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Abstract
The lifetimes of higher-lying excited states were measured for 16C and 23Ne using a target

and degrader setup made of beryllium and gold to apply the Doppler-shift attenuation method.

The experiment was performed at the Argonne National Laboratory exploiting the reaction
9Be(9Be,2p)16C∗ as well as 9Be(16O,2p)23Ne∗, which was available due to oxidation of the target.

The emitted gamma rays were measured with Gammasphere while the charged particles were

detected with Microball. By comparing the measured gamma-ray spectra for different detec-

tion angles and 2p events with Geant4 simulations, lifetimes can be obtained. An elaborated

explanation of the used analysis method and potential uncertainties is given in this work. The

simulations were carried out for two different sets of stopping powers to check their influence

on the results.

For 23Ne the lifetimes of two higher-lying states could be measured for the first time. The life-

time of the (5/2+, 7/2+)2 state (2517 keV) was obtained to 641(79) fs+16 fs
−6 fs

�
systtarget

�
, while

the lifetime of the (5/2+, 7/2+)1 state (1702 keV) was obtained to 168(55) fs+8 fs
−1 fs

�
systtarget

�
+72 fs
−80 fs

�
systfeeding

�
. To consider the feeding for the lower state it was assumed that the angular

distributions are the same for both observed transitions. Theoretical USDB calculations were

able to reproduce the level energies well, while they significantly underestimate the experimental

lifetimes.

For 16C the lifetime of the 4+1 state could be constrained between τMin=1.9+0.0
−0.1

�
systtarget

�
ps

and 4 ps. This results in 2.74 e2fm4≤B
�
E2;4+1 → 2+1
�≤5.78+0.32

−0.00

�
systtarget

�
e2fm4 as a transition

strength limit for the 4+1 state. Theoretical predictions from no-core shell model calculations

with NN+NNN interactions and p−sd shell model calculations for several effective two body

interactions fulfill this constraint. The most likely lifetime range for the 2+2 state was obtained

to be 244 fs to 376 fs. Together with branching ratio limits for this state, which are known

from previous measurements, the transition strengths for the 2+2 state could be constrained. No-

core shell model, recent in-medium no-core shell model, and p−sd shell model calculations are

compared to these results.

In the second part of this work a conceptual design of a 14C electron scattering experiment at

the QCLAM Spectrometer at the S-DALINAC is presented.
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Zusammenfassung
In dieser Arbeit wurden die Lebensdauern von höherliegenden angeregten Zuständen in 16C

and 23Ne gemessen. Dazu wurde mithilfe eines Beryllium-Targets sowie Gold-Degraders die

Doppler-Shift Attenuation Method verwendet. Das Experiment wurde am Argonne National La-

boratory durchgeführt und die Reaktionen 9Be(9Be,2p)16C∗ und 9Be(16O,2p)23Ne∗ verwendet.

Letztere Reaktion wurde durch eine Oxidation des Targets ermöglicht. Die emittierten Gamma-

strahlen wurden mit dem Gammasphere-Detektor gemessen, während geladene Teilchen mit dem

Microball-Detektor erfasst wurden. Durch einen Vergleich der gemessenen Gammaspektren für

verschiedene Winkel und 2p Ereignissen mit Geant4 Simulationen, kann die Lebensdauer der Zu-

stände bestimmt werden. Eine ausführliche Diskussion über die verwendeten Analysemethoden

und die sich daraus ergebenden möglichen Unsicherheiten wird in der vorliegenden Arbeit darge-

legt. Die Simulationen wurden für zwei verschneidene Datensätze für Teilchen-Bremsvermögen

durchgeführt, um deren Einfluss auf die Ergebnisse zu testen.

Für 23Ne konnten die Lebensdauern von zwei höherliegenden Zuständen zum ersten

Mal gemessen werden. Die Messung ergab Lebensdauern von 641(79) fs+16 fs
−6 fs

�
systtarget

�
für

den (5/2+, 7/2+)2 Zustand (2517 keV) und 168(55) fs+8 fs
−1 fs

�
systtarget

�+72 fs

−80 fs

�
systfeeding

�
für den

(5/2+, 7/2+)1 Zustand (1702 keV). Um das Feeding in dem niedrigeren Zustand zu berück-

sichtigen, wurde angenommen, dass die Winkelverteilung für die beiden beobachteten Übergän-

ge gleich ist. Theoretische USDB Berechnungen waren in der Lage die Zustandsenergien gut

wiederzugeben, während sie die experimentellen Lebensdauern unterschätzten.

Für 16C konnte die Lebensdauer des 4+1 Zustandes zwischen τMin=1.9+0.0
−0.1

�
systtarget

�
ps und

4 ps limitiert werden. Dies liefert 2.74 e2fm4≤B
�
E2;4+1 → 2+1
�≤5.78+0.32

−0.00

�
systtarget

�
e2fm4 für

die dazugehörige Übergangsstärkenlimitierung. Theoretische Vorhersagen von No-Core Shell

Model Berechnungen mit NN+NNN Wechselwirkungen und p−sd Schalenmodell Rechnungen

für effektive Zwei-Körper Wechselwirkungen erfüllen diese Limitierung. Der wahrscheinlichste

Bereich für die Lebensdauer des 2+2 Zustandes wurde zu 244 fs bis 376 fs bestimmt. Unter der

Verwendung der Verzweigungsverhältnisse, welche aus früheren Messungen bekannt sind, kön-

nen die beteiligten Übergangsstärken des 2+2 Zustandes beschränkt werden. Die Berechnungen

für No-Core Shell Modelle, ein kürzlich entwickeltes In-Medium No-Core Shell Model und ein

p−sd Schalenmodell werden mit diesen Ergebnissen verglichen.

Im zweiten Teil der Arbeit wird ein konzeptionelles Design für ein 14C Elektronenstreuungs-

experiment an dem S-DALINAC unter der Verwendung des QCLAM Spektrometers vorgestellt.
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1 Introduction
Since hundreds of years one of the biggest questions for which humanity seeks a satisfying

answer can be phrased by “So that I may perceive whatever holds // The world together in its

inmost folds.” †. This question not only drove Goethe’s main character “Faust” into madness, it is

until today one of the most complex challenges for modern science, especially for modern particle

and nuclear physics. Although, many elaborated theories were developed and enhanced in the

last century, there are still many unsolved problems which occur when we try to understand the

fundamental interactions which set up the rules of the universe we live in.

For now, the quantum-mechanical standard model of particle physics explains the innermost

of the world very successfully to a large extend [PRS+14]. This model uses a set of elemental

particles which interact via four different fundamental interactions. One of these interactions is

the strong interaction described very successfully by Quantum Chromodynamics [ME11]. The

strong interaction generates a force which acts on elemental particles which are from the quark

family. The combination of three light quarks can form a nucleon. The so created nucleon is

either a proton (up-, up-, down-quarks) or neutron (up-, down-, down-quarks). Here, the range

of the strong interaction, which glues the three quarks together, does not end sharply at the

end of a nucleon. The interaction reaches outside the boundaries of each nucleon, e.g. as a

pion exchange, and so a residual interaction is created. This residual interaction is the so-called

nuclear force. This force is the reason that many different stable and unstable nuclei consisting

of several nucleons can be formed. These nuclei themselves can form atoms which can create

many different complex types of matter which our world is made of. Although, the nuclear force

plays such an important role and is investigated elaborately in the last decades, its overall form

and properties are not understood yet. This goes hand in hand with the fact that also the strong

interaction is not completely described so far. Additionally, the mathematical evolution going

from the strong interaction to the nuclear force is quite challenging and strongly limited due

to the properties of the strong interaction. It turns out that Quantum Chromodynamics is non-

perturbative in its low energy region and hence it is arduous to apply appropriate mathematical

approximations which describe the interactions between nucleons. Hence, learning more about

the nuclear force helps to understand the strong interaction and vice versa [PRS+14].

Due to this, many different approaches and models which try to describe the nuclear force

were developed until today. It is one main goal of modern nuclear physics to test these different

models and to constrain their ranges of validity. To do so, measurements which get access to the

† “Dass ich erkenne, was die Welt // Im Innersten zusammenhält.” - From “Faust. Eine Tragödie” by Johann W. v.

Goethe
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structure of the nuclei are compared to theory predictions. Here, one very important approach is

the classification of the electromagnetic properties of nuclei and their excited states. Especially

the lifetime determination of gamma-decays of excited nuclear states are a good benchmark for

modern nuclear theories. The lifetime measurements of such decays are a model-independent

way to get an insight in the nuclear structure. In fact, these lifetimes are strongly related to the

transition strengths between two nuclear states. The transition strength itself depends on the

wavefunctions of the involved states and the transition operator. While the transition operator

for electromagnetic transition is known precisely, the wavefunctions will differ for different the-

oretical approaches. Hence, lifetime measurements are a perfect way to probe different nuclear

models [NSS79, Sri06, MK92]. Today, lifetime measurements are carried out for exotic nuclei

which have extraordinary N/Z ratios close to the proton or neutron drip lines [ES08]. For these

cases much more unexpected behaviours can be found as for stable nuclei near shell closures.

Exotic nuclei are even more challenging to be described by theory. For them, details of the used

interaction (e.g. adding three body forces) suddenly can have a huge influence on the electro-

magnetic properties, which did not play a big role for stable nuclei. Hence, exotic nuclei are

interesting cases to test state of the art nuclear models.

In the last years the electromagnetic properties in the neutron-rich carbon isotopic chain were

found to be an interesting candidate to test modern theories. While a large number of different

neutron-rich carbon isotopes are accessible with modern experiment techniques, a variety of

unexpected behaviours could be measured, which challenge the theoretical models. So for ex-

ample, a disappearance of the N=14 sub-shell gap could be observed in the neutron-rich carbon

isotopic chain which is uncommon for nuclei in that region such as neutron-rich oxygen isotopes

[SSS+08]. Focusing on the unstable neutron-rich 16C nucleus, the transition strengths and hence

the lifetimes of the excited states are of big interest. Here, the first excited 2+1 state at 1.76 MeV

was mainly analysed in the past. While two complex measurements using the recoil shadow

methods done by Imai et al. [IOA+04] and Ong et al. [OIS+08] came to inconsistent results

for the lifetime of the 2+1 state, the two more recent measurements performed by Wiedeking et

al. [WFM+08] and Petri et al. [PPC+12] obtained consistent results among each other. In their

works four excited states could be observed in 16C. Wiedeking et al. used a 9Be(9Be,2p)16C∗

reaction while Petri et al. used a 9Be(17N,16C∗)X reaction to investigate lifetimes of the excited

states applying the recoil distance method. The results can be seen in Figure 1.1. The figure

shows a level scheme which is created by combining the results from both works using uncer-

tainty weighted means. For the 2+1 state the lifetime could be determined to 11.5(1.4) ps which

correspond to an E2 transition strengths of B(E2; 2+1→0+)=4.18(53) e2fm4. This strength is very

similar to B(E2; 2+1→0+) strengths which are obtained for 14C and 18C isotopes, whereas e.g. the

B(E2;2+1→0+) strength in 20C is significantly enhanced [RMM+87, OIS+08, VBB+12, PFM+11].

14 1 Introduction
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Figure 1.1: Level scheme of 16C. The energies printed in black are the energies of the states
while the energies printed in red are the transition energies of the gamma rays. These
energies are an uncertainty weighted mean using the results from [WFM+08, PPC+12].
The lifetime of the 2+1 state and the lifetime limits for the three higher-lying states are
printed in green. The lifetime of the 2+1 state is also an uncertainty weighted mean
using the results and statistical uncertainties from [WFM+08, PPC+12]. The branching
ratio limit for the transitions from the 2+2 state is taken from [PPC+12].

A comparison between the experimental results and theoretical predictions for the

B(E2;2+1→0+) strength is given in Figure 1.2. The figure summarize the results from Wiedeking

et al. [WFM+08] and Petri et al. [PPC+12]. The B(E2;2+1→0+) strength in 16C can be repro-

duced well by p−sd shell model calculations using three different empirically derived effective

two-body interactions (WBP, WBT, WBT*) in combination with effective charges. Ab initio No-

Core Shell Model (NCSM) calculations with CD-Bonn 2000 (CDB2k) NN interactions predict a

transition strength which is too small by a factor of two [PPC+12, FRN13]. This is a special char-

acteristic of 16C, where for neighbouring carbon isotopes the predictions from ab initio NCSM

calculations produced better results in terms of B(E2;2+1→0+) [PPC+12, FRN13]. Advanced

NCSM calculations using chiral NN+NNN interactions showed large changes in the results for

the transition strengths, but they do not fully converge to a final value for the B(E2;2+1→0+)
strength [PPC+12, FRN13].

Additionally, the branching ratio for the 2+2→2+1 and 2+2→0+ transitions could be constrained

in the work from Petri et al. [PPC+12]. The 2+2 state mainly decays via the 2+1 state. Only in

less than 8.8 % of the cases, the state decays directly into the 0+ ground state. These proper-

ties are again well reproduced by the p−sd shell model calculations. But the ab initio NCSM

15
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tions and p−sd shell model calculations for several effective two-body interactions
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calculations with CDB2k NN interactions favour the 2+2→0+ transition instead of the 2+2→2+1
transition, which stands in clear contradiction with the measurements [PPC+12, FRN13]. This

problem can be revised if chiral three body interactions are added to the interactions of the

NCSM calculations. Then the NCSM calculations predict a branching ratio of only 2.4 % for the

2+2→0+ transition which agrees with the experiment again. Also the predicted dominant transi-

tion strengths, which mainly define the lifetimes of the 2+2 and the 3+1 state, depend strongly on

the used interactions. They change by a multiple when three body interactions are added. So

for example the transition strength B(E2;3+1→2+1 ) becomes strongly suppressed by a factor of

≈18 for the NN+NNN interactions compared to CDB2k NN interactions [FRN13]. Hence, the

electromagnetic properties of the higher-lying states in 16C are very sensitive to the details of the

underlying Hamiltonian and key observables to benchmark ab initio calculations. But as it can

be seen in Figure 1.1 just an upper limit of 4 ps for the lifetimes of the three higher-lying states

could be obtained in [WFM+08, PPC+12]. So it is important to measure the lifetimes of these

states as precisely as possible.

Most recent measurements from Ciemała et al. could constrain the lifetime for the 2+2 state

[CZC+20]. Here, the lifetimes were obtained by analysing the Doppler-shifted gamma-transition

line shapes from in-flight decays. For these results the obtained lifetime of the 2+2 state depends

strongly on the exact 2+2→2+1 transition energy, which is not known precisely enough so far. Their

results cover an energy range from 2214 keV to 2218 keV. If the transition energy is assumed as
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2218 keV, the lifetime is given by ≈50(20) fs, while it is ≈100+100
−50 fs for 2216 keV. If the transition

energy is assumed as 2214 keV, only a lower limit of 210 fs can be given. A more precise constraint

of the lifetime could not be achieved, because the number of counts were too low.

Due to the situation mentioned above, it is the goal of this thesis to measure the unknown life-

times of the three higher-lying states in 16C and compare them to p−sd shell model calculations

as well as NCSM calculations and to new state of the art in-medium similarity renormaliza-

tion group NCSM calculations [GVHR17] for effective chiral two-nucleon plus three-nucleon

interactions [HVH+20]. The expected lifetimes are in the femtoseconds range and due to this

a Doppler-Shift Attenuation Method measurement was realized at the Argonne National Lab-

oratory in 2016. For this experiment a 9Be beam bombarded a 9Be target which enables the

fusion-evaporation process 9Be(9Be,2p)16C∗ [WFM+08]. At the downstream end of the target

a gold degrader was mounted which slows the excited 16C isotopes down until they are fully

stopped. While the isotopes are slowed down they can emit Doppler shifted gamma rays. The

emitted gamma rays were measured using the Gammasphere detector array which can detect

the gamma rays under 17 different angles using HPGe detectors [Lee90]. To select events for

which 16C isotopes are created the Microball particle detector was placed inside the scattering

chamber [SHD+96]. With this detector it was possible to identify the evaporated protons and

sort for events for which two protons were detected in coincidence with gamma rays in the

Gammasphere detectors. By comparing the so achieved experimental gamma-ray spectra to

gamma-ray spectra from Geant4 Monte Carlo simulations one gets access to the lifetimes of

the higher-lying states. In the later analysis it was found that in the data also transitions from
22Ne and 23Ne isotopes can be found due to the oxidation of the 9Be target. The former case

could be used as a benchmark for the experiment and the analysis method because for 22Ne the

lifetimes of the two lowest excited states are known very precisely [SB15]. For 23Ne lifetimes

of two higher-lying states could be measured for the first time. They will be compared to USDB

sd-shell model calculations [BW88, BR06, RMB08, Bro19].

The first part of this thesis discusses the lifetime measurements for 16C and 23Ne. Therefore,

Chapter 2 explains the physical basics and concepts which are necessary to understand the im-

portance of lifetimes in nuclear physics and how they can be measured. Additionally, nuclear

models which are used to calculate the lifetimes theoretically are introduced. In Chapter 3 the

experimental method, the setup and the used detectors are explained in detail. Then Chapter

4 discusses the Geant4 simulations whose results will be compared to the experimental data.

Here the main focus lies on the procedure which creates the excited isotopes of interest in the

simulation and how their energy loss in the degrader is treated. Next, Chapter 5 explains the

overall analysis procedure which is applied to the experimental data. Here, it is explained how

both detectors were calibrated and how the proton cuts were set. Then it is explained how events

were created between coincidence Gammasphere and Microball entries. Furthermore, the proton
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energy and angular distributions are discussed with focus on possible artificial biases to the

lifetime measurements stemming from biases in the proton detection. Finally, Chapter 6 shows

the results which were obtained in this work. First a benchmark test using the known lifetimes

from the states in 22Ne is presented. It confirms the accuracy of the here applied methods. Then

the results for 23Ne as well as 16C are discussed in detail. For 16C the focus is set on the lifetime

of the 2+2 state and a lower lifetime limit for the 4+1 state. The lifetime for the 3+1 state could

not be determined due to contaminations stemming from gamma rays emitted by 15N. Also, the

results for 23Ne and 16C are compared to several theoretical models.

The second part of this thesis will focus on the development of an electron scattering exper-

iment on 14C. An elaborate introduction to this topic is given in the beginning of the second

part.

18 1 Introduction



2 Theory and Physical Background
This chapter contains the physical background that is important to understand the analysis

and interpretation of the experiment discussed in this thesis. First, the gamma decay of excited

nuclear states will be discussed. Afterwards, the measurement of gamma rays and the determina-

tion of lifetimes of excited nuclear states is explained in detail. In the end, the nuclear structure

and theoretical descriptions will be discussed for 16C and 23Ne.

2.1 Lifetimes of Nuclear States and Gamma Decay

This section, which follows [Mat16] and is oriented by [Sri06, MK92, Sta11], will give an

overview about the lifetimes of excited nuclear states and the gamma decay of those. It will

motivate the importance and advantages of lifetime measurements for nuclear structure physics.

During the gamma decay, a nucleus de-excites with a certain probability from an excited state

to a state with lower energy. These states are specified by their quantum numbers and their

energy whereat the total energy of the ground state is the lowest. Every state is described by a

particular wave function |ψ〉, which depends on quantum numbers and fixes the energy of the

state E via the time-independent Schrödinger equation

Ĥ |ψ〉= E |ψ〉 (2.1)

with the Hamiltonian Ĥ. Due to this, |ψ〉 is also called the eigenstate of the nucleus.

The main quantum numbers for a nucleus’ eigenstate are given by the total angular momentum

J and the parity π. In this way, an eigenstate can be identified by Jπ. The quantum numbers of a

particular state are generated by coupling the quantum numbers of the nucleons in the nucleus

and their orbit properties. When a nucleus de-excites from a state |Jπi 〉 with Ei to a state |Jπf 〉
with Ef, the nucleus emits a gamma ray with an energy of

Eγ = hν= Ei − Ef, (2.2)

where the recoil of the nucleus is neglected and v is the frequency of the photon (see Fig. 2.1).

During this de-excitation, the quantum numbers of the nucleus are also changing, and because of

the angular momentum conservation, the gamma-quantum needs to carry an angular momentum
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Figure 2.1: This diagram shows a gamma decay between the initial state |Jπi 〉 and the final state
|Jπf 〉 , where the initial state has the lifetime τ and the level width Γ . The figure is
modified and reprinted from [NSS79] with permission from IOPScience.

l as well. The radiation character of the gamma ray is fixed by the conservation of the momentum

and the quantum-mechanical selection rules to:

|Ji − Jf| ≤ l ≤ Ji + Jf (2.3)

πi ·πf =

⎧
⎨
⎩
(−1)l ⇒ electric character (E)

(−1)l+1 ⇒ magnetic character (M)
(2.4)

Here, the radiation character is often named by its multipolarity 2l instead of using the an-

gular momentum l. Trainsitions with l=1 are called dipole (21=2) transitions, l=2 are called

quadrupole (22=4) transitions, l=3 are called octupole (23=8) transitions and so forth. Also, the

short nomenclature (σl) is used where σ is replaced by “E” for electric or by “M” for magnetic

transitions. For example, the de-excitation Jπi =1−→Jπf =0+ is called electric dipole transition or

shortly E1 transition and Jπi =1+→Jπf =0+ is called magnetic dipole transition or shortly M1 tran-

sition. The radiation character also determines the angular distribution of the gamma radiation.

For more information, see e.g. [MK92].

For the gamma decay, the temporal change of the number of nuclei Ṅi in the excited state |Jπi 〉
is proportional to the total number of nuclei Ni(t) in this excited state |Jπi 〉 at the time t. Hence,

the relation

Ṅi(t) = −λNi(t) (2.5)

applies, which is known as the radioactive decay law. There, λ is the decay constant and denotes

the probability for a transition per unit time. Under the assumption that N0 nuclei are excited in

state |Jπi 〉 at t=0, this differential equation is solved to

Ni(t) = N0 · e−λt = N0 · e−
t
τ . (2.6)
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On the right hand side of this equation, the lifetime τ=1/λ is introduced. The lifetime τ equals

the elapsed time in which the number of excited nuclei is dropped down to N0/e.

To calculate the gamma decay constant λ theoretically, Fermi’s golden rule

λ=
2π
ħh |〈ψf|Vint |ψi〉|2ρ(Ef) (2.7)

is used. There, Vint is the electromagnetic interaction potential, ρ(Ef) is the level density of states

with energy E f , |ψi〉 is the nucleus wave function before the decay, and |ψf〉 is the nucleus wave

function after the decay. Under the assumption that the decay Jπi → Jπf has only one radiation

character given by (σl), Fermi’s golden rule is evaluated to

λ(σl) =
2(l + 1)

ϵ0lħh[(2l + 1)!!]2
·
�Eγ
ħhc

�2l+1

· B(σl; Jπi → Jπf ), (2.8)

which can be also written as

B(σl; Jπi → Jπf ) =
ϵ0lħh[(2l + 1)!!]2

2(l + 1)
·
�
ħhc
Eγ

�2l+1

· 1
τ

. (2.9)

Here, B(σl; Jπi → Jπf ) is the reduced transition strength. A detailed derivation of this equation is

for example given in [Sri06]. The reduced transition strength is calculated via

B(σl; Jπi → Jπf ) =
1

2Ji + 1
·
∑
mi,mf

��〈Jπf | Oσl |Jπi 〉
��2 , (2.10)

with Oσl as radiation transition operator. It can be seen that this transition strength is directly

sensitive to the wave functions of the nucleus.

As a result of Equation 2.9, lifetime measurements are a model-independent way to access

the reduced transition strength B(σl; Jπi → Jπf ). By also theoretically calculating the transition

strength with Equation 2.10, it is possible to test the accuracy of different nuclear wave functions.

For that reason, lifetime measurements are a great tool to check the accuracy of nuclear models

and to get a better insight into the nuclear structure.

Further, it has to be mentioned that due to the finite lifetime of the excited state the energy Ei

of the state is not a discrete value. Following Heisenberg’s uncertainty principle, the energy level

has a certain energy width ΓTotal and is distributed as a Lorentz function around Ei (see Fig. 2.1

left). Here ΓTotal corresponds to the Full Width at Half Maximum (FWHM) of the Lorentz peak.

Furthermore, the equation

ΓTotalτ= ħh (2.11)
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holds [NSS79]. This shows that the lifetime is directly related to the total energy width of the

state. While a state has one fixed lifetime, the decay width ΓTotal is the sum of the partial widths

Γ j of all possible decay modes a state has and hence

ΓTotal =
∑

j

Γ j(σl) (2.12)

as well as

λTotal =
∑

j

λ j(σl). (2.13)

So if more than one decay mode is available for a state, the theoretical reduced transition

strengths B(σl; Jπi → Jπf ) have to be calculated for all available decay modes and then the

decay constants λ j(σl) have to be summed up to the total decay constant λTotal. The total decay

constant λTotal then defines the lifetime τ of the considered state.

If Equation 2.8 is evaluated for the three lowest possible l values following [BM69], one

obtains

λ(E1) =1.59 · 1015 1
s
·
� Eγ

MeV

�3
· B(E1)

e2fm2

λ(E2) =1.22 · 109 1
s
·
� Eγ

MeV

�5
· B(E2)

e2fm4

λ(E3) =5.67 · 102 1
s
·
� Eγ

MeV

�7
· B(E3)

e2fm6

(2.14)

λ(M1) =1.76 · 1013 1
s
·
� Eγ

MeV

�3
· B(M1)
µ2

Nfm0

λ(M2) =1.35 · 107 1
s
·
� Eγ

MeV

�5
· B(M2)
µ2

Nfm2

λ(M3) =6.28 · 100 1
s
·
� Eγ

MeV

�7
· B(M3)
µ2

Nfm4

Comparing these equations reveals that electric transitions are in general about two orders of

magnitude stronger than magnetic transitions of equal multipole orders. For one radiation char-

acter the decay probability reduces drastically if l is increased. Due to this, the most important

transition types are an E1 transition or an E2 transition or a M1 transition. If E1, E2 or M1

transitions are allowed, higher transition orders are unlikely and rarely observed. If E1, E2 or

M1 transitions are forbidden, the next higher transition order is dominant.

In the following work different theoretical shell model calculations will be compared to the
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experimental results for excited states in 16C and 23Ne (cf. Sec. 2.6 and 2.9). For these cases

often E2 transitions are dominant. In shell model calculations Equation 2.10 can be expressed as

B(E2; Jπi → Jπf ) =
1

2Ji + 1

��Mpep +Mnen

��2 (2.15)

for E2 transitions [SZZS04, dS59]. Here Mp and Mn are shell model proton and neutron

quadrupole matrix elements connecting the Jπi and Jπf states. The parameters ep and en are

the effective proton and neutron charge. The effective charges can be used to compensate trun-

cation of the model space which is used in the theoretical calculations. They simulate virtual

excitations of particles from closed shells to higher shells which are normally forbidden due

to the model space truncation [dS59]. Their exact value depends on the shell configuration of

the investigated nucleus. Standard values to reproduce transition strengths for a wide range of

medium mass nuclei with a symmetrical number of protons and neutrons are ep=1.3 and en=0.5.

If a neutron-rich isotope as 16C is investigated the excitations are dominated by the excessive

valence neutrons. Here, the neutrons are less bound which means that their wave function is

more spread out and hence the core polarization becomes smaller [BM69, BM75]. In such cases

the effective neutron charge and the E2 transition strength decrease significantly [SZZS04].

2.2 Gamma-Ray Spectroscopy and Semiconductor Detectors

To measure the lifetime of excited states it is typically necessary to detect the emitted gamma

rays. Gamma rays can interact via several mechanisms with matter. For spectroscopy, the main

important interactions are the photo effect, the Compton scattering, and the pair production. Which

interaction dominates is determined by the atomic number Z of the detector material and the

energy of the gamma ray. For small energies around 0.1 MeV, the photo effect is the main important

one. Here the gamma ray is fully absorbed by an atom from the detector material and an electron

is ejected. The total energy of the gamma ray is transferred to the electron. As a result the electron

overcomes the binding energy of the atom and gains some kinetic energy which is equal to the

gamma-ray energy minus the binding energy of the electron. This electron can create an electrical

signal which can be measured. The signal has to be proportional to the kinetic energy of the

electron and so the signal is proportional to the energy of the gamma ray. For energies between

a few hundred keV up to a few MeV, the Compton scattering dominates. During the Compton
scattering, the gamma ray scatters inelastically on a loosely bound electron from the detector

material. Hence, the gamma ray changes its energy and direction while the electron is kicked

out of the atom and gains some kinetic energy. If Compton scattering happens inside a detector, it

is possible that the gamma ray just deposits a part of its energy (the kinetic energy the electron

takes) and then leaves the detector material again. Above 5 MeV, the pair production dominates.

During the pair production, the energy of the gamma ray is transferred into the creation of
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Figure 2.2: Qualitative spectrum obtained from a gamma-ray detector with a realistic size for a
single gamma-ray energy E (cf. [Mat16, Gil08, Kno00]). The gamma-ray energy E was
larger than 1.022 MeV.

an electron-positron pair. The gamma ray needs an energy of at least E=2mec2≈1.022 MeV to

enable this process. The electron and positron create a measurable signal. Here, the positron

annihilates again with an electron from the material. During the annihilation, two additional

photons are created which have an energy of 511 keV each. These can now deposit their energy

inside the detector material as well or leave it. The cross section that an interaction happens in a

material with the atomic number Z scales with Z4..5 for the photo effect, with Z for the Compton
scattering and with Z2 for the pair production [ES08].

To measure the full energy of a gamma ray, it is important that the whole energy is deposited

inside the detector. This means that inside the detector a sequence of interactions has to happen

which ends with the photo effect for the main gamma ray and all secondary created photons. In

reality, this does not happen for all gamma rays and a complex spectrum like the one shown

in Fig. 2.2 is obtained. The figure shows a qualitative spectrum obtained from a gamma-ray

detector for a single gamma-ray energy E>1.022 MeV. On the right end of the spectrum, we

see the so-called full energy peak at the energy E. This peak corresponds to interactions which

ended with a photo effect and the whole energy is deposited inside the detector. Left from this

peak, we have a section which stems from a scattering sequence of multiple Compton events

in the detector before the gamma ray left the detector. Left from this, we have the so-called

Compton edge. It is a sharp edge in the spectrum. Here the gamma ray interacted once with

the detector via one Compton scattering while the maximum possible energy was transferred to
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the electron (the gamma ray was scattered by 180◦). Left from the Compton edge, we have a

continuous Compton background which corresponds to a single Compton scattering for which

not the maximum possible energy was transferred to the electron. If the gamma-ray energy

E was larger than 1.022 MeV, two so-called escape peaks can be seen on top of the Compton

background. The reason for this peak is the pair production. There, one (single escape) or two

(double escape) photons of the annihilation process left the detector and were not measured.

The peaks are located at E−511 keV and E−2·511 keV.

One main goal of gamma-ray spectroscopy is to increase the ratio between counts in the full

energy peak and the counts in the complete spectrum. This ratio is called the peak-to-total-ratio.

To increase the peak-to-total-ratio the easiest way is to build a large detector. Increasing the size

of the detector faces two problems. First of all, the size of the detector is limited due to technical

reasons. Second, it is not always an advantage to have large detectors. As it can be read in the

next Sections 2.3 and 2.5, it is important to measure the gamma-ray energy and the radiation

angle of the gamma ray at the same time to correct the Doppler shift or to exploit the Doppler

shift for lifetime measurements. This is not possible with a large detector. To use small detectors,

but still get a large peak-to-total-ratio, one uses solid state detectors with large Z (the photo effect
cross section scales faster with Z than the Compton scattering cross section). Another method

to achieve an even better peak-to-total-ratio is the so-called Compton suppression. Here the

actual gamma-ray detector material, which has good detector properties e.g. energy resolution,

is surrounded by an active shielding. This shielding is chosen so that it has a very large total

cross section for any kind of gamma interaction. Other detector properties do not matter for the

shielding. Every time a gamma ray scatters out of the detector, it most probably will interact in

the shielding. Then the active shielding can send a veto to suppress the signal from the actual

detector. Hence, events for which not the total energy is deposited in the detector will be ignored

and the peak-to-total-ratio rises.

Today, semiconductor detectors are often the favourite choice to be used in gamma-ray spec-

troscopy. The reason for this is the combination of good detector properties semiconductor

detectors have. Semiconductors in general are solids with a fixed crystalline structure with a

small energy gap of ≈1 eV between the conduction band and the valence band. To increase the

conductivity, it is possible to dope the semiconductors by implanting impurity atoms into the

crystal lattice. Here, two types are possible. On the one hand, it is possible to implant atoms

which have one valence electron more than the lattice atoms. As a result additional electrons

are added to the system which are energetically just below the conduction band. Here electrons

form the majority of the charge carriers and this type of semiconductor is called n-type semicon-

ductor. On the other hand, it is possible to implant atoms which are missing one valence electron

compared to the lattice atoms. Then electron-holes are created just above the valence band. So
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the majority of charge carriers are positive holes and these semiconductors are called p-type

semiconductors.

To build a semiconductor detector, a n-type and a p-type semiconductor are brought in contact.

Because of the different charge carrier concentrations, a concentration gradient arises. Hence,

the excess electrons of the n-type are moving towards the p-type and the excessive positive

holes of the p-type are moving towards the n-type. This leads to a zone in which the holes and

electrons can recombine and a depletion layer is generated. The depletion layer can have a

thickness of a few µm and no free charge carriers are available for conduction. This area can be

increased by applying a bias voltage. The depletion layer can now be used as an active detector

area. When the area is hit by a gamma ray, it transfers its energy to an electron which then

interacts with the surrounding electrons. Hence, the electron-hole pairs are separated again and

a measurable current is created. For this process the number of separated electron-hole pairs is

proportional to the deposited energy. While the deposited gamma-ray energy is in the range of a

few hundred keV up to a few MeV, the energy to separate an electron-hole pair is in the range of

electron-volts. One interaction can separate millions of electron-hole pairs. Due to this, statistical

fluctuations are small and so the achieved energy resolution is very good. Today e.g. High Purity

Germanium (HPGe) detectors are widely used. With a band gap of only 0.7 eV at ≈90 K, an

energy resolution of FWHM/E0≈0.2 % at Eγ=1.33 MeV is achievable [ES08]. Additionally, with

an atomic number of Z=32, germanium has a large proton number compared to other elements

which are available for semiconductor manufacturing. This large charge number increases the

probability for an interaction of a gamma ray and thus leads to an increase of the peak-to-

total-ratio. Also, HPGe can be manufactured in a very large size in the range of ≈10 cm. All in

all, semiconductor detectors and especially HPGe detectors are a good choice for gamma-ray

detection. This section was adopted from [Mat16, Kno00, ES08, Gil08].

2.3 Relativistic Doppler Shift

This thesis investigates an experiment in which the nuclei of interest are moving while they

are emitting gamma rays. In this case, the relativistic Doppler effect needs to be considered for

energy measurements. Let’s assume that a nucleus is moving in the laboratory frame along the

vector x with the velocity v=|v |. During the flight, the nucleus de-excites by emitting a gamma

ray with the energy Ecm in the rest frame of the nucleus. Then an observer in the laboratory

frame will measure the Doppler shifted energy

ELab(β ,θLab) =
Ecm

γ (1− β cosθLab)
= Ecm

p
1− β2

1− β cosθLab
, (2.16)

where θLab is the so-called radiation angle between the direction of the emitted gamma ray

and x [Sta15, Jac62]. The coefficient β is defined as β=v/c with the speed of light c and
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γ=1/
p

1− β2 is the Lorentz factor. For a velocity much smaller the speed of light, Equation 2.16

can be approximated via

ELab(β ,θLab) ≈
β≪1

Ecm
1

1− β cosθLab
. (2.17)

So for a small β the Doppler shift vanishes if the radiation angle θLab is 90◦. Due to the fact that

the center of mass radiation angle θcm will never play a role in the following analysis, θLab will

also be written as θ for simplification.

2.4 Lifetime Measuring Techniques

The main goal of this work is to measure the lifetimes of excited nuclear states in 16C. Many

different lifetime measuring techniques have been developed in the past. First of all, one has to

distinguish between direct and indirect methods. Direct methods use a technique to directly get

access to the lifetime of the state. Indirect methods are techniques which measure the energy

width of the excited state and then calculate the lifetime using Equation 2.11. The expected

lifetimes in this thesis are in the range of a few hundred femtoseconds up to a few picoseconds,

which means ≈10−13 s− 10−12 s [PPC+12, WFM+08]. Using this as an input in Equation 2.11,

the expected line width would be Γ≈10−2 eV− 10−3 eV, which is not measurable with common

gamma-ray detectors. Therefore, a direct technique has to be used. An overview over all classical

direct lifetime measuring techniques is illustrated in Figure 2.3. Here the lifetime ranges for

which a technique obtains suitable results are shown.

If the lifetime is longer than 10−11 s, electron timing methods become available. Here the

exponential decay of the states is measured to extract the lifetime directly. To do so, the experi-

ment has to be designed in a way that there is the possibility to know at which time the state of

interest was populated. These methods are strongly limited by the time resolution of the used

electronics. For shorter lifetimes it is just not possible to measure the exponential decay because

the electronics can not resolve decays at different times any more. Down to 10−12 s, the so-called

Recoil Distance Method (RDM) is available. In this method, the particle of interest is shot on

a thin target where the nucleus gets excited. Afterwards, it travels a known distance before it

enters a degrader which slows the particle down. The gamma rays are emitted in-flight. Due to

the relativistic Doppler shift (cf. Sec. 2.3), one can distinguish between gamma rays which were

emitted before (particle is fast during decay) and after (particle is slowed down before decay)

the degrader. By looking at the ratio of decays which happened before and after the degrader, the

lifetime can be accessed. This method is limited by the smallest finite distance between target

and degrader which can be measured safely. A detailed overview about the RDM can be found in

e.g. [DMP12]. If the lifetime is even shorter (5 ·10−13 s−10−10 s), the Doppler-Shift Attenuation

Method (DSAM) is available. Here the degrader is directly mounted behind the target. Hence,

the nuclei of interest are continuously slowed down in the degrader while they are emitting the
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Figure 2.3: Ranges for different direct lifetime measuring techniques. Figure modified and
reprinted from [NSS79] with permission from IOPScience.

gamma rays. Then, the lifetime can be accessed by looking at the influence of the Doppler effect

on the gamma-ray spectra (cf. Sec. 2.5). To access lifetimes in the range of 5 ·10−17 s−5 ·10−14 s

the so-called blocking method is used. This method is similar to the RDM but now the travel time

of the excited nuclei of interest is measured between two lattice atoms in a crystal. So on one

hand, the blocking method is sensitive for much smaller lifetimes than the RDM, but on the other

hand, it is much more difficult to realise this method. There are also a few other so-called exotic

techniques like the X-ray coincidences method (10−17 s− 10−15 s) which will be not discussed

in this thesis. A much more detailed discussion about all the methods mentioned so far can be

found in [NSS79].

Furthermore, a new generation of gamma-ray detectors is available nowadays. These position

sensitive gamma-ray detectors, such as GRETA/GRETINA [DLV+99, LCC+04, PLM+13, ES08]

or AGATA [AAA+12, ES08] also allow new lifetime measuring techniques. The heart of these

new devices are electronically segmented Ge detectors, which make it possible to measure the

interaction position of the gamma rays inside the detectors. This additional information allows

the tracking of the interaction path of a gamma ray inside the detectors. This process is called

gamma-ray tracking. With this tracking, the radiation angle of the gamma ray can be determined

much more precisely as a continuous quantity. Exploiting this information, the new continuous-

angle Doppler-Shift Attenuation Method is available [Sta15]. This method is based on the DSAM

but can compare measured line-shapes between simulation and experimental much more pre-

cisely and in a wider lifetime range. This stems from the fact that the line shape can now be

analysed also as a function of the polar angle as a continuous quantity instead of discrete radia-

tion angles. Another new method is the lifetime measurement via decay position reconstruction,

which was investigated in [Mat16]. Here the information of the gamma-ray tracking is used to

reproduce the decay positions of the nuclei which decay in-flight after passing a thin target. With

this a decay position distribution can be achieved, which is directly sensitive to the lifetime of
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the excited state. The range of lifetimes for which this method is feasible depends strongly on

the beam velocity because the beam velocity strongly influences the width of the decay position

distribution. For a beam velocity of β≈0.4, the measurable lifetime range is in the order of

hundreds of picoseconds [Mat16].

2.5 Doppler-Shift Attenuation Method

In this work, the expected lifetimes are in the range of ≈10−13 s−10−12 s [PPC+12, WFM+08].

Also, the gamma-ray detector Gammasphere [Lee90] was used during the experiment which

can measure the emitted gamma rays under 17 different angles covering ≈46 % of the total

solid angle (cf. Sec. 3.3). Because of these reasons, the DSAM is the method of choice for the

experiment discussed here. The DSAM was first applied in 1948 by Elliott and Bell [EB48, NSS79].

Since then, it was widely used to measure the lifetimes of excited states for many different (exotic)

nuclei.

The basic idea of the DSAM is illustrated in Figure 2.4 top. Here an incoming particle beam

with velocity βB hits a thin reaction target. Inside this target some kind of reaction happens

between the beam nuclei and the target nuclei. After the reaction, the residual nuclei can be

excited in the state of interest and have the velocity β0. Those excited nuclei enter the so-called

degrader, which is placed directly behind the target. Its material is chosen so that the probability

of further reactions is small while the nuclei are slowed down sufficiently. This leads to materials

with a large Z . In most cases, the thickness of the degrader is scaled so that all nuclei are stopped

inside the degrader. While the excited nuclei travel through the degrader they can emit gamma

rays.

The number of emitted gammas, N(x), which decay at position x , depends on the lifetime τ

of the excited state and follows the exponential decay law

N(x)∝ e−
t(x)
τ . (2.18)

This equation uses the fact that the elapsed time t(x) corresponds to the position x at which the

decay happens (cf. Fig. 2.4 bottom). How many gamma rays are emitted for stopped particles

depends strongly on the lifetime of the state. If the lifetime exceeds a certain value, decays can

happen while the excited nuclei is already at rest in the degrader.

Additionally, the velocity β(x) of the nuclei at position x decreases while the covered dis-

tance in the degrader grows. Because of this, the Doppler shifted energy ELab(β(x),θ ), which

is measured in the laboratory frame, also depends on the position x of the decay. A schematic

visualisation of this behaviour is illustrated in the bottom part of Figure 2.4.

So, the longer the lifetime of a state, the more excited nuclei will travel further in the degrader

before they decay and will have a smaller velocity during the decay. This means that the mean
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Figure 2.4: Principle of the DSAM. Top: A particle beam hits a target where the reaction of
interest (marked by the star) happens. Afterwards, the excited particles (dashed line)
pass through the degrader which slows them down until they are stopped. During
this process gamma rays can be emitted at all positions (three examples are shown).
The energy ELab(β ,θ ) of the gamma rays which is measured in the laboratory frame
can be calculated with Equation 2.16. Bottom: Schematic drawing of the number of
de-exciting nuclei N(x), the velocity of the nuclei β(x), and the measured energy
ELab(β(x),θ ) in respect to the position x in the degrader. Due to the fact that the
measured gamma-ray energy depends on the position x of the decay and that the
number of decays at a given position x depends on the lifetime, the measurement of
ELab(β(x),θ ) is sensitive to the lifetime of the excited state.
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Figure 2.5: This figure shows simulated spectra of a DSAM measurement. In the Geant4 simula-
tion, the excited nuclei of interest were randomly spawned inside a Be target with
β0=0.05 along the beam axis and slowed down in an Au degrader. For excitation,
three different levels could be populated (cf. level scheme to the right). Each level de-
cays via one possible gamma-ray transition. The center-of-mass gamma-ray energies
are 2215 keV, 2303 keV and 2365 keV. The lifetimes of the state are 100 fs (left peak),
200 fs (middle peak) and 4 ps (right peak). The purple function is a Gaussian fit to
obtain the shift of the centroid ELab as a function of θ .
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decay velocity β gets smaller for longer lifetimes and thus the Doppler shift has a smaller influ-

ence on the gamma-ray energy in the laboratory frame. As a conclusion of these facts, the mean

decay velocity β is directly sensitive to the lifetime of the excited state. To get access to β ,one

exploits Equation 2.16 and modifies it to

ELab(β ,θ ) = Ecm

Ç
1− β2

1− β cosθ
. (2.19)

By measuring the centroid shift of the energy ELab as a function of θ , it is possible to determine

the mean decay velocity β of the excited state. By comparing the experimental measured β to

different assumed theoretical values for β , one gets access to the lifetime of the excited state.

In this work, the theoretical β will be obtained using Geometry and Tracking Toolkit (Geant4)

simulations which are discussed in Chapter 4. If the lifetime is too long, nearly all or all excited

nuclei will decay at rest and no Doppler effect occurs. Then the method can not be applied any

more. This sets an upper lifetime limit for this method.

To define θ , the mounting angles at which the detectors are placed are used. The angles θ

are always measured relative to the beam axis. But these are not the real radiation angles of the

gamma rays. The excited nuclei suffer lateral straggling while they pass the degrader. Hence, the

direction of movement does not align with the beam axis anymore and so the mounting angle

of a detector is not the same as the radiation angle. But due to the fact that the straggling is

uniformly distributed in all directions around the beam axis, these effects cancel on the average.

As a result, the mounting angle can still be used and can be seen as a mean radiation angle θ .

The straggling just adds an additional peak broadening to the energy spectra.

A simulation of a DSAM measurement can be seen in Figure 2.5. The figure shows the mea-

sured laboratory energy ELab for several different θ for three different states with three different

lifetimes; namely 100 fs, 200 fs and 4 ps (cf. level scheme at the right side of Fig. 2.5). The excited

nuclei were randomly spawned inside a Be target with β0=0.05 and are slowed down in an Au

degrader. The three gamma-ray energies in the center-of-mass system Ecm (2215 keV, 2303 keV

and 2365 keV) are marked by the red dashed lines. One can see that the centroid energy ELab

which belongs to the state with 4 ps is not moving in the different spectra because for this state all

decays happen when the nuclei are already fully stopped. For this state, the mean decay velocity

β is zero and hence no lifetime could be obtained in an experiment with the DSAM. For the two

other states, the centroid energy ELab is moving around Ecm as a function of θ . At θ=90◦ the

effect of the Doppler shift vanishes due to the fact that β is small and ELab≈Ecm. For the 100 fs

state, the centroid energy is moving in a wider range compared to the movement of the centroid

energy for the 200 fs state. This is due to the fact that a smaller lifetime has a larger β and the

Doppler effect has a larger influence. Another representation of the simulated data can be seen

in the 2D plot of Figure 2.6. Here, the radiation angle is plotted versus the laboratory energy

of the measured gamma rays. For this the discrete angles of Gammasphere were randomized
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Figure 2.6: Radiation angle versus laboratory energy for a simulated DSAM measurement. The
plot is a different representation of the data from Figure 2.5. In the Geant4 simulation,
the excited nuclei of interest were randomly spawned inside a Be target with β0=0.05

along the beam axis and slowed down in an Au degrader. For excitation, three differ-
ent levels could be populated. Each level decays via one possible gamma-ray transition
and all populate one long-living state which decays after 11.5 ps. The level scheme can
be seen in Figure 2.5 to the right. The lifetimes of the states are labelled in the figure.
The black function is obtained with the fit which is shown in Figure 2.7 (a).

around their center value. This representation will be later used to show the experimental results

because it is more clearly and more compact compared to the representation in Figure 2.5. But

the values for ELab are always obtained by Gaussian fits to the discrete spectra from Figure 2.5.

If, for the here shown example, the lifetime of the state is somewhere between 200 fs and

4 ps it is possible that one transition produces two peaks, for which one peak is moving for

different detection angles and one peak is not moving. This is explained with the fact that for

such lifetimes a part of the nuclei decay in-flight and a part decay while the nuclei are already

fully stopped. The non-moving peak corresponds to the part of nuclei which are already in rest

when the gamma decay happen. The longer the lifetime, the larger the stopped component will

be until only a stopped component is available (e.g. for 4 ps). This behaviour can also be used

for a lifetime estimation as explained and applied in Section 6.5.1.

Furthermore, Figure 2.7 shows ELab as a function of cosθ for the two states with the shorter

lifetime. The centroid energy ELab was obtained by fitting a Gauss-function to the corresponding

peak in Figure 2.5 (purple line). To these data points Equation 2.19 is fitted to obtain the mean

decay velocity. In this example, the results are β=0.0472(1) for the 100 fs state and β=0.0459(1)
for the 200 fs state, which shows that the lifetime of these two states would be resolvable in an

experiment.
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Figure 2.7: ELab as a function of cosθ for β0=0.05 and τ=100 fs (left) as well as for τ=200 fs
(right) created with simulated data. For the τ=100 fs state, 17 data points are avail-
able which are obtained from the purple fits in Figure 2.5. For the τ=200 fs state,
only 14 data points are available because for some forward angles the moving peak
interferes with the peak from the τ=4 ps state (cf. Fig. 2.5 top).

The time scale for the DSAM and the mean decay beta β for a given τ is defined by the slowing

down time of the excited nucleus in the degrader material. Following [NSS79], the attenuation

factor F is introduced. It is defined as the ratio between the mean decay velocity β and the initial

velocity β0 and hence 0≤F≤1. The factor can be expressed as

F =
β

β0
=

1
β0τ

∫ ∞

0

β(t)e−
t
τdt (2.20)

where β(t) describes how the excited nuclei are slowed down in the degrader. It is quite difficult

to get an analytical form for β(t). A first rough approximation, which is a good description

for the electronic stopping process, assumes that the rate of energy loss is proportional to the

velocity which can be written as
dE
dx
∝ v . (2.21)

This fact can also be expressed as

β(t) = β0e−
t
κ (2.22)

where κ is the slowing down time constant depending on the properties of the degrader material.

This leads to

x(t) =

∫
cβ(t)dt ⇒ t = −κln

�
− x

cβ0κ

�
⇒

t in Eq. 2.22
β(x)∝− x

κ
(2.23)
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(cf. Fig. 2.4 bottom). Furthermore, using Equation 2.22 as input for Equation 2.20 gives

F =
1

1+τ/κ
(2.24)

for the attenuation factor. By calculating κ theoretically and measuring F , it would be possible

to get the lifetime τ. Thereby two problems occur: first of all, the derivation of Equation 2.24

uses a simple approximation which is only roughly valid for electronic stopping processes. In

a realistic process, interactions with the nuclei of the degrader also happen. Secondly, it is not

simple to calculate the constant κ theoretically. Due to this, Monte Carlo simulations are used to

model the slowing down process in the degrader. For these simulations the Geant4 framework

is used [Gea14]. More about the Geant4 simulations and the here used implementation can be

found in Chapter 4. A crucial point of these simulations is of course the stopping mechanism for

nuclei in matter. Therefore, the here used stopping powers and the stopping mechanisms of the

simulation are discussed elaborately in Section 4.4.

