## Supplementary Material

## 1 Supplementary Figures



SUPPLEMENTARY FIGURE S1 | Generation of B-cell lymphoma-derived soluble BCR protein. BCR-coding genes were amplified separately using different primers binding in the FR1 and $\mathrm{C}_{\mathrm{L}} / \mathrm{C}_{\mathrm{H} 1}$ regions. For heavy chains, $\mathrm{V}_{\mathrm{H}}$ domains of matuzumab were exchanged for the identified BCR $\mathrm{V}_{\mathrm{H}}$ domains. For light chains, $\mathrm{V}_{\mathrm{L}}$ of Daudi and IM-9 were fused via PCR to $\mathrm{C}_{\text {Kappa }}$ domains, $\mathrm{V}_{\mathrm{L}}$ of SUPB8 to C Cambda, respectively (A). Reducing SDS-PAGE of BCRs after expression in HEK 293F cells (B). Using matuzumab as a scaffold, the respective $V_{H}$ and $V_{L}$ domains were exchanged for the identified BCR-derived variable domains. Purification was performed using Protein A spin columns. Molecular weight of heavy chains is approximately 55 kDa , of light chains $\sim 26 \mathrm{kDa}$, respectively.

## SUP-B8 Heavy Chain

## CDR-H1

published
VH1
VH2
VH5
published
VH1
VH2
VH5
published
VH1
VH2
VH5

QIQLVQSGGEVKKPGASVRVSCKASGYT FHSYGITWVRQAPGQGLEWMG . . . LVQSGGEVKKPGASVKVSCKASGYT FHSYGITWVRQAPGQGLEWMG . . . . . . . . . . . . . . . . . .VSCKASGYT FHSYGITWVRQAPGQGLEWMG . .QLVQSGGEVKKPGASVKVSCKASGYT FHSYGITWVRQAPGQGLEWMG CDR-H2 WISGYNGNTNYAQKLQDRVTMTTDTSTNTVYMEVRSLRSDDTAVYYCAR WINGYNGYTNYAQKLQDRVTMTTNTSTNTVYMEVRSLRSDDTAVYYCAR WINGYNGYTNYAQKLQDRVTMTTNTSTNTVYMEVRSLRSDDTAVYYCAR WINGYNGYTNYAQKLQDRVXMTTNTSTNTVYMEVRSLRSDDTAVYYCAR

## CDR-H3

DDCSGDNCYMSAYWGQGTLVTVSS DDCSGDNCYMSAYWGQGTVVTVSS DDCSGDNCYMSAYWGQGTVVTXSX

## SUP-B8 Light Chain

## CDR-L1

CDR-L2

```
published
IgL 36-47
IgL_51
published
IgL_36-47
IgL_51
```

QSVLTQPPSASGTPGQRVTISCSGSSSKIASNYVYWYQQVPGTAPKLLIYRDNQRPSGV QSVLTQPPSASGTPGQRVTISCSGSSSNIASNYVYWYQQLPGMAPKLLIYRDNQRPSGV QSVLTQPPSASGTPGQRVTISCSGSSSNIASNYVYWYQQLPGMAPKLLIYRDNQRPSGV

## CDR-L3

PDRFSGSRSGTSASLAISGLRSDDEADYYCATWDDSLSGWVFGGGTKLTVL PDRFSGSRSGTSASLAISGLRSDDEADYYCATWDDSLSGWVFGGGTKLTVL PDRFSGSRSGTSASLAISGLRSDDEADYYCATWDDSLSGWVFGGGTKLTVL

