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Abstract: Infrared thermography for camera-based skin temperature measurement is increasingly
used in medical practice, e.g., to detect fevers and infections, such as recently in the COVID-19
pandemic. This contactless method is a promising technology to continuously monitor the vital
signs of patients in clinical environments. In this study, we investigated both skin temperature
trend measurement and the extraction of respiration-related chest movements to determine the
respiratory rate using low-cost hardware in combination with advanced algorithms. In addition, the
frequency of medical examinations or visits to the patients was extracted. We implemented a deep
learning-based algorithm for real-time vital sign extraction from thermography images. A clinical
trial was conducted to record data from patients on an intensive care unit. The YOLOv4-Tiny object
detector was applied to extract image regions containing vital signs (head and chest). The infrared
frames were manually labeled for evaluation. Validation was performed on a hold-out test dataset of
6 patients and revealed good detector performance (0.75 intersection over union, 0.94 mean average
precision). An optical flow algorithm was used to extract the respiratory rate from the chest region.
The results show a mean absolute error of 2.69 bpm. We observed a computational performance of
47 fps on an NVIDIA Jetson Xavier NX module for YOLOv4-Tiny, which proves real-time capability
on an embedded GPU system. In conclusion, the proposed method can perform real-time vital sign
extraction on a low-cost system-on-module and may thus be a useful method for future contactless
vital sign measurements.

Keywords: camera-based vital sign measurement; infrared thermography; IRT; object detection; deep
learning; optical flow; ICU monitoring

1. Introduction

Intensive care units (ICUs) are among the most vital hospital wards, as they are
reserved for patients with critical health conditions [1]. Here, continuous monitoring of
vital signs is crucial for the early detection of an acute deterioration in health. The basic
parameters monitored are heart rate (HR), blood pressure, respiratory rate (RR) and body
temperature (BT), that provide information about the general physical status [2].

The monitoring of BT allows the observation of hypo- and hyperthermia, e.g., in
inflammation. According to a study by Laupland et al., 16% of ICU patients have some type
of hypothermia and up to 26% suffer from fever [3]. Erkens et al. observed dysregulation
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of BT in half of all patients in a German ICU. In general, BT is considered a significant
predictor of mortality [4].

In addition, observations of changes in the respiratory rate can detect serious res-
piratory failure, which is the most common cause of admission to the ICU [5]. In 2015,
8% of all deaths in EU countries could be linked with respiratory diseases, which makes
it the third main cause of mortality [6]. Despite continuous monitoring of respiratory
activity in ICUs, the RR is the least accurately recorded vital sign in hospitals, despite its
significance as a detector for early signs of deterioration [7]. Almost all sensors currently
used for patient monitoring require direct contact to the body, but for a number of reasons,
including handling and hygiene, contactless monitoring would be preferable. Moreover,
the measurement quality of e.g., electrodes can vary with displacement. In the worst case,
monitoring can cause medical adhesive-related skin injuries (MARSI) in patients with
sensitive skin, such as infants or burn patients [8]. The replacement of disposable equip-
ment (e.g., electrodes) is usually expensive and requires advanced medical knowledge for
operation. Moreover, the environmental impact of medical waste production must not
be underestimated.

To overcome the disadvantages of wired patient monitoring, contactless vital param-
eter acquisition has been investigated by research groups worldwide [9]. The develop-
ment of camera-based techniques was initialized by Wu et al. in 2000, who used a CCD
camera to extract dermal perfusion changes from the skin surface [10]. In addition to
illumination-dependent camera technologies, Murthy et al. introduced infrared thermog-
raphy (IRT) cameras in 2004 to extract the body surface temperature (BST) and RR from
respiration-induced temperature changes in mouth and nose regions [11]. Subsequently,
these techniques have seen great progress in accuracy and performance, due to improved
computational efficiency and rapid developments in the field of machine vision. In this
paper, a deep learning (DL)-based algorithm for the extraction of relative BST changes and
RR from patients in the ICU using a low-resolution IRT camera is presented. A real-time
object detection algorithm was used to extract signal-containing regions-of-interest (ROIs)
in the frames. The head and chest regions were cropped to measure BST changes and
breathing-related thorax movements from consecutive frames using an optical flow (OF)
algorithm. Finally, a performance analysis was conducted to show real-time capability on
embedded GPU modules for a low-cost implementation.

The further structure of this work is described as follows: Section 2 provides an
overview of related works in the field of camera-based RR monitoring. Section 3 describes
the dataset and the DL-based algorithm for vital sign extraction. Section 4 presents the
performance results of the object detector and the contactless monitoring of RR and BST.
Section 5 analyzes and reflects on the results of the presented approach. Finally, Section 6
summarizes the major findings and describes limitations of the algorithm.

