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Abstract

Liquid bridges have become an integral part of many industrial processes
relevant to consumer production. For example, the coating technology
often includes dip-coating, printing, or spraying of liquid materials. Liquid
bridge or liquid jet fast stretching is an essential element of such processes.
Bridge stretching determines the outcome of liquid atomization and the
agglomeration of wet particles. Moreover, liquid bridge stretching is used
for the rheological characterization of complex liquids.

This thesis deals with the investigation of fast stretched Newtonian
fluid bridges. The unique feature of this study is the investigation of
particularly high stretching rates for very small liquid bridge heights. A
system consisting of two parallel substrates was developed. One substrate
can be moved with a constant, controllable acceleration while the other
substrate remains stationary. It allows performing parameter studies with
accelerations of up to 180 m/s2 and initial bridge heights starting from
50µm.

Extensive experimental and theoretical studies were carried out to iden-
tify the most influencing parameters and, therefore, to understand the
physical mechanisms of the observed phenomena better. The characteri-
zation includes a description of the kinematics of the liquid bridge stretch-
ing and different outcomes like liquid cavitation, finger formation during
stretching, and bridge pinch-off.

The evolution of the main geometrical properties of the stretching liquid
bridge is characterized. These properties include the curvature and shape
of the meniscus, length, and diameter of the liquid bridge. Two main
regimes of a fast stretching are identified: viscous regime, determined
by the Reynolds number, and capillary regime for low viscosity liquids,
governed by the Weber number. The knowledge of the kinematics of the
bridge allows us to determine the appropriate scales for a description of
the stretching outcomes.

The cavitation phenomena are described using the estimation of the
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distribution of the viscous pressure in the gap. This pressure determines
the evolution of the cavity radius. A bubble growth model has been
developed, which allows the prediction of the instant of the maximum
bubble diameter as a function of the cavitation inception rather well.
Next, the stability analysis of the bridge free interface is performed, which
accounts for the viscous effects and inertia. The predicted condition for
the appearance of the fingers and the number of these fingers agree well
with the experimental data. Finally, the model for the pinch-off time of
the stretching bridge is developed. The scales for the pinch-off time have
been determined for viscous and for the capillary stretching regimes.

The experimental and theoretical results can be potentially useful for
optimizing the operational conditions during printing and modeling at-
omization, accretion, and agglomeration phenomena.
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Kurzfassung

Flüssigkeitsbrücken sind zu einem integralen Bestandteil vieler indus-
trieller Prozesse in der Konsumgüterproduktion geworden. So umfasst
zum Beispiel die Beschichtungstechnologie oftmals die Prozesse des Tauch-
beschichtens, des Druckens oder des Zerstäubens von flüssigen Materi-
alien. Die schnelle Dehnung von Flüssigkeitsbrücken oder Flüssigkeits-
strahlen sind zentrale Mechanismen dieser Prozesse. Die Flüssigkeits-
brückendehnung bestimmt dabei das Ergebnis der Flüssigkeitszerstäu-
bung und der Agglomeration von feuchten Partikeln. Darüber hinaus
wird die Flüssigkeitsbrückendehnung für die Charakterisierung rheolo-
gisch komplexer Flüssigkeiten verwendet.

Diese Arbeit befasst sich mit der Untersuchung schnell gestreckter New-
tonscher Flüssigkeitsbrücken. Die Besonderheit dieser Studie ist die Un-
tersuchung sehr hoher Dehnungsraten bei sehr kleinen Flüssigkeitsbrücken.
Ein Substrat kann mit einer konstanten, kontrollierbaren Beschleunigung
bewegt werden, während das andere Substrat stationär bleibt. Damit wird
die Durchführung von Parameterstudien mit Substratbeschleunigungen
von bis zu 180 m/s2 und initialen Brückenhöhen ab 50µm ermöglicht.

Es wurden umfangreiche experimentelle und theoretische Studien durch-
geführt, um die wichtigsten Einflussparameter zu identifizieren und somit
die physikalischen Mechanismen der beobachteten Phänomene besser zu
verstehen. Die Charakterisierung umfasst die Beschreibung der Kine-
matik der Flüssigkeitsbrückendehnung und weiterer auftretender Phä-
nomene wie: Kavitation, Fingerbildung und Aufbruch der Flüssigkeits-
brücke.

Die Entwicklung der wichtigsten geometrischen Eigenschaften während
der Flüssigkeitsbrückendehnung wird charakterisiert. Zu diesen Eigen-
schaften gehören die Krümmung und Form des Meniskus, sowie die Länge
und der Durchmesser der Flüssigkeitsbrücke. Es werden zwei Hauptregime
einer schnellen Dehnung identifiziert: das viskose Regime, das durch die
Reynolds-Zahl bestimmt wird, und das Kapillarregime für niedrigviskose
Flüssigkeiten, das durch die Weber-Zahl bestimmt wird. Die Kenntnis

iii



der Brückenkinematik erlaubt es, die geeigneten Skalen zur Beschreibung
der Dehnungsergebnisse zu identifizieren.

Die Kavitationsereignisse werden durch die Schätzung der viskosen
Druckverteilung zwischen den Substraten beschrieben. Dieser Druck bes-
timmt die Entwicklung des Hohlraumradius. Es wurde ein Modell für das
Blasenwachstum entwickelt, das es erlaubt, den Zeitpunkt des maximalen
Blasendurchmessers in Abhängigkeit des Kavitationsbeginns vorherzu-
sagen. Dazu wurde eine Stabilitätsanalyse der brückenfreien Grenzfläche
durchgeführt, die die viskosen Effekte und die Trägheit berücksichtigt. Die
vorhergesagte Bedingung für das Erscheinen und die Anzahl der Finger
stimmen gut mit den experimentellen Daten überein. Es wurde außer-
dem ein Modell für die Aufbruchszeit der Flüssigkeitsbrücke entwickelt.
Dabei wurden die Skalen für die Aufbruchszeit für die viskosen und für
die kapillaren Dehnungsregime bestimmt.

Die experimentellen und theoretischen Ergebnisse können potenziell
nützlich für die Optimierung der Betriebsbedingungen während des Druck-
ens, aber auch für die Modellierung von Zerstäubungs-, Akkretions- und
Agglomerationsphänomenen sein.
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1 Introduction

In this chapter, the motivation for investigating liquid bridge stretching
phenomena in different applicational contexts is demonstrated. A thor-
ough review of the present state of the art on liquid stretching and associ-
ated phenomena such as cavitation, finger instability, and bridge pinch-off
is given after that.

1.1 Motivation

Liquid jet or liquid bridge stretching is a phenomenon that is relevant to
many applications like atomization, crystallization, car soiling, oil recov-
ery, coating, fiber spinning, rheological measurements, and typical indus-
trial printing processes, to name a few [1–6].

One of the most widespread and oldest production processes is indus-
trial printing. Printing applications have become an integral part of every-
day life. Almost every commercially available product has features that
are printed in some form or another. Even though the printing process
was invented more than 1000 years ago, we have seen new developments in
recent years. The application field is no longer limited to visually percep-
tible information imprints on media such as newspapers, magazines, card-
board packaging, or consumer products. In the recent past, researchers
have also been working on integrating electrical component properties on
silicon wafers, textiles, or flexible plastics [7, 8], as illustrated in figure
1.1. Such printing processes make it possible, for example, to produce
printed circuit boards more cost-efficient than with conventional silicon-
based electronics [9, 10]. It also makes it easier to integrate functions such
as data transfer or lighting to consumer products.

However, the development of accurate control methods of these tech-
nologies is still in its childhood. For example, much higher demands are
placed on print resolution than before when producing printable electron-
ics. Printing processes must be safely controlled on length scales of about
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1 Introduction

Figure 1.1: Examples of printed electronics. (a) A roll-to-roll manufac-
turing process PolyIC, Germany. (b) A temperature sensor
Thin Film Electronics ASA, Norway. (c) An active matrix
backplane circuit; the inset is an optical micrograph of a typi-
cal transistor. Reprinted from [15] with permission of Annual
Reviews, Inc.

120 nm [11] to produce printed electronics reliably with high accuracy.
The current technological know-how is not sufficient to achieve such reso-
lutions for a wide scale of products. Besides optimized printing substrates
[12], precise process control is needed, which requires an understanding
of the physical mechanisms involved. A central problem that is not yet
fully understood is how the fluid is transferred from one surface to an-
other [13]. The complexity arises from the short lengths scales and time
scales in which the process takes place in combination with a variety of
complex flow phenomena that may occur, such as finger instabilities [14].
The elongation behavior of individual liquid bridges and the interaction
of the bridges play an essential role in drop transport and, thus, in the
quality of the print result [15].

Another motivation example for the investigation of liquid bridges lies
in the safety of flight operations and modeling of the ice accretion. The
liquid bridges are involved in the rebound effects of impacting ice particles
on wet engine surfaces and leading to the agglomeration of ice patches on
engine surfaces. The phenomenon is also known as ice crystal icing.
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1.1 Motivation

The undesirable phenomenon of ice crystal icing in aircraft engines has
led to various engine failures and damages in the past [16]. The term ice
crystal icing describes ice building up on engine surfaces when an aircraft
flies through a cloud of supercooled liquid droplets. Although ice crystals
do not adhere well to cold airframe surfaces, such particles can adhere
to the inner engine surfaces due to the crystals’ partial melting in a hot
engine environment or impact with a hot substrate. Other droplets that
freeze on impact or shortly after can accumulate in areas with already
melted particles, see figure 1.2. The ice aggregates to ice patches until
the adhesion forces are overcome, and the patches come loose from the
engine surface. They do not only represent a constriction and thus a flow
change in the inflowing air and lead to unwanted changes in performance,
but loosening ice pieces can also cause damage to turbine components if
they suddenly detach from the surface and strike components inside the
engine at high-speed [17, 18].

Ice build-up in jet engines is a problem that, although it occurs fre-
quently, cannot be prevented until today. Efforts to gain a complete
understanding of the processes involved are very complex due to a large
number of relevant physical parameters, such as high flow and circula-
tion speeds, high-temperature gradients, and multiphase systems. Thus,
it is necessary to characterize a threshold impact velocity for particle ad-
herence/rebound, which depends on the thickness of the liquid film, wall
temperature, particle size, and shape. The rebound velocity is influenced
by the dynamics of a stretching liquid bridge between the ice particle and
the wetted substrate.

In both examples, a generic liquid bridge expansion represents the phys-
ical core process. A good understanding of the hydrodynamics of the
bridge stretching can help to improve the accuracy of industrial printing
processes or to understand better under which circumstances ice crystal
icing can occur. They show the bandwidth at which the phenomena need
to be understood, ranging from higher viscous printing processes with
several mPas to icing problems with a typical viscosity of about 1 mPas
for water in ice crystal icing phenomena. Investigating the liquid bridges’
behavior with different viscous properties in the course of fast expansion
rates gives a good insight into the relevant time and length scales at play.
Consequently, this work investigates highly accelerated liquid bridges with
minimal heights to gain new insights into expanding liquid bridges. There-
fore, the flow in a thin liquid bridge between two substrates, generated
by an accelerating downward motion of the lower substrate, is studied

3



1 Introduction

Figure 1.2: Ice accretion on a stator blade. Due to elevated temperatures
inside the jet engine, a thin film of liquid water can form,
allowing the accumulation of additional ice crystals. Reprinted
from [19] according to the NASA Media Guidelines [20].

experimentally and modeled theoretically. The novel feature of this study
is that one substrate can be moved with very high accelerations and that
bridges with small heights can be investigated. In the conducted param-
eter studies, accelerations up to 180 m/s2 and initial bridge heights of
50µm are presented.

1.2 Hydrodynamic Phenomena in a Liquid
Bridge

In this section, the state-of-the-art research for the topics cavitation, finger
instability, and pinch-off in the context of the liquid bridge stretching is
presented. Parts of this section have been published in [21, 22].

A generic fluid bridge stretching has been investigated first in [23–25]
more than a hundred years ago. The dynamics of liquid jets and bridges
have been studied broadly since then. Numerous extensive reviews of
this field demonstrate state-of-the-art modelling approaches [26–30]. Cur-
rently the topic of liquid bridge stretching is of great relevance for different
industrial applications like coating, fibre spinning, gravure printing and
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1.2 Hydrodynamic Phenomena in a Liquid Bridge

atomization [1–4, 30, 31]. Liquid bridge stretching and its pinch-off gov-
ern the phenomena agglomeration of wet particles [32–34]. Furthermore,
understanding and predicting the pinch-off of liquid bridges are highly
relevant in drug delivery and micro-dispersion applications for controlled
and efficient dispensing of liquid volumes [35], for instance, with double
emulsion droplets in shear flow [36]. Stretching of non-Newtonian jets
is also used for the rheological characterization of these complex liquids
[37–39]. Comprehensive studies about jet dynamics and, particularly, on
liquid bridge stretching can be found in the review papers and books
[26–29]. Detailed studies on the effects of the material properties of the
Newtonian and non-Newtonian liquids can be found in [40, 41].

Most studies in this field were conducted for relatively low stretching
rates at which the contour evolution of the liquid bridge [31, 42, 43], or
the dynamics of liquid bridges were investigated. From these studies, it is
known that different phenomena can be observed for pinned and unpinned
contact lines during the stretching process [44].

In the present study, pinned liquid bridge stretching dynamics and
pinch-off time scales are investigated for the first time at stretching rates
up to 180 m/s2 at viscosities down to 1 mPas and at initial liquid bridge
heights down to 50µm. At these velocities and initial heights, fingering
and additional phenomena such as cavitation with and without fingering
occur, which are studied here in detail.

1.2.1 Cavitation Phenomena

Cavitation can be recognized by the sudden formation of a cavity within
a liquid or soft materials, usually due to a dynamic pressure drop. In
technical applications, the occurrence of cavitation in liquids can lead
to constricted flow cross-sections, mechanical vibrations, and cavitation
erosion. Liquid cavitation and the surrounding pressure distribution were
first investigated extensively by Rayleigh [25, 45]. The dynamics of a
spherical bubble in an infinite body of incompressible fluid are described
through the Rayleigh-Plesset equation in (1.1). From different studies, it
is well known that the pressure resulting from a collapsing bubble in the
vicinity of a wall can exceed several GPa [46, 47], which illustrates the
order of magnitude of the forces released during cavitation.
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1 Introduction

R
d2R

dt2
+ 3

2

(
dR

dt

)2
+ 4µ
ρR

dR

dt
+ 2σ
ρR

+ ∆P (t)
ρ

= 0 (1.1)

In equation (1.1) R represents the radius of the cavitation bubble, and
∆P (t) the difference between the internal and external pressure. The
remaining variables describe the surrounding liquid properties, introduced
in table 2.2.

Besides cavitation in liquids, this phenomenon has also been observed
within soft materials such as rubber or adhesives or within liquid phases in
solids such as swellable materials [48]. Here cavitation usually leads beside
the material damage close to the surface also to a damaged carrier material
and therefore shows altered material properties as a direct consequence.
The cavitation of soft materials has been observed for quite some time
[49, 50]. Many studies investigating cavitation in solid or soft materials use
methods known from liquid cavitation studies, such as critical pressure.
For soft materials, the critical onset pressure was derived via an approach
using material properties as modulus of elasticity [51] and later extended
with a component for interfacial tension [52]. More refined models are
still based on this approach nowadays [53, 54].

It is already known from the preceding studies that dynamic force fluc-
tuation can be measured during tensile strength tests of soft materials.
Similar force curves were measured in tensile investigations with liquid
bridges [55]. Those forces indicate highly non-stationary pressure dynam-
ics inside the bridge during the elongation process. Studies have shown
that due to the high dynamics, cavitation events are not occurring at the
vapor pressure level but below a characteristic threshold pressure [46, 56].
The onset of nucleation and bubble growth behavior during expansion ex-
periments have already been investigated for a long time [49, 52], initially
starting with soft materials. Nevertheless, especially the physics of cavi-
tation events during liquid bridge stretching is not fully understood until
today. The existing models for stretching experiments refer mainly to
growth behavior after bubbles have already formed or required an initial
bubble size. Those models are based on material properties, mostly on
surface tension, and use energy balances to describe a cavitation threshold
for soft materials [57–59]. In this study, the cavitation shall be investi-
gated with an estimated pressure inside the liquid bridge. Experimental
studies have observed cavitation during liquid bridge expansion [55], but
no applicable theories are available for describing the flow behavior and
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1.2 Hydrodynamic Phenomena in a Liquid Bridge

defining a cavitation threshold.
The combined occurrence of cavitation and finger instabilities is known

from different studies [46, 56, 60]. Thereby bridge elongation tests are
performed to investigate the effect of the elongation speed on the mutual
influence of finger instabilities and cavitation events. In contrast to the
present study, these phenomena are only observed in substrate elongation
tests with highly viscous fluids (> 5 Pa s) and low velocities (< 10 mm/s).
In these studies, the force development during strain is measured, and
the occurrence of a force plateau is correlated with the cavitation events.
It was found that the cavitation events influence the finger instabilities
because the cavitation bubbles grow much faster and prevent the growth
of the finger patterns inside the bridge. It is found that the main factors
leading to cavitation events are the initial bridge height, the elongation
speed, and the viscosity of the used liquid. Also, a threshold force is
derived, allowing the conception of a cavitation onset map [56, 60].

1.2.2 Fingering Instability of the Liquid Interfaces

If the bridge expansion is investigated for particularly thin gaps, finger
patterns can be formed at the free liquid interfaces. Especially for small
bridges with large diameters, the retraction velocity of the surface during
strain is very high and supports the occurrence of finger instabilities.

If the initial height of a liquid bridge H0 is much smaller than its initial
diameter D0, the dimensionless height is λ � 1 with λ = H0/D0. For
such cases, the surface of the liquid bridge can become unstable because of
the high interface retraction rates and small initial liquid bridge heights.
Due to the small initial heights and large initial diameter, the conditions
are similar to those in Hele-Shaw flow cells. Those instabilities occur due
to low viscous liquid displacing a higher viscous liquid [61].

Frequently observed phenomena are finger patterns formed from grow-
ing instabilities in fixed-height Hele-Shaw cells for transverse [61] or radial
[62–65] flows. The study [66] compares modified wave number theories
based on the fastest growing mode from [67, 68] to experiments in radial
flows. In the study [69], the predictive model for the number of fingers
formed at a radially expanding interface of the liquid spreading between
two fixed substrates is derived from the stability analysis.

The problem is different if the flow is caused by the substrates’ motion
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1 Introduction

and, therefore, a changing gap thickness. For example, the displacement
rate of a liquid bridge under a defined pulling force is investigated in [70].
The measurements from [71] were conducted at very low stretching speeds
of 20− 50µm/s, high viscosities of 30 Pas and large initial heights. For a
lifting Hele-Shaw cell, [55] developed a model for the interfacial stability
of the liquid bridge, leading to a prediction of the maximum number of
fingers. In [71–75] stretching liquid bridges in lifted Hele-Shaw set-ups
were investigated. In most of these cases, the stretching speed is constant
and is relatively small, such that inertial effects are comparably small,
and the acceleration is relatively low [76].

The analysis of finger instability has been further generalized, where
the influence of radial viscous stresses at the meniscus has been taken
into account [72]. For identifying the most unstable mode, the maximum
amplitude has to be considered instead of the usual approach of selecting
the fastest growing modes [72]. This approach accounts for the non-
stationary effects in the flow, even if the substrate velocity is constant.
The amplitude growth due to the disturbances is not exponential since
the parameters of the problem, mainly the thickness of the gap, change in
time. More recently, [77] showed in an analytical and numerical study that
inertia has a significant impact on finger formation at higher velocities,
especially on dendritic-like structures on the fingertips.

Nevertheless, it is important to note that the physical mechanism of in-
stability in all these problems is the same. Even the often quoted Saffman-
Taylor Instability [61, 78], can be derived using a straightforward algo-
rithm for linear stability analysis. In all problems, the pressure gradient
causes instability in the liquid at the interface. In this study, we claim
that the fingering instability is analogous to the Rayleigh-Taylor insta-
bility [79, 80] associated with the pressure gradient caused by the liquid
acceleration or gravity.

The onset of instability is caused by the initial smallest natural distur-
bances and shows up at the beginning only by small perturbation ampli-
tudes of different wavelengths. In this early phase, the equations of motion
can be linearized. Therefore, the beginning of the Rayleigh-Taylor insta-
bility can be described using a linear stability analysis. In the original
study, the wavelength of the instability is derived by the fastest growing
mode approach but newer studies show that an approach using the fastest
growing modes instead is more accurate [72].

Since in the problem of the separation experiment, the fingers develop
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1.2 Hydrodynamic Phenomena in a Liquid Bridge

on the edge of the bridge and then advance from there into the center,
the wavenumber for patterns is determined at the beginning in the initial
phase of instability. Therefore a linear stability analysis can be used to
make a statement about the final number of fingers in the outer area. An
estimation of the number of fingers in the center are of the liquid bridge
would not be correct because the amplitudes are already too large.