## IM-9 Heavy Chain

## CDR-H1

published VH3 rev VH1_rev VH1_fwd_up
3_fwd_up
5_fwd_up
published VH3_rev
VH1 rev
VH1 ${ }^{-}$fwd up
3_fwd_up
5_fwd_up
published VH3_rev VH1_rev VH1_fwd_up 3_fwd_up
5_fwd_up
LEVQLVESGGGLLQPGRALRLSCAASGFRFDDYAMHWVRQTPGKGLEWVA . . . . .VESGGGLLQPGRALRLSCAASGFRFDDYAMHWVRQTPGKGLEWVA . . . . .VQSGGGLLQPGRALRLSCAASGFRFDDYAMHWVRQTPGKGLEWVA . . . . . . . . . . . . . . . . . . . . . . . . . . RFDDYAMHWVRQTPGKGLEWVA . . . . . . . . . . . . . . . . . . . . . . . . $R$ RDDYAMHWVRQTPGKGLEWVA . . . . . . . . . . . . . . . . . . . . . . . . . . . FDDYAMHWVRQTPGKGLEWVA

## CDR-H2

GISWNSDTIDYADSVKGRFTISRDNAKNSLYLQMNSLRAEDTALYYCTKE GISWNSDTIDYADSVKGRFTISRDNAKNSLYLQMNSLRAEDTALYYCTKR GISWNSDTIDYADSVKGRFTISRDNAKNSLYLQMNSLRAEDTALYYCTKR GISWNSDTIDYADSVKGRFTISRDNAKNSLYLQMNSLRAEDTALYYCTKR GISWNSDTIDYADSVKGRFTISRDNAKNSLYLQMNSLRAEDTALYYCTKR GISWNSDTIDYADSVKGRFTISRDNAKNSLYLQMNSLRAEDTALYYCTKR

## CDR-H3

GGVTDIDPFDIWGQGTMVIVSS
RGVTDIDPF RGVTDIDPF............. RGVTDIDPFDIWGQGTMVIVSS RGVTDIDPFDIWGQGTMVIVSS RGVTDIDPFDIWGQGTMVIVSS

## IM-9 Light Chain

## CDR-L1

CDR-L2
published
Vk2_lo
Vk1_up
published
Vk2_lo
Vk1_up

ELQMTQSPSTLSASVGDRVTITCRASQSISPWLPWYQQKPGKAPKLLIYKASSLESGVPS . . . TQSPSTLSASVGDRVTITCRASQSISAWLAWYQQKPGKAPKLLIYKASSLESGVPS . . . . . . . . . . . . . . . . . . . . . . . .SISAWLAWYQQKPGKAPKLLIYKASSLESGVPS CDR-L3
RFSGSGSGTEFTLTITSLQPDDFATYFCQHYNRPWTFGQGTKVEIKR RFSGSGSGTEFTLTITSLQPDDFATYFCQHYNRPWT . RFSGSGSGTEFTLTITSLQPDDFATYFCQHYNRPWTFGQGTKVEIKR

## Daudi Heavy Chain

CDR-H1

```
published
VH3
    LEVQLVESGGNLVQPGGSLRLSCEVSGFSITSYGIHWVRQAPGKGLVWVS
    LEVQLVESGGDLVQPGGSLRLSCEASGFTITSYGMHWVRQAPGKGLVWVS
VH5_fwd ...QLVESGGDLVQPGGSLRLSCEASGFTITSYGMHWVRQAPGKGLVWVS
VH5_rev
published
VH3
VH5_fwd
VH5_rev
published
VH3
VH5 fwd
VH5_rev
CDR-H2
    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
    ETDNDGRDATYADSVKGRFTSLPDRANNTLYLQMNSLRVDDTAVYYCVRG
    EIDNDGRDATYADSVKGRFTSLPDRANNTLYLQMNSLRVDDTAVYYCVRG
    EIDNDGRDATYADSVKGRFTSLPDRANNTLYLQMNSLRVDDTAVYYCVRG
    . . . . . . DATYADSVKGRFTSLPDRANNTLYLQMNSLRVDDTAVYYCVRG
    CDR-H3
    NGQKCFDYWGQGTLVTVSS
    NGQKCFDYWGQGTLVTVSS
NGQKCFDYW . . . . . . . . .
NGQKCFDYWGQGTLVTVSS
```