2. Related Works

In the last decade, major advances have been developed in the field of camera-based
vital sign monitoring. In 2011, Abbas et al. presented a method for respiratory monitoring
from a tracked nose region in infrared images for neonates [12]. In the meantime, Lewis et al.
worked on a similar tracking approach for adults to additionally estimate relative tidal
volume changes [13]. In 2015, Pereira et al. presented an advanced approach to estimate RR
from the nostrils using a high definition thermography camera [14]. Sun et al. measured RR
and HR simultaneously from the face/nose region with a dual RGB/IRT camera system [15].
Elphick et al. conducted a larger study with more than 70 participants using a technique for
facial analysis to track the nose region [16]. Although these methods showed high accuracy
for the extraction of respiration, all approaches used highly expensive camera hardware
and required a consistent line-of-sight to the nostrils, which restricts the position and angle
of the camera. Furthermore, several tracking algorithms had to be applied offline after the
actual recordings. Thus, no real-time capability existed.
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Subsequently, computationally complex tracking algorithms were increasingly re-
placed by efficient DL-based methods. Real-time capable face and nose detectors
(e.g., [17,18]) offer a great potential to enhance existing monitoring systems. In 2019,
Kwasniewska et al. used neural networks in combination with low resolution thermog-
raphy camera modules for a so-called super resolution approach to show feasibility of
RR monitoring in nose-region images of only 80 × 60 px [19]. Furthermore, Jagadev et al.
presented a machine learning-based measurement method where regression trees were
used to track the nostrils [20]. The authors additionally investigated gradient techniques
and support vector machines for ROI tracking [21]. Despite the high potential of ma-
chine vision in the field of thermography-based monitoring techniques, research is still
at an early stage. Moreover, most groups worked on the extraction of respiration-related
signals from the nasal region in thermography videos, which are, however, difficult to
obtain in clinical environments. So far, the number of publications where IRT was used to
monitor thorax movement for the extraction of RR is very limited. Nevertheless, studies
were conducted in an animal trial with anesthetized pigs [22] and for RR monitoring of
infants [23]. The application of DL methods for segmentation/detection in this context has
not yet been covered in the literature. Finally, although commercial devices for medical
thermography are available and used for e.g., tumor examinations, there is no approved
IRT-based equipment for non-contact measurement of RR.

3. Materials and Methods
3.1. Experimental Setup and Dataset

The IRT datasets were recorded at the ICU of Box Hill Hospital in Melbourne, VIC, Aus-
tralia, while the study was approved by the Human Research and Ethics Committee of
Eastern Health, Melbourne, Australia (LR45-2017). Written informed consent was obtained
from all patients. In total, 26 patients were recorded with the infrared camera Optris PI
450i (Optris GmbH, Berlin, Germany) at 4 frames per second (fps). The measurements
were conducted with a spatial resolution of 382 × 288 px and a thermal sensitivity of
40 mK. In contrast to a previous study presented in 2019 [24], where the camera was
mounted on a tripod and brought to the bedside, in the present study, the thermography
device was attached to the ceiling. The patients were recorded for the length of their stay,
which resulted in varying measurement durations. The measurement setup is depicted
in Figure 1a.

(a) (b)
Figure 1. (a) Measurement setup in the intensive care unit (ICU) with an infrared camera attached to the ceiling. (b) Example
infrared frame from patient.
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The angle and distance of the camera were adjusted to optimize the field of view.
This ensured an overall view of the patient and allowed the detection of clinical staff around
the patient bed. An example infrared frame is illustrated in Figure 1b). No additional
reference measurements were conducted in parallel to the camera recording to minimize
disturbances in daily clinical procedures. Therefore, supplementary information about
vital signs was only documented manually during routine examination.

All data of the 26 patients were analyzed. The training, validation and test datasets
were created by randomly sampling 150 frames from every patient to train and validate
the DL approach. This resulted in a subset of 3900 images. As shown in Table 1, 900
frames were sampled from six patients to form the test dataset, while data of the remaining
20 patients formed the training/validation set (3000 frames). This was done to prevent any
training effect of the detector regarding the test dataset. Since reference data for RR were
available from a patient monitor (Philips, Amsterdam, The Netherlands) using thoracic
bioimpedence at hourly intervals just for six patients, these patients were defined as the test
dataset with ground truth data. In total, 137 reference data points for RR were collected by
the clinical staff and used to validate the OF method. As illustrated in Table 2, an additional
subset of images was sampled from the patients of the test dataset by extracting 960
consecutive frames (240 s) before and after the clinical measurement procedure of RR (in
overall 1920 frames or 8 min). These frames were extracted from the total IRT dataset.

Table 1. Dataset division for training and validation of YOLOv4.

Dataset Training/Validation Test

Patients 20 6
Frames 3000 900

RR Reference 0 137

Table 2. Dataset sampling for evaluation of the OF algorithm.