Linear stability analysis of the liquid bridge accounts for the inertial
term, the viscous stresses, and capillary forces in the fluid flow. It al-
lows the prediction of the maximum number of fingers. This number
is obtained using the mode exhibiting the highest amplification rate to
interface perturbations. The second criterion for the finger threshold is
associated with a limiting value of the analytically derived dimensionless
amplitude at which finger patterns are observable. Both requirements
lead to the same scaling of the threshold parameter for finger formation
and agree well with the experimental observations.

In this work, the number of fingers is predicted as a function of the
substrate acceleration in a lifted Hele-Shaw cell. In contrast, previous
studies were based on experiments in fixed or lifting Hele-Shaw cells with
significantly lower lifting velocities. Those predictions (e.g. [66], [67],
[68], [61], [81]) deviate significantly from the present measurement results
due to physical differences among the experiments. In other words, since
no characteristic velocity exists in this presented study (only acceleration
a), the main dimensionless numbers, like the capillary number Ca, are
defined entirely differently.

1.2.3 Pinch-Off of a Liquid Jet

Lastly, the different studies for predicting the pinch-off of liquid bridges
are summarized. The focus is on liquid bridges that are too large for
cavitation and finger instability to occur. Therefore, the investigated
bridges do not split up into smaller bridges and develop a single jet.

The pinch-off of liquid bridges has been investigated both experimen-
tally [82] and analytically [25] for over a hundred years. It was found that
the maximum ratio of the stable length to the diameter of a breaking jet
can be derived by linear stability analysis. Later investigations followed,
which theoretically estimated and experimentally determined the maxi-
mum bridge height before the pinch-off of a quasi-stationary liquid bridge
[83–87]. Only with improved measurement technology could the dynamic
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bridge expansion be recorded to provide experimental data to validate
analytical theories [31, 88, 89].

The bridge expansion can be divided into different phases. The charac-
teristic parameter is the capillary number. For slower strains, a uniform
bridge elongation can be observed, where the capillary forces dominate
and determine the shape of the bridge until the pinch-off [90]. Only with
increasing the capillary number the frictional forces increase and deter-
mine the bridge pinch-off process. The viscous and inertial forces delay
the breaking up of the bridge, and a typical constant curvature of the
bridge profile is no longer visible. Due to the dominating viscous and
inertial forces, the liquid bridge has the form of a cylindrical jet. This
behavior typically occurs at higher expansion rates.

The influence of viscosity on bridge pinch-off behavior was further in-
vestigated in [91]. It was observed that an asymmetric unilateral pinch-off
occurs at one side of the bridge, while at high viscosity, pinch-off occurs
simultaneously on both substrates. This seems due to the viscosity stabi-
lizing the bridge during the elongation process and therefore prolonging
the pinch-off. A similar effect can be observed with increasing stretching
velocity. Numerical investigations were added [91], which allow simulat-
ing the experiments for lower stretching rates. More recent studies have
provided new insights into the influence of surfactants [92] pinned liquid
bridges [93].

One of the objectives of the liquid bridge investigation is to determine
the liquid volume after a pinch-off. This is particularly relevant for op-
timizing industrial printing processes. Investigations of the wettability
effect, as in [94, 95], show that a higher contact angle on a substrate leads
to a better liquid transfer to a substrate with a lower contact angle. This
effect is further enhanced at lower elongation rates. With similar wet-
tability conditions on both substrates, symmetrical liquid distributions
are obtained after a pinch-off. Furthermore, the effect of non-cylindrical
liquid bridge elongation was investigated in [15]. It is shown that a ver-
tical liquid bridge elongation combined with a rotational movement leads
to more liquid being transported by the capillary forces towards the sta-
tionary liquid. This leads to a lower transfer rate towards the moving
substrate, due to the dominating capillary forces.

Of particular importance is the study [96], in which the pinch-off be-
havior at higher dynamic strain rates of up to 180 m/s2 was investigated.
Those observations cannot be explained with existing models, since they
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were designed for lower speeds. For this highly relevant dynamic range,
a model for estimating the time to pinch-off based on bridge geometry,
bridge acceleration, and material properties could be derived for bridge
heights λ > 0.5.

1.3 Thesis Outline

This thesis aims to improve the understanding of fluid bridge stretching at
high accelerations with low viscous fluids to develop and validate reliable
physical predictions for the occurring phenomena.

Before presenting the main parts of the following investigations, the
fundamental hydrodynamics at play during the fast bridge stretching are
introduced. For the thesis structure, the initial height of the liquid bridge
is used as a guiding outline. For example, cavitation and finger patterns
rise during the bridge stretching at minimal liquid bridge initial heights.
As the bridge height and the form ratio of the bridge λ increase, the
cavitation effects disappear, and only finger patterns are apparent. As
the form ratio increases further, both of these phenomena disappear. A
singular liquid bridge expansion with pinch-off can be recognized. In this
order, the central topics are presented in the following.

In Chapter 2, a detailed description of the configurations of the ex-
perimental set-up and procedures is presented. Subsequently, the applied
characterization techniques and imaging methods are presented.

In Chapter 3, the bridge curvature, the centerline profile, and the
meniscus profile during fluid bridge expansion are presented. Subse-
quently, the pressure distributions at the substrate surface and the cen-
terline of the circumferential surface are derived based on the previously
gained knowledge.

In Chapter 4, the cavitation that forms on the substrate surfaces dur-
ing bridge expansion is investigated. Next, a prediction of the cavitation
bubble diameters is produced based on the previously proposed theoreti-
cal model. This prediction is then validated with the help of the available
measurement data.

In Chapter 5, the formation of finger patterns during rapid bridge
expansion is investigated. First, the observations are analyzed, and then a
linear stability theory, based on the pressure distribution at the centerline
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of the circumferential surface, is developed. The results will be used to
provide and validate a threshold value for predicting finger formation and
an estimate of the number of fingers.

In Chapter 6, the pinch-off time of rapidly stretched liquid bridges is
investigated. First, a theory for the pinch-off time is derived and validated
with the available measurements’ help. It will also be validated in the
context of existing predictions.

In the final Chapter 7, the last conclusions of the study and an outlook
on possible future research are presented.
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2 Experimental Methods and
Procedures

In this chapter, the main components of the experimental setup, methods
of post-processing, and the method of error analysis are described. The
description of the setup includes the design of the stretching apparatus
and the configuration of the observation system. Also, the preparation of
the working liquids and substrates is described in detail.

2.1 Experimental Set-up

All investigations performed for this study are based on a rapidly stretched
liquid bridge formed between two horizontally aligned substrates. The
stretching motion is induced by the translatory motion of the lower sub-
strate while the upper substrate remaining fixed.

An overview of the experimental setup is shown in figure 2.1. The main
component of the stretching apparatus is the linear drive, which is reg-
ulated by a servo controller. The servo controller receives its commands
from the central control unit (CCU). The observation system consists of
two high-speed video systems. The first camera (camera 1) records the
side profile using a telecentric lens and a telecentric white light LED, the
recordings of this cameras are hereafter referred to as side view. The sec-
ond high-speed video system (camera 2) records the liquid bridge from
above through the backside of the fixed upper substrate with coaxial illu-
mination, implemented with a beam splitter. The images of the camera
2 are referred to as top view in the following. The CCU controls both
camera systems. Furthermore, for each measurement, the following pa-
rameters are recorded by the CCU: the ambient lab conditions humidity,
temperature, and pressure. The CCU can centrally manage the measure-
ment procedure with the help of a LabVIEW user interface.
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camera 2

camera 1 LED 1

CCU

LED 2humidity sensor
temperature sensor
barometric sensor

servo controller acceleratedsubstrate

beam splitter

stationary
substrate

Figure 2.1: Sketch of the measurement set-up with data connections and
the sensor system used.

2.1.1 Stretching Apparatus

The linear drive is the main module of the setup, allowing to investigate
highly dynamic stretching motions. As already described, only the lower
substrate is connected to the carriage of the linear drive and is subjected
to the induced motion. A constant acceleration motion was chosen over
a constant velocity mode for the operational mode of the linear drive.
Mainly for the following two reasons: Firstly, a constant substrate veloc-
ity requires a preceding acceleration phase to produce a constant velocity
state. Therefore, the constant velocity criteria would not be satisfied dur-
ing the starting phase, making an analysis of the active forces more com-
plex. Secondly, a constant acceleration allows a more direct estimation of
inertial forces, directly proportional to the modeling sections’ acceleration
later.

Specification of the linear drive In order to investigate phenomena oc-
curring during industrial applications like gravure printing, as described
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Figure 2.2: Sketch of the kinematics of a printing cylinder.

earlier, the set-up should be able to provide accelerations of the same or-
der. The required acceleration for the stretching apparatus was derived
from typical industrial gravure printing machines e.g. Hsing Wei with
printing speeds of 200 m/min and a cylinder diameter of 135-285 mm. In
order to translate the rotational speeds to a translational acceleration, the
stretching acceleration ḧy has to be determined, see figure 2.2. The liquid
bridge length is represented by h. Due to the wheel constraints and a
non-slip condition between the rolling cylinder and the printing substrate

v = ωRpr (2.1)

and with the help of the kinematic relations from figure 2.2 the vertical
component of the bridge can be estimated to:

hy = Rpr(1− cos (ωt)). (2.2)

Based on the height the vertical bridge acceleration ḧ is defined as

ḧy = ω2Rpr cos (ωt). (2.3)

Due to the bridge pinch-off occurring shortly after the printing cylinder
and substrate had direct contact, the angle ωt can be approximated to be
small. Therefore, hy ≈ h, leads to

ḧ = v2/Rpr. (2.4)

According to the introduced variables, the required stretching acceler-
ation should be at least 165 m/s2. The stretching apparatus has to
maintain accelerations of this magnitude to investigate stretching under
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upper substrate

lower substrate with
a dual axis goniometer

y, β

x, α

z, γ

5 axis stage

Figure 2.3: Sketch of the measurement set-up including the alignment sys-
tems in isometric view.

similar conditions. The small-angle approximation is satisfied due to the
time scale of typical bridge pinch-off events being of the order of several
ms. Therefore, h ≈ hy and the rotational effects are neglected.

A linear drive able to perform the derived accelerations is available from
Akribis, type SGL100-AUM3. The necessary servo controller is from the
company Metronix and of the type ARS2108. Both were already available
at the institute from previous studies [96]. The linear drive had to be
parameterized anew to provide accelerations up to 180 m/s2 reliably. The
servo controller is connected via the communication protocol CANOpen
with the help of the module EtherCAT to the CCU. This setup allows
sending the process parameters directly to the servo controller, monitoring
the performance of the linear drive. The linear unit has a peak force of
900 N and a positioning accuracy of 5µm [97].

Measuring Section The measuring section consists of two substrates
orientated horizontally. The lower substrate is mounted on the carriage
of the linear drive, whereas the upper one is fixed to the stationary setup
structure. To ensure concurrency between the two substrates on the scale
of O(50µm) and easily adjust the orientation of the substrates, a five-axis
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Figure 2.4: Sketch of the measurement set-up including optical paths in
side view. Adapted from [21] under CC BY 4.0.

stage and a goniometer are used, figure 2.3.
Due to the small bridge heights, the degree of concurrency of the

two substrates significantly affects the hydrodynamics of the bridge [94].
Therefore, it is necessary to precisely adjust and control the orientation of
both substrates to each other. Orientation control at the upper substrate
holder is made possible by implementing a five-axis stage. This allows
one to change the translation position in the directions x, y, and z and
rotation orientation in β and γ. The accuracy of the angle setting for
the pitch is γ = 0.17° and for yaw β = 0.36°. A dual-axis goniometer
type stage is used on the lower substrate holder, which has two degrees
of rotational freedom and allows the orientation of the substrate to be set
in α and β with an accuracy of 0.17°.

After the position of the two substrates is set and the orientation is
aligned precisely according to the alignment procedure introduced later
in section , a validation of the aligned system is performed. The substrate
distance is measured at defined positions using an interferometric point
sensor CHRocodile 2 SE from Precitec. The current setup allows thick-
ness measurements between 2µm and 250µm [97]. After aligning the
substrate, according to the later introduced measurement protocol, the
validation results are based on twelve measurements with a readjustment
done after every third measurement to take systematic measurement er-
rors into account. For the validation measurement, the distance between
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Figure 2.5: Validation of the linear drives stretching rate. Comparing the
position of the linear drive carriage with the ideal position for
each acceleration.

the two substrates was recorded at distinguished positions. The alignment
measurement was performed four times. Each consists of three experi-
ments, giving an accuracy of substrate parallelism of 1.29± 0.25µm/mm.
The alignment procedure is described in the next section.

Another parameter that was validated is the acceleration of the linear
drive and its control accuracy. The Metronix linear drive controller pro-
vides the current carriage position over a serial RS232 port. This data
stream is used and compared to the ideal position the carriage should
have for the requested acceleration. A comparison of the signals and the
ideal position over time is shown in figure 2.5. In figure 2.6, the respec-
tive accelerations derived from the measured positions of the linear drive
are shown. They are calculated by polynomial fitting to the function
f(x) = ax2. The dashed lines show the 95% confidence interval for each
acceleration. The confidence interval increases for larger accelerations up
to ±2.5 m/s2 for 180 m/s2. The experimentally determined accelerations
agree well with the ideal ones. Therefore, the control accuracy can be
assumed to be good.
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Figure 2.6: Validation of the linear drives stretching rate. Comparing the
accelerations determined from each position curve through a
polynomial fit and their respective 95% confidence intervals.

2.1.2 Fluid and Substrate Preparation

The material parameters: viscosity, surface tension, and density are var-
ied for the investigation of the liquid bridge stretching. When selecting
the liquids, the focus for this study was set on Newtonian liquids. Fur-
thermore, the test liquid should have a low vapor pressure because the
experiments are carried out in an open test environment.

The mass decrease during preparation time should be as low as possi-
ble. For this reason, investigations were carried out with water-glycerol
solutions with different viscosities and surface tensions. Glycerol was pur-
chased with a degree of purity above 97%, and the used water was de-
ionized (Milipore, Mili-Q Type 1 ) to avoid influences of impurities in the
liquids affecting the hydrodynamics. The material properties were partly
determined experimentally and validated with available data from the
literature.

Temperature dependent material properties The temperature depen-
dency of the liquid properties such as the density, dynamic viscosity, and
surface tension has to be included in the post-processing of the experi-
mental data due to temperature changes in the unconditioned lab room
of ∆T = 20° during the year. Therefore, the ambient temperature is
recorded with a thermocouple of type K (Class 1 DIN EN 60 584-3), and
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the corresponding liquid properties are determined based on numerical
evaluations. Those different approaches are summarized in the following
paragraphs.

Density An experimentally determined density function for glycerol-
water solutions in the temperature range between 17− 83° is proposed by
[98, 99]. The study is based on measurements using a pycnometer method
and a circulation thermostat. A pycnometer is a vessel with a precisely
determined volume that characterizes the weight per volume and reveals
the density of the liquid. The temperature-dependent glycerol density ρg
is calculated accordingly as

ρg = 1277− 0.654T. (2.5)

The temperature dependent water density ρw is represented by

ρw = 1000(1−
∣∣T − 4

622 x
∣∣1.7). (2.6)

The prediction of the density of water is accurate with an error less than
2% [98, 100]. With help of the glycerol concentration in mass-% (Cm) the
density of the mixture can be calculated as

ρ = ρgCm + ρW (1− Cm). (2.7)

The proposed empirical equation (2.7) is accurate within ±0.8% based
on the observations from [99], despite neglecting the interactions of the
two components. More detailed liquid properties for several temperatures
can be found in table 2.2. The equations above are of empirical type and
despite the missing unit consistency they agree rather well with glycerol
or water density values.

Dynamic Viscosity The measurement of the dynamic viscosity is per-
formed with a DV-III Ultra Rheometer from Brookfield. The rheometer
measures the shear stress at a defined shear rate using a torsion spring.
Shear stress is applied to the liquid via a rotating plate. The resistance of
the liquid is determined indirectly via the torsion of the spring. A temper-
ature control unit from Huber is used to measure the dynamic viscosity
as a function of temperature. The measurements are repeated ten times
per sample, and three samples per liquid are examined. A total of n = 30

20



2.1 Experimental Set-up

measurements are performed for each temperature setting and liquid. The
results are compared to the prediction of a viscosity solution from [98],
which claims to be accurate within 5%. An exponential function for the
dynamic viscosity of water is derived in [98] to be

ηw = 1.79 exp (−1230− T )T
36100 + 360T , (2.8)

and for glycerol in the form of

ηg = 12100 exp (−1233 + T )T
9900 + 70T . (2.9)

By following the assumptions of [98], the dynamic viscosity of the glycerol-
water solution can be calculated as

η = ηαwη
1−α
g , (2.10)

with α being a temperature and saturation dependent function

α = −Cm + 1+
(1− Cm)Cm(0.036T + 4.9)(0.705− 0.0017T )3.5

(1− Cm)(0.036T + 4.9)(0.705− 0.0017T )2.5 + Cm(0.705− 0.0017T ) .

(2.11)

The experimentally derived dynamic viscosity is compared to the theo-
retical values from equation (2.10) based on [98] in figure 2.7. The overall
error is below 2% between the experimentally and predicted viscosity val-
ues. More detailed liquid properties for several temperatures can be found
in table 2.2.

Surface Tension The surface tensions of the different liquids are deter-
mined with help of temperature and solution dependent predictions from
[101, 102]. The surface tension is characterized with the pendant drop
method using a DSA100E by Krüss. The contour of a pendant drop is
analysed using the Young-Laplace equation. The surface tension can be
determined by the hydrostatic pressure and optical evaluation of the radii
of the curvature. To determine the temperature influence, the drop and
the ambient air were heated in a closed atmosphere. To calculate the
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Figure 2.7: Comparing the experimentally determined dynamic viscosity
with the prediction based on [98] for Gly10 up to Gly80.

surface tension of the glycerol-water solution, first the surface tension has
to be calculated for both liquids independently. For the surface tension
of the water the following equation applies

σw = 235.87
(

1− 0.625
(

1
647(−T − 273.15) + 1

))

(
1

647(−T − 273.15) + 1
)1.256

, (2.12)

and then the surface tension of glycerol can be calculated as

σg = 0.0878(1 + 1
850(−273.15− T ))0.755. (2.13)

With both a temperature and solution dependent prediction for the sur-
face tension follows in the form of

σ = (σgCm + σw(1− Cm))× 103. (2.14)

The surface tension values for various temperatures and solutions can be
found in table 2.2.

Contact Angle The contact angle gives insight into the equilibrium state
between the solid (S), gas (G), and liquid (L) phase (see an example in
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Figure 2.8: Contact angle measurement of distilled water applied to alu-
minium substrate.

figure 2.8). Balancing the surface forces allows classifying the wetting
regime of an ideal surface. The balance point is reached when the Gibbs
free energy is minimal. Young [103] derived the components of net force
for a planar geometry for a static contact angle θ as

σSG = σSL + σ cos θ. (2.15)

Where σSG represents the interfacial tension between the solid and gas
phase and σSL the interfacial tension between the solid and liquid phase. σ
represents the previously introduced surface tension between the gas and
liquid phase. Under real-world conditions, the surface of the substrate
is usually not ideal, and inhomogeneities, surface roughness’ and liquid
contaminations lead to different contact angles. The order of the deviation
from an ideal wetting state is expressed with the dynamic contact angles.
Those are the advancing (θadv) or the receding contact angle (θrec). The
difference of both is defined as the contact angle hysteresis θhyst = θadv−
θrec. With increasing θhyst, the advancing and receding angles distance
each other further from one another. On rough substrates, the static
contact angle can also increase [104, 105].

In this study, precautionary measures were introduced in the form of
cleaning protocols to reproduce measurements with similar contact angles.
The static contact angle is used as a parameter to verify the surface clean-
ness, as explained later. Due to the available telecentric lens setup, the
cleanness of the substrate can quickly be verified, measuring the contact
angles. Additionally, the contact angles are confirmed with an industrial
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Table 2.1: Experimentally determined contact angles on quartz glass, sap-
phire glass and polished aluminium substrates with their 95%
confidence interval.

liquid quartz glass sapphire glass aluminium silanised
θ in ° θ in ° θ in ° θ in °

DW 35.4± 2.1 47.1± 2.8 56.9± 5.3 109.2± 3.1
Gly80 37.9± 1.5 44.5± 1.6 46.13± 4.3 110.1± 4.2

system from the Optical Contact Angle system from DataPhysics, which
also uses a telecentric imaging system to measure the contour of the drop.
In the industrial contact angle measuring device, the contact angle is de-
termined with an image post-processing script identifying the curvature
of the drop. The contact angle is measured for the liquids distilled water
(DW ) and a 80% glycerol-water solution (Gly80) on the substrates quartz
glass, sapphire glass, polished aluminum and silanized wafer [106].