2.6 The Nuclear Shell Model

To calculate the lifetime of an excited state theoretically, the reduced transition strengths have

to be calculated via Equation 2.10 for all possible transitions starting at this state. To do so,

the wave functions of the involved states have to be known. To obtain the wave functions the

Schrödinger Equation 2.1 has to be solved. Here, the Hamiltonian Ĥ contains the complete

nuclear interaction between all nucleons. The Hamiltonian for a nucleus with A nucleons can be

expressed as

Ĥ =
A∑

i=1

T̂i + V̂ (r 1, r 2, ..., r A) (2.25)

where T̂i is the kinetic energy operator for each nucleon i and V̂ is the operator for total nuclear

potential which depends on the positions r i of all nucleons. While for nucleons with the mass m
the kinetic energy operator T̂i can be simply expressed as

T̂i = −
ħh2

2mi
∇2

i , (2.26)

a global analytical form for the total nuclear potential V̂ is not derived yet. Till today many

models were developed which try to approximate V̂ in such a way that it is possible to solve the

Schrödinger equation and to get reasonable results at the same time. Especially for exotic nuclei

with an unequal ratio of protons and neutrons it becomes very hard to solve the Schrödinger

equation with reasonable effort and hence various approximations have been developed [SH15].

Here two complementary approaches are possible: On one hand semi-empirical methods are
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available which use phenomenological equations deduced from experimental data and obser-

vations concerning nuclei. On the other hand ab initio calculations are available for which V̂
is deduced by using fundamental physical properties and constants of the strong force which

results in the nuclear force. While the ab initio approach is discussed in Section 2.7 the empirical

approach is discussed in this section focusing on the simple nuclear shell model and follows the

descriptions from [Ber07, SP08, Hei19].

In the first step towards the nuclear shell model the short range of the nuclear force is exploited

and so only two-body interactions are considered in the potential V̂ . With this assumption the

Hamiltonian from Equation 2.25 can be changed to

Ĥ =
A∑

i=1

T̂i +
A∑

i< j=1

V̂i j

�
r i, r j

�
. (2.27)

In this new Hamiltonian the operator V̂i j represents the two-body potential between the nucleons

i and j. By defining V̂i j via simple semi-empirical expressions it is in principle possible to solve

the Schrödinger equation using Slater determinants which are derived from a given basis (cf.

beginning of Sec. 2.8). This procedure is equivalent to diagonalizing the respective matrix of the

Hamiltonian Ĥ from Equation 2.27 to obtain its eigenvalues. Here it has to be taken into account

that for an exact solution an infinite set of bases has to be used, which is not feasible for real

calculations. Hence, the basis range has to be truncated which can influence the obtained results.

Although only two-body potentials are used in this method and the basis is truncated strongly,

it still becomes quickly impossible to apply this method to larger nuclei. The dimensionality of

this problem rises too fast when A is increased and even with modern computers this approach

is not feasible. To overcome this problem a central potential Ûi is introduced to the shell model.

The central potential should represent a mean potential which interacts with nucleon i and is

created from the average interaction between nucleon i and all remaining nucleons. By adding

0=
∑

i

�
Ûi−Ûi

�
to Equation 2.27 one obtains the relation

Ĥ =
A∑

i=1

�
T̂i + Ûi (r i)
�

  
ĤCen

+
A∑

i< j=1

V̂i j

�
r i, r j

�−
A∑

i=1

Ûi (r i)

  
ĤRes

. (2.28)

Here, ĤRes marks the residual interaction which is the difference between the central potential

and the real two-body interaction. If the central potential is chosen correctly this term should

be small and can be neglected at first order. Hence, the Schrödinger equation has to be only

solved for ĤCen which describes A independent particles in a central potential. This problem

can be solved rather easily and results in the famous simple nuclear shell model first derived by

M. Goeppert-Mayer, E. P. Wigner, and J. H. D. Jensen in 1949 independently from each other.
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They used a Wood-Saxon potential in combination with a spin-orbit interaction for the central

potential. With this model it was for the first time possible to describe systematics in nuclei over

a large range, such as the magic numbers or ground state spins by assigning the nucleons to fixed

discrete energy levels. The lowest energy levels according to the simple shell model are shown

in Figure 2.8 for protons and neutrons separately. One energy level is also called an orbit which

is defined by a given angular momentum l (lÒ=s, p, d, f , ...) and the total angular momentum

J=l+s stemming from the spin-orbit term. The number of nucleons per orbit is limited due to

the Pauli principle. If the separation energy between two orbits is large a new shell starts. With

the shell closures the magic numbers can be explained. The angular momentum of a state is

now defined by the angular momenta of the orbits which are occupied by an odd number of

nucleons. Orbits which are full or occupied by an even number of nucleons will not contribute to

the properties of the state because the spins of a pair of nucleons couple to zero. When it comes

to higher excited states or to exotic nuclei with an extreme proton to neutron ratio or nuclei far

away from closed shells, the simple shell model loses its validation very quickly.

Then the residual interaction has to be considered as well. Assuming that nucleons from low

lying fully occupied orbitals will not contribute to the behaviour of the nucleus, the Hamiltonian

can be divided into a core with A−N nucleons and N valence nucleons orbiting the core. This

leads to

Ĥ = ĤCore + ĤVal (2.29)

with

ĤCore =
A∑

i=N+1

�
T̂i + Ûi (r i)
�

+
A∑

i< j=N+1

V̂i j

�
r i, r j

�−
A∑

i=N+1

Ûi (r i) (2.30)

ĤVal =
N∑

i=1

�
T̂i + Ûi (r i)
�

+
N∑

i=1

A∑
j=N+1

V̂i j

�
r i, r j

�
+

N∑
i< j=1

V̂i j

�
r i, r j

�−
N∑

i=1

Ûi (r i) (2.31)

for the Hamiltonians. If one considers again just two-body interactions the same trick can be

applied a second time by interpreting the second part as residual interactions which are small.

This changes the equations to

ĤCore =
A∑

i=N+1

�
T̂i + ÛCore

i (r i)
�

(2.32)

ĤVal =
N∑

i=1

�
T̂i + ÛCore

i (r i)
�
+

N∑
i< j=1

V̂i j

�
r i, r j

�
(2.33)

with

ÛCore
i =

A∑
j=N+1

V̂i j

�
r i, r j

�
(2.34)
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as a mean potential produced by the two-body forces of the nucleons of the inner core. Hence,

the residual interaction which plays a significant role is limited to the valence nucleons. This

approach truncated the dimensionality of the problem drastically, but still considers residual

interactions in terms of two-body forces. For the mean potential different sorts of semi-empirical

effective interactions were tested in the past successfully. Their parametrization and the types of

considered shells define the range for which the shell model gives reasonable results.

The description of 16C in the framework of the shell model is shown in Figure 2.8 and is

discussed in more detail in Section 2.9. On the proton side the two lowest orbits 1s1/2 and

1p3/2 are filled, while for the neutrons the three lowest orbits are fully occupied. Hence, the

two remaning valence neutrons should mainly determine the behaviour of excited 16C isotopes.

They can occupy the s and d orbits in the third shell. But also the excitation of protons into the

1p1/2 orbit can influence the results. Hence, p−sd shell model calculations were performed by A.

Brown [Bro20, PPC+12] using the OXBASH shell model code [BERGed] to describe the properties

of 16C. In the calculations harmonic oscillator wave functions were calculated for protons in the

p shell model space and neutrons in the sd shell model space. This was done for three different

sets of empirically two-body nucleon-nucleon effective interactions, namely WBP [WB92], WBT

[WB92], and WBT* [SSS+08]. The interactions are defined by least-squares fits to 51 0p-shell

and 165 cross-shell binding energies. While for WBP and WBT the set of experimental data

which are included to the fit is varied, the WBT* interaction is based on the WBT interaction, but

here the neutron-neutron two-body matrix elements are reduced to 75 %. This was introduced

to compensate that the experimental excitation spectra for several carbon isotopes are system-

atically compressed compared to the WBT results [SSS+08]. The results of these shell model

calculations are discussed in Section 6.5.4.

In the later analysis also excited states from 23Ne are investigated. To describe them theo-

retically Universal sd Shell (USD) calculations were performed by A. Brown [Bro19]. Here only

sd shells are considered in the calculations because lower orbits are fully occupied for protons

as well as neutrons and so they are treated as an inert core. The interaction is derived from free

nucleon-nucleon interactions and modified to fit to various experimental data [BW88]. Later the

interaction was redefined to reproduce even better results for neutron-rich nuclei ending in the

here used USDB interactions [BR06, RMB08]. The results of the USDB calculations are discussed

in Section 6.4.

2.7 Ab Initio Approaches

In the previous section the shell model, which is based on empirical effective interactions, was

introduced. By using such empirical approaches one loses the insight to the underlying physics

which forms the mean nucleon interactions. To get rid of this problem the so-called ab initio
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approach is introduced in this section. It is the goal of such ab initio methods to describe the

nuclear force by using deeper fundamental and microscopical physical principles, while the input

of experimental data should be kept at a minimum.

A possible ab initio method is the No-Core Shell Model (NCSM) which will be discussed in the

next section. It is the basic idea of the ab initio NCSM to expand the Hamiltonian from Equation

2.25 in terms of many-body interactions to

Ĥ =
A∑

i=1

T̂i +
A∑

i< j=1

V̂ NN
i j

�
r i, r j

�
+

A∑
i< j<k=1

V̂ 3N
i jk

�
r i, r j, r k

�
+ .... (2.35)

Here, V̂ NN
i j expresses the two-body interaction which can be compared to the two-body inter-

action from the simple shell model as introduced in the section before and V̂ 3N
i jk represents a

three-body interaction [BNV13]. In principle this Hamiltonian can be expanded up to any order,

but due to the limitation of computation power the expansion is for most cases stopped at the

three-body forces. The two-body interactions are still dominant due to the short range of the

nuclear force and thus this method can lead to similar behaviours as the shell model. Neverthe-

less, adding three-body forces is often sufficient enough to see significant changes in the results

compared to results for which only two-body interactions are considered. This is particularly

pronounced for exotic nuclei for which the number of protons differs strongly from the number

of neutrons. Another important advantage of this approach is that the different interactions can

now be systematically deduced from more fundamental physics. For this the Quantum Chromo-

dynamics (QCD) is used.

The QCD describes the strong interaction between coloured quarks. These quarks form nu-

cleons which themselves form the nuclei. Hence, the interaction between the nucleons is a

residual interaction originating from the strong force [ME11]. To describe the nuclear interac-

tions as a residual force stemming from the strong interaction, the QCD has to be applied in its

low energy region. This is highly non-trivial due to the fact that the QCD is non-perturbative

in the low energy region because the strong interaction gets more powerful for long distances

(≳1 fm). To overcome this problem the chiral Effective Field Theory (EFT) was derived. An

elaborate description of the chiral EFT and its development can be found e.g. in [ME11]. Next,

a short summary of the idea of the chiral EFT is given following [ME11, Hei19].

The chiral EFT underlies all symmetries of the QCD and the interactions are described by the

exchange of hadrons or contact terms. Here, a suitable separation of scales has to be defined

which limits the amount of possible hadrons in the calculations to limit the model space and the

computational requirements. For the separation of scales the large gap between the masses of

the pions (mp=140 MeV/c2) and the masses of vector mesons like ρ(770) (mρ=775 MeV/c2)

is appropriate. Hence, the pion mass defines the so-called soft scale Q∼mp and the rho mass

sets a range for the hard scale Λχ∼mρ, which is also called the chiral symmetry breaking scale.
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Using these separation scales the interaction in the chiral EFT can be expanded in terms of the

soft scale divided by the hard scale, i.e. Q/Λχ . Due to this it is enough to consider pions and of

course the nucleons themselves to describe the nuclear interaction in the chiral EFT framework.

As a result from the considerations above, an effective Lagrangian LEff can be expressed as

LEff =Lππ +LπN +LNN + ... (2.36)

using individual Lagrangians for the pion-pion interaction Lππ, for the interaction between

pions and nucleons LπN, and for the contact term of the nucleon-nucleon interaction LNN. Each

individual Lagrangian can be expanded by increasing orders following

Lππ =L (2)ππ +L (4)ππ + ... (2.37)

LπN =L (1)πN +L (2)πN +L (3)πN + ... (2.38)

LNN =L (0)NN +L (2)NN +L (4)NN + ... (2.39)

...= ... (2.40)

for which the superscript reflects the number of derivatives or pion-mass insertions (also referred

as the chiral dimension). Intermediate missing orders would be zero due to symmetry reasons

and therefore they are left out right from the beginning. Detailed mathematical definitions of

those Lagrangians are given in [ME11]. In the next step the chiral perturbation theory is applied

to distinguish between large and small contributions to the total effective Lagrangian. There, the

different contributions are analysed concerning
�
Q/Λχ
�ν

to define for which power ν the terms

are relevant. This so-called power counting revealed that for a given ν just a finite number of

terms contributes to the effective Lagrangian and that these terms underlie a strict hierarchy

while creating the nuclear forces.

Starting with the leading order (LO, ν=0), the Lagrangian consists of two momentum-

independent contact terms (∼ Q0), defined by a nucleon contact term and the static one-pion

exchange leading to a Yukawa potential. Although this is a very limited approximation, already

important features as the tensor force or NN scattering in peripheral partial waves of very high

orbital angular momentum are described well. For the next power ν=1, all contributions van-

ish due to parity and time-reversal invariance. The next leading order (NLO, ν=2) includes

additional higher contact terms with two-pion exchanges. The leading order for the two-pion

exchanges is rather weak, but higher orders of the two-pion exchanges include now a spin-orbit

term as well as central, spin-spin, and tensor terms. In the next-to-next leading order (NNLO,

ν=3) the first non-vanishing three-nucleon forces (NNN) appear, the intermediate-range attrac-

tion is improved strongly and first relativistic corrections are considered in the Lagrangian. Going

even higher to the next-to-next-to-next leading order (N3LO, ν=4) also four-nucleon forces are

available, whereat the four-nucleon forces are considerably weaker than the NNN interactions.

This power counting goes on forever. Due to limited computing power today’s calculations are

often truncated to the N3LO ignoring the four-body forces which is a good compromise between

computation time and level of detail represented in the effective Lagrangian.
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2.8 No-Core Shell Model and Similarity Renormalization Group Methods

In the next step the ab initio NCSM is introduced shortly following the explanations of [BNV13,

Hei19]. The Hamiltonian which has to be solved is given by Equation 2.35. The NN and NNN
interactions can be derived from chiral EFT as explained in the section before. In contrast to

the simple shell model, the NCSM does not define an inert core and all nucleons can contribute

to the properties of the nucleus. A main feature of the NCSM is the choice of the basis and

its truncation. As a basis, the Harmonic-Oscillator (HO) bases are used which are truncated

by a maximal total HO energy. The HO basis is able to deal with single-nucleon coordinates,

which allows the use of the second quantization framework without violating the translational

invariance of the system. This has also the advantage that all tools which have been developed

for the HO basis and the second quantization framework can be transferred straightforward to

the NCSM.

Because the NN and NNN interactions describe a many body system, relative coordinates and

momenta are used in the equations. Due to this, the HO basis can be constructed in Jacobi coor-

dinates. Furthermore, the HO basis has to be antisymmetric because the nucleons are fermions.

In principle it is possible to antisymmetrize the Jacobi-coordinate HO basis, but if more than four

nucleons are considered this is rather impractical and the effort increases dramatically. Hence, a

more systematic way is chosen to create an antisymmetric HO basis for an A body problem. For

this, one starts with the well-known single-nucleon HO wave function for a nucleon i given by

|αi〉= |nlml〉 ⊗ |12 ms〉 ⊗ |12 mt〉 , (2.41)

which is defined by the principal quantum number n, the angular momentum l, the spin s=1/2,

the isospin t=1/2, and their respective projections mx . The energy eigenvalues for a HO wave

function depend on the HO frequency, which is defined by ħhΩ. Then the antisymmetric Slater

determinant is constructed via

|α1,α2, ...αA〉S =
1p
A!

∑
π

(−1)NT(π) · P̂π (α1 ⊗α2 ⊗ ...⊗αA) (2.42)

as a basis. Here, the sum includes all A! possible permutations π of the indices. P̂π represents the

permutation-operator, while NT(π) defines the number of transpositions for a given permutation

π. Now, the total wave function |Ψ〉 can be written as a linear combination of Salter determinants

leading to

|Ψ〉=
∑

α1<α2<...<αA

Cα1,α2,...αA
|α1,α2, ...αA〉S . (2.43)

Until now the basis is infinite and hence it has to be truncated in a sophisticated way to perform

actual calculations. This truncation is defined by deciding which combinations of the quantum
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numbers n and l are allowed. To do so, the maximum possible sum of all HO excitations is

limited to

A∑
i=1

(2ni + li)≤ NTotmax. (2.44)

The truncation parameter NTotmax defines how large the model space will be and so it defines

the complexity of the calculations. Here, the dimension of the problem increases combinatorially

with NTotmax and A. Hence, NTotmax should be chosen as small as possible without losing too much

possible excitation configurations. Due to this, the calculations can be performed for a increasing

number of NTotmax and then the convergences of the observable as a function of NTotmax can

be studied to find a optimal NTotmax or a proper extrapolation of the observables. Often, the

truncation parameter is defined as NMax which limits the maximal allowed HO excitation energy

above the unperturbed ground state. So for small nuclei NTotmax=NMax holds, but for nuclei

with A>4 the truncation parameter NMax gets smaller than NTotmax because an unperturbed

ground state becomes available. If the model space is truncated and the observables are not fully

converged, the results will also depend on the HO frequency ħhΩ. To eliminated a dependency

on ħhΩ the observables can be calculated for different combinations of NMax and ħhΩ. Then the

observables are extrapolated towards NMax→∞ for the different sets of ħhΩ. This has to result in

one final value for the observable, which is independent of ħhΩ (cf. end of Sec. 6.5.4).

A disadvantage of the HO basis is an incorrect asymptotic behaviour and often the model

space needs to be very large to achieve accurate results, which exceeds today’s available com-

puting power quickly. So for the case of 16C, NCSM calculations have problems to converge

in an appropriate way for NN plus NNN interactions [FRN13]. Furthermore, the truncated

many-nucleon HO bases cannot accommodate strong short-range correlations which are often

required for realistic effective interactions. To overcome these problems and to speed up the

convergence at the same time, various renormalization procedures can be applied. Instead of

solving the eigenvalue problem directly by a direct NCSM-type diagonalization, these meth-

ods decouple a reference state from all possible particle-hole excitations to shrink the required

model space. To do so, the renormalization procedures use similarity transformations which

soften the interactions and generate effective operators for all observables. The so derived in-

teractions avoid the before mentioned problems, while at the same time they still act among all

nucleons and preserve all the symmetries of the initial NN and NNN interactions. One possi-

ble renormalization procedure is the so-called Similarity Renormalization Group (SRG) [BFP07].

In the SRG the idea is to diagonalize the Hamiltonian with a continuous unitary transformation

Û(s) which is applied via

Ĥ(s) = Û(s)Ĥ(0)Û†(s), (2.45)
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where Ĥ(0) represents the starting Hamiltonian (e.g. defined by Equation 2.35) and s is the

so-called flow parameter [HBM+16]. Defining the generator

η̂(s) :=
dÛ(s)

ds
Û†(s), (2.46)

Equation 2.45 can be derived to the operator flow equation

d
ds

Ĥ(s) =
�
η̂(s), Ĥ(s)
�

(2.47)

exploiting the fact that η̂(s)= − η̂†(s). With the operator flow equation it is now possible to

transform the Hamiltonian smoothly by integrating over the flow parameter s from 0 to∞. By

rearranging the equation of the generator one obtains a differential equation for Û(s), which can

be solved to

Û(s) = ς · exp

∫ s

0

ds′η̂(s′). (2.48)

With this equation the unitary transformation is well-defined for a given generator. The choice

of the generator η̂(s) regulates how the Hamiltonian will be transformed. For the choice of η̂(s)
many different approaches are possible, which are listed and discussed elaborately in [HBM+16].

A possible way to define η̂(s) is the use of the second quantization by applying a normal

ordering and Wick’s theorem. This approach leads to the In-Medium (IM)-SRG framework

[TBS11, TBS12]. Here, the A−body operators are approximated by two-body methods which

need less computational power. Additionally, the fact is used that low-lying excitation spectra

are dominated by excitations of particles which are close to the Fermi level. This fact suppresses

the coupling between the ground state and excitations strongly if their energies differ to a large

amount compared to the nuclear interaction’s resolution scale. For such a case the ground state

of the system can be fairly approximated by a single Slater determinant |Φ〉 instead of using a

state which is constructed from the vacuum state |0〉. This approximated ground state |Φ〉 can

be used as a reference state to construct a complete many-body basis. Hence, the ground state is

decoupled from the excitations and the model space is decreased without losing significant in-

formation of the system. Due to the fact that the reference state uses a single Slater determinant,

the IM-SRG framework is only appropriate for the description of nuclei around shell closures.

By replacing the normal ordering with the multi-reference normal ordering the IM-SRG

method is further improved to the multi-reference IM-SRG [HBM+16, GVHR17]. Here, the refer-

ence state can be arbitrary correlated and the single-particle states are no longer of pure particle

or hole character. Furthermore, correlations which are difficult to be described as few-body ex-

citations of the reference state can be built directly into the reference state [HBM+16]. Due

to these facts, the multi-reference IM-SRG can also describe open-shell nuclei such as exotic

neutron-rich nuclei [HBM+16].
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Finally, the multi-reference IM-SRG can be combined with the NCSM, to exploit the advan-

tages of both frameworks. This method, which was first derived by Gebrerufael et al. [GVHR17],

is called In-Medium No-Core Shell Model (IM-NCSM), because the key point is the use of an

in-medium decoupled Hamiltonian inside the framework of the NCSM. To combine both meth-

ods Gebrerufael et al. first performed a NCSM calculation with a truncation parameter NRef
Max to

obtain a reference state |Φ〉Ref which has a multidimensional model space for open-shell nuclei.

Then they performed a multi-reference IM-SRG calculation using |Φ〉Ref and an imaginary-time

generator which are a compromise between efficiency and robustness [HBM+16]. Next, the IM-

SRG-evolved Hamiltonians are used in NCSM calculations to obtain the eigenvectors as well

as the eigenenergies for ground- and excited-states. To obtain observables the eigenvectors are

evaluated using operators which have been transformed to be consistent with the IM-SRG frame-

work. This allows the IM-NCSM to describe arbitrary open-shell nuclei, while the complexity of

|Φ〉Ref is well controlled by NRef
Max. Furthermore, the convergence is accelerated considerably due

to the decoupling. The results of these IM-NCSM calculations using NN+NNN interactions from

chiral EFT [HVH+20] are presented and discussed in Section 6.5.4.

2.9 The Neutron-Rich Carbon-16 Isotope

The properties and theoretical descriptions of the exotic neutron-rich nucleus 16C, which

consists of six protons and ten neutrons and has a half-life of 0.75 s [AW76], are discussed in this

section, following [Syn18]. The level scheme of 16C can be seen in Figure 1.1. The properties of

the four excited states are defined by uncertainty weighted means from the work by Wiedeking

et al. [WFM+08] and Petri et al. [PPC+12]. In the framework of the simple shell model, the

nucleons of 16C are arranged as shown in Figure 2.8. On the proton side the two lowest orbits

1s1/2 and 1p3/2 are filled. Due to the relative large gap between the 1p3/2 and the 1p1/2 orbit,

protons should mainly occupy the 1s1/2 and 1p3/2 orbit. The probability to excited protons from

the 1p3/2 to the 1p1/2 orbit should be small. Excitations to higher orbits inside the sd-shell should

be completely negligible. Hence, they are normally not considered in the used model spaces and

nothing is known about their structure. Overall, the contribution of the protons to the properties

of excited 16C isotopes should be small but they are not insignificant. On the neutron side the

s- and the p-shells are fully occupied and the contribution of these nucleons to the properties

of 16C is rather insignificant. Hence, the behaviour of 16C will be dominated by the two valence

neutrons in the sd-shell. Here, the 1d5/2 and the 2s1/2 orbits are degenerated in terms of single

particle energies and a strong mixing of those orbits occurs for 16C and neutron-rich carbon

isotopes in general [SSS+08]. Due to this, the N=14 sub-shell gap between the 1d5/2 and the

2s1/2 orbit disappears for neutron-rich carbon isotopes, while for other nuclei in that region such

as neutron-rich oxygen isotopes a N=14 sub-shell gap is strongly pronounced [SSS+08]. This
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Figure 2.8: The shell structure and nucleons occupation for 16C according to the simple shell
model (cf. Sec. 2.6). The orbits are filled with protons (red) and neutrons (green)
independently. The numbers inside the circles indicate the magic numbers for a given
shell closure. The orbitals are sorted by the increasing single particle energy ESP. The
neutron 1d5/2 and the 2s1/2 orbits are degenerated and a strong mixing of those
orbits occurs for 16C and neutron-rich carbon isotopes in general [SSS+08]. For the
protons nothing is known about the structure of the sd-shell. Also the probability
to excite protons to a sd-shell orbit should be completely negligible and hence the
proton sd-shell is not considered in the model spaces.

can be explained with a reduction in the proton-neutron tensor force and the neutron-neutron

interaction for neutron-rich carbon isotopes [SSS+08]. Evidence for the degeneracy of the sd-

shell in neutron-rich carbon isotopes and especially for 16C were found in several measurements

and theoretical calculations e.g. in [HS07, FMO+07]. So for example, Wuosmaa et al. [WBB+10]

measured the neutron-transfer reaction 15C(d,p)16C to extract relative spectroscopic factors

by comparing the measured cross-section with theoretical distorted-wave Born approximation

calculations. To describe the spectroscopic factors with shell model calculations a strong mixing

of the 1d5/2 and the 2s1/2 orbit is necessary. Furthermore, Horiuchi et al. were able to describe 16C

rather successfully by using a three-body model of 14C+n+n [HS06]. To describe the 14C+n+n

case analytically, they applied the sum of two single n-14C potentials which were determined to

reproduce level energies in 15C well. The total 14C+n+n potential generates almost the same

single particle wave function for both 1d5/2 and 2s1/2 orbits. Hence, they assumed a strong

mixing of the two orbits.
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Due to the before mentioned facts, shell model predictions should be calculated by allow-

ing protons in the p-shell model space and neutrons in the sd-shell model space (cf. Sec. 2.6).

Neutron holes in the p-shell can be ignored because excitations of neutrons from the p to the

sd-shell are mainly Pauli blocked by the neutrons from the sd-shell [PPC+12]. Such shell-model

calculations were successfully applied in the work from Petri et al. [PPC+12] by using the OXBASH

shell model code [BERGed], to describe the excited level energies of the four low-lying excited

states as well as the E2 transition strength of the 2+1→0+ transition and branching ratio limits

in 16C (cf. Fig. 1.1). They tested three different sets of empirically two-body nucleon-nucleon

effective interactions, namely WBP [WB92], WBT [WB92], and WBT* [SSS+08] (cf. Sec. 2.6).

Here, the WBT* potential leads to a very good agreement with the experimental results. To

reproduce the experimental B(E2; 2+1→0+) strength, effective charges were applied (cf. Sec. 2.1)

following the∝1/A parametrisation from [SZZS04]. This confirmed the∝1/A dependency of

the effective charges, which can be explained with core polarization as introduced by Bohr and

Mottelson [BM69, BM75]. Hence, in Section 6.5.4 the results of these shell model calculations

in combination with effective charges will be compared to the results of this work.

Furthermore, in the work from Frossén et al. [FRN13], first large scale ab initio NCSM cal-

culations for neutron-rich carbon isotopes were performed. They used NN interactions such

as the CDB2k NN interactions [Mac01] as well as chiral N3LO two-body forces [EM03] and

chiral N2LO three-body forces [GQN09]. While they were able to reproduce the experimental

B(E2;2+1→0+) strengths well for several neutron-rich carbon isotopes using CDB2k NN inter-

actions, the theoretical prediction is suppressed by a factor of two in the case of 16C. In these

calculations the 2+1 state excitation of 16C is dominated by a re-arrangement of the neutrons in

the sd-shell. Also the experimental branching ratio limit for the 2+2→2+1 (>91.2 %) and 2+2→0+

(<8.8 %) transitions can not be reproduced by the CDB2k NN calculations [PPC+12]. Here

the calculations favour the 2+2→0+ transition instead of the 2+2→2+1 transition. Additionally, the

quadrupole moment of 16C is a special case. For all even neutron-rich carbon isotopes the pre-

dicted quadrupole moments of the 2+1 state are negative except for 16C. Hence, it would be very

interesting to check this fact experimentally, whereat it is rather difficult to get experimental

access to the quadrupole moments of exotic nuclei. Further, Frossén et al. could show that their

results in terms of branching ratios are strongly improved if the chiral three-body forces are

included. For these NN+NNN calculations the convergence speed is reduced drastically and

hence only relative B(E2) strengths could be obtained for the higher-lying states. Neverthe-

less, interesting and strong pronounced changes could be observed when the NNN interactions

were added. So the 2+2→0+ transition is suppressed by a factor of ≈7 for chiral NN+NNN
interactions compared to chiral NN interactions only, and it is suppressed by a factor of ≈20

compared to calculations with CDB2k NN interactions. Also the transition strengths of the other

higher-lying states are influenced strongly by NNN forces. So for example the transition strength
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B(E2;3+1→2+1 ) becomes strongly suppressed by a factor of ≈18 for the chiral NN+NNN interac-

tions compared to CDB2k NN interactions [FRN13]. To speed up the convergence for the chrial

NN+NNN interactions, IM-NCSM calculations (cf. Sec. 2.8) have been recently carried out by

Roth et al. [Rot20, GVHR17]. In the course of this work the NCSM calculations from Frossén et

al. [FRN13] and more recent advanced approaches such as the IM-NCSM calculations will be

compared to the experimental results in Section 6.5.4.

Another approach to describe the first excited 2+1 state of 16C is the simple picture of a two

states mixing as it was investigated in [WFM+08, PPC+12, MPF+14, SPM+20, Syn18]. Here,

the first state is represented by the 2+1 state of 18O at 1.982(1) MeV [AS87]. The state can be

described by the re-arrangement of the two neutrons outside the 16O core inside the sd-shell.

The second state is represented by the 2+1 state of 14C at 7.012(4) MeV [AS91a]. This state is

interpreted as a pure proton excitation at which the protons are excited from the 1p3/2 orbit

to the 1p1/2 orbit. Hence, the first excited 2+1 state of 16C is described as a superposition of a

pure proton excitation in the p-shell and a pure neutron excitation in the sd-shell as pictured in

Figure 2.9. In the mathematical description of the simple shell model the ground state of 16C is

approximated by

|16C; 0+〉 ≈ |ν(sd)2; J=0〉 ⊗ |π(1p3/2)
4(1p1/2)

0; J=0〉 , (2.49)

while the 2+1 state is described by

|16C; 2+1 〉= α |ν(sd)2; J=2〉 ⊗ |π(1p3/2)
4(1p1/2)

0; J=0〉 (2.50)

+ β |ν(sd)2; J=0〉 ⊗ |π(1p3/2)
3(1p1/2)

1; J=2〉 ,

where ν represents the neutrons and π the protons single particle wave functions and sd repre-

sents the combined (1d5/2+2s1/2) neutron orbit due to the orbit degeneration. The parameters α

and β define the mixing of the pure proton and the pure neutron excitation character and so they

are called mixing amplitudes. The proton mixing amplitude β can be accessed via one-proton

knockout reactions from nitrogen isotopes. This was measured in the past by Syndikus et al.

[SPM+20, Syn18] and Petri et al. [PPC+12]. Their results were in agreement among each other

and the uncertainty weighted mean of both works leads to β2=10.7(8)%. Hence, the excitation

of 16C into to 2+1 state is dominated by the behaviour of the neutrons inside the sd-shell and the

protons play a minor role as it is expected in the framework of the simple shell model.

A different framework for the description of neutron-rich carbon isotopes are Antisymmetrized

Molecular Dynamics (AMD) calculations which were performed by Kanada-En’yo et al. [KE05,

KEKS13]. The AMD calculations are a useful approach for the description of the deformation and

clustering aspects in light nuclei. In a naive picture for the AMD calculations, different subgroups
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Figure 2.9: Naive interpretation of the first excited 2+1 state in 16C using the idea of a two
states mixing in the framework of the simple shell model [WFM+08, PPC+12, MPF+14,
SPM+20, Syn18]. The picture is motivated by the 2+1 state of 18O, which can be de-
scribed by a dominant neutron excitation and the 2+1 state of 14C, which can be de-
scribed by a dominant proton excitation. The total wave function of the 2+1 state
for 16C is described as a superposition of such proton and neutron excitations as
defined by Equation 2.50. The proton mixing amplitude is given by β2=10.7(8)%
[SPM+20, Syn18, PPC+12]. The relative energy gaps of the 1d5/2 and the 2s1/2 orbit
are taken from [SSS+08].

of nucleons can form sub-nuclei which themselves form the total nucleus by a molecule-like

arrangement. In the scope of these calculations Kanada-En’yo et al. could describe neutron-rich

carbon isotopes (including 16C) well in terms of level energies and B(E2;2+1→0+) strengths

[KE05, KEKS13]. For 16C they found a prolate deformation of the neutron distribution and an

oblate deformation of the proton distribution, for which the symmetry axes are perpendicular.

In this framework the excitation into the 2+1 state can be described as a collective rotation of

the nucleons. Due to the fact that in the AMD calculations the rotational axis and the symmetry

axis of the proton distribution are aligned for 16C, the proton-contribution to the B(E2;2+1→0+)
strength is small and the behaviour of the 2+1 state is dominated by the neutrons. Also the neutron

and proton motions are sort of decoupled, because they underlay different deformation types.

Hence, the B(E2; 2+1→0+) strength for 16C is reduced compared to other neutron-rich carbon

isotopes e.g. 20C. For 20C the proton and the neutron distributions follow both an oblate defor-

mation. Due to this, the neutron and proton motions are strongly coupled. Further, the symmetry

axis and the principal axis are aligned and so the B(E2; 2+1→0+) strength strongly increases. This

behaviour could be confirmed experimentally, where Petri et al. [PFM+11] measured a strength

of B(E2;2+1→0+)=7.5+3.0
−1.7 e2fm2 which is ≈1.8 times larger than for 16C. This behaviour is also
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supported by shell model calculations using isospin-dependent effective charges [PFM+11]. Fur-

thermore, AMD calculations can also be used to describe the nucleus 14C rather successfully. A

description of 14C in terms of such AMD calculations is given in the second part of this thesis in

Section 9.1.
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3 Experiment
In this section the reaction which should provide excited 16C isotopes, the experimental setup,

the corresponding detectors, and the measurement principle are explained, which are needed to

measure the lifetime of excited states in 16C.

3.1 Reaction Channel of Interest

To investigate excited states in 16C, first an experimental access to 16C∗ has to be chosen. In

this work, the fusion-evaporation reaction

9Be+ 9Be → 18O∗ → AZ∗ + Np · p+ Nn · n (3.1)

was used to create excited 16C∗ isotopes: 9Be is bombareded on 9Be and they fuse to highly

excited 18O∗ with a Q-value of Q=23.477 MeV. Here 18O∗ is called an intermediate isotope. The
18O∗ decays immediately via many different evaporation channels to a residual isotope AZ and

residual particles Npp+Nnn where Np is the number of protons and Nn is the number of neutrons.

A list of all decay channels can be seen in Table A.1. As a result, 18 different reaction channels

are possible. The given relative cross sections for each reaction channel are calculated with the

statistical model estimates from PACE4 [TB08, Gav80]. It can be seen that the channel of interest

with
9Be+ 9Be → 18O∗ → 16C∗ + 2 · p (3.2)

happens in approximately 0.04 % of the cases. As a result it is very unlikely that 16C∗ is produced

and hence a good filter for the reaction channel of interest needs to be applied during the

experiment. For this filter, the two evaporated protons will be used. The fact that this fusion-

evaporation leads to the reaction of interest, with excited 16C∗ as a residual isotope, was already

shown in the work of Wiedeking et al. [WFM+08].

3.2 Measurement Principle and Experimental Setup

To measure the lifetimes of the excited states in 16C a DSAM experiment (cf. Sec. 2.5) was

performed at the Argonne National Laboratory (ANL). For this the Argonne Tandem Linac Ac-

celerator System (ATLAS) was used to get a 9Be Beam [ATL19]. ATLAS ran for the first time in

1977 and was the world’s first superconducting accelerator for projectiles heavier than electrons.
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In the following the ATLAS will be explained briefly, whereby the information are taken from

[Dav13]. At ATLAS, any stable isotope of any element from hydrogen up to uranium can be ac-

celerated. Thereby, energies up to 17 MeV/A are possible. For this, two preliminary accelerators

are available at the facility. They inject the isotopes in the main ATLAS Linear Accelerator (linac).

In this experiment the Positive Ion Injector (PII) was used as preliminary accelerator. The first

stage of the PII is the electron cyclotron resonance plasma ion source. This source provides the

ions for the preliminary beam. To do so a neutral gas is fed into a plasma chamber, which is

magnetically confined. This chamber is heated by microwaves. These microwaves also provide

a rapidly varying E-field. If the microwave frequency matches the electron gyration frequency

ωg=eB/me (where B is the magnetic field strength, e is the charge of an electron and me is its

mass), the free electrons in the chamber gain a large amount of energy. With these energies,

it is likely that the free electrons start to ionize the neutral gas atoms inside the source. This

increases the amount of free electrons and so an electron avalanche is created which causes a

quick complete ionization of the gas atoms. The charge state for the used 9Be isotopes was 4e
after the ionization. These ions are extracted from the chamber with a 350 kV capacitor plate.

From all ions in the chamber, roughly 60-70 % are successfully extracted towards the second

stage, the bunching system. This system prevents a too big energy spread of the ions. The beam

bunches now have a width of ≈96 ns. Afterwards, the isotopes are injected into the PII-linac. The

PII-linac has 18 resonators to accelerate the particles and 11 superconducting solenoids to focus

the beam particles. In the PII-linac, the 9Be beam was accelerated to a kinetic energy of 16 MeV

which leads to a velocity of v=0.062c.

In the next step, the beam is injected into the main linac. The main linac consists of two parts,

namely the 20 MeV booster linac and the 20 MeV ATLAS linac. In each linac the isotopes can

gain up to 20 MeV. In total, 32 splint-ring resonators are used. They can be phased independently,

which allows a broad range of beam velocities. In this experiment, the 9Be beam is accelerated

to 39.8 MeV, which means v=0.097c in terms of velocity. The drift tubes are made of niobium,

which has excellent superconducting properties. In the final step, the beam is guided via ion

optics to an experimental hall where the target device is placed inside Gammasphere.

In the experimental hall the actual DSAM measurement takes place. Here, the measurement

principle, which is sketched in Figure 3.1, is realised: the 9Be beam hits a 9Be target with a ki-

netic energy of 39.8 MeV. The target thickness along the beam direction is 7.5µm (1.3875 mg/cm2).

Due to the fact that projectile (9Be) and the target (9Be) have the same mass the maximum pos-

sible compound nucleus excitation energy is the Q-value of the reaction plus the half of the

incoming kinetic energy of the projectile. The kinetic beam energy is 39.8 MeV and the Q-value

is Q=23.477 MeV so the maximum possible compound nucleus excitation energy for the 18O∗

is 43.377 MeV. As discussed earlier, an evaporation of 18O∗ happens, which can create, amongst

many others, excited 16C∗ isotopes in combination with two protons. After the reaction, the 16C∗
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Figure 3.1: Sketch of the measurement principle: A 9Be beam hits a 9Be target. In the target, a
fusion-evaporation (marked with a star) creates an highly excited 16C∗∗ isotope and
two protons. The 16C∗∗ isotope travels through the Au degrader and de-excites in
flight from a higher-lying state to the 2+1 state. After the 16C∗ isotope is stopped it
de-excites at some point from the 2+1 to the ground state. The two protons can leave
the target in all directions. They are measured with Microball while the gammas are
measured with Gammasphere (cf. Fig. 3.2).

residuals will travel through the degrader. The degrader is backed on the back of the Be target

and consists of Au with a thickness of 19.9µm (38.42 mg/cm2). In this degrader, the 16C∗ isotopes

are slowed down until they are fully stopped. During the stopping process, the 16C∗ isotopes can

de-excite in flight from a higher-lying state to the 2+1 state. After the 16C isotopes are stopped,

they de-excite from the 2+1 state to the ground state. The decay from the 2+1 to the ground state

can not happen in-flight because the lifetime of this state is with 11.5 ps and the isotopes are

fully stopped before the decay happens. Hence, no Doppler-shift will be observed later for the

2+1 state in the spectra.

To get an insight into the beta distribution of the 16C isotopes directly after their production,

also target-only-runs have been performed. To get the beta distribution of the 16C isotopes

directly after their production in an experimental way is important for the applied Geant4 sim-

ulations (cf. Sec. 4.3). These results can be used to have more realistic initial settings for the

simulations which already include experimental biases. For the target-only-runs the target and

degrader device was replaced by a thin Be target with a thickness of 0.5µm (92.5 µg/cm2). For this

thin target energy loss effects which could influence the kinematic of the 16C isotopes and evap-

orated protons are neglectable. A more detailed explanation of the usage of the target-only-runs

can be found in Section 5.8.
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(a) Open Gammasphere with µ-Ball inside (b) Zoom on µ-Ball while the target chamber is
opened.

Figure 3.2: Picture of Gammasphere and µ-Ball. The red arrow indicates the beam direction.

The whole target and degrader device is mounted in the center of a spherical target chamber.

Inside the target chamber, as a sphere around the target, the Microball (µ-Ball) particle detector

is mounted (cf. Sec. 3.4). This detector, which can be seen in Figure 3.2 (b), measures and

identifies particles which are emitted during the fusion-evaporation process. With this, it is

possible to gate on two protons to select the 16C reaction channel for the gamma-ray spectra.

The emitted gamma rays are measured with Gammasphere (cf. Sec. 3.3). This gamma detector

consists of 110 Compton suppressed HPGe detectors and can be seen in Figure 3.2 (a) in an

open setting. During the experiment, both Gammasphere halves are moved towards the center so

that the 110 Compton suppressed germanium detectors form a closed ball around the spherical

target chamber.

The total beam-time of the experiment was roughly 132 hours. Thereof, 106 hours were

used for target-and-degrader-runs. There the beam current was varying between 0.25 enA and

1.50 enA with an average of roughly 1.1 enA. The remaining 26 hours were used for the target-

only-runs. During this measurement the beam current was varying between 1.0 enA to 1.5 enA.

At the end, a short proton beam run of ≈40 minutes at about 100 epA was shot on a 12C target.

With this data µ-Ball can be energy calibrated. During the whole experiment the data recording

was divided into many runs. Each run was about one hour long.

3.3 Gammasphere

The heart of the experimental setup is Gammasphere, which is a large gamma-ray detector

array [Lee90]. Gammasphere, shown in Figure 3.2 (a), started its operation in 1993. Today it

consists of 110 Compton suppressed HPGe detectors. The detector array of Gammasphere is
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designed to maximize the covered solid angle while the angular segmentation is limited to a

reasonable value. This led to an icosahedron symmetry consisting of 122 polyhedral elements

namely 110 hexagons and 12 pentagons. The 12 pentagon elements are used for support struc-

tures as well as entrance and exit holes for the beam line, while the 110 hexagons are filled

with the detector modules. A detector module, which can be seen in Fig 3.3, consists of a HPGe

crystal as active volume, which is surrounded by a Bismuth Germanate (BGO) shield. Behind the

shield, photo multipliers are placed to read out the BGO shield and behind that sits the detector

electronics connected to a liquid nitrogen dewar vessel for cooling. The cooling reduces the ther-

mal electronic noise drastically. To allow a compact arrangement of the detectors, the modules

are tapered with an angle of 7.45◦. The distance between the target position and the beginning

of HPGe crystal is 25.25 cm. A HPGe crystal of one module covers 0.418 % from the total solid

angle 4π. Over all, 46 % of 4π are covered by the 110 HPGe crystals. This advanced setting

leads to a full energy peak efficiency close to 10 % for gamma rays with an energy of 1.3 MeV

[Sta15]. The opening angle of one HPGe detector is 7.4◦. With this, a total energy resolution

(detector resolution plus Doppler broadening) of ≈5.5 keV for β=0.02 can be achieved. Figure

3.2 (a) shows Gammasphere in the open position. This position is used for maintenance work at

the target chamber as for example placing µ-Ball inside. During an experiment, Gammasphere

is closed and it forms one complete ball where no space is left between Gammasphere and the

target chamber.

The BGO shield is used for Compton suppression (cf. Sec. 2.2) of gamma rays which are scat-

tered out of a HPGe crystal. BGO scintillators are a preferred choice for the Compton suppression

because while their energy resolution is for the most tasks unsatisfying, the efficiency is high

compared to HPGe crystals. At Gammasphere, each HPGe crystal is surrounded by six BGO shield

elements. Additionally, a BGO suppression plug is placed between the back of the HPGe crystal

and the electronics. It allows the suppression of Compton events which scattered under forward

angles out of the HPGe crystals. This improves the low-energy background in the spectra. The

total arrangement is an ideal compromise to have as much active volume as possible while at

the same time the Compton suppression probability is maximised.

When the BGO shield is hit, a veto signal is sent which can be used to ignore the events

registered in the corresponding HPGe crystal. To reduce the number of false vetos created by

gamma rays which directly hit the front of a BGO shield, the so-called hevimet shields are placed

in front of the BGO scintillators. The hevimet shields consist of different heavy metals to achieve

a large absorption coefficient. With this elaborated suppression technique a full energy peak to

total ratio of 68 % can be reached for gamma rays in the range of 1.3 MeV. For comparison the

full energy peak to total ratio for a typical HPGe crystal without Compton suppression would be

≈25 %.

The detector modules are arranged into 17 rings. Each ring is mounted so that it covers one

specific radiation angle θ while the polar angle φ of the detectors rotates around the beam
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Figure 3.3: Sketch of four Gammasphere detector modules. Figure reprinted from [ES08] with
permission from Elsevier.

axis. The radiation angle θ of each ring, the number of detectors per ring, and the number of

during the experiment available detectors is listed in Table A.3. The module rings are arranged

symmetrically to 90◦, so for every ring at θ=90◦+X ◦ there is a ring at θ=90◦−X ◦. Hence, for

a DSAM measurement up to 17 different angles are available. A simulation of such a DSAM

measurement at Gammasphere can be seen in Figure 2.5 (cf. Sec. 2.5). As can be read in Table

A.3, the smallest angle at θ=17.27◦ was not available during this experiment. In total 87 HPGe

detectors have been used during this experiment. All the information in this section is taken

from [ES08, Dav13].

3.4 Particle Detector Microball

As explained in Section 3.2, a Particle Identification (PID) is needed to have the possibility to

cut on the 2p reaction channel. For this task, the µ-Ball particle detector was used [SHD+96].

µ-Ball was developed in the 1990s at Washington University. A picture of µ-Ball is illustrated in

Figure 3.2 (b). As it can be seen, µ-Balls compact design allows that it is placed inside the target
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Figure 3.4: Sketch of µ-Ball showing a vertical section. The CsI(Tl) detectors are shown in black,
the light guides are shown in blue, the Si photodiodes are shown in green, and the
supporting rings are shown in red. A projection of the support structure is illustrated
in light grey. The target position is marked by the red cross in the center of the
detector. Figure modified and reprinted from [SHD+96] with permission from Elsevier.

chamber of Gammasphere. This is needed since charged particles can not travel far outside the

vacuum and around the target chamber the Gammasphere detector modules start immediately.

There are two versions of µ-Ball available. One is the spectroscopy µ-Ball, which was con-

structed with the minimum possible mass for optimal particle channel selection and a smaller

influence on the gamma rays. The other one is the so-called reaction µ-Ball which has detectors

with a larger mass to measure more energetic particles. The proton range for spectroscopy µ-Ball

is between 14.3 MeV for backward angles and up to 24.5 MeV for forward angles (cf. Tab. A.6).

This is sufficient for the experiment of this thesis and so spectroscopy µ-Ball was used.

The µ-Ball consists of 96 CsI(Tl) scintillator detectors which are arranged in 9 rings around

the beam axis as it can be seen in Figure 3.4. There the detectors are shown in black, facing the

target position. The technical data and angles of each ring can be found in Table A.6. It should

be mentioned that only 95 detectors were installed in this experiment because one detector had

to be removed for the target mounting. The chosen arrangement of the detectors and the use
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of the CsI(Tl) detectors has many advantages. First of all, µ-Ball achieves an excellent PID for

charged particles using CsI(Tl) scintillators with a high thallium concentration of 1200 ppm.

Secondly, this arrangement covers a large solid angle. The µ-Ball detectors are planar and each

detector is arranged relative to its neighbours so that no detector is shadowed by its neighbour

ring. The gap between two rings is 0.10 mm while the gap between two neighbouring detectors

is 0.12 mm. The loss of solid angles due to gaps is only 1.8 % of 4π. The lost space for the target

mounting is 0.9 % of 4π and the gaps for the beam entrance and exit is 0.74 % of 4π. Due to

this the total covered solid angle is 96.5 % of 4π. Additionally, this arrangement helps for an

adequate segmentation of the detector. Hence, the count rate can be nearly equally distributed

among the rings if the emission characteristics of the particle is uniformly. This allows µ-Ball to

measure around 4500 counts/s and so µ-Ball can keep up with Gammasphere which is important

for coincidence experiments. Although µ-Ball fills out most of the target chamber, the interaction

probability for the gamma rays is quite low. Measurements with 60Co show that the peak-to-total-

ratio of Gammasphere is 0.57(1) without µ-Ball and 0.52(1) with µ-Ball inside [SHD+96]. This

is a reduction of just 9 %.

For the particle detection, the properties of the CsI(Tl) scintillator are exploited. If a charged

particle hits the CsI(Tl) scintillators, the atoms in the CsI(Tl) are excited and emit photons which

are in the visible range. The number of emitted photons is for light particles proportional to the

energy of the charged particle. Due to the fact that the CsI(Tl) is a monocrystalline solid, i.e.

the crystal lattice of the entire solid is continuous and unbroken to the edges of the sample, it is

transparent for its own emitted photons. Hence, the total emitted light can be extracted at the end

of a CsI(Tl) scintillator. At µ-Ball, Si photodiodes are coupled to the end of a CsI(Tl) scintillator to

convert the light output into an electrical signal which is proportional to the number of emitted

photons. Hence, the maximum of the produced electrical signal is proportional to the energy

of the charged light particle. With this, it is possible to achieve an energy resolution of 2.7 %

for α-particles at 8.78 MeV. For an energy calibration it has to be considered that every single

µ-Ball detector is protected by thin absorbers. These absorbers shield the detectors against low

energy or heavy particles as well as x-rays. Therefore, the surfaces of all detectors are covered

with a thin aluminium foil. On top on these foils additional Pb or Ta absorbers are installed.

The thickness of the aluminium foils and the absorbers varies from detector to detector. The

thickness of the aluminium foils reaches from 0.15 mg/cm2 to 0.58 mg/cm2. The thickness of the Pb

absorbers reaches from 20.2 mg/cm2 to 34.4 mg/cm2 while the thickness of the Ta absorbers reaches

from 3.6 mg/cm2 to 14.2 mg/cm2. More information about the energy calibration of µ-Ball can be

found in Section 5.6.

To do the PID, the fact that the CsI(Tl) has two decay components for its emitted light is used.

The first component is the longer one with a mean decay time of τ=7µs. This decay time is

independent of the particle type and presents the main limitation of the count rate. The second

decay component is the shorter one and has a mean decay time of τ=0.4-1.0µs. Here, the
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decay time depends on the particle type. The lighter the particle is, the longer the decay time

of the shorter decay component. Hence, by looking at the maximum and the tail of the signal

at the same time, a PID is possible. In Figure 3.5 schematic signal responses are illustrated. The

response for two α-particles (continuous lines) and two protons (dashed lines) is shown. Two

cases for two different energies are shown whereat for one case the α-particle and the proton

should have the same energy. To distinguish between the two particles, one has to measure the

signal height at two different times, namely tB and tC. At tB the maximum of the signal B is

detected while at tC the signal height C during the drop of the signal is measured. The value

B at tB is in first order proportional to the particle energy. By comparing B and C one can now

identify the particles. An example for such a measurement can be seen in Figure 3.6 (a) and

Figure 5.5 (a). Figure 5.5 (a) shows the PID for one target-and-degrader-run of the experiment.

Figure 3.6 (a) shows the measurement of 249Cf→α+234Cm which was carried out before the

main lifetime experiment was started. This measurement was used to set up the electronics of

µ-Ball and to find proper values for tB and tC. During the experiment, values around tB=1µs

and tC=8µs were used. Another representation of this PID is illustrated in Figure 3.6 (b). Here

B is plotted versus B/C: the y-axis corresponds to the energy of the particles while the different

particles appear as straight lines along the x-axis. This representation is used later to set the

particle cuts as can be seen in Section 5.4 and Figure 5.5.

During this process a problem appears in the detector read-out. The charge sensitive pre-

amplifiers used for the Si photodiode have a rise time of 1µs and a decay time of ≈300µs. To

recover the two components of the CsI(Tl), a low and a high frequency filtering two-stage shaper

has to be used. With these devices, an aperiodic pulse with a shape proportional to x4e−4x with

x=t/τ0 was applied. Simulation of the signal behaviour showed that a setting with τ0=1.3µs

and a pole zero correction give the best results. The pole zero correction is used to reduce the

pile up.

If the detector read-out is set like this, it is possible to set the time gate tB at the position of

the signal maximum at around 1µs and the time gate for the tail tC at around 9µs. The time

gates were set for each detector separately. To find good values, the source measurement 249Cf

was used.

More details of µ-Ball and the electronics used can be found in the work from D.G. Sarantites

et al. [SHD+96].
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Figure 3.6: PID for 249Cf→α+234Cm using µ-Ball: The left plot shows the signal height B (signal
amplitude) versus the signal height C (signal tail) while the right plot shows B versus
B/C . The second representation is later used to set the PID cuts. For the definition of
the values of B and C see Figure 3.5.
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4 Geant4 Simulations
To get access to the lifetime, the experimental mean decay beta is compared to simulated mean

decay betas (cf. Sec. 2.5). For the simulation, the framework of Geant4 is used in this thesis

[Gea14]. Geant4 was developed by the Geant Collaboration at CERN. It is a C++ based Monte-Carlo

simulation code for nuclear and fundamental particle physics experiments. In Geant4 the user

has the possibility to implement user-defined code into the classes of Geant4. In these classes all

necessary conditions for the simulation are fixed, the used physical models are loaded, and it is

managed what kind of data and how the data is extracted from the simulation. All fundamental,

important classes and their call sequences of the simulation used here can be found in [Mat16].

In the following, a short summary of the classes and their tasks in the context of the simulation

here used is given. This explanation is orientated by [Mat16].

An entire simulation process in Geant4 is called a Run, which is controlled by the

RunManager. For accessing the simulation before a Run is started and after the Run is fin-

ished, the G4UserRunAction class can be used. When the Geant4 simulation is started, first

the Properties method is loaded, which contains information and settings for the simu-

lation. Also at the beginning, the G4UserDetectorConstruction class, the G4PhysicsList

class, and the G4ActionInitialiser class are built. The G4UserDetectorConstruction

class constructs the world and detector geometries. The G4PhysicsList contains all

physical models which are used in the simulation. In the G4PhysicsList the model

G4EmStandardPhysics_option4 is loaded to describe the electro-magnetic interaction of the

simulated gamma rays. The G4ActionInitialiser class will start the G4UserPrimaryGenerator

and the G4UserEventAction class. These two classes are responsible for the Events. A Run can

consist of many Events. Every Event includes the Tracks of the primary particle and the Tracks

of all particles which are generated by the primary particle by interactions with matter. All re-

quired properties of the primary particle are given by the G4UserPrimaryGenerator class. An

Event starts with the generation of the primary particle and ends when all tracks are finished.

This means that all particles (primary and secondary) have reached an exit condition, e.g. the

particles have left the simulation volume or the energy has dropped below a certain thresh-

old. For accessing the simulation before an Event has started or after an Event is finished, the

G4UserEventAction class can be used. During one Event the particle Tracks contain all momen-

tary information about the particles like the particle species, the energy, the momentum vector

or the internal quantum state of the particle. The Tracks are continuously updated by Steps.

In one Step some kind of an interaction can take place. This can be any interaction which is

listed in the G4PhysicsList and is allowed in the current material in which the particle stays in
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the moment of evaluation. During a Step the properties of a particle can be changed. Possible

interactions are e.g. ionization, excitation, scattering, and so on. Also during this, secondary

particles can be generated. The distance, which a particle covers in a material between two

Steps, is sampled by using the mean free path of the particle in consideration of the possible

physical processes. The mean free paths are calculated from cross sections, which are taken from

databases and/or calculated analytically using phenomenological equations. To access the simu-

lation before or after a Step is performed, the G4UserSteppingAction class can be used. Also the

G4UserSteppingAction class is linked with the Hit class and the G4UserSensitiveDetector

class. The Hit class and the G4UserSensitiveDetector class are responsible for the data ac-

quisition. If an interaction takes place in a volume which is listed as a sensitive detector in the

G4UserSensitiveDetector class, then the information can be accessed via the Hit class.

The Geant4 code which is used in this work is based on a simulation used in [Hei15, Mat16].

A detailed description of the here used simulation would be go beyond the scope of this thesis.

In [Mat16] a more detailed explanation of how the simulation code is arranged can be found.

For the simulation, the Geant4 version 4.10.3.p02 is used. For further analysis of the simulated

and experimental data, The Data Analysis Framework ROOT version 5.34.36 is used [Bru97].

4.1 Geometries

The geometry of the Geant4 simulation is illustrated in Figure 4.1. All geometries are created

in the G4UserDetectorConstruction class while the Ge and the BGO detectors are also added

to the G4UserSensitiveDetector class. The target (not visible) is a rectangular box whose

origin is placed in the center of the simulation at (0,0,0). The target has a dimension of 5 mm x

5 mm x 7.5µm and reaches from (-2.5 mm, -2.5 mm, -3.75µm) to (2.5 mm, 2.5 mm, 3.75µm).

In the beam direction directly behind the target, the degrader is placed with dimensions of 5 mm

x 5 mm x 19.89µm. For later analysis, the target-only-run has also to be simulated. For this the

target and degrader setup can be replaced by a thin Be target with the dimension of 5 mm x

5 mm x 0.5µm, which is also centred at (0,0,0).

Around the center of the simulation, the Ge crystals are placed on a sphere with a radius

of 25.25 cm. The crystals are simulated as a cylinder with a radius of 3.5 cm and a height of

7.5 cm. Every Ge crystal is surrounded by a BGO box. The rest of the experimental setup is not

simulated. This is sufficient because the only property which is important to extract from the

simulation is the mean decay beta of the residual particle. As discussed in Section 4.3 the whole

fusion-evaporation process is not of interest and also no efficiency has to be deduced from the

simulation. Hence, the interaction of the particles with the beam pipe or µ-Ball has not to be

taken into account.
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(a) Sketch of the Geant4 simulation (b) Wired sketch of the Geant4 simulation

Figure 4.1: Sketch of the Geant4 simulation. The white, red, and blue boxes are the BGO shield-
ing for the Compton suppression. The cylinders inside the BGO shielding are the Ge
crystals which represent the active detector volume. They can be seen in the right
picture. The thin green line shows an example of a gamma-ray track which interacted
with the detector. The arrows represent the used Cartesian coordinate system. The
blue arrow indicates the x -axis, the green arrow indicates the y -axis, while the red
arrow indicates the z-axis which is the beam axis. An arrow has the length of 1 m.

4.2 Lifetimes

For the analysis of this work different lifetimes for excited states have to be simulated. To set the

lifetime of an excited state the GeantUserData have to be changed. Inside the GeantUserData,

the ENSDFSTAT data can be found. Here, all nuclear levels and lifetimes of all nuclei, which

are listed in the Evaluated Nuclear Structure Data File (ENSDF), are included. Before a

simulation starts, the corresponding lifetime is changed in the ENSDFSTAT table. Also in the

PhysicsList class, the following options have to be set:

G4NuclideTable::GetInstance()->SetThresholdOfHalfLife(-1.0*s);

G4NuclideTable::GetInstance()->SetLevelTolerance(10.0*eV);

The first line ensures that all lifetimes are simulated whatever the lifetime is. Otherwise, short

lifetimes in the femtosecond range might be ignored by the simulation. The second line secures

that the excitation levels are found in the ENSDFSTAT data even when there are some rounding

errors.
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4.3 Creation of the Excited Ions

A crucial part of the simulation is the creation of the excited isotopes of interest, which happens

inside the PrimaryGeneratorAction class. One way to do so would be the simulation of the

incoming Be beam and the whole fusion-evaporation process (cf. Sec 3.1). Here, the problem

occurs that the kinematic and the energy distribution of the residual protons after the evaporation

is not known. This kinematic influences the kinematic of the residual isotopes (e.g. 16C) strongly

and so the mean decay beta of the residual isotope. But the mean decay beta is the main value

which will be extracted from the simulation. Hence, another approach has to be chosen: In the

used simulation the residual particle (e.g. 16C) is directly created in an excited state inside the

target material and the whole fusion-evaporation process is skipped. To get the correct initial

kinematics for the residual isotope, the initial beta βini of the residual isotope has to be estimated.

For this the measured mean beta βTO for the residual isotopes from the target-only-runs is used.

An elaborated description of the βTO estimation is given in the Section 5.8. In the following

explanation, it is only focused on the creation process of the excited isotopes in the simulation

assuming a realistic βTO is already known.

In the first step, the starting position for the residual isotope is chosen. The isotope will be

spawned inside the target. The target itself is a rectangular box, which is centred at (0,0,0).

Along the z-axis, which is the beam axis, the thick target reaches from -3.75µm to +3.75µm

(thickness of the thick Be target: 7.5µm). First, the x and y component of the position of the

isotope are chosen. These components are orthogonal in respect to the beam axis. After the

experiment, the beam spot on the target had the shape of a circle with a diameter of roughly

2.5 mm. Due to this the isotopes in the simulation are spawned uniformly distributed on a disc

with a diameter of 2.5 mm in the x ,y-plane. The center of this disc is placed in the center of

the target x ,y-plane. In the second part of step one, the z coordinate has to be chosen. The z
coordinate has to be inside the target which reaches from z=-3.75µm to z=+3.75µm. But the

probability to create the residual isotope (e.g. 16C) is not uniformly distributed along the target.

This is due to the fact that the incoming 9Be beam loses energy while it passes the 9Be target

and so the cross section changes. To take this into account, the code of LISE++ [TB08] is used

to calculate the energy loss of the 9Be beam for a given travelled distance in 9Be. With this, the

new kinetic energy of the 9Be particle at a given travelled distance is calculated. This energy is

then plugged in the PACE4 code to provide a cross section distribution for the fusion-evaporation

[TB08, Gav80]. As an example, Figure 4.2 (a) shows the so derived cross section distribution for
16C if the incoming 9Be beam has an energy of 39.8 MeV. To the data points the function

C.S.(z) = a · z + b (4.1)

is fitted with a=−0.00716 mb/µm and b=0.27243 mb for 16C. It can be seen that the cross section

decreases by 21.8 % going from 0µm to 7.5µm travelled distance. This confirms the fact that
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a uniform distribution along the z-axis would not be a good approximation. To obtain a proper

distribution along the z-axis, first the C.S.(z) function is normalized in the interval from 0µm to

7.5µm with

N =

∫ 7.5µm

0µm

C.S.(z)dz ⇒ C.S.N(z) =
a
N
· z + b

N
(4.2)

where N=1.65282 mbµm for 16C. Then the so-called “inversion-method” is applied. Therefore,

the cumulative distribution function F(z) is calculated via

U := F(z) =

∫ z

0

C.S.N(t)dt = − a
2N

z2 +
b
N

z, (4.3)

which is then inverted to

z =
a
b
±
√� b

a

�2
− 2N

a
U . (4.4)

Taking the negative part of this equation and subtracting 3.75µm (because the target is centred

at z=0) leads to the position calculation equation

z(U) =
a
b
−
√� b

a

�2
− 2N

a
U − 3.75µm. (4.5)

If U is now replaced by a uniformly distributed value between 0 and 1, this function gives the

correct start position distribution.

In the second step, the starting beta βini of the isotope has to be defined. The direction will be

set to (0,0,1) because the experiment is only sensitive to the beta component along the beam

direction. To get a proper beta the target-only-runs are used to extract a decay beta from there.

Because the target-only-runs use a much thinner target (0.5µm), it can be assumed that most

decays happen outside the target and the energy loss in the target is negligible. Hence, the

target-only-runs give an insight to the mean beta the residual isotope (e.g. 16C) has directly

after the creation. More information of the target-only-run and the extraction of the decay beta

can be found in Section 5.8. The beta βTO , which stems from the target-only-run will have a

statistical uncertainty u
�
βTO

�
. Due to this a random beta βTO,Rand is sampled for every event

using a Gaussian distribution which has the mean value of βTO and a sigma of u
�
βTO

�
. The

randomized beta βTO,Rand is then decreased according to the distance ∆z between the beginning

of the target and the position at which the isotope is created. Hence, ∆z reaches from 0µm to

7.5µm. To get the decreasing slope again, results from LISE++ for the intermediate isotope are

used. For example Figure 4.2 (b) shows the beta the 18O has after the fusion when the 9Be beam

reacted after it travelled the distance ∆z in the target. To this data, the function

βO16(∆z) = g ·∆z + h (4.6)
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Figure 4.2: Cross section distribution and velocity loss for the isotope creation. The left plot shows
the cross section distribution to create the residual 16C isotopes along a 9Be target
if the incoming 9Be beam has an energy of 39.8 MeV. The right plot shows the beta
loss of the intermediate 18O, if it is created along a 9Be target and the incoming 9Be
energy is 39.8 MeV. The values are obtained using LISE++ and PACE4 [TB08, Gav80].

is fitted, which resulted in g=− 1.384(6) 10−4/µm and h=0.048684(3) (for 18O). If, in the first

step, the starting position z was chosen according to Equation 4.5, then the initial beta for the

event is given by

βini(z) = βTO,Rand
h+ g · (z + 3.75µm)

h
. (4.7)

This approximation is roughly valid because the energy and beta loss is linear in the region of

interest.

In the last step, the isotope is excited randomly via an excitation vector into one of the possible

excited states. The excitation vector contains all levels in which the isotope should be excited

combined with a given probability that this level is chosen.

4.4 Stopping Theory and Ion Ranges

To get access to the lifetime with DSAM, it is essential to have a good description for the

slowing down process of the nuclei in the target and degrader. In Section 2.5, it was already

mentioned that it is very difficult to calculate this complete process analytically. The slowing

down process of nuclei in matter consists basically of two parts, namely (I) the interactions

with atomic electrons and (II) the interactions with nuclei [NSS79]. Hence, the total energy loss

dE(E) per distance dx can be written as

dE(E)
dx

=
�

dE(E)
dx

�
e
+
�

dE(E)
dx

�
n

(4.8)
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where “e” refers to the electronic part and “n” to the nuclear part. For part (I), the nuclei of

interest collide with the electrons from the material via the Coulomb forces. Due to the fact that

the nuclei are much heavier than the electrons, it will take many collisions to slow them down.

The maximum energy an A=30 nucleus with 1 MeV can lose in one interaction with an electron

is about 70 eV. Because of this, the slowing down process can be considered with no significant

change in direction of the nuclei. Additionally, it can be seen as a continuous process in which

the first approximation is described by Equation 2.21 and Equation 2.22, as well as by
�

dE(E)
dx

�
e
= k(A1, A2, Z1, Z2)ε

1/2. (4.9)

In this equation, ε is the dimensionless kinetic energy of the nucleus of interest and k is a con-

stant which depends on A, Z of the nucleus of interest and the material in which the slowing

down process happens. The interaction with electrons dominates for velocities β≥2%. For part

(II), the moving nuclei of interest interact with nuclei from the material they pass. Here the

masses of both participants are in the same order of magnitude. As a result of this the nuclei

of interest will lose energy in a few discrete steps and it is also likely that they change their

direction of movement. This effect dominates for velocities β≤0.3% and is much harder to be

described analytically. More about these issues can be found e.g. in [NSS79].

To avoid these problems, one applies the advantage of the Monte Carlo Geant4 simulation.

In Geant4 every simulation step an interaction can take place. During the interaction, the nuclei

can change their direction and/or a small energy loss dE(E) is applied. Here dE(E) depends on

the current energy of the particle, the travelled distance since the last step, and of course the

material in which the slow down process happens. In Geant4 the energy loss dE(E) as a function

of the current energy of the particle can be looked up in a database. The standard database

of Geant4 uses the dataset ICRU73 from the International Commission on Radiation Units and

measurements (ICRU). The ICRU73 data are a mixture of calculated and measured stopping

powers for ions heavier than helium [ICR05].

In this context, it is very important to mention that Geant4 is developed and optimized for high

energy physics, which means particle energies above 100 AMeV. But the experiment evaluated

here deals with particle energies of ≈4.4 AMeV. Following the investigations from [Hei15], two

changes in the simulation process are applied to get a more accurate slowing down behaviour

for the low energy regions.

First of all, the ICRU73 stopping powers are replaced by stopping powers which are calculated

with the program SRIM (The Stopping and Range of Ions in Matter). SRIM is a software-package

concerning the stopping and range of ions in matter. It was introduced in 1985 and is still being

upgraded today. The SRIM software-package is able to reproduce the stopping behaviour of ions

quite well for many different materials over a wide energy range [ZZB10]. Figure A.1 shows

comparisons between SRIM calculations and experimental results for the stopping power of
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carbon in many different materials [Zie19, ZZB10]. It can be seen that SRIM reproduces the

stopping quite well for a large range. The mean deviation is only 5.3 %. In Figure A.2, one

can see a zoom in the range of interest. Here it can be seen that the data points for carbons

stopping power in Gold differs around 5 % from the SRIM predictions. To achieve this accuracy

while the needed computation power is inside realistic limitations, SRIM uses a combination of

different models. The heart of these calculations is the so-called magic formula which analytically

describes atom-atom collisions and the concept of a free-flight-path, which helps that only signif-

icant collisions are evaluated. These models are able to predict the stopping and range of ions

based on experimental data and expanding this data to unmeasured regions [Zie19]. A detailed

explanation about the fundamental physics the SRIM software-package uses can be found in

[JFZ15].

Additionally, the so-called forced stepping method is added to the simulation code. Geant4

approximates a stepping length for every simulation step. The stepping length depends on the

type and energy of the simulated particle as well as on the material the particle travels through.

After the particle covered the distance of the current stepping length, the behaviour of the particle

is newly evaluated and after that a new step is started. In [Hei15] it was worked out that the

normal stepping length Geant4 uses is too long for the low energy processes and short lifetimes

investigated here. To avoid this problem, the forced stepping method forces the simulation to

evaluate the next step not later than a given distance which can be set by the user. By setting the

forced stepping distance to smaller values, the simulation gets more possibilities to change the

behaviour of a particle in a given movement range, but as a disadvantage the simulation needs

much longer to process. So a fair balance between sensitivity and computation time has to be

found.

To test the influence of the stopping powers and the forced stepping the range of ions in

different materials is analysed. Figure 4.3 shows the range of 16C ions with an incoming kinetic

energy of 20 MeV in beryllium (left side) and in gold (right side) for different settings. The

red curve shows the range behaviour SRIM predicts, the other curves are the results from the

used Geant4 simulation. The behaviour of the Geant4 simulation was analysed for the ICRU73

stopping powers with a forced stepping of 0.1µm (black curve), for the SRIM stopping powers

with a forced stepping of 0.1µm (purple curve) and for the SRIM stopping powers without forced
stepping (green curve). For 16C→Be, the stopping behaviour between the SRIM results and the

Geant4 simulations is very similar if the forced stepping is set to 0.1µm. If the forced stepping is

turned off, then the peak shape from the Geant4 simulation differs significantly from the SRIM

results even using the SRIM stopping powers (green curve). Here the ions can travel further

than for a forced stepping of 0.1µm because fewer slowing down processes are evaluated by the

simulation. For 16C→Au, the influence of the stopping power database used is much larger. The

standard ICRU73 dataset overestimates the energy loss compared to the SRIM calculations. If

the Geant4 simulation uses the ICRU73 dataset, the ion range is much smaller (black curve)
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Figure 4.3: Range of 16C ions in Be and Au for different simulation settings. The incoming kinetic
energy of the 16C ions was 20 MeV. The red curve shows the results from SRIM calcula-
tions. The other curves are the results from the used Geant4 simulations for different
combinations of the used stopping powers (ICRU73 or SRIM) and the forced stepping
(FS).

compared to the SRIM calculations (red curve). If the SRIM dataset is used in the Geant4

simulations the results are similar to the SRIM results. Here, turning the forced stepping on or off

has no large influence.

Furthermore, for an even finer forced stepping than 0.1µm no significant change could be

observed for the ion ranges for both cases. Due to this facts a forced stepping of 0.1µm will be

used for all simulations which are carried out in this work. Most of the time the analysis will be

done for the ICRU73 dataset as well as for the SRIM dataset as stopping powers. The results can

than be compared whereat the results for the SRIM stopping powers should be more reliable.

4.5 Energy Resolution

To get a realistic simulation, the energy resolution of the gamma-ray detectors also has to be

taken into account. The detector resolution is applied in the analysis script after the simulation

is finished. To do so the energy with perfect resolution stemming from the simulation is set as a

mean value µ of a Gaussian probability distribution given by

f (E;µ,σ) =
1

σ
p

2π
e−
(E−µ)2

2σ2 . (4.10)

Then a new energy value is sampled randomly following this distribution. Here, the parameter σ

is the standard deviation of the distribution. It is connected to the FWHM of the Gaussian peak

by

FWHM = 2
p

2 ln 2σ ≈ 2.355σ. (4.11)
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Figure 4.4: Energy resolution in terms of FWHM as a function of the gamma-ray energy E. The
data points are obtained with a 56Co source. The most error bars are too small to be
visible but they are considered for the fit. The fit function is given by Equation 4.12.

The FWHM value of the detectors depends on the measured gamma-ray energy E. To get a

realistic behaviour of FWHM(E) experimental values are taken. Therefore, the 56Co source mea-

surement is used. Here Gaussian fits are applied to 16 different peaks between 790 keV and

3550 keV. Then the FWHM value is extracted for every peak and plotted against the energy E of

the peak. The result is shown in Figure 4.4. Using the function

FWHM(E) = 3.23952 · 10−3 · E[keV] + 1.93613keV (4.12)

the data points could be fitted. In the analysis scripts, Equation 4.12 is used to calculate the

FWHM value for a given detected energy E and afterwards the energy with realistic resolution

is sampled following the Gaussian distribution from Equation 4.10 with σ=0.425 · FWHM(E).
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5 Analysis
This section explains the basic analysis steps which have been applied to all data. First the

raw Gammasphere energy is calculated. Then, this energy is calibrated and the efficiency of

Gammasphere is calculated. Later, the proton cuts are introduced and the event builder, which

searches for coincidence between Gammasphere and µ-Ball, is explained. Then the calibration

of µ-Ball and the calculation of the proton energy is explained. Afterwards it can be looked at

the measured proton distribution for the different settings. In the last part, the idea and analysis

of the target-only-runs is explained, which is used to extract the initial beta for the Geant4

simulations.

5.1 Raw Energy Calculation of Gammasphere

In the first step of the analysis, the raw gamma-ray energy has to be calculated from the

data which is provided from Gammasphere. Recently the read-out electronics of Gammasphere

were changed to a digital version, the so-called Digital Gammasphere (DGS). There is not only

one signal height recorded, but also additional information about the signal shape. A typical

measured signal for one event of DGS can be seen in Figure 5.1 [Zhu16]. Here the so-called signal

trace is shown. This means that the signal height V (i) for each sample i is shown. One sample

corresponds to one discrete read-out period of DGS. For the example shown here, the signal is

first dropping from a previous event. Then, at around the sample i+M , an event takes place

and the signal rises proportional to the deposited energy. After the sample i+M+K , the signal

starts to drop again. To get a raw energy value, one has to determine, as precisely as possible,

the increase in the signal going from sample i+M to sample i+M+K . Here, the problem occurs

that the signal coming from the read-out electronics does not have to be zero, when an event is

registered. The signal can be higher due to pile up from an event before, or it can be lower than

the baseline due to an undershoot from an event before. For that reason, the signal behaviour

has to be investigated at a larger sample size before and after the event happens. But, if a larger

sample size is investigated, then the correction for the exponential decay, which the signal always

underlies, becomes more and more important. Additionally, it has to be taken into account that

every detector has its own signal baseline height, which can vary during the experiment, which

also then induces some kind of exponential decay in the signal. To correct these problems, a

so-called pole-zero correction and a baseline correction are applied to the raw gamma-ray energy

calculation. In the following, the whole procedure of calculating and correcting the raw energy

is explained.
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Figure 5.1: Signal shape and information provided by DGS [Zhu16]: The plot shows the signal
height V (i) at different samples i for a typical DGS event. The red lines mark the
samples for which DGS reads out the signal height. Also the mean signal height Si/M

is indicated by the blue dashed lines. For more explanations see the text from Section
5.1.

In general, the signal decay follows the sum of different exponential decays stemming from

the pre-amplifier electronics. If no event happens, the signal height for sample i+1 is given by

V (i + 1) = V (i)
∑

j

e−λ j + B (5.1)

where λ j are the unit decay constants per sample for the different exponential decays, V (i) is the

signal height at sample i and B is the height of the baseline the detector signal has on average.

Following the red lines in Figure 5.1, DGS provides the following values

mbegin
2 := V (i) (5.2)

mend
2 := V (i +M) (5.3)

mbegin
3 := V (i +M + K) (5.4)

mend
3 := V (i + 2M + k) (5.5)

S1 :=
i+M∑
n=i

V (n) (5.6)

S2 :=
i+2M+k∑

n=i+M+K

V (n) (5.7)

where S1 is called pre-rise energy and S2 is called post-rise energy. During the experiment, M
was set to 350 samples and k to 116 samples.
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To calculate the raw energy in a simple way without corrections, one has to apply

ESimple =
S2

M
− S1

M
, (5.8)

where S1/M is the mean signal height between sample i and i+M , as well as S2/M is the mean

signal height between sample i+M+K and i+2M+k (cf. Fig. 5.1 blue dashed lines). This easy

approach is not sufficient enough, which is proven in Figure 5.2 (a). Here, the value S1 is plotted

versus ESimple for an 88Y source measurement. It can be seen that for different given energies,

ESimple, tilted lines are visible (an example is marked by the black arrow) in the 2D plot. This

indicates that the calculated energy ESimple depends on the pre-rise signal height, which should

not be the case. To correct this, a pole-zero factor P and a baseline term B is applied to Equation

5.8, which leads to

EAdvanced =
S2

M
− S1

M
P − (1− P)B. (5.9)

The pole-zero factor corrects the relative exponential signal drop, which happens in the time

window between the signal rise and the time when the post signal height is measured, i.e. the

time passed between sample i+M and sample i+2M+K . This signal drop always superposes the

increasing signal part induced by the event. P can be expressed as

P =
∑

j

e−λ j(M+K) (5.10)

which corresponds to a factor between 0 and 1. Hence, the term S1/M·P in Equation 5.9 corrects

the pre-rise signal by the amount of height which is missing in the rising and the post-rise part

due to the exponential decay of the detector signal.

Assuming that the different exponential decays can be re-written into one effective exponential

decay with the unit decay constant λ, the pole-zero factor can be approximated by

P ≈ e−λ(M+K) =
�
e−λM
�M+K

M . (5.11)

The factor e−λM describes the relative signal drop, while M samples are processed without a

signal increase due to an event. This factor can be accessed by the DGS data via

e−λM =
mend

3 −mend
2

mbegin
3 −mbegin

2

. (5.12)

This means that the pole-zero factor can be calculated with the expression

P =

�
mend

3 −mend
2

mbegin
3 −mbegin

2

�M+K
M

. (5.13)
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Figure 5.2: Pre-rise signal height over raw energy for a 88Y source measurement. For S1 over
ESimple (left plot) tilted structures can be seen (marked with arrow). This means that
the calculated energy depends on the pre-rise signal height. For S1 over EAdvanced this
effect is compensated.

The baseline corresponds to the mean signal height without an event peak. It also has to

be corrected with the pole-zero factor P because changes in the baseline height also follow an

exponential decay. The baseline B can be approximated via the two following equations:

B1 =
S2
M mbegin

2 − S1
M mbegin

3

(S2
M − S1

M )− (mbegin
3 −mbegin

2 )
=

S2mbegin
2 − S1mbegin

3

(S2 − S1)−M(mbegin
3 −mbegin

2 )
(5.14)

B2 =
mend

2 mbegin
3 −mbegin

2 mend
3

(mbegin
3 −mend

3 )− (mbegin
2 −mend

2 )
(5.15)

For a real physics event, B1 and B2 should be approximately equal. To decide if an event is

physical or not, it has to be checked if the ratio r=B1/B2 is close to 1.

In Figure 5.2 (b) it can be seen that the correction applied from Equation 5.9 worked properly.

Here, the value S1 is plotted versus EAdvanced for an 88Y source measurement. Now for a given

energy EAdvanced, only vertical straight lines can be seen. This means that the calculated raw

energy does not depend on the pre-rise signal behaviour anymore.

In total, the raw energy calculation works for every detector separately with the following steps:

1. Loop over all events of a source run and calculate B1 and B2 following Equation 5.14 and

5.15 respectively. If the ratio r=B1/B2 is between 0.95 and 1.05, calculate the factor e−λM

following Equation 5.12 and store them.

2. When the loop is finished, calculate the mean value for all stored e−λM and use this mean

value in Equation 5.13 to obtain the pole-zero value P. Store the P value for each detector.
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This value is used later for all further calculations since P should not change during an

experiment.

3. Loop over the part of the data which should be analysed and calculate B1 and B2 following

Equation 5.14 and 5.15 respectively. If the ratio r=B1/B2 is between 0.95 and 1.05, store

the baseline value B1.

4. Calculate the mean value of B using the stored B1 values (the running average).

5. Loop over the same part of the data and calculate the raw energy following Equation 5.9

using P from step 2 and B from step 4.

During the analysis in this thesis, it is looped each time over one run-file for step 3 and 5. One

run-file corresponds to a beam time of roughly 1 hour. The pole-zero values used for all detectors

can be seen in Table A.4 and A.5.

5.2 Energy Calibration of Gammasphere

In the next step, the raw energy is calibrated to get a proper energy spectrum. For this, four

source measurements have been performed before and after the experiment. For each source, all

clearly visible and separated peaks were used for calibration. The gamma-ray energies of these

standard sources are known very precisely. The following gamma-ray energies were used:

• 56Co: 511.006, 846.771, 1037.840, 1238.282, 1771.351, and 2598.459 keV

• 152Eu: 244.697, 344.279, 778.904, 867.373, 964.079, and 1408.006 keV

• 88Y: 898.042 and 1836.063 keV

• 16O: 6128.63 keV

In total, 15 different gamma-ray energies between 235 keV and 6130 keV have been used to

calibrate the detectors. To obtain the excited 16O, which decays via a gamma ray with an energy

of 6128.63 keV, a combined source has been used. The combined source consists of 238Pu and
13C. The 238Pu makes an α decay with τ≈127 a, which allows the reaction 13C(α+n)16O∗ to

happen inside the combined source.

For the calibration, first the raw advanced energy EAdvanced using Equation 5.9 is calculated as

explained in Section 5.1. Then each peak is identified and the position of the peak is defined by

Gaussian fits to the spectra. Then these positions are set in relation to the actual energy of the

peak using the linear relationship

E[keV] = Gain[keV/Channel] · EAdvanced[Channel] +Offset[keV]. (5.16)
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(a) Detector 55
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Figure 5.3: Energy calibration of the Gammasphere detectors 55 and 79 between 245 keV and
2600 keV for the source measurement of 56Co, 152Eu, and 88Y. The 16O data points
are not shown here, but they were used for the calibration fits. The error bars are too
small to be visible but they are considered for the fit. In the lower part of the plot,
the residual for the calibrated energy E is shown.

The linear calibration went well for most of the detectors. The values for gain and offset can be

found for all detectors in Table A.4 and A.5. An example of a successful calibration can be seen

in Figure 5.3 (a) for detector 55. But for three detectors, namely number 19, 40, and 79, some

problems occurred. For the detectors 19 and 79, it was not possible to achieve a consistent linear

calibration for all of the source peaks. As an example, Figure 5.3 (b) shows the calibration that

did not work for detector 79. Detector 40 did not produce useful spectra at all. Here, for each

physical gamma-ray energy two peaks arise in the spectrum. Hence, the spectra for detector 19,

40, and 79 were declared unreliable and are not used in any further analysis.

5.3 Efficiency Calibration of Gammasphere

For later count rates and branching ratio estimations, the efficiencies of the Gammasphere

detectors have to be known. To obtain the efficiencies for the different detectors and the whole

setup again, the source measurements are used.

In the first step, the total efficiency for two energies is calculated using the 88Y source

measurement. For this, the so-called “counting method” is used following the approach from

[Thi11, Wam11]. Here a decay which features the emission of two successive gamma rays is
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exploited. As it can be seen in the decay scheme in Figure A.5, this is always the case for 88Y.

When the gamma ray γA with Ea=898 keV is emitted, the gamma ray γB with Eb=1836 keV has

always to be emitted too. To get the absolute efficiency, it is looped over all events of the 88Y

measurement and the following quantities are evaluated for each event:

• If γA or γB is recorded more than one time the event is disregarded in order to suppress

random coincidences.

• If only γA was measured, the quantity Atot is increased by one.

• If only γB was measured, the quantity Btot is increased by one.

• If the gamma ray γA was recorded in detector k and in the same event gamma ray γB was

recorded in detector l, the quantities Atot, Btot, Ak, and Bl are increased by one.

Afterwards, the total efficiency for the detector i and for the two energies Ea and Eb is given by

εi(Ea) =
Ai

Btot
· 4π
ΩD
· IB

IA
and (5.17)

εi(EB) =
Bi

Atot
· 4π
ΩD
· IA

IB
. (5.18)

Here ΩD is the solid angle of one detector which is 0.418 % of 4π (cf. Sec. 3.3). The relative

intensities for the two gammas are given by IA=93.7(3)% and IB=99.2(3)% [MS14]. Afterwards,

the mean efficiency (mean value over all detectors) is calculated to ε(EA)=6.561(30)% and

ε(EB)=3.965(19)%.

In the second step, the relative efficiency εrel(E) depending on the gamma-ray energy E is

calculated for a larger energy range using the 56Co source. The known relative gamma-ray

intensities Irel(E) are taken from [JSD11]. With this data, it is possible to calculate the relative

efficiency of the detector for energy Ei using the relation

εrel(E) =
C(Ei)
C(E0)

· Irel(E0)
Irel(Ei)

(5.19)

where C(Ei) and C(E0) are the total number of counts for the transition with the energy Ei and

E0, respectively. The number of counts is achieved by applying Gaussian fits to the spectrum at

the corresponding peaks. The relative efficiency is normalized to the efficiency at E0 for which

any transition can be chosen. Here, the transition with 846.77 keV was used for E0. All used

energies and relative gamma-ray intensities can be found in Table A.9. The results are plotted in

Figure 5.4 (a). The data as fitted using the function

εrel(E) =
p0

E − p1
+ p2 (5.20)
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Figure 5.4: Efficiency calibration of Gammasphere: The left plot shows the relative efficiency cali-
bration normalized to the transition at 846.77 keV. The right plot shows the absolute
efficiency calibration. The fit function is given by Equation 5.20. The error bars are
too small to be visible but they are considered for the fit.

and so the uncertainty is given by

u2(εrel(E)) =
�

1
E − p1

∆p0

�2
+
�

p0

(E − p1)2
∆p1

�2
+ (∆p2)

2 (5.21)

+ 2
p0

(E − p1)3
cov(p0, p1) + 2

p0

(E − p1)2
cov(p1, p2) + 2

1
E − p1

cov(p0, p2)

where cov(pk, pl) is the covariance between pk and pl . The fit parameters are determined to be

p0=2109(62) keV, p1=− 1070(37) keV and p2=− 0.101(1).
In the last step, the data points and the Function 5.20 are scaled so that they conform to the

mean value of the absolute efficiency, which were obtained for the 88Y source in the first step.

The result of this can be seen in Figure 5.4 (b). The scaled parameters are determined to be

p′0=15080(1199) keV%, p′1=− 1221(119) keV and p′2=− 0.83(19)%. With this scaled Function

5.20, it is now possible to calculate the absolute mean efficiency for a given gamma-ray energy.

So for example at 1 MeV the total efficiency is 5.95(2)%.

5.4 Proton Cuts

To select the 16C reaction channel, it is necessary to gate on events at which two protons were

emitted. To do so, the PID of µ-Ball is used (cf. Sec. 3.4). A typical measurement of one µ-Ball

detector can be seen in Figure 5.5 (a) and (b). In this figure, the data points from approximately

one hour of beam time for µ-Ball detector 21 (θ=36◦) are plotted. In Part (a), the height of the

signal tail C versus the signal height B is plotted. One can clearly identify the different residual
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Figure 5.5: Particle identification for one target-and-degrader-run using µ-Ball: The data are
shown for detector No. 21 (θ=36◦). One can identify the different particles, namely
electrons (e−), protons (p), deuteron (d), tritium (t), α-particles (α), and 9Be particles.
The normal proton cut is shown in black and the clean proton cut is shown in red in
Part (b). The black arrow marks the location of the proton punch-through events.
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Figure 5.6: Internal µ-Ball timestamps and time cuts for detector 43 and for one run. The time
cuts are at 6000 and 6859 (cf. Tab. A.7 ). They are illustrated by the red lines.

particles, namely electrons (e−), protons (p), deuteron (d), tritium (t), α-particles (α), and some

elastically scattered 9Be beam particles. In Part (b) of Figure 5.5, the signal height is plotted

versus the ratio B/C . In this representation, the proton cuts have been applied. Here two kinds

of cuts have been applied. The cut marked in black is the so-called normal proton cut. This cut

was chosen to maximize the statistics in the two proton channel. But here contaminations from

the deuteron and tritium channel are possible. The cut shown in red is the so-called clean proton

cut. For this cut the risk of a possible contamination from the deuteron and tritium channel is

minimized. But here the statistic in the two proton channel will be smaller. Furthermore, the

black arrow shows the positions of proton punch-through events. For these events the proton

energy was so high that the protons could leave the CsI detectors before they deposited their

complete energy in the detector. For these events the particles can also be identified as protons

but a proper energy can not be obtained for these protons. Due to the fact that the proton energy

(cf. Sec. 5.6) is later used for the analysis, these events are not included into the clean proton

cuts. Events for which two particles are detected in the proton cuts will be from now on called

2p events. Also the cut will be shorty called p cut or 2p cut.

All these cuts have been created for all used µ-Ball detectors. Here it was noticeable that the

position of the data points sometimes moved when run files were changed. This can be explained

by a slight drift in the electronics during the experiment due to rising temperature. To correct

this, the proton cuts were checked for each detector and run file and were adjusted if necessary.

Furthermore, it should be mentioned that nine detectors of µ-Ball were not available during

this experiment. All six detectors in ring number 1 were disabled and an additional shielding

was mounted to save these detectors from radiation damage due to elastically scattered beam
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particles. Three detectors, namely detector No. 55 (θ=90◦), 57 (θ=90◦) and 93 (θ=159◦) had a

malfunction and their data could not be used. In total, 86 µ-Ball detectors were available during

the experiment.

Additionally to the PID information, µ-Ball provides its own internal timestamps for every

entry. To achieve a proper PID and proper coincidences between µ-Ball and Gammasphere (cf.

Sec. 5.5), a time gate onto the prompt peak in the time spectra has to be set for each detector.

The time gates for all detectors can be found in Table A.7. An example for detector 43 is shown

in Figure 5.6.

5.5 Event Builder and Time Cut

In the next step of the analysis, a coincidence between Gammasphere and µ-Ball entries has

to be applied. An entry was written whenever Gammasphere or µ-Ball detected something. For

the coincidence, the global timestamps of the recorded entries are used. The timestamps are

an up-counting integer which increased continuously during the experiment. The timestamp

difference of two consecutive entries can be seen in Figure 5.7. Here the left peak (marked by I)

stems from the prompt gamma rays which were measured by Gammasphere. These are gammas

which can be assumed as coincident. The peak width is going from 0 to 4 channels. One channel

corresponds approximately to 12 ns. The entries in the middle of the plot are produced by random

coincidences. The wiggling structure, which can be seen, stems from the radio frequency of the

cyclotron. The width of the wiggling is approximately 8 channels, which is around 96 ns. The

peak on the right side (marked by II) corresponds to the µ-Ball entries which are in coincidence

with the Gammasphere entries. The red lines indicate the applied time cut. They are located by

channel 650 and 665. So the coincident µ-Ball entries were recorded roughly 8.2µs after the

corresponding Gammasphere entries. The Gammasphere entries are all separated in terms of

the timestamps, which means that every entry has its own timestamp and the raw multiplicity of

one Gammasphere entry is always one. The µ-Ball entries are already combined for the different

µ-Ball detectors, which means that one µ-Ball entry can have a µ-Ball multiplicity larger than

one. Also the Gammasphere entries come first because the µ-Ball readout was delayed. Now

an event building algorithm has to be developed which reads all entries and creates events for

which the chosen Gammasphere entries and possible µ-Ball entries are in coincidence.

For this algorithm three major loops over the data are executed. In the first loop all data are

read from the files and so it is looped over every entry available. During this loop it is checked

whether the signals from the µ-Ball entries fulfil the proton-cuts and the µ-Ball time gates (cf.

Sec. 5.4). If the multiplicity of a µ-Ball entry is two and both signals fulfil the proton-cuts as

well as the µ-Ball time gates, this entry is saved as a valid µ-Ball event. So every µ-Ball entry is

either refused or saved as one single µ-Ball event. At the same time all Gammasphere entries are

saved to Gammasphere events. Thereby it is checked, if the timestamp difference between the
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Figure 5.7: Time difference of two consecutive entries. The red lines show the time gate which
is applied for the µ-Ball entries. The peak marked with I corresponds to the prompt
gamma-ray entries, while the peak marked with II corresponds to µ-Ball entries. The
wiggling structure stems from the radio-frequency of the accelerator.

first entry of a Gammasphere event and consecutive entries is smaller or equal than 4 channels.

If this is the case all these entries are added to one Gammasphere event. If this is not the case,

the current Gammasphere event is finished and the current read Gammasphere entry is set to

the first entry of a new Gammasphere event. The second loop looks through all so far saved

Gammasphere events and applies the BGO suppression for each event. Afterwards, the third

loop loads all remaining Gammasphere events. The loop checks for each Gammasphere event

if a µ-Ball event exists for which the timestamp came 650 up to 665 channels later than the

Gammasphere timestamp. If this is the case a two proton event (2p event) is saved using the

data from the current Gammasphere event and the corresponding µ-Ball event. All other events

are ignored. The so created 2p events can be then used for the following analysis.

5.6 Energy Calibration of Microball

For later analysis the kinetic energies of the protons in the target-only-runs have to be known.

Therefore, the energy calibration for µ-Ball is explained in this section. For the calibration a

proton beam with 12.24(11) MeV was shot on a 12C target for a few hours. The target had a

thickness of 100 µg/cm2. The scattered protons were measured by µ-Ball. The energy calibration

for µ-Ball consists of two steps. First, the detector output of channel B is converted into an energy

value ECsI the protons deposited in the given CsI(Tl) detector. Afterwards, these energies have

to be corrected for the energy loss the protons suffered while passing the different absorbers
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which are mounted in front of the µ-Ball detectors (cf. Sec. 3.4). Applying this correction one

gets access to the kinetic energy the protons had after they left the target in the target-only-runs.

Assuming the energy loss in the thin target of the target-only-runs is neglectable, the so obtained

proton energy represents the energy the protons had directly after their evaporation.

The first step of the energy calibration was performed by the group of D.G. Sarantites et al.

[Sar16]. They identified three prominent peaks in the proton energy spectrum for each detector

and got their positions in terms of the signal height from channel B. The three different peaks

belong to the three possible reactions the protons can have with the 12C target: The protons can

scatter elastically at a 12C nucleus or the protons excited the 12C to the 2+1 state (at 4439 keV)

or the protons excited the 12C to the 0+1 state (at 7654 keV, Hoyle state). Then they calculated

for these three cases the expected energy ECsI the protons should have deposited in the CsI(Tl)

of a µ-Ball detector. These calculations include the full scattering kinematic, the energy loss in

the target and the energy loss due to the different absorbers in front of the CsI(Tl) detectors.

The results of this calculations can be found in Figure A.3. Finally, they could assign the three

peak positions in terms of the signal height from channel B to the energy ECsI in MeV which the

protons should have deposited in the CsI(Tl) detectors. With this data, calibration-functions of

the form

ECsI[MeV] = Gain[MeV/Channel] · B[Channel] +Offset[MeV] (5.22)

could be fitted for every detector. The gain and the offset for all µ-Ball detectors are listed in

Table A.8. So it is now possible to calculate ECsI according to Eq. 5.22 for all proton events.

In the second step of the energy calibration the energy ECsI has to be corrected for the energy

loss the protons suffer in the absorbers. As stated in Section 3.4 each detector surface is covered

by two layers. A thin aluminium foil is directly attached to the CsI(Tl) detectors. On top of this

a Pb or Ta absorber is mounted, where the type of the absorber and the thickness varies from

detector to detector. Hence, the energy will be corrected first for the aluminium foil and then for

the Pb or Ta layer depending on which detector was hit. To correct for the energy loss, incoming

proton energies E are plotted over the total proton range R in the given material. The proton

range data for all materials were obtained using SRIM [Zie19, JFZ15]. Figure 5.8 illustrates the

principle idea of the energy loss correction for an aluminium foil. The black curve shows the

relation between the proton energy E[MeV] and the range R[µm] in aluminium. It was found

out that this relation can be described very well by the function

E(R) = pAl,1 · 3pR+ pAl,2 · 2pR+ pAl,3 · R, (5.23)

where pAl,1, pAl,2, pAl,3 are fit parameters. The fit to the proton range data from SRIM leads to

pAl,1=−0.4336 MeV/µm1/3, pAl,2=0.54019 MeV/µm1/2 and pAl,3=0.000356 MeV/µm for aluminium. To

apply the energy loss correction, first the already known energy ECsI is taken and the intersection

E(R1)=ECsI is numerically calculated. Then the value R2=R1+dAl is calculated, where dAl is the
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Figure 5.8: The idea of the energy loss correction for µ-Ball detectors is shown for aluminium foils.
The proton range data are obtained from SRIM [Zie19, JFZ15]. The proton energy E
in MeV is plotted over the corresponding range R in the material. The parameter ECsI

is the proton energy which the protons deposited in the detector, while dAl is the foil
thickness. The goal variable is the proton energy before they passed the foil marked
by ECsI,Al. The shown function E(R) can be described by Equation 5.23.

thickness of the current aluminium foil. Finally, one gets the energy the protons had before they

entered the aluminium foil defined by ECsI,Al=E(R2). With these results the energy ECsI can be

converted to the energy ECsI,Al the proton had before entering the aluminium foil for every event.

After this is done one applies the same method for the Pb or Ta absorbers. Here, one starts with

ECsI,Al as an input to find the intersection E(R1)=ECsI,Al. Then R2=R1+dPb/Ta is calculated, which

finally leads to ECsI,Al,Pb/Ta=E(R2). The value ECsI,Al,Pb/Ta gives now the energy in MeV the protons

had before they hit an absorber and so this is the energy which will be used in the following

analysis. The fits to the SRIM range data for Pb and Ta can be seen in Figure A.4 (a) and (b),

respectively. The fit parameters were obtained as PPb,1=−0.730 MeV/µm1/3, pPb,2=0.8237 MeV/µm1/2

and pPb,3=0.00212 MeV/µm for Pb as well as pTa,1=− 0.903 MeV/µm1/3, pTa,2=1.0517 MeV/µm1/2 and

pTa,3=0.00274 MeV/µm for Ta.

The results of this energy calibration and corrections are shown in Figure 5.9. The data are

obtained for 2p events which are taken from target-and-degrader-runs. In the figures the energy

of one proton is plotted against the energy of the other proton for each 2p event. In Part (a)

the uncalibrated energy distribution given by the signal height B is shown. These values are

converted to ECsI in MeV following Equation 5.22. The result of this is shown in Figure 5.9 Part

(b). It can be seen that the proton energies which were deposited in the CsI(Tl) detectors are

spread in a range from 1 MeV to 28 MeV, whereat the mean is around 6.15 MeV. Part (c) and
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Figure 5.9: Proton energy distributions for dirty 2p events which are taken from target-and-
degrader-runs.

(d) of Figure 5.9 show the proton energies corrected for the absorbers. The mean value of the

energy distribution for the aluminium correction ECsI,Al (Part (b)) did not change compared to

the ECsI energies. This can be explained with the fact that the aluminium foils were very thin.

Their thickness reached from 0.15 mg/cm2 to 0.58 mg/cm2. Also the stopping power of aluminium

is much smaller compared to the stopping power of Pb or Ta. The distribution of the energies

ECsI,Al,Pb/Ta, which are corrected for aluminium and the Pb/Ta absorbers, has a mean value which

is 0.5 MeV larger than the mean value for ECsI or ECsI,Al. This confirms that the energy loss in the

Pb/Ta absorbers can not be ignored if the proton kinematic is used in later analysis. Furthermore,

the spread in the energy distributions (cf. Root Mean Square (RMS) in Figure 5.9) is smaller for

the full corrected energy ECsI,Al,Pb/Ta compared to the distribution of ECsI. This behaviour can be
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explained with the fact that the absorber correction eliminates artificially induced offsets in the

measured proton energy ECsI due to the different absorber thicknesses for the different detectors.

The proton energies from Figure 5.9 Part (d) can now be used for further analysis.

5.7 Proton Distributions

In this section the proton energy and angular distributions for 2p events are investigated.

The distributions for target-only-runs and target-and-degrader-runs are compared in respect of

artificial changes in the proton kinematics. Changes in the detected proton kinematics lead to

changes in the kinematic of the residual isotopes (e.g. 16C) which are used for analysis as well.

This can influence the extraction of mean decay betas in later analysis.

Figure 5.10 shows the 2p events energy distributions for target-only-runs (a) and target-and-

degrader-runs (b) with a gamma gate on the 2+1 of 16C. Hence, mainly protons which are in

coincidence with 16C events are shown. This is done to get rid of uncorrelated random protons

from other reactions. The same analysis was also done for a 23Ne channel (cf. Sec. 6.1) as well

as all 2p events which lead to very similar results. Thus, the proton angular distributions are

mainly dominated by the kinematic of the beam and the energy loss in the target and degrader.

Hence, only the case of 16C is discussed in the following.

The plotted energies in Figure 5.10 are the absorber corrected proton energies ECsI,Al,Pb/Ta

calculated as stated in Section 5.6. It can be seen that the mean value of the distribution is

smaller for the target-and-degrader-runs than for the target-only-runs. This can be explained

with the fact that the protons lost some energy in the degrader before they are registered by

the µ-Ball detector. But as stated in Section 5.8 the detected proton energy distribution directly

influences the mean decay beta which can be extracted from the gamma-ray spectra. This has to

be considered in the target-only-run analysis which is discussed in Section 5.8.