Dataset OF Evaluation

Patients 6
Frames 1920 per RR Reference

Following datasets preparation, the frames were labeled and preprocessed for the
subsequent steps of training and validation of the object detector (see Sections 3.2 and 3.3).
The trained model was then used to extract RR and BST from patients of the test dataset
(Section 3.4). Finally, a performance analysis was conducted to show real-time feasibility
on embedded GPUs. An overview of the algorithm is depicted in Figure 2.

Detector Training 
and Validation

Dataset 
Preparation

Preprocessing 
and Labeling

Performance 
Analysis

Vital Sign 
Extraction

Figure 2. Overview of the algorithm.

3.2. Data Preprocessing

In a first step, all frames were normalized in terms of minimum and maximum tem-
perature values, which was required for the detector training process and later application
of the OF method. In consecutive frames with strongly changing temperature values
(e.g., a hot drink was given to the patient), this technique resulted in different image con-
trasts. The normalization thus functions as an augmentation step to increase the diversity
of the training set. Due to the standardized setup and the resulting small variability in
camera perspective and distance, we assume that the training process would not benefit
from additional, classical augmentation methods, such as rotation, flipping or scaling.
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This was already observed in previous publications [25]. Thus, no further augmentation
strategies were investigated.

The ground truth labeling was performed using the tool “Yolo_mark” [26] . In each
frame, the following labels were applied (if available) with a bounding box: patient, patient
chest, patient head and clinician. The first label contained information about the position
of the patient to detect the presence and track global movement. In a next step, the head
and the thorax were labeled for later vital sign extraction. Finally, a fourth label was
introduced to distinguish between a patient and clinical staff or e.g., visitors and to quantify
medical procedures or visits. Figure 3 gives an overview of the segmentation algorithm.
In Figure 4, a detection result of the YOLOv4 algorithm is depicted.

Clinician Count

Min-Max Normalization to 
Adjust IRT Frames 

Thermography Frames Loaded 

Temperature Trend

YOLOv4 Detection on GPU

Head Chest Patient Clinician

RR Estimation

Estimation

Figure 3. Overview of the segmentation algorithm.

chest: 94.0%

head:
100.0%

clinician: 10
patient: 100.0%

Figure 4. Detection result of YOLOv4.

3.3. Detector Training and Validation

In this work, the darknet implementation of the YOLOv4 object detection algorithm
in Python by Bochkovskiy et al. [27] with the CSPDarknet53 backbone was employed.
In comparison to the prior detector YOLOv3 of Redmon et al. [28], YOLOv4 outperforms
YOLOv3 with respect to detection accuracy as well as speed, and allows the use of state-
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of-the-art GPU accelerated methods for training and inference. To further investigate the
application of minimized network architectures on embedded GPU systems, the YOLOv4-
Tiny was further evaluated. It has a smaller model size and faster inference speed, but it
was unknown if it performed worse in terms of accuracy.

In contrast to two-stage object detectors like (fast) R-CNNs, the YOLO architecture
is a one-stage detector. While region-based CNNs use a region proposal network to
generate ROIs in a first stage and send the proposal to a pipeline for classification and
regression, single-stage methods treat object detection as a “simple” regression problem
(see Figure 5). Next to an input stage, a backbone and sequential neck and head (dense
prediction) form the core of the YOLO detector. The backbone consists of pretrained
feature extractors, which are fine-tuned using the detection dataset. In the neck, extra
layers are used to extract feature maps of different stages of the backbone. The head is the
main part responsible for the classification and regression of bounding boxes. To improve
the detection accuracy, YOLOv4 uses two methods: Bag-of-Freebies and Bag-of-Specials.
While the former describes techniques including (mosaic) data augmentation, CutMix or
DropOut, the latter performs methods including max-pooling and a novel mish activation.
Please refer to [27] for further information about the network architecture.

Input Backbone Neck Dense Prediction Sparse Prediction

Stage 1 Stage 2
Figure 5. One- and two-stage object detectors modified from [27].

For model training, a high-performance desktop computer was used, running Ubuntu
18.04 and featuring an Intel Xeon Gold 6128 processor, two NVIDIA Quadro RTX5000,
and 400 GB RAM. To accelerate the training process, both GPUs were deployed in com-
bination with CUDA 10.2, cuDNN 7.6.5, and OpenCV 4.2.0. The training process can be
described as follows: before the actual training step, the configuration files for both detector
models were adapted for the specific characteristics of the dataset and number of labels
(see [29]). Then, the model weights were trained first on one GPU for 1000 iterations with
an image size of 416 × 416 px. Afterwards, another 7000 iterations were performed on
both GPUs by using the partially trained model. Note that this technique was proposed
by Bochkovskiy to conduct a more stable, yet accelerated training [29]. Early stopping
was used to prevent overfitting by evaluating the inference results on the validation set.
A 10-fold cross-validation (CV) was performed to measure the model performance and
obtain estimates of the generalization process during the training step. The results will be
presented in Section 4.1. During the CV, the intersection over union (IoU), mean average
precision (mAP) and the F1 score were analyzed with an intersection/detection threshold
of 0.5 as common evaluation metrics for object detectors. While the IoU is a measure of
the overlap between the bounding boxes from detection and ground truth, the mAP score
specifies the accuracy of the detector’s predictions over all classes. Figure 6 illustrates
an example of three different IoU results for the head of a patient. Furthermore, the F1
score describes the harmonic mean of precision and sensitivity (true positive rate) of the
validation process.
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Ground Truth