Testing Substrates Another parameter modified during the study is
the substrate surface to investigate different effects of hydrophobic, hy-
drophilic, smooth, and rough surfaces. Even though it is known that no
wettability and roughness effects are observable during the investigated
phenomena’ main phase on such a small time scale as investigated in
this study. For further explanation, see chapter 3. The main part of
the measurements was performed on glass substrates with a mean rough-
ness of Ra = 21 nm, see figure 2.9. For bridge pinch-off investigations
in chapter 6, polished aluminium substrates are used with a roughness
of Ra = 2.7 µm. The roughness is determined with a monochromatic
interferometer from Sensofar of type PLu Neox.

Three different types of glass substrates are used: First is a quartz glass
with a contact angle of 35.4 °, second a sapphire glass with a contact angle
of 47.1 °, and third a silanized glass wafer with a contact angle of 110 °, as
shown in table 2.1. In figure 2.8, an example measurement of the contact
angle of a distilled water drop on an aluminum substrate is shown.

Alignment, Measurement and Cleaning Procedure Before forming the
liquid bridge, a definite amount of liquid is placed on the lower substrate
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T = 15° σ in N/m2 η in Pas ρ in kg/m3

DW 0.0735 0.00114 998
Gly10 0.0725 0.00148 1025
Gly20 0.0716 0.00200 1052
Gly30 0.0707 0.00286 1079
Gly40 0.0697 0.00438 1106
Gly50 0.0688 0.00730 1133
Gly60 0.0679 0.01367 1159
Gly70 0.0670 0.03011 1186
Gly80 0.0660 0.08359 1213
Gly 0.0642 2.28122 1267

T = 25° σ in N/m2 η in Pas ρ in kg/m3

DW 0.0719 0.00089 996
Gly10 0.0711 0.00114 1023
Gly20 0.0702 0.00152 1049
Gly30 0.0694 0.00212 1075
Gly40 0.0685 0.00313 1102
Gly50 0.0676 0.00500 1128
Gly60 0.0668 0.00884 1155
Gly70 0.0659 0.01805 1181
Gly80 0.0650 0.04535 1207
Gly 0.0633 0.90568 1260

T = 35° σ in N/m2 η in Pas ρ in kg/m3

DW 0.0704 0.00072 993
Gly10 0.0696 0.00091 1019
Gly20 0.0688 0.00119 1045
Gly30 0.0680 0.00163 1071
Gly40 0.0672 0.00234 1097
Gly50 0.0664 0.00360 1124
Gly60 0.0656 0.00607 1150
Gly70 0.0648 0.01161 1176
Gly80 0.0640 0.02676 1202
Gly 0.0624 0.40578 1254

Table 2.2: Evaluated liquid properties for T = 15°,T = 25° and T = 35°
according to the methods described in §2.1.2.
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Figure 2.9: Interferometric measurement of a glass substrates surface after
several measurement series.

with a gastight precision glass syringe 7105 N from Hamilton. For each
type of liquid, a separate syringe is used to avoid contamination. After
depositing the liquid volume of the lower substrate, the linear drive moves
the substrate towards the upper one until a liquid bridge is formed. The
height of the liquid bridge is adjusted by positioning the lower carriage
with the help of the linear drive. The size of the liquid bridge is implicitly
estimated by the profile recorded from the top video system. The syringes
error was tested to be within ±1% of nominal volume [107], depending on
the viscosity of the liquid.

The linear drive position is controllable over the CCU using a LabView
interface. The interface acts as a central monitoring and control hub to
manage the data in- and output. After the measurement recording is fin-
ished, the substrate has to be cleaned. Depending on the used testing
liquid, acetone, isopropanol, or Tickopur R33 are used. Afterwards, dis-
posable lab wipes are used to dry the surface again. The lint and fibers
residues from the wipes are removed with nitrogen from a pressure cylin-
der. The wipes have to be used carefully to avoid scratching the surface.
An interferometric surface measurement was performed to validate the
surface roughness, as shown in figure 2.9. The roughness is Ra ≈ 21 nm
but without any visible anisotropic contours originating from cleaning
procedures. Before starting the next measurement, the contact angle is
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checked to ensure a reproducible wettability state, as shown in figure 2.8.
The alignment of the substrates represents a sensible parameter for the

symmetry of the liquid bridge during stretching. An unaligned substrate
configuration leads to strong asymmetrical effects and can influence the
bridge stretching behavior [108]. Therefore, the alignment is controlled
after changing one of the substrates’ height according to the following
behavior. As a first approximation, three steel spheres with a diameter of
dsphere = 1 mm are put on the lower substrate and are evenly distributed
across the surface. The lower substrate is then moved towards the upper
substrate until at least one of the spheres touches both substrates. After
that, the five-axis stage and goniometer are adjusted to have all three
spheres in contact with both substrates.

For more precise alignment, the top-view camera is required. First,
a drop of distilled water is deposited on the lower substrate. The lower
substrate is then positioned close to the fixed substrate so that both sub-
strates are wetted. Due to the lower viscosity and high surface tension,
the shape of the liquid bridge is sensible to small asymmetries in the
arrangement of the two substrates. A non-parallel substrate orientation
leads to a moving liquid bridge due to the capillary effects. The substrate
orientation can be adjusted with high precision with the five-axis stage
and goniometer, as described in §2.1.1.

If both substrates are not arranged thoroughly, the capillary forces push
the bridge from the side with the wider gap towards the narrower gap, due
to a larger capillary pressure at the surface. This leads to effects shown
in figure 2.10. A measurement from the top onto the liquid bridge profile
is shown with two unaligned substrates in a) and two aligned substrates
in b). In figure 2.10a), the liquid is pushed towards the upper left corner
due to a lower pressure gradient inside the bridge. After increasing the
gap width at the upper left corner by changing the orientation with the
five-axis stage and the dual axis goniometer, the bridge profile is now
symmetric, as shown in figure 2.10b).

2.1.3 Observation System

For the observation system, two different types of CMOS cameras are
used. Both are utilizing the shadowgraphy image technique to visualize
the bridge stretching [109, Chapter 6]. For the top-view visualization,
a Photron SA-X2 [110] is used. The top camera is mounted on a roller
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a) before alignment b) after alignment

1 mm

Figure 2.10: Showing a liquid bridge profile from top. The measurements
are performed with 5 µl of deionised water before a) and after
alignment b).

bearing system to move in all three directions freely. A modular setup
allows an easy mounting of other optical measuring systems and good
optical access from the top with an adaptive positioning system, ensuring
that the optical target remains inside the focus area.

For the side-view, a high-speed camera or a high-resolution camera is
used, depending on the main experimental requirements.

The two high-speed cameras (Photron SA X2) are applied with a fram-
erate of 12500 fps and a resolution of 1024 × 1024. The pixel size is
20 × 20 µm. The alternatively used camera, a pco.edge 5.5 [111], has a
resolution of 2560× 2160 pixel and a pixel size of 6.5× 6.5µm. Both cam-
eras can be mounted on rail systems to adjust to different focus planes.

The top-view camera, side-view camera, and the linear drive are trig-
gered through the CCU as the measurement recording is started. The
cameras are equipped with different lens systems. The side-view camera
is operated with a telecentric imaging system, consisting of a lens and
a white light LED. Lens systems with different magnifications were used
from 0.19 (TC16M192 from Opto Engineering [113]) up to 4 (TC16M009
from Opto Engineering [114]). The telecentric lens system allows record-
ing edges, especially curved ones, at high contrast, reducing the uncer-
tainty in finding edge positions.

Perspective effects caused by object displacement can be avoided due to
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a)

b)

Figure 2.11: Comparison of the lenses: a), two images are shown taken
by a standard entocentric optical system. On the left, the
inside of a tube is apparent, revealing the typical entocentric
perspective errors. On the right side, the screw thread is
not resolved properly and is partially blurry; b), two images
from a telecentric lens system from Opto Engineering Srl.
are used. On the left side, only the frontal profile of the
tube is visible without any inner features due to the parallel
ray beams. On the right side, the screw threads are resolved
properly and can easily be tracked without any perspective
distortions. Reprinted from [112] with permission of Opto
Engineering Srl.

the parallel view of a telecentric lens. Objects are recorded with the same
size independent of their distance. The advantages of higher contrasts
provided from a telecentric optical system are apparent from figure 2.11.
In figure 2.11a), an image from an entocentric lens system is shown. This
is apparent from the inner features of the tube on the left side. Due to the
beam diverging, objects close to the lens appear larger than objects far
away from the lens. Therefore, one can see the inner features of the tube
in figure 2.11a). Another characteristic of telecentric lenses is apparent
on the screw on the right side of the image. The screw thread features
are blurry and cannot be recognized across the full height of the screw. In
figure 2.11b), the same objects are portrayed but with a telecentric lens
and telecentric white light LED setup. On the left side, no perspective
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errors are apparent. And at the right side, the distinct features of the
screws thread are visual. The distortions of the telecentric lens systems
are controlled with the method described by [115] but are in a sub-pixel
range and can be neglected. The camera used for the top view is mainly
operated with a 12x zoom lens offering a variable magnification of 0.58
up to 7 [116]. The illumination is directed into the lens system using a
beam splitter to allow coaxial illumination, as shown in figure 2.1. For
both methods, distortion and a size reference calibration is performed and
applied in the post-processing steps.

2.2 Image Processing

Self-programmed algorithms have been created with Matlab and Python
to efficiently extract processable information from the numerous images
captured using several high-speed cameras. The programs are built from
modular subfunctions for image and data processing. The main func-
tion manages all modules’ information centrally for different measure-
ment series and stores them together with the metadata in a structured
library. The stored metadata includes all sensor data acquired besides
the processed image information as temperature, humidity, acceleration,
substrates, lens configuration, height, volume, measurement identification
number. From those, it automatically calculates the corresponding liquid
properties, as explained in §2.1.2.

2.2.1 Processing of Side-View Images

When evaluating the image data recorded from the side view, images
with strong contrasts and a uniform background are available due to the
telecentric optical system, see figure 2.12. Therefore, no background sub-
traction and contrast enhancement are necessary.

First, the lower substrates’ acceleration is controlled. For this purpose,
the two substrate surfaces must be detected and tracked. This can be
quickly estimated by summing the gray levels per line due to the liquid
bridge being much smaller than the substrate radius. Lines with the
largest number of pixels with gray levels should be detected with a similar
number in two image areas, each over several lines. In this way, the
respective substrate surfaces are recognized, and the movement of the
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2.2 Image Processing

a) b)

Figure 2.12: Side image taken from a bridge stretching measurement. In
a) the image is shown before any post processing is per-
formed. In b) the tracked contact angles and contour of the
liquid bridge are used to display the contact angles and the
best fitting curvature to the bridge contour.

lower substrate can be recorded.
Next, the contact line of the liquid bridge is tracked. For this purpose,

a region of interest (ROI) is defined with the previously determined sub-
strate surfaces, within which the full liquid bridge is located at all times.
The height of the ROI is defined by the distance between the substrate
surfaces and the width by the initial diameter of the liquid bridge. With
knowledge of the substrate surface position, the bridge contour is easily
extractable by subtracting the substrates and tracking the outer contours.
Therefore, the primary bridge geometries: the upper bridge diameter DU ,
the bridge diameter at the centerline DM , and the bridge height H are
tracked, as later shown in figure .

Within the ROI, the contact angles, inspired by the secant method
[117], are determined with the help of two secants. The first secant is
placed through the three-phase contact line and a second point on the
contour of the liquid bridge. A second secant is positioned at the surface
of the substrate. The inner angle between the two secants represents the
contact angle. A comparison in [117] yields that the secant method is the
most efficient and accurate compared to the polynomial edge fitting, local
contour analysis, and intensity gradient statistic method.

To determine the contour of the bridge and curvature, an edge detec-
tion algorithm, Canny edge detection [118], and a line by line search are
used. Based on the found profile, a curve with a constant curvature is
defined, deviating least from the existing profile. The measured shape,
the curvature, and the error are stored.

Figure 2.12 shows a stretching measurement with deionised water at
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2 Experimental Methods and Procedures

a) b)

Figure 2.13: Side view image of bridge stretching after pinch-off at both
sides. In a) the ROI of a raw image is shown, in b) the four
different labels for top, middle, bottom and background are
apparent.

an acceleration of 95 m/s2 on glass substrates. In a), the ROI of the
raw measurement image is shown before any post-processing is performed.
The same image is shown in b) after the contact angles and contour of the
liquid bridge are determined as described. Each contact angle is marked in
red, and two green circles display the best fitting curvature to the bridge
contour. The image is shown in b) is saved at every time step to verify
the correct tracking.

The phenomenon of the bridge pinch-off is shown exemplarily in figure
2.13. To characterize the bridge breakup, every segment found by the edge
detection algorithm within the ROI is labeled with a unique identifier. As
soon as the bridge pinches-off at one point, the number of labels increases.
This criterion is used to identify the event of the pinch-off. The pinch-off
position can then be determined by finding the minimum distance between
the newly emerged labels.

This method can also be extended to determine the filament length.
To do this, the bridge pinch-off must have occurred at both substrates.
Afterwards, the location of the pinch-off and the filament geometry can be
determined. In figure 2.13a), the raw image and in b) the post-processed
label image is shown. From figure 2.13b), it is easy to understand that four
different labels are apparent for each enclosed segment, a new label. The
four labels are the top substrate with the remaining liquid, the filament
at the middle, the bottom substrate with the remaining liquid, and the
background. It is easy to understand that the pinch-off instant is thereby
obtainable by finding the time step when the number of labels gets larger
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2.2 Image Processing

than two.

2.2.2 Processing of Top-View Images

The image data taken from top-view is not recorded with a telecentric
optical system. Therefore, the contrasts are not that distinct as before and
have to be enhanced. More efforts have to be placed into edge detection.
Moreover, the bridge reaches different gray stages during the stretching,
so the algorithm must be robust enough to detect the edges.

Finger Tracking and Effective Radius When investigating the effec-
tive radius for the pressure estimate in chapter 4, the reflection condi-
tions change due to the moving lower substrate and, therefore, change the
greyscale level of the contour on the fixed substrate. This makes the task
of tracking the shape more difficult compared to the side view. For this
purpose, the Lucas-Kanade optical flow method is used, which assumes
that the movement between each time step is nearly constant in a local
neighborhood and finds the relevant pixels using the least-squares method.
This algorithm automatically selects the suitable pixels and tracks them
independently using several consecutive images [119], [120]. The algo-
rithm is implemented with Python, utilizing provided algorithms located
in the OpenCV library. This method works well due to the contact line
staying pinned and only the inner contour moving, as visible from figure
2.14 b).

Next, the effective radius is determined. Therefore, the center of mass
of the inner contour is determined from the inner finger area. The re-
trieved midpoint is used as a reference point PCM . With the fingers’
contour and the midpoint PCM , a minimal distance between those two
can be obtained. This minimum distance is defined as the effective radius
Reff . In figure 2.14 a) the ROI of the raw image is shown. In b), the
obtained Reff in the form of a red circle and the contour obtained through
the Lucas-Kanade algorithm is apparent.

Quanitative Characterization of the Finger Patterns The optical flow
method, described above, allows to identify the finger patterns’ contour.
For further analysis, the images are post-processed with Python using the
scikit-image library. The finger width is reduced to a line with 1 px width
at the midline to quantify the number of fingers quickly. This process
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a) b)

PCM
Reff

Figure 2.14: Top-view during finger formation of a Gly80 during liquid
bridge stretching. In a) the ROI of a raw image is shown
in b) the tracked finger contour and effective radius Reff are
highlighted.

is called skeletonization. Different implementations of this method exist
in the scikit-image library. For a 2D case, Zhangs [121] method is used,
which allows to remove the outer pixels on the border of the object step
by step. This is repeated until no further pixels can be removed, and only
the skeleton of the image is left. In figure 2.15a), the ROI of the raw
image and in 2.15b) the segmented finger pattern and the skeletonized
image are shown.

Based on the received skeletonized pattern, the number of fingers in
the border area can be quantified, counting the skeleton branches’ ends.
Critical cases are finger ends lying further inside the pattern. Only the
finger ends in a range of 90% of the initial diameter are valid counts,
whereas others are excluded from counting. This is done because the
fingers start to emerge in the outer part. Therefore, the inner tips are not
formed simultaneously and do not allow a conclusion about the instability
formation of the outer tip emergence.
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2.2 Image Processing

a) b)

Figure 2.15: Top-view of finger formation of Gly80 after pinch-off. In a)
the ROI of a raw image is depicted and in b) the segmented
finger pattern with its respective skeletonized structure is
shown. Reprinted from [21] under CC BY 4.0.
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3 Hydrodynamics of a Stretched
Liquid Bridge

This chapter deals with the analysis of the kinematics of the bridge
stretching. First, a phenomenological description during bridge stretching
from the side view measurements is given. In the second part certain geo-
metrical parameters as curvature, bridge diameter at the center and close
to the substrate are investigated. The last part is based on the previous
observations and introduces pressure estimations inside the liquid bridge
at the center and the surface. Parts of the following sections have already
been published [21, 22, 122, 123].

3.1 Phenomenological Description

The previously described experimental set-up allows shadowgraph images
of the liquid bridge to be taken during the dynamic stretching process.
A sample measurement series of 5 µl deionised water with substrate ac-
celerations of 10, 90 and 180 m/s2 is shown in figure 3.1. The liquid
bridge deformation for low accelerations (10 m/s2) is visible in the im-
age sequence in the first row of the series: the bridge contour stretches
vertically and constricts horizontally. This necking behavior can be ana-
lyzed through the curvature at the bridge surface. The necking continues
until the bridge pinch-off sets in, and a small thread forms between the
remaining volumes residing on the two substrates.

Comparing the different image sequences from figure 3.1, it becomes
evident that with increasing acceleration, the liquid bridge is stretched for
a longer distance before the first pinch-off occurs. After the pinch-off from
both the upper and lower substrates, a liquid filament is formed between
the two residual liquid drops. The length and width of the filament grow
with increasing substrate acceleration, as apparent when comparing the
first, second, and third row.
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3 Hydrodynamics of a Stretched Liquid Bridge

Figure 3.1: Stretching of liquid bridges consisting of 5 µl of deionized water
with an acceleration of 10 m/s2 in the first row, 90 m/s2 in
the second row and 180 m/s2 in the third row. Reprinted from
[22] under CC BY 4.0.
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3.1 Phenomenological Description

Another occurrence in the higher acceleration sequence is the asymmet-
ric deformation of the ligament heads. While the instants for the upper
and lower pinch-off are nearly identical for 10 m/s2, they deviate in time
from each other with increasing acceleration. For 90 m/s2, the ligament
pinches-off at the top and bottom at nearly the same time and shows
an almost synchronous formation of ligament heads with a pointed form.
Shortly after the pinch-off time, the head forms to a drop-shaped head
and starts to move towards the ligament center, reducing its length. At
6.55 ms, an instability begins to develop due to the slenderness of the free
jet but does not lead to single drop formation. At 8.25 ms both, the top
and bottom ligament head crash into each other and form a single drop.

Experiments of liquid bridges with accelerations of 180 m/s2 start to
pinch-off asynchronously at the top and bottom substrate. The first pinch-
off happens at the stationary top substrate, and the vertical contraction
starts from then onwards. Therefore, the described phases of the ligament
formation start earlier at the top head and already shows the unstable
profile at 5.9 ms, while the lower head is still showing a pointed silhouette.
At 7.5 ms, the instability leads to distinguished cusps forming and first
drops starting to pinch-off from the ligament. The drops at the top are
larger than the ones forming at the bottom of the former ligament. The
beginning of the sphere formation is similar to rim formation at the edge
of a liquid sheet [27, 96]. For long ligaments, the cylindrical filament
disintegrates into further spheres, as shown in the third row of figure 3.1,
according to the Plateau-Rayleigh instability [124].

Experiments with the same experimental conditions except a more vis-
cous liquid being used, a Gly50 mixture, are shown in figure 3.2 with
substrate accelerations of 10, 90 and 180 m/s2 in the first, second and
third row. Compared to the experiments in figure 3.1, the liquid bridge
height for similar accelerations becomes larger before the pinch-off starts.
For 90 m/s2 at 7.83 ms, in the second row, it becomes evident that the
ligament is not showing any instabilities at all, compared to the measure-
ments with water. No disintegration into single drops is occurring. Only a
vertical contraction with spherical ligament heads at top and bottom can
be observed. Therefore, the ligament has enough time to contract into
a single drop, as long as the contraction is symmetric, and both heads
bounce into each other. For 180 m/s2 at 7.9 ms, the previously described
asymmetry between the top and bottom head is also apparent for Gly50.
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Figure 3.2: Stretching of liquid bridges consisting of 5 µl of Gly50 mixture
with an acceleration of 10 m/s2 in the first row, 90 m/s2 in the
second row and 180 m/s2 in the third row. Reprinted from
[22] under CC BY 4.0.
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3.2 Profile Investigation

3.2 Profile Investigation

In the following, the behavior of the curvature and distinguished bridge
diameters are investigated.