## Daudi Light Chain

CDR-L1
CDR-L2
published
Vk1 up
Vk1_lo
LQMTQSPSSLSASVGDRVTITCRAGHNITNFLSWYQQKPGKAPTLLIYAVSNLQDGV

Vk2_up
.
. . . TQSPSSLSACVGDRVTITCRAGHNITNFLSWYQQKPGKAPTLLIYAVSNLQRGV
published
Vk1_up
Vkl_lo
. . . . . . . . . . . . . . . VTITCRAGHNITNFLSWYQQKPGKAPTLLIYAVSNLQRGV

## CDR-L3

PSRFSGSGSGAEFTLTISSLQPEDFATYYCQQNYNFSFTFGGGTKVDNKR PSRFSGSGSGAE FTLTISSLQPEDFATYYCQQNYNFSFTFGGGTKVDNKR PSRFSGSGSGAEFTLTISSLQPEDFATYYCQQNYNFSFTFGGG.
Vk2_up PSRFSGSGSGAEFTLTISSLQPEDFATYYCQQNYNFSFTFGGGTKVDNKR

SUPPLEMENTARY FIGURE S2 | Sequence overview over 3 BCRs from 3 different lymphoma cell lines Daudi, IM-9 and SUP-B8. After RNA extraction and cDNA synthesis BCR-coding genes were amplified separately using different primers binding in the FR1 and CL/CH1 regions. The resulting sequences were aligned to the published sequences, variations are depicted in red. The CDR boundaries are indicated above the sequence alignment.


Target binding
SUPPLEMENTARY FIGURE S3 | Shark-derived vNAR library screening against the BCR of cell line SUP-B8. In addition to the third screening round stained with anti-Human Fc-PE, the third round of screening was performed in parallel with antigen stained with anti-Human Lambda-PE. Sorting gates, percentages of cells in the respective gate and target concentrations are shown. One day after induction, yeast cells were labeled for parallel detection of antigen-binding and surface presentation. After screening cells in the sorting gate were isolated, grown and induced for the next round of selection.


SUPPLEMENTARY FIGURE S4 | Specificity of vNAR-presenting yeast population after two rounds of sorting for SUP-B8-BCR binding variants as determined via binding assays on the yeast surface. A negative control in absence of antigen was performed whilst off-target binding was validated against the unrelated antibody cetuximab and the BCR of cell line IM-9. Surface presentation was detected by utilizing anti-myc biotin and SAPC, target binding was analyzed by using anti-human-FC PE conjugate. The percentage of cells localized in gate is depicted on each plot.


## Target binding

SUPPLEMENTARY FIGURE S5 | Single clone analysis after three rounds of sorting for SUPB8 binding vNARs. Each respective single clone was measured after one day of induction. Cells were incubated with 500 nM SUP-B8 BCR, anti-human-Fc-PE conjugate served as detection antibody. For each clone a negative control in absence of antigen was performed.


SUPPLEMENTARY FIGURE S6 | SDS-PAGE under reducing and non-reducing conditions of six vNAR-Fc constructs after Expression in HEK293 Expi cells and protein A purification. Molecular weight of vNAR-Fc molecules is approximately 80 kDa .


Time (s)
SUPPLEMENTARY FIGURE S7 | Binding kinetics of vNAR-Fc variants directed against the BCR of the SUP-B8 cell line as determined using Bio-Layer Interferometry and an Octet ${ }^{\circledR}$ RED96 system. BCR molecules were immobilized onto anti-human Fab-CH1 2nd Generation sensor tips. Association with varying concentrations of vNAR-Fc was measured for 300 or 600 s followed by dissociation measurement for 300 or 600 s . Fitting (red lines) of binding curves (colored lines) was calculated using a $1: 1$ binding model and Savitzky-Golay filtering. Target protein concentrations for each kinetic measurement and the resulting binding constants are depicted in each plot.


Time (s)

SUPPLEMENTARY FIGURE S8 | Raw Data of kinetics measurements of four vNAR-Fc variants $\mathbf{S 2}, \mathbf{S 4}, \mathbf{S 7}$ and $\mathbf{S 9}$ via biolayer interferometry with an Octet ${ }^{\circledR}$ RED96 system. BCR molecules were immobilized onto Anti-Human Fab-CH1 2nd Generation sensor tips. Association with varying concentrations of vNAR-Fc was measured for 300 or 600 s followed by dissociation measurement for 300 or 600 s . In each plot a control measurement with IM-9 BCR immobilized to the tips was implemented. Target protein concentrations for each kinetic measurement are depicted in each plot.