Detection

IoU=0.9 IoU=0.7 IoU=0.5
Figure 6. Intersection over Union as an evaluation metric for object detectors.

3.4. Vital Sign Extraction

The segmented IRT data were used to quantify disturbances due to medical procedures
or visits, to estimate a temperature trend, and to estimate the RR.

3.4.1. Quantification of Disturbances

To quantify the occurrence of medical procedures or visits to the patient, the presence
of the bounding box “clinician” was evaluated in a binary fashion.

3.4.2. Temperature Trend Estimation

The bounding box for the head was used to crop the facial part for temperature
extraction. To generate an estimate of the BST, the maximum temperature value of the
bounding box was selected.

Note that although the thermal sensitivity of the used camera is 40 mK, the absolute
accuracy only amounts to ±2 °C. Thus, in our approach, we computed a temperature trend
by using the relative deviation from the temperature value of the first frame, as fluctuations
in the range of the absolute accuracy could lead to incorrect classifications regarding
hypo-/hyperthermia. To reduce the influence of camera drift, the room temperature
was estimated from a 5 × 5 px ROI in the upper left corner of the IRT video and used
for compensation.

3.4.3. Respiratory Rate Estimation

The proposed approach makes use of the fact that respiration causes subtle motions
of the chest of the patient which can be quantified from IRT images via optical flow.
An overview of the algorithm is given in Figure 7.

The OpenCV implementation of the OF algorithm by Farnebäck et al. [30] was cho-
sen. The initial step is to approximate each neighborhood of two consecutive frames
by quadratic polynomials, to receive global displacement information. Subsequently,
the global polynomial is replaced with local approximations by a polynomial expansion.
This results in a spatially varying displacement field, which contains the movement of
pixels. For more information on the OF algorithm, the interested reader is referred to [30].

It is known that the signal-to-noise ratio and the contrast of IRT images are generally
lower compared to other (visual) camera modalities, which complicates image processing.
Especially, the application of OF using unfiltered IRT images may not be feasible, as these
methods are based directly on the intensity levels of pixels. Therefore, a temporal filter
algorithm was implemented, see Figure 8: The cropped chests from four consecutive
frames were buffered. Pixel-wise mean operations on the first three frames (t−2, t−1, t)
were used to generate the first input (“Prev Frame” in Figure 7), while the last three
frames (t−1, t, t + 1) were used to generate the second input to the OF algorithm (“Frame”
in Figure 7).
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Image Crop from Patient Chest

Frame Buffer

Temporal Filter for 
Noise Reduction

Patient Movement

Respiration Rate

Prev Frame Frame

(a) Optical Flow in OpenCV

Optical Flow

(c) Signal Processing

Raw Signal Filtered Signal Autocorrelation Peak Detect

(b) Mean of X and Y Flow per Frame

See Figure 8

Figure 7. Overview of the algorithm for RR extraction.

Frame t
Frame t 1

Frame t 1
Frame t 2

b)

b)

b)

b)
Pixelwise temporal

mean
Framebuffer

Frame t

Frame t 1

Chest

Cropped
chest

Crop

Figure 8. Temporal filtering as preprocessing for Farnebäck’s OF algorithm.

The OF algorithm (Figure 7a) returned the displacement field, i.e., the motion of each
pixel in the chest region as visualized by red arrows in “Optical Flow”, Figure 7. All dis-
placement vectors were spatially averaged (Figure 7b) to extract the mean motion of the
chest. This “Raw Signal” (Figure 7c) was filtered using a 2nd-order Butterworth bandpass
filter with breathing-related cutoff frequencies of 0.15 Hz and 0.44 Hz. Next, the auto-
correlation of the filtered signal was computed to quantify the signal’s self-similarity.
Finally, the largest peak in the range of the respiratory rate was selected to calculate the
respiratory rate.