3.2.1 Curvature

When investigating the entire side profile of the liquid bridge, a constant
curvature is recognizable but only in the very early phase of the stretching
process. This curvature, also seen in figures 3.1 and 3.2, is examined in
greater detail below.

At the beginning of the stretching process, a constant radius of the
vertical liquid bridge curvature can be observed over the full height on
both sides. Therefore, the curvature κ = 1/rc is introduced with a radius
of the curvature rc, which is determined experimentally from the measured
profile, as shown in figure 3.4. The measured mean curvature radius
for different accelerations is shown in figure 3.3 for Gly80, λ = 0.3 and
for different accelerations. This graph is to be read from right to left,
due to the initial height being small and the abscissa being defined as
2/H. The dispensed fluid initially shows a high contact angle state due
to the compression. After dispensing the liquid onto the substrate and
bringing the substrate to the initial bridge height, the liquid is pressed
axially and moves freely in the radial direction. The radial movement
leads to an advancing contact angle θ. Therefore, a larger contact angle is
observable than the liquid-substrate combination would show in a static
contact angle experiment. This results in curvatures of κ = 600 at the
beginning. Due to the contraction phase, the curvature starts to increase
(decreasing curvature radius) until reaching up to κ = 1500. A linear
decline can be observed after this point, showing a constant curvature with
increasing bridge height. The first phase of curvature growth occurs due
to the earlier applied compression during the application of the liquid and
the accompanying advancing contact angle. Until the initial conditions
are overcome, a non-linear curvature growth is visible. After reaching
the maximum curvature, the bridge seems to be in balance and follows
equation (3.1), represented as a diagonal line in figure 3.3 .

κ = 2/H. (3.1)
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Figure 3.3: Evolution of the curvature and reciprocale height ratio for
Gly80, λ = 0.3 and different accelerations. The data points
are from the constant curvature section. Reprinted from [123]
under CC BY 4.0.

After a certain period, the bridge loses its constant curvature over the
bridge height and is no longer considered in figure 3.3. At the end of
the measured data points, the profile could not be represented by a con-
stant curvature anymore due to the shape deviating too much from a
uniform curvature pattern. The effect of acceleration seems to be negligi-
ble concerning the curvature of the bridge. Only at the beginning, higher
accelerations show a higher maximum value of the curvature.

The sketch figure 3.4 illustrates the three stages of curvature growth.
In the first stage, the bridge curvature is smaller due to the initial com-
pressed conditions of the bridge and the resulting advancing contact an-
gle, as shown for t1. The curvature is increasing, starting from the initial
(2/H = 1750 1/m) to the compressed state (2/H = 1500 1/m) with an
increasing curvature from κ = 1000 1/m to κ = 1500 1/m, indicated
through the smaller radius rc in figure 3.4 for t2. After reaching the max-
imum curvature, the curvature starts to follow the relation described in
equation (3.1), shown for t3. The proportionality remains valid during
further stretching until the necking no longer grows at the same rate as
the bridge height. The radius of curvature begins slowly to deviate from
equation (3.1) when stretched further. The evolution of these three stages
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rc
rc

rc

t1 t2 t3
DU/2
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Figure 3.4: Evolution of the liquid bridge curvature radius rc during ex-
pansion. Showing a larger curvature radius at the beginning
for t1 an decreasing curvature radius due to necking for t2 and
increasing curvature radius as a result of the increasing verti-
cal substrate distance for t3. This is only valid during the first
phase of the liquid bridge stretching.

can also be found in figure 3.3. The midpoint diameters and curvatures’
proportionality coincide for the three different accelerations, as visible
from figure 3.3. Only the relative height of the deviation onset is reached
earlier for 10 m/s2 than for 180 m/s2, apparent through the position of
the last markers. After leaving the first phase of constant curvature, the
surface force is no longer dominating the profile formation. The bridge
midsection is starting to form a cylindrical jet with not clear curvature
observable.

3.2.2 Centreline Profile

During liquid bridge expansion, two distinctive diameters are easy to de-
scribe and reproduce. Firstly the diameter DM , which is located at the
midline between the upper and lower substrate. The other one is the up-
per diameter of DU close to the upper substrate. The position of both
diameters can be viewed in figure 3.4.

The midpoint diameter evolution with varying viscosities µ, accelera-
tions a and a fixed dimensionless height λ = 0.09 is shown in figure 3.5.
The presented curves end with the bridge pinch-off. The dimensionless
height λ is a geometric parameter depending on the initial liquid bridge
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Figure 3.5: Evolution of the midpoint diameter comparing different vis-
cosities and λ = 0.09 with an acceleration 180 m/s2 in the
lower curve array and for 10 m/s2 in the upper curve array.
Reprinted from [22] under CC BY 4.0.

height H0 and the initial midpoint diameter D0. Two array of curves are
apparent, the upper one is showing measurements for a = 10 m/s2 and the
lower one for a = 180 m/s2. Initially, both arrays start at DM/DM,0 = 1,
and decrease over time. For the upper curve array with lower accel-
erations, the evolution of the midpoint diameter becomes flatter, but
they exist longer in time. The more viscous the liquids are, the longer
it takes until the bridge pinches-off, apparent through the shown data
points for Gly40 and Gly80 for t > 0.15 s. With higher substrate ac-
celeration, the midpoint diameter decreases faster, and the pinch-off is
occurring earlier in comparison. Within the investigated viscosity range
(1 mPas < µ < 40 mPas) in the form of Gly10, Gly40, and Gly80, the
influence of viscosity on the midpoint diameter appears to be negligible.
The evolution of the midpoint diameter can be considered as equal, as
apparent from figure. 3.5. The acceleration is the dominant parameter
compared to viscosity.

In figure 3.6 a comparison of different dimensionless heights and the
same acceleration of a = 180 m/s2 are presented. Two array of curves are
apparent, the upper one shows measurements with smaller heights and
wider diameters with λ = 0.09 and the lower one with larger heights and
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Figure 3.6: Evolution of the midpoint diameter comparing non-
dimensional initial bridge geometries λ = 0.3 in the lower
curve array and for λ = 0.09 in the upper curve array
for substrate accelerations 180 m/s2 and different viscosities.
Reprinted from [22] under CC BY 4.0.

smaller diameters with λ = 0.3. Again measurements for three different
liquids: Gly10, Gly40 and Gly80 are added in order to get a comparison
of viscosity effects and the dimensionless height λ regarding the diameter
evolution. Both curve arrays develop rather similar, only the curves for
the larger bridge heights λ = 0.3 shows a steeper decline for DM/DM,0.
This occurs due to the initial distribution of the volume: larger starting
height and smaller diameter of the bridge. This allows a faster contraction
to the upper and lower areas and therefore, less volume at the middle
line. Different dimensionless heights show a noticeable difference in the
diameter evolution, but behave comparable in each evolution to some
degree.

3.2.3 Meniscus Profile

When studying the side profile of the liquid bridge during stretching, a
deformation of the meniscus is apparent. During the stretching process,
the meniscus profile and, therefore, the bridge diameter changes. The
side macroscopic profile is analyzed first in the following section based on
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Figure 3.7: Evolution of contact line diameter of Gly80 comparing sub-
strate accelerations 30 , 60 and for 180 m/s2 for λ = 0.3 in
the upper curve array and λ = 0.09 in the lower curve array.
Reprinted from [123] under CC BY 4.0.

side view experiments. In the second part, the three-phase contact line is
discussed based mainly on top-view measurements.

Macroscopic Lateral Meniscus Profile The following discussions use
side bridge profiles measured during the stretching process, as shown in
figure 3.1 and 3.2. The diameter close to the upper substrate is analyzed
during the deformation of the meniscus profile. In figure 3.7, six different
measurement series are grouped into two curve arrays. The upper curve
array represents measurements with a dimensionless height of λ = 0.3
and the lower one at λ = 0.09. The measurements are shown for different
accelerations a = 30, 60 and 180 m/s2 with the same liquid Gly80.

The evolution of the ratio DU/DU,0 shows the simultaneous movement
of the upper diameter DU as soon as the lower substrate begins its down-
ward motion (t = 0 ms). It is apparent from figure 3.7 that the ratio
DU/DU,0 decreases faster for smaller values of λ down to 40%. Due to
the increased diameter contraction speed, the dimensionless minimum up-
per diameter DU,min/DU,0 exhibits an overall difference in the decline by
50% only through smaller λ values. For the larger bridges, only retractions
down to 90% of the initial diameter are observable. The measurements
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with different accelerations but constant λ differ little, due to the dif-
ferent substrate accelerations. The DU,min/DU,0 ratio is independent of
the substrate acceleration. The effect of the liquid viscosity is similar on
DU/DU,0 as shown for the midpoint diameter in figure 3.5. After reach-
ing a minimum value, both curve arrays have in common that the ratio of
DU/DU,0 starts to increase again. This occurs after the bridge pinches-off,
and the drop dynamics lead to deformations effects until a new station-
ary form is found. After the stationary position is reached, the absolute
drop diameters DU of both curve arrays are similar for the investigated
parameters [125].

The ratio of the contracting diameter DU to middle line diameter DM

is shown in figure 3.8 as a function of the stretching motion as H/D0.
D0 is the initial diameter at t=0, which is the same at both positions
DM (t = 0) = DU (t = 0) = D0, due to an advancing contact angle.
The advancing contact angle occurs during the initialization of the liquid
bridge height, where the two substrates are moved towards each other after
the liquid is applied. As already explained for the curvature description,
the contact angle is larger due to the initial compressed state leading to an
advancing contact angle. The measurements in figure 3.8 were performed
with Gly80, an acceleration of 180 m/s2 and data points are shown until
pinch-off occurs. The initial ratio of DU/DM starts at 1 for different
dimensionless heights shown λ = 0.018, 0.134 and 0.19. With further
stretching, the values of DU and DM deviate up to a ratio DU/DM ≈ 2.1
for the smallest investigated bridges. The initial bridge geometry leads to
a steeper inclination for smaller bridges and an increasing diameter ratio
at pinch-off. It is also apparent that for larger λ, the bridge stretches
longer until it pinches-off.

The evolution of the diameter at the center line and the height of the
liquid bridge are investigated. With the constant mass condition, the rela-
tion is shown in equation (3.2) is approximated. The liquid bridge volume
is compared with the evolution of DM and H scaled by their initial val-
ues DM,0 and H0. In figure 3.9 the dashed line represents the relation of
equation (3.2). Measurements with different dimensionless heights λ are
plotted and indicate a good representation down to H0/H = 4 for dif-
ferent λ. The midpoint diameter starts to deviate, beginning with larger
initial bridge geometries λ = 0.19 from the described proportionality. One
reason for the deviation occurring only for larger λ is that the flow regime
is altered entirely. For larger λ, only a small radial contraction is appar-
ent, and therefore the radial flow is only minimal compared to the smaller
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Figure 3.8: Evolution of the contact line diameter to midpoint diameter
ratio up to pinch-off of the liquid bridge. The measurements
were performed with Gly80 and 180 m/s2 for different λ values.
Adapted from [123] under CC BY 4.0.

λ, see figure 3.7. The liquid bridge pinch off length also affects the mid-
point diameter, due to the bridge being longer for larger λ. Therefore the
timescale for the mass compensation between the midpoint and meniscus
area is longer. Consequently, the curves deviate from the ideal correlation
further as the expansion progresses. The approximation is more accurate
for smaller dimensionless heights λ, as apparent from measurements with
λ = 0.018.

DM/DM,0 =
√
H0/H. (3.2)

The effect of the viscosity on the evolution of the scaled bridge diam-
eter DM/D0 is shown in figure 3.10. The reference measurement series
is performed with a = 180 m/s2 and an initial gap ratio of λ = 0.05.
Up to around H/H0 = 7.5, the estimated behavior coincides well with
the experimentally determined data. From there on after a deviation for
the Gly80 measurement series is observable. A good agreement with the
predicted equation (3.2) can be confirmed, and the effect of viscosity is
negligible for small bridges with high accelerations, as shown by [126].

In figure 3.11, the effect of accelerations on the evolution of the scaled
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Figure 3.9: Evolution of the midpoint diameter and the inverse height de-
rived from mass continuity, see equation (3.2). Measurements
were performed with Gly80, 180 m/s2 for different parameters
of λ. Adapted from [123] under CC BY 4.0.

bridge diameter during stretching is shown as a function of the dimension-
less gap width. The diameter follows the expected development described
in equation (3.2). For a lower acceleration, the pinch-off occurs much ear-
lier compared to measurements with higher accelerations. The prediction
in the equation (3.2) is universal, and it does not depend on liquid prop-
erties or the substrate acceleration, as shown before. The evolution of the
bridge diameter can be approximated when H � DM .

Three Phase Contact Line When observing the diameter contraction
close to the substrate surface, a contracting diameter can be noticed close
to the substrate, previously introduced as DU . However, when comparing
the time scale of the contraction speed of DU and literature values of typ-
ical dewetting phenomena with similar liquid properties, it is noticeable
that the dewetting time scales are several magnitudes larger compared to
the measured contraction time scale [104]. Therefore it is evident that
the contracting diameter DU is different from the contact line diameter
DCL. To investigate this further, measurements were performed with an
additional second high-speed system providing a top view of the liquid
bridge to record the three-phase contact line. The transition from moving
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Figure 3.10: Initial jet stretching. The diameter ratio as a function
the height ratio H/H0 for a substrate acceleration of a =
180 m/s2 and initial gap thickness λ = 0.05 for different vis-
cosities. The experimental data are compared with the the-
oretical predictions from eq. 6.1. Adapted from [123] under
CC BY 4.0.

to pinned contact lines with higher stretching rates is known from other
studies [127, 127, 128], but was not investigated for accelerations of this
magnitude.

Figure 3.12 shows an image series of liquid bridge expansion from top
with a dimensionless height λ = 0.0151, a liquid Gly80 and an accelera-
tion of 180 m/s2. It is apparent that the three-phase contact line stays
pinned at the initial position during the stretching process from 0 ms to
the end at 11 ms. Additionally, a further distinctive feature can be ob-
served beginning from 2.1 ms, two distinct areas are formed, recognizable
by different grey tones. The dark cylindrically shaped area contracts up
to 3.7 ms and start to expand again from 7.3 ms onwards. After 11 ms, the
two grey tones are almost similar again, as they were at the beginning. In
combination with the results presented before, a comparison of the con-
traction of the dark cylindrical area is in the same order of size and speed
as the diameter DU . The shape measurements of DU from the side and
top perspectives are hard to compare due to the transition area in the top
view showing a low contrast (11 ms). Therefore a quantitative measure-
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Figure 3.11: Evolution of the diameter of a liquid bridge. The scaled
bridge middle diameter DM/D0 as a function of the dimen-
sionless gap width H/H0 for various substrate accelerations.
The curve corresponds to the predictions based on (3.4).
Adapted from [21] under CC BY 4.0.

ment of the diameter is not possible from the top perspective. From this
observation, it is apparent that the diameter DU does not correspond to
the three-phase contact line. The previously observed diameter DU is an
apparent receding meniscus moving on a thin residual film. Further, it is
apparent that an inner ring at 7.3 ms is visible; this is the result of a total
internal reflection of the coaxial illumination from the inside of the liquid
bridge.

The behavior of the three-phase contact line and the thin film are
sketched in the figure 3.13 for a better understanding of three chronolog-
ical points in time t1 < t2 < t3. At the beginning at t1, the three-phase
contact line is in its initial stateDCL = DU . In this phase, the three-phase
contact line coincides with the visible meniscus in the side profile. At t2,
the lower substrate started to move, therefore, the stretching of the bridge
has begun. The movement leads to a contraction of the bridge apparent
in the form of DU . Here DU does not capture the three-phase contact
line itself, but the contour of the meniscus profile nearby. The contact
line remains pinned at the initial position DCL. It is also recognizable
in t2 that the apparent meniscus angle is formed on a thin residual film.
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0 ms 2.1 ms 3.7 ms 7.3 ms 11 ms

contact line

4 mm

Figure 3.12: Top-view of the liquid bridge stretching shown pinned con-
tact line, residual film, and moving inner meniscus. The
measurement was performed with a dimensionless height of
λ = 0.0151, with Gly80 and an acceleration of 180 m/s2.

Therefore it is not comparable to a typical contact angle configuration. At
the time t3, the bridge contraction has progressed, and the residual layer
is distinguished. Following on from figure 3.12, the residual layer is recog-
nizable as a bright area, and the apparent meniscus angle is formed in the
transition area between the bright and dark area with DCL > DU . After
a long time, t4 � t3 when the bridge has pinched-off, and the dewetting
process has finished, the remaining liquid volume shows a drop formed
shaped due to the surface forces. The contact line had enough time to
recede, and the residual layer vanishes so that again DCL = DU .

The reason for the clear distinction of the two grey tones in figure 3.12
results from the almost parallel free surface of the residual layer, as shown
in figure 3.13. In the outer section, the incident rays are reflected par-
tially back and appear brighter. In the inner bridges section, the rays are
deflected in different directions due to the curvature, and therefore, only
some light rays are reflected onto the sensor of the camera. Consequently,
the inner section appears darker. After liquid bridge pinch-off, the resid-
ual liquid takes a drop-shaped form with an even curvature. There the
brightness curve is equalized, and no different contours can be observed
anymore.

Different attempts to display the thin film experimentally in side view
were performed, one of them is shown in figure 3.14 with λ = 0.0171,
180 m/s2 and Gly80. In this case, the meniscus is examined with a
telecentric lens system and a magnification factor of four. Due to the
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Figure 3.13: Sketch of the residual layer evolution at four time steps t1 <
t2 < t3 � t4. The contact line stays pinned up to t3 and
starts move until t4. An apparent meniscus angle forms at
the contracting residual layer.

smallness of the gap, the bridge is only recordable after 2.4 ms, when the
residual layer already has been formed. The residual layer itself could not
be detected from the beginning due to geometrical constrictions. The im-
age series also gives information about how the apparent meniscus angle
is deforming during the late phase of the stretching phase. At 5.6 ms, a
clear distinction of the uneven profile contour is visible from the menis-
cus to the residual layer. Shortly after the pinch-off of the liquid bridge
at 9.9 ms, a drop is formed at the middle part and is spreading over the
residual layer. Based on the resolution of the lens, it can be estimated
that the height of the residual layer is of the order of a few µm. Measure-
ments using commercially available point interferometers and chromatic
wave line sensors could not validate the film thickness due to the small
length and short time scale requirements.

From previous measurement series in figure 3.12, it was already evi-
dent that the three-phase contact line remains pinned during bridge ex-
pansion and has no influence on bridge expansion itself. Additionally, the
measurement series are shown in figure 3.15 illustrates the different time
scales of bridge elongation and dewetting, capturing the movement of the
three-phase contact line. It shows a measurement series performed with
Gly80, λ = 0.0134 and an acceleration of a = 180 m/s2 on a hydropho-
bic silanized coating on a glass substrate with a static contact angle of
θ = 110°. From 0.2 ms onwards, two different grey tones are visible, which
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Figure 3.14: Side view of meniscus deformation during liquid bridge
stretching performed with telecentric optical system. The
shown stretching measurement was performed with λ =
0.0171, Gly80 and an acceleration of 180 m/s2.

divide the bridge into a three-phase contact line and the inner part of the
bridge. This measurement series additionally shows the occurrence of
finger formation, discussed in greater detail in chapter 5. The residual
layer is also visible between the formed fingers, suggesting that the finger
formation forms on top of the residual layer. At 9.04 ms, it is apparent
that the surface begins to homogenize again due to the surface forces.
At 11.06 ms, it is recognizable that the grey tones are adapting to each
other. After 21.04 ms, the beginning of the dewetting can be seen. In the
series’ last image at 457 ms, the liquid reached an equilibrium state, and
the dewetting process is finished for the moment. It is obvious from the
timestamps that the pinch-off has been completed well before the dewet-
ting starts, compare to figures 3.1 and 3.2. Consequently, the dewetting
process appears on a time scale two orders of magnitude larger than the
finger formation.