Cell binding

SUPPLEMENTARY FIGURE S9 | Confirmation of BCR surface expression of cell lines SUPB8 (A) and IM-9 (B). Before measurement, cells were treated according to section 2.1. Red: unstained cells; green: anti-lambda-PE conjugate (for SUP-B8 cells) and anti-kappa-PE conjugate (for IM-9 cells). Cells were incubated 30 min on ice with the respective detection antibody.


SUPPLEMENTARY FIGURE S10 | Comparison of cell surface BCR expression levels on lymphoma $B$ cells and primary $B$ cells isolated from healthy donors. Before analysis, cells were incubated 30 min on ice with anti-lambda-PE and anti-kappa-PE conjugates. Green: healthy B cells; black: SUP-B8; red: Daudi; blue: IM-9. Results are representative of 3 independent experiments.


SUPPLEMENTARY FIGURE S11 | Internalization assay of vNAR-Fc fusion proteins. Lymphoma B cells were treated overnight with a concentration series of amine-pHAb conjugated vNAR-Fc antibodies. Endocytosis of pHAb-conjugated antibodies can be quantified by means of increasing fluorescence at acidic pH . vNAR-Fc antibodies were conjugated with a 20 molar excess of pHAb dye and purified using a desalting column. Internalization rates were monitored at a plate reader at $\mathrm{Ex} / \mathrm{Em}$ of $532 \mathrm{~nm} / 560 \mathrm{nM}$. Mean $\pm$ SEM of triplicates are plotted. Results were analyzed by twoway ANOVA (Bonferroni t-test) and significant differences ( $p \leq 0.05$ ) between on-target SUP-B8 and control Daudi and IM-9 B cells are depicted by * and \#, respectively.


SUPPLEMENTARY FIGURE S12 | Cytotoxicity assays of different vNAR-Fc variants using the MTS Cell Proliferation Assay. B-cell line SUP-B8 was treated with three bivalent vNAR-Fc variants S2, S4 and S9 at varying concentrations ( $12 \mathrm{pM}-800 \mathrm{nM}$ ) (A). Specificity of the vNAR-derived antibody-drug conjugates was assessed upon treatment of on-target SUP-B8 B-cells as well as unrelated CHO-K1 cells with varying concentrations of the MMAE-conjugated vNAR(S9)-Fc antibody (B). Cell proliferation assays were performed in triplicates and the relative survival after 72 $h$ treatment was plotted against the antibody concentrations. Results are shown as mean $\pm$ SEM and are representative of at least three independent experiments. Data were analyzed by two-way ANOVA (Bonferroni t-test), and significant differences ( $p \leq 0.05$ ) between control and on-target cell line are depicted by *.


SUPPLEMENTARY FIGURE S13 | Fc-mediated effector functions. Mononuclear cells isolated from human blood served as effector cells in ADCC assays against lymphoma B cells. Effector cells were treated with increasing concentrations of vNAR-Fc fusion proteins and co-cultivated with SUPB8 (on-target) or IM-9 (off-target) cells for 4 h . Rituximab and trastuzumab were used as positive and negative controls, respectively (A). Human macrophages served as effector cells against malignant B cells in ADCP assays. In ADCP assays, human macrophages were used as effector cells against malignant B-cells. After treatment with vNAR-Fc fusion protein, rituximab or a control IgG1 antibody, macrophages were co-cultivated for 2 h with lymphoma B cells ( $\mathbf{B}$ ). Results are shown as mean $\pm$ SEM obtained from 3 independent experiments ( 3 effector independent donors). Data were analyzed by twoway ANOVA, and significant differences $(p \leq 0.05)$ between control and specific antibodies are depicted by *.

## 2 Supplementary Tables

SUPPLEMENTARY TABLE S1 | Oligonucleotide primers used in this study

| Name | Sequence ( