we
have x0 ≤X yi or yi /∈ X , it suffices to extend fi by the value fi+1(yi, ni) := 0. Now assume that we have yi <X x0.
By the induction hypothesis for (II), we may pick a yi-approximation f with fi�yi � f that satisfies ϕ0(ni, yi, f )
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or ψ0(ni, yi, f ). Note that only one of these alternatives can hold, by the induction hypothesis for (I). We can thus
define fi+1 as the extension of ( f �yi) ∪ fi by the value

fi+1(yi, ni) :=
{
1 if ϕ0(ni, yi, f ),

0 if ψ0(ni, yi, f ).
(13)

It is clear that fi+1 satisfies condition (i) from the definition of x0-approximation. To verify condition (ii), we
consider a value fi+1(x′,m) = 1 with x′ <X x0 (the argument for fi+1(x′,m) = 0 is completely parallel). Given
that (x′,m) lies in the domain of fi+1, we even have x′ ≤X yi by construction. Let us consider x′ <X yi first. We
then have f (x′,m) = 1. Since f is a yi-approximation, we get ϕ0(m, x′, j) for some x′-extension j of f �x′. In
view of x′ <X yi we have f �x′ = fi+1�x′, so that the same j witnesses condition (ii) for fi+1. Next, we consider
(x′,m) = (yi, ni). Since we have assumed fi+1(x′,m) = 1, we must have ϕ0(ni, yi, f ). Let us observe that f is
a yi-extension of fi+1�yi = f �yi (note that f (x, k) = 0 holds if yi ≤X x or x /∈ X , since f is a yi-approximation).
Hence f itself witnesses condition (ii) for the value fi+1(yi, ni). Finally, assume we have x′ = yi but m �= ni. In
this case we get fi(x′,m) = fi+1(x′,m) = 1. As fi is an x0-approximation, we obtain ϕ0(m, x′, j) for some x′-
extension j of fi�x′. Recall that we have fi�x′ = fi�yi � f , so that f �x′ and j are compatible. One can check that
j′ := ( f �x′) ∪ j is an x′-extension of fi+1�x′. In view of j � j′, we still have ϕ0(m, x′, j′). Hence j′ witnesses
condition (ii) for the value fi+1(x′,m). This completes our inductive proof that statements (I) and (II) hold for
all x ∈ X . We can now set

Y = {(x, n) | x ∈ X and ϕ0(n, x, f ) for some x-approximation f }
= {(x, n) | x ∈ X and ψ0(n, x, g) for no x-approximation g}.

(14)

Consider the well order X ∪ {�}with a newmaximum element�. WriteX�� := X andY� := Y . Just as above, an
induction over x ∈ X ∪ {�} yieldsHϕ (X�x,Yx). For x = �we obtainHϕ (X,Y ), as required by effective transfinite
recursion. �

Our aim was to provide a convenient and canonical formulation of effective transfinite recursion in the setting
of reverse mathematics. In our opinion, the discussion after Example 3 shows that we have achieved this aim.
Since our objective was rather pragmatic, we have not considered the following questions, even though they are
certainly interesting: Can RCA0 prove some formulation of effective transfinite recursion? Can it prove that the
formulation from Definition 2 is equivalent to the one from [1]?
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