The contact line diameter evolution DCL during a liquid bridge stretch-
ing experiments is shown for two different wettability states in figure 3.16.
The reference measurements were executed on hydrophobic silanized glass
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0 ms 0.2 ms 9.04 ms

11.06 ms 21.04 ms 457 ms

5 mm

Figure 3.15: Sequence of the bottom views of the liquid bridge. The time
associated with the finger formation (approximately 10−1
milliseconds) is two order of magnitude smaller than the time
at which the dewetting process becomes notable, at approx-
imately 20 milliseconds. Contact angles for the hydrophobic
substrates are θ ≈ 110° for Gly50 and Gly80. Reprinted from
[21] under CC BY 4.0.

substrates with static contact angles of θ = 110°. The previous and most
of the following measurements were conducted on quartz glass substrates
with a static contact angle of 40°, also shown in figure 3.16. A reference
measurement with a high contact angle was chosen to investigate the ef-
fect of a hydrophobic substrate on the liquid bridge stretching process. A
higher contact angle directly results in a higher contact line speed follow-
ing [129–132] a notable dewetting effect during the stretching process is
more likely. From the measurement shown in figure 3.16, it can be con-
cluded that the speed at which the contact line moves on the hydrophobic
substrate is 12.1 ±0.1mm/s and on the glass substrate, it is 2.6±0.1 mm/s
with the same liquids. Both three-phase contact lines show a constant
speed during the first phase until they lock at their respective final posi-
tions. The measurements were performed with two different λ = 0.0164
for 110° and λ = 0.0111 for 40°, as the initial diameter DCL(t = 0) sug-
gests. At t = 0 s, the bridge stretching begins, and due to the scaling of
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Figure 3.16: Showing the contact line evolution of two dewetting mea-
surements. Measurment with θ = 110° was performed with
λ = 0.0164 and for θ = 40° with λ = 0.0111. Both times
Gly80 was used and the substrate acceleration was 180 m/s2.

the x-axis, it seems that the dewetting starts simultaneously. For the hy-
drophobic substrate, the dewetting process is finished after 0.3 s, while for
the glass substrate and a slightly larger bridge, the dewetting is finished
after 1.5 s. Those agree with the observations from figure 3.15.

Apparent Meniscus Angle To better understand the bridge meniscus
profile during contraction, the meniscus angle is analyzed in the following
and compared to different bridge heights over time. In this study, the
term meniscus angle refers to an apparent macroscopic angle moving on
a thin residual liquid layer, as introduced before. It refers to the observed
angle measured on a residual film and the meniscus of the contracting
liquid bridge, as shown in figure 3.13. The three-phase contact line and its
corresponding contact angle are not resolvable from the available side view
measurements. The three-phase contact line movement is only observable
through the top view of the optical system, as shown in the previous
section.

Since the contour of the liquid bridge can be assumed to be symmetric, a
mean apparent meniscus angle of the left and right side of the profile at the
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Figure 3.17: Comparison of the evolution of the contact line diameter
DU/DU,0 with circle markers on the left scale vs. meniscus
angle θ with square markers on the right scale. The exper-
iments were performed with Gly80, 180 m/s2 and λ = 0.18.
Reprinted from [123] under CC BY 4.0.

upper surface substrate θ is introduced. The data shown in figure 3.17 was
measured with Gly80, 180 m/s2 and λ = 0.18. The left ordinate shows the
diameter ratio of DU/DU,0 with the corresponding data points as circles.
On the right ordinate, the measured meniscus angle is represented by data
points in the form of rectangles. It can be seen that the initial meniscus
angle is at θ ≈ 60° and falls below this value at t = 4 ms in the course of
the bridge expansion. After the initially strong decrease, a relaxation can
be seen, leading to a slow increase and finally ends at the static meniscus
angle of 40°. Compared to the deformation of the bridge diameter, it is
noticeable that the meniscus angle and the bridge decrease simultaneously.

In comparison, in figure 3.18, a series of measurements with smaller
bridge heights, λ = 0.09, but otherwise equal parameters is presented.
The liquid used is Gly80 and the substrate acceleration 180 m/s2. The
graph has the same abscissa and ordinate as before. For the smaller
bridge, it is already known that the bridge diameter contracts further
and, after reaching the minimum, does not go back to the initial value on
the shown time scale. The initial meniscus angle is difficult to measure for
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Figure 3.18: Comparison of the evolution of the contact line diameter
DU/DU,0 with circle markers on the left scale vs. meniscus
angle θ with square markers on the right scale. The exper-
iments were performed with Gly80, 180 m/s2 and λ = 0.09.
Reprinted from [123] under CC BY 4.0.

smaller bridges due to the small substrate distance, recognizable by the
error bars’ size but is in the order of θ ≈ 40 − 60 °. With the beginning
of the bridge expansion, the meniscus angle also decreases. After about
t = 5 ms the minimum of DU/DU,0 is reached at θ ≈ 20 °. In contrast to
the behavior observed before, the meniscus angle remains at this level.

It is apparent that in both cases, the meniscus angle decreases to a
minimum value of approximately 20°. After reaching θmin, the meniscus
angle starts to increase again as also observable for DU/DU,0. However,
the meniscus angle growth starts earlier than the contact line diameter
contraction.

The effect of different accelerations and their effect on the meniscus
angle evolution θ over time is shown in figure 3.19 for Gly80, λ = 0.3
and accelerations of 10, 60 and 180 m/s2. For all measurements, the
meniscus angle is increased at the beginning due to the compressed state,
as explained earlier. The evolution of θ exhibits a steeper decline for
higher accelerations until the curves reach a minimum θmin. The minimum
meniscus angle is of the order θmin = 19± 1 °. This θmin agrees with the
receding contact angle measured with a KRÜSS DSA 100 system on the
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Figure 3.19: Evolution of meniscus angle of Gly80 comparing substrate ac-
celerations 30, 60 and 180 m/s2 for λ = 0.3. The dashed line
indicates the measured receding meniscus angle. Reprinted
from [123] under CC BY 4.0.

fluid/substrate combination. Even though the meniscus angle appears on
top of the residual film and, therefore, in a completely different regime.
After the θmin is reached, the meniscus angle increases. The increase
continues until shortly before the liquid bridge breaks at the meniscus
region.

The meniscus angle evolution is compared with the capillary number
CaCL = Uµσ−1, where U is the horizontal contraction speed of the diam-
eter DU in figure 3.20. The capillary number starts from the initial state
CaCL = 0 and decreases down to a meniscus angle of θ = 40°. Depending
on the acceleration, a minimum of CaCL ≈ −0.09 is reached for 180 m/s2.
The diameter contraction speed then increases up to CaCL = 0 and even
further for some measurements. The meniscus angle does not drop below
θmin, as shown previously.

3.3 Pressure Distribution

To further understand the flow in the liquid bridge, a knowledge of the
pressure field is required. The pressure distribution in the gap can not
be determined experimentally. Nevertheless, a lubrication approximation
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Figure 3.20: Evolution of the capillary number CaCL = Uµσ−1 and the
related meniscus angles. Measurements were performed with
Gly80 and a dimensionless height λ = 0.1. Reprinted from
[123] under CC BY 4.0.

can be used to estimate the pressure distribution, governed by the viscous
effects, surface tension, and inertia.

The flow field in the stretching liquid bridge can be subdivided into two
main regions: the meniscus region and the central, inner region, which is
not influenced by the meniscus. The solution for an axisymmetric creeping
flow between two parallel substrates, one of which moves, is well-known
[133]. The axial and the radial components of the velocity field are

u0,r = −3Ḣrz
H2

(
1− z

H

)
, u0,z = 3Ḣz2

H2

(
1− 2z

3H

)
. (3.3)

This velocity field satisfies the equation of continuity, the momentum
balance equation, and the kinematic conditions at both substrates. Un-
fortunately, this solution does not apply to the case when the effect of the
substrate acceleration becomes significantly high. Moreover, the expres-
sion for the velocity field between two substrates (3.3) is not applicable
at the interface of the meniscus. It does not satisfy the conditions for the
pressure at the interface, determined by the Young-Laplace equation, and
it does not meet the requirements of zero shear stress at this interface.
Moreover, this velocity field is not able to accurately predict the rate of
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Figure 3.21: A sketch of a liquid bridge from a side view and from top view
at two different stages t1, t2. A cylindrical frame of reference
is used at the symmetry axis (r, z). The relevant diameters
for the following analysis are: DU , DM and the effective
diameter Deff . The top view is shown for t1 at which the
finger instability starts to form and t2 with a pronounced
finger pattern. A Cartesian frame of reference is used at the
instability front at t1 (x, y). Adapted from [21] under CC BY
4.0.

change of the meniscus radius of Ṙ. Assuming the rate change of the min-
imum meniscus radius at the middle plane as Ṙ = u0,r at z = H/2, and
with the help of (3.3), the solution of the equation for the meniscus prop-
agation becomes R = R0(H0/H)3/16. This solution does not agree with
the experimental data for the evolution of the meniscus radius. Therefore,
the flow in the meniscus region has to be treated differently.

An expression for the radius and the height can be derived from the
overall mass balance, where the initial thickness is H0, the initial radius
is R0 and the lower substrate moves with a constant acceleration a. The
radius of the bridge meniscus, R, can be estimated as

R = R0

[
H0
H

]1/2
, H = H0 + at2

2 , (3.4)

which gives a valid estimate for the initial times, when R� H, as demon-
strated on the graph in fig. 3.11. As mentioned before, R0 can be ap-
proximated for t = 0 as DU/2 = DM/2 = R0, for later time steps R
corresponds to DM/2 = R, see figure 3.21.
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The flow in the meniscus region has to be treated separately. This flow
must satisfy the boundary conditions at the curved meniscus interface and
include the corner flows at the meniscus region [134, 135]. The model of
the meniscus flow is not trivial and can lead to multiple solutions [136].
However, an accurate solution for the meniscus stability problem must
be based on the meniscus velocity field, since the stresses in this region
govern the meniscus instability.

3.3.1 Pressure Field in a Creeping Flow in a Thin Gap

A pressure estimate for the inner region close to the surface of the sub-
strate is estimated based on the viscous and surface forces applied to the
liquid bridge. For simplicity, the inertial terms are neglected in a first
approach.

The velocity profile of the bridge is assumed to be in a parabolic form as
used in Darcy’s gap-averaged law [71, 73, 137, 138], which is a valid anal-
ogy for a two dimensional viscous flow between two substrates assuming
a permeability of k = b2/12 [61].

However, this assumption is only valid for the case λ � 1, since the
ratio of the axial to radial velocity is comparable to λ. The influence of
the axial velocity on the pressure gradient is consequently negligible. A
coordinate system, according to figure 3.21 has been chosen. Therefore,
ur is in the form of

ur = r(bz + cz2), (3.5)

where z is the bridge height and r is the radius. With the help of the
continuity equation the axial velocity is derived as

uz = −1/r
∫ z

0

∂urr

∂r
dz. (3.6)

For z being the liquid bridge height H and the constraints that ur(z =
H) = 0, due to the previously observed fixed contact line and uz(z =
H) = H ′(t) for the substrate movement. This leads to

b = −3H ′
H2 , c = 3H ′

H3 . (3.7)
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With the previously derived equations (3.5-3.7) the radial velocity can be
estimated in the form of

ur = 3rzH ′
H2

(
1− z

H

)
. (3.8)

With the help of equation (3.8) at z = 0 and the Navier-Stokes equation
with only the viscous terms in radial direction considered, the pressure
gradient can be estimated to be:

∂p

∂r
= η

(
∂

∂r

1
r

∂urr

∂r
+ ∂2ur

∂z2

)
= 6ηrH ′

H3 . (3.9)

Integrating the pressure gradient leads to a pressure estimate. The pres-
sure is evaluated at the midpoint r = 0. In which the height change can
be expressed with the help of the substrate acceleration

H = H0 + at2

2 , H ′ = at, (3.10)

and Reff , being the effective radii of the liquid bridge, see figure 3.13, gives
a pressure estimate of

p = −3µa R2
efft

(H0 + at2

2 )3
. (3.11)

Equation (3.11) can be extended by the Laplace pressure as follows,
which takes into account the surface forces that counteract with the bridge
elongation and lead to a reduction in pressure

pσ = −3µa R2
efft

(H0 + at2

2 )3
− σ 2

H0
. (3.12)

The knowledge on the pressure at the center of the gap r = 0 is required
to describe the cavitation phenomena in chapter 4.

3.3.2 Pressure Distribution Accounting for the Inertia

At the surface of the bridge, it is assumed that the main reason for the
surface instability is the appearance of a normal pressure gradient at the
interface. This mechanism is analogous to the Rayleigh-Taylor instabil-
ity, where the pressure gradient is caused by gravity or by the interface

63



3 Hydrodynamics of a Stretched Liquid Bridge

acceleration. This approximate solution is valid only for the case of a
very small relative gap thickness, λ � 1. Note also that the ratio of the
axial and radial components of the liquid velocity is comparable with λ.
Therefore, the stresses associated with the axial flow are much smaller
than those associated with the radial velocity component.

In the following, a pressure estimate at the liquid bridges interface is
derived for the case of a very small relative gap thickness, λ � 1. Note
also that during the early phase of the stretching process, the ratio of the
axial and radial components of the liquid velocity is comparable with λ.
Therefore, the stresses associated with the axial flow are much smaller
than those associated with the radial velocity component.

Since only the dominant terms of the pressure gradient at the interface
are considered, the pressure gradient includes the viscous stresses and the
inertial terms associated with the material acceleration of the meniscus
R̈. The approximation is based on the fact that the radial velocity in the
liquid at the interface at the middle plane (z = H/2) is equal to Ṙ. The
value of the pressure gradient is then estimated from the Navier-Stokes
equations with the help of (3.4) and the previously introduced equation
at the surface but at z = H/2 in the form

p0,r = −bµ Ṙ

H2 − ρR̈ = µatb

√
H0R0

2H7/2 + ρa

√
H0R0

2H5/2
(
H0 − at2

)
, (3.13)

where b is a dimensionless constant. Its value b ≈ 12 can be roughly
estimated approximating the velocity profile by a parabola, as in the gap-
averaged Darcy’s law [71, 73, 137, 138].

An approximation (3.13) is valid only for the cases of λ� 1 considered
in this study. Since the ratio of the axial to the radial velocity, which
can be estimated from (3.4), is comparable with λ, the effect of the axial
velocity on the pressure gradient is negligibly small.

The pressure gradient at the liquid interface governs the instability of
this surface. This instability is analyzed in chapter 5.

3.4 Conclusion

In this study, the dynamic behavior of meniscus angles and contact lines
for different fluid properties, different initial bridge geometries, and accel-
erations were analyzed. The conducted measurements demonstrate the
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3.4 Conclusion

relation between stretching acceleration and bridge deformation close to
the substrate, at the centerline, and the overall curvature. At the menis-
cus area, the contact line behavior was further studied, and the distinction
between the three-phase contact line, a residual layer, and an apparent
contact line is presented. The significance of the apparent meniscus an-
gle and the residual layer is getting more pronounced with smaller initial
bridge heights. Even two distinct phenomena, cavitation and finger for-
mation, start to emerge and will be addressed in the following chapters.
A proportionality based on the geometry of the liquid bridge during the
early stretching process between the curvature and the inverse height was
found. Furthermore, a proportionality for the mid-point diameter evolu-
tion was developed. With the help of the newly found proportionality,
the pressure at the center of the bridge and the surface is estimated, used
in chapter 4 and chapter 5.
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4 Cavitation Phenomena During
Liquid Bridge Stretching

Until now, only a change in meniscus behavior is observed during bridge
expansion. However, if the tensile stress at the substrate surfaces increases
during the bridge elongation, two different phenomena may occur. Firstly,
cavitation starts to emerge at the inner of the bridge, and secondly, fin-
gers form at the radially retracting bridge surface. In this chapter, the
phenomenon of cavity formation and its evolution is shown and discussed.

4.1 Phenomenological Description

Different forms of cavitation events are shown in the following from a lat-
eral view in figure 4.3 and from top view in figures 4.1, 4.2 and 4.4. Exper-
iments are performed on glass substrates with contact angles of θ ≈ 40°.
In the following, the term transient cavitation refers to the emergence of
bubbles and their collapse with emphasis on the short lifespan. In con-
trast, cavitation refers to bubble emergence with a much longer lifespan,
where the bubble collapse is suppressed due to the fast bridge stretching.

In figure 4.1 an observation of a transient cavitation series with a Gly60
mixture and a geometrical boundary condition λ = 4×10−5 is shown from
a top view. At t = 0 ms, the liquid is evenly distributed and has a nearly
circular shape. After t = 0.8 ms the liquid bridge remains pinned and
instabilities start to appear, as explained in §3.2.3. In the lower part
of the circular shape, two bubbles emerge. At t = 1.3 ms, the finger
formation starts to show a clear structure, and the bubbles grow further.
The bubble close to the center point of the circular shape is growing at a
faster rate. The following image t = 1.6 ms shows only one bubble. The
smaller one has already disappeared. As the finger length increases, the
inner region is decreasing. After t = 1.9 ms, both bubbles disappeared,
and up to t = 4.8 ms finger formation proceeds until the inner region of
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Figure 4.1: Top view on emerging and disappearing cavitation due to
bridge stretching. Experiments were performed with Gly60,
λ = 4.77× 10−3 on glass substrates and a constant stretching
rate of 150 m/s2.

the liquid bridge is fully bifurcated. In the last image, it is visible that the
liquid disintegrates from the formed branches into the surrounding liquid,
and the contours start to vanish.

The image sequence in figure 4.2 shows a measurement series of cavi-
tation events with an increased viscosity (Gly80) compared to the cases
shown in figure 4.1, and geometrical boundary condition λ = 4 × 10−5.
At t = 0.5 ms two bubbles start to emerge and grow strongly at a similar
rate, see t = 1.6 ms. Also, the finger formation starts to get visible at the
interface of the liquid bridge. At t = 2.4 ms the interface front and the
bubbles size increase up to a point where the inner liquid region has disap-
peared. The cavities are separated only by a small liquid bridge from the
contracting interface front. During the growth process they also develop
finger formations. At t = 3.2 ms the finger and bubble growth has stopped
and the liquid bridges appear to be interrupted. The small liquid fingers
start to disintegrate already between t = 3.2 ms and t = 4 ms recognisable
by the blurred structures.

The collapse suppression is assumed to be caused due to the axial
stretching motion combined with the intruding finger formations at the
radial retracting surface. Consequently, a pressure compensation can take
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0 ms 0.5 ms 1.6 ms

2.4 ms 3.2 ms 4 ms
4.5 mm

Figure 4.2: Top view on the cavitation events due to bridge stretching.
Experiments were performed with Gly80, λ = 4 × 10−5 on
glass substrates and a constant stretching rate of 150 m/s2.

place before the bubbles can collapse. In figure 4.3 a side view of this type
of cavitation is shown, for a Gly80 liquid and acceleration of 180 m/s2.
It is apparent that air is radially invading the liquid bridge and is back
cutting the cylindrical-shaped liquid bridge leading to multiple separated
bridges and a rippled surface of each filament. The back cutting is as-
sumed to allow for pressure compensation between the surrounding air
and the pressure inside the bubble to suppress the bubble collapse. In
comparison, the collapse during the transient cavitation has enough time
to collapse fully. It hence seems to be a transition phenomenon occurring
with experimental parameters between measurements without cavitation
events and the described suppressed cavitation.

If λ is decreased and the substrate acceleration increases compared
to the previous measurement series, cavitation is even more pronounced.
The image sequence in figure 4.4 shows a large initial number of nucle-
ation spots. The measurement series is performed with a Gly80 solution
and geometrical boundary condition λ = 1.3× 10−4. At t = 0.8 ms, first,
bubbles start to form and continuously grow as apparent from t = 1.6 ms.
The disturbed outer surface shows more instabilities than the previous
series and a larger number of finger formations. At t = 2.4 ms, it is ap-
parent that the nucleation onset is unevenly distributed across the profile.
The non-symmetrical bubble formation is assumed to be caused by small
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4 Cavitation Phenomena During Liquid Bridge Stretching

Figure 4.3: Side view of measurement with pronounced cavitation. Back
cutting of finger formation leads to separation of liquid
bridges. Measurement was performed with Gly80, λ = 4 ×
10−5 and a = 180 m/s2.

deviations from a parallel alignment of the substrates. The small bridge
height and the large contact area lead to larger forces during the stretch-
ing process. As described in the experimental methods chapter 2, the
used method to ensure alignment is reaching its limits for this set of pa-
rameters. The emerging fingers show thinner branches compared to the
ones shown in figures 4.1 and 4.2. At t = 3.2 ms, the finger and bubble
structure produced show a very chaotic profile of small branches. Due to
a large number of bubbles emerged, many small connecting strips separat-
ing each bubble are formed. The fingers formed at the external interface
were stopped largely at the outer part of the profile and only reached
rather small lengths.

It is apparent that the parameters affecting the cavitation formations
are: initial dimensionless height λ, liquid viscosity η, and substrate ac-
celeration a. Note however that cavitation can also occur in very thin
gaps for substrate accelerations as low as 10 m/s2, see figure 5.10. The
effect of the acceleration on the cavitation seems to be weaker compared
to the effect of viscosity and dimensionless heights on the occurrence of
cavitation events. For lower liquid viscosity and larger bridges, as shown
in figure 4.1, no cavitation events are present even for relatively high plate
accelerations.

With decreasing bridge heights, increasing liquid viscosity, and sub-
strate acceleration, the liquid bridges tend to show an increased number
of cavitation events. In the following section, those parameters are used to
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15 mm

0 ms 0.8 ms 1.6 ms

2.4 ms 3.2 ms 4 ms

Figure 4.4: Top view on the cavitation due to the bridge stretching. Ex-
perimental measurements were performed with Gly80, λ =
1.3 × 10−4 on glass substrates and a constant stretching rate
of 180 m/s2.

discuss the implications of the occurrence of cavitation phenomena during
transient cavitation.