Furthermore, not only the proton energy distribution is important for the mean decay beta

analysis but also the proton angular distribution. The angles of the protons define their momen-

tum direction and due to conservation of momentum, the momentum of the protons after the

evaporation influences directly the momentum of the residual particle (e.g. 16C). Because only

the momentum part along the beam axis is relevant the θp distributions are analysed.

Figure 5.11 shows the 2p events θp distributions for target-only-runs (a) and target-and-

degrader-runs (b) with a gamma gate on the 2+1 of 16C. The θp angles are the angles of the µ-Ball

ring which detected the protons (cf. Sec. 3.4 and Fig. 3.4). In the Figure 5.11 a trend can be seen

that for both settings more protons are detected under forward angles compared to backward

angles. This can be explained with the high beam velocity along the beam axis, which boost

the protons more in forward directions. The ring at 90◦ detected fewer protons as its neighbour

rings. This is expected because protons have to travel a very long way through the target and/or

degrader if they travel towards a detector under 90◦. If they are emitted under nearly 90◦ they
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Figure 5.10: Proton energy distribution of ECsI,Al,Pb/Ta for dirty 2p events with a gamma gate on
the 2+1 of 16C.
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Figure 5.11: Proton θp distribution for dirty 2p events with a gamma gate on the 2+1 of 16C. The
irregular binning of the 2D-histograms is matched to the opening angles of the µ-Ball
rings (cf. Fig. 3.4).

have to travel perpendicular to the beam axis which means that they have to pass half of the

target width, which is in the range of mm. Hence, these protons will stuck in the target and/or

degrader material and will not be measured.

Looking further at Figure 5.11 one can see that especially under forward angles the θp distribu-

tions differ a lot comparing target-only-runs to target-and-degrader-runs. For the target-only-runs

a larger ratio of protons is detected under forward angles (<90◦) compared to the target-and-

degrader-runs. This is expected, because it is likely that protons with smaller energies will get

stuck in the degrader and are not able to reach the detectors. This fact also influences the mean

and the RMS of the distributions, which differ significantly comparing the two settings. Hence,
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the presence of a degrader influences the angular distribution very strongly. It seems that this

effect is even more pronounced than for the energy distributions. Hence, the absence of the

degrader in the target-only-runs will have a significant influence on the extracted mean decay

beta. Due to this, a correction has to be applied to the target-only-runs. This will be the main

topic of the next section.

5.8 Target-Only-Runs

As stated in Section 4.3, it is necessary to obtain a value for the initial beta with which the resid-

ual isotopes are spawned in the Geant4 simulation. For this, the target-only-runs are analysed.

In the target-only-runs, a thin 9Be target is used without a degrader. The target thickness was

0.5µm. In the target the excited residual isotopes of interest (e.g. 16C) are created. Afterwards,

they left the target and de-excited by emitting a gamma ray in-flight. Because the slow down

effect in the thin target is negligible, the velocity of the particle during the decay is approximately

the same as the velocity the particle has directly after its creation. This means that the average

influence of the fusion-evaporation kinematics is already included in the mean decay beta. By

extracting the mean decay beta from the target-only-runs, one gets a good starting point for

the initial beta which is used in the Geant4 simulations. This method also has the additional

advantage that all systematics of the experimental setup are already included in the extracted

mean decay beta. If the beta is extracted from the target-only-run, only gamma rays are taken

into account which were measured in coincidence with two protons in µ-Ball. Due to this, the

data themselves include systematic effects of proton loss in the target, the sensitivity of the

µ-Ball detectors, and the sensitivity of the Gammasphere detectors. The sensitivity of the µ-Ball

detectors can have an especially large influence onto the results. Here, the sensitivity is strongly

angle dependent because the shielding at the µ-Ball detectors is not the same for all angles. Also,

the most forward angle was not used at all. This creates an unsymmetrical bias whether a proton

is recorded or not. But this directly influences the extracted mean decay beta, because the mean

decay beta of the residual isotope depends on the emitting direction of the two protons. Further,

it is nothing known about the fusion-evaporation kinematics, especially in terms of the proton

energy distributions. Hence, it is a huge advantage to use the results from the target-only-run as

an input into the simulations.

As shown in Section 5.7, the angular and energy distributions of the protons change systemat-

ically comparing the target-only-runs with the target-and-degrader-runs. This behaviour is quite

obvious, because protons under forward angles with low energies can get stuck in the degrader.

These protons will not reach a µ-Ball detector and so this event is skipped in the 2p cut. This ef-

fect is not symmetrical along the beam axis and hence this leads to a change in the measured beta.

Hence, for target-and-degrader-runs the mean decay beta will be only measured for events for

which no slow protons were evaporated under forward angles. Assuming the 2p events from the
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Figure 5.12: Proton distance distribution (a) and range in a fictive gold degrader (b). The data
in Part (a) are for a fictive gold degrader with 19.9µm thickness and 16.43 mm
width for the target-only-runs. The shown angles indicate the angles of the µ-Ball
rings. Part (b) shows the range R for protons in gold according to SRIM calculations
[Zie19, JFZ15]. The shown fit function is given by Equation 5.24.

target-and-degrader-runs are sensitive to a “goal” proton distribution without slow protons, then

the 2p events proton distribution from the target-only-runs have to be modified to reproduce the

same systematic proton loss. This modification is explained in the following.

For this modification the loss of protons due to a fictive gold degrader is simulated during the

analysis of the target-only-runs. In the first step, the distance the protons have to cover in such a

fictive gold degrader is calculated. For this it is assumed that protons are created at the center of

the thin target (which is justified due to the small size of the target compared to µ-Ball) and that

the angle of the protons matches the angle of the µ-Ball detector which detects the particular

proton. Due to the opening angles of the µ-Ball detectors this is not really true but it is the best

approach which can be done for this setup. With these assumptions it is possible to create a vector

of direction for each proton. Then the distance each proton would travel inside a fictive gold

degrader is calculated. The fictive gold degrader has the same dimension as the real degrader

in the target-and-degrader-runs. Therefore, the thickness of the fictive gold degrader along the

beam axis is 19.9µm and the width perpendicular to the beam axis is given by 16.43 mm each.

If protons are emitted under backward angles the covered distance in the fictive degrader is set

to zero because the degrader sits downstream relative to the target.

The distribution of the distance the protons have covered in such a fictive gold degrader

is shown in Figure 5.12 (a) for all target-only-runs. The peaks are assigned to the angles of

the corresponding µ-Ball detector rings. As stated earlier protons which are detected under

backward angels (θp>90◦) do not pass the fictive degrader and so their distance is set to zero.

The protons which are detected under forward angels (70◦ to 21◦) cover distances in the range
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of several 10µm. If the protons are detected under 90◦ the covered distance increases by a factor

of thousand according to the calculations. This can be explained with the fact that protons which

travel perfectly perpendicular to the beam axis have to pass the fictive degrader along its width.

The width is in the range of 10 mm and so is the distance the protons would travel in the fictive

degrader. The 90◦ protons appear in the distribution as three separate peaks because now the

angle ϕ of the proton directions has a significant influence on the calculated distances. But these

huge distances are not realistic because protons with the here expected energy can not pass

such a long distance in gold (cf. Fig. 5.12 (b)). Following these calculations, protons which are

detected under 90◦ should also not appear in the target-and-degrader-runs. But as seen in Figure

5.11 (b) protons are detected under 90◦ for the target-and-degrader-runs. This reveals a problem

of the here applied modification. Protons which were detected under 90◦ in the experiment did

not necessarily have an exact emission angle of 90◦. Their angles can be in the range from 80◦

to 100◦ due to the opening angle for the µ-Ball detector ring at 90◦ (cf. Fig. 3.4), or they hit an

detector under 90◦ due to angular strangling in the degrader. Hence, the distance such protons

had to cover in gold can be much smaller in reality. But in the target-only-runs modification all

these protons are treated as if they travelled perfectly perpendicular to the beam axis and so

their calculated distance in the degrader is much too large. To avoid this problem in the further

analysis, events for which at least one proton was detected under 90◦ will be ignored. As seen

in Section 5.7 the number of events with one or two protons under 90◦ is small compared to

other angle combinations. Hence, the number of counts lost due this restriction should be not

too problematic.

After the covered distance in the fictive gold degrader is calculated for the detected protons,

also the maximum range in gold is calculated for the protons. For this SRIM was used again to

calculate the range of protons in gold [Zie19, JFZ15]. Figure 5.12 (b) shows the results of this

calculations. Here, the range R in µm is plotted over the proton energy Ep in MeV. The SRIM

data can be well described by the fit function

R(Ep) = p1 · E3
p + p2 · E2

p + p3 · Ep, (5.24)

where p1, p2 and p3 are fit parameters. They were determined to p1= − 0.01002 µm/MeV3,

p2=1.282 µm/MeV2 and p3=5.410 µm/MeV. Furthermore, it can be seen that protons with an energy

of 25 MeV have a range of about 800µm. This shows that no protons are able to pass the total

width of the gold degrader of 16.43 mm. Hence, protons detected under 90◦ can not be used for

this modification as stated earlier.

Finally, with this framework the complete modification can be applied to the target-only-runs:

First, the angles of the protons for each event are checked. If the angle is 90◦, the event is ignored.

If not, the covered distance in the fictive gold degrader is calculated. Then the maximum range

the proton can pass in gold is calculated. For this the calibrated and absorber corrected proton

energy ECsI,Al,Pb/Ta is fed into Equation 5.24. If the maximum range of a proton is smaller than the
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Figure 5.13: Proton θp distribution for dirty 2p events with a gamma gate on the 2+1 of 16C. For the
target-and-degrader-runs all events with protons detected under 90◦ are ignored. For
the target-only-runs the degrader-passed check was applied. The irregular binning
of the 2D-histograms is matched to the opening angles of the µ-Ball rings (cf. Fig.
3.4).

distance it has to pass in the fictive gold degrader, it is assumed that this proton will get stuck in

the degrader. Then this proton is not included in the analysis and the event is ignored. With this

modification the influence of a gold degrader on the proton kinematics can be approximately

transferred to the target-only-runs. In the following analysis these modifications will also be

labelled as degrader-passed check.

To test the degrader-passed check, Figure 5.13 shows again proton angular distributions for

target-only-runs (a) and target-and-degrader-runs (b) with a gamma gate on the 2+1 of 16C. But

now the degrader-passed check is applied to the target-only-runs and for better comparison,

events with protons detected under 90◦ are ignored for the target-and-degrader-runs. It can be

seen that the two angular distributions are not perfectly identical. While the mean of the distri-

bution is 61.0◦ for the target-only-runs, the mean for the target-and-degrader-runs is 57.7◦. This

remaining deviation can be mainly explained with the fact that the calculated proton distance is

only available for a few discrete values due to the limited amount of µ-Ball rings. As a result of

this the real proton kinematic can not be completely represented by the calculations during the

degrader-passed check. Nevertheless, the proton angular distribution for the degrader-passed

check (cf. Fig.5.13 (a)) is much closer to the goal distribution of the target-and-degrader-runs (cf.

Fig.5.13 (b)) compared to the unmodified proton angular distribution for the target-only-runs

as seen in the last section and Figure 5.11 (a). This is also reflected in the mean values of the

distributions. The mean of the unmodified proton angular distribution for the target-only-runs is

64.5◦. Hence, the difference to the goal distribution of the target-and-degrader-runs is larger than
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for the modified target-only-runs. All in all it can be concluded that the degrader-passed check

helps to reduce the influence of the bias due to the missing degrader in the target-only-runs.

Hence, the mean decay beta extracted from the target-only-run using the degrader-passed

check includes only the parts of the mean decay beta this experiment is sensitive for. It also only

represents the part of the velocity parallel to the beam direction. But as stated earlier, this is

not a problem because the further analysis is only sensitive to velocities in beam direction. To

extract the beta of an isotope, a clearly visible peak of the isotopes of interest (e.g. the 2+1 of
16C) is chosen in the spectra of the target-only-run. Then the target-only beta βTO is extracted as

explained in Section 2.5. This βTO can then be fed into the Geant4 simulations (cf. Sec. 4.3).

5.9 Target Position Correction for the Target-Only-Runs

The target for the target-only-run was mounted on a different structure than the target-and-

degrader-run setup. The thin target was located roughly d=0.2 cm upstream compared to the

center of Gammasphere. For this, the θ which is assigned to the Gammasphere detectors has to

be corrected to a new θ ′. The geometry of this correction is shown in Figure 5.14. At z=0 the

center of Gammasphere is given and the new target position for the target-only-run is moved

with the amount d into negative z direction. Then one can find the following relations

x =r cos(θ ), (5.25)

y =r sin(θ )and (5.26)

tan
�
θ ′
�
=

y
d + x

, (5.27)

where r=25.25 cm+l/2=29 cm. Finally, the theta correction is described by

θ ′ = arctan
�

sin(θ )
cos(θ ) + d/r

�
. (5.28)

zz=0

r
y

x

z=− d

.θθ ′

l

Figure 5.14: Sketch of the target position correction. For the target-only-run, the target is shifted
d=0.2 cm upstream compared to the center of Gammasphere at z=0. The black
rectangle represents one Ge crystal which is located under the angle θ and has a
length of l=7.5 cm.
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5.10 Target-And-Degrader-Runs

To get the lifetimes of excited states, the mean decay beta of the excited isotopes has to be

measured using the target-and-degrader-runs. The runs are again evaluated for 2p events. The

bias induced due to missing protons which got stuck inside the degrader is already corrected

in the analysis of the target-only-runs. But as stated in Section 5.8 this modification can not be

applied for events for which at least one proton was measured under 90◦. Hence, during the

analysis of the target-and-degrader-runs all events have to be ignored for which at least one

proton was measured under 90◦. Otherwise no further modifications have to be applied.

To extract the mean decay beta, the peak of interest (e.g. the 2+2 of 16C) is chosen in the spectra

of the target-and-degrader-runs. Then the mean decay beta β is extracted as explained in Section

2.5. This β can then be compared to the Geant4 simulation results to extract a proper lifetime.

5.11 Multiplicity of Gammasphere and Microball

Another characteristic, which has to be checked, is the multiplicity of Gammasphere and

µ-Ball. Figure 5.15 (a) shows the multiplicity for Gammasphere in coincidence with protons and

Figure 5.15 (b) shows the multiplicity for µ-Ball for detected protons. It can be seen that for

both detectors the number of counts decreases strongly exponentially for increasing multiplicity.

This is as expected. For Gammasphere, the number of counts drops by a factor of 0.231 when

going from a multiplicity of 1 to a multiplicity of 2. For µ-Ball, where the 2 proton efficiency is

crucial for the experiment, the number of counts drops by a factor of 0.007 when going from a

multiplicity of 1 to a multiplicity of 2. This shows the importance of the two proton cut to extract

the channel of interest. Otherwise, the spectra are dominated by reactions with other residual

particle configurations.
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6 Results
In this chapter all results are discussed in detail. First the spectra for the two proton cuts

are described to give an overview about the measured data. Then the results of the lifetime

measurements for 22Ne, 23Ne, and 16C are given.

6.1 Two Proton Cut Spectra

At the beginning the results for the two proton cuts are presented. Figure 6.1 and Figure 6.2

show the spectrum for 2p cuts for the target-and-degrader-runs. While Figure 6.1 shows the

complete detected gamma spectrum, Figure 6.2 shows a zoom on the region from 100 keV to

2500 keV. In both spectra many transitions can be seen. Transitions which could be identified are

marked with arrows and named in the spectra. The transitions which are marked in black are

neutron induced reactions. They happen with the germanium inside the Gammasphere detectors

or with the aluminium of the beam pipe and target chamber. These are background reactions

which always appear when neutrons are emitted. These transitions have also been stated e.g. in

[LS69, EDQ+89, Loe17, Hei19].

The transitions from the 2+1 and the 4+1 state of 16C are clearly visible at the expected energy as

stopped peak. Hence, the 2p cuts are successfully applied to the gamma-ray spectra. The analysis

of the lifetimes of these states is discussed in detail in Section 6.5. Besides the background

reactions and the 16C transitions, some other residual isotopes could be identified. They are

marked with red and green arrows. For these transitions, the initial state of the transition and

the lifetimes are given. Marked in red, one can see transitions from 14C, 15C, 15N, and 16N. These

isotopes stem from reactions of the 9Be beam with the 9Be target (cf. Tab. A.1). For 14C and 15C

the residual particles contain two protons as well as two neutrons and one neutron, respectively.

Hence, it is expected to see them in the 2p cut spectra. For 15N and 16N only one proton is

emitted. But the production probability for these two isotopes is much larger than for the 16C

isotopes. For 15N the cross section is 410 times larger than for 16C and for 16N the cross section

is 10.7 times larger than for 16C according to the PACE4 calculations (cf. Tab. A.1). This enables

the possibility for random coincidences between two independent protons from two independent

reactions.

Furthermore, transitions from 22Ne, 23Ne, and 23Na are visible. They are marked with green

arrows. These isotopes stemmed from reactions of the 9Be beam with 16O isotopes. It was
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discovered that the target was oxidized on its outside layers. These oxidation layers provide 16O

isotopes for additional reactions. Due to this the reactions

9Be+16 O → 25Mg∗ → AZ∗ + Np · p+ Nn · n (6.1)

are possible, where Np is the number of protons and Nn is the number of neutrons.

A list of all reaction channels, which can be accessed with the reaction 9Be+16O, is found in

Table A.2. For 22Ne and 23Ne also two protons are emitted and hence they appear in the 2p cut

spectra. For 23Na only one proton is emitted but again the probability that 23Na is produced is

very high. According to PACE4, the cross section of 23Na is 430 times larger than for 16C.

Looking at the Tables A.1 and A.2 it can be seen that the isotopes 12C, 16O and 20Ne also have

a large cross section and two or more protons could be emitted during the creation process. But

in the 2p cut spectra no transitions could be found which can belong to 12C, 16O or 20Ne. To

investigate this further also cuts on the detected alpha particles were created. Analysing the

gamma spectra for the alpha cuts revealed that transitions of all three isotopes could be found.

In detail one could see transitions from the 2+1 state of 12C, the 3−1 state of 16O, and the 2+1 as

well as the 4+1 state from 20Ne. This implies that 12C, 16O, and 20Ne isotopes are created mainly

via the alpha evaporation channel and will not appear in the 2p cut spectra.

Additionally, two 34S transitions can be seen in Figure 6.2. The sulphur stems from an un-

known contamination. To prove that the peaks belong to 34S a gamma spectrum with a gate on

the dominant transition from the 5−1 state (at 5690.7 keV and Eγ=1001.6 keV) is shown in Figure

6.3. The spectrum is obtained from the target-only-runs. There 34S decays in-flight and hence,

the gamma energies are Doppler corrected before the energy gate is applied. In the spectrum,

the prominent decay chain 5−1 (at 5690.7 keV)→ 4+1 (at 4688.9 keV)→ 2+1 (at 2127.6 keV)→ 0+1 (at

0 keV) from 34S can be clearly seen without any significant background.

If a transition produces a sharp Gaussian peak in Figure 6.1 and Figure 6.2, then the decay

happened at rest which means that the lifetime is in the range of picoseconds or longer. If the

lifetime is much shorter the decay happened in-flight and the peak in the figures is smeared

out due to the Doppler effect. To get a better overview of decays which happened in-flight and

which happened at rest, a 2D plot, as can be seen in Figure 6.4, is used in the following sections.

The figure shows the measured radiation angle over the laboratory energy for the target-and-

degrader-runs with normal 2p cuts. Thereby, the plotted radiation angle was randomized around

the discrete value stemming from the angle of the Gammasphere detectors. The limits of the

randomized angle are defined by the opening angle of one Gammasphere ring which is ±7.5◦.
The figure covers an energy range from 1200 keV to 2600 keV. It can be seen that transitions

2+1→0+ of 22Ne (Eγ=1275 keV) and 16C (Eγ=1758 keV) appear as straight vertical lines, which

means that there is no centroid shift. This is expected, because the lifetimes for these transitions

are in the range of picoseconds and so the gamma decay happens at rest. For the transition
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Figure 6.3: Gamma spectrum for normal 2p cuts for target-only-runs with a gamma gate on the

5− state (at 5690.7 keV and Eγ=1001.6 keV) in 34S. The gamma-ray energy is Doppler
corrected using βDC=0.02208. The prominent decay chain 5−1 (at 5690.7 keV)→ 4+1 (at
4688.9 keV)→ 2+1 (at 2127.6 keV)→ 0+1 (at 0 keV) from 34S can be clearly seen.

4+1→2+1 of 22Ne (center of mass energy at 2083 keV) the centroid energy is shifting for different

angles. Hence, the decay happened in-flight which is again expected, because the lifetime of the

4+1 state of 22Ne is 324(6) fs [SB15]. This state will be used as a benchmark for the here applied

evaluations. The benchmark test will be discussed in Section 6.3. The 4+1→2+1 transition of 16C

(Eγ=2365 keV) appears in a straight vertical line. Hence, the lifetime of this state has to be in

the picosecond range as well. The 3+1→2+1 transition of 16C (centroid energy at 2303 keV) shows

a moving centroid. Hence, the lifetime is in the femtosecond range. But as stated later in Section

6.5 this transition is superimposed by the transition 7/1+2→5/2+1 of 15N with a center of mass

energy of 2297 keV. The transition 2+2→2+1 of 16C is not visible for the here shown settings. For

more information about the 16C transitions and the lifetime estimations see Section 6.5.

Furthermore, the same analysis was done for the clean 2p cuts (cf. Sec. 5.4). For these gamma-

ray spectra the overall number of counts decreased as expected. But by comparing the count loss

for the channel of interests with the count loss for background channels it was found that they

all scale the same. This showed that no extra advantage can be gained by using the clean 2p cuts.

Also, as stated earlier, it is not possible to calculate a correct proton energy for all protons in the

clean 2p cuts. Hence, in the following analysis every evaluation will be only done for the normal

2p cuts. For simplification they will be just called 2p cuts or 2p events.
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Figure 6.4: Radiation angle θ versus laboratory energy ELab for the normal 2p cuts for target-and-
degrader-runs. Transitions of interest are labelled. The corresponding isotope and the
initial state of the transition is given. The z-axis range was truncated to a minimum of
30 counts per bin for a better visualization of the smaller peaks.

6.2 Count Rate Estimations for the 2+1→0+1 Transition in Carbon-16

To check that the experiment and the event builder worked as expected, the counts of the

2+1→0+1 transition of 16C are extracted and compared to count rate estimations which were

performed in the experiment proposal [PHP+16]. These estimations are based on the mea-

surement by Wiedeking et al. [WFM+08], who measured about 200 counts in the 2+1→0+1
transition in 36 hours with a beam intensity of 0.5 pnA. This corresponds to 11.1 counts per

hour at 1 pnA. The production beam time of the target-and-degrader-runs in this experiment

was about 106 hours and the average beam current was 1.1 enA=0.275 pnA (cf. Sec. 3.2). This

would lead to 324 counts in total if the same setup was used. Following the proposal, the to-

tal γ-p-p efficiency should be 125 times larger for the here analysed experiment compared to

the setup used by Wiedeking et al. This would result in 40,500 counts in the 2+1→0+1 transi-

tion. The proposal assumed a two proton efficiency of 25 % and a total Gammasphere effi-

ciency of 10 % at 1 MeV. But this was not achieved during the experiment. Due to problems

with the electronics and triggers of µ-Ball, the one proton efficiency was decreased to 30 %

[SR16]. This leads to a two proton efficiency of 9 % which reduces the expected counts to
9/25·40,500 counts=14,580 counts. The Gammasphere efficiency at 1 MeV was 5.96 % (cf. Sec.

5.3) due to missing detectors. As a result the expected total number of counts in the 2+1→0+1
transition should be 5.95/10·14,580 counts=8,675 counts.
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Figure 6.5: 2+1→0+1 transition of 16C obtained in the 2p cut spectra for the target-and-degrader-
runs. The shown fit-function is given by Equation 6.2.

To evaluate the experimental data, a Gaussian function is fitted to the 2+1→0+1 transition of
16C in the target-and-degrader-runs. The result can be seen in Figure 6.5. The fit-function is

described by

f (E) = p0e−
1
2

� E−p1
p2

�2
+ p3 · E + p4 (6.2)

and so the counts are given by

C =
p

2πp0p2

Binwidth
, (6.3)

which leads to 9346(171) counts. Here, the correlation between the fit-parameter p0 and p2 is

considered in the calculation of the statistical uncertainty. This result is in good agreement with

the corrected proposal estimations of 8,675 counts. Thereby, one has to consider that the average

beam intensity could only be estimated very roughly because it was not measured continuously

during the experiment.
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6.3 Results for Neon-22

As mentioned in Section 6.1, two transitions from 22Ne can be seen in the 2p cut spectra. The
22Ne stems from reactions of the 9Be beam with a thin oxidation layer at the target. If the 9Be

beam hits 16O isotopes, the reaction channel

9Be+16 O → 25Mg∗ → 22Ne∗ + 2 · p+ 1 · n (6.4)

is available. Here, the residual particles are two protons and one neutron. The experimental

setup was not able to detect the neutrons but the two protons will satisfy the 2p cut. Hence, the
22Ne channel appears clearly in the 2p cut spectra. A level scheme with the two lowest excited

states of 22Ne is illustrated in Figure 6.6. In the level scheme, the two transitions 4+1→2+1 with

2082.6(5) keV and 2+1→0+ with 1274.5 keV can be seen. For both states, the lifetimes are known

very precisely. For the 2+1 state the lifetime is stated as 5.19(7) ps [SB15]. Transitions from this

state should arise in the spectra when the particles are fully stopped in the degrader. For the 4+1
state the most recent value for the lifetime is given by 324(6) fs [SB15]. This is in a range the

experiment is sensitive to. The value was obtained as an uncertainty weighted mean from eight

different measurements. Due to this, the 22Ne channel can be used as a good benchmark test

for the analysis which is applied in this thesis. Next, the lifetime of the 4+1 state of 22Ne will be

extracted and compared to the results of the previous measurements.

First, it will be proofed that the two gamma-ray transitions really belong to 22Ne. Then the

transition 2+1→0+ is analysed for the target-only-runs to extract the mean beta the 22Ne isotopes

had after their creation. This information is used as an input for the Geant4 simulation to get a

proper correlation between the lifetime of the 4+1 state and the mean decay beta of the target-

and-degrader-runs. Finally, the mean decay beta of the experimental target-and-degrader-runs

is extracted and compared to the simulation results to achieve a proper lifetime for the 4+1 state.

To demonstrate that the investigated transitions belong to 22Ne a gamma-gamma coincidence

gate is used. Figure 6.7 (a) and (b) shows the radiation angle versus laboratory energy for the

2p cut for the target-and-degrader-runs in a range from 1400 keV to 2400 keV. For Part (a) no

gamma gate was set. Besides the strong 2+1→0+ transition of 16C some other small transitions

and a lot of background is visible. The 4+1→2+1 transition of 22Ne is also slightly visible. In Figure

6.7 (b) a gamma gate is applied. The gate is reaching from 1271.7 keV to 1277.3 keV. Hence,

the plot only shows gammas which are in coincidence with the 2+1→0+ transition of 22Ne. In

this spectrum, the 2+1→0+ transition of 16C, the background, and all other weaker transitions

vanished. Only the 4+1→2+1 transition of 22Ne remains. This indicates the two investigated states

should belong to 22Ne.

In the next step, the mean decay beta βTO is extracted from the target-only-runs following

the idea from Section 5.8. For this, the transition 2+1→0+ is used because for this transition the
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number of counts is large enough to get a proper βTO. The analysed data were obtained by

applying the degrader-passed check to the target-only-runs as explained in Section 5.8. Figure

6.8 (a) shows the radiation angle θ versus laboratory energy ELab for these data. A moving

peak structure for a transition which decayed in-flight can be clearly seen. The location of

this peak structure is around the expected energy for the 2+1→0+ transition (marked with the

dashed line). For this transition all available angles of Gammasphere could be used to extract the

centroid energies ELab(β ,θ ) for each angle θ . In Figure 6.8 (b) the centroid shift as a function

of cos(θ ′) is illustrated. For this, the Gammasphere angles θ were corrected to θ ′ according

to the target position correction of 0.2 cm which is explained in Section 5.9. The shown data

points were achieved by fitting Gaussian functions to the 2+1→0+ peaks in the respective gamma-

ray spectra for each discrete Gammasphere angle (cf. Sec. 2.5). The shown fit, described by

Equation 2.19, leads to a result of Ecm=1274.0(1) keV which is close enough to the accepted

value of 1274.537(7) keV [SB15]. Also the position and the shape of the fit-function reproduces

the data well as can be seen in Figure 6.8 (a) and (b). The mean decay beta was obtained to

βTO=0.03229(14). The obtained value for βTO can then be fed into the Geant4 simulations to

calculate the initial betas βini the isotopes get in the simulation (cf. Sec. 4.3).

Now the data from the target-and-degrader-runs are evaluated to get the experimental mean

decay beta βExp for the transition 4+1→2+1 . As explained before, events with protons which were

detected under 90◦ have to be ignored. Figure 6.9 (a) shows the radiation angle θ versus lab-
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Figure 6.7: Radiation angle θ versus laboratory energy ELab for the 2p cut for target-and-degrader-
runs in the range from 1400 keV to 2400 keV. In the right plot, a gamma-gamma
coincidence gate is applied for the 2+1→0+ transition of 22Ne. The gate is reaching
from 1271.7 keV to 1277.3 keV. This corresponds to a 2σ range around the mean value
of 1274.5 keV.

oratory energy ELab for these data. A moving peak structure from a transition which decayed

in-flight can be clearly seen. The locations of these peaks are around the expected energy for

the 4+1→2+1 transition (marked with the dashed line). For this transition eleven angles of Gam-

masphere (namely 58.28◦, 69.82◦, 79.19◦, 80.71◦, 90.00◦, 99.29◦, 100.81◦, 110.18◦, 121.72◦,
129.93◦ and 142.62◦) could be used to extract the centroid energies ELab(β ,θ ). For the other

angles no proper Gaussian fit to the peaks could be established. For the forward angles smaller

than 58.28◦ the 4+1→2+1 transition peaks interfere with a stopped peak from an unidentifiable

background source. For the backward angles larger than 142.62◦ the number of counts was

too low to make a proper fit to the peaks stemming from the 4+1→2+1 transition. Nevertheless,

these are enough data points to extract a proper mean decay beta with a small statistical uncer-

tainty. In Figure 6.9 (b) the centroid shift as a function of cos(θ ) is illustrated. The data points

were achieved by fitting Gaussian functions to the 4+1→2+1 peaks in the respective gamma-ray

spectra for the eleven discrete Gammasphere angles (cf. Sec. 2.5). The shown fit, described by

Equation 2.19, leads to the results of Ecm=2081.6(2) keV which is close to the accepted value of

2082.6(5) keV [SB15]. The mean decay beta was obtained to βExp=0.02262(34). The position

and the shape of the fit-function reproduce the data well as can be seen in Figure 6.9 (a) and

(b). Only the data point for θ=142.62◦ (cos(142.62◦)≈− 0.79) is not described well by the fit.

A reason for this could not be found and the Gaussian fit to the particular gamma-ray spectrum

seems trustworthy as well. Hence, the data point was still considered in the fit. Further, it should

be noted that its influence is not large because it has one of the largest uncertainty of all used
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data points and so it is not weighted strongly in the fit.

In the final step the Geant4 simulations are used to obtain a relation between the lifetime

of the 4+1 state and the measured mean decay beta βExp. For this, the Geant4 simulations are

started for several different lifetimes using βTO=0.03229(14) to calculate the initial betas. The

simulation is run for the most parts as explained in Section 4.3. But for 22Ne the starting position

distribution in the Geant4 simulations has to be sampled in a different way as for 16C. The 16C

isotopes can be created along the whole 9Be target, while the 22Ne isotopes can just be created

in an area where a significant amount of 16O can be found. Due to this the starting positions

of the 22Ne isotopes are not distributed along the whole target. Instead, the isotopes are cre-

ated inside one thin oxidation layer at the beginning of the target because here the 16O atoms

stemming from the oxidation process should be found. The thickness of the oxidation layer is

chosen to be 5 nm. This is a typical thickness of oxidation layers on beryllium according to the

work from Hoover et al. [HCFR89]. With these settings the Geant4 simulations can be run for

different lifetimes and the corresponding mean decay betas βSim (τSim) can be extracted. For the

extraction of the simulated mean decay betas βSim (τSim) single Gaussian functions are fitted to

the spectra for the same eleven Gammasphere angles which were used for the analysis of the

target-and-degrader-runs and the fit settings as well as the fit range are chosen the same. This is

done to match the experimental conditions as good as possible and to not introduce an artificial

bias due to the truncation of used Gammasphere rings.

Figure 6.10 shows the here obtained results. Part (a) of the figure shows the results for

simulations with ICRU73 stopping powers and Part (b) shows the results for SRIM stopping

powers. Both results do not differ that much. This can be explained with the fact that the

difference in the stopping powers is not that big for 22Ne compared to the effect for 16C. In both

cases the linear function

βSim (τSim) = a ·τSim + b (6.5)

was fitted to the simulated data, which describes the data well enough. To get the lifetime τExp

of the state, the intersection of the fit-function with the experimental mean decay beta βExp has

to be found. In the figure this is visualized by the intersection of the black fit-function and the

orange line which represents the measured mean decay beta βExp. The yellow band around the

line represents the statistical uncertainty of βExp. Analytically this is achieved via

βSim

�
τExp

�
:= βExp ⇒ τExp =

βExp − b

a
, (6.6)

using the fit-parameters from Equation 6.5. The statistical uncertainty u
�
τExp

�
of a such obtained

lifetime is given by

u
�
τExp

�
=

√�1
a
∆βExp

�2
+

�
βExp − b

a2
∆a

�2
+
�

1
a
∆b
�2
+ 2
βExp − b

a3
cov(a, b), (6.7)
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Figure 6.10: Simulated mean decay beta βSim versus simulated lifetime τSim for the 4+1→2+1 tran-
sition of 22Ne. In the simulations the 22Ne isotopes were created in a thin oxidation
layer at the beginning of the target. The initial beta in the simulation was obtained
with βTO=0.03229(14). The yellow band illustrates the experimental mean decay
beta value of βExp=0.02262(34) including its uncertainty. The shown fit-function is
described by Equation 6.5.

where cov(a, b) is the covariance between a and b stemming from the fit. Applying this formalism

leads to results of 311(13) fs for ICRU73 stopping powers and 328(14) fs for SRIM stopping

powers for the lifetime of the 4+1 state in 22Ne. Hence, both results are in agreement with the

324(6) fs, which is the most recent uncertainty weighted mean value from all accepted previous

measurements as stated in [SB15]. For both results the one sigma uncertainty intervals are

overlapping.

As a summary, Figure 6.11 shows the temporal development of the measured lifetimes for the

4+1 state in 22Ne. In the left part of the figure, the results from the eight previous experiments

(blue to orange data points) can be seen. Next to it, the most recent uncertainty weighted mean

(324(6) fs [SB15]) is shown as a black data point and as a grey uncertainty band. This value

was calculated using all results from the eight previous experiments. Finally, the figure shows

the results which are obtained in this work (right part). The red data point shows the results for

SRIM stopping powers and the purple data point shows the results for ICRU73 stopping powers.

The figure emphasiz the good agreement of the different data among each other as well as with

the uncertainty weighted mean in terms of the one sigma confidence interval. The precision and

accuracy which are obtained with the method from this work are very satisfying. The precision

is in the same range as for the most recent measurement [FAB+79]. Overall, these results show

that the DSAM method as it is performed in this work should lead to reasonable results for the

following analysis.
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6.4 Results for Neon-23

Besides 22Ne also transitions from 23Ne could be observed in the 2p cut spectra (cf. Sec. 6.1).

The 23Ne isotopes were also created during reactions from 9Be with 16O isotopes in the oxidized

target. If the 9Be beam hits 16O isotopes, the reaction channel

9Be+16 O → 25Mg∗ → 23Ne∗ + 2 · p (6.8)

is available. Here, the residual particles are two protons as for the 16C reactions. Hence, the
23Ne transitions are in the 2p event spectra. Figure 6.12 shows a level scheme of the five lowest

excited states of 23Ne. The lifetime is just known for the lowest 1/2+ state at 1017 keV. It is

stated to 257(14) ps [FMC66, Fir06], which is not in the range this experiment is sensitive to.

For all other states the lifetimes are expected in the femtosecond range. In the 2p cut spectra two

transitions from 23Ne could be observed, namely 1702 keV→0 keV and 2517 keV→1702 keV. They

are marked with an asterisk in Figure 6.12 and they belong to the states (5/2+, 7/2+)1→5/2+

and (5/2+, 7/2+)2→(5/2+, 7/2+)1 for which the quantum numbers are not finally known yet.

Following the given level scheme, the two transitions 2517 keV→1702 keV and 1702 keV→0 keV

should come in coincidence if a 2517 keV→1702 keV transition was present. This fact will now

be used to check that the two transitions really belong to 23Ne.

To demonstrate that the two mentioned transitions belong to 23Ne a gamma-gamma coinci-

dence gate is used. Figure 6.13 (a) and (b) show the 2p cut total gamma-ray spectra for all

target-and-degrader-runs in the range from 1400 KeV to 2200 KeV. In this range the transition

1702 keV→0 keV should appear. In the figure the gamma-ray energy was Doppler corrected to

suppress the centroid shift which the gammas from in-flight decays underlie. The beta for this

correction was chosen to be βDC=0.02518. This is the mean decay beta for the 1702 keV→0 keV

transition for the target-and-degrader-runs as shown later in this section. Figure 6.13 (a) shows

the spectrum without any gamma-gamma coincidence gate. Here, a complex peak structure

appears in the spectrum. On the left a huge background is visible. It could stem from different

transitions which decay in rest or in-flight. They are strongly smeared out by the Doppler cor-

rection which is obviously done with a wrong beta for them. In the middle of the spectrum the

1702 keV→0 keV transition from 23Ne appears. It produces a sharp peak because a valid beta

was chosen for the Doppler correction. Next to it the 2+1→0+ transition from 16C can be seen.

The transition is fractured into several peaks because the gammas were emitted in rest and hence

the Doppler correction changes the gamma-ray energies wrongly, whereby the induced errors

depend on the discrete detection angle. On the right side of the spectrum the 4+1→2+1 transition

from 22Ne appears. The gammas produce a sharp peak although the state decays in-flight. This

can be explained with the fact that the here chosen Doppler correction beta βDC is very close to

the mean decay beta for the 4+1→2+1 transition of 0.02262 (cf. Sec. 6.4 and Fig. 6.9). Hence, the

Doppler correction is roughly valid for this transition.
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Figure 6.12: Level scheme of the five lowest excited states of 23Ne. The energies printed in black
are the energies of the states while the energies printed in red are the transition
energies emitted by gamma rays [Fir06]. If a gamma-ray energy is marked with a
star this transition was seen in the 2p cut spectrum. The lifetime of the 1/2+ state is
taken from [FMC66, Fir06] and shown in green.

Figure 6.13 (b) on the other hand shows the spectrum with a gamma-gamma coincidence gate.

The gate is defined by the peak from the 2517 keV→1702 keV transition of 23Ne, which is located

at 815 keV. Therefore, a Gaussian function was fitted to the peak at 815 keV using the Doppler

corrected target-and-degrader-runs spectrum. This leads to a centroid energy of 814.7 KeV and

a sigma of 6.5 keV. The gate was chosen to reach from the mean value plus/minus two sigma.

Hence, the gate reaches from 801.7 keV to 827.7 keV. In the spectrum with the energy gate it can

be seen that the background and the 2+1→0+ transition from 16C as well as the 4+1→2+1 transition

from 22Ne have vanished. Only one peak remains for which the mean could be determined via

a Gaussian fit to 1700.4(1.1) KeV. This is in good agreement with the official accepted value of

1701.5(2) keV for the 1702 keV→0 keV transition from 23Ne [Fir06]. Hence, these two peaks
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Figure 6.13: Doppler corrected total gamma-ray spectra for all target-and-degrader-runs and 2p
cuts in the range from 1400 KeV to 2200 KeV. The beta for the Doppler correction
was set to βDC=0.02518. In the right plot, a gamma-gamma coincidence gate is
applied to the 2517 keV→1702 keV transition of 23Ne. The gate is reaching from
801.7 keV to 827.7 keV. This corresponds to a 2σ range around the mean value of
814.7 KeV.

belong to 23Ne transitions and in the following the lifetimes of the two corresponding peaks will

be determinated.

In the next step, the mean decay beta βTO is extracted from the target-only-runs following

the idea from Section 5.8. For this, the transition 2517 keV→1702 keV is used because for this

transition the number of counts was larger and it is not effect by feeding like the 1702 keV→0 keV

transition. The analysed data were obtained by applying the degrader-passed check to the target-

only-runs as explained in Section 5.8. Figure 6.14 (a) shows the gamma-ray spectra for four

discreet chosen Gammasphere angles, namely 90.00◦, 100.81◦, 110.19◦, and 142.62◦. For these

four angles the 2517 keV→1702 keV transition could be identified with an adequate certainty as

a moving peak (right fitted peak in the figure). Using the centroid of these four peaks the fit in

Figure 6.14 (b) can be obtained. Here, ELab is plotted versus cos(θ ′). For this, the Gammasphere

angles θ were corrected to θ ′ according to the target position correction of 0.2 cm which is

explained in Section 5.9. To the four data points the function from Equation 2.19 is fitted to

extract the mean decay beta βTO. In this case only four data points with a rather large uncertainty

are available. This leads to large uncertainties for the results of the fit parameters, especially for

the mean decay beta. Due to this, the ECM was fixed to the most recent known value of 815.4 keV

[Fir06], for which the uncertainty is only 0.5 keV. This is much smaller than the uncertainty

which is expected from the fit which is performed in Figure 6.14 (b). The later analysis in this

section of the higher-lying states will also show that the obtained results for ECM from this
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Figure 6.14: Analysis of the energy shift for target-only-runs, 2p cut and degrader-passed check
focusing on the 2517 keV→1702 keV transition of 23Ne. Part (a) shows the gamma-
ray spectra for four discreet chosen Gammasphere angles. Part (b) shows the ELab

versus cos(θ ′) fit for these four angles. The black fit-function is described by Equation
2.19. The lower plot in Part (b) shows the residuals ∆E of the fit which is shown in
the upper plot of Part (b).
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work are in agreement with the accepted values from [Fir06]. Hence, it seems to be valid to fix

ECM to 815.4 keV [Fir06] for this fit, which leads to βTO=0.0397(32) for the mean decay beta.

This obtained value can then be fed into the Geant4 simulations to calculate the initial betas βini

the isotopes get (cf. Sec. 4.3). Further it should be emphasized again that the extracted lifetimes

depend strongly on the chosen βTO which is used in the simulations. Because only four small

peaks close to the detection limit were available for the extraction of βTO, systematic biases (e.g.

decision which angles are considered, definition of the fit range, considering additional peaks in

the fit routine which interfere with the peak of interests or not, etc.) and random background

fluctuations have a large influences on βTO. The systematic uncertainties are difficult to estimate

and to propagate to the further results. So, the further results are just valid, assuming that the

result βTO=0.0397(32) is not significantly influenced by unconsidered systematic uncertainties.

Hence, a remeasurement of the lifetimes with this technique is recommended, for which the

measurement should be designed in a way that the 2517 keV→1702 keV transition of 23Ne is

detected with much better statistics.

Now the data from the target-and-degrader-runs are evaluated to get the experimental mean

decay beta βExp for the two transitions of 23Ne. Events with protons which were detected under

90◦ are ignored. Figure 6.15 (a) shows the radiation angle θ versus laboratory energy ELab for

these data focusing on the 2517 keV→1702 keV transition. Moving peaks for a transition which

decayed in-flight can be seen. The locations of these peaks are around the expected energy for

the 2517 keV→1702 keV transition of 815 KeV (marked with the dashed line). Right to the mov-

ing peak structures a wide stopped peak structure from the neutron induced reactions 72Be(n,n’)

and 27Al(n,n’) is placed around 835 keV. This wide peak structure limits the amount of Gammas-

phere angles under forward direction for which the centroid shift for the 2517 keV→1702 keV

transition could be extracted. In total the centroid shift for ELab(β ,θ ) could be analysed for nine

Gammasphere angles (namely 69.82◦, 79.19◦, 80.71◦, 90.00◦, 99.29◦, 100.81◦, 110.18◦, 121.72◦,
and 129.93◦). In Figure 6.15 (b) this centroid shift is illustrated as a function of cos(θ ). The data

points were achieved by fitting Gaussian functions to the 2517 keV→1702 keV transition peaks

in the respective gamma-ray spectra for the nine discrete Gammasphere angles (cf. Sec. 2.5). The

shown fit, described by Equation 2.19, leads to the results of Ecm=813.7(4) keV which is com-

parable to the international accepted value of 815.4(5) keV [Fir06]. The mean decay beta was

obtained to βExp,2517keV=0.02225(138). The position and the shape of the fit-function reproduce

the data well as it can be seen in Figure 6.15 (a) and (b).

Figure 6.16 (a) shows the radiation angle θ versus laboratory energy ELab for the same data

focusing on the 1702 keV→0 keV transition. Moving peaks for a transition which decayed in-flight

can be seen. The locations of these peaks are around the expected energy for the 1702 keV→0 keV

transition of 1701.5 keV (marked with the dashed line). Right from the moving peak structures

a pronounced stopped peak structure can be seen which belongs to the 2+1→0+ transition from
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Figure 6.15: Analysis of the energy shift for target-and-degrader-runs and 2p cut focusing on the
2517 keV→1702 keV transition of 23Ne. Events with protons detected under 90◦ are
ignored. In part (a) the z-axis range was truncated to a minimum of 1000 counts per
bin for a better visualization. The black fit-functions are described by Equation 2.19.
The dashed line in Part (a) indicates the expected gamma-ray energy Ecm= 815.4 keV
of the transition [Fir06]. The lower plot in Part (b) shows the residuals∆E of the fit
shown in the upper part.
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Figure 6.16: Analysis of the energy shift for target-and-degrader-runs and 2p cut focusing on the
1702 keV→0 keV transition of 23Ne. Events with protons detected under 90◦ are ig-
nored. In part (a) the z-axis range was truncated to a maximum of 4000 counts
per bin for a better visualization. The black fit-functions are described by Equa-
tion 2.19. The dashed line in Part (a) indicates the expected gamma-ray energy
Ecm= 1701.5 keV of the transition [Fir06]. The lower plot in Part (b) shows the resid-
uals∆E of the fit shown in the upper part.
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16C. Left from the moving peak structures a stopped background peak is visible around 1680 keV.

The source for this peak could not be finally clarified. This peak limits the amount of Gamma-

sphere angles under backward direction for which the centroid shift for the 1702 keV→0 keV

transition could be extracted. In total the centroid shift of ELab(β ,θ ) could be analysed for

seven Gammasphere angles (namely 58.28◦, 69.82◦, 79.19◦, 80.71◦, 90.00◦, 99.29◦, 100.81◦).
In Figure 6.16 (b) this centroid shift is illustrated as a function of cos(θ ). The data points were

achieved by fitting Gaussian functions to the 1702 keV→0 keV transition peaks in the respec-

tive gamma-ray spectra for the seven discrete Gammasphere angles (cf. Sec. 2.5). The shown

fit, described by Equation 2.19, leads to the result of Ecm=1700.6(5) keV, which is in agree-

ment with the accepted value of 1701.5(2) keV [Fir06]. The mean decay beta was obtained to

βExp,1702 keV=0.02518(160). The position and the shape of the fit-function reproduce the data

well as it can be seen in Figure 6.16 (a) and (b).

In the next step the lifetime can be extracted for the two transitions of 23Ne by comparing the

experimental mean decay betas with the mean decay betas from the simulation for the target-and-

degrader-runs. Because the 2517 keV→1702 keV transition feeds into the 1702 keV→0 keV tran-

sition, this feeding effect has to be taken into account while simulating the 1702 keV→0 keV tran-

sition. Hence, the lifetime for the higher-lying state (5/2+, 7/2+)2 at 2517 keV will be deduced

first in the following. Therefore, the Geant4 simulations are applied with the same approach

as for the analysis of the 22Ne case: 23Ne isotopes, which are excited in the (5/2+, 7/2+)2 state,

are spawned in a thin oxidation layer at the beginning of the target using βTO=0.03972(321)

to calculate the initial beta of the isotopes. This is done for a set of several different lifetimes

and for each lifetime setting the corresponding mean decay betas βSim(τSim) are extracted. For

the extraction of βSim(τSim) single Gaussian functions are fitted to the spectra of the same nine

Gammasphere angles which were used for the analysis of the target-and-degrader-runs for the

2517 keV→1702 keV transition and approximately the same fit ranges are used. This is done to

match the experimental conditions as good as possible and to not introduce an artificial bias

due to the truncation of used Gammasphere rings. The simulations were performed in the range

from 300 fs to 850 fs because here the experimental result was reflected (cf. Fig. 6.17). It should

be noted that for the simulation results the moving peak is smeared out for the extreme an-

gles far away from 90◦ and for large lifetimes (τSim≳550 fs) due to interfering with an arising

stopped peak component (cf. mid of Sec. 2.5). The stopped component is smaller than the mov-

ing component. In the experimental spectra no stopped peak component can be seen for any

angle. But here the statistic is too small to see a stopped peak component, if the ratio between

moving and stopped component is the same as for the simulations for τSim≈650 fs. Also the

2517 keV→1702 keV transition is only observed for angles close to 90◦. For these spectra the

stopped component is not separated from the moving component and a slightly broader peak

appears. Hence, the simulated data are not in contradiction with the experimental spectra. A

remeasurement with a higher statistic would be worthwhile.
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Figure 6.17 shows the here obtained simulation results for βSim(τSim) for different lifetimes.

Part (a) of the figure shows the results for simulations with ICRU73 stopping powers and Part

(b) shows the results for SRIM stopping powers. Both results do not differ much. This can

be explained with the fact that the difference in the stopping powers is not that big for 23Ne

compared to the effect for 16C. While for the analysis of 22Ne a linear fit to the simulated data

was sufficient, now an exponential function, which is defined by

βSim(τSim) = a · e−bτSim + c, (6.9)

has to be fitted to the simulated data points. This can be explained with the fact that now a

much larger range in terms of lifetimes is covered. That was necessary due to the larger statistical

uncertainty of the experimental mean decay beta βExp,2517 keV. To get the lifetime τExp of the state,

the intersection of the fit-function with the experimental mean decay beta βExp,2517keV has to be

found. In the figure this is visualized by the intersection of the black fit-function and the orange

line which represents the measured mean decay beta βExp,2517keV. The yellow band around the

line represents its statistical uncertainty. Analytically this is achieved via

βSim

�
τExp

�
:= βExp ⇒ τExp = −

1
b

ln

�
βExp − c

a

�
, (6.10)

using the fit-parameters from Equation 6.9. The statistical uncertainty u
�
τExp

�
of a such obtained

lifetime is given by

u2
�
τExp

�
=

⎛
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� ·∆βExp
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+
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1
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+
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+

⎛
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b
�
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+ 2 ·
ln
�
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�
− ln(a)

ab3
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+ 2 · 1

ab2
�
βExp − c
� · cov(a, c) + 2 ·

ln
�
βExp − c
�
− ln(a)

b3(βExp − c)
· cov(b, c),

where cov(pi, p j) is the covariance between parameter pi and p j stemming from the fit. Applying

this formalism leads to a result of 630(78) fs for ICRU73 stopping powers and 641(79) fs for

SRIM stopping powers for the lifetime of the (5/2+, 7/2+)2 state at 2517 keV in 23Ne.

Additional to the statistical uncertainty stemming from the statistical uncertainty of the mean

decay beta βExp,2517 keV, also a systematic uncertainty due to the target thickness will be cal-

culated for all further results. If the real target thickness is slightly different compared to the

expected value, the excited isotopes would enter the degrader a bit earlier or later. This would
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Figure 6.17: Simulated mean decay beta βSim versus simulated lifetime τSim for the
2517 keV→1702 keV transition of 23Ne. In the simulations the 23Ne isotopes were
created in a thin oxidation layer at the beginning of the target. The initial beta in
the simulation was obtained with βTO=0.03972(321). The yellow band illustrates
the experimental mean decay beta value of βExp,2517keV=0.02225(138) including its
uncertainty. The shown fit-function is described by Equation 6.9.

change the time in which the isotopes are slowed down before they decay. Hence, this influences

the mean decay betas and so the extracted lifetimes. The maximum range of the uncertainty of

the target thickness could be estimated to be ±10 %. Due to this the Geant4 simulations are also

carried out for the two extreme values of the target thickness and then the lifetime is extracted

the same way as before. The differences between the lifetimes for the mean target thickness

and the extreme target thicknesses give an insight into the systematic uncertainty due to the

target thickness. This analysis leads to 630(78) fs+14 fs
−14 fs

�
systtarget

�
for ICRU73 stopping powers

and 641(79) fs+16 fs
−6 fs

�
systtarget

�
for SRIM stopping powers as a lifetime for the (5/2+, 7/2+)2 state.

Now, the lifetime for the lower lying state (5/2+, 7/2+)1 at 1071 keV can be extracted. As

stated earlier, feeding has to be taken into account for this case. To do so, the Geant4 sim-

ulation has to know the ratio R1702 keV for which the 23Ne isotopes are excited directly into

the (5/2+, 7/2+)1 state and the ratio R2517 keV for which the 23Ne isotopes are excited into the

(5/2+, 7/2+)2 state and feed into to the (5/2+, 7/2+)1 state. To extract these ratios the peak areas

of the two transitions for the target-and-degrader-runs are compared in the following. Because

this can only be done for several discrete Gammasphere angles also the angular gamma-ray

distribution for both transitions has to be considered in the analysis. The ratios themselves have

to be angle independent. Unfortunately the quantum numbers of the two states, the dominant

decay types of the two transitions and hence the angular gamma-ray distributions of the two
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Figure 6.18: Angular distribution for the 2517 keV→1702 keV and 1702 keV→0 keV transition of
23Ne. The counts for each angle were obtained by fitting Gaussian functions to
the peaks in the gamma-ray spectra for the corresponding Gammasphere angle
θ . The total number of counts was then divided by the number of detectors in
the corresponding Gammasphere ring to make the distribution independent of the
number of detectors. The data points for the 1702 keV→0 keV transition are shifted
by 2◦ to the right for a better visualization.

transitions are not finally known. The statistics in the target-and-degrader-run data is too low

to investigate the angular distribution of consecutive decays from 23Ne with a proper certainty.

So for the next analysis steps it will be assumed that both transitions follow the same angular

distribution in the range of interest. This is for example legitimate if all three involved states are

a 5/2+ state, which is possible with the knowledge so far.

If the number of excited isotopes in the (5/2+, 7/2+)2 state which decay via the

2517 keV→1702 keV transition is given by N2517 keV and the number of excited isotopes in the

(5/2+, 7/2+)1 state is given by N1702keV the relations

A815 keV = ε(815keV) · N2517keV (6.12)

A1702keV = ε(1702keV) · (N2517keV + N1702 keV) (6.13)

hold. In these relations ε(E) represents the corresponding Gammasphere efficiency as de-

duced in Section 5.3. These efficiencies were calculated to ε(815keV)=6.58(4) % and

ε(1702keV)=4.33(1) %. The parameters A815keV and A1702keV represent the areas of the peaks at

the transitions energies of 815 keV and 1702 keV respectively. With these relations the excitation

ratios for the simulations can be expressed via

R2517keV =
N2517keV

N1702keV + N2517keV
=
ε(1702keV)
ε(815 keV)

· A815keV

A1702 keV
(6.14)

R1702keV =
N1702keV

N1702keV + N2517keV
= 1− R2517keV. (6.15)
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Table 6.1: Excitation ratio R2517 keV for the (5/2+, 7/2+)2 state and R1702 keV for the (5/2+, 7/2+)1
state of 23Ne. The ratios were obtained with Equations 6.15. The parameters A815 keV

and A1702keV represent the areas of the peaks at the transition energies of 815 keV and
1702 keV respectively. The areas were obtained by fitting Gaussian functions to the
peaks in the gamma-ray spectra for the corresponding Gammasphere angle θ .

θ A815 keV A1702 keV R2517keV R1702 keV

69.8◦ 498(184) 481(84) 0.68(28) 0.32(28)

79.2◦ 192(50) 213(46) 0.59(20) 0.41(20)

80.7◦ 260(61) 357(55) 0.48(13) 0.54(13)

90.0◦ 432(58) 436(75) 0.65(14) 0.35(14)

99.3◦ 239(45) 292(80) 0.54(18) 0.46(18)

142.6◦ 133(67) 96(48) 0.91(65) 0.09(65)

uncertainty weighted mean: 0.58(8) 0.42(8)

These two ratios were calculated for the spectra of six different Gammasphere angles separately.

For these angles a proper peak area could be deduced for both transitions. The number of counts

per detector for these areas is also shown in Figure 6.18. The ratio results for all six available

angles are listed in Table 6.1. These values are used to calculate an uncertainty weighted mean

value for the excitation ratios which leads to R1702keV=0.42(8) and R2517keV=0.58(8). If one

compares the individual ratio values in Table 6.1 with the uncertainty weighted mean values,

they are all in agreement considering the one sigma uncertainty. This shows that for the here

possible precision the extracted ratios are angle independent. Hence, the ignorance of different

angular distributions for the two consecutive transitions seems to have a smaller influence than

the uncertainties stemming from the low statistics. Hence, the assumption that both transitions

follow the same angular distribution is justified considering the possible precision of this analysis.

With these information the lifetime τ1702keV for the lower lying state (5/2+, 7/2+)1 at 1702 keV

can be extracted using the Geant4 simulation. For this, the 23Ne isotopes are excited randomly

into the (5/2+, 7/2+)1 state or the (5/2+, 7/2+)2 state in such a way that the before obtained

excitation ratios are reproduced for a large number of simulated isotopes. Further, the branching

ratio for the 2517 keV→1702 keV transition of the (5/2+, 7/2+)2 state is set to 100 % in the

simulations, because a branching to other states was also not considered in the experimental

analysis. Then the analysis of the lifetime follows the same idea as for the higher-lying state done

before. It should be noted that for the simulation results also a stopped peak component was

visible for the smallest used angle (58.28◦) and longer lifetimes. This is a similar behaviour as

for the higher-lying state discussed before. For the final obtained lifetime the stopped component

is again smaller than the moving component and so it is possible that this stopped component is
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not visible in the experimental data due to low statistics. To the smeared out peak for 58.28◦ also

one single Gauss function was fitted over the same fit range as used for the experimental data.

Hence, the Gaussian fit to the simulated describes the peak not very good any more. But it was

stick to this method because this is the approach closest to the experimental evaluation. For the

experimental evaluation also only one Gaussian function was fitted to the transition peak and it

can not be certainly deduce whether there is stopped component included in the peak structure

or not. A systematic uncertainty due to the improper Gaussian fit to the simulated spectra for

the smallest used angle (58.28◦) is not given analytical. But it was estimate that this uncertainty

has a clearly smaller impact than the statistical uncertainty of the experimental beta values.

For the analysis of the (5/2+, 7/2+)1 state at 1702 keV an additional uncertainty due to the

feeding has to be considered. This uncertainty is defined by the fact that the lifetime of the

higher-lying state has its own uncertainty and that the excitation vector has also an uncertainty.

Due to this, for both stopping powers simulations with three different settings are carried out to

deal with the feeding uncertainty. To get the mean lifetime, the lifetime of the higher-lying state

is set to its mean value and the excitation ratios are set to their mean values. To get an upper

limit for the lifetime due to the feeding, the lifetime of the higher-lying state is set to its mean

value minus its uncertainty while the excitation ratio R2517 keV is set to its mean value minus its

uncertainty. To get an lower limit for the lifetime, the lifetime of the higher-lying state is set to

its mean value plus its uncertainty while the excitation ratio R2517keV is set to its mean value plus

its uncertainty. The ratio R1702keV is always defined by R1702 keV=1− R2517 keV. To deal with the

uncertainty due to the target thickness, again the two extreme target thicknesses are simulated.

For these cases the lifetime of the higher-lying state is set to the value the previous analysis

revealed as extreme lifetimes due to the changed thicknesses.

The results for all different combinations of stopping power, target thickness and feeding uncer-

tainty are summarized in Table 6.2. By combining these data the final results for the lifetime of

the lower lying state (5/2+, 7/2+)1 can be expressed as 163(55) fs+6 fs
−0 fs

�
systtarget

�+62 fs

−80 fs

�
systfeeding

�

for ICRU73 stopping powers and 168(55) fs+8 fs
−1 fs

�
systtarget

�+72 fs

−80 fs

�
systfeeding

�
for SRIM stopping

powers. It can be seen that the uncertainty due to the target thickness is negligible in this case

and also that there is no difference between ICRU73 or SRIM stopping powers. The statistical

uncertainty due to the uncertainty of the mean decay beta has the same magnitude of order as

the uncertainty due to the feeding. Overall the uncertainties for these two lifetimes are much

larger than the uncertainties which could be achieved during the analysis of 22Ne. This was

expected because the number of counts in the peaks from the 23Ne transitions is much smaller

and fewer Gammasphere angles were available for the analysis.
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Table 6.2: Settings for the Geant4 simulations to extract the mean lifetime τ1702 keV and its un-
certainties for the (5/2+, 7/2+)1 state of 23Ne. The simulations are executed for both
types of stopping powers. For each stopping power setting three different values for
the target thickness d (d=7.50µm, 0.9d=6.75µm, and 1.1d=8.25µm) are checked.
Furthermore, the feeding uncertainty for τ1702 keV is evaluated by changing the life-
time τ2516keV of the higher-lying state and by changing the excitation ratios (R2517 keV,
R1702 keV) according to their statistical uncertainties. The ratio R1702keV is not listed in
the table because it is defined by R1702 keV=1− R2517keV.

Stopping Power Uncertainty Part d τ2516keV R2517keV τ1702 keV

in µm in fs unitless in fs

ICRU73

mean value 7.50 630 0.58 163(55)

feeding 7.50 552 0.50 225

feeding 7.50 708 0.66 83

target 6.75 616 0.58 168

target 8.25 644 0.58 163

SRIM

mean value 7.50 641 0.58 168(55)

feeding 7.50 562 0.50 240

feeding 7.50 720 0.66 88

target 6.75 635 0.58 176

target 8.25 657 0.58 167
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6.4.1 Comparison with Theory

Finally, the here obtained lifetimes for 23Ne are compared to theoretical calculations. Due to the

fact that the angular momentum and the branching ratios of the two investigated states are not

finally known, it can not be decomposed to which part each transition strength type contributes

to the total transition rate. Hence, in the theoretical calculations, M1 and E2 strengths are

considered for the total transition rate, because they will clearly dominate the behaviour. Then

only the lifetime can be compared with the experimental results. If the theory predictions differ

from the experimental results it can not be figured out whether the deviation stems from the M1

part or the E2 part or both parts.

The theoretical calculations were done by A. Brown using the USDB framework, which was

already introduced in Section 2.6. In the USDB calculations E2 transitions are dominant. Hence,

the reduced transition strengths for these transitions are calculated with Equation 2.15 before

these strengths are converted into decay rates. To apply Equation 2.15 the effective charges were

set to ep=1.224 and en=0.423 following the work from Sagawa et al. [SZZS04]. The transition

rates were calculated for the theoretical transition energies. Figure 6.19 shows a level scheme of
23Ne for the experimental results as well as for theoretical USDB calculations done by A. Brown

[Bro19]. While the energies of the levels and the most quantum numbers are reproduced well

by the USDB calculations, significant discrepancies for the lifetimes can be seen. For the 1/2+1
state the experimental lifetime is twice as long as the theoretical prediction. For the higher-lying

states the situation is worse. For the (5/2+, 7/2+)1 state the experimental lifetime is larger by

a factor of 6.8 and for the (5/2+, 7/2+)2 state the experimental lifetime is larger by a factor

of 4.5 compared to the USDB calculations. This can not be compensated by the experimental

uncertainties. For the (5/2+, 7/2+)1 state the theory value deviates by minus 2.5 sigma, while for

the (5/2+, 7/2+)2 state the discrepancy is even larger. Here, the theory value deviates by minus

6.3 sigma. This strong underestimation of the lifetime in sd-shell nuclei is no new phenomena.

So for example in the work from Heil et al. it could be shown that also in the case of 21O the

lifetime of the 1/2+1 state is strongly underestimated by USDB calculations [Hei19, HPV+20].

Here the USDB predicts 176 ps while the experiment states the lifetime to 420+35
−32 ps.

Overall this reveals that no sufficient descriptions of the lifetimes in 23Ne are possible using

USDB calculations. Hence, it would be very interesting to apply other theoretical approaches

such as the NCSM and check if they can reproduce the lifetimes in 23Ne more accurately.
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Figure 6.19: Level scheme of 23Ne for the experimental results and for theoretical USDB calcu-
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for modified effective charges (ep=1.224 and en=0.423) following the results from
[SZZS04].
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6.5 Results for Carbon-16

In this section the results for 16C are discussed in detail. For 16C the three higher-lying states

4+1 , 3+1 , and 2+2 will be investigated (cf. Sec. 2.9 and Fig. 1.1). First, the target-only-runs will

be used to extract a beta which can be used as input for the simulations. Then each state is

evaluated separately by looking at the target-and-degrader-runs and the corresponding lifetimes

are extracted if possible. Finally, the experimental lifetimes are compared to various theoretical

calculations.

To analyse the lifetime of the higher-lying states later, an initial beta has to be defined for

the Geant4 simulations. For this, the target-only-runs are analysed and the mean decay beta

for the 2+1→0+ transition is extracted. This is the only transition from 16C which is visible in

the target-only-runs spectra for the 2p cuts. The mean decay beta βTO is extracted following

the idea from Section 5.8. The analysed data were obtained by applying the degrader-passed

check to the target-only-runs as explained in Section 5.8. Figure 6.20 (a) shows the radiation

angle θ versus laboratory energy ELab for those data. A moving peak structure for a transition

which decayed in-flight can be clearly seen. The location of this peak structure is around the

expected energy of Ecm=1760 keV for the 2+1→0+ transition (marked with the dashed line). For

this transition all available angles of Gammasphere except 37.38◦ could be used to extract the

centroid energies ELab(β ,θ ) for each angle θ . For the 37.38◦ spectrum the number of counts are

too low to make a proper Gaussian fit to the transition peak. In Figure 6.20 (b) the centroid

shift as a function of cos(θ ′) is illustrated. For this, the Gammasphere angles θ were corrected

to θ ′ according to the target position correction of 0.2 cm as explained in Section 5.9. The

shown data points were achieved by fitting Gaussian functions to the 2+1→0+ peaks in the

respective gamma-ray spectra for each discrete Gammasphere angle (cf. Sec. 2.5). The shown fit,

described by Equation 2.19, leads to a result of Ecm=1759.0(4) keV which is in agreement with

the uncertainty weighted mean of 1760(1) keV from [WFM+08, PPC+12]. Also the position and

the shape of the fit-function reproduce the data well as it can be seen in Figure 6.8 (a) and (b).

Only the data point for θ=80.71◦ (cos(80.71◦)≈0.16) is not described well by the fit. A reason

for this could not be found and the Gaussian fit to the particular gamma-ray spectrum seems

confiding as well. Hence, the data point was still considered in the fit. With this fit the mean

decay beta was obtained to βTO=0.04527(44). The obtained value for βTO can then be fed into

the Geant4 simulations to calculate the initial betas βini the isotopes get in the simulation. For all

further analyses, the spawn procedure for the 16C isotopes is exactly implemented as explained

in Section 4.3. No additional adjustments as it was the case for 22Ne or 23Ne have to be made.
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Figure 6.20: Analysis of the energy shift for target-only-runs, 2p cut and degrader-passed check
focusing on the 2+1→0+ transition of 16C. The black fit-functions are described by
Equation 2.19. The dashed line in Part (a) indicates the expected gamma-ray energy
Ecm= 1760 keV of the transition [WFM+08, PPC+12]. The lower plot in Part (b) shows
the residuals∆E of the fit which is shown in the upper plot of Part (b).
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6.5.1 Results for the 4+1 State

In this section the results for the 4+1 state of 16C are discussed. The 2p cut spectrum from Figure

6.4 shows that the 4+1→2+1 transition produced a stopped peak without a moving component.

Hence, the lifetime should be in the picosecond range and the DSAM as explained in Section 2.5

can not be applied to the 4+1 state. Additionally, from [WFM+08, PPC+12] it is already known

that the lifetime should be smaller than 4 ps. Therefore, a lower lifetime limit will be estimated

for the 4+1 state in the following to give a narrow range for the value of the lifetime. To achieve a

proper lower lifetime limit, the experimental gamma-ray spectra for discrete angles are used and

compared to the results from the Geant4 simulations. Thereby, the fact is used that a transition

of a state with a lifetime in a low picosecond range produces two peaks in the spectra: One

bigger peak which is located at the center of mass energy of the transition. This peak is produced

by the decay of stopped isotopes. Additionally, one smaller peak is produced which is Doppler

shifted in terms of energy. This peak belongs to the remaining in-flight decays. The ratio of

these two peaks depends strongly on the lifetime. The longer the lifetime, the more decays

happen for stopped isotopes and so more and more counts appear in the non-Doppler-shifted

peak. Due to this, it is now checked how long the lifetime has to be until a significant moving

peak occurs in the simulated spectra, which also has to be visible in the experimental spectra.

By comparing the simulation results with the experimental spectra one gets access to a lower

lifetime limit. An other method, in which the line shape towards lower energies of the stopped

peak is analysed and compared to simulations, was not carried out in this work, because the

strong background fluctuations and contaminations from unknown sources would hinder the

analysis and it assumed that the here applied method gives a maybe larger but more stable upper

limit.

Focusing first on the experimental gamma-ray spectra, a condition has to be established which

defines whether a significant moving peak exists or not. For this purpose it is defined that a

peak on top of the background has to have a maximum which is larger than the two sigma

uncertainty of the background. Everything else is considered as background fluctuations. The

two sigma uncertainty of the background will be labelled as MBG in the following. Additionally,

the maximum height of the stopped peak MStopped from the 4+1→2+1 transition is extracted to

calculate the ratio

RExp =
MBG

MStopped
. (6.16)

This is done for all Gammasphere angles for which the 4+1→2+1 transition is resolved clearly in

the spectrum. This was possible for five Gammasphere angles, namely 121.72◦, 129.93◦, 142.62◦,
148.28◦, and 162.73◦. For smaller angles the 4+1→2+1 transition interferes with the 7/2+1→5/2+1
transition of 15N and so these data can not be used. As an example the analysis is discussed for

the spectra of 148.28◦ now. The analysis for the remaining angles followed the same scheme
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Figure 6.21: Estimation of a lower lifetime limit for the 4+1 state of 16C using the Gammasphere
spectrum under 148.28◦. The left part shows the 2p cuts gamma-ray spectrum under
148.28◦ for the target-and-degrader-runs. The red fit-function represents a Gaussian
function plus a linear background. The black dashed line represents the background
height plus its two sigma uncertainty. The right part shows the Geant4 simulation
results for RSim(τSim) using SRIM stopping powers and βTO=0.04527(44). The black
fit-function is described by Equation 6.18. The yellow band illustrates the experimen-
tal ratio of RExp=0.156(19) including its uncertainty.

and no discrepancy occurred. Figure 6.21 (a) shows the 2p cuts gamma-ray spectrum under

148.28◦ for the target-and-degrader-runs. To the spectrum a Gaussian function plus a linear

background was fitted. This results in a background height of 25.3 counts with a two sigma

uncertainty of MBG=2·5.0 counts. The two sigma uncertainty is visualized as a black dashed line.

It can be seen that there is no moving peak component which is higher than this line. Hence, it

is assumed that no moving peak is present. The maximum height of the stopped peak is given

by MStopped=64.7(8.0) counts and so the ratio is calculated to RExp=0.156(19).

In the next step the Geant4 simulations are applied and the same five Gammasphere angles

are investigated. Thereby, the 4+1→2+1 transition is simulated for different lifetimes of the 4+1
state in the low picosecond range. Then the ratio

RSim(τSim) =
MMoving

MStopped
(6.17)

is calculated for each simulated lifetime τSim, where MMoving is the peak maximum of the moving

peak component and MStopped is the peak maximum of the stopped peak component. This is done

for all Gammasphere angles separately. The results of this analysis are shown in Figure 6.21 (b)

for SRIM stopping powers and the 148.28◦ spectrum. To the data the function

RSim(τSim) = a · e−bτSim + c (6.18)
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could be fitted well. To obtain an estimator τMin for the lower lifetime limit, the intersection of

the fit-function with the experimental ratio RExp has to be found. In the figure this is visualized by

the intersection of the black fit-function and the orange line which represents the experimental

ratio RExp. The yellow band around the line represents its statistical uncertainty. Analytically this

is achieved via

RSim(τSim) := RExp ⇒ τMin = −
1
b

ln
�RExp − c

a

�
, (6.19)

using the fit-parameters from Equation 6.18. The statistical uncertainty u (τMin) of a such ob-

tained lifetime is given by Equation 6.11, by replacing βExp with RExp. Applying this formalism

leads to τMin=1.95(15) ps for the 148.28◦ spectrum.

To achieve the final result for the lower lifetime limit, this method was applied to all five

Gammasphere angles and then the uncertainty weighted mean is calculated. The obtained

values are shown in Figure 6.22 (a) for ICRU73 stopping powers and in part (b) for SRIM

stopping powers. The yellow band illustrates the uncertainty weighted mean including its one

sigma uncertainty. It can be seen that all data points are in agreement with the uncertainty

weighted mean by considering their one sigma uncertainties. The uncertainty weighted means

are given by 1.76(8) ps for ICRU73 stopping powers and by 1.95(9) ps for SRIM stopping powers.

Because only a lower lifetime limit and no exact value for the lifetime can be given here, the

lower limit is obtained by subtracting the mean value by its one sigma uncertainty. This leads

to a lower lifetime limit of τMin=1.7 ps using ICRU73 stopping powers and τMin=1.9 ps using

SRIM stopping powers.

Additionally, systematic uncertainties due to the target thickness are estimated. For this, the

same analysis was done again for Geant4 simulations using the lower target thickness limit

with a thickness of minus 10 %. For this setting the extracted lifetime limits were the short-

est. Comparing the results for the mean target thickness from before with the results for the

short target, the systematic uncertainty can be estimated by the subtraction of both values.

This leads to the final results of τMin=1.7+0.0
−0.1

�
systtarget

�
ps using ICRU73 stopping powers and

τMin=1.9+0.0
−0.1

�
systtarget

�
ps using SRIM stopping powers as a lower lifetime limit for the 4+1 state

of 16C.

Taking the SRIM stopping power results from this work and the upper lifetime limit

from Wiedeking et al. [WFM+08], the lifetime of the 4+1 state has to be between

τMin=1.9+0.0
−0.1

�
systtarget

�
ps and 4 ps which corresponds to transition rates of λMin

�
4+1
�
=2.50 ·

1011 1/s and λMax

�
4+1
�
=5.26+0.29

−0.00

�
systtarget

� · 1011 1/s. As known so far the 4+1 state only decays

via the 4+1→2+1 transition. This enables the decay modes E2, M3, E4, M5, and E6. As explained

earlier, decay modes higher than E2 are strongly suppressed and can be neglected if a E2 com-
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Figure 6.22: Results for a lower lifetime limit τMin for the 4+1 state of 16C. The values are plotted
for the five Gammasphere angles for which the analysis from Section 6.5.1 was
possible. The Geant4 simulations were executed for βTO=0.04527(44). The yellow
band illustrates the uncertainty weighted mean including its one sigma uncertainty
for these data points. The uncertainty weighted means were deduced to 1.76(8) ps
for ICRU73 stopping powers and 1.95(9) ps for SRIM stopping powers.

ponent is part of the transition. Hence, following Equations 2.14 and using the experimental

transition energy of 2369 KeV, the E2 transition strength of the 4+1 state is limited to

2.74 e2fm4 ≤ B
�
E2;4+1 → 2+1
�≤ 5.78+0.32

−0.00

�
systtarget

�
e2fm4. (6.20)

This result will be compared to various theoretical predictions in Section 6.5.4.

6.5.2 Results for the 3+1 State

Now, the 3+1 state in 16C will be investigated for the target-and-degrader-runs. In the Figure

6.4 one can clearly see a moving peak structure around 2308 keV which is the center of mass

energy of the 3+1→2+1 transition of 16C. But as already stated in Section 6.1, also transitions from
15N could be observed in these spectra. Thereby the transition 7/2+1→5/2+1 with a center of mass

energy of 2297 keV [AS90a] can interfere with the events from the 3+1→2+1 transition of 16C.

Also the lifetime for the 7/2+1 state of 15N is stated as 12 fs [AS90a]. Due to this, the 7/2+1→5/2+1
transition of 15N should appear as a moving peak structure as it is observed in Figure 6.4. Hence,
15N events can influence the analysis of the 3+1→2+1 transition of 16C strongly and so they have

to be investigated in detail first.

A level scheme of 15N is shown in Figure A.6 in the appendix. If a gamma-ray energy is

marked with an asterisk this transition is observed in the 2p cut spectra. In the following it
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will be demonstrated that the transition chains 7/2+1→5/2+1→1/2− and 5/2+2→5/2+1→1/2− are

present in the 2p cut spectra. Therefore, Figure 6.4 will be created again with the additional

condition that all drawn events fulfill a gamma gate. The gamma gate is set on the 5/2+1→1/2−

transition of 15N. The range of the gate was obtained by fitting a Gaussian function plus a linear

background to the peak of the 5/2+1→1/2− transition at 5270 keV for the target-and-degrader-

runs (cf. Fig. 6.1). The fit results are given by Ecm=5269.0(2) keV with a sigma of 10.2(2) keV.

The centroid energy is in agreement with the best known value for the 5/2+1→1/2− transition

[AS90a]. Using these values, a gamma gate around Ecm=5269 keV with a plus/minus two sigma

width can be applied to the 2p cut spectra for the target-and-degrader-runs. The result is shown in

Figure 6.23. The figure shows the same setting as Figure 6.4 but now the gamma gate is applied.

By comparing both figures one can clearly see that the background and almost all transitions

are vanishing if the gamma gate is applied. Only two transitions are left in the spectrum with

the gamma gate. They can be identified as the 7/2+1→5/2+1 and 5/2+2→5/2+1 transition of 15N.

Hence, the 15N transition chains 7/2+1→5/2+1→1/2− and 5/2+2→5/2+1→1/2− are present in the

2p cut spectra.

This analysis revealed that the 7/2+1→5/2+1 transition of 15N appears considerably in the 2p

cut spectra. Hence, the mean decay beta for the 3+1→2+1 transition from 16C can not simply be

extracted from the target-and-degrader-runs data because the events from 15N will influence

the results. How strong this influence is pronounced will be checked now. Therefore, it will be

estimated how many counts C7/2+1→5/2+1
in the 2p cut spectra belong to the 7/2+1→5/2+1 transition

of 15N and how many counts C3+1→2+1
in the 2p cut spectra belong to the 3+1→2+1 transition from

16C.

For the case of 16C the results from this work are combined with results from the work

from Wiedeking et al. [WFM+08]. As stated earlier, Wiedeking et al. also used the reaction
9Be(9Be,2p)16C to investigate the excited states in 16C. They observed the four transitions

4+1→2+1 , 3+1→2+1 , 2+2→2+1 , and 2+1→0+. Following their results, the number of counts for the

3+1→2+1 transition divided by the number of counts for the 4+1→2+1 transition is given by

R(3+1→2+1 /4
+
1→2+1 )=1.00(19) [Fal08, WFM+08]. This calculation assumes that in the results

from Wiedeking et al. no counts from 15N contaminated the peak from the 3+1→2+1 transition

from 16C. Such a contamination can not be excluded completely, because they used the same

reaction and the same detection concept. But assuming no contamination in the Wiedeking et al.

data and using R(3+1→2+1 /4
+
1→2+1 )=1.00(19) is the best approach which is feasible now. Next,

the 2p cut target-and-degrader-runs spectrum from this work (cf. Fig. 6.2) is used to extract the

number of counts for the 4+1→2+1 transition of 16C. This transition appears as a fully stopped peak

in the spectrum and hence the number of counts can be obtained very reliably. Therefore, a Gaus-

sian function plus a linear background is fitted to the peak which results in 2385(136) Counts for

the 4+1→2+1 transition. By multiplying this number with R(3+1→2+1 /4
+
1→2+1 ) one should expect

for this work C3+1→2+1
=2385(473) counts in the 2p cut spectra for the 3+1→2+1 transition of 16C.
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Now, the number of counts C7/2+1→5/2+1
for the 7/2+1→5/2+1 transition of 15N are estimated.

For this case no external data are available but the 5/2+1→1/2− transition at 5270 keV can

be used. This transition also appears as a fully stopped peak in the spectrum for the 2p cut

target-and-degrader-runs (cf. Fig. 6.1) and hence the number of counts can be obtained very

reliably. For this, a Gaussian function plus a linear background is fitted to the peak which re-

sults in C5/2+1→1/2−=6332(129) counts for the 5/2+1→1/2− transition. To deduce the number

of counts for the 7/2+1→5/2+1 transition from this information, the fact is used that only one

proton is evaporated in the reaction channel for 15N. Due to this, the gamma-ray spectra were

also obtained if at least one proton was detected in µ-Ball. For this at-least-1p setting, the

number of counts for 15N is much larger and dominates the events from 16C considerably. As

stated earlier the cross section to produce 15N is around 410 times larger than for 16C (cf.

Sec. 6.1) and for the 1p case no 16C events should appear at all. Hence, for the at-least-1p

cut spectra the ratio R(7/2+1→5/2+1 / 5/2+1→1/2−) between counts from the 7/2+1→5/2+1 tran-

sition and the 5/2+1→1/2− transition can be extracted while neglecting an influence of 16C
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events. This leads to R(7/2+1→5/2+1 / 5/2+1→1/2−)=0.976(2). This ratio should also be valid

for the 2p cut spectra, because the numbers of counts for both 15N transitions are truncated

the same way. By multiplying R(7/2+1→5/2+1 / 5/2+1→1/2−) with C5/2+1→1/2− one should expect

C7/2+1→5/2+1
=6180(127) counts in the 2p cut spectra for the 7/2+1→5/2+1 transition of 15N.

Combining the results for the case of 16C with the results from 15N, the ratio

C3+1→2+1

C7/2+1→5/2+1

= 0.39(8) (6.21)

is deduced. Hence, in the 2p cut spectra the number of counts for 15N is approximately 2.6 times

larger than the number of counts for 16C around the energy of 2308 keV. Also this ratio was

calculated under the assumption that in the results from Wiedeking et al. no counts from 15N

contaminated the peak from the 3+1→2+1 transition from 16C. But if this was the case, the value

for R(3+1→2+1 /4
+
1→2+1 ) would go down and so the number of counts C3+1→2+1

for 16C would go

down as well. Hence, the ratio from Equation 6.21 would decrease and so even fewer 16C events

would be observed around 2308 keV, which would result in the fact that events from 15N would

dominate even more.

Furthermore, in Section 6.5.3 the 2p cut spectra will be investigated for a gamma gate

on the 2+1→0+ transition of 16C. Here the 3+1→2+1 transition could also not be identi-

fied, although the 4+1→2+1 transition appears weakly. This reveals a conflict with the ratio

R(3+1→2+1 /4
+
1→2+1 )=1.00(19) from the Wiedeking et al. data. That circumstance suggests that

maybe Wiedeking et al. also had undiscovered contaminations from 15N events at the position

of the 3+1→2+1 transition of 16C.

All in all, it is not possible to extract a proper lifetime for the 3+1 state in 16C with the data from

this work, because events stemming from 15N will always be dominating at the region of interest.

Assuming that the 3+1→2+1 transition should be visible in the 2p cut spectra as shown in Figure

6.4, it can only be concluded that the lifetime has to be in the femtosecond range, because a

stopped peak component can not be seen at all.

6.5.3 Results for the 2+2 State

In this section the results for the 2+2 state of 16C are discussed. The 2+2 state decays via two

transitions, namely 2+2→0+ and 2+2→2+1 (cf. level scheme in Fig. 1.1). The 2+2→2+1 transition

around 2217 keV is not visible in the 2p cut spectrum for the target-and-degrader-runs as it can

be seen in Figure 6.4. It seems that the 2+2 state is not populated strongly enough to appear in

this spectrum. Following the results from [Fal08, WFM+08], the count ratio between the 4+1→2+1
and 2+2→2+1 transition is given by 0.45(11). By reducing the intensity of the 4+1→2+1 transition in

Figure 6.4 by a factor of 0.45 and assuming that the 2+2 state has a lifetime in the femtosecond

range, which means that the 2+2→2+1 transition produces a moving peak structure, it can be
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accepted that the 2+2→2+1 transition is not visible because it is superposed by background fluctu-

ations. Furthermore, the 2+2→0+ transition is also not visible in the spectra, which is expected if

the 2+2→2+1 transition is not visible. Here, Petri et al. already showed that the branching ratio for

the 2+2→0+ transition is smaller than 8.8 % [PPC+12].

To check whether the 2+2→2+1 transition vanishes in the background or if the 2+2 state was not

populated at all, the gamma-ray spectra of the target-and-degrader-runs are produced again but

now a gamma gate is set on the 2+1→0+ transition. The used gate is a ±2σ gate around the mean

energy. A Gaussian fit to the 2+1→0+ transition resulted in Ecm=1273.8 keV and σ=2.8 keV. Due

to the fact that the 2+2→2+1 transition feeds into the 2+1 state, the background should vanish while

2+2→2+1 gammas can still appear in the spectrum. Figure 6.24 shows the gamma-ray spectra with

such a gamma gate on the 2+1→0+ transition for discreet Gammasphere angles from 69.82◦ to

162.73◦. For smaller angles no transitions of 16C could be observed with certainty. The three

dashed lines in the spectra mark the expected center of mass energy for the three transitions

4+1→2+1 , 3+1→2+1 and 2+2→2+1 , which all feed in the 2+1 state and hence are in coincidence with

the 2+1→0+ transition. In the Figure 6.24 one clearly sees the 4+1→2+1 transition as a stopped

peak for the most angles (counts around the right dashed line). The 2+2→2+1 transition could be

observed as a moving peak for seven angles. But as it can be seen the statistic is for most angles

very small and it can not for all cases certainly distinguished which count belongs to the 2+2→2+1
transition and which does not. By comparing the number of counts in the 4+1→2+1 transition

peak with the number of counts in the 2+2→2+1 transition peak, the count ratio of 0.45(11) given

by [Fal08, WFM+08] seems to be in the correct order of magnitude for the most angles. This

confirms the assumption that the 2+2 state was populated but its transitions vanish in the spectra

without a gamma gate due to the large background fluctuations. The 3+1→2+1 transition is again

not visible in the spectra. Maybe the transition occurs in the 90.00◦ spectrum (around the middle

dashed line), but no reasonable conclusion can be drawn with these low statistics. This is another

hint that Wiedeking et al. also saw counts from the 7/2+1→5/2+1 transition of 15N which interfere

with the counts from the 3+1→2+1 transition of 16C (cf Sec. 6.5.2). The red fit-functions at the

2+2→2+1 transition peaks in Figure 6.24 are defined by a single Gaussian function. The fits were

obtained by using the binned-likelihood method due to the low statistics.

The results for the mean value of these fits are plotted against cos(θ ) in Figure 6.25. Thereby

it could be shown that the mean value for the 69.82◦ spectrum is clearly too close to the value

for 90◦ as compared to the value for 110.18◦. It is assumed that one can trust the results from

90◦, 110.18◦ and 129.93◦ most. For 110.18◦ and 129.93◦ the number of counts is the largest,

while for 90◦ the Doppler-shift vanishes approximately. Assuming that these three data points are

trustworthy, the value from 69.82◦ deviates too strongly compared to the expected shift, which

is deduced from comparing the values from 90◦ with the values from 110.18◦. Hence, the data

point for the 69.82◦ spectrum is not considered in the fit. The fit, described by Equation 2.19,
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Figure 6.24: Analysis of the energy shift for target-and-degrader-runs and 2p cut focusing on the
2+2→2+1 transition of 16C. The spectra for the discrete Gammasphere angles are ob-
tained for a two sigma gamma gate on the 2+1→0+ transition with Ecm=1273.8 keV
and σ=2.8 keV. The red dashed lines mark the expected energies for the 4+1→2+1 ,
3+1→2+1 and 2+2→2+1 transitions [WFM+08, PPC+12]. The red fit-functions are defined
by a single Gaussian function. The fits were obtained by using the binned-likelihood
method due to the low statistics.
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Figure 6.25: ELab versus cos(θ ) fit for target-and-degrader-runs and 2p cut focusing on the
2+2→2+1 transition of 16C. The ELab values are extracted from the Gaussian fits shown
in Figure 6.24 except the value for 69.82◦. The black fit-function is described by Equa-
tion 2.19. The lower plot shows the residuals ∆E of the fit which is shown in the
upper part.

leads to the results of Ecm=2212.6(3.7) keV which is in agreement with the uncertainty weighted

mean value of 2217(2) keV from [WFM+08, PPC+12], by considering the statistical uncertainties

of both values. The mean decay beta was obtained to βExp=0.03905(245) with a rather large

relative statistical uncertainty. It should be highlighted that the small number of counts for

the 2+2→2+1 transition (cf. Fig. 6.24) introduce the large uncertainty for the beta value. This

uncertainty propagates to the further analysis and hence the following lifetime predictions are

vague and an addition measurement with better statistics is recommended (cf. end of Sec. 6.5.4).

In the next step the Geant4 simulations are used to obtain a relation between the lifetime

of the 2+2 state and the measured mean decay beta βExp. For this, the Geant4 simulations are

started for several different lifetimes in the femtosecond range as explained in Section 4.3. The

simulated mean decay beta is extracted using the same angles as for the experimental analysis.

For this, a single Gaussian function is fitted to the peaks for each spectra. Because the here

covered lifetime range from 25 fs to 700 fs is large and for higher lifetimes the stopped peak

component dominants, the fit range is truncated so that the Gaussian fits reflects mainly the

moving peak component. Looking at the experimental data (cf. Fig. 6.24) and focusing on the
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distance between the Gaussian fit and the position of the stopped peak (left red dashed line),

it can be assumed that these fits only contain counts from the moving part, especially for the

larger angles. A final and safe conclusion whether the experimental fit contains counts from the

stopped component or not can not be drawn for all used angle due to the low statistics. Hence,

the possibility for a unconsidered systematic uncertainty is given. But as stated next anyhow only

an estimation can be made with the data available here and no mean value is given.

Figure 6.26 shows the obtained simulation results. Part (a) of the figure shows the results

for ICRU73 stopping powers and Part (b) shows the results for SRIM stopping powers. Again

an exponential function as described by Equation 6.9 suits the data well enough. To get the

lifetime τExp of the state, the intersection of the fit-function with the experimental mean decay

beta βExp=0.03905(245) has to be found. But as it can be seen in both plots, this is not possible

because the experimental mean decay beta is too small. Furthermore, the plot reveals that the

statistical uncertainty of the experimental mean decay beta is much too large for the here ap-

plied method. Even if the experimental mean decay beta would be larger, the uncertainty band

would cover the whole analysed range from 25 fs to 700 fs. Above ≈550 fs the method breaks

down because the largest part of the transitions already decayed in rest. Using the uncertainty

band only an estimation for a lower lifetime limit can be given for the 2+2 state by finding the

intersection between the experimental mean decay beta and the upper limit of the uncertainty

band. This results in τ≳319 fs for ICRU73 stopping powers and τ≳244 fs for SRIM stopping

powers for the 2+2 state. These results should not be interpreted as a hard limit for the lifetime

towards smaller values but combined with the results discussed next they define a most likely

range for the lifetime.

To constrain the lifetime of the 2+2 state further, an additional evaluation method is applied

to the data. Following the main idea from the evaluation of the 4+1 state, now the number of

counts CMoving in the moving peak component are compared to the number of counts CStopped in

the stopped peak component. Here it holds again: The longer the lifetime, the more counts will

be in the stopped peak component. For the evaluation of the 2+2 state, the Geant4 simulations

are executed for different lifetimes and then the count ratio

RSim (τsim) =
CStopped (τsim)

CMoving (τsim)
(6.22)

is calculated for each lifetime and each Gammasphere angle separately. In the next step it

is checked how many counts CMoving,Exp in the moving peak component can be found in the

experimental data. With

CStopped,Sim (τsim)=CMoving,Exp · RSim (τsim) (6.23)

it can be deduced how many counts CStopped,Sim should appear in the stopped peak component

for a given lifetime according to the simulations. Next, the experimental number of counts
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Figure 6.26: Simulated mean decay beta βSim versus simulated lifetime τSim for the 2+2→2+1 tran-
sition of 16C. The initial beta in the simulation was obtained with βTO=0.04527(44).
The yellow band illustrates the experimental mean decay beta value of
βExp=0.03905(245) including its uncertainty. The shown fit-function is described by
Equation 6.9.

CStopped,Exp for the stopped peak component is estimated. Finally, the lifetime can be constrained

by comparing CStopped,Sim (τsim) with CStopped,Exp. For this analysis only the spectra for 110.18◦ and

129.93◦ can be used. These are the only spectra for which we have a significant number of counts

in the moving peak component and the moving and stopped peak component are safely separated

in the spectra which are obtained from the simulation. The clear separation is important to

minimize the probability that counts from both peaks are mixed up in the experimental data, for

which this is hard to distinguish due to the low statistics. The analysis in the following is done

separately for the 110.18◦ and 129.93◦ data and then the mean value is calculated for these two

results.

The counts in the moving peak component for the experimental data are deduced by sum-

ming up the bins in the given fit range, which can be seen in the Figure 6.24. This results in

C110◦
Moving,Exp=9.0(3.0) counts for 110.18◦ and C130◦

Moving,Exp=12.0(3.5) counts for 129.93◦. To obtain

the experimental counts CStopped,Exp for the stopped peak one has to be even more careful. The

position and the width of the peak is not exactly known. To get a reasonable width, a Gaussian

function is fitted to the 4+1→2+1 transition peak in the target-and-degrader-runs without a gamma

gate. This peak can be used as a good width approximation due to several reasons. This peak

stems from the same reaction, it is roughly at the same energy and it is also a fully stopped peak.

The use of the 4+1→2+1 transition peaks leads to a sigma of σR=5 keV for 110.18◦ and σR=6 keV

for 129.93◦. The index “R” indicates that these sigmas are later used to pin down the range

in which counts will be considered. Next, the fit result from Figure 6.25 is used to define the
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Table 6.3: Experimental counts in the stopped peak component for target-and-degrader-runs
and 2p cut focusing on the 2+2→2+1 transition of 16C. The values are obtained for a two
sigma gamma gate on the 2+1→0+ transition with Ecm=1273.8 keV and σ=2.8 keV.
They are extracted from the spectra which are seen in Figure 6.24. The possible peak
positions are deduced from the fit result from Figure 6.25.

Angle: 110.18◦ Angle: 129.93◦

Peak Position Range CExp,Stopped Range CExp,Stopped

in keV in keV in Counts in keV in Counts

2209 2199-2219 0(1) 2197-2221 0(1)

2210 2200-2220 0(1) 2198-2222 0(1)

2211 2201-2221 0(1) 2199-2223 0(1)

2212 2202-2222 0(1) 2200-2224 0(1)

2213 2203-2223 0(1) 2201-2225 0(1)

2214 2204-2224 1(1) 2202-2226 0(1)

2215 2205-2225 1(1) 2203-2227 0(1)

2216 2206-2226 1(1) 2204-2228 0(1)

2217 2207-2227 1(1) 2205-2229 0(1)

position of the stopped peak component to be Ecm=2212.6(3.7) keV. To reflect the uncertainty

of the energy in the results, the lifetime will be calculated with respect to the chosen center

of mass energy. Therefore, the peak position is varied to all values which are located inside

Ecm±σ=2213±4 keV. The step-size is set to 1 keV. Hence, the position for the stopped peak is set

to nine different values from 2209 KeV to 2217 keV. Then for each position a range of ±2σR is set

around this current position. In this range all bin contents are summed up and treated as counts

which belong to the stopped peak component. The results for this analysis are summarised in

Table 6.3. To take the low statistic into account the uncertainty is set to at least one count even if

zero counts were observed. As already discussed the lifetime depends on the real center of mass

energy of the transition. As it could be seen in Table 6.3 the analysed energy range has to be

separated into two domains namely 2209.0 keV to 2213.5 keV and 2213.5 keV to 2217.0 keV for

which the lifetime is obtained separately.

As an example the results of this analysis method are shown in Figure 6.27 for the 110.18◦

case with CStopped,Exp=1(1) counts in the stopped peak component (cf. Tab. 6.3). Part (a) shows

the results for ICRU73 stopping powers and Part (b) for SRIM stopping powers. The top plot

shows the simulation results for RSim (τsim). To the data the function

RSim(τsim) = a ·τ2
sim + b ·τsim (6.24)
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Figure 6.27: Count ratios between the moving and stopped peak component for the 2+2→2+1
transition of 16C for 110.18◦. The upper part shows the results from the Geant4 sim-
ulations with Equation 6.24 as a fit-function. The lower part shows this fit-function
scaled with CMoving,Exp, which represents CStopped,Sim(τSim). The blue band around the
function shows its uncertainty including the uncertainty from CMoving,Exp as well as
the fit uncertainties. Also CStopped,Exp=1(1) counts is plotted in orange for which the
uncertainty is shown as a yellow band (cf. Tab. 6.3).

was fitted. This function is now multiplied with C130◦
Moving,Exp to obtain CStopped,Sim(τSim) as stated

in Equation 6.23. The result of this is shown as a black function in the lower plot of Figure

6.27. The blue band around the function shows its uncertainty including the uncertainty from

C130◦
Moving,Exp as well as the fit uncertainties. The orange line with yellow band shows the experi-

mental result for the stopped peak component of CStopped,Exp=1(1) counts. Here, the mean value

from CStopped,Exp plus its uncertainty u(CStopped,Exp) can be seen as an upper limit for the num-

ber of counts in the stopped peak component which is still compatible with the experimental

data. Hence, all lifetimes for which the blue and yellow area are overlapping are compatible

with the experimental data. Due to this, an upper lifetime limit is obtained by determining the

intersection between CStopped,Sim(τSim)+u
�
CStopped,Sim(τSim)

�
(right end of the blue uncertainty

band) and CStopped,Exp+u[CStopped,Exp] (upper border of the yellow uncertainty band). In the here

shown example this leads to 409 fs for ICRU73 stopping powers and to 473 fs for SRIM stopping

powers as an upper lifetime limit for the 2+2 state.
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Table 6.4: Results the upper lifetime limit of the 2+2 state in 16C using the count ratio method. The
Geant4 simulations were performed for βTO=0.04527(44). The estimated minimum
lifetime τ̃Min is obtained from the fits in Figure 6.26. The upper limit τMax for the
lifetime is obtained with the experimental count ratios from Table 6.3. Target thickness
uncertainties are included as systematic uncertainties.

ICRU73 SRIM

Energy Range τ̃Min τMax τ̃Min τMax

in keV in fs in fs in fs in fs

2209.0 to 2213.5 319 291+36
−0

�
systtarget

�
244 341+35

−0

�
systtarget

�

2213.5 to 2217.0 319 350+40
−0

�
systtarget

�
244 407+39

−0

�
systtarget

�

For all other combinations of angles and number of counts in the stopped peak component,

the analysis and results were akin and are not discussed in detail. The results for both angles are

then combined by calculating the corresponding mean value. The analysis was also repeated for

the extreme target thicknesses to include the target thickness uncertainties in the results. The

achieved lifetimes are always the largest for the thickest possible target (+10 % thickness). Hence,

these results are used as a systematic uncertainty for the upper lifetime limit. The final values

from this analysis are summarised in Table 6.4 and discussed now. For the ICRU73 stopping

powers and the lower energy region the estimated minimum lifetime is larger than the upper

lifetime limit from the count ratio method but it is still valid by considering the upper uncertainty.

The results for the SRIM stopping powers are more consistent. Here, the estimated lower lifetime

limit is clearly below the upper limit from the count ratio method. The change in the results when

switching from ICRU73 to SRIM stopping powers is clearly more pronounced for the case of 16C

and lifetimes in the lower femtosecond range, than for the other nuclei which were investigated

before. This dependency on the stopping powers and the fact that the results for 16C are more

reliable if SRIM stopping powers are used, was also investigated and shown in [Hei15]. Due to

this the results for the SRIM stopping powers will be used for the further discussions. Using SRIM

stopping powers and take the systematic uncertainties into account, the lifetime can be expected

in a range from 244 fs to 376 fs for a center-of-mass transition energy between 2209.0 keV and

2213.5 KeV and the lifetime can be expected in a range from 244 fs to 446 fs for a center-of-mass

transition energy between 2213.5 keV and 2217.0 KeV.

The results for SRIM stopping powers are shown in Figure 6.28 and compared to the most

recent measurement from Ciemała et al. [CZC+20]. The figure shows the upper lifetime limit

(black dashed horizontal line) from the count ratio method and the most likely lifetime range

(blue boxes) using the estimated lower lifetime from the mean decay beta method. The results

from Ciemała et al. are marked by the red dots. They used the reaction 18O(7.0 MeV/u)+181Ta
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Figure 6.28: Results for the lifetime range of the 2+2 state in 16C using the count ratio method
and SRIM stopping powers. The values from this work are taken from Table 6.4
and shown as black dashed lines and blue boxes. The horizontal black dashed lines
mark the upper lifetime limit while the vertical black dashed line marks the mean
gamma-ray energy for the 2+2→2+1 transition as measured in this work. The blue
boxes mark the most likely lifetime range. The external values shown as red dots
are the most recent measurements from Ciemała et al. [CZC+20]. The gray dashed
function shows the relative probability distribution as a function of the transition
energy for the here obtained results. It follows a Gaussian distribution with a mean
of 2213 keV and a sigma of 4 KeV.

to produce 16C. Then Ciemała et al. extracted the lifetime and the transition energy by com-

paring the Doppler-shifted gamma-ray line shapes with Monte Carlo simulations. They could

not achieve a fixed pair of transition energy and lifetime for which the simulation fits best, but

they could obtain a domain for different pairs of lifetimes and transition energies for which the

simulation matches the experimental spectrum well. According to Ciemała et al. the transition

energy should be located between 2214 keV and 2218 keV for a one sigma confidence, while

the lifetime depends strongly on this energy as it can be seen in Figure 6.28. Comparing both

results, this work suggests a transition energy which is slightly lower than the energy measured

by Ciemała et al. But they are in agreement if the statistical uncertainty is taken into account. In

terms of lifetimes, the data points from 2214 keV and 2215 keV are in agreement with the most

likely lifetime range from this work. The other data points from Ciemała et al. are lower than

the most likely lifetime range from this work. Here, it should be stated again that the results

from this work should not be interpreted as a hard limit for the lifetime towards smaller values.
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Overall, the agreement is still acceptable by taking into account that in both experiments the

number of counts was low and close to the detection limit. In the work from Ciemała et al. the

number of counts in the peak is at the lower limit for which a pronounced line shape is developed

which is sensitive to the lifetime and the transition energy at the same time.

Focusing on the lifetime of the 2+2 state, the comparison with theory, as done in the next

section, is a complex case. Here, the lifetime of the state is defined by several different tran-

sition strengths. Hence, by knowing the lifetime it is not known how much each transition

strength contributes to the total transition rate. Therefore, the different transition strengths will

be constrained now. Looking at the level scheme in Figure 1.1 one can see that the 2+2 state can

decay via the 2+2→0+ and the 2+2→2+1 transition. For the 2+2→0+ transition only an E2 part is

possible. For the 2+2→2+1 transition M1, E2, M3, and E4 decay modes are available. Here, M1

and E2 will dominate strongly and higher orders can be neglected (cf. Sec. 2.1). Hence, the total

transition rate λTotal

�
2+2
�

of the 2+2 state is given by

λTotal

�
2+2
�
= λ
�
E2;2+2 → 0+
�
+λ
�
E2;2+2 → 2+1
�
+λ
�
M1; 2+2 → 2+1
�

(6.25)

theoretically. The most likely lifetime range for the mean transition energy from this work yields

λTotal

�
2+2
�
=

1

τ
�
2+2
� = 1

376 fs
to

1
244 fs

= 2.66 · 1012 1
s

to 4.10 · 1012 1
s

(6.26)

for the total transition rate. With this information alone nothing can be said about the three

different transition rates/strengths. But by using the results from Petri et al. [PPC+12] it is also

known that the branching ratio for the 2+2→0+ transition is limited to

BR

�
2+2→0+

2+2 → ∗

�
=
λ
�
E2;2+2 → 0+
�

λTotal

�
2+2
� < 8.8 %. (6.27)

Combining the results from Equation 6.26 and 6.27 a limit for the E2 transition strength of the

2+2→0+ transition is given by

λ
�
E2; 2+2 → 0+
�
< 8.8 % ·λTotal

�
2+2
�

(6.28)

1.22 · 109 1
s
·
�

Eγ(2+2 → 0+)

MeV

�5
· B
�
E2;2+2 → 0+
�

e2fm4
< 0.23 · 1012 1

s
to 0.36 · 1012 1

s
(6.29)

B
�
E2;2+2 → 0+
�

e2fm4
< 0.19 to 0.30, (6.30)

where in the second step the E2 transition rate is converted into a E2 transition strength following

Equations 2.14. For the gamma-ray energy the experimental value from this work of 3973 keV is
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used. The uncertainty of the gamma-ray energy can be neglected because the overall uncertainty

is completely dominated by the uncertainty of the experimental transition rate. Taking the higher

possible experimental value, the transition strength can be finally constrained to

B
�
E2; 2+2 → 0+
�
< 0.30e2fm4. (6.31)

Next, the transition rates in Equation 6.25 will be translated into transition strengths using

the conversions from Equations 2.14, which leads to

λTotal

�
2+2
�
= 1.22 · 109 1

s
·
�

Eγ(2+2 → 0+)

MeV

�5
· B
�
E2;2+2 → 0+1
�

e2fm4
(6.32)

+ 1.22 · 109 1
s
·
�

Eγ(2+2 → 2+1 )

MeV

�5
· B
�
E2;2+2 → 2+1
�

e2fm4

+ 1.76 · 1013 1
s
·
�

Eγ(2+2 → 2+1 )

MeV

�3
· B
�
M1;2+2 → 2+1
�

µ2
N

.

By using the experimental results from this work for the total transition rate and the transition

energies, this equation can be modified to

1.21 · B
�
E2; 2+2 → 0+
�

e2fm4
= Λ
�
2+2
�− 0.0648 · B
�
E2; 2+2 → 2+1
�

e2fm4
− 191 · B
�
M1;2+2 → 2+1
�

µ2
N

, (6.33)

where Λ
�
2+2
�

is the normalized transition rate of the 2+2 state given by

Λ
�
2+2
�
=
λTotal

�
2+2
�

1012 1
s

= 2.66 to 4.10. (6.34)

By combining the results from Equation 6.31 as well as Equation 6.33 and using the fact that

all transition strengths can not obtain negative values, one can deduce explicit constraints for

the three transition strengths. To visualize valid combinations for the three transition strengths,

these constraints are shown in Figure 6.29 for fixed values of Λ
�
2+2
�
. Part (a) shows the con-

straints for the two extreme values of Λ
�
2+2
�
, namely 2.66 and 4.10. The two axes define

the value of B
�
E2;2+2 → 2+1
�

and B
�
M1; 2+2 → 2+1
�
, while the colour code defines the value

of B
�
E2; 2+2 → 0+
�
. For a given Λ

�
2+2
�
, a valid transition strength triple can only occur inside

the coloured areas. Outside of the coloured areas the B
�
E2; 2+2 → 0+
�

strength would be neg-

ative (above the purple border) or larger than 0.30e2fm4 (below the red border) which is not

inside the limits from this work. It can be seen that the amount of possible transition strength

combinations is limited strongly if Λ
�
2+2
�

is known precisely. With this the validity of theoretical

predictions can be tested, which is discussed in the next Section 6.5.4. For this, Part (b) of Figure

6.29 shows the same constraints as Part (a) and the results for different theoretical approaches
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Figure 6.29: Constraints for the three transition strengths which define the total transition rate
λTotal

�
2+2
�

in 16C for a fixed Λ
�
2+2
�
. The constraints are defined by Equation 6.31

and 6.33. Part (a) shows the constraints for the two extreme values of Λ
�
2+2
�
. Part

(b) shows the same constraints as well as results for different theoretical approaches,
which are discussed elaborately in Section 6.5.4. The red dashed line marks the
uncertainty due to many-body parts, while the gray band marks the interaction
uncertainty for the IM-NCSM calculations. The color of the data points reflects the
B
�
E2;2+2 → 0+1
�

color code. This is not applied to the data point of the NCSM CDB2k
calculations for a better visibility.
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Figure 6.30: Constraints for the three transition strengths which define the total transition rate
λTotal

�
2+2
�

of the 2+2 state in 16C. The constraints are defined by Equation 6.31 and
6.33. A possible triple of transition strengths has to be placed inside the hexahedron
which is defined by the yellow and green plane as well as by the black dashed lines.
The shown data point reflects recent theoretical IM-NCSM calculations, which are
discussed in Section 6.5.4.
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are added. The theoretical approaches are discussed in detail in Section 6.5.4.

Furthermore, Figure 6.30 shows the constraints for the full possible range in terms of Λ
�
2+2
�
.

Here, Λ
�
2+2
�

can vary between Λ
�
2+2
�
=2.66 and Λ
�
2+2
�
=4.10 and the value of B

�
E2; 2+2 → 0+1
�

is projected along the z-axis. The two coloured planes mark the constraints for the two extreme

values of Λ
�
2+2
�

which were also already shown in Figure 6.29. A possible triple of transition

strengths has to be placed inside the hexahedron which is defined by the yellow and green plane

as well as by the black dashed lines.
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6.5.4 Comparison with Theory

Finally, the experimental results for 16C will be compared elaborately to four different theoret-

ical approaches in the following.

The first approach are p−sd shell model calculations using the OXBASH shell model code

[BERGed], which was applied for three different empirical two-body nucleon-nucleon effective

interactions, namely WBP [WB92], WBT [WB92], and WBT* [SSS+08]. These calculations were

performed by A. Brown [Bro20, PPC+12]. A motivation and description of these calculations can

be found in Section 2.6 and 2.9, as well as in [PPC+12, BERGed].

The second approach are NCSM calculations which were performed by Forssén et al. [FRN13].

It will be focused on their results which were obtained for the CDB2k potential and effective chiral

NN+NNN interactions. The basic concept of NCSM calculations are explained in the beginning

of Section 2.8. In [FRN13], Forssén et al. used the CDB2k potential to represent pure NN
interactions. The CDB2k potential developed in [Mac01] is based on the charge-dependent one-

boson exchange theory. It is fitted to the world proton-proton data below 350 MeV as well as to

the complete neutron-proton data, which were available in 2000. To apply the NCSM calculations

for the CDB2k potential, Forssén et al. used effective interactions to speed up the convergence.

To do so, they computed two-body effective interactions, which correspond to a low-energy basis

truncation using a unitary transformation in the two-nucleon HO basis. These are also known as

Ôkubo–Lee–Suzuki effective interactions [NVB00, Ôk54, FRN13]. To obtain the B
�
E2;2+1→0+
�

strength, they performed a constrained-fit to the strength for different combinations of NMax

and ħhΩ. Hence, the extracted B
�
E2;2+1→0+
�

strength has an uncertainty stemming from this

fit. This uncertainty is considered in the following evaluation and is propagated to the strengths

of the higher-lying states for which the B(E2) strengths are given relative to the B
�
E2;2+1→0+
�

strength. The used effective chiral NN+NNN interactions are a combination of chiral N3LO two-

body forces [EM03] and chiral N2LO three-body forces [GQN09] with a cutoff of 500 MeV. For

the NN+NNN interactions the convergence speed is reduced dramatically. Hence, an absolute

B
�
E2;2+1→0+
�

strength could not be obtained theoretically and for the higher-lying states the

B(E2) strengths could only be obtained relative to the B
�
E2;2+1→0+
�

strength. To calculate all

B(E2) strengths in this case, the B
�
E2;2+1→0+
�

is scaled to match the uncertainty weighted

mean of B(E2;2+1→0+)=4.18(53) e2fm4 measured in [WFM+08, PPC+12]. The experimental

uncertainty is propagated to all other strengths.

The third approach are recent NCSM◊ calculations performed by Roth et al. [Rot20] with

advanced chiral effective NN+NNN◊ interactions. The NCSM◊ calculations are set up with

harmonic oscillator bases for different values of ħhΩ, while for the NN+NNN◊ interactions most

recent effective chiral two-nucleon plus three-nucleon interactions from Hüther et al. [HVH+20]

are used. Hüther et al. constructed these chiral NN+NNN◊ interactions for the NLO, the NNLO,

and the N3LO with non-local regulators and a cutoff of 500 MeV. These interactions are based on
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a set of chiral NN interactions by Entem, Macheleidt and Nosyk [EMN17]. Hüther et al. used the
16O ground-state energy to constrain the one-pion two-nucleon-contact constant and they used

the triton ground-state energy to fix the three-nucleon contact parameter. These interactions

were able to accurately reproduce two-body phase shifts, ground-states energies and radii at

the same time for nuclei up to the medium-mass regime. The problem for the new NCSM◊

calculations with chiral effective NN+NNN◊ interactions is again that the observables do not

fully converge in the case of 16C. Hence, only trends can be concluded for some strengths so

far. Nevertheless, these trends are from great interest because they differ significantly from the

prediction of the next discussed approach, the IM-NCSM.

The fourth approach avoids the problem of the slow convergence by applying the framework

of the IM-NCSM onto the most recent chiral effective NN+NNN◊ interactions from Hüther et

al. [HVH+20]. These IM-NCSM calculations were carried out by Roth et al. [Rot20], while the

framework was developed by Gebrerufael et al. [GVHR17]. The idea of the IM-NCSM was al-

ready briefly introduced in the end of Section 2.8 and an elaborated explanation can be found in

[GVHR17]. The cutoff for the chiral effective NN+NNN◊ interactions was chosen to be 500 MeV

and the model space was limited by NRef
Max=2 and NMax=4. The calculations were performed for

the NLO, the NNLO, and the N3LO. By looking at the order-by-order convergence, interaction

uncertainties for the results can be estimated. Additionally, many-body uncertainties can be esti-

mated by analysing the NMax/N
Ref
Max convergence. In the following, the many-body uncertainties

of the results are given in the first bracket and the interaction uncertainties in the second bracket.

Here, it should be noted that the analysis of the IM-NCSM calculations is still ongoing and the

values as well as their uncertainties are preliminary.

The level energies, transition strengths and branching ratios for all the before mentioned theo-

retical approaches as well as the experimental results are summarized in Table 6.5. The B(E2)
strengths for the p−sd shell model were calculated with the effective charges (cf. Sec. 2.1)

ep=1.16 and en=0.33 following the∝1/A parametrisation from [SZZS04]. In the work from

Petri et al. [PPC+12] it could be already shown that this adjustment results in a better description

of the B
�
E2;2+2→0+1
�

strength. The experimental results are given for SRIM stopping powers.

In the following the theoretical predictions for the strengths and branching ratios are compared

to the experimental results for each state. The level energies and lifetimes are shown as a level

scheme in Figure 6.31. They are discussed later in this section.

The results for the 2+1 state are for the most part already discussed in [PPC+12]. While the

shell model calculations reproduce the B
�
E2; 2+1→0+
�

strength well, the NCSM calculations with

CDB2k interactions predict a too small strength. The strength for the IM-NCSM calculations is

suppressed by a factor of ≈3.3 which corresponds to a deviation of ≈−5.5 sigma compared to

the experimental results. The NCSM calculations with NN+NNN interactions were not able to

calculate the B
�
E2; 2+1→0+
�

strength due to the slow convergence and, as discussed before, the
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strength is substituted by the experimental value to calculate the strengths of the higher-lying

states.

For the 2+2 state the situation is more complex because three transition types are available.

As discussed in Section 6.5.3 these three transition types can be constrained with Equation

6.31 and 6.33. In the following the theoretical approaches will be compared to the most

likely lifetime range for the mean transition energy as it was discussed and defined in the

end of Section 6.5.3. According to the experimental results including their uncertainties, the

B
�
E2;2+2→0+
�

strength is most likely to be smaller than 0.30 e2fm4, which is only reflected

by the shell model calculations using the WBT* potential. All other approaches provide signif-

icantly larger B
�
E2;2+2→0+
�

strengths. Especially, the NCSM calculations with CDB2k interac-

tions give a much larger B
�
E2; 2+2→0+
�

strength of 4.48(1.32) e2fm4. To check the reliability of

the B
�
E2;2+2→2+1
�

and the B
�
M1; 2+2→2+1
�

strengths, Part (b) of Figure 6.29 and Figure 6.30

can be used. Focusing on Part (b) of Figure 6.29, it can be seen that the shell model calculations

and the NCSM calculations with NN+NNN interactions can not fulfill the constraints in terms

of B
�
E2; 2+2→2+1
�

and B
�
M1; 2+2→2+1
�

strengths. For a given value of B
�
E2; 2+2→2+1
�

their pre-

dicted B
�
M1; 2+2→2+1
�

strengths are too large. For the IM-NCSM calculations and the NCSM

calculations with CDB2k interactions a valid combination of B
�
E2; 2+2→2+1
�

and B
�
M1;2+2→2+1
�

strengths is predicted but for both the B
�
E2;2+2→0+
�

strength is larger than the experimen-

tally estimated limit. Note, the data point for the NCSM calculations with CDB2k interactions

does not follow the color code in Figure 6.29 and is completely out of scope in Figure 6.30.

Focusing on the branching ratio, the experimental results favour the 2+2→2+1 transition with at

least 91.2 % [PPC+12]. This is reproduced well by the shell model calculations and the NCSM

calculations with NN+NNN interactions. The IM-NCSM calculations on the other hand, slightly

underestimate the branching ratio for the 2+2→2+1 transition which is in conflict with the ex-

perimental results from Petri et al. [PPC+12]. The NCSM calculations with CDB2k interactions

predict the branching ratio completely wrong, which can be explained with the much too large

B
�
E2;2+2→0+
�

strength. Hence, for all theoretical approaches except the NCSM calculations

with CDB2k interactions the 2+2→2+1 transition dominates strongly. When the partial transition

rates are calculated and compared to the total transition rate of the 2+2 state, it can be further

seen that for the 2+2→2+1 transition the M1 part is dominant and the E2 part can be neglected.

So for all theoretical approaches except the NCSM calculations with CDB2k interactions, the

lifetime of the 2+2 state is mainly defined by the B
�
M1; 2+2→2+1
�

strength.

For the 3+1 state nothing detailed can be said about the transition strengths from the experimen-

tal side. So far, only the 3+1→2+1 transition could be observed experimentally [PPC+12, WFM+08]

which implies a branching ratio for this transition of 100 %. This is also reflected by all theories.

But it has to be noted that the 3+1→2+1 transition was observed very weakly, which means that the

3+1 state was populated weakly in the experiments. Hence, other transitions with a low branching

ratio could be completely missed. Additionally, one has to keep in mind that maybe also
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Figure 6.31: Comparison of several theoretical approaches and experimental results for the level
scheme of 16C. The experimental results for the 2+1 state are from [WFM+08, PPC+12].
The NCSM calculations are from [FRN13], the IM-NCSM calculations are from [Rot20]
and the p−sd shell model calculations are from [Bro20, PPC+12]. The left/top printed
lifetimes are calculated for the theoretical transition energies, while the right/bot-
tom printed lifetimes are calculated for the experimental transition energies. The
B(E2) strengths of the shell model were calculated with effective charges following
[SZZS04]. For details see Section 6.5.4 and Table 6.5.
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Wiedeking et al. [WFM+08] had 15N contaminations in the 3+1→2+1 transition as it was discussed

in Section 6.5.2.

The experimentally obtained range for the B
�
E2;4+1→2+1
�

strength and the theoretical predic-

tions are shown in Figure 6.32. The experimental range represents the results for SRIM stopping

powers including the systematic uncertainties as calculated in Section 6.5.1. It can be seen that

for the most theoretical approaches a proper strength is predicted. Only the NCSM calculations

with CDB2k potential produce a too small transition strength. For the IM-NCSM calculations no

results are obtained for the B
�
E2;4+1→2+1
�

strength so far.

All results in terms of lifetimes are summarized in a level scheme which is shown in Figure

6.31. The lifetimes are calculated for the transition strengths from Table 6.5 using Equations

2.14. The uncertainties for the lifetimes for the IM-NCSM calculations do not include uncertain-

ties concerning the theoretical transition energies. The experimental results are shown for SRIM

stopping powers. For the 2+2 state the most likely lifetime range is shown as it is discussed and

defined in the end of Section 6.5.3.

In terms of level energies the situation is sobering. For many predictions the absolute level

energies and relative energy gaps between the levels differ strongly from the experiment. So

e.g. the p−sd shell model calculations with WBT/WBP interactions overestimate the energies

of all states. Further, for all theoretical approaches the ordering of the 3+1 state and the 4+1 state

is interchanged compared to the experimental results. Only the p−sd shell model calculations

with WBT* interactions and the NCSM calculations with NN+NNN interactions show a quite

reasonable agreement with the experiment in terms of absolute level energies and relative

energy gaps between the levels, but the 3+1 state and the 4+1 state are still swapped. For the

recent IM-NCSM calculations the situation is interesting. Here, the level energy of the 2+2 state

is reproduced very well and the level energy of the 2+1 state is slightly too low, while the level

energy of the 3+1 state is reduced drastically compared to the experimental results and the other

theoretical predictions. So the results for the level energy of the 3+1 state are worse compared to

the NCSM calculations with NN+NNN interactions.

Focusing on the lifetimes, the p−sd shell model calculations reproduce the experimental value

for the 2+1 state well, if the experimental transition energies are used. The NCSM calculations

with CDB2k interactions overestimate the lifetime by a factor of two. For the NN+NNN interac-

tions the lifetime is produced well which is obvious because, as stated earlier, the B(E2) strength

was scaled to the experimental results. The IM-NCSM calculations reproduce the lifetime of

the 2+1 state well if the theoretical transition energies are used, otherwise the lifetime is over-

estimated by a factor of three. The experimental most likely lifetime range for the 2+2 state is

underestimated significantly by all theoretical approaches except for the IM-NCSM calculations.

For this case, the value is in good agreement with the experimental result if experimental tran-

sition energies are considered in the transtion rate calculations. Here one should note that the
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Figure 6.32: Results for the B
�
E2;4+1→2+1
�

strength in 16C. The yellow area represents the exper-
imental limits which are obtained in Section 6.5.1 for SRIM stopping powers. The
NCSM calculations are from [FRN13] and the p−sd shell model calculations are from
[Bro20, PPC+12]. The strengths of the shell model were calculated with effective
charges following [SZZS04]. For details see Section 6.5.4 and Table 6.5.

theoretical uncertainties are very huge, but as stated earlier these are preliminary values. For

the 3+1 state no final conclusion for the lifetime can be drawn. Assuming the 3+1→2+1 transition

should occur in the spectra of this work with approximately the same intensity Wiedeking et

al. [Fal08, WFM+08] estimated, the lifetime should be in the femtosecond range (cf. Sec 6.5.2).

This is reflected by all theoretical calculations except for the IM-NCSM calculations. But for

this case no B
�
E2; 3+1→2+1
�

value could be obtained so far and hence the lifetime is strongly

overestimated. If a B
�
E2;3+1→2+1
�

value can be calculated in the future this should bring the

lifetime down significantly. The lifetime of the 4+1 state is experimentally limited between 1.9 ps

and 4.0 ps. This is successfully reproduced by the p−sd shell model calculations expect for WBT*

interactions in combination with theoretical transition energies, for which the lifetime is deduced

to 5.6 ps. The NCSM calculations using NN+NNN interactions also obtained lifetimes which

are in agreement with the experimental results. If CDB2k interactions are used the lifetime is

given by 5.7(1.6) ps (not shown in Fig. 6.31) for experimental transition energies. This is also in

agreement with the experimental value considering the theoretical uncertainty stemming from

the constraint-fit. In the IM-NCSM approach the 4+1 state is not calculated successfully yet.

Further, the IM-NCSM calculations are now compared to the recent NCSM◊ calculations, which

also used the advanced chiral effective NN+NNN◊ interactions. As stated earlier, the NCSM◊

calculations do not finally converge for all strengths in 16C but trends can be clearly deduced.

Figure 6.33 shows the final transition strengths for the IM-NCSM calculations (red band) and
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Figure 6.33: Transition strengths in 16C for NCSM◊ calculations [Rot20] using advanced chiral
effective NN+NNN◊ interactions [HVH+20]. The transition strengths are shown
as a function of 1/NMax for different sets of ħhΩ. The black dashed lines are
constrained-fits which are described by Equation 6.35. The experimental value
for the B
�
E2; 2+1→0+
�

strength is the uncertainty weighted mean from [PPC+12,
WFM+08]. For comparison the results for the IM-NCSM calculations [Rot20] are
shown as a red band. Part (a), (b), and (c) use the same color code for the shown
data points which is stated in Part (a). For details see Section 6.5.4 and Table 6.5.

the figure shows the transition strengths for the NCSM◊ calculations as a function of 1/NMax

for different sets of ħhΩ. The NCSM◊ strengths were calculated for NMax=2, 4, 6. For NMax=6

the importance truncation method was applied to the calculations to speed up convergence.
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Due to this, uncertainties are available for these data points. A final predicted strength for the

NCSM◊ calculations is given by the extrapolation of the data points towards 1/NMax→0. Here,

the converged strengths at 1/NMax→0 should be independent of the choice of ħhΩ and hence the

extrapolations for different ħhΩ should intersect in one point at 1/NMax→0. This behaviour can

not be obtained for all strengths with the data available so far. A convincing extrapolation is

possible for the B
�
E2;2+2→0+
�

and the B
�
E2; 2+2→2+1
�

strength as it can be seen in Figure 6.33

Part (b) and (c). The black dashed lines mark constrained-fits which are described by

q (NMax,ħhΩ) = q0 +
c0(ħhΩ)
NMax

+
c1(ħhΩ)
N2

Max

, (6.35)

for which the parameters c0 and c1 vary for each ħhΩ-sequence [FRN13]. The parameter q0 reflects

the final result interpolated to 1/NMax→0 and it should be independent of the choice of ħhΩ. This

results in 2.1(5) e2fm4 for the B
�
E2;2+2→0+
�

strength and in 5.6(3) e2fm4 for the B
�
E2;2+2→2+1
�

strength. Hence, for both strengths much larger values are predicted by the NCSM◊ calculations

compared to the IM-NCSM calculations. Further, the B
�
E2;2+2→+1
�

strength is larger than the

B
�
E2;2+2→0+
�

strength for the NCSM◊ calculations. This could be in agreement with the ex-

periment for which the 2+2→2+1 transition is strongly dominant. For the B
�
E2;2+1→0+
�

and the

B
�
M1; 2+2→2+1
�

strength no convincing constrained-fits can be given. For the B
�
M1;2+2→2+1
�

strength too few data points are available. For the B
�
E2; 2+1→0+
�

strength a convincing ex-

trapolation to one final value at 1/NMax→0 for all ħhΩ-sequence at the same time is not clearly

observed so far. Anyhow, large differences to the IM-NCSM calculations can be seen. For the

B
�
E2;2+1→0+
�

strength the NCSM◊ calculations show a trend towards a much larger value

which would be in agreement with the experimental value of B(E2;2+1→0+)=4.18(53) e2fm4

[PPC+12, WFM+08]. Hence, for this case the NCSM◊ calculations give a much better result.

For the B
�
M1;2+2→2+1
�

strength the NCSM◊ calculations could lead to similar results as the

IM-NCSM calculations (0.016µ2
N). This is interesting, because the NCSM calculations with

NN+NNN interactions from Forssén et al. [FRN13] predict a much larger B(M1) strength

of 0.063µ2
N, which was necessary to reproduce the experimental branching ratios of the 2+2 state.

All in all, the theoretical calculations still have to be improved to give a proper description

of 16C. Especially the ab initio NCSM and IM-NCSM calculations have to be revised to describe

the higher-lying states. These results demonstrate how challenging it is to describe neutron-rich

nuclei with ab inito approaches. Further, it is remarkably that the results for the IM-NCSM cal-

culations differ significantly from the NCSM/NCSM◊ calculations with NN+NNN/NN+NNN◊

interactions, since the IM-NCSM framework truncates the NCSM model space, while it should re-

tain the underlying physics. But as state earlier the IM-NCSM calculation results are preliminary

and the deviation between the two approaches will be investigated further. From the experimen-

tal point of view it is recommended to further investigate the 2+2 state and achieve results with
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better statistics. The results from this work as well as from Ciemała et al. [CZC+20] are both

close to the detection limit and the results depend on the chosen Ecm of the investigate 2+2→2+1
transition. It is necessary to get a more precise result for the lifetime of the 2+2 state and to pin

down the branching ratios more certain. Also the 3+1 state should be investigated again because

no lifetime could be deduced so far and the 3+1 state was only observed for a small number of

counts in the past [PPC+12, WFM+08].
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7 Conclusion and Outlook
In the scope of this work measurements of electromagnetic properties of 16C and 23Ne

were performed and analysed. To measure the lifetimes of excited states in 16C, the reaction
9Be(9Be,2p)16C∗ was combined with the DSAM at the ANL. For this, a target and degrader setup

made of beryllium and gold was used. The emitted gamma rays were measured with Gamma-

sphere, while the emitted particles were detected with µ-Ball. Combining the results from both

detectors, gamma-ray spectra could be deduced for which the detected gamma rays were in

coincidence with two protons. By analysing the gamma-ray spectra for different detection angles,

the mean decay beta of the excited isotopes inside the gold degrader could be deduced. In the

next step, predictions for this mean decay beta stemming from Geant4 simulations for two sets

of stopping powers were compared to the experimental results to get access to the lifetimes of

the states. The Geant4 simulations used experimental results from target-only-runs as an input,

to fix the initial kinematic of the excited isotopes of interest. With this, experimental biases

and the full influence of the reaction kinematics are reflected in the simulations at the same

time. During the analysis it was discovered that the 9Be target was oxidized which opened more

reaction channels, such as 9Be(16O,2p1n)22Ne∗. Due to this, the well known lifetime of the 4+1
state of 22Ne could be used as a benchmark for the here applied analysis. The result of this work

with τ(4+1 )=328(14) fs for SRIM stopping powers is in very good agreement with the previous

measurements and so it could be shown that the here used methods lead to reasonable results.

Furthermore, the reaction 9Be(16O,2p)23Ne∗ occurred during the experiment. Therefore, the

lifetimes of two higher-lying states in 23Ne could be measured for the first time. The lifetime

of the (5/2+, 7/2+)2 state at 2517 keV was calculated to 641(79) fs+16 fs
−6 fs

�
systtarget

�
for SRIM

stopping powers, while the lifetime of the (5/2+, 7/2+)1 state at 1702 keV was calculated to

168(55) fs+8 fs
−1 fs

�
systtarget

�+72 fs

−80 fs

�
systfeeding

�
. For the lower lying (5/2+, 7/2+)1 state, feeding from

the higher-lying (5/2+, 7/2+)2 state has to be taken into account. To deal with this problem a

proper excitation ratio between both states was included in the Geant4 simulations. This ratio

was extracted from the experimental data under the assumption that the angular distribution

is the same for both observed transitions. The obtained experimental results were compared

to USDB calculations done by A. Brown [Bro19] using effective charges following the ∝1/A
parametrisation from Sagawa et al. [SZZS04]. While the level energies are reproduced well by

the USDB calculations, the lifetimes are significantly underestimated by the USDB calculations.

Further, it should be emphasized that this experiment was originally not designed to investigate
23Ne∗ and so for the target-only-runs analysis only four peaks of the 2517 keV→1702 keV transi-

tion close to the detection limit could be used. This enables the possibility for large systematic
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uncertainties for the simulated kinematics, which are maybe not reflected in the uncertainties

of the here given results. Hence, it is recommended to remeasure the here given lifetimes for

clarity. If the same method is used, it should be focused to gain more statistics. Especially for

the target-only-runs analysis more statistic is necessary to get a better control over the isotope

kinematics in the simulations.

For 16C a lifetime range for the 2+2 state could be measured and a lower lifetime limit for

the 4+1 state of τMin=1.9+0.0
−0.1

�
systtarget

�
ps could be obtained for SRIM stopping powers. Com-

bined with the results from Wiedeking et al. [WFM+08] the lifetime of the 4+1 state has to

be between τMin=1.9+0.0
−0.1

�
systtarget

�
ps and 4 ps. This corresponds to a transition strength limit

of 2.74e2fm4≤B
�
E2; 4+1 → 2+1
�≤5.78+0.32

−0.00

�
systtarget

�
e2fm4. Theoretical predictions from NCSM

calculations with NN+NNN interactions [FRN13] and p−sd shell model calculations for sev-

eral effective two body interactions [Bro20, PPC+12] fulfill this constraint. For the 2+2 state

the analysis was more challenging due to a very low number of counts close to the detec-

tion limit in the peak of interests. The most likely lifetime range for the 2+2 state is given by

244 fs to 376 fs for the mean transition energy and SRIM stopping powers. In combination

with the upper branching ratio limit of 8.8 % for the 2+2→0+ transition measured by Petri et

al. [PPC+12], it is possible to constrain the three transition strengths which are involved in the

lifetime of the 2+2 state. It could be shown that p−sd shell model calculations [Bro20, PPC+12]

and NCSM calculations using NN+NNN interactions [FRN13] can not fulfill the constraints

in terms of B
�
E2; 2+2→2+1
�
, B
�
M1;2+2→2+1
�
, and B
�
E2;2+2→0+
�

strengths. For IM-NCSM calcu-

lations [Rot20] and NCSM calculations with CDB2k interactions [FRN13] a valid combination

of B
�
E2;2+2→2+1
�

and B
�
M1;2+2→2+1
�

strengths is predicted but for both the B
�
E2;2+2→0+
�

strength seems too large. In terms of the 2+2 state lifetime only the IM-NCSM calculations

[Rot20] agree with the experimental results, while the other theoretical approaches predict

a too small value. Here, it is noticeable that for all investigated theories expect NCSM cal-

culations with CDB2k interactions, the lifetime of the 2+2 state is mainly dominated by the

B
�
M1; 2+2→2+1
�

strength and the other transition types are negligible. The 3+1 state of 16C could

not be investigated because the 3+1→2+1 transition peaks are contaminated by events from the

7/2+1→5/2+1 transition of 15N.

Overall, it can be concluded from this work that the theoretical descriptions for 16C have to be

improved. Especially for ab initio NCSM and IM-NCSM calculations it is still challenging to pre-

dict the level energies and transition strengths correctly at the same time. From the experimental

point of view it is important to further investigate the 2+2 state and achieve measurements with

better statistics to limit the lifetime of the 2+2 state more precisely. Also the 3+1 state should be in-

vestigated again because no lifetime could be deduced so far and the 3+1 state was only observed

with very limited statistics in the past [PPC+12, WFM+08]. For this it is recommended to use a

different reaction than the here used 9Be(9Be,2p)16C∗ reaction, to avoid possible contaminations

from 15N.
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8 Introduction
As stated in Part I of this thesis, electromagnetic properties of carbon isotopes are of special

interest. Here, the 14C isotope plays also an important role. Due to its number of protons and

neutrons 14C can be interpreted as a coupling of three alpha particles with two valence neutrons

[YKH+17, SKE10, FBNS+16]. As a result of this complex cluster structure, it is rather difficult to

describe 14C theoretically by ab initio methods. Also the excited states are complex multi-particle-

hole structures. This is similar to the structure in 12C. In this case many states can be described

by the clustering of three alpha particles. NCSM calculations fail completely to reproduce the

first excited states [MVC+14]. However, modern Lattice Effective-Field-Theory calculations give

promising results in first attempts. But they suffer by implementing interactions of higher order

like chiral N3LO interactions [EKL+12, EKLM11]. Facing these problems, it is rather interesting

how they evolve for 14C. But unfortunately not much about the electromagnetic properties for
14C is known so far. This is due to the fact that experiments with a radioactive 14C target are

quite challenging. The only known electron scattering data available for 14C are from 1972/76

measured by Crannell et al. [CHO+72, CFH+77]. They call for a more accurate remeasuring.

Because of this, an electron scattering experiment on 14C is planned at the QCLAM spectrometer

at the S-DALINAC. The goal of this experiment is to provide key electromagnetic observables of

excited states of 14C. They can be used to test and refine different ab initio calculations.

The 14C isotope, well known through the radiocarbon dating method [Lib52], decays with a

half-life of 5730 years via a β− decay [AS91b]. There the end-point energy is 156.5 keV while the

mean beta energy is 49.5 keV [AS91b]. The 14C target which is available for this experiment has

a total activity of around 8 TBq [Edw08]. Due to the fact that the 14C target is highly radioactive

and long-lived, several safety measures have to be applied to prevent the contamination of the

experimental equipment or the staff. Seeing that, a new scattering chamber and a new target

chamber, which is mounted on top of the scattering chamber, will be designed in this thesis. They

will allow to seal the target off from the remaining vacuum system of the QCLAM spectrometer

during maintenance work or potential critical situations. For this, also a new valve system will

be planned. This system includes three fast valves which seal the scattering chamber off in a few

microseconds. This is necessary if a vacuum foil on top of the QCLAM rips apart and thus an air

shock wave enters the QCLAM vacuum system. Furthermore, the consequence of such a shock

wave will be analysed and discussed. Additionally, the energy deposited inside the 14C target

and the following heat up are discussed as well. Also some count rate estimations for a possible

experiment at the QCLAM spectrometer will be done in the following part of the thesis.
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9 Theory and Physical Background
In this chapter, an introduction to nuclear structure theory of the 14C isotope is given. Also a

short overview over the theory of electron scattering is given.

9.1 The Case of Carbon-14

The 14C isotope, consisting of six protons and eight neutrons, is an interesting candidate for

complex alpha cluster structures [YKH+17, SKE10, FBNS+16]. Due to this, it is rather difficult

to describe 14C theoretically by ab initio methods such as NCSM calculations. Additionally, with

T1/2=5730 a the 14C isotope has an anomalously long lifetime compared to the lifetimes of other

light nuclei which have the same decay channel. Astonishingly, it is nevertheless possible to

describe the extraordinary long half-life with NCSM calculations [BNV13, MVN+11]. This was

established using chiral NN+NNN interactions. The investigations showed that the very long

lifetime for 14C stems from a cancellation between 0p-shell NN interactions and the three body

interactions. Hence, the properties of the 14C isotope are influenced strongly by applying three

body interactions to the underlying Hamiltonian. Due to its properties, 14C is an interesting

candidate to check for influences and the importance of three body forces. Unfortunately ab

initio methods have still problems to describe the properties of excited states in 14C. Also from

the experimental point of view not much about the electromagnetic properties of excited states

in 14C is known. The only known electron scattering data available for 14C are from 1972/76

measured by Crannell et al. [CHO+72, CFH+77].

In the first work, Crannell et al. measured the scattered electrons for nine different inci-

dent electron energies between 60 MeV and 120 MeV at laboratory scattering angles of 92.5◦,
127.5◦, and 145◦ [CHO+72]. This corresponds to a momentum transfer range from 0.45 fm−1 to

0.90 fm−1. The focus was set on the first two 2+ excited states. For these two states, they were

able to extract the form factors, the reduced Coulomb matrix elements for an electric quadrupole

excitation, the transition radii and the transition strengths. The results for the reduced matrix

elements, the transition radii and the transition strengths can be found in Table 9.1 while the

form factors can be found in Table 11.2 and Table A.10. The strength of the 2+1 state is 4.6 times

larger than the strength of the 2+2 . A sufficient theoretical interpretation of this is still missing.

Additionally, it can be seen that especially for the 2+2 state the uncertainties are rather large (e.g.

23 % for the radius). Because [CHO+72] is the only measurement of electron scattering on 14C

for angles different than 180◦ a remeasurement of the two first 2+ states is urgent. It would be
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Table 9.1: The reduced Coulomb matrix elements for an electric quadrupole excitationp
B(E2,0) ↑, the transition radii R, and the transition strengths M2 for the first two

2+ states in 14C. The values were measured by Crannell et al. [CHO+72].

Ex

p
B(E2, 0) ↑ R M2

in MeV in efm2 in fm in W. U.

7.01 4.32(29) 3.22(22) 1.79(24)

8.32 2.02(38) 3.05(69) 0.39(15)

also of special interest to measure electromagnetic properties of other states additionally to the

already investigated first two 2+ states.

Furthermore, Crannell et al. measured electron scattering at 14C under 180◦ [CFH+77]. Here

they used beam energies of 37 MeV, 50 MeV, and 60 MeV. With this measurement they found

eight states in 14C with an excitation energy less than 16 MeV. Because electron scattering under

180◦ favours strongly magnetic M1 transitions, the B(M1) strength can be estimated very well

with this experiment. It could be concluded that clearly the most B(M1) strength is located in

one transition at 11.31 MeV which could be identified as a 1+ state. Here the cross section for

Ei=37 MeV is with 12.0(1.2)·10−33 cm2/sr extraordinary large compared to the other states. This

is different to many other light nuclei like 11B or 13C where the B(M1) strength is fragmented

more or less equally into several states [CFH+77]. However, the measured statistics for the

weak transitions in [CFH+77] was so small that no multipolarity or transition strength could be

deduced from the data. Maybe some B(M1) strength was missed due to too low sensitivity of

the experiment. But the extraction of the total B(M1) strength is important due to the still not

fully understood phenomena of the quenching of the B(M1) strength in light and medium mass

nuclei [Ric85, vNCPRR98]. The quenching of the total B(M1) strength in light and medium mass

nuclei is an important case because it contributes to the long-standing problem of quenching of

the spin-isospin response in nuclei [Ost92, HvNCR10]. Hence, it would also be very interesting

to remeasure electron scattering at 14C under 180◦, which would be in principle also possible

at the QCLAM spectrometer. Furthermore, it is nowadays possible to measure transitions with

weak B(M1) strengths applying the unite cross-section method to inelastic proton scattering

data which are measured under extreme forward angles. Here the experimental background is

neglectable and even states with very small cross sections can be analysed precisely. This method

was successfully established in [BMvNC+16, Bir17, MBM+17, Mat14].

Another theoretical approach which tries to describe excitations in 14C isotopes is the so-called

Linear-Chain Cluster State (LCCS) in the framework of the AMD method. The idea of a LCCS

was already introduced in 1956 by Morinaga [Mor56] to describe the Hoyle state in 12C. Today

many LCCSes in several nuclei are predicted using realistic interactions including AMD. For these
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Figure 9.1: Wavefunction in the linear-chaincluster state in 14C as a result of the AMD method
[SKE10, SKE11]. The top part shows the proton density ρp, the neutron density ρn

and the difference between them. The bottom part shows an intuitive picture of
the particle alignment which arises from the density distribution above. The figure is
modified and reprinted from [YKH+17] with permission from Elsevier.

interactions, linear-chain states can be stable against bending. Looking at the work from Suhara

and Kanada-En’yo [SKE10, KEKS13] a prolate band that has a configuration of a LCCS could be

predicted for 14C. It could be shown that the LCCS is stabilized by its orthogonality to lower-lying

states. The lower-lying states are triaxially deformed cluster states. They are constructed with

bended bases. Due to the orthogonality condition the higher-lying LCCSes are prohibited from

bending. This is a special case which applies for 14C. In 12C for example no triaxial bands exist

and so this mechanism does not apply here. Additional investigations from Suhara and Kanada-

En’yo [SKE11] revealed that the wavefunctions stemming from the AMD have a configuration in

which two alpha particles and two neutrons are located close to each other, while the remaining

alpha particle is further away. This solution is illustrated in Figure 9.1. Here, two equivalent

interpretations are possible. In the first interpretation the three alpha particles are aligned in

one straight line while the two neutrons can be treated as valence neutrons. Here it could be

shown that the two valence neutrons are necessary to stabilize the three alpha chain [FBNS+16].

These two valence neutrons are missing in the case of 12C. This explains why the alpha chains

are fragile, bend and collapse for higher excited states in 12C [FBNS+16, KE07]. In the other

interpretation for 14C a 10Be core is formed while an additional alpha particle is attached at the

outside in such a way that the alpha particles are aligned along a straight line.

Because of the second interpretation, Yamaguchi et al. [YKH+17] used the 10Be+α resonant

scattering method in inverse kinematics to investigate LCCSes in 14C. They found several excited
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states for which the level energy spacings and the Jπ agree perfectly with the theoretical pre-

dictions for the LCCSes. Hence, this work can be seen as a proof for LCCSes in 14C. Additionlly,

Fritsch et al. [FBNS+16] performed resonant elastic and inelastic alpha scattering of a radioac-

tive 10Be to investigate LCCSes in 14C. They indeed also found two excited states, which can

only be explained assuming LCCSes in 14C. Furthermore, they measured a large cross section

in the inelastic channel of the 2+1 state of 10Be. To describe this theoretically they studied Brink-

Bloch wave functions [Bri66]. For this case, they added an alpha particle to an axially deformed
10Be cluster. The alpha particle is placed at the distance d=5 fm under an angle θ relative to

the symmetry axis of the 10Be cluster. They could show that the ratio of inelastic interaction to

elastic interaction depends strongly on θ and is maximal for θ=0◦. To explain the large inelastic

channel of the 2+1 state a three alpha cluster at which the alpha particles are arranged along a

line has to be assumed. This is a second strong indication for LCCSes in 14C.

In summary, the 14C isotope is a rather interesting case and a good candidate to study LCCSes

as well as to test how ab initio methods can deal with a pronounced cluster structure. Unfortu-

nately, the experimental knowledge for LCCSes in 14C is rather limited. For example the work

from Yuta et al. [YKE16] gives various radii for excited states in 14C calculated with LCCS and

AMD approaches, which could be checked in the future experimentally.

9.2 Electron Scattering

During electron scattering, an electron with a relativistic incoming momentum k⃗ (and energy

Ei) hits a nucleus with the charge Ze and transfers the momentum q⃗=k⃗ − k⃗′ to this nucleus.

The scattering of electrons on a nucleus is a process in the quantum regime. The process has

to be described by a wave function. This wave function consists of two parts. The first part is

an incoming plane wave while, looking from far distance, the second part is a spherical wave

function with its center in the position of the scattering center, hence the nucleus. This leads to

Ψ(r⃗) = Ψi(r⃗) +Ψf(r⃗) = a

�
eik⃗ r⃗ + f (θ )

eik′r

r

�
(9.1)

for the total wave function if the electron beam is not polarized. Here k⃗ is the momentum vector

of the incoming electron and k′ is the absolute value of the outgoing moment. The factor a is the

total wave amplitude and f (θ ) is the so-called scattering amplitude. Furthermore, the particle

density can be generally calculated with P=Ψ(r⃗)†Ψ(r⃗). If the electrons have the velocity v , the

current densities j are given by

ji = Ψ
†
i Ψivi =
���a eik⃗ r⃗
���
2

vi = a2vi (9.2)

jf = Ψ
†
f Ψfvf =

�����a f (θ )
eik′r

r

�����
2

vf = a2 | f (θ )|2
r2

vf. (9.3)
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where “i” indicates the incoming part and “f” indicates the outgoing part. Using the definition of

the cross section this leads directly to

dσ
dΩ
(θ ) =

jfdA
jidΩ

(θ ) =
vf

vi
| f (θ )|2 . (9.4)

For relativistic electron scattering we have vi≈vf≈c and hence

dσ
dΩ
(θ ) = | f (θ )|2 . (9.5)

By knowing the scattering amplitude, the cross section can be calculated. To get access to the

scattering amplitude, the time-independent Schrödinger equation

∇2ψ(r⃗)− U(r)ψ(r⃗) = −k2ψ(r⃗) (9.6)

is used. In this equation U(r) is given by 2m/ħh2V (r) where V (r) is the scattering potential. It is

assumed that the potential V (r) has only a radial dependency. Then equation 9.6 can be solved

using the Green’s function formalism to

ψ(r⃗) = Φ(r⃗)− m

2πħh2

∫
eik|r⃗−r⃗′|
|r⃗ − r⃗ ′| V (r

′)ψ(r⃗ ′)d3r ′. (9.7)

Here Φ(r⃗)=eik⃗ r⃗ is the solution of the homogeneous time-independent Schrödinger equation.

Equation 9.7 is also called Lippmann-Schwinger-Equation [LS50]. The Lippmann-Schwinger-

Equation can be solved approximately using a recursive method. If as a start value ψ0(r⃗) is set

to Φ(r⃗) and one only takes the first step of the recursive method into account, then the so-called

first plane wave Born approximation is given by

ψPWBA(r⃗) = Φ(r⃗)−
m

2πħh2

∫
eik|r⃗−r⃗′|
|r⃗ − r⃗ ′| V (r

′)eik⃗ r⃗′ d3r ′. (9.8)

This approximation is only valid if the distortion of the plane wave by the potential V (r) is

small. In the next step, the fact is used that in an experiment the distance of the detector to

the scattering center and hence the center of the potential is much larger than the range of the

potential. Due to this, k |r⃗ − r⃗ ′| can be expanded into a Taylor series. By stopping at the first term

one gets

ψPWBA(r⃗)≈ Φ(r⃗)−
m

2πħh2

eik′r

r

∫
e−ik⃗′ r⃗′ V (r ′)eik⃗ r⃗′ d3r ′. (9.9)

By comparing Equation 9.9 with Equation 9.1, the scattering amplitude is expressed by

f (θ )≈ −m

2πħh2

∫
e−ik⃗′ r⃗′ V (r ′)eik⃗ r⃗′ d3r ′. (9.10)
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For electron scattering the scattering potential on an expanded charge distribution ρ(r) is

given by

dV (t) =
Ze2

4πε0s
ρ(r)d3r, (9.11)

where s is the distance between the electron and the volume element d3r. The total potential of

the nucleus is given by an integration over the volume of the nucleus and hence

V (t) =
Ze2

4πε0

∫
1
s
ρ(r)d3r. (9.12)

Plugging this term into Equation 9.10 leads to

f (θ )≈ Ze2

4πε0

−mZe2

2πħh2

∫
d3r

∫
d3 t
ρ(r)

s
e

i
ħh q⃗(r⃗+s⃗) (9.13)

f (θ )≈ Ze2

4πε0

−mZe2

2πħh2

∫
1
s

e
i
ħh q⃗s⃗ d3s

  
fRutherford(q)

∫
ρ(r)e

i
ħh q⃗ r⃗ d3r

  
F(q⃗)

(9.14)

for the scattering amplitude. The first part of this equation is the scattering amplitude of the well

known Rutherford scattering. The second part is the so-called form factor. It is a Fourier-Bessel

transformation of the charge distribution of the nucleus. What was ignored so far is the fact that

the electron is a spin 1/2 particle. But because the electrons have a speed of β≈1 the helicity h
(which means h=k⃗s⃗/(|k⃗||s⃗|)) of the electron has to be conserved. Hence, scattering under 180◦ is

strongly suppressed. To implement this into the scattering amplitude, the factor
Æ

1− β2 sin2 θ/2

is added to Equation 9.14. Finally, the cross section of relativistic electron scattering is given by

dσ
dΩ
=

�
Ze2

4πε0

1
4Ei

1

sin2 θ
2

�2
· (1− β2 sin2 θ

2
) · |F(q)|2 (9.15)

dσ
dΩ
=

dσ
dΩRutherford

· (1− β2 sin2 θ

2
) · |F(q)|2 (9.16)

dσ
dΩ
=

dσ
dΩMott

· |F(q)|2. (9.17)

The first part of the last equation is the so-called Mott cross section. The Mott cross section just

depends on the kinematics of the scattering experiment. All the nuclear structure information is

given by the form factor F(q). By measuring the experimental cross section for different q values

and comparing it to the Mott cross section one gets access to the behaviour of the form factor

and thus access to the charge distribution of the nucleus. If the incoming energy Ei is much

larger than the rest mass of an electron mec2, then we have β≈1 and the Mott cross section can

be rewritten to

dσ
dΩMott

=

�
Ze2

4πε0

1
4Ei

cos θ2
sin2 θ

2

�2
. (9.18)
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The momentum transfer q of the electron experienced in the experiment depends on the

scattering angle θ , the initial energy Ei and the energy loss of the electron. The energy loss

is given by Ex=Ei − Ef, where Ef is the energy of the electron after the scattering. Then the

momentum transfer in units of fm−1 can be calculated as

q =
1
ħhc

√4Ei(Ei − Ex) sin
2 θ

2 + E2
x

1+ 2Ei
Mc2 sin2 θ

2

, (9.19)

where the recoil of the nucleus is considered and M is the mass of the target nucleus. In the plane

wave Born Approximation, it was assumed that the incoming wave is a perfect planar wave before

the scattering happens. But this is not true in reality. Due to the electrical potential the plane

wave gets distorted before it comes to the scattering. For heavy nuclei this can be considered

by applying the distorted plane wave Born approximation. It could be shown that for light and

medium mass nuclei the plane wave Born approximation is still valid if this effect is taken into

account quantitatively by changing the q dependence of the form factor. Due to the Coulomb

force the effective energy of the electron is getting slightly bigger during the scattering. This

leads to an increase of the momentum transfer which is corrected using the effective momentum

transfer expressed by

qeff = q

�
1+

3
2

Ze2

EiReq

�
, (9.20)

where Req is the radius of the uniform charged sphere. It can be parametrised by

Req =

⎧
⎨
⎩

q
5
3(1.2A1/3)2 if A< 20

1.128A1/3 + 2.24A−1/3 if A≥ 20
(9.21)

Then the form factor becomes a function of qeff and is measured via

|Fexp(qeff)|2 =
dσ
dΩ exp

dσ
dΩMott

. (9.22)

This section was orientated by [Mac05, Mat14, KBtLC12]. A detailed mathematical description

of electron scattering can be found e.g. in [Üb71].
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10 Facility and Existing Experimental Setup
The electron scattering experiment on 14C will be performed at the QCLAM setup which is an

electron spectrometer at the electron accelerator S-DALINAC at the TU Darmstadt. These setups

are explained in the following two sections.

10.1 Electron Accelerator S-DALINAC

The Supraleitende Darmstädter Elektronenbeschleuniger (S-DALINAC) is a superconducting

linear electron accelerator at the TU Darmstadt [Pie18, Ric96]. The S-DALINAC started its full

operation in 1991 as a two-arch accelerator. In 2015/2016 the accelerator was upgraded by

installing a third arch [AHKP16]. With this upgrade, the S-DALINAC can deliver beam energies

from 3 to 130 MeV. Furthermore, it is now possible to run the S-DALINAC in an energy-recovery

mode. Thus, the S-DALINAC is the first energy-recovery electron linac in Germany [Son17]. The

S-DALINAC is able to deliver a continuous-wave beam with electron bunches every 333 ps. The

length of one bunch is about 5 ps.

A floor plan of the S-DALINAC is shown in Figure 10.1. At the S-DALINAC the electrons are

generated in one of two available guns. The thermionic gun emits electrons into the vacuum by

heating a tungsten wire to more than 1,000 K. The spin-polarized electron gun delivers electrons

using a photongun. In the photongun, an external laser beam is shot on GaAs photocathodes

to cause the photo-electrical effect. The electrons which are set free during the photo-electrical

effect are spin-polarized. Polarization degrees up to 86 % have been demonstrated in the past

[PEA+11]. After the two guns, the electrons are pre-accelerated electrostatically by high voltage

up to 250 keV. Then the electrons pass a normal conducting chopper and a pre-buncher section.

They prepare the beam for the main acceleration and can achieve an emittance smaller than

1 mm mrad. In the next step the electrons enter the injector linac. The injector linac consists of

a short cryomodule housing a 5-cell niobium capture cavity and of one standard cryomodule

housing two 20-cell niobium cavities. All niobium cavities at the S-DALINAC are operated at a

frequency of 2.998 GHz. They reach a quality factor of 109 while they are operated at 2 K. They

can create field gradients of 4-6 MV/m. After the injector linac, the electrons can have energies

between 3 and 10 MeV. The electrons can then be guided to the Darmstadt High-Intensity Photon

Set-up (DHIPS) or they are bent into the main linac. The main linac consists of four cryomodules.

Each module consists of two 20-cell niobium cavities. So the main linac consists of eight 20-cell

niobium cavities in total, while the whole S-DALINAC consists of eleven niobium cavities in total.

After the electrons passed the main linac, they reach a separation magnet. Here it can be decided,
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Figure 10.1: Floor plan of the S-DALINAC. Dipole magnets are shown in blue, while quadrupole
magnets are shown in yellow. The niobium cavities are marked in red. The figure is
taken from [Pie18] with courtesy to M. Arnold.

if the electrons are bent in one of the three recirculation beam lines or if the electrons are

extracted into the extraction beam line. The electrons can be recirculated up to three times and

hence they pass the main linac up to four times. The number of used recirculation depends on the

used mode and the end point energy the beam should have. After the recirculations the electrons

are guided into the extraction beam line. In the extraction beam line a highly dispersive chicane

with a focus at its dispersion maximum is placed. By using a special slit system at the focal plane

point, the chicane works as a high-energy scraper system [JBB+16]. With this scraper it is possible

to obtain an halo-free beam with an energy spread δE/E better than 2 · 10−4 [Pie18]. This high

quality beam is then guided to one of the three experimental setups in the experimental hall,

namely the NEPTUN setup, the QCLAM setup or the LINTOTT magnet spectrometer. Thereby,

the beam can be guided via two different beam lines towards the QCLAM setup. One possibility

is to use a straight beam line for common scattering experiments with scattering angles between

25◦ and 155◦ [Kni91]. The other possibility is to bend the beam through a chicane which allows

to perform 180◦ scattering experiments at the QCLAM spectrometer. Possible energies at the

QCLAM spectrometer are 10 to 130 MeV while the current is typically in the range of several

µA. The QCLAM spectrometer is explained in the next chapter. This section was orientated by

[Pie18].

10.2 The QCLAM Spectrometer

The electron scattering experiment on 14C will be performed at the Quadrupol CLAMshell

(QCLAM) spectrometer. The QCLAM was built in 1991 by M. Knirsch [Kni91]. The QCLAM is a

large acceptance magnetic spectrometer. It consists of one quadrupole magnet at the entrance

and a large bending dipole magnet placed behind the quadrupole. With the quadrupole magnet it

is possible to achieve a large horizontal and vertical opening angle of around ±100 mrad, which

174 10 Facility and Existing Experimental Setup



Figure 10.2: Profile of the QCLAM spectrometer given in the plane of symmetry. The red dot
indicates the position of two piezoelectric sensors, which are used to measure a
possible air shock wave. The figure was modified and taken from [Rei00].

corresponds to a solid angle acceptance of 35 msr. At the same time the momentum acceptance

is given by ±10 %.

The profile of the QCLAM is illustrated in Figure 10.2. The electrons coming from the

S-DALINAC are hitting the target in the center of the scattering chamber. Most of the elec-

trons will pass the thin targets and be dumped in the Faraday cup. But a small fraction of the

electrons will be scattered towards the spectrometer. All electrons which fulfill the solid angle

acceptance conditions enter the QCLAM at the quadrupole magnet. The quadrupole magnet

focuses the electrons in the horizontal plane before they enter the dipole magnet. In the dipole

magnet the electrons are bent. Here the radius of the trajectory of the electrons depends on the

momentum of the electrons and thus their kinetic energy. On top of the vacuum chamber of

the QCLAM the focal plane is located. It is tilted by 37.97◦. Here, the position of the electrons
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corresponds to the different kinetic energies the electrons have. Hence, by measuring the posi-

tion of the electrons one gets the energy the electrons had. But due to the large acceptance of

the QCLAM the focal plane is not perfectly planar. It is better described by a focal sphere. To

correct for this, it is not sufficient enough to measure the position of the electron. In fact, it is

necessary to reconstruct the trajectory the electrons had in the spectrometer. For this, a more

complex detector system is used which consists of four different detectors.

The detector system, also shown in Figure 10.2, was firstly designed by K.-D. Hummel

[Hum92] and later improved by J. Horn [Hor97] as well as B. Reitz [Rei00]. The scintilla-

tor detector is used as a trigger while the Čerenkov detector is used to suppress the background.

The two drift chambers are used to measure the position of the electrons and the direction of the

momentum vector of the electrons. With this information it is possible to reconstruct the trajec-

tory of the electrons. With the projection of the trajectory into the focal plane one then has the

possibility to reconstruct the energy of the scattered electrons. The drift chambers are sensitive

detectors which can not be placed inside a vacuum. Due to this reason, the drift chambers are

located outside of the vacuum chamber of the QCLAM spectrometer. To seal the QCLAM vacuum

chamber against the atmosphere while electrons can still pass the sealing, a thin Mylar foil is

mounted at the end of the vacuum chamber. The thickness of the Mylar foil is in the range of

50µm. Concerning the 14C experiment the worst case would be the breaking of this foil. If this

foil rips apart, as happened in the past, a strong air shock wave will enter the QCLAM vacuum

system driven by 1 bar pressure difference. By assuming that the shock wave travels by the speed

of sound it needs around 7 ms to reach the scattering chamber (cf. Sec. 11.6). It is one of the

main challenges to protect the fragile 14C target against a possible shock wave coming from top

of the QCLAM. To register such a shock wave additional piezoelectric sensors will be mounted

on top of the QCLAM vacuum chamber. The position is marked in Figure 10.2 by the red dot (cf.

Sec. 11.4 and Sec. 11.6).

Furthermore, it should be mentioned that at the moment also huge upgrades are ongoing at

the QCLAM spectrometer. Under the work of M. Singer [Sin20] the complete electronics are

updated to take much larger data rates, which is especially necessary for coincidence experi-

ments. First commissioning runs in 2018 and 2019 were promising. Also a (e,e’γ) coincidence

measurement on 12C was successful. In the work from A. D’Alessio new drift chambers for the

QCLAM spectrometer will be designed and constructed [D’A20].
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11 Carbon-14 Target and New
Experimental Setup

In this chapter, the 14C target and a possible energy deposition in the target are described.

Then the new experimental setup which is used for the 14C experiment is introduced. At the end,

some useful and important estimations concerning the 14C experiment are done.

11.1 Description of the Carbon-14 Target

The 14C target is an item on loan from the ANL. A picture and a schematic side-view of

the 14C target can be seen in Figure 11.1. The target is mounted inside an aluminium frame.

The frame is shaped rectangular and has a side length of several centimetres. In the center of

the frame, a pressed-powdered disc is placed. The disc is composed of ≈54.9 mg of 14C plus

10 mg of polyethylene which serves as a binder. The specific activity of the 14C powder disc is

3.69 mCi/mg=146 GBq/mg. Hence, the total activity of the target sums up to 217.3 mCi=8 TBq.

The 14C decays via a β− decay. There the end-point energy is 156.5 keV, while the mean beta

energy is 49.5 keV [AS91b]. The range of this radiation is a few centimetres in air, which is quite

short but the total activity is large. Hence, methods have to be applied that one can deal with

the target without irradiating body parts i.e. the hands.

The 14C disc has a diameter of ≈0.95 cm. This means that the target thickness is given by

77.45 mg/cm2 or in other terms by 0.34 mm, if the polyethylene is neglected and the density of

the 14C is assumed to be 2.26 g/cm3. The 14C pressed-powdered disc is trapped between two

rings of 19-mm-OD polystyrene with a thickness of 0.5 mm. Window foils are placed in the front

and the back of the 14C pressed-powered disc to seal it. The window foils consist of Mylar films

(biaxially-oriented polyethylene terephthalate) with a thickness of 0.127 mm which are coated

with ≈40 nm of gold. There are three such window foils on both sides, the front and the back

side, of the 14C pressed-powered disc. Additionally, a glass frit is placed in one corner of the

aluminium frame. It has an internal passageway towards the 14C disc. With this it is possible

to achieve a pressure equalisation on both sides of the Mylar windows without rupturing them

if the environment of the target is pumped or vented. Furthermore, a mock target is available,

which has exactly the same structure as the 14C target but comes without 14C powder inside.

This target can be used for background measurements. All these facts are taken from [Edw08].

Later performed wipe tests showed that the 14C target is also contaminated on the outside. This

enlarges the safety measures, which have to be carried out to perform the experiment.
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Figure 11.1: A picture (left) and a schematic profile (right) of the 14C target. In the left picture,
the target is placed in a Petri dish with a diameter of 60 mm [Edw08].

11.2 Requirements for the new Experimental Setup

For the 14C electron scattering experiment several requirements arise for the new setup and

especially for the new scattering chamber which is designed in this thesis. Some account for

experimental reasons while the most requirements stem from the fact that the target is highly

radioactive. The most important requirements are listed in the following:

• The new scattering chamber should cover as much different scattering angles as possible

to cover a large range of q values for a given beam energy.

• The new scattering chamber has to fit to the existing mounting system of QCLAM.

• The lid of the new scattering chamber should be designed in such a way that it is possible

to mount the existing target ladder as well as a new one which is constructed for this

experiment.

• The distance between the adapter of QCLAM and the center of the new scattering chamber

has to be the same distance which is given by the existing system. With this requirement it

is ensured that the center of the new scattering chamber is at the pivot point of the QCLAM.

• A new target ladder has to be designed for which it is easy to mount the 14C target fast. For

this, one has to take into account that the target is highly radioactive. This means that it

should be possible to mount the target without placing parts of the human body, e.g. hands,

too close to the target.

• During the experiments some energy will be deposited inside the target. Therefore, it has to

be checked how much energy is deposited in the target and the Mylar foils. If the induced

temperature rise is too large a cooling system has to be installed.

178 11 Carbon-14 Target and New Experimental Setup



• It should be possible to seal the target off from the scattering chamber while the target

is (dis)mounted in the target chamber. Thus, it should be possible to seal the connection

between the scattering and the target chamber.

• It should be possible to separate the target from the scattering chamber, if the scattering

angle of the QCLAM is changed. While the scattering angle is changed, the scattering

chamber has to be vented and afterwards pumped again. By shutting the target off from

the scattering chamber during this process, it is made sure that the atmosphere around

the target is not unnecessarily vented and pumped over and over again. Every venting and

pumping process is a potential danger for the target.

• It should be possible to seal the target off from the rest of the vacuum setup while it is

inside the scattering chamber. Hence, it should be possible to seal the connection between

the scattering chamber and all other parts of the vacuum system (Connection to accelerator,

Faraday cup and QCLAM).

• It should be possible to evacuate the atmosphere around the target in a very slowly and

controlled way. For this, it is foreseen to pump or vent the target chamber separately via

needle valves.

• If the Mylar foil at the top of the QCLAM rips apart, there has to be the possibility to detect

the air shock wave which is expanding in the vacuum system. Therefore, a pressure sensor

has to be installed on top of the QCLAM. The sensor should not be effected by magnetic

fields since at this position the magnetic field of QCLAM’s dipole magnet is present.

• If the Mylar foil at the top of the QCLAM rips apart there has to be a possibility to seal the

scattering chamber off from the rest of the vacuum system. Especially, the QCLAM and the

beam line to the accelerator should be sealed off in the microsecond range. For this, fast

closing valves are needed at all main ports of the scattering chamber.

• The new scattering chamber has to have a smaller radius than the existing one. This is

necessary to place a fast closing valve between the scattering chamber and the QCLAM.

The connection between the new scattering chamber and the QCLAM should be design in

a way to lose as less solid angle as possible.

• The air which is pumped out of the vacuum system, should be filtered so that no 14C

particles are blown into the experimental hall when the 14C target gets damaged somehow.

The filters should sit before the fore-vacuum pumps to prevent a possible contamination of

them.

• It should be possible to have eye-contact to the 14C target whether it is placed inside the

scattering chamber or the target chamber. Hence, both chambers need window flanges.
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11.3 Deposited Energy in the Target

A crucial property of the experiment, which has to be checked, is the energy deposition in

the target. If too much energy is deposited in the target, than the temperature rise in the

target may get into a critical region, in which the target can be damaged. Following [Leo87]

two processes are responsible for the energy-loss of electrons in matter: One process is the

collision of the electrons with electrons of atoms in the matter. The other process is the so-called

Bremsstrahlung. Here the electrons are deflected in the electrical field of the nuclei in the matter.

As a consequence of this, the electrons emit some electromagnetic radiation and lose the energy

which was converted to the electromagnetic radiation. This part is also called radiation loss.

The critical energy Ec at which both effects have roughly the same influence, is reached if the

condition

Ec ≈
1600mec2

Z
(11.1)

is fulfilled [Leo87]. For 14C this is the case at Ec≈136 MeV. If for the first approximation the beam

energy is assumed to be Ekin=100 MeV, none of the two effects can be neglected. Hence, both

effects have to be calculated for all materials which are located in the beam axis.

For the collision part the Bethe-Bloch formalisms can be used [Bet30, Bet32, Blo33]. The

Bethe-Bloch formalism was derived for the energy-loss of heavy particles in matter. It describes

the collision between incoming heavy particles and the atom electrons in matter. For electrons

the equation has to be adjusted due to two reasons. First, the electrons are light compared

to heavy particles. Hence, a deflection of the electrons after the collision has to be taken into

account. Secondly, if an electron scatters on an electron the indistinguishability of both particles

has to be considered in the equation. This leads to

−
�

dE
dx

�
coll
= 2πNar2

e mec2ρ
Z
A

1
β2

�
ln
τ2(τ+ 2)

2(I/mec2)2
+ F(τ)−δ− 2

C
Z

�
(11.2)

for the collision energy-loss [Leo87]. In this equation Na is the Avogadro constant, re is the

classical electron radius, me is the electron mass, c is the velocity of light, ρ is the density of

the absorbing material, Z is the atomic number of absorbing material, A is the atomic weight

of the absorbing material, τ is the kinetic energy of the electron in units of mec2, I is the mean

excitation potential of the absorbing material, δ is the density correction parameter, and C is the

shell correction parameter. For electrons the function F(τ) is given by

F(τ) = 1− β2 +
τ2/8− (2τ+ 1) ln2

(τ+ 1)2
. (11.3)

The radiation part describes the energy loss due to deflection of the electrons in the electric

fields of the nuclei in the matter. For this process the energy-loss can be expressed via

−
�

dE
dx

�
rad
= N

∫ ν0

0

hν
dσ
dν
(E0,ν)dν, (11.4)
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where N is the number of atoms per cubic centimetre (N=ρNa/A), h is the Planck constant, ν is

the frequency of the emitted photon, and dσ/dν is the differential cross section for the radiation

of a photon with a given frequency ν. E0 is the maximum possible energy, which is given by the

incoming beam energy. With this, the maximal possible frequency ν0 is expressed via ν0=E0/h.

For relativistic kinetic energies greater than a few MeV, the cross section can be calculated by

dσ = 4Z2r2
eα

dν
ν

§
(1+ e2)
�
Φ1(ξ)

4
− 1

3
ln Z − f (Z)
�
− 2

3
e
�
Φ2(ξ)

4
− 1

3
ln Z − f (Z)
�ª

, (11.5)

with α=e2/4πε0ħhc (fine-structure constant)[Leo87, KM59]. Because the Bremsstrahlung emission

depends a lot on the electric field the electron feels from the nuclei, the amount of screening

from the atomic electrons around these nuclei has to be taken into account. In Equation 11.5 this

is considered with the screening functions Φ1(ξ) and Φ2(ξ). For these functions only empirical

equations can be given in first approximation. They are expressed in terms of the screening

factor

ξ=
100mec2hν

E0EZ1/3
, (11.6)

where E is the final total energy of the electron. This factor is derived from the radius of an

atom in the Thomas-Fermi model. If ξ is zero, then the electric field of the nucleus is screened

completely by the atom electrons. If ξ is much larger than one, then no screening effect occurs.

A possible parametrisation of the screening functions is for example given by

Φ1(ξ) = 20.863− 2 ln[1+ (0.55856ξ)2]− 4[1− 0.6 exp(−0.9ξ)− 0.4exp(−1.5ξ)] (11.7)

Φ2(ξ) = Φ1(ξ)−
2
3
(1+ 6.5ξ+ 6ξ2)−1 (11.8)

which has an accuracy of about 0.5 % [Leo87, Tsa74]. The function f (z) in Equation 11.5 is a

small correction of the Born approximation. Empirical representations of this function can be

found e.g. in [Leo87, DBM54].

The energy-loss is calculated using the ESTAR code [EST19, BCZC17]. For the collision energy-

loss it uses the here given Bethe-Bloch formalism with density corrections according to Stern-

heimer et al. [Ste52, SSB82]. The values for the mean excitation potential I are taken from the

ICRU Report 37 [BIA+16]. The Bremsstrahlung part is calculated with theoretical cross section

calculations from Seltzer and Berger [SB85].

The results for the energy-loss are listed in Table 11.1. It was assumed that an electron beam

with a kinetic energy of 100 MeV hits the target. Then the beam passes the different layers as

shown in Figure 11.1 (cf. Sec. 11.1). Because it could not be clearly figured out if parts of the

19-mm-OD polystyrene ring interfere with the beam line, it is assumed that the beam has to pass

the whole thickness of the rings two times. The thicknesses of each layer are given by
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17.526 mg/cm2 for one Mylar foil, 0.077 mg/cm2 for one gold coating, 52.5 mg/cm2 for one polystyrene

ring and 77.45 mg/cm2 for the 14C disc. In the left part of Table 11.1 the stopping power, which

means the energy loss per cm2/g, for each layer is given. There, the total value is listed as well

as its collisions and radiation ratio. In the right part of the table the energy-loss is given for an

electron beam with an incident energy of 100 MeV and a beam current of 2µA. That is an upper

limit which can be delivered from the S-DALINAC to the QCLAM. A 2µA beam corresponds to

1.248·1013 electrons per second. In Table 11.1 it can be seen that the total energy loss in the

complete target device sums up to 2.381 J/s. Thereof 1.179 J/s stem from the collision energy-

loss and 1.202 J/s stem from the radiation energy-loss. The energy loss scales are linear with

respect to the beam current. For further planning the energy loss can just be scaled accordingly.

For the energy-loss due to collision the whole energy will be deposited inside the material.

In Table 11.1 it can be seen that for the 14C disc the ratio of energy loss due to collision and

due to radiation is more or less the same. For the energy loss due to radiation, not all energy

has to be deposited in the material, because it can irradiate out of the target. But for an upper

limit it is assumed that also the whole radiated energy is absorbed by the surrounding material.

Then the total energy deposition in the 14C disc is given by 0.6156 J/s for the 100 MeV at 2µA

beam. Assuming that the effective heat capacity for the 14C disc is 709 J/(Kg·K), the 14C disc

underlies a maximum temperature rise of 15.8 K/s. It seems that it should be thought about

cooling possibilities for the target to prevent damage. A solution for this problem is not yet

adduced.

For comparison, the temperature rise in a Mylar foil is calculated next. The largest energy

deposit arises in the first Mylar foil with 0.1485 J/s. The effective heat capacity depends on the

exact type of Mylar foil but as a first approximation the value 1171.52 J/(Kg·K) can be chosen

[Fil19]. The mass of the Mylar foil is roughly given by 17.526 mg/cm2 ·π(0.95 cm)2=49.691 mg.

Then the maximum temperature rise for the Mylar foil is calculated to be 2.6 K/s.

11.4 New Experimental Setup

For the 14C experiment, a new vacuum setup has to be installed at the QCLAM. It includes a new

scattering chamber, a new target chamber with target ladder, fast closing valves and piezoelectric

sensors to trigger them. The new target chamber and target ladder will be explained in Section

11.5. The whole setup has to fulfill four main purposes. First of all, and quite obviously, it has to

fit to the existing vacuum and mounting system of the QCLAM. Secondly, it should be possible to

seal the new scattering chamber and the target chamber and thus the target off from the rest of

the vacuum system. This should enable the possibility to vent or pump the surrounding volume

of the target, while the target is separated from other parts of the vacuum system. Additionally,

there should be the possibility to vent and pump the surrounding volume of the target very

slowly and in a very controlled way to prevent damage at the sealing foils of the target. Finally,
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there should be the possibility to separate the target from the remaining vacuum system fast if

the foil at the top of the QCLAM rips apart (cf. Sec. 10.2). In this context, fast means in the order

of a few milliseconds.

The system which comes as a result of this thesis, fulfills all of the above mentioned criteria.

First, the overall vacuum system of the QCLAM is discussed. The vacuum system as it can be

used for the 14C experiment is sketched in Figure 11.2. In the orange coloured pipes fore-vacuum

(≈10−1-10−3 mbar) is present, while in the blue coloured pipes high-vacuum (≈10−5-10−6 mbar)

is present. The scattering chamber has vacuum connections to the accelerator, to the Faraday

cup, to the QCLAM, to the fore-vacuum pipes, and to the target chamber. The target camber is

not shown in the plan, because it sits on top of the scattering chamber. The target chamber can

store the complete target ladder and thus the target. It can be connected to a mobile pumping

unit to vent and pump the target chamber separately. It can be separated from the rest of the

vacuum system by a manually operated valve labelled with “G”. All the valves except the fast

closing valves and valve “G” are already existing and installed. The fast closing valves have been

bought newly by VAT [Dre17]. They are pneumatically closing and will be installed with DN40

CF flanges. Their mechanical closing time is stated and tested by the company to be 9 ms, while

the electronics need up to 2 ms to process the signal. The fast valves are marked black in the

figure. Fast valve 1 is placed as far as possible towards the accelerator so that the time till a

possible shock wave coming from QCLAM hits the valve is maximised. The valve is placed 2.4 m

upstream from the scattering chamber. Assuming the shock wave travels with the speed of sound,

this gains additional 7 ms until the shock wave hits the fast valve 1. Assuming further that the

shock wave needs 7 ms towards the scattering chamber (cf. Sec. 10.2 and Sec. 11.6), the total

time till the shock wave hits the fast valve 1 is 14 ms (neglecting the time the wave needs to

expand inside the scattering chamber). Fast valve 2 is placed between the QCLAM and the new

scattering chamber. It should prevent most of the shock wave to enter the target chamber (cf.

Sec. 11.6). Fast valve 3 is located downstream towards the Faraday cup to prevent a possible

contamination of it. While the whole setup is pumped or vent, all three fast valves can be closed

remotely to seal the scattering chamber off from the remaining vacuum system of the facility.

If the foil on top of the QCLAM rips apart piezoelectric sensors which are mounted at top of

the QCLAM vacuum chamber trigger the fast valves. The position of the sensors is marked in

Figure 10.2. To install them an additional DN40 CF flange was welded on the side of the QCLAM

vacuum chamber. The sensors are positioned as close as possible to the foil. The reaction time

of a piezoelectric sensor is in the range of µs (rise time of the signal 1µs). Two piezoelectric

sensors with the serial number 113B28 manufactured by PCB Synotech [Hü17] are used. The

sensitivity of the sensors is about 14.5 mV/kPa. If a shock wave stemming from a breaking foil

hits the sensors, the pressure rises by 101 kPa and the signal rises by 1.47 V. Setting a threshold

e.g. around 0.5 V it is possible to create a 24 V trigger signal, which is sent to the control unit of

the fast closing valves. Then all three fast valves are closed. Two piezoelectric sensors are used
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Figure 11.2: Sketch of the QCLAM vacuum system. The scattering chamber and the fast closing
valves (shown in black) are new for the 14C experiment. The other shown parts
represent the already existing vacuum system.

for redundancy. As soon as one piezoelectric sensor registers a signal the trigger should be send

towards the valves.

CAD sketches of the new scattering chamber can be seen in Figure 11.3. The dimension of the

ground plate, the height of the beam axis, and the distance between the center of the chamber

and the connection to the QCLAM (327 mm, cf. drawings in Sec. B.1) are orientated by the

existing scattering chamber designed by M. Kuss [Kus90]. This ensures on the one hand that the

scattering chamber can be simply installed on the existing mounting port. On the other hand it

is ensured that the target sits in the pivot point of the spectrometer which is important for the

imaging properties of the spectrometer.

On the side which faces the QCLAM five ports are installed at the height of the beam axis. This

allows to connect the QCLAM to five different scattering angles, namely 38◦, 66◦, 95◦, 123◦, and

152◦. These ports can be sealed with blind flanges and o-ring sealings (for the dimensions cf.

drawings in Sec. B.1). On one port, the connection to the QCLAM is mounted. Between the port

and the existing port at the QCLAM the fast valve 2 (cf. Fig. 11.2) can be placed. It is connected

to the two ports via two adapters.
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Ports to QCLAM

Fast Valve 2

Adapters

Connection to QCLAM
(existing)

Lid

Blind Flange Lid

Ground Plate

(a) View 1

Ground Plate

Port to Target Chamber

DN100 CF Flange

DN63 CF Flanges

Fast Valve 3

Pipe to Faraday Cup

Pipe to Accelerator

(b) View 2

Figure 11.3: CAD sketches of the new scattering chamber. View 2 is rotated by 180◦ compared
to view 1 around the pivot point of the scattering chamber, which is also the pivot
point of the QCLAM. The red dashed arrow indicates the beam axis and its direction.
The dimensions of all parts can be found in Section B.1.
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On the side which does not face the QCLAM, five DN63 CF flanges and one DN100 CF flange

are installed. The DN100 CF flange can be used to install a turbopump. The DN63 CF flanges

are for different purposes. Here pressure sensors, window flanges and an electrical feedthrough

to power a light source insight the chamber can be mounted.

The lid of the scattering chamber is also sealed to the chamber by o-ring sealings (for the

dimensions cf. drawings in Sec. B.1). The lid can be closed with a blind flange or the port on

top of the lid can be used to install a target chamber. The port is designed in a way that the

existing target chamber can be mounted as well as the new one, which is explained in Section

11.5. Along the beam axis two pipes with DN63 CF flanges are installed, which can be connected

to the existing vacuum setup of the QCLAM. Between the chamber and the beam pipe towards

the Faraday cup the fast valve 3 (cf. Fig. 11.2) is placed.

The scattering chamber is already built, tested and ready to use. All dimensions can be found

in the technical drawings of the scattering chamber, which are presented in the Appendix in

Section B.1.

11.5 Target Chamber and Target Ladder

A CAD sketch of the target chamber mounted on top of the scattering chamber can be seen

in Figure 11.4. The target chamber can store the complete target ladder and thus the target.

The target chamber will be mounted on top of the lid of the scattering chamber. Between the

target chamber and the lid of the scattering chamber a DN100 CF manual vent can be placed

(valve “G” in Fig. 11.2). With this, it is possible to seal the target off from the rest of the vacuum

setup if the target ladder is moved upwards as far as possible. During maintenance work, the

target ladder can be moved upwards and then the target is separated from the remaining setup

using valve “G”. This should always be done if the scattering has to be vented or pumped (for

example if the scattering angle of QCLAM is changed). This improves the safety concerning

unwanted contamination of the setup. The target chamber itself is a rectangular box made from

aluminium to spare weight. It has a removable door, which is sealed by an o-ring sealing (for the

dimensions cf. drawings in Sec. B.2). The door is made from stainless steal and two flanges are

welded onto it. One is a DN63 CF flange which is used to install a window flange to always have

visible access to the target. The other one is a DN25 KF flange. This flange will be connected

to a needle valve and a mobile pumping unit. With this setup, it is possible to vent and pump

the target chamber slowly and controlled while it is sealed off from the scattering chamber and

thus from the remaining vacuum setup. On top of the target chamber, a port to a DN40 CF

flange is installed. On this flange it is possible to mount a linear and rotational feedthrough. For

this mechanical feedthrough for example the model LD40-700 S2+PD40-700 S2 from Vakuum
Anlagenbau [Elm18] can be used. A sketch of this model can be found in the Appendix B.2. To

this device the target ladder will be mounted. Then it is possible to move the target ladder up

and down and rotate the target as wanted by using a stepping motor.
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Manually Operated Valve “G”

DN25 KF Flange

DN63 CF Flange

Door
Target Chamber

Port for Mechanical Feedthrough

Figure 11.4: CAD sketch of the new target chamber placed on top of the new scattering chamber
(cf. Fig. 11.3). The dimensions of all parts can be found in Section B.2.

The target chamber is not built yet but all technical drawings, which can be found in the

Appendix B.2, are finished.

188 11 Carbon-14 Target and New Experimental Setup



11.6 Possible Air Inrush Volume

In this section, the effects of a possible air inrush coming from top of the QCLAM are discussed.

As explained before in the worst case the foil on top of the QCLAM can rip apart. Then an air

shock wave with 1 bar pressure difference will expand into to vacuum chamber of QCLAM. This

shock wave will then travel further into the scattering chamber and all the other connected

vacuum parts. To prevent this, the fast valves (cf. Sec. 11.4) are used. As mentioned before, the

electronic processing time of the fast valves is up to 2 ms, while the total mechanical closing time

is 9 ms. Hence, the complete closing time is 11 ms. This is not enough time for the fast valve 2

to be closed completely before the shock wave appears at the scattering chamber entrance.

Looking at Figure A.7 the profile of QCLAM is shown. The dimensions are given in millimetres

and taken from the original construction drawings. To get the time the shock wave needs to

reach the fast valve 2 the expansion of the air inside the QCLAM vacuum chamber has to be

understood. This is a complex process which could only be taken fully into account if simulations

are carried out. But for first approximations a few simple assumptions are made to get a range

limit for the travelling time, which should be realistic. Figure A.8 shows the shortest distance

the air can travel from the foil to the entry of the scattering chamber. The way is 2097 mm long

which is covered after 6.1 ms if the air expands with the speed of sound. Hence, 6.1 ms is the

shortest time after a part of the shock wave passes fast valve 2. By assuming a shock wave, which

is driven by a 1 bar pressure difference travelling with the speed of sound, the way sketched in

Figure A.8 seems very unrealistic. It is more likely that the main part of the shock wave first

travels along a straight line into the vacuum chamber of the QCLAM. Due to these reasons, two

other possible travelling paths are also calculated. Figure A.9 shows one of the longest paths

one can imagine. Here it is assumed that the main part of the shock wave expands in the same

way as a light ray would do. It travels along a straight line until it gets reflected at the inner

surface of the vacuum chamber. This leads to a path length of 3509 mm which corresponds to a

travelling time of 10.2 ms. This path should give an upper limit how long it will take until the

shock wave arrives. Finally, Figure A.10 shows a compromise between the two paths mentioned

before. Here the length of the path is 2608 mm which corresponds to a travelling time of 7.6 ms.

As a summary of these estimations, one can conclude that the shock wave will not arrive

earlier than 6.1 ms, while the main part of the shock waves reaches the fast valve 2 after around

7 ms but not later than 10 ms. Let’s assume the earliest time at which a significant amount of the

air reaches the fast valve is given by tmin=7 ms. Because fast valve 2 needs about 11 ms to close

after the trigger signal was measured by the piezoelectric sensors two important questions arise:

1. How much air gets into the scattering chamber while the fast valve 2 is still closing?

2. Is it possible that some air is reflected from the scattering chamber wall so that it gets back

into QCLAM?
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To answer these questions some calculations are done in the following. All calculations underline

the same assumptions: The air always travels at the speed of sound with vs=343.2 m/s. The

volume of the new scattering chamber without any pipes or connections (assume perfect cylinder)

is given by VC=34.6 l. The diameter of the aperture of the fast valves (DN40) is D=40 mm. The

total mechanical closing time of the fast valves is measured and certificated by VAT to be tC=9 ms.

Thereby, it is estimated by VAT that the valve needs tS=3 ms before it starts to move after it

received the signal. The expected processing time of the valve electronics is about 1 ms-2 ms. The

maximum value should be smaller than 2 ms. The processing time for the piezoelectric sensor

should be in the range of µs and is negligible.

In the first step, the distances and travel times for the air shock wave which is eventually

reflected inside the scattering chamber are calculated. The distance from the fast valve to the

center of the new chamber is 215 mm. The distance from the chamber center to the chamber

wall is 150 mm (cf. drawings in Section B.1). Assuming that the air rushes from the fast valve

along a straight line across the chamber, gets then reflected perfectly at the chamber wall and

travels back along a straight line to the valve again: The additionally covered distance is 2 ·(215+
150)mm=0.73 m. (Note: This assumption is extremely pessimistic, because the air will distribute

itself into the whole chamber which leads to a larger travelling time and a huge decrease in the

amount of air which rushes back into the direction of the valve). Assuming that the reflected air

also travels constantly at the speed of sound vs, then the time the air needs to get back to the

valve is given by 0.73m/vs≈2 ms. (Note: This assumption is again very pessimistic, because air

is still rushing incoming from QCLAM pushed by a pressure difference of nearly 1 bar. So the

velocity back to the valve could be smaller if some air gets back at all). The conclusions for these

estimations are the following: 7 ms after the piez beforeoelectric sensors are triggered, the shock

wave coming from QCLAM passes the valve for the first time (tmin,1=7 ms). The reflected air

reaches the valve not earlier than 9 ms after the piezoelectric sensors are triggered (tmin,2=9 ms).

In the next step an analytical equation which describes the air flow through a closing valve

is derived. If the valve is opened completely, the maximum aperture area is given by Amax=π ·
D2/4=1.257 · 10−3 m2. The piezoelectric sensors are triggered at t=0 and the processing time

of the valve electronics is given by tE=2 ms. Then the valve needs additional tS=3 ms to start its

movements. Hence, the total reaction time of the valve is given by tR=tE+tS=5 ms. If we assume

that the aperture of the valve is closed with constant speed and the profile of the aperture is a

rectangle, then the aperture area which is still open at time t can be expressed by

A(t) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

Amax if 0≤ t ≤ tR

Amax − Amax
tmax−tR

· (t − tR) if tR < t ≤ tmax

0 if tmax < t

(11.9)

Here tmax is the total time which the valve needs to be closed completely (signal processing time

+ total mechanical closing time). So we have tmax=tE+9 ms=tR+6 ms and A(0)=A(tR) = Amax

190 11 Carbon-14 Target and New Experimental Setup



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 2 4 6 8 10 12

tE tR tmax

Vo
lu

m
e

of
to

ta
la

ir
flo

w
in

l

t in ms

rel. open area (in ab. units)
Airflow for tmin=7 ms
Airflow for tmin=9 ms

Figure 11.5: Total airflow through a fast closing DN40 CF valve for the worst case with tE=2 ms
and tmax=tE+9 ms =11 ms (calculated with Eq. 11.11). The green curve shows the
volume of the inrushed air which has passed the valve before complete closing. The
blue curve shows an upper limit of the volume for the reflected air which can flow
back to QCLAM. The purple curve shows the relative open aperture area of the valve
while it is closing in arbitrary units.

as well as A(tmax)=0. The air volume V which moves through the open aperture area can be

calculated with

V (t) = vs

t∫

tmin

A(t ′)dt ′, (11.10)

where tmin is the time at which the air reaches the valve for the first time. Assuming tmin≥tR and

tmin<tmax, then the integral solves to

V (t) = −vsAmax ·
⎧
⎨
⎩
(t−tmin)(t−2tmax+tmin)

2(tmax−tR)
if tR ≤ t ≤ tmax

(tmax−tmin)(tmin−tmax)
2(tmax−tR)

if t > tmax

(11.11)

With this equation the total volume of the air which passes the closing valve between tmin and

tmax can be calculated.

Let’s assume the worst case with tE=2 ms and tS=3 ms, which also means tmax=tE+9 ms

=11 ms and assume that the air which rushes into the QCLAM reaches the valve at tmin,1=7 ms.

Then the reflected shock wave reaches the valve 2 again at tmin,2=9 ms. The results for this
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assumptions are shown in Figure 11.5. The purple curve shows the relative open aperture area

of the valve while it is closing in arbitrary units (cf. Equation 11.9). The air volume which rushes

from QCLAM into the chamber while the valve is closing is drawn in green. After tmax=11 ms

in total 0.58 l air are inside the chamber. As stated earlier, the reflected part of the air starts to

pass the valve again after tmin,2=9 ms. The volume of air which can pass the valve under perfect

conditions after tmin,2=9 ms is shown in blue. After tmax=11 ms this part sums up to 0.14 l. This

is 25.9 % of the total inrushed air volume. But as stated before, most parts of the inrushed air will

spread into all directions into the chamber and not be reflected to the valve. Also some amount

of this air will go into the beam-pipes and flanges and pumps which means that even less air

will have the chance to travel back to the valve. Furthermore, the main argument against a large

back-flow of air into the QCLAM is the pressure difference. After tmax=11 ms air of a volume of

0.58 l is spread inside a volume, which is larger than VC≈35 l (volume of scattering chamber).

Due to this the maximum pressure inside the chamber in an equilibrium would be in the range of

17 mbar. While at the same time the air which still enters the QCLAM gets pushed by 1000 mbar.

For comparisons: If the valve is opened all the time, it would take more than 80 ms to fill the

complete volume VC of the scattering chamber.

11.7 Count Rate Estimations for Carbon-14

In this section, count rates for the 14C experiment are estimated. For this the experimental

results from Crannell et al. [CHO+72] are used. They give the square of the form factor F2(q)
and the scattering angle θ for several q values for the 2+1 state and the 2+2 state. These values are

listed in Table 11.2 left side for the 2+1 state in 14C. In [CHO+72] the square of the form factor

F2(q) was calculated by

F2(q) =
dσ
dΩExp

dσ
dΩMott

(11.12)

with

dσ
dΩMott

�
fm2

sr

�
=

�
Ze2

2Ei

�2
· cos2 θ/2

sin4 θ/2
· 1

1+ 2Ei
Mc2 sin2 θ/2

. (11.13)

This equation corresponds to Equation 9.18, where the additional factor corrects for the recoil

of the nucleus and e2 is given as 1.44 MeVfm. The recoil correction is necessary due to the low

mass of 14C. With these two equations it is possible to recalculate the measured cross section,

while with Equation 9.19 it is possible to calculate Ei of the data points given by Crannell et al.

[CHO+72]. These values are also listed in Table 11.2 right side for the 2+1 state.

With the cross section values it is now possible to estimate count rates which will be measured

at the QCLAM spectrometer. The count rates Ṅ can by calculated via

Ṅ
�
s−1
�
=

dσ
dΩ exp

�
cm2

sr

�
· NA[1/mol]

M[g/mol]
· teff[g/cm2] · I[A]

e[C]
·∆Ω[sr], (11.14)
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Table 11.2: Measured form factors for the 2+1 state in 14C. The measured data are taken from
Crannell et al. [CHO+72]. Ei is calculated using Equation 9.19, while dσ/dΩMott is
calculated with Equation 11.13 and dσ/dΩExp is calculated via Equation 11.12.

From [CHO+72] Calculated

q θ F2(q) Ei
dσ
dΩMott

dσ
dΩ exp

in fm−1 in ◦ unitless in MeV in mb/sr in mb/sr

0.445 92.9 0.00071 64.15 0.07762 0.00005511

0.671 93.2 0.00273 94.91 0.03483 0.00009507

0.742 92.9 0.00468 104.89 0.02894 0.00013544

0.750 127.6 0.00454 86.40 0.00744 0.00003378

0.754 145.9 0.00542 81.76 0.00284 0.00001540

0.790 145.6 0.00452 85.58 0.00264 0.00001195

0.888 93.2 0.00501 124.65 0.02014 0.00010091

0.905 127.6 0.00679 103.64 0.00516 0.00003503

0.906 145.9 0.00650 97.64 0.00199 0.00001292

where I is the beam current and teff is the effective target thickness, which is given by

teff = t ·
⎧
⎨
⎩

1
cosθ/2 if θ ≲ 130◦

1
sinθ/2 if θ ≳ 130◦

(11.15)

For the beam current I=1µA was assumed and the maximum possible covered solid angle

∆Ω by the QCLAM spectrometer is 35 msr. Due to the new scattering chamber, the maximum

solid angle is reduced to ∆Ω≈2/3 · 35 msr=23 msr. The new scattering angle θNew at QCLAM

is calculated using Equation 9.19 assuming Ei=85 MeV (realistic value for a experiment at the

QCLAM spectrometer). The results are listed in Table 11.3. One can see that the count rates

will be relatively high with values between 6 s−1 and up to 153 s−1. This is due to the very thick

target and the high current which was assumed. But it should be kept in mind that due to the

thick target the energy straggling and hence the peak broadening will be large. Also due to the

many different materials in the beam axis the background will be relatively high and complex.

In the Appendix in Table A.10 and Table A.11 one can find the same calculations and results

for the 2+2 state at 8318 keV. It can be seen that the count rates are lower compared to the count

rates for the 2+1 state. They are in a range between 2 s−1 and 20 s−1.
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Table 11.3: Count rate estimations for the 2+1 state in 14C for a beam energy of Ei=85 MeV. The
count rates are calculated with Equation 11.14 while θNew is calculated with Equation
9.19. For q values larger than 0.790 fm−1 no setting is possible for Ei=85 MeV.

q θNew teff Ṅ
in fm−1 in ◦ in g/cm2 in s−1

0.445 65.17 0.0919 31.7

0.671 109.28 0.1338 79.7

0.742 129.10 0.1802 152.8

0.750 131.78 0.0849 17.9

0.754 133.18 0.0844 8.1

0.790 148.36 0.0805 6.0

0.888 - - -

0.905 - - -

0.906 - - -

11.8 Possible Q-Values

As mentioned in Section 11.4, five different scattering angles are available with the new

scattering chamber. They are 38◦, 66◦, 95◦, 123◦, and 152◦. This limits the possible q values (cf.

Sec. 9.2) at which a measurement can be performed. In Figure 11.6 (a), (b), and (c) possible

effective q values for 14C are plotted for all scattering angles versus different beam energies. The

effective q values are calculated for the ground state (a), the 2+1 state (b) and the 2+2 state (c)

in 14C. Hence, the energy loss of the electron due to excitation is Ex=0 keV, Ex=7012 keV and

Ex=8318 keV, respectively. The effective q values were calculated with Equation 9.20 and 9.19.

In Figure 11.6 (a) it can be seen that for the ground state it is possible to cover an effective q
value range from 0.04 fm−1 to 1.30 fm−1, if the beam energy can be set between 10 MeV and

130 MeV. For 100 MeV beam energy the effective q values 0.341 fm−1, 0.571 fm−1, 0.771 fm−1,

0.918 fm−1, and 1.012 fm−1 are possible. In Figure 11.6 (b) it can be seen that for the 2+1 state it

is possible to cover an effective q value range from 0.05 fm−1 to 1.26 fm−1, if the beam energy can

be set between 10 MeV and 130 MeV. For 100 MeV beam energy the effective q values 0.332 fm−1,

0.552 fm−1, 0.745 fm−1, 0.886 fm−1, and 0.977 fm−1 are possible. In Figure 11.6 (c) it can be

seen that for the 2+2 state it is possible to cover an effective q value range from 0.06 fm−1 to

1.26 fm−1, if the beam energy can be set between 10 MeV and 130 MeV. For 100 MeV beam

energy the effective q values 0.330 fm−1, 0.548 fm−1, 0.740 fm−1, 0.879 fm−1, and 0.969 fm−1

are possible. So with this setup it is possible to cover a larger range of q values than Crannell et

al. did.
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Figure 11.6: Possible effective q values for 14C for all scattering angles versus different beam
energies. The effective q values were calculated with Equation 9.20 and 9.19.
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12 Conclusion and Outlook
In the second part of the thesis, a conceptual design for an electron scattering on 14C at

the QCLAM was introduced and prepared. As it could be shown such an experiment could

be successfully carried out at the QCLAM spectrometer. For this experiment, a new scattering

chamber, a new vacuum system with fast closing valves, and a target chamber were designed.

The scattering chamber is already built and tested. The new scattering chamber fits into the

existing mounting system of the QCLAM and it is compatible to the existing target chamber. As

it could be shown it covers a large range of scattering angles and thus a large range of q values

are possible. It is also possible to remeasure the data points from Crannell et al. [CHO+72] with

this setup achieving very high count rates due to the thick target and the large solid angle of the

QCLAM. The fast closing valves and the piezoelectric sensors to trigger them are bought, tested

and are ready to be installed. Also a DN40 CF flange was welded to the vacuum chamber at top

of the QCLAM. At this flange the piezoelectric sensors can be installed. The design of the target

chamber is finished and it is ready to be built.

To run the experiment in the future, the target chamber has to be built according to the plans

given in this thesis. Additionally, a new target ladder has to be designed and built. The target

ladder has to be designed in such a way that the target can be easily and quickly mounted without

irradiating the laboratory staff. It also has to be thought about a cooling of the 14C target device.

Furthermore, the trigger electronic which is implemented between the piezoelectric sensors and

the fast valve has to be planned in detail and installed. Also particle filters have to be installed

before all involved fore-pumps. Finally, the 14C target has to be shipped to TU Darmstadt and

it has to be thought about a possible decontamination of the surface of the target before the

experiment is carried out.
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A Additional Data and Figures

A.1 Fusion Evaporation Products

The Tables A.1 and A.2 list fusion evaporation products for 9Be shot on 9Be or 16O.

Table A.1: Cross sections for fusion evaporation products for 9Be+9Be with an incoming kinetic
energy of 39.8 MeV. The results were achieved with PACE4 [TB08, Gav80]. In total, one
million events were calculated. If at least one gamma transition of a residual isotope
has been seen in the gamma spectra with a 2p cut, then this is marked in the last
column.

Residual Isotope # Events Ratio C.S. Residual Particles Seen in 2p Cut?

in % in mb
18O 517 0.05 0.4 0p 0n no
17O 3192 0.32 2.6 0p 1n no
16O 173930 17.40 142 0p 2n no
15O 27916 2.79 22.7 0p 3n no
17N 3976 0.40 3.2 1p 0n no
16N 3877 0.39 3.2 1p 1n yes
15N 150878 15.10 123 1p 2n yes
16C 391 0.04 0.3 2p 0n yes
15C 462 0.05 0.4 2p 1n yes
14C 4782 0.48 3.9 2p 2n yes
13C 329624 33.00 268 2p 3n yes
12C 196709 19.70 160 2p 4n no
13B 5840 0.58 4.8 3p 2n no
12B 35 0.00 0.0 3p 3n no
11B 103 0.01 0.1 3p 4n no
9Be 94078 9.41 76.6 4p 4n no
9Li 33 0.00 0.0 5p 4n no

5He 63 0.01 0.1 6p 7n no
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Table A.2: Cross sections for fusion evaporation products for 9Be+16O with an incoming kinetic
energy of 39.8 MeV. The results were achieved with PACE4 [TB08, Gav80]. In total, one
million events were calculated. If at least one gamma transition of a residual isotope
has been seen in the gamma spectra with a 2p cut, then this is marked in the last
column.

Residual Isotope # Events Ratio C.S. Residual Particles Seen in 2p Cut?

in % in mb
25Mg 246 0.02 0.2 0p 0n no
24Mg 2062 0.21 2.0 0p 1n no
23Mg 18956 1.90 18.0 0p 2n no
23Na 135907 13.60 129.0 1p 1n yes
22Na 21165 2.12 20.1 1p 2n no
23Ne 30135 3.01 28.7 2p 0n yes
22Ne 16587 1.66 15.8 2p 1n yes
21Ne 9984 1.00 9.5 2p 2n yes
20Ne 357704 35.80 340.0 2p 3n no
19Ne 1833 0.18 1.7 2p 4n no
20F 23662 2.37 22.5 3p 2n no
19F 68182 6.82 64.8 3p 3n no
19O 590 0.06 0.6 4p 2n no
17O 37125 3.71 35.3 4p 5n no
16O 254362 25.40 242.0 4p 5n no
16N 16 0.00 0.0 5p 4n yes (cf. 9Be+9Be)
15N 1765 0.18 1.7 5p 5n yes (cf. 9Be+9Be)
13C 19624 1.96 18.7 6p 7n yes (cf. 9Be+9Be)
12C 5 0.00 0.0 6p 8n no
9Be 90 0.01 0.1 8p 8n no
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A.2 SRIM Stopping Powers

The Figures A.1 and A.2 show a comparison between the calculated stopping powers from

SRIM and experimental results for carbon isotopes.

Figure A.1: Comparisons of stopping powers between SRIM and experiments for C isotopes
[Zie19, ZZB10]. The dark grey box shows the area of the zoom shown in Figure
A.2.
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Figure A.2: Zoom in the range of interest which is marked in Figure A.1 bottom with the dark
grey box [Zie19, ZZB10]. The experimental values of the stopping power for an Au
target are shown in light blue.
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A.3 List of Gammasphere Detectors and Calibration Data

Table A.3 shows a list of the used Gammasphere detectors per angle θ . More information about

Gammasphere can be found in Section 3.3. The Tables A.4 and A.5 show the offset, the gain and,

the pole-zero value for every detector. These values are used to calculate the gamma-ray energy

in keV. More information about these topics can be found in Sections 5.1 and 5.2.

Table A.3: Available germanium detectors of Gammasphere for each radiation angle. The second
column shows the total number of detectors per angle. The third column shows how
many detectors were actually available during the experiment. Furthermore, it should
be mentioned that for the angles 50.07◦, 69.82◦, and 121.72◦ one detector could not
be used because the spectra where non-physical (cf. Sec. 5.2).