3.5. Real-Time Feasibility on Embedded GPUs

The low-cost system-on-modules Jetson AGX Xavier (approx. 700 $, November 2020)
and the less performant version Jetson Xavier NX (approx. 400 $, November 2020) (NVIDIA,
Santa Clara, USA) were used for inference to show the feasibility of applying the trained
detector in combination with embedded GPU systems. Both development boards provide
a 64-bit CPU, a NVIDIA Volta GPU, including tensor cores, 16 GB (AGX Xavier) and 8 GB
(Xavier NX) of RAM, and a dual DL accelerator for optimized inference. These modules
combine high performance and power efficiency in a miniaturized form factor to deliver
the power of accelerated DL to embedded systems. Low-cost portable devices can be
implemented for real-time camera-based monitoring systems by using these systems. Both
modules were selected for the inference of YOLOv4 and YOLOv4-Tiny to determine the
performance and usability for real-time monitoring of vital signs. The results of a detailed
performance analysis will be provided in Section 4.1.
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4. Results
4.1. Detector Performance

A patient-wise 10-fold CV was performed to quantify the overall model perfor-
mance and obtain reliable estimates of the generalization process during the training
step. In each iteration, data from two patients of the training set were defined as valida-
tion set in every fold, while data from the other 18 patients were used as training data.
In Table 3, the results of the CV for both detector architectures, YOLOv4 and YOLOv4-Tiny,
are presented. Furthermore, the evaluation metrics for the final prediction of the hold-out
test dataset are presented, where all data of the CV were used for training.

Table 3. Results of a patient-wise 10-fold CV.

YOLOv4 YOLOv4-Tiny

Fold IoU0.5 mAP0.5 F1 IoU0.5 mAP0.5 F1

1 0.72 0.99 0.92 0.81 0.99 0.99
2 0.76 0.98 0.94 0.82 0.98 0.95
3 0.72 0.90 0.94 0.73 0.88 0.93
4 0.80 0.74 0.97 0.83 0.74 0.98
5 0.71 0.99 0.92 0.76 0.98 0.98
6 0.81 0.97 0.98 0.79 0.97 0.99
7 0.65 0.84 0.86 0.67 0.86 0.89
8 0.72 0.97 0.92 0.79 0.98 0.97
9 0.75 0.95 0.93 0.75 0.93 0.92

10 0.69 0.88 0.97 0.64 0.85 0.81

Mean 0.73 0.92 0.93 0.76 0.92 0.93
SD 0.05 0.08 0.04 0.06 0.08 0.07

Test 0.70 0.95 0.91 0.75 0.94 0.93

In general, the results showed mAPs of 0.95 (YOLOv4) and 0.94 (YOLOv4-Tiny),
respectively F1 scores of 0.91 and 0.93 for the test dataset. In addition, IoUs of 0.7 for the
larger model and 0.75 for the tiny version were observed. The evaluation metrics did not
show a standard deviation (SD) higher than 0.08 for the individual folds. This indicates
a generalization of the model, so overfitting was prevented. Furthermore, the results
provided evidence that the performance on the test dataset did not vary from the training
dataset. Nevertheless, the detector performed worse on folds 7 and 10 due to differences
between the measurement conditions (e.g., ceiling height or frequency of medical interven-
tions). Different levels of disturbances due to medical interventions can be observed in
Figure 9. While optimal conditions can be seen on the left side, Figure 9b,c show minor
and severe disruption.

(a) No disturbance (b) Minor disturbance (c) Severe disturbance
Figure 9. Different levels of disturbances in IRT frames.
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In addition to the averaged results from the 10-fold CV, Table 4 presents the detection
performance (averaged IoU and the averaged precision) for all individual classes. While
there was negligible difference in the overall performance of the detectors, both YOLOv4
and the tiny model showed a reduced accuracy for the class chest. Nevertheless, the preci-
sion for the classes indicated an adequate result for thorax recognition, which was used for
further processing.

Table 4. Quantitative detection results on the test dataset (900 images).

avg IoU [%] mAP [%]

Detector Head Patient Chest Clinician Head Patient Chest Clinician

YOLOv4 84 76 54 70 99 99 87 91
YOLOv4-Tiny 82 78 66 70 99 98 87 89

Both detection models were used for inference on embedded GPU systems to show
the feasibility of real-time performance on low-cost system on modules. In Table 5 the
mean performance on the GPU platforms introduced in Section 3.5 are presented in fps.
The trained network models were transferred to the Jetson development kits and evalu-
ated on the test dataset. Even the cheapest module Xavier NX had real-time capabilities
with 47 fps for the YOLOv4-Tiny detector. Furthermore, the YOLOv4 detector showed a
performance of 9 fps on the same GPU. Since our study was conducted with a temporal
resolution of 4 fps, both detectors can be used to implement real-time vital sign monitoring
on a Jetson module.

Table 5. Mean performance on different GPU platforms for the test dataset.