4.2 Discussion of the Cavitation Dynamics

In the following section, the cavitation dynamics of the transient cav-
itation events are investigated in greater detail. Firstly, in §4.2.1, the
inception of the cavitation is discussed based on the already introduced
pressure estimates from §3.3.1. In the second part, the bubble growth is
analyzed closer, see §4.2.2. Finally, an analytical solution is presented,
based on the experimentally determined radial growth rate, see §4.2.3.

4.2.1 Effect of the Pressure in the Gap on Cavitation

To derive an estimate of the pressure close to the substrate, first, the
velocity components in the bridge are determined and used for solving a
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4 Cavitation Phenomena During Liquid Bridge Stretching

simplified Navier-Stokes equation. Input parameters are the initial bridge
height H0, dynamic viscosity η, acceleration a, the time-dependent mea-
sured effective bridge radius Reff and the time t. The effective bridge
radius corresponds to the inner radius of the wetted area, excluding the
finger formation area. Therefore, this area depends on the length of the
fingers. According to the previously explained approach the pressure in-
side the liquid bridge is analytically derived in §3.3.1, leading to equations
(3.11) and (3.12). While the derived pressure p includes only the viscous
forces, pσ also takes the surface effects into account. Both pressures esti-
mate p and pσ have to be compared to identify the more significant source
of the pressure change. The derived pressure is only valid in the initial
phase of the bridge stretching until the first bubbles start to emerge. The
influence of the bubbles on the pressure distribution is not considered in
the presented solution. An analysis of the performed measurements shows
that the pressure due to viscous forces, represented as p, is of the order
of −106 Pa and three orders of magnitude greater than the pressure term
added to pσ, due to the surface forces, which is of the order of −103 Pa.
Even though the surface forces are relatively large due to the initially low
bridge height. The viscous forces dominate the emerging pressure, and
therefore, it is sufficient to use equation (3.11) in the following section.

The temporal pressure evolution depends on the cavitation type. This
is shown in figure 4.5 in which measurements with the same liquid Gly80,
same acceleration 180 m/s2, but different dimensionless heights λ are dis-
played. Depending on the dimensionless height λ, three different phe-
nomena may occur during the bridge stretching: no cavitation, transient
cavitation, and cavitation. It should be emphasized that the stretching
motion-induced is pulling the liquid bridge and the fixed substrate into
the direction of the forced movement. Therefore, the pressure at both
the fixed substrate and at the moving substrate is negative. This is in
good agreement with other liquid tensile investigations, showing negative
pressure in similar stretching investigation [56, 139]. For measurements
with transient cavitation, the absolute pressure extremum is reached after
about tp∗ = 0.22 ms. The evolution of the curve is initially dominated by
the high substrate speed H ′, which leads to a maximum of the absolute
pressure shortly after the stretching starts. Due to the high dynamics of
the investigated system, bubble growth is delayed, depending on the ex-
perimental parameters. This behavior is known from literature [46] and
is deducible to reasons as highly non-stationary flow fields and viscous
effects. Furthermore, a delay in first observed cavitation events due to
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Figure 4.5: Predicted pressure evolution close to the substrate for the fluid
Gly80 with acceleration of 180 m/s2 and different dimension-
less heights of λ = 0.025 for no cavitation, λ = 0.0012 for
transient cavitation and λ = 0.0010 with cavitation. The ex-
perimentally determined inception point is displayed in the
form of a marker.

a limited temporal resolution of 80 µs and spatial resolution of 4 µm/px
has to be considered.

The arrangement of the curve arrays in figure 4.5 demonstrates that
measurements with cavitation events have the highest absolute pressures
in the order of 107 Pa. They are followed by the measures with transient
cavitation in the same pressure range with only slightly lower pressures.
Below are only the absolute pressures of the measurements without cav-
itation, which also show a flatter course and have their extremum in the
order of 105 Pa.

The curve arrays without cavitation were measured at the larger ini-
tial bridge heights H0 and the smaller initial bridge diameters D0 corre-
sponding to λ = 0.025. Measurements in which transient cavitation was
observed were performed at λ = 0.0012 and measurements with cavitation
at λ = 0.001. It can be deduced that the dimensionless bridge height λ
has a strong influence on the phenomenological behavior at the substrate
surface. Only small changes in the dimensionless height ∆λ = 0.0002 can
lead to a change between transient cavitation and cavitation with longer
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4 Cavitation Phenomena During Liquid Bridge Stretching

remaining bubbles, which cannot collapse under the influence of the bridge
stretching motion.

In accordance with the previously mentioned validity range of equation
(3.11), the curves for cavitation and transient cavitation are only plotted
until the first bubbles are observable. The point at which cavitation bub-
bles become visible for the first time is highlighted with a marker at the
end of each curve.

To better understand the influence of viscosity on the transition point,
figure 4.6 shows experiments with a less viscous liquid Gly50. The pa-
rameters acceleration a and the dimensionless bridge height λ are varied.
While the measurements without cavitation and transient cavitation were
performed with λ = 0.004, and measurements with cavitation were per-
formed with λ = 0.001. For each phenomenon, measurements with three
accelerations a = 90, 150 and 180 m/s2 are shown. This means, for ex-
ample, that of the three blue curves, one with a = 90, one with a = 150
and one with a = 180 m/s2 are displayed. Since the curves are almost on
top of each other, the corresponding accelerations are not marked. It can
be concluded that the acceleration in the investigated area shows only a
minor effect on the occurrence of cavitation bubbles, in contrast to the
change of the dimensionless bridge height λ. Only for the experiments
with cavitation, a vertical offset is visible for different accelerations, with
the most extremum pressure being applied for acceleration a = 180 m/s2,
and lowest for a = 90 m/s2. Following the previously presented measure-
ments, it is apparent that even with varying accelerations and dimension-
less heights, the estimated pressure is a useful parameter for classifying
the phenomena that occur. In descending order, the measurements with
maximum absolute pressures show remaining cavitation patterns. The
intermediate pressures arrays show transient cavitation phenomena, and
the lower maximum pressures show no cavitation. However, it should be
noted that the pressures at which transient cavitation is observable starts
for Gly50 two orders of magnitude below the pressure value compared to
the higher viscous liquid Gly80. Therefore the perceived pressure thresh-
old is depending on the liquid viscosity.

4.2.2 Bubble Growth

In the following, the properties of bubble growth during transient cavita-
tion will be examined more closely. For this purpose, individual bubble
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Figure 4.6: Predicted pressure evolution close to the substrate for the fluid
Gly50 with varying accelerations between 90− 180 m/s2 and
different dimensionless heights λ = 0.004 for no cavitation,
λ = 0.004 for transient cavitation and λ = 0.001 with cavi-
tation. The experimentally determined inception point is dis-
played in the form of a marker.

diameters over time are shown in figure 4.7 with all starting points set
to t = 0 ms. The real-time off-sets for those measurements are shown
in figure 4.8. The diameters only provide information about individual
bubbles and are not equivalent to the total bubble area, as, in some mea-
surements, multiple bubbles occur during the stretching process. In earlier
mentioned events, only the largest bubble is considered. In the presented
measurements, the parameters viscosity, Gly50 and Gly60 and substrate
acceleration, a = 120, 150, 180 m/s2 are varied. The dimensionless height
λ = 0.004 is the same for all measurements.

It is noticeable that the same viscosity measurements at higher accel-
eration show smaller bubble diameters for both Gly50 and Gly60. This
seems reasonable due to the higher number of bubble emergence with
higher acceleration and individual bubble interaction, as already observed
in chapter 4.1. Therefore, the maximum bubble diameters are observable
at experiments where fewer bubbles occur and are in the order of several
millimeters.

It should also be noted that the growth rate is linear Ḋ = 2 m/s in the
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Figure 4.7: Evolution of the largest bubble diameter with transient cavi-
tation events are shown. The shown measurements were per-
formed with different liquids Gly50 and Gly60, different accel-
erations, 150 and180 m/s2 and with the same dimensionless
height of λ = 4.5 × 10−4. The starting point of each bubble
growth event is set to t = 0 ms.

beginning for all measurements, see figure 4.7. In contrast, during the
retraction phase, the decrease rate no longer follows a similar behavior
and increases with time. The linear behavior is uncommon for bubble
growth occurring in cavitation events, which follow growth rates typically
with an exponent of 1/2 [46] for spherical bubble cavitation. The diver-
gence is assumed to be caused due to the effects of the forced stretching
motion inducing a rapidly changing pressure and flow field leading to a
different growth rate. When investigating the retraction phase periods, it
is apparent that the time required from the maximum diameter until the
bubble collapses is shorter compared to the growth phase and does not
show a linear contraction behavior.

Next, the relation between the pressure evolution and bubble growth is
investigated. The extremum of the numerical pressure function is reached
after tp∗ = 0.22× 10−3 s with a standard deviation of 1.8× 10−5 s for all
performed transient cavitation measurements. Therefore, the theoretical
maximum pressure is relatively narrowly distributed. Whereas the distri-
bution of the inception times scatter more and are best represented in the
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Figure 4.8: Evolution of the largest bubble diameter with transient cav-
itation events are shown. The shown measurements were
performed with the liquids Gly50 and Gly60, accelerations
150 and 180 m/s2 and with the same dimensionless height
of λ = 4.5 × 10−4. Additionally, the bridge height over
time is included as area plot for the substrate accelerations
150 − 180 m/s2 and the mean extremum pressure time tp∗ is
shown.

form of a logarithmic normal distribution with a mean of 1.29 × 10−3 s
and standard deviation of 9.15×10−4 s, see figure 4.9. The need for a log-
arithmic normal distribution is apparent since the distribution is skewed
partly because of exclusively positive values [140, 141]. Reasons for the
large scatter in the inception times are the number of parameters affect-
ing the bubble onset leading to inhomogeneities in the liquid and at the
surface serving as nuclei. Due to the fluid dynamic conditions, existing
bubbles start to grow from inside nuclei and are only visible after reaching
a specific size.

When comparing the times between the occurrence of the extremum
of the pressure functions tp∗ and the maximum bubble diameter, the pre-
viously discussed bubble inception times are inevitably included in the
measurements. By comparing tp∗ from figure 4.5 and 4.6 with the bubble
diameter evolution of figure 4.8, it can be observed that the time differ-
ence between the maximum pressure and the bubble inception point is of
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Figure 4.9: Histogram of the bubble inception times of the transient cav-
itation events. Additionally a logarithmic distribution fit is
added with a mean of µ = 1.29×10−3 and standard deviation
s = 9.15× 10−4.

the order of nearly one millisecond. The waiting time between the occur-
rence of maximum pressure and the formation of bubbles is known from
other studies [46], in which equation (1.1) is numerically integrated and
then used to calculate the bubble growth depending on the pressure func-
tion. Due to the unknown size of the initial bubble radius and the derived
pressure equation being only valid until cavitation occurs, an analytical
solution commonly based on equation (1.1) is not possible with the intro-
duced equations. But when adjusting the introduced viscous pressure to
take the bubble growth into account, a bubble growth estimate is possible,
as shown in the following section.

4.2.3 Dynamics of the Cylindrical Bubble Expansion

In this section, the dynamics of a cavitation bubble is modeled. Only cases
with a single cavitation bubble are considered in this study. Nevertheless,
the conclusions of this study can be potentially applicable also to cases
with multiple bubbles.

During the stretching process of the liquid bridge, when cavitation phe-
nomena arise, two opposing movements are present. Due to the expansion
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of the bridge, the outer diameter reduces, while on the inside, a radially
increasing cavitation bubble emerges. As discussed in the previous sec-
tion, the rate change of the bubble diameters shows a linear behavior
during its growing phase for different parameters. In contrast, during the
reducing phase, no precise rate of the decrease can be determined. That
and the observation explained earlier that the diameter is much larger
compared to the height of the bubble, which led to the assumption that
the geometry of the cavitation bubble is cylindrical. A cylindrical bubble
geometry could explain the suppressed bubble collapse of the cavitation
events of back cutting, due to a cylindrical bubble giving a broader point
of attack for a pressure compensation than a half cap sitting close to the
surface.

Figure 4.8 shows the bridge height H(t) compared to the diameter of
transient cavitation bubbles during their growth and collapse phase. The
curve represents accelerations from 150−180 m/s2 and therefore diverges
over time. The diameter of the bubble is significantly larger than the
distance between the fixed and moving substrate. Therefore, the bubble
can not have a spherical or half-cap shape since expansion in the axial
direction of the bridge is restricted by the bridge height. Even though it
is not possible to get an experimental image of the side bubble profile in
the first microseconds with the current setup, the shown bubble diameter
and bridge height gives an estimate of the bubble geometry. It is assumed
that the side profile is a cylindrical shaped bubble, which is stretched
during the bridge deformation.

In order to be able to validate the explained hypothesis a new pressure
estimate is required. Therefore, the radial velocity of the outer liquid
bridge is derived with help of the continuity equation in the following
form:

∂H

∂t
π(r2 −R2

b) + 2πrHur − 2πRbH
∂Rb
∂t

= 0. (4.1)

The elongation of the liquid bridge represented by the first term of
equation (4.1) combined with the radial outward expansion of the cavi-
tation bubble in the second term and the radial inward movement at the
external surface in the third term. Here Rb is the bubble radius, ur is
the radial retracting velocity at the surface of the bridge, as shown in
figure 4.10. The expression for the average radial velocity in the liquid is
obtained in the form
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Figure 4.10: Sketch of cylindrical bubble formation during an cavitation
event.

ur =
−r2 ∂H

∂t +R2
b
∂H
∂t + 2HRb ∂Rb∂t

2rH . (4.2)

The expressions for H and ∂H
∂t are given in equation (3.10). With the

help of the pressure gradient from the simplified Navier-Stokes equation,
introduced in equation (3.9) for viscous stretching, and the new radial
velocity ur of equation (4.2), the expression for the pressure pb at the
surface of the cavitating bubble can be derived in the form:

pb =
∫ Reff

Rb

12urµ
H2 dr. (4.3)

Thereby Reff is the effective radius without any formed fingers, determined
in figure 3.21.

Neglecting the pressure at the surface due to the much larger viscous
pressure, it can be assumed that at the surface pb|r=Reff . The other pres-
sure terms are neglected due to the large magnitude of the viscous pres-
sure term, as explained later in greater detail in chapter 4.2. By solving
equation (4.3) the bubbles diameter growth rate can be derived as:

∂Rb
∂t

=
−2R2

b
∂H
∂t ln

(
Reff
Rb

)
−R2

b
∂H
∂t +R2

eff
∂H
∂t

4HRb ln
(
Reff
Rb

) . (4.4)
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In order to get an scalable solution, the dimensionless time for the bub-
ble growth is introduced as τb and for the dimensionless bubble amplitude
as Λ:

τb = t

√
a

2H0
, Λ = Rb

R0

√
2H0
at2

. (4.5)

To to find and validate the linear growth behaviour of the cavitation
bubbles, the amplitude ratio Λ has to be derived next. This can be
achieved by differentiating equation (4.5) and applying the already known
∂Rb
∂t from equation (4.4) as demonstrated hereinafter:

∂Λ
∂τb

= −
τb

[(
τ2
b + 1

)
Λ2
(

2 ln
[

1√
τ2
b

+1Λ

]
+ 1
)
− 1
]

2 (τ2
b + 1)2 Λ ln

[
1√

τ2
b

+1Λ

] (4.6)

When solving the differential equation and using only the positive pos-
itive solution, Λ can be determined as a function of τb. With the initial
condition τb = τb,inc known from the experimentally determined time of
inception, the estimate for the dimensionless Λ is:

Λ =

√
ln( τ2

b
+1

1+τ2
b,inc

)
√
τ2
b + 1

. (4.7)

The extremum of the dimensionless amplitude ratio Λ is now easily
obtainable and gives the point in time of the maximum bubble diameter,
also known from the conducted experiments as tb,max. Therefore a vali-
dation of the experimentally determined inception and maximum times is
available in the form:

τb,max =
√
−1 + e1+τ2

b,inc . (4.8)

In figure 4.11 the maximum time τb,max is shown as function of τb,inc
together with the ideal relation for cylindrical bubble growth behaviour
from 1 + τ2

b,max = e1+τ2
b,inc . The measured relation between the inception

time and the time of the maximum bubble area coincide with the derived
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Figure 4.11: Bubble growth of transient cavitation measurements. The
dashed line show the ideal growth rate of a cylindrical bubble.
Here τb,max is the experimentally determined dimensionless
time instant of the maximum bubble diameter. τb,inc rep-
resents the measured dimensionless inception times of the
beginning of the bubble growth phase.

analytical solution for the same problem. It validates the earlier intro-
duced hypothesis that the stretching of the liquid bridge and the initial
geometry constraint lead do a cylindrical bubble geometry.

4.3 Conclusion

Under certain conditions, the expansion of the liquid bridge can lead to
different cavitation forms. The various phenomena are presented, and the
most influencing parameters are derived and discussed in this chapter.

Two different forms of cavitation are examined, and, by estimating the
pressure close to the substrate, a magnitude for the threshold estimate
is presented. The order of appearance of each phenomenon can be ex-
plained with the help of the estimated pressure. The transient cavitation
phenomenon was already observed in a few other studies, but not seen as a
transition phenomenon between the suppressed cavitation events and the
experiments without cavitation. The transient cavitation phenomenon is
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notably sensitive to parameter changes, especially the liquid bridge height
λ and is only observable in a small corridor of parameters. Furthermore,
the bubble profile during the cavitation is studied, and linear growth and
non-linear contraction are observed. The linear growth rate indicates that
the pressure and flow field differs from the known solutions from the do-
main of cavitation studies.

Additionally, the form of the bubble is thereby assumed to be affected.
Hence, the bubble shape can be elongated in the axial direction due to
the stretching motion in cylindrical geometry. The deviating bubble be-
havior is assumed to be based on a combination of the dynamic pressure
distributions of the cavitation event and the stretching movement. This
hypothesis is validated with a new pressure estimate being valid during
the cavitation growth phase. It is shown that with the cavitation inception
moment and the instant of the maximum bubble diameter, a cylindrical
bubble geometry can be derived.
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5 Fingering Instability of the
Stretching Bridge

In this section, the formation of the bridge instability, leading to the ap-
pearance of the fingers on its surface, is investigated. The surface instabil-
ities leading to finger formation often occur concurrently with cavitation
phenomena and emerge only with larger elongation rates, higher viscosi-
ties, and small bridge height to diameter ratios. In this section, the onset
and the number of finger emerging are discussed, and a theory is derived
to estimate both parameters. Parts of this chapter have been published
in [21, 142].

5.1 Phenomenological Description

As the available experimental set-up allows top and side view measure-
ments of the stretching process, an example of a side view, high-speed
visualization of a stretching Gly80 bridge is shown in figure 5.1. The
difference to the measurements introduced in figure 3.1 and 3.2 is the
uneven interface shape visible at 3.7 ms and at 5ms, indicating a finger
formation. In this example, the substrate acceleration is 180 m/s2 and
the initial height is 20µm. The initial liquid bridge height-to-diameter
ratio is λ = 0.02. A more distinct pattern occurs for even smaller bridge
heights, then the bridge separates in single bridges, as shown in the pre-
vious chapter in figure 4.3. Which was conducted with an dimensionless
height of λ = 4× 10−5 with Gly80 and an acceleration of 180 m/s2.

A more distinct view of the finger formation is available in figure 5.2
from the top view set-up. The diameter relevant for the formation of the
finger instability is DM , as introduced in figure 3.21. Several typical top
views of the liquid bridge through the transparent substrate are shown at
different instants for various experimental parameters. In some cases, the
onset of instability can be seen, leading to finger patterns.
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Figure 5.1: Evolution of the diameter of a liquid bridge. Side views of a
Gly80 bridge stretched with constant acceleration of 180 m/s2.
The initial gap is 20µm and the gap-to-diameter ratio is λ =
0.02. Reprinted from [21] under CC BY 4.0.

The most stable case in figure 5.2 a) is obtained with a relatively wide
gap and low acceleration. It is apparent that during the stretching, only
the diameter DM starts to recede beginning at 2.2 ms and is keeping
its nearly its cylindrical shape up to 6.6 ms. The most unstable case,
associated with the highest number of fingers, corresponds to the highest
accelerations and smaller initial gap widths, as shown in the example in
figure 5.2 b). After 0.7 ms, distinguished cup forms are recognizable,
and after 1.4 ms, the final finger pattern is visible. The finger pattern
shows branches that unite towards the midpoint of the cylinder, and at
the inner part, an undisturbed area is apparent. After 5.8 ms, the finger
pattern is getting blurry, and the deposited liquid is starting to recede
into its optimized surface shape. In the example in figure 5.2 c), fingers
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Figure 5.2: Top view of the receding interface due to bridge stretching
under various experimental conditions: a) liquid Gly50, sub-
strate acceleration a = 180 m/s2, relative gap width λ = 0.03;
b) Gly50, a = 180 m/s2, λ = 0.006; c) Gly50, a = 10 m/s2,
λ = 0.06; d) Gly80, a = 10 m/s2, λ = 0.03. Contact angles are
θ ≈ 40° for Gly50 and Gly80 on the glass substrate. Reprinted
from [21] under CC BY 4.0.
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can be observed even with relatively small substrate acceleration, but
only for small dimensionless heights λ. The slower stretching rate with
the same non-dimensional height, as shown in 5.2 c), leads to a coarser
finger pattern with fewer fingers formed. The branches apparent at 5.4 ms
do not show side branches up to the final pattern. In figure 5.2 d), the
effect of increased liquid viscosity is shown, which leads to a clear finger
pattern again. The cusps start to be visible at 2 ms and form more
evenly distributed at the receding surface as in 5.2b). The homogeneous
deformation can be attributed to the higher viscosity.