Angle θ Total No. of Detectors No. of Detectors Available

17.27◦ 5 0

31.72◦ 5 3

37.38◦ 5 1

50.07◦ 10 8

58.28◦ 5 5

69.82◦ 10 9

79.19◦ 5 4

80.71◦ 5 5

90.00◦ 10 7

99.29◦ 5 5

100.81◦ 5 5

110.18◦ 10 9

121.72◦ 5 4

129.93◦ 10 10

142.62◦ 5 5

148.28◦ 5 4

162.73◦ 5 3

Sum 110 87
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Table A.4: Calibration data of Gammasphere part I: The offset, the gain, and the pole-zero value
for every detector are shown. If the offset and the pole-zero value is zero while the
gain is 1.0, then the detector was disabled and was not used. Furthermore, it should
be mentioned that the detectors 19, 40, and 79 could not be used because the spectra
where non-physical (cf. Sec. 5.2).

Det. θ Offset Gain P Det. θ Offset Gain P
in ◦ in keV in keV

Channel unitless in ◦ in keV in keV
Channel unitless

1 17.27 0.0000 1.00000 0.0000 29 69.82 -0.4319 0.89258 0.8527

2 17.27 0.0000 1.00000 0.0000 30 58.28 0.5514 0.87468 0.8582

3 17.27 0.0000 1.00000 0.0000 31 69.82 0.5995 0.73360 0.8584

4 17.27 0.0000 1.00000 0.0000 32 58.28 0.1875 0.89113 0.8612

5 31.72 0.0000 1.00000 0.0000 33 69.82 -0.7266 0.89499 0.8577

6 17.27 0.0000 1.00000 0.0000 34 69.82 0.5314 0.63942 0.8520

7 31.72 0.4395 0.77581 0.8525 35 69.82 -0.0504 0.87874 0.8558

8 31.72 -0.9433 0.91868 0.8586 36 69.82 0.0000 1.00000 0.0000

9 31.72 0.5646 0.88637 0.8575 37 69.82 1.0534 0.87130 0.8544

10 31.72 0.0000 1.00000 0.0000 38 69.82 -0.1254 0.88037 0.8531

11 37.38 -0.2122 1.00446 0.8531 39 79.19 -0.0778 0.86112 0.8591

12 37.38 0.0000 1.00000 0.0000 40 69.82 -1.7053 0.87847 0.8531

13 37.38 0.0000 1.00000 0.0000 41 79.19 -0.2539 0.88925 0.8607

14 37.38 0.0000 1.00000 0.0000 42 69.82 -0.1634 0.86421 0.8568

15 50.07 0.8964 0.92656 0.8506 43 80.71 -0.6024 0.89662 0.8603

16 37.38 0.0000 1.00000 0.0000 44 79.19 0.1707 0.86543 0.8538

17 50.07 -0.2052 0.86760 0.8563 45 80.71 0.1082 0.83923 0.8511

18 50.07 0.0000 1.00000 0.0000 46 79.19 0.0000 1.00000 0.0000

19 50.07 -1.2015 0.87670 0.8432 47 80.71 -0.1393 0.87123 0.8508

20 50.07 0.0000 1.00000 0.0000 48 79.19 0.2688 1.68687 0.8533

21 50.07 0.7644 0.72505 0.8588 49 90.00 0.2936 0.85484 0.8594

22 50.07 -0.2848 0.85032 0.8567 50 80.71 -0.0816 0.86870 0.8490

23 50.07 -0.2430 0.72851 0.8586 51 90.00 -1.0168 0.854726 0.8602

24 50.07 -0.1152 0.90611 0.8586 52 80.71 -0.0797 0.85483 0.8547

25 58.28 -1.9430 0.84836 0.8552 53 90.00 0.0000 1.00000 0.0000

26 50.07 -0.3499 0.73708 0.8517 54 90.00 0.0000 1.00000 0.0000

27 58.28 0.8163 0.84157 0.8578 55 90.00 0.1260 0.88976 0.8574

28 58.28 0.2842 0.89722 0.8575
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Table A.5: Calibration data of Gammasphere part II: The offset, the gain, and the pole-zero value
for every detector are shown. If the offset and the pole-zero value is zero while the
gain is 1.0, then the detector was disabled and was not used. Furthermore, it should
be mentioned that the detectors 19, 40, and 79 could not be used because the spectra
where non-physical (cf. Sec. 5.2).

Det. θ Offset Gain P Det. θ Offset Gain P
in ◦ in keV in keV

Channel unitless in ◦ in keV in keV
Channel unitless

56 90.00 0.2325 0.88294 0.8613 84 121.72 0.0000 1.00000 0.0000

57 90.00 0.4096 0.86053 0.8588 85 129.93 -0.0538 0.86188 0.8572

58 90.00 0.0000 1.00000 0.0000 86 121.72 0.4045 0.84206 0.8401

59 99.29 -0.5481 0.84679 0.8574 87 129.93 -0.3615 1.03102 0.8593

60 90.00 0.1166 0.84781 0.8438 88 129.93 -0.5131 0.89132 0.8549

61 99.29 0.0148 0.88218 0.8566 89 129.93 0.0221 1.03592 0.8568

62 90.00 0.1285 0.90596 0.8540 90 129.93 0.1698 0.71683 0.8460

63 100.81 -0.9336 1.06813 0.8573 91 129.93 -0.3383 0.96992 0.8573

64 99.29 -0.0900 0.89630 0.8627 92 129.93 0.8290 0.75612 0.8471

65 100.81 0.5704 0.84726 0.8609 93 129.93 0.0025 0.76959 0.8604

66 99.29 0.6705 0.80494 0.8485 94 129.93 0.8749 0.80162 0.8473

67 100.81 0.2975 0.38754 0.8611 95 142.62 -0.3095 0.81968 0.8581

68 99.29 0.5038 0.83642 0.8578 96 129.93 -0.0047 0.98738 0.8541

69 110.18 0.4052 0.88498 0.8561 97 142.62 0.1924 0.84715 0.8569

70 100.81 0.0176 0.93545 0.8572 98 142.62 0.2771 0.81070 0.8549

71 110.18 0.3061 0.75803 0.8613 99 142.62 -0.0312 1.66527 0.8517

72 100.81 -0.1337 0.89249 0.8506 100 142.62 -3.6470 0.86118 0.8447

73 110.18 -0.0305 0.88960 0.8587 101 148.28 0.0000 1.00000 0.0000

74 110.18 0.7772 0.76954 0.8580 102 148.28 0.1464 0.83918 0.8483

75 110.18 -1.0551 0.88889 0.8544 103 148.28 0.9104 0.94211 0.8436

76 110.18 -0.0056 0.89048 0.8523 104 148.28 -0.1108 0.77929 0.8461

77 110.18 0.0010 0.82919 0.8567 105 162.73 0.0000 1.00000 0.0000

78 110.18 0.0000 1.00000 0.0000 106 148.28 0.2732 0.82088 0.8508

79 121.72 -109.48 0.85966 0.8529 107 162.73 0.3462 0.81766 0.8556

80 110.18 1.2738 0.81639 0.8452 108 162.73 -0.5329 0.82041 0.8525

81 121.72 0.2694 0.84269 0.8594 109 162.73 0.0000 1.00000 0.0000

82 110.18 0.9053 0.67428 0.8554 110 162.73 0.2829 0.81673 0.8416

83 121.72 0.2960 0.85698 0.8596
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A.4 Technical Details of Microball

Table A.6 shows technical and geometry details of the µ-Ball CsI(Tl) detectors. See Section

3.4 for more information about µ-Ball.

Table A.6: Technical and geometry details of the µ-Ball CsI(Tl) detectors [SHD+96, SR16]. In ring
six just 13 detectors are available due to the space the target mounting needs.

Ring Number 1 2 3 4 5 6 7 8 9

No. of Detectors 6 10 12 12 14 13 12 10 6

Distance in mm 110 80 60 50 50 50 45 47 50

θ in ◦ 9.0 21.0 36.0 52.0 70.0 90.0 111.5 135.0 159.0

Half θ in ◦ 5.0 7.0 8.0 8.0 10.0 10.0 11.5 12.0 12.0

CsI Thickness in mm 2.7 2.4 2.2 1.9 1.6 1.5 1.5 1.3 1.1

p Energy Range in MeV 24.5 22.8 21.7 19.9 17.9 17.3 17.3 15.8 14.3
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A.5 Microball Time Gates

Table A.3 shows a list of the used µ-Ball time gates which are needed to obtain a proper

coincidence between Gammasphere and µ-Ball (cf. Sec. 5.4).

Table A.7: µ-Ball time gates for each detector.

Det. Tleft Tright Det. Tleft Tright Det. Tleft Tright

1 - - 33 6350 7150 65 6000 6900
2 - - 34 6450 7250 66 6000 6900
3 - - 35 6300 7100 67 5900 6700
4 - - 36 6100 6900 68 5900 6900
5 - - 37 6200 7050 69 6000 6900
6 - - 38 6350 7100 70 6100 6800
7 6200 7050 39 6300 7100 71 6100 6900
8 6215 7000 40 6250 7050 72 5950 6800
9 6200 7025 41 6100 6950 73 6100 6900
10 6100 7000 42 6000 6850 74 6150 6800
11 6230 7000 43 6000 6850 75 6050 6900
12 6100 7000 44 6000 6900 76 6000 6800
13 6200 7040 45 6150 6950 77 6000 6800
14 6300 7000 46 6000 6900 78 5900 6700
15 6200 6950 47 6100 6950 79 5800 6500
16 6100 6900 48 6100 7100 80 5900 6700
17 6100 6850 49 6000 7000 81 6000 6750
18 6000 6950 50 6000 6900 82 6200 6750
19 6000 6900 51 6000 6950 83 6250 6700
20 6150 6890 52 6000 7000 84 6200 6700
21 6050 6900 53 6300 7050 85 6200 6700
22 6100 6900 54 6100 6900 86 6200 6700
23 6300 6950 55 - - 87 6250 6800
24 6100 6900 56 6100 7000 88 6200 6800
25 6100 6900 57 - - 89 6150 6750
26 6200 7000 58 5750 6800 90 6100 6600
27 6100 6900 59 6100 7100 91 6000 6600
28 6100 7050 60 5900 6800 92 5900 6500
29 6200 7000 61 6100 7100 93 6300 6650
30 6200 7100 62 - - 94 6000 6800
31 6100 6950 63 6100 7100 95 6000 6600
32 6100 6950 64 6400 7250 96 6150 6650
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A.6 Microball Energy Calibration

In this section all data for the µ-Ball energy calibration are shown. For more information see

Section 5.6.

Figure A.3: Calculated proton energy which is deposited in the µ-Ball detectors for the calibra-
tion runs shooting a proton beam on 12C. The incoming energy of the proton was
12.24(11) MeV. The three different colors indicates the three different interactions
the protons can have with 12C. The figure is taken from [Sar16].
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Figure A.4: Proton range data for Pb and Ta absorbers. The proton range data are obtained from
SRIM [Zie19, JFZ15]. The proton energy E in MeV is plotted over the corresponding
range R in the material. The shown fit function E(R) can be described by Equation
5.23.
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Table A.8: Energy calibration data for µ-Ball. The values of a (slope) and b (intersect) are used to
calculate the proton energy in the CsI detectors ECsI according to Eq. 5.22. The values
were obtained by the group of D.G. Sarantites et al. [Sar16].

Det. Gain Offset Det. Gain Offset Det. Gain Offset

in MeV
Channel in MeV in MeV

Channel in MeV in MeV
Channel in MeV

1 - - 33 0.0034864 0.9014 65 0.0045239 -0.1519

2 0.0067310 -1.4110 34 0.0053370 1.2919 66 0.0037414 0.4443

3 0.0057890 -0.4357 35 0.0038551 1.1448 67 0.0034861 0.1057

4 0.0052210 -0.0858 36 0.0035876 1.5898 68 0.0036865 0.4335

5 0.0051750 -0.1421 37 0.0038177 1.3223 69 0.0032093 0.2311

6 0.0052990 -0.4238 38 0.0040421 1.3948 70 0.0041166 -0.1219

7 0.0045635 0.2270 39 0.0038327 1.4197 71 0.0042156 0.0002

8 0.0044572 0.1806 40 0.0036942 1.6470 72 0.0041641 0.1230

9 0.0051436 0.0782 41 0.0031123 -0.0352 73 0.0041096 0.0195

10 0.0046350 0.1227 42 0.0028751 0.0614 74 0.0037240 -0.0588

11 0.0044204 -0.1660 43 0.0028705 0.0805 75 0.0038558 0.3165

12 0.0054913 -0.2559 44 0.0028887 0.2350 76 0.0036242 0.2835

13 0.0042871 -0.1405 45 0.0030179 0.0395 77 0.0033880 0.2145

14 0.0045862 0.0093 46 0.0026364 -0.0450 78 0.0026277 0.5182

15 0.0049404 -0.0692 47 0.0026168 -0.0438 79 0.0028049 0.0957

16 0.0043552 0.0563 48 0.0027024 -0.0406 80 0.0031284 0.6081

17 0.0042195 -0.0070 49 0.0042201 0.5196 81 0.0037941 -0.0515

18 0.0040451 0.1020 50 0.0031041 0.3342 82 0.0037935 0.0153

19 0.0038537 -0.0320 51 0.0029755 -0.1355 83 0.0039328 0.1750

20 0.0043999 -0.0827 52 0.0026802 0.3069 84 0.0038042 0.1530

21 0.0051013 -0.1266 53 0.0029411 -0.0635 85 0.0033139 0.1821

22 0.0042148 0.0281 54 0.0029684 0.0491 86 0.0034944 0.2794

23 0.0041317 -0.0264 55 0.0044525 0.3996 87 0.0038283 0.0715

24 0.0046435 -0.2516 56 0.0038243 0.3625 88 0.0037564 0.0860

25 0.0042237 0.0496 57 - - 89 0.0038568 0.2658

26 0.0040674 -0.0522 58 0.0055843 0.3254 90 0.0038883 0.1499

27 0.0040364 -0.0464 59 0.0045217 0.2402 91 0.0036573 0.2159

28 0.0039759 -0.0118 60 0.0048065 0.2518 92 0.0042099 0.2051

29 0.0040219 1.5014 61 0.0043051 0.2248 93 0.0041493 0.1811

30 0.0042733 1.2314 62 - - 94 0.0032868 0.2504

31 0.0056267 0.9948 63 0.0024481 0.4669 95 0.0034331 0.3772

32 0.0040897 1.0091 64 0.0047993 0.4196 96 0.0044090 -0.1024
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A.7 Efficiency Calibration Data

Table A.9 shows the data which where used for the efficiency calibration of Gammasphere.

See Section 5.3 for more information about the efficiency calibration. The Figure A.5 illustrates

the decay scheme of 88Y.

Table A.9: Efficiency calibration data for 56Co. The table lists the gamma-ray energy E, its rel-
ative intensity Irel and the coresponding one sigma uncertainty u(Irel). The relative
intensities have been taken from [JSD11].

E Irel u(Irel)
in keV in % in %

846.770 99.940 0.000

1037.843 14.050 0.040

1238.288 66.460 0.120

1360.212 4.283 0.012

1771.357 15.410 0.060

2034.791 7.770 0.030

2598.500 16.970 0.040

3009.645 1.036 0.013

3202.029 3.209 0.012

3451.232 0.949 0.005

3548.050 0.196 0.002
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Figure A.5: Simplified decay scheme of 88Y [MS14]. The decay branches are shown in green. De-
cay branches with a relative intensity smaller 0.03 % are neglected. The percentages
at the gamma transitions (illustrated in red) show the relative gamma intensities
which are measured after the β+ decay.
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A.8 Level Scheme of Nitrogen-15

Figure A.6 shows the level scheme for 15N.
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Figure A.6: Level scheme of the six lowest excited states of 15N. The energies printed in black are
the energies of the states while the energies printed in red are the transition energies
emitted by gamma rays [AS90a]. Only the most dominant transition for each state
is shown. The branching ratios of all the other cases are negligible (smaller 4 %) and
thus they have not been seen in any spectra. If a gamma-ray energy is marked with a
asterisk this transition was seen in the 2p cut spectra. The lifetimes of the states are
taken from [AS90a] and shown in green.
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A.9 Air Inrush Paths

The following figures show a profile of the QCLAM and possible paths the air shock wave can

take. All dimensions are given in millimetres. For more information about a possible air inrush

see Section 11.6.

Fast Valve 2

Foil

Figure A.7: Profile of the QCLAM spectrometer.The dimensions are given in millimetres and taken
from the original construction drawings.
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Figure A.8: Profile of the QCLAM spectrometer and the shortest possible air inrush path shown
in red.

Figure A.9: Profile of the QCLAM spectrometer and the longest possible air inrush path shown
in red.
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Figure A.10: Profile of the QCLAM spectrometer and an example for a possible air inrush path
shown in red.
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A.10 Count Rate Estimations for a Carbon-14 Experiment at the QCLAM Spectrometer

Table A.10 shows results for the form factor for the 2+2 state in 14C measured by Crannell et

al. [CHO+72]. Table A.11 shows the results for the count rate estimations for the 2+2 state in 14C.

For more information see Section 11.7.

Table A.10: Measured form factors for the 2+2 state in 14C. The measured data are taken from
Crannell et al. [CHO+72]. Ei is calculated using Equation 9.19 while dσ/dΩMott is
calculated with Equation 11.13 and dσ/dΩExp is calculated via Equation 11.12.

From [CHO+72] Calculated
q θ F2(q) Ei

dσ
dΩMott

dσ
dΩ exp

in fm−1 in ◦ unitless in MeV in mb/sr in mb/sr
0.671 93.2 0.00069 95.55 0.03446 0.00002357
0.742 92.9 0.00117 105.52 0.02859 0.00003345
0.750 127.6 0.00114 87.05 0.00732 0.00000835
0.754 145.9 0.00164 82.41 0.00280 0.00000458
0.790 145.6 0.00145 86.24 0.00260 0.00000378
0.888 93.2 0.00154 125.29 0.01994 0.00003070
0.906 145.9 0.00171 98.29 0.00196 0.00000335

Table A.11: Count rates estimations for the 2+2 state in 14C for a beam energy of Ei=85 MeV. The
count rates are calculated with Equation 11.14 while θNew is calculated with Equation
9.19. For q values larger than 0.790 fm−1 no setting is possible for Ei=85 MeV.

q θNew teff Ṅ
in fm−1 in ◦ in g/cm2 in s−1

0.671 110.58 0.1360 20.1
0.742 131.08 0.0851 17.8
0.750 133.91 0.0842 4.4
0.754 135.39 0.0837 2.4
0.790 151.86 0.0798 1.9
0.888 - - -
0.906 - - -
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B Technical Drawings

B.1 Technical Drawings of the Scattering Chamber

The following figures show the technical drawings for the scattering chamber. The chamber

was build in a German workshop and due to this all labels are given in German as well. All parts

are made of stainless steel. All dimensions in the drawings are given in millimetres.

221



1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

A
A

B
B

C
C

D
D

E
E

F
F

1 A2

Ka
mm

er
 Ü

be
ris

ch
t 
1

Ka
mm

er
 Ü

be
ris

ch
t 
1

St
at

e
Ch

an
ge

s
Da

te
Na

me

Dr
aw

n

Ch
ec

ke
d

St
an

da
rd

Da
te

Na
me

25
.11

.2
01
6

Mi
ch

ae
l 
Ma

th
y

Bo
de

np
la
tt
e

Fl
an

sc
h 

Ka
mm

er
-B

od
en

Fl
an

sc
h 

Ka
mm

er
-D

ec
ke

l

De
ck

el

5 
x 

Fl
an

sc
h 

Ka
mm

er
-Q

CL
AM

5 
x 

Bl
in
df

la
ns

ch
e 

fü
r 
Fl
an

sc
h 

Ka
mm

er
-Q

CL
AM

Ve
rb

in
du

ng
ss

tü
ck

 2

Ve
rb

in
du

ng
ss

tü
ck

 1

Tü
te

 Q
CL

AM
 (
Sc

ho
n 

vo
rh

an
de

n)

70
er

 S
tr
ah

lr
oh

r
Ve

rb
in
du

ng
sr

oh
r 
1

70
er

 S
tr
ah

lr
oh

r
Ve

rb
in
du

ng
sr

oh
r 
2

Sc
hn

el
ls
ch

lu
ss

 V
en

til
 

Or
ie
nt

ie
ru

ng
ss

te
in

(K
ei
n 

Ba
ut

ei
l)

Ka
mm

er
to

ru
s

De
ck

el
-A

bs
ch

lu
ss

5 
x 

CF
 D

N 
63

 F
la
ns

ch
e 

mi
t 
Ro

hr
an

sa
tz

 
fü

r 
W
ar

tu
ng

s-
 u

nd
 F

en
st

er
fl
an

sc
he

.

4 
x 

Ju
st

ie
rk

lö
tz

ch
en

222 B Technical Drawings



11

22

33

44

55

66

77

88

A
A

B
B

C
C

D
D

E
E

F
F

1 A2

Kammer Überischt 2

Kammer Überischt 2
State

Changes
Date

Name

Drawn

Checked

Standard

Date
Name

25.11.2016
Michael Mathy

Bodenplatte

Flansch Kammer-Boden

Flansch Kammer-Deckel

Deckel

Verbindungsstück 1

70er Strahlrohr
Verbindungsrohr 1

70er Strahlrohr
Verbindungsrohr 2

CF DN 63 Anschweisflansch 
drehbar

CF DN 63 Anschweisflansch 
drehbar

Schnellschluss Ventil  

1 x CF DN 100 Flansch mit Rohransatz
für Turbopumpe. NICHT drehbar.

5 x CF DN 63 Flansche mit Rohransatz 
für W

artungs- und Fensterflansche.

CF DN 40 Flansch mit Rohransatz
drehbar

Orientierungsstein
(Kein Bauteil)

1 x CF Blindflansch DN 63
Mit 2 Pin Feedthrough

CF DN 63 Anschweisflansch 
NICHT drehbar

CF-Reduzierstück von DN 63 auf DN 40
NICHT drehbar

B.1 Technical Drawings of the Scattering Chamber 223



1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

A
A

B
B

C
C

D
D

E
E

F
F

1 A2

Ka
mm

er
 Ü

be
ris

ch
t 
3

Ka
mm

er
 Ü

be
ris

ch
t 
3

St
at

e
Ch

an
ge

s
Da

te
Na

me

Dr
aw

n

Ch
ec

ke
d

St
an

da
rd

Da
te

Na
me

25
.11

.2
01
6

Mi
ch

ae
l 
Ma

th
y

Bo
de

np
la
tt
e

Fl
an

sc
h 

Ka
mm

er
-B

od
en

5 
x 

Fl
an

sc
h 

Ka
mm

er
-Q

CL
AM

5 
x 

Bl
in
df

la
ns

ch
e 

fü
r 
Fl
an

sc
h 

Ka
mm

er
-Q

CL
AM

70
er

 S
tr
ah

lr
oh

r
Ve

rb
in
du

ng
sr

oh
r 
1

70
er

 S
tr
ah

lr
oh

r
Ve

rb
in
du

ng
sr

oh
r 
2

Sc
hn

el
ls
ch

lu
ss

 V
en

til

CF
-R

ed
uz

ie
rs

tü
ck

 v
on

 D
N 

63
 a

uf
 D

N 
40

NI
CH

T 
dr

eh
ba

r

Or
ie
nt

ie
ru

ng
ss

te
in

(K
ei
n 

Ba
ut

ei
l)

Ka
mm

er
to

ru
s

Fl
an

sc
h 

Ka
mm

er
-D

ec
ke

l

CF
 D

N 
63

 A
ns

ch
we

is
fl
an

sc
h 

dr
eh

ba
r

5 
x 

CF
 D

N 
63

 F
la
ns

ch
e 

mi
t 
Ro

hr
an

sa
tz

 
fü

r 
W
ar

tu
ng

s-
 u

nd
 F

en
st

er
fl
an

sc
he

.

4 
x 

Ju
st

ie
rk

lö
tz

ch
en

224 B Technical Drawings



11

22

33

44

55

66

77

88

A
A

B
B

C
C

D
D

E
E

F
F

1 A2

Kammer Überischt 4

Kammer Überischt 4
State

Changes
Date

Name

Drawn

Checked

Standard

Date
Name

25.11.2016
Michael Mathy

175,00 *

300,00 
320,00

5 x CF DN 63 Flansche 
mit Rohransatz.

70er Strahlrohr
Verbindungsrohr 1

70er Strahlrohr
Verbindungsrohr 2

Verbindungsstück 2

Verbindungsstück 1

Tüte QCLAM (schon vorhanden)

5 x Flansch Kammer-QCLAM

1 x CF DN 100 Flansch
für Turbopumpe

Kammertorus

Schnellschluss Ventil
(nicht dargestellt)
 

CF-Reduzierstück von DN 63 auf DN 40
NICHT drehbar

371,00 *
211,00 *

316,00
333,50

691,00 *

359,20

* Es ist für den experimentellen Afubau wichtig,
dass diese genau Abstände eingehalten werden.

327,00 *

B.1 Technical Drawings of the Scattering Chamber 225



1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

A
A

B
B

C
C

D
D

E
E

F
F

1 A2

Ka
mm

er
 Ü

be
ris

ch
t 
5

Ka
mm

er
 Ü

be
ris

ch
t 
5

St
at

e
Ch

an
ge

s
Da

te
Na

me

Dr
aw

n

Ch
ec

ke
d

St
an

da
rd

Da
te

Na
me

28
.11

.2
01
6

Mi
ch

ae
l 
Ma

th
y

De
ck

el

Bo
de

np
la
tt
e

Sc
hn

el
ls
ch

lu
ss

 V
en

til70
er

 S
tr
ah

lr
oh

r
Ve

rb
in
du

ng
sr

oh
r 
2

70
er

 S
tr
ah

lr
oh

r
Ve

rb
in
du

ng
sr

oh
r 
1

1 
x 

CF
 D

N 
10
0 

Fl
an

sc
h 

mi
t 
Ro

hr
an

sa
tz

5 
x 

CF
 D

N 
63

 F
la
ns

ch
e 

mi
t 
Ro

hr
an

sa
tz

Tü
te

 Q
CL

AM
(S
ch

on
 v

or
ha

nd
en

)

Ve
rb

in
du

ng
ss

tü
ck

 1

226 B Technical Drawings



11

22

33

44

55

66

77

88

A
A

B
B

C
C

D
D

E
E

F
F

1 A2

Kammer Überischt 6

Kammer Überischt 6
State

Changes
Date

Name

Drawn

Checked

Standard

Date
Name

28.11.2016
Michael Mathy

Flansch Kammer-Deckel

Bodenplatte

70er Strahlrohr
Verbindungsrohr 2

70er Strahlrohr
Verbindungsrohr 1

Tüte von QCLAM
(Schon vorhanden)

Schnellschluss Ventil
 Verbindungsstück 1

B.1 Technical Drawings of the Scattering Chamber 227



A-
A 

( 
1 
: 4

 )
B-

B 
( 
1 
: 4

 )

A A

B

B

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

A
A

B
B

C
C

D
D

E
E

F
F

1 A2

Ka
mm

er
 Ü

be
ris

ch
t 
7

Ka
mm

er
 Ü

be
ris

ch
t 
7

St
at

e
Ch

an
ge

s
Da

te
Na

me

Dr
aw

n

Ch
ec

ke
d

St
an

da
rd

Da
te

Na
me

29
.11

.2
01
6

Mi
ch

ae
l 
Ma

th
y

228 B Technical Drawings



A-A ( 1 : 2 )

A

A

11

22

33

44

55

66

77

88

A
A

B
B

C
C

D
D

E
E

F
F

1 A2

Flansch Kammer-Boden

Flansch Kammer-Boden
State

Changes
Date

Name

Drawn

Checked

Standard

Date
Name

08.11.2016
Michael Mathy

Absatz zum anschweißen
des Kammertorus

360

15

320

5

300320

24 x M6
Durchgangsbohrung

15°

300,00

320,00

360,00

340,00


340

B.1 Technical Drawings of the Scattering Chamber 229



A-
A 

( 
1 
: 2

 )

A A

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

A
A

B
B

C
C

D
D

E
E

F
F

1 A2

Fl
an

sc
h 

Ka
mm

er
-D

ec
ke

l

Fl
an

sc
h 

Ka
mm

er
-D

ec
ke

l
St

at
e

Ch
an

ge
s

Da
te

Na
me

Dr
aw

n

Ch
ec

ke
d

St
an

da
rd

Da
te

Na
me

04
.11

.2
01
6

Mi
ch

ae
l 
Ma

th
y

Nu
t 
fü

r 
O-

Ri
ng

. 4
,0
0 

mm
 t
ie
f, 

Ka
nt

en
 a

br
un

de
n 

(r
=0

,2
0 

mm
).

(F
ür

 O
-R

in
g:
 3

15
 m

m 
x 

5 
mm

)

Ab
sa

tz
 z

um
 a

ns
ch

we
iß
en

de
s 

Ka
mm

er
to

ru
s

360,00

15
,0
0 5,

00

30

0,
00

320 

4,
00


31
2,6

0

3
26,

00

300,00

360,00

312,20

6 
x 

M8
Ge

wi
nd

eb
oh

ru
ng

 1
1 
mm

 t
ie
f

5,
00

15
,0
0

24
 x

 M
6

Du
rc
hg

an
gs

bo
hr

un
g

34
2,00

15°
37,5

0°

342,00

326,20

4,
00

230 B Technical Drawings



A-A ( 1 : 2 )

AA

11

22

33

44

55

66

77

88

A
A

B
B

C
C

D
D

E
E

F
F

1 A2

Ansicht A (Draufsicht)

Bodenplatte
State

Changes
Date

Name

Drawn

Checked

Standard

Date
Name

03.11.2016
Michael Mathy

20

674

24 x M6 Gewindebohrung durch.


326,00

Nut für O-Ring. Nuttiefe 4,00 mm. Kanten Abrunden r=0,20 mm.
(Für O-Ring: 315 mm x 5 mm)

8 x M8 Gewindebohrung durch.

340,00


312,60

45°

327,00

15°

8 x M8 Gewindebohrung durch. 

22,50°

312,60
326,00
340,00

4,00

8 X Einkerbungen
~2 mm tief / Auf Radius: 240 mm

45°

60,00

Gewindebohrung M4,
5 mm tief,
Zur Zentrierung. 12,00

600,00

B.1 Technical Drawings of the Scattering Chamber 231



A-
A 

( 
1 
: 2

 )
A A

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

A
A

B
B

C
C

D
D

E
E

F
F

1 A2

An
si
ch

t 
B

Bo
de

np
la
tt
e

St
at

e
Ch

an
ge

s
Da

te
Na

me

Dr
aw

n

Ch
ec

ke
d

St
an

da
rd

Da
te

Na
me

26
.0
2.
20

18
Mi

ch
ae

l 
Ma

th
y

Ob
er

se
ite

 A
bs

ch
le
ife

n/
Po

lie
re

n,
 

da
mi
t 
de

r 
Fl
an

sc
h 

va
ku

um
di
ch

t 
üb

er
 d

ie
 O

-R
in
g 

Nu
t 
ge

pr
es

st
 w

er
de

n 
ka

nn
.

232 B Technical Drawings



11

22

33

44

55

66

77

88

A
A

B
B

C
C

D
D

E
E

F
F

1 A2

Ansicht C

Bodenplatte
State

Changes
Date

Name

Drawn

Checked

Standard

Date
Name

03.11.2016
Michael Mathy

8 x M8 Gewindebohrung durch.

8 x M8 Gewindebohrung durch. 
24 x M6 Gewindebohrung durch.

222,7386
A: x=

 mm
239,7092

B: x=
 mm

222,7386B: y=  mm

239,7092A: y=  mm
A

B

B.1 Technical Drawings of the Scattering Chamber 233



1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

A
A

B
B

C
C

D
D

E
E

F
F

1 A2

Dr
au

fs
ich

t

De
ck

el
St

at
e

Ch
an

ge
s

Da
te

Na
me

Dr
aw

n

Ch
ec

ke
d

St
an

da
rd

Da
te

Na
me

03
.11

.2
01
6

Mi
ch

ae
l 
Ma

th
y

360

12

20

37,5
0°

15°

30°

342

6 
x 

M8
Ge

wi
nd

eb
oh

ru
ng

 d
ur

ch
65 Ø

Ob
er

fl
äc

he
 p

ol
ie
re

n
Va

ku
um

di
ch

tf
äh

ig
 f
ür

 O
-R

in
g

2
00

12
 x

 M
8

Ge
wi
nd

eb
oh

ru
ng

 1
2 

mm
 t
ie
f

24
 x

 M
6

Du
rc
hg

an
gs

bo
hr

un
g

234 B Technical Drawings



11

22

33

44

55

66

77

88

A
A

B
B

C
C

D
D

E
E

F
F

1 A2
Deckel-Abschluss

State
Changes

Date
Name

Drawn

Checked

Standard

Date
Name

15.02.2018
Michael Mathy


65,00

220,00

200,00

9,00

1,00

65,00

12 x M8 Durchgangsborhung

Nut für O-Ring 4,00 mm tief. 
Kanten Abrunden (r=0,20 mm).
(Für O-Ring 75 mm x 5 mm) 

30°

M6 Gewindebohrung
5,00 mm tief

5,00

220,00
87,74 74,34

87,74
74,34

4,00

B.1 Technical Drawings of the Scattering Chamber 235



1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

A
A

B
B

C
C

D
D

E
E

F
F

1 A2

An
si
ch

t 
A

Ka
mm

er
to

ru
s 

St
at

e
Ch

an
ge

s
Da

te
Na

me

Dr
aw

n

Ch
ec

ke
d

St
an

da
rd

Da
te

Na
me

04
.11

.2
01
6

Mi
ch

ae
l 
Ma

th
y

490,00

32
0,
00



30
0,
00



246,00

110,00


10
1,6

1


70

60,00

8 
X 

Ei
nk

er
bu

ng
en

~2
 m

m 
tie

f 
/ 

Al
le
 4

5

376,00
St

ec
kl
oc

h 
fü

r 
CF

 D
N 

10
0 

Fl
an

sc
h 

mi
t 
Ro

hr
an

sa
tz

70
,00

St
ec

kl
oc

h 
fü

r 
CF

 D
N 

63
 F

la
ns

ch
 m

it 
Ro

hr
an

sa
tz

236 B Technical Drawings



11

22

33

44

55

66

77

88

A
A

B
B

C
C

D
D

E
E

F
F

1 A2

Ansicht B

Kammertorus
State

Changes
Date

Name

Drawn

Checked

Standard

Date
Name

30.11.2016
Michael Mathy

41,00

70,00

28°

57°

85°
114°

142°

5 x Bohrung mit 
70,0 mm.

In 246 mm Höhe.
Stecklöcher für "Flansch Kammer-QCLAM".

36° 72° 108°

144°

4 x Bohrung mit 
70,0 mm

in 246 mm Höhe.
Stecklöcher für CF DN 63 Flansch mit Rohransatz.


300,00


320,00

Orientierungsstein
(Kein Bauteil)

W
inkel für die Torusbohrungen auf 246 mm 

Höhe.

B.1 Technical Drawings of the Scattering Chamber 237



1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

A
A

B
B

C
C

D
D

E
E

F
F

1 A2

An
si
ch

t 
C

Ka
mm

er
to

ru
s

St
at

e
Ch

an
ge

s
Da

te
Na

me

Dr
aw

n

Ch
ec

ke
d

St
an

da
rd

Da
te

Na
me

30
.11

.2
01
6

Mi
ch

ae
l 
Ma

th
y

70,00

41,00

3
20
,00


30

0,0
0

55°

10
0°

Bo
hr

un
g 

70

,0
 m

m.
 

In
 1
10
,0
 m

m 
Hö

he
.

St
ec

kl
oc

h 
fü

r 
CF

 D
N 

63
 F

la
ns

ch
 m

it 
Ro

hr
an

sa
tz

.

Bo
hr

un
g 

mi
t 

10
1,6

 m
m.

In
 1
10
,0
 m

m 
Hö

he
.

St
ec

kl
oc

h 
fü

r 
CF

 D
N 

10
0 

Fl
an

sc
h 

mi
t 
Ro

hr
an

sa
tz

.

W
in
ke

l 
fü

r 
di
e 

To
ru

sb
oh

ru
ng

en
 a

uf
 1
10
 m

m 
Hö

he
.

Or
ie
nt

ie
ru

ng
ss

te
in

(K
ei
n 

Ba
ut

ei
l)

238 B Technical Drawings



11

22

33

44

55

66

77

88

A
A

B
B

C
C

D
D

E
E

F
F

1 A2

Ansicht D

Kammertorus
State

Changes
Date

Name

Drawn

Checked

Standard

Date
Name

09.02.2018
Michael Mathy

Flansch Kammer-Boden
Torus

W
ICHTIG:

Zwei Bohrlöcher des Boden-Flanschs  
müssen mittig der Strahlrohr- 
Öffnungen (einmal 70er Strahlrohr und
einmal CF 40 Flansch mit Rohransatz) 
liegen!

70,00

41,00

B.1 Technical Drawings of the Scattering Chamber 239



1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

A
A

B
B

C
C

D
D

E
E

F
F

1 A2

Fl
an

sc
h 

Ka
mm

er
-Q

CL
AM

Fl
an

sc
h 

Ka
mm

er
-Q

CL
AM

St
at

e
Ch

an
ge

s
Da

te
Na

me

Dr
aw

n

Ch
ec

ke
d

St
an

da
rd

Da
te

Na
me

04
.11

.2
01
6

Mi
ch

ae
l 
Ma

th
y

Nu
t 
fü

r 
O-

Ri
ng

. N
ut

tie
fe

 1
,5
0 

mm
. K

an
te

n 
Ab

ru
nd

en
 (
r=

0,
10
 m

m)
!

(F
ür

 O
-R

in
g:
 4

4 
mm

 x
 2

 m
m)

25
,0
0 14
,0
0

70,00

38,00

29
,13


43

,5
0

48
,90

5
8,7

0

An
pa

ss
un

g 
an

 In
ne

nr
ad

iu
s 

de
s 

Ka
mm

er
to

ru
s

6 
x 

M6
 

Ge
wi
nd

eb
oh

ru
ng

 1
4 

mm
 t
ie
f

R1
50

,0
0

3
8,0

0

43,50

48,90

5 
St
üc

k 
be

nö
tig

t

1,5
0

240 B Technical Drawings



11

22

33

44

55

66

77

88

A
A

B
B

C
C

D
D

E
E

F
F

1 A2

Justierklötzchen

Justierklötzchen
State

Changes
Date

Name

Drawn

Checked

Standard

Date
Name

28.05.2018
Michael Mathy

20,0020,00

38,00

7,00

31,00

19,00

10,00

2 x M8 Durchgangsbohrung

1 x M10 Gewindebohrung

4 Stück benötigt

B.1 Technical Drawings of the Scattering Chamber 241



1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

A
A

B
B

C
C

D
D

E
E

F
F

1 A2

Fl
an

sc
h 

Ka
mm

er
-Q

CL
AM

Fl
an

sc
h 

Ka
mm

er
-Q

CL
AM

St
at

e
Ch

an
ge

s
Da

te
Na

me

Dr
aw

n

Ch
ec

ke
d

St
an

da
rd

Da
te

Na
me

04
.11

.2
01
6

Mi
ch

ae
l 
Ma

th
y

Nu
t 
fü

r 
O-

Ri
ng

. N
ut

tie
fe

 1
,5
0 

mm
. K

an
te

n 
Ab

ru
nd

en
 (
r=

0,
10
 m

m)
!

(F
ür

 O
-R

in
g:
 4

4 
mm

 x
 2

 m
m)

25
,0
0 14
,0
0

70,00

38,00

29
,13


43

,5
0

48
,90

5
8,7

0

An
pa

ss
un

g 
an

 In
ne

nr
ad

iu
s 

de
s 

Ka
mm

er
to

ru
s

6 
x 

M6
 

Ge
wi
nd

eb
oh

ru
ng

 1
4 

mm
 t
ie
f

R1
50

,0
0

3
8,0

0

43,50

48,90

5 
St
üc

k 
be

nö
tig

t

1,5
0

242 B Technical Drawings



11

22

33

44

55

66

77

88

A
A

B
B

C
C

D
D

E
E

F
F

1 A2

Blindflansch

Blindflansch
State

Changes
Date

Name

Drawn

Checked

Standard

Date
Name

08.11.2016
Michael Mathy

70,00
6 x M6
Durchgangsbohrung


58,70

10,00

5 Stück benötigt

B.1 Technical Drawings of the Scattering Chamber 243



A 
(S
ch

ne
id
ka

nt
e 

DN
 4

0 
CF

. N
ac

h 
Ma
ße

 a
us

 W
er

ks
ta

tt
)

A

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

A
A

B
B

C
C

D
D

E
E

F
F

1 A2

Ve
rb

in
du

ng
ss

tü
ck

 1

Ve
rb

in
du

ng
ss

tü
ck

 1
St

at
e

Ch
an

ge
s

Da
te

Na
me

Dr
aw

n

Ch
ec

ke
d

St
an

da
rd

Da
te

Na
me

28
.10

.2
01

6
Mi

ch
ae

l 
Ma

th
y

9,
00

24
,0
0

44
,0
0

72,00

106,00

70,00

40,00

3,
20

14
,0
0

6 
x 

M6
Du

rc
hg

an
gs

bo
hr

un
g

77
,0
06,
00

Nu
t 
fü

r 
O-

Ri
ng

 3
,2
 m

m 
tie

f. 
Ka

nt
en

 A
br

un
de

n!
(In

ne
nd

.: 
74

 m
m 

Au
ss

en
d.
: 8

2 
mm

.)
(N
ac

h 
Or

gi
na

l 
Ka

mm
er

pl
än

e.
 S

ie
he

 "
Ku

ss
AC

AD
/E

in
ar

m/
KA

PP
ER

")

82,00

7
0


58

,7
0

2,00


74 
82

8 
x 

M8
Ge

wi
nd

eb
oh

ru
ng

 c
a.
 1
4 

mm
 t
ie
f.

19
°

0,
60

1,1
0

42,00

48,35

40,00


94

Sc
hn

ei
dk

an
te

 f
ür

 K
up

fe
rd

ich
tu

ng
DN

 4
0 

CF

244 B Technical Drawings



A (Schneidkante DN 40 CF. Nach Maß aus W
erkstatt)

A

11

22

33

44

55

66

77

88

A
A

B
B

C
C

D
D

E
E

F
F

1 A2

Verbindungsstück 2

Verbindungsstück 2
State

Changes
Date

Name

Drawn

Checked

Standard

Date
Name

28.10.2016
Michael Mathy

24,00

40,00

70,00

72,00

6XM6 
Durchgangsbohrung

6 x M6
Durchgansbohrung

7,00
9,00

72

"Große" Seite 
72 mm

"Kleine" Seite 
70 mm

40,00

58,70

40,00

58,70

Schneidkante für Kupferingdichtung
DN 40 CF

44,00

2,00
1,10
0,60

19°

42,00

48,35

40,00

B.1 Technical Drawings of the Scattering Chamber 245



1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

A
A

B
B

C
C

D
D

E
E

F
F

1 A2

Ve
rb

in
du

ng
sr

oh
r 
1

Ve
rb

in
du

ng
sr

oh
r 
1

St
at

e
Ch

an
ge

s
Da

te
Na

me

Dr
aw

n

Ch
ec

ke
d

St
an

da
rd

Da
te

Na
me

21
.11

.2
01

6
Mi

ch
ae

l 
Ma

th
y

6
6

7
0

21
3,
10

21
7,
24

R1
50

,0
0

W
ur

de
 k

om
me

rz
ie
ll 

er
wo

rb
en

.
Lä

ng
e 

un
d 

Ab
br

un
du

ng
 z

um
 A

ns
ch

we
iß
en

 m
us

s 
an

ge
pa

ss
t 
we

rd
en

.

246 B Technical Drawings



11

22

33

44

55

66

77

88

A
A

B
B

C
C

D
D

E
E

F
F

1 A2

Verbindungsrohr 2

Verbindungsrohr 2
State

Changes
Date

Name

Drawn

Checked

Standard

Date
Name

24.11.2016
Michael Mathy

359,20

70,00

66,00

Rohr wurde kommerziell erworben.
Länge muss angepasst werden

B.1 Technical Drawings of the Scattering Chamber 247



1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

A
A

B
B

C
C

D
D

E
E

F
F

1 A2

CF
 F

la
ns

ch
 D

N 
40

 m
it 

R.

CF
 F

la
ns

ch
 D

N 
40

 m
it 

R.
St

at
e

Ch
an

ge
s

Da
te

Na
me

Dr
aw

n

Ch
ec

ke
d

St
an

da
rd

Da
te

Na
me

28
.11

.2
01
6

Mi
ch

ae
l 
Ma

th
y

13
,0
0

R1
50

,0
0

CF
40

 F
la
ns

ch
 m

it 
Ro

hr
an

sa
tz

 w
ur

de
 k

om
me

rz
ie
ll 

er
wo

rb
en

.
Ab

ru
nd

un
g 

zu
m 

An
sc

hw
ei
ße

n 
mu

ss
 e

rs
te

llt
 w

er
de

n.
1 
ma

l 
be

nö
tig

t.

41,00

62
,4
1

61
,0
0

248 B Technical Drawings



11

22

33

44

55

66

77

88

A
A

B
B

C
C

D
D

E
E

F
F

1 A2

CF DN 63 W
artungsflansch

CF DN 63 W
artungsflansch

State
Changes

Date
Name

Drawn

Checked

Standard

Date
Name

20.02.2018
Michael Mathy

70er Strahlrohr wurde kommerziell erworben.
Die Länge muss angepasst werden.
Abbrundung zum Anschweißen an den Kammertorus muss angepasst werden.
CF DN 63 Flansch (ebefalls kommerziell erworben) muss angeschweißt werden.
Es werden 5 Stück benötigt.

64,13

60,00

R150,00

B.1 Technical Drawings of the Scattering Chamber 249



1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

A
A

B
B

C
C

D
D

E
E

F
F

1 A2

CF
 F

la
ns

ch
 D

N 
10
0 

mi
t 
R.

CF
 F

la
ns

ch
 D

N 
10
0 

mi
t 
R.

St
at

e
Ch

an
ge

s
Da

te
Na

me

Dr
aw

n

Ch
ec

ke
d

St
an

da
rd

Da
te

Na
me

28
.11

.2
01
6

Mi
ch

ae
l 
Ma

th
y

20
,0
0

10
,5
0

12
5,
00

11
5,
50

12
4,
36

R1
50

,0
0

DN
 C

F 
10
0 

Fl
an

sc
h 

mi
t 
Ro

hr
an

sa
tz

 w
ur

de
 k

om
me

rz
ie
ll 

er
wo

rb
en

..
Ab

ru
nd

un
g 

zu
m 

An
sc

hw
ei
ße

n 
mu

ss
 e

rs
te

llt
 w

er
de

n.
1 
ma

l 
be

nö
tig

t. 101,60

250 B Technical Drawings



11

22

33

44

55

66

77

88

A
A

B
B

C
C

D
D

E
E

F
F

1 A2

CF-BLindfl. DN63 m. Bohrung

CF-BLindfl. DN63 m. Bohrung
State

Changes
Date

Name

Drawn

Checked

Standard

Date
Name

02.12.2016
Michael Mathy


114,30

12,62
8,00

5,00

17,50

CF Blindflansch DN 63 wurde kommerziell erworben.
Bohrung für 2 Pin-Feedthrough (ebenfalls kommerziell 
erworben) muss angebracht und der Feedthrough 
angeschweißt werden.
1 mal benötigt.

B.1 Technical Drawings of the Scattering Chamber 251



B 
( 
3:
1 
)

B
B

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

A
A

B
B

C
C

D
D

E
E

F
F

1 A2

CF
40

 B
F 

fü
r 
Se

ns
or

en

CF
40

 B
F 

Fü
r 
Se

ns
or

en
St

at
e

Ch
an

ge
s

Da
te

Na
me

Dr
aw

n

Ch
ec

ke
d

St
an

da
rd

Da
te

Na
me

05
.0
3.
20

18
Mi

ch
ae

l 
Ma

th
y

20,25

13,00

42,00

70,00

7,25

10,16
13,20
19,05

10
,0
0

10
,0
0

Au
fs

at
z 

fü
r 
2 

Bo
hr

un
ge

n 
fü

r 
Se

ns
or

en
.

No
rm

 C
F-

Fl
an

sc
h

Ab
fo

lg
e 

de
r 
Bo

rh
un

ge
n:

(A
lle

 T
ie
fe

n 
re

la
tiv

 z
u 

"o
be

re
 K

an
te

")

1) 

5,
60

 m
m 

Bo
hr

un
g 

dr
uc

hg
eh

en
d.

2)
 

6,
40

 m
m 

Bo
hr

un
g 

13
.2
0 

mm
 t
ie
f.

3)
 M

7 
Ge

wi
nd

eb
oh

ru
ng

 1
0.
16
 m

m 
tie

f.

2 
Bo

hr
un

ge
n 

fü
r 
Se

ns
or

en
:

"O
be

re
 K

an
te

"

CF
 4

0 
Bl
in
df

la
ns

ch
 m

it 
Bo

hr
un

ge
n 

fü
r 

Pi
ez

o-
Se

ns
or

en
:

Es
 w

ird
 e

in
 N

IC
HT

 m
ag

ne
tis

ch
er

 C
F 

40
 B

lin
df

la
ns

ch
 a

us
 d

em
 

Ma
te

ria
l 
31
6l
 v

er
we

nd
et

!

Da
nn

 m
us

s 
ei
n 

Me
ta

llz
yl
in
de

r 
(

42
 m

m)
 s

o 
an

ge
sc

hw
ei
ßt

 
we

rd
en

, d
as

s 
er

 7
.2
5 

mm
 a

n 
de

r 
"N

ich
t-

Va
ku

um
-S

ei
te

" 
 

üb
er

st
eh

t.
Da

nn
 w

er
de

n 
di
e 

be
id
en

 B
oh

ru
ng

en
 w

ie
 l
in
ks

 e
rl
äu

te
rt
 

vo
rg

en
om

me
n.

"V
ak

uu
m-

Se
ite

"
"A

tm
os

ph
är

en
-S

ei
te

"

7,
25

19,05

252 B Technical Drawings



11

22

33

44

55

66

77

88

A
A

B
B

C
C

D
D

E
E

F
F

1 A2

Verbindung Kammer-QCLAM

Verbindung Kammer-QCLAM
State

Changes
Date

Name

Drawn

Checked

Standard

Date
Name

28.10.2016
mmathy

175,00  *

327,00  *

40
35,00

77,00

40,00

24
24

44,00

283,00

152,00

7,00
9,00

6

Verbindungsstück 2

Verbindungsstück 1

Tüte QCLAM
(schon vorhanden)

Schnellschluss Ventil

Theo. max. Öffungswinkel QCLAM

56,79
* Es ist für den experimentellen Aufbau wichtig,
dass diese Abstände eingehalten werden!

Mitte Kammer-Torus

B.1 Technical Drawings of the Scattering Chamber 253



B.2 Technical Drawings of the Target Chamber

The following figures show the technical drawings for the target chamber. The chamber will

be build in a German workshop and due to this all labels are given in German as well. The parts

are made of stainless steel if not stated otherwise. All dimensions in the drawings are given in

millimetres.
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