Platform YOLOv4 [fps] YOLOv4-Tiny [fps]

Jetson Xavier NX 9 47
Jetson AGX Xavier 19 86
Quadro RTX5000 80 296

A further analysis of the real-time feasibility of the entire algorithm gave no limitations
regarding the application of the approach on embedded GPU systems. Although the OF
implementation of OpenCV is CPU-based, it has not led to any restrictions of the real-time
capability, even on the less-performant Jetson systems. Since the cropped chest ROI had
an average resolution of only 100 × 40 px, the computational costs had an appropriate
dimension for the multi-core CPUs. Furthermore, the performance of the OF approach was
in the range of several hundred fps, so that the influence on the total runtime is negligible.

4.2. Temperature Trend Estimation

We created an estimator for BST by measuring relative head temperature deviations in
the IRT frames. Since reference data for BST were not provided for the patients in the test
dataset, 70 datapoints of one participant of the training set with corresponding temperature
values measured in the bladder were extracted and compared with IRT. This was done to
show feasibility for the temperature trend estimations presented later. The YOLOv4-Tiny
was used due to the similar results for both detectors. In order to exclude a training effect in
the detection step, the model weights from a fold were used, in which this specific patient
was not part of the training dataset. An analysis of absolute temperatures can be observed
in Figure 10a. As expected, an underestimation of the bladder reference is revealed. Next
to the reference and camera-based measurements, an estimation of the room temperature
is shown as described above. A trend analysis was performed by calculating the deviations
from the initial measurement point. Figure 10b shows that the IRT trend overestimated
the reference deviations. If the estimated room temperature is subtracted for correction,
the MSE of the estimated trend decreases from 1.65 K to 1.34 K.
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(b)

(MSE = 1.34)
(MSE = 1.65)

(a)

Figure 10. (a) Absolute temperature analysis for reference measurements in bladder. (b) Relative deviations for room
temperature correction.

Linear regression was carried out to investigate the accuracy of IRT measurements.
Since the reference data were limited to 70 temperature values from one patient, the focus
of this analysis was to emphasize the linear correlation of both variables rather than
to train a regression model for prediction. The results are depicted in Figure 11a. The
regression resulted in a slope of 1 and an intercept of −1.75. A MSE of 1.04 and a R2

of 0.55 were observed. These results indicate a positive correlation between the bladder
temperature and IRT measurement. An additional analysis was performed for the ambient
temperature correction. In Figure 11b the absolute values of IRT measurements were
adjusted using the room temperature as depicted in Figure 10a. This resulted in a slight
increase of the MSE (due to outliers) and a higher coefficient of determination for the
regression. Furthermore, Table 6 shows the results for an analysis without the outliers at
reference temperatures of 32.6 °C (unphysiological temperature) and 38.6 °C (corrupted
ambient correction). The evaluation metrics are provided for both unedited and corrected
temperature values. Here, an MSE of 0.72 and a R2 of 0.77 were observed for the corrected
values. These results demonstrate that an IRT camera can be used to perform thermal state
measurements by extracting the maximum temperature value from the head of a patient.

Table 6. Regression results without outliers.

w/o Correction Correction

MSE 0.98 0.72
R2 0.56 0.77
r 0.75 0.88

The temperature trend for the six patients of the test dataset was determined by
using the averaged maximum values of the head surface temperature of all frames from a
measurement point (240 frames). The results are presented in Figure 12.
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(a)

(b)

y = -36.30 + 1.26x 

y = -1.75 + x MSE = 1.04
R² = 0.55
r = 0.74  

MSE = 1.07
R² = 0.65
r = 0.81  

Figure 11. Regression analysis for (a) maximum head temperature and (b) corrected temperature values.

Cardiac arrest Drug overdose

Urinary tract infection

Cardiac disorder

Death

Hip fracture

Figure 12. Head surface temperature deviation for patients from the test dataset.
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Since the patients were recorded for the length of their stay in the ICU, the plots show
hourly, chronological measurements for temperature variations. While a slight rise can
be obtained for the trend of patient 6, there was a long-term drop in temperature drift for
patient 4. These progressions could indicate a pathological instability (deviation > 1 °C)
and indicate hypothermia or hyperthermia. The results for patients 2 and 3 showed no
clear ascending or descending trend, but were in a range of approx. 1 °C, which is outside
physiological normothermal variations of 0.5 °C [31]. An analysis for patients 1 and 5
revealed significant deviations, which could indicate a pathological condition of the patient.
Especially for patient 1, who passed during the measurement at 11 AM, a drop in temper-
ature was recorded after death. Due to the ambient correction step and the dimensions
of the temperature deviations, which showed strongly different behavior, the impact of
possible sensor drifts of the camera during measurement as cause for the relative changes
can be excluded. Furthermore, the results of a former reference data analysis showed the
feasibility of a continuous and contactless temperature trend measurement for a monitoring
system in the ICU using an IRT camera.