Overall it can be concluded that increasing the substrate acceleration
or viscosity enhances the finger instability, whereas, with an increasing
dimensionless height λ, finger formation is mitigated.

The central part of this study was conducted using quartz glass sub-
strates with a static contact angle of θ ≈ 40°. For the measurements shown
in this chapter, the outer contour of the bridge also remains pinned during
finger formation, due to the time scale of the emerging fingers is relatively
short compared to the dewetting time scale, as shown before. To investi-
gate the effect of wettability on the finger instability, a few measurements
with different contact angles were also performed and added to the study.
Therefore, the silanized substrates with contact angles as high as θ ≈ 110°
are used in addition.

Another already introduced phenomenon affecting the finger formation
quite significantly is the cavitation during liquid bridge stretching. The
constriction of the inner bridge diameter and the pressure dynamics close
to the cavitation bubbles substantially change the pressure distribution.
The pressure estimate used for the linear stability analysis in this chap-
ter does not consider the pressure fluctuations caused by the cavitation
events. This approach was chosen to reduce the complexity of the finger
formation problem as a first approach. The effect of the bubble emergence
on the finger formation, especially the derived prediction, is analyzed fur-
ther in the discussion section of this chapter.

5.2 Stability Analysis of the Bridge Interface

In this section, a stability analysis is performed based on experimental
measurements of the flow in a thin gap between two substrates. The
problem is linearised in the framework of the long-wave approximation.
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It is assumed that the main reason for the surface instability at the bridge
surface is the appearance of a normal pressure gradient at the interface.
This mechanism is analogous to the Rayleigh-Taylor instability, where the
pressure gradient is caused by gravity or by the interface acceleration, as
already mentioned in chapter 1.

5.2.1 Long-Wave Approximation of Small Flow
Perturbations on a Planar Interface

Since the diameter of the liquid bridge is much larger than the gap thick-
ness, DM � H, the flow leading to small interface disturbances can be
considered in a Cartesian coordinate system x, y, where the x coordi-
nate coincides with the radial direction normal to the meniscus, defined
as x = 0, and the y direction is tangential to the meniscus, as shown
in figure 3.21 for t1. The kinematic relation (3.4) allows the evalua-
tion of the necessary condition DM � H, which is satisfied at times
t �

√
2(DM,0/2−H0)/a. In all our experiments, this condition is satis-

fied. To reduce the size of the following equations, R is used instead of
DM/2, and the partial derivative is given in the form of u,x instead of ∂u∂x .

The coordinate system x, y is fixed at the meniscus of the liquid bridge,
such that

r = R+ x. (5.1)

The small flow perturbations, in the direction normal to the substrates,
are neglected. Liquid flow occupies the semi-infinite space x ∈] −∞; 0].
Denote u′(x, y, t); v′(x, y, t) as the velocity vector of the flow perturba-
tions, averaged through the gap width, and p′(x, y, t) is the pressure per-
turbation. The absolute velocity and the pressure p in the gap can be
expressed in the form

u = Ṙ(t) + u′(x, y, t), v = v′(x, y, t), p = p0(x, t) + p′(x, y, t). (5.2)

Therefore, the time derivatives of the components of the velocity field
can be written in the form

u,t = R̈+ u′,t − Ṙu′,x, v,t = v′,t − Ṙv′,x. (5.3)

The gap thickness H is assumed to be the smallest length scale in the
problem. In this case, consideration of only the dominant terms in the
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Navier-Stokes equation, written in the accelerating coordinate system,
yields

p,x = µ

(
−bṘ+ u′

H2 + u′,xx + u′,yy

)
− ρR̈− ρu′,t, (5.4a)

p,y = µ

(
−b v

′

H2 + v′,xx + v′,yy

)
− ρv′,t, . (5.4b)

The characteristic value of the leading viscous terms in the pressure gra-
dient expressions (5.4a) and (5.4b) is µbu′/H2

0 . The characteristic time of
the problem is

√
H0/a. Therefore, the inertial terms of the flow fluctu-

ations are of order ρu′,t ∼ ρu′
√
a/H0. The Reynolds number, defined as

the ratio of the inertial and viscous terms, is therefore

Re = a1/2H
3/2
0 ρ

bµ
. (5.5)

In all experiments, the Reynolds number is of the order of 10−2. The
inertial effects associated with the flow fluctuations are therefore negligibly
small. The governing equation for the velocity perturbation can then be
obtained from (5.4a) and (5.4b), neglecting the terms ρu′,t and ρv′,t:

− bu
′
,y − v′,x
H2 + u′,xxy + u′,yyy − v′,xxx − v′,yyx = 0. (5.6)

The velocity field u′, v′ has to satisfy (5.6) as well as the continuity
equation and the condition of the shear-free meniscus surface:

u′,x + v′,y = 0, (5.7a)
u′,y + v′,x = 0, at x = 0. (5.7b)

Consider the sinusoidal profile of the flow fluctuations along the y di-
rection. This means that both velocity components include the term eik,
where k is the wavenumber. The corresponding velocity field for the ve-
locity of the small flow disturbances satisfying (5.6)-(5.7b) is

u′ =
(
ekx − 2H2k2

b+ 2H2k2 e

√
b+H2k2
H x

)
eikyT (t), (5.8a)

v′ = i

(
ekx − 2Hk

√
b+H2k2

b+ 2H2k2 e

√
b+H2k2
H x

)
eikyT (t), (5.8b)
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where T (t) is a function of time.
The small perturbations of the meniscus shape, defined as x = δ(y, t),

are determined by the normal velocity component u at the meniscus x = 0.
The boundary conditions for the meniscus perturbations, δ,t = u at x = 0,
yield

δ = eikyG(t), with T (t) = b+ 2H2k2

b
Ġ(t). (5.9)

The pressure increment, associated with the flow perturbations at the
interface, p′, is determined by the capillary forces and viscous stress:

p′(x, t) = −σδ,yy − 2µu,x, at x = δ(y, t). (5.10)

The total pressure near the meniscus also depends on the curvature
in the plane normal to the substrate. In this study, the dependence of
the shape of the meniscus in this plane on δ(y, t) is neglected, since the
capillary pressure associated with this curvature is approximated by p ∼
σ/H. Thus, this pressure does not depend on the y coordinate and does
not contribute to flow stability.

The pressure p′ at position x = 0 can be approximated accounting for
the smallness of the shape deformation:

p′ = −σδ,yy − δp0,r − 2µu,x, at x = 0, (5.11)

where p0,r is the pressure gradient at the meniscus of the basic flow,
determined in (3.13). The term δp0,r appears as a result of linearisation
of the pressure terms in the neighbourhood of the liquid bridge interface.

Substituting (5.11) in expression (5.4b) yields, with the help of (5.8a)-
(5.9), the following ordinary differential equation for the function G(t):

b
(
k3σ − kp0,r

)
H2G(t) +

[
4H3k3

(√
H2k2 + b−Hk

)
+ b2

]
µĠ(t) = 0.

(5.12)
The solution of the ordinary differential equation (5.12) is

G(t) = δ0e
− b
µ

∫ t
0

H2(k3σ−kp0,r)
4H3k3(√H2k2+b−Hk)+b2

dt
, (5.13)

where δ0 is the initial meniscus perturbation.
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5 Fingering Instability of the Stretching Bridge

The function G(t) in (5.13) can be derived using (3.4) and (3.13). It
can be expressed in dimensionless as

G = δ0e
√
b

2λ

∫ τ
0

Ω(ξ,τ)dτ
, (5.14)

Ω =
τξ
(
τ2 + 1

)−3/2 − ξ3

Ca

(
τ2 + 1

)2 + Re(1−2τ2)ξ√
2
√
τ2+1

1− 4 (τ2 + 1)3
ξ3
[
ξ(τ2 + 1)−

√
(τ2 + 1)2ξ2 + 1

] , (5.15)

where the dimensionless time τ , the dimensionless wave number ξ and the
capillary number Ca are defined as

τ = t

√
a

2H0
, ξ = kH0√

b
, Ca =

√
aµR0√
2H0σ

. (5.16)

The Reynolds number is defined in (5.5) and the geometrical parameter
is λ = H0/2R0, as defined in §5.1.

Equations (5.14) and (5.15) allow computation of the evolution of the
amplitude of waves for a given wavelength and given parameters of the
liquid bridge stretching.

In figure 5.3 the dimensionless amplitude of the perturbations of the
bridge radius ln(G/δ0), computed using (5.14), is shown as a function
of the dimensionless wavenumber ξ for various times τ . In the cases
shown in figure 5.3a) and b), corresponding to a large number of fingers,
the absolute amplitude of the perturbation G is two orders of magnitude
higher than the amplitude of the initial perturbations δ0. In the case of
figure 5.3c) close to the finger formation threshold, G/δ0 ∼ 101, while in
the case shown in figure 5.3d), in which no apparent finger pattern has
been observed, the value of G/δ0 is of order unity. In each of the cases
shown in figure 5.3a) the wave number corresponding to the maximum
amplitude is only slightly dependent on time but is significantly influenced
by the parameters of the bridge stretching.

5.2.2 Approximation for Small Capillary Numbers

In the long-wave approximation, values of ξ are assumed to be small. This
assumption can again be examined after the solution for typical values of
ξ has been obtained. In this study, only the dominant terms are taken
into account, while the terms of O(ξ4) are neglected. The corresponding
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Figure 5.3: Dimensionless amplitude of the radius perturbations ln(G/δ0)
as a function of the dimensionless wave numbers ξ for various
time instants τ , computed by numerical integration of (5.13).
a) Ca = 2.45, Re = 0.005, λ = 0.0059, b) Ca = 0.704, Re =
0.0026, λ = 0.0099, c) Ca = 0.0663, Re = 0.0252, λ = 0.0109
and d) Ca = 0.5109, Re = 0.034, λ = 0.0902. Reprinted from
[21] under CC BY 4.0.

approximate expression for
∫ τ

0 Ωdτ is derived in the form

∫ τ

0
Ω(ξ, τ)dτ = ξ − τ

(
3τ4 + 10τ2 + 15

)
ξ3

15Ca − ξ√
τ2 + 1

− Reξ√
2

(
τ
√
τ2 + 1− 2arcsinhτ

)
+O(ξ4). (5.17)

The most unstable mode ξ∗ associated with the maximum positive value
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of the function
∫ τ

0 Ωdτ is therefore

ξ∗ =
√
Ca

[
1− 1√

τ2+1 + Re√
2

(
τ
√
τ2 + 1− 2arcsinhτ

)

τ
( 3

5τ
4 + 2τ2 + 3

)
]1/2

. (5.18)

The dimensionless time τ is of the order of unity. The value of the
dimensionless wave number also has to be small in the framework of the
long-wave approximation used in this study. Therefore, the solution (5.18)
for the most unstable mode ξ∗ is valid only for small capillary numbers.

The wavelength of the most unstable mode is `∗ = 2π/k. The number
of finger-like jets is therefore

Nf = 2πR/`∗ =
√
b

2λ
ξ∗√

1 + τ2
. (5.19)

The expression for the number of fingers is obtained using (5.18):

Nf =
√
bCa

2λ

[
1− 1√

τ2+1 + Re√
2

(
τ
√
τ2 + 1− 2arcsinhτ

)

τ(τ2 + 1)
( 3

5τ
4 + 2τ2 + 3

)
]1/2

. (5.20)

The predicted number of fingers depends on the dimensionless time τ .
Observations confirm such dependence.

5.3 Results and Discussion

The maximum value of the function Nf (τ) can be computed from (5.20).
In the limit Re = 0, the maximum,

Nmax ≈ 0.38
√
Ca/λ, Ca� 1, Re = 0 (5.21)

is reached at the instant τ? ≈ 0.49. The predicted bridge radius R cor-
responding to the maximum number of jets is therefore R? = R0(1 +
τ2
? )−1/2 ≈ 0.9R0.
In figure 5.4, the experimentally measured number of fingers at various

instants and corresponding radii scaled by R0 are shown exemplarily for
three different values of Ca, but for nearly the same amounts of λ and
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Figure 5.4: The number of fingers Nf as a function of the liquid bridge ra-
dius R observed in three different experiments. The measure-
ments were performed with λ ≈ 0.01 and Re ≈ 0.1. Reprinted
from [21] under CC BY 4.0.

Re. The number of fingers reaches the maximum at the radii R?/R0 ≈
0.8− 0.9, as predicted by the theory.

For lower radii R � R?, corresponding to longer times τ , the flow in
the gap is significantly influenced by the nonlinear effects associated with
the growth of fingers. Such a nonlinear analysis is out of the scope of this
theoretical study. For smaller Ca numbers, the influence of the nonlinear
effects becomes larger; for those cases, we have to limit the analysis to a
local maximum at R > R?.

The amplitude of the perturbations at the corresponding conditions,
ξ = ξ?, τ = τ?, can also be estimated for small capillary numbers:

G? ≈ δ0e0.11Ca1/2λ−1
, Ca� 1, Re = 0. (5.22)

Given the approximate estimation of the number of fingers (5.20), the
dimensionless parameter Nmaxλ/Ca

1/2 is a function of the Reynolds num-
ber if the capillary number is small. In figure 5.5 this dependency is com-
pared with theoretical predictions based on the numerical computation
of the maximum value of the expression for Nf (5.20). The theoretical
predictions do not contradict the experiments. However, the clear depen-
dence of the number of fingers on the value of the Reynolds number is not
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Figure 5.5: Scaled maximum number of the observed fingersNmaxλ/Ca
1/2

as a function of the Reynolds number. Reprinted from [21]
under CC BY 4.0.

that apparent due to the relatively large scatter of data. This scatter can
be explained by the fact that in the cases close to the finger formation
threshold, the amplitude of perturbations is relatively small at the time
instant corresponding to Nf = Nmax. Therefore, the fingers can only be
recognized by the optical system slightly later, when the amplitude magni-
fication is significant. The conditions near the finger formation threshold
(5.24) are discussed later in this section.

The approximate solution (5.18) for the most unstable mode, based
on the assumption of the smallness of ξ∗, does not apply to the cases
when the capillary number is not very small. In these cases, a complete
numerical solution is required. In this solution the values of ξ∗(τ) for a
specific capillary number Ca and Reynolds number are first computed as
a point corresponding to the maximum of

∫ τ
0 Ωdτ , where Ω(ξ, τ) is defined

in (5.15). Then, the maximum number of fingers is computed using (5.19)
at the time interval τ > 0. The theoretically predicted values of Nmaxλ
are determined only by the capillary number and the Reynolds number.
The theoretical predictions of Nmaxλ are shown in figure 5.6. As expected,
the influence of inertia becomes significant when both the capillary and
Reynolds numbers are relatively large.

The significance of the inertial effects in this problem is rather sur-
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Figure 5.6: Computational results of Nmaxλ as a function of the capillary
number Ca for various Reynolds numbers Re. Comparison
with theoretical predictions based on the approximate solu-
tion. Reprinted from [21] under CC BY 4.0.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4
  Re = 0
  Re = 0.05
  Re = 0.1
  Re = 0.2

 
 

p 0
,r/

Figure 5.7: The values of the scaled pressure gradient at the meniscus in-
terface p0,r/Π as a function of dimensionless time τ for various
values of the Reynolds number Re. The scale for the pressure
gradient, Π, is defined in (5.23). Reprinted from [21] under
CC BY 4.0.
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prising, noting the very small values of Reynolds numbers considered in
this study. The main factor governing the finger formation process is the
pressure gradient at the meniscus interface (3.13), obtained from the base
solution. The mechanism of instability caused by the positive normal pres-
sure gradient at the liquid interface is analogous to the Rayleigh-Taylor
instability [143], where this gradient is caused by gravity or interface accel-
eration. In the presented case, this term can be written in dimensionless
form using (5.5) and (5.16):

p0,r
Π = τ

(τ2 + 1)7/2 +
Re
(
1− 2τ2)

√
2 (τ2 + 1)5/2 , Π =

√
abµ

2
√

2H3/2
0 λ

. (5.23)

Function p0,r(τ)/Π is shown in figure 5.7 for various values of the
Reynolds number. The inertial effects associated with terms in (5.23),
including the Reynolds number, are most pronounced at the very initial
stages of the bridge stretching when the substrate velocity (and thus the
viscous stresses) is small. This is why, in the case of the liquid bridge
stretched by an accelerating substrate, both viscous and inertial effects
contribute to the meniscus instability.

For the measurements performed on hydrophobic substrates, the num-
ber of fingers was estimated correctly, showing that hydrophobicity does
not have a significant effect on the finger instability (see figure 5.8). As
shown in figure 3.15, the finger patterns start to emerge before the dewet-
ting begins. Following the previously introduced measurements in §3.2.3
and the consistent estimation from [144], the time scale for the contact line
speed is udewetting =

√
σ/ρR, which is in our experiments of the order of

10−2 m/s. The finger formation time scale τ =
√

2H0/a can be estimated
using equation (5.16), which yields τ ∼ 10−3−10−4 s. Consequently, the
dewetting length for the relevant time scale is of the order 10−5 − 10−6

m and, therefore, too small to affect the finger instability. The difference
between the two-time scales provides an approximate validity range of the
proposed finger instability theory. Therefore, the introduced prediction
of the number of fingers is in good agreement with substrates of different
wetting conditions, as shown in figure 5.8, as long as the finger formation
and dewetting time scale are not of the same order.

The experimental and theoretically predicted values for Nmax are com-
pared in figure 5.8. The agreement is rather good for most of the cases. In
some instances, however, the number of fingers is overestimated. Several
voids in the liquid bridge have been observed in all these overestimated
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Figure 5.8: Comparison of the measured and theoretically predicted max-
imum number of fingers Nmax.The experiments accompanied
by cavitation are marked by circles. The static contact angle
of the measurements marked as diamonds, rectangles and cir-
cles is θstatic = 40°, while that of the measurements marked
as triangle is ≈ θ = 110°. The straight dashed line corre-
sponds to perfect agreement between experiment and theory.
Reprinted from [21] under CC BY 4.0.

experiments, formed due to cavitation. In some cases, these voids quickly
expand, leading to the formation of the structures resembling Voronoi tes-
sellation, as shown in the examples in figure 5.9. These cases are marked
as liquid bridge stretching with cavitation.

Several additional cases have also been observed, marked in figure 5.10
as transient cavitation. In these cases, a small number of macroscopic
voids emerge far from the interface and then disappear after some time
when the stresses are relaxed. It is most probable that, in this transi-
tional case, the flow in the stretched bridge is influenced locally, also near
the interface, by the nucleation of microbubbles. Even if the size of the
bubbles does not exceed the critical diameter of cavity formation, they
can still influence the flow near the moving meniscus.
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0 ms 0.4 ms 0.9 ms

5 mm

1 ms 1.5 ms 6.9 ms

Figure 5.9: Example of the void formation during liquid bridge stretching.
The liquid is Gly80. The other experimental parameters are:
a = 180 m/s2, H0 = 60µm, λ = 0.006. Reprinted from [21]
under CC BY 4.0.

0 ms 2.4 ms 2.9 ms

5 mm

3.6 ms 4.1 ms 4.6 ms

Figure 5.10: Example of the transient cavitation. Several voids are formed
in the central part of the liquid bridge and then disappear.
The liquid is Gly80. The other experimental parameters are:
a = 10 m/s2, H0 = 53µm, λ = 0.006. Reprinted from [21]
under CC BY 4.0.
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Figure 5.11: Nomogram for the outcomes of liquid bridge stretching for
various values of λ and capillary number Ca. The threshold
for bridge finger formation is obtained from the full computa-
tions for Re = 0 of λthreshold, corresponding to the condition
Nmax = 5. The approximate solution (5.24) is also shown on
the graph, but it is indistinguishable from the results of full
computations for Ca < 1. Reprinted from [21] under CC BY
4.0.