4.3. Extraction of Respiration Rate

Besides the temperature trend, the algorithm was used to extract the RR using move-
ments of the thorax which were derived from an OF implementation. The attendance of
clinical staff/guests was detected to quantify the incidence of medical examinations/visits.
This information could be used to determine a quality index for RR extraction. In case of
an overlap between the ROIs of the chest and clinician, the crop used as input for the OF
algorithm could contain non-patient movement, which would interfere with the respiration
signal. In Figure 13 the interpolated clinician attendance is illustrated for all patients of the
test dataset.

Figure 13. Interpolated clinician attendance from all patients of the test dataset.

Here, a count of 100% indicates the continuous presence of medical staff/visitors
during the recording. The timestamps of all measurements were chronologically sorted for
an interpolation of all extracted clinician counts. This results in an averaged attendance
over one day. A coherence between daytime and clinician presence can be obtained, which
indicates an obvious decrease of attendance in night hours.

In Figure 14, the Bland-Altman plot using YOLOv4-Tiny is depicted to compare the
camera-based RR measurement technique with annotated reference data from all patients of
the test dataset. The data were evaluated for discrete measurement times where respiration
reference was provided by clinical annotation. The plot shows the RR deviation against the
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means on the x-axis. The analysis revealed a mean difference of −0.18 and percentiles of
5.46 (95th), respectively −5.53 (5th). While the estimation is virtually unbiased in terms
of the mean difference, the error exhibits a negative correlation, i.e., larger values are
under-estimated while small values are over-estimated. In Table 7 the mean absolute errors
(MAEs) for RR extraction are presented. The evaluation showed mean MAEs of 2.79 bpm
(YOLOv4) and 2.69 bpm (YOLOv4-Tiny).

5th PCTL:   5.53

95th PCTL:  5.46

Mean diff:   0.18

Figure 14. Bland-Altman plot of respiration extraction for the YOLOv4-Tiny detector.

Since similar results for both trained object detectors were observed, the illustration
of RR estimation for the tiny model was sufficient. Besides outliers with strong devia-
tions, the results revealed promising outcomes for IRT-based RR extraction from thorax
movement. An individual analysis showed MAEs in the range of 0.67 bpm (patient 1)
and 4.78 bpm (patient 3). While the extraction performed well on patients 1 and 2, the de-
viations were increased for the other recordings. The utmost accuracy in patient 1 can
be explained by continuous sedation and constant mechanical ventilation during the en-
tire stay on ICU without any disruptive factors. These optimal factors for measuring
respiration-induced movements were not given in any other patient of the dataset. In
Figure 15a, an undisturbed raw flow signal extracted from OF of patient 1 is illustrated.
An example for a disturbed flow signal is depicted in Figure 15b, where an exact extraction
of the respiratory rate is much more difficult.

Table 7. Mean absolute errors for RR extraction in bpm.

Patient
Mean

1 2 3 4 5 6

MAE YOLOv4 0.67 1.64 4.78 2.26 3.69 3.72 2.79
YOLOv4-Tiny 0.67 1.64 4.71 2.25 3.69 3.18 2.69

Due to fails in the detection step of the algorithm, which can be explained with severe
disturbances during recording, 26 measurement points were excluded from the analysis
(111 of 137 measurement points left). The coverage of the detection is presented in Table 8.
While the relatively lower coverage for patient 2 could be explained with recurrent seizure
events (where OF-based RR measurement was excluded), the results for the other patients
were due to detection fails of the chest region at the beginning of the video. This happened
when severe disturbances were present in the first frames of the IRT measurement.
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(a)

(b)

Figure 15. (a) Low disturbance level and (b) high disturbance level in raw flow signals.

Table 8. Coverage of successful detections.

Patient

1 2 3 4 5 6

Coverage [%] 86 60 88 95 84 78

5. Discussion
5.1. Detector Analysis

The DL-based approach YOLOv4 was applied for the initial detection step of the
algorithm. Although the relatively low number of labeled images used for training and
validation could explain drawbacks in later detection performance, the presented metrics
showed promising results for all classes in the hold-out test dataset. While the fact that
results for the tiny version were expected to be worse due to the reduced model structure,
a comparison of both detection models showed a similar performance. The evaluation
metrics of the label chest showed even better performance for the tiny model. This could
be due to the effect of model pruning, which allows reducing the number of unnecessary
parameters and layer connections for the tiny detector, while accuracy remains stable and
inference is accelerated. Nevertheless, the relatively lower IoU of the thorax could be
explained by the level of complexity of detecting the chest. While the other classes always
show similar shapes or contours (e.g., head), strongly changing contrasts between fore-
ground and background (patient, clinician) and strong anomalies in the image (clinician),
the thorax is located in the upper third of the patient and has less features to extract.