In figure 5.11, the outcomes of the liquid bridge stretching (stable re-
ceding of the meniscus without finger formation or the emergence of ap-
parent finger formation) are shown for various values of λ and Ca. It is
not always easy to determine the outcome at the limiting cases near the
threshold conditions. A finger formation is identified in this study if more
than five periods of the interface waves can be observed. The condition
Nmax = 5 is used as a criterion for selecting the experiments leading to
finger formation. This criterion also allows theoretical prediction of the
threshold value λthreshold for given capillary and Reynolds numbers. As
shown in figure 5.5, the influence of the Reynolds number on the num-
ber of the fingers is minor, and, to a first approximation, the threshold
value λthreshold is a function only of Ca. For small capillary numbers,
the threshold value of λ can be estimated using the approximate solution:
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(5.21)
λthreshold ≈ 0.076

√
Ca, Ca� 1, Re = 0. (5.24)

It is interesting to note that in the limit Re = 0, the same scaling as in
(5.24), namely λthreshold ∼

√
Ca, corresponds also to a certain amplitude

Gthreshold ≈ 1.7δ0 of the shape perturbations δ(y, t), where δ0 is the initial
shape disturbance. This relation can be obtained from (5.22). Since the
initial disturbance δ is very small, the perturbations of the amplitude
Gthreshold cannot be resolved with the optical system. Note, however,
that Gthreshold characterizes the amplitude of the perturbations at the
predicted time τ = τ?, corresponding to the maximum number of fingers.
This amplitude continues to grow nearly exponentially in time. This is
why in the cases close to the threshold, the fingers can be recognised at
times slightly larger than τ? and thus at radii close to R/R0 ≈ 0.8, as
shown, for example,s for the case Ca = 0.29 in figure 5.4.

Therefore, both conditions, a certain number of fingers, and a certain
amplitude of the disturbances can be used as conditions for the observable
generation of fingers.

5.4 Conclusion

In this study, the pattern formation in a liquid bridge stretched by an
accelerating substrate is investigated experimentally and modeled theo-
retically. The maximum number of fingers is measured for a large range
of liquid viscosities, gap widths, and substrate accelerations.

The finger formation process is studied using linear stability analysis
for small perturbations of the liquid bridge shape. The theory accounts
for the viscous stresses, capillary forces, and inertial effects. The model is
developed for a single-sided accelerated substrate. It allows calculations of
the amplitude of a specific wavelength on the bridge surface over time as
long as λ� 1 and the two-dimensional approximation applies to the flow
field. Consequently, a prediction is derived for the number of fingers. The
agreement with observations is good, despite the fact that no adjustable
parameters have been introduced into the model. The prediction is, how-
ever, only applicable if no cavitation occurs. For experimental cases where
cavitation occurs, the theory overestimates the number of fingers.

A criterion λthreshold ≈ 0.076
√
Ca has been obtained for the onset of

102



5.4 Conclusion

finger instability. The finger formation assumed a certain number of ob-
servable fingers. For lower numbers Nmax < 5, the instability is perceived
as the loss of the asymmetric shape, but not as finger formation. For
Nmax < 1 the flow should be stable.

An alternative condition for finger formation, namely the threshold
value for the amplitude of perturbations, leads to the same scaling for the
threshold conditions: λthreshold ∼

√
Ca [45].
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6 Pinch-Off Time

In this chapter, the dynamics of the liquid bridge stretching leading to
its pinch-off are investigated. Experiments on a fast bridge stretching
and pinch-off are performed with the aim to extend the existing semi-
empirical model [96] valid for very viscous liquids. The focus lies on
describing the pinch-off behavior for smaller initial bridge heights for low
and high viscous liquids. The interest for investigating much smaller liquid
bridges for high stretching rates derives from printing applications with
initial gap heights of only a few nm. For such applications, the knowledge
of the pinch-off behavior is highly relevant for the process stability and
optimization in order to improve the liquid transfer. The measurements
involve different dimensionless initial gap heights with λ (ratio of initial
bridge height to initial bridge diameter) and a wide range of accelerations.
A semi-empirical model is developed to predict the pinch-off time. Parts
of the following sections have been published in [22, 122].

6.1 Dynamics of a Stretched Liquid Bridge -
Short times

The flow in the liquid bridge has already been thoroughly described in
chapter 3. The phenomena considered in this chapter are shown in figures
3.1 and 3.2.

6.1.1 Governing Dimensionless Parameters

In the initial stage of the bridge stretching, when D � H and the radius
of curvature of the meniscus is comparable with the distance H, the diam-
eter D(t) of the bridge can be roughly estimated from the mass balance
equation

D = D0η
−1/2, η ≡ H

H0
, (6.1)
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where η is the dimensionless gap thickness. The experimental data on
the middle bridge diameter is compared with the predictions (6.1) in fig-
ure. 3.10 and 3.11 for various accelerations and various liquid viscosities.
The agreement between the predictions and the measurements is rather
good. This agreement indicates that the deformation of the meniscus by
the internal stresses or inertia is small in this stage. Such behaviour of
the liquid bridge meniscus is observed only in the cases when the flow
instability leading to the finger formation is not significant [55, 71–74].

At larger times, the evolution of the bridge diameter deviates from the
predicted values in (6.1). This occurs because the inertial stresses in the
stretched bridge become significant.

Balance of inertia and viscous forces One important property deter-
mining the dynamics of jet stretching is the ratio of the viscous and iner-
tial terms, ρUsubstrateR/µ. It is obvious that since the moving substrate
in our experiments accelerates, the role of the inertial terms can increase
in time. The inertia-to-viscosity ratio can be expressed as a function of
the dimensionless gap thickness η accounting for the kinematic condition
H = H0 + at2/2

ρUsubstrateR

µ
= 2
√
η − 1
η

Re, η > 1. (6.2)

where the Reynolds number, defined as

Re ≡ ρa1/2λ1/2R
3/2
0

µ
, (6.3)

and determines therefore the threshold distance η = η?µ at which the mag-
nitudes of the viscous and inertial stresses are comparable. The distance
ηµ can be estimated from (6.2) for high value of the Reynolds number

η?µ − 1 ∼ Re−2, if Re� 1. (6.4)

At small Reynolds numbers, Re� 1, the effect of the viscous stresses is
dominant during the entire stretching process since the value of (η− 1)/η
approaches the unity as η → ∞. In these experiments, only the cases
Re� 1 are considered. For example, for all three cases of water stretch-
ing shown in figure 3.1, the duration of the initially viscosity dominated
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period is of the order of microseconds. Therefore, the bridge stretching is
governed by inertia and surface tension.

At a distance between the substrates exceeding ηµ, the flow in the
stretching jet is governed mainly by inertial forces.

Balance of inertia and capillary forces At a certain time instant tσ
the substrate velocity Usubstrate = at can exceed the capillary velocity
Vσ of the wave propagating along the liquid bridge. Since the capillary
velocity determines the speed of propagation of the information about
the substrate motion, at larger times (t > tσ), the bridge stretching is no
longer influenced by the substrate motion.

The velocity of the capillary wave along the liquid bridge can be esti-
mated as

Vσ ∼
(
σ

ρD

)1/2
=
(
σλ

ρH0

)1/2
η1/4. (6.5)

An expression for time t = [2H0(η − 1)/a]1/2, obtained from the kine-
matics of the substrate, moving with the constant acceleration, and the
condition Vσ = Usubstrate, is

η − 1
η1/2 ∼

λσ

2ρaH2
0
, η > 1. (6.6)

If the right-hand side is much smaller than unity (or in other words
if the Weber number is much larger than the unity), the dimensionless
distance η = η?σ at which the jet starts to stretch freely by inertia is
expressed in the asymptotic form

η?σ − 1 ∼We−1, We ≡ ρaH2
0

λσ
. (6.7)

6.2 Dynamics of a Long Liquid Bridge and Jet -
Long Times

At long times, when the length of the liquid bridge is much larger than
its diameter, the dynamics of the flow can be described well by a quasi
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one-dimensional mass and momentum balance [26]

ρπR2(u,t + uu,z) + F,z = 0, (6.8)
2R,t + 2uR,z = 0. (6.9)

where R(z, t) and u(z, t) are the radius and axial velocity of the jet, which
both depend on the axial coordinate z and time t.

The force F (z, t) applied to the jet cross-section accounts for the viscous
stresses, the axial component of the surface tension force and the term
associated with the Young-Laplace pressure jump

F = 3µπR2u,z + 2πσR
(1 +R2

,z)3/2 − πR
2σκ, (6.10)

κ =
1 +R2

,z −RR,zz
(1 +R2

,z)3/2 . (6.11)

At long times the jet stretching is governed by inertial forces. In this
stage, a large part of the bridge is stretched as a nearly cylindrical ax-
isymmetric jet.

The asymptotic solution for very fast jet stretching [89]

u = z

t+ τ
, R = R0

χ√
t+ τ

, (6.12)

exactly satisfies the balance equations (6.10), (6.11). Here τ and χ are
some constants which are determined by the initial stage of the bridge
stretching, R0 = D0/2 is the initial jet radius.

Matching the long-time solution with the solution from equation 6.1 for
the initial bridge deformation at the dimensionless distance η = η? yields

χ =
[

H0
2a(η? − 1)

]1/4
, τ = − (η? − 2)

√
H0√

2a
√
η? − 1

(6.13)

In the present analysis two possible instants for switching to the inertial
stretching regime corresponding to η? are considered, η?σ and η?µ, discussed
in §6.1.

Inertial stretching at long times for higher Reynolds numbers Re � 1
If the Reynolds number is very high, Re > We1/2, the value of ηµ can

108



6.2 Dynamics of a Long Liquid Bridge and Jet - Long Times

be smaller than the value of ησ. In this case the transition from the
initial to the inertial stretching regimes is governed by the liquid viscosity.
Substituting ηµ for ησ in (6.13) and using the expressions (6.4) and (6.12)
we obtain

R ∼ λ1/2R2
0
√
ρ

√
µ
√
t+ τ

. (6.14)

Inertial stretching at long times for higher Weber numbers, We � 1
Substitution of expressions (6.13) in equations (6.10) and (6.12) yields
with the help of (6.7) the expression for the jet radius R

R ∼ R0H
3/4
0 ρ1/4

σ1/4λ1/4√t+ τ
. (6.15)

The predicted evolution of the radius R in expression (6.15) does not
depend on the substrate acceleration a or the liquid viscosity if the Weber
number is much larger than unity. This result is in good agreement with
earlier observations in [96]. The linear dependence of the term 1/R2 on
time predicted in (6.15) is confirmed by the experimental data, shown in
figure 6.1.

Let us introduce the radius and time in dimensionless form

R̃ = R

R0
, t̃ =

√
σ

8ρD0
. (6.16)

Equation (6.15) with the help of (6.16) yields the following remote
asymptotic solution for the jet radius R̃ ∼ t−1/2. As can be seen in
figure 6.2 the value R̃−2 is proportional to t̃ and the data for various
Reynolds numbers lie very close to the same straight line.

Nevertheless, the coefficient of proportionality depends significantly on
the initial relative gap width λ. This dependence is illustrated in fig-
ure 6.3. The influence of the λ value on the evolution of the jet radius is
most significant at the early stages of the liquid bridge stretching. In this
study, this influence is determined empirically by fitting the experimental
data. The resulting expression is written in the form

R̃ ∼ λ0.9t̃−1/2. (6.17)

109



6 Pinch-Off Time

0 1 2 3 4 5
·10−3

0.5

1

1.5

·106

t, s

1/
R

2 ,
1/

m
2

Re = 300
Re = 220
Re = 100
Re = 60

Figure 6.1: Evolution of the value 1/R2 as a function of time t for various
Reynolds numbers. In all the cases the values of the Weber
numbers are high. The substrate acceleration is 180 m/s2.
The liquids are Gly10, Gly20, Gly40, Gly50 described in Ta-
ble 2.2. Reprinted from [22] under CC BY 4.0.
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Figure 6.2: Relation of the dimensionless term built on the basis of the
jet radius, 1/R̃2 and dimensionless time t̃ for various Reynolds
numbers. Reprinted from [22] under CC BY 4.0.
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Figure 6.3: Relation of the dimensionless term built on the basis of the
jet radius, 1/R̃2 and dimensionless time t̃ for various dimen-
sionless gap widths λ. Reprinted from [22] under CC BY 4.0.

6.3 Modelling the Pinch-Off Time

The values of the pinch-off time for smaller values of λ are shown in
Figs. 6.4 and 6.5 as a function of the substrate acceleration a for various
liquid viscosities and various values of λ, respectively. The pinch-off time
reduces with increasing substrate acceleration but reaches some plateau
value for very high substrate accelerations. Moreover, for all accelera-
tions, the pinch-off time increases significantly for higher liquid viscosities.
Similar behaviour has been observed recently in [96] for larger values of
λ > 0.45.

Let us consider the pinch-off near the meniscus formed at the solid sub-
strate. The shape of the meniscus is determined mainly by force produced
by the jet stretching. The expression for the viscous part of this force,
obtained with the help of (6.10) and (6.12) is

Fµ = 3πµR2u,z = 3πµR2
0χ

2

(t+ τ)2 . (6.18)

It was shown in [126] that the pinch-off time corresponds to the instant
when the viscous force Fµ is comparable with the capillary force σRU .
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Figure 6.4: Liquid bridge pinch-off times in s as a function of acceleration
in m/s2 for deionised water 1 mPas, 50 % glycerol-water mix-
ture 5 mPas and 80 % glycerol-water mixture 47 mPas with a
dimensionless height of λ = 0.2. Reprinted from [22] under
CC BY 4.0.
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Figure 6.5: Liquid bridge pinch-off times in s as a function of acceleration
inm/s2 different dimensionless heights λ0.05, λ0.15 and λ0.25
for deionised water. Reprinted from [22] under CC BY 4.0.
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The pinch-off time is therefore scaled as

tbr + τ ∼
[
µR2

0χ
2

σRU

]1/2

. (6.19)

In most of the cases considered in this study, τ � tbr and can be
neglected.

Estimating the parameters of the jet stretching at long times from
(6.13), equation (6.19) leads to the following expression for the pinch-off
time for high viscosity liquid bridges

tbr ∼ Tµ ≡
λ1/2µ1/2ρ1/4R

5/4
0

σ3/4 , Re < 1. (6.20)

The predicted scale for the pinch-off time does not depend on the sub-
strate acceleration. The timescale (6.20) has been obtained in [96] for
relatively high values of the dimensionless gap thickness λ and high vis-
cosity liquids.

For low viscosity liquid bridges Re � 1, the evolution of the liquid
radius is described by expression (6.14). In this case the condition (6.19)
yields

tbr ∼ Tσ ≡
λ1/2R

3/2
0 ρ1/2

σ1/2 , Re� 1. (6.21)

In figure 6.6 the scaled pinch-off time tbr/Tσ is plotted as a function of
the Reynolds number. It can be clearly seen that for Re > 10 this ratio
approaches a constant, tbr/Tσ ≈ 3.0.

For lower values of the Reynolds numbers the viscosity starts to play
a more important role and the data for tbr/Tσ deviates from the plateau
value. For small Reynolds numbers the pinch-off time is scaled well by
Tµ defined in (6.20), as demonstrated by the experiments in [96]. In
comparison to the measurement performed by [96], shown in red squares
in figure 6.6, it is clearly visible that at Re < 10 the pinch-off times
depart from tbr/Tσ ≈ 3.0 and are no longer predictable with the timescale
of Tσ. Measurements from [96] for Re > 102 confirm our Tσ, and our
measurements for Re < 10 overlap with the experimental data from [96]
for similar Re.
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Figure 6.6: The scaled pinch-off time tbr/Tσ for different Re and dimen-
sionless heights 0.05 < λ < 0.3 in blue circles and from [96]
for 0.5 < λ < 0.8 in red squares. Reprinted from [22] under
CC BY 4.0.

6.4 Conclusion

In this section, the kinematics and pinch-off of a single liquid bridge
stretched by an accelerating substrate are investigated using a high-speed
video system. The main feature compared to previous studies [96] is the
relatively thin initial width of the gap between the substrates. This case
is relevant to many industrial applications.

The results show that several regimes of bridge stretching can be iden-
tified. For high viscous liquids and relatively high dimensionless heights
λ, associated with the relatively low Reynolds numbers (since the velocity
of the meniscus propagation is inversely proportional to

√
λ), the flow is

influenced by the viscosity effects. The pinch-off time in these cases is
scaled well by viscous time Tµ. This scaling agrees very well with the
experimental results [96].

For low viscous liquids and smaller dimensionless heights λ, the time
scale is defined mainly by surface tension. In our experiments, the pinch-
off time is scaled very well by Tσ if the Reynolds number is much larger
than unity.

The new time scale model for smaller bridges allows liquid bridge pinch-
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off to be predicted for processes more similar to the geometry of gravure
scales in industrial printing applications.
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In the present study, the liquid bridge expansion with high constant ac-
celerations is investigated for different liquid properties and different ge-
ometric form conditions. Although the phenomena have been studied for
more than a hundred years, the occurring phenomena, especially on an
industrially relevant short time and small length scale, are still not fully
understood physically.

In this study, the flow in a thin liquid bridge between two substrates
generated by the accelerated downward movement of the lower substrate
is experimentally investigated and theoretically modeled. The novelty of
this study is the combined investigation of high stretching rates at small
form factors. In the performed parameter studies, accelerations up to 180
m/s2 and initial bridge heights of 50 µm are presented.

An experimental system has been developed to create liquid bridges
with initially very small heights and to study their stretching under high
accelerations from different perspectives.

Various phenomena occurring during the bridge expansion are experi-
mentally investigated and theoretically modeled in this work. The mod-
eling begins with cavitation events that form within the liquid bridge
during bridge expansion. Then, the occurrence threshold and the number
of finger patterns at the liquid surface are measured and modeled for a
wide range of liquid viscosities, gap widths, and substrate accelerations.
Finally, the pinch-off behavior of liquid bridges is investigated in more
detail. Although the three phenomena occur on different scales, they are
all relevant for industrial processes. The leading actors are always the
viscous forces, inertial forces, and surface forces. Throughout all exper-
imental investigations of this study, the time scales were so short that
dewetting is negligible.

The investigation starts by deriving the pressure at the substrate sur-
face with the geometry of the liquid bridge from the silhouette measure-
ments. From those, a threshold estimation for the occurrence of cavitation
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events is presented. It can be remarked that next to the cavitation, tran-
sient cavitation can also be observed. The estimated pressure can explain
the sequence of occurrence of each phenomenon. The transient cavitation
phenomenon has already been observed in several other studies, but it was
not considered a transitional phenomenon between cavitation events and
experiments without cavitation. The transient cavitation phenomenon
is particularly sensitive to parameter changes, particularly to the liquid
bridge height, and is observed only in a small corridor of parameters.
Furthermore, the bubble profile during cavitation is examined, and linear
growth and nonlinear contraction are observed. This nonlinear contrac-
tion results from the stretching influence on the cavitation bubble. It
is shown that cylindrical bubble geometries are produced by stretching
motion.

Next, the development of finger patterns is investigated in detail. The
formation of finger instabilities through small disturbances of the liquid
bridge surface is derived utilizing a pressure estimation along the middle
circumference of the bridge and a linear stability analysis. The prediction
allows determining amplitudes of a particular wavelength over time as
long as λ � 1. From this, a forecast for the number of fingers is derived
and validated. The occurrence is predicted in dependency of a modified
Ca number.

In the last part of the thesis, the pinch-off behavior of liquid bridge
expansions is investigated. The moment of pinch-off can be identified by
employing a force balance in the meniscus region. Compared to previous
studies, the main novelties are the relatively thin initial width of the gap
between the substrates and lower liquid viscosity. The results show that
several regimes of bridge elongation can be identified. The results can
be estimated for a regime with high viscous liquids and relatively large
dimensionless heights λ, combined with the relatively low Reynolds num-
bers by Tµ. In comparison, low viscous liquids and smaller dimensionless
form factors can be represented by Tσ if the Reynolds number is much
larger than one. The prediction of the pinch-off time is consistent with
its own experimental and literature data.

This work’s main findings allow making new theoretical predictions for
different phenomena that arise, especially for smaller bridge heights. How-
ever, in comparison with printing processes, it is noticeable that other pro-
cesses such as non-Newtonian liquids, evaporation, or structured surfaces
make the process much more complex and that these results cannot be
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applied directly. Nevertheless, phenomenological similarities can be seen,
for example, in the appearance of finger patterns. Therefore, the findings
gained in this study may help to better understand finger formation in
printing processes in the future. The results of this work narrow the gap
between the generic investigation of liquid bridges with high viscosities
and low accelerations towards lower viscosities and higher accelerations.
The latter is important for industrial applications such as ice crystal icing
in aircraft engines at low viscosity or printing electronic components.

To better represent the industrial application with the generic experi-
ment, the liquids’ properties, especially non-Newtonian liquid properties,
must be investigated in subsequent studies. Deviating rheology models
can have new influences on the phenomena presented here and lead to
new insights into the processes. Furthermore, the interaction of several
bridges, especially under the influence of the doctor blade and the print-
ing plates, has to be investigated in the future. The doctoring process
plays an important role, especially when investigating the interaction of
multiple liquid bridges. This will allow insights into processes regarding
comparable conditions with similar physical boundary conditions between
the generic stretching experiments and industrial printing processes.
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