While a classification of the results for the labels patient, chest, and clinician is difficult
due to a lack of similar detection problems in the literature, the performance of head
detection can be compared to results for RGB images. El Ahmar et al. implemented real-
time capable CNNs to detect a head ROI and shoulder keypoints in RGB-Depth images [32].
The authors achieved an averaged IoU of 0.69 for the label head using approx. 1500 images
for training and 162 frames for testing. Saqib et al. compared different DL frameworks
for head detection in RGB images from the HollywoodHeads dataset and observed an
mAP of 0.791 for the VGG16 CNN architecture [33]. The good performance for head
detection of the trained YOLOv4 models (test dataset: IoU: 0.84, mAP: 0.99) could be
explained by differences between RGB and grayscale IRT images. Due to the fact that
warm objects are obviously highlighted in the thermal frame, the complexity of detection
could be decreased.
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5.2. Temperature Extraction

The results for BST measurements revealed the potential of an implementation of the
system in a clinical environment for monitoring using a low-cost IRT camera. Although a
precise extraction of absolute BST using camera-based techniques still remains a challenge,
we have shown high correlation coefficients for recorded (corrected) face temperatures
and in a reference dataset (r = 0.75 with outliers). The application of a correction step to
compensate room temperature effects resulted in similar correlation outcomes compared
to the literature (r = 0.79), even though our camera distance was at least twice as large [34].
Nevertheless, no reference data were available for the patients from the test dataset, so the
extracted, plausible temperature trends have to be evaluated in future work.

5.3. Monitoring of Respiration Rate

In contrast to the methods already presented in the literature, where temperature
changes in the nasal region were used for RR extraction (e.g., [11,16]), our approach is
based on quantifying respiration-related movements of the thorax using IRT. Despite the
fact that the published approaches often had higher accuracies, many methods were con-
ducted in a controlled laboratory study and depended on a line-of-sight to the nostrils for
signal extraction, whereas our real-time OF method only needs a low-resolution ROI of the
chest. While published techniques based on nasal regions resulted in a MAE of 0.33 bpm
(controlled study) [14] or a mean bias of 0.67 bpm (clinical study) [24], a movement tracking
algorithm in a patient study showed an averaged MAE of 2.07 bpm [23]. This analysis
emphasizes the difficulty of the RR estimation for recordings in clinical environments.
The latter technique based on respiration-induced movement shows worse performance
compared to the laboratory studies and was in the same range as our OF approach. Never-
theless, the limitation of the required camera position to record a close-up of the nose region
complicates a possible application of the technique in daily clinical practice. The presented
recordings were disturbed by numerous movement artifacts, e.g., during mealtime, medical
procedures or medical conditions such as seizures. Especially such conditions make an
accurate extraction of the RR very difficult. Since movement artifacts generate disturbances
in a large frequency band, which includes the physiological breathing frequency, today
an adequate noise compensation is still the main challenge in camera-based vital sign
measurements. Despite the challenges, the low-cost approach has great potential to be
used as a continuous, contactless monitoring of the RR in clinical environments. Especially
the measurement during night hours showed promising results.

6. Conclusions and Outlook

In this paper, we presented an approach for DL-based real-time extraction of vital
signs using contactless IRT. A dataset of 26 patients recorded in an ICU was used to train
and validate the object detectors YOLOv4 and YOLOv4-Tiny. A 10-fold CV was performed
to quantify the overall detection performance. It has shown promising results for robust
detection of the trained labels. While an IoU of 0.70 was observed for the YOLOv4 model
on the test dataset, the tiny model showed a superior IoU of 0.75. The BST trend was
measured by detecting the head and RR was extracted by using an OF algorithm looking
for chest movements. A corrected regression analysis for the trend analysis resulted in
an MSE of 0.72 °C. The RR extraction showed MAEs of 2.79 bpm (YOLOv4) and 2.69 bpm
(YOLOv4-Tiny).

While the extraction of temperature trends from the relative changes of head surface
temperature showed the potential of detecting and tracking pathological changes, the com-
parison of the extracted RR with reference revealed several challenges. Unfortunately,
movement disturbances complicated the camera-based extraction of RR. Nevertheless,
during the night and for patients with low movement artifacts, the algorithms showed
promising results. In future work, more IRT recordings with additional reference data for
BT should be analyzed. We assume that larger datasets for training could improve the
overall results of the YOLOv4 detection models. The RR extraction could be improved
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using the tracking information of clinical staff/visitors. The corruption of raw motion
signals due to overlaps with the patient ROI could be avoided by neglecting these signal
components in advance. We are confident that the use of a low-cost IRT camera system
in combination with DL algorithms on an embedded GPU module could contribute to a
reduction of wired sensor technologies for patient monitoring in ICUs and enhance the use
of unobtrusive real-time capable vital sign acquisition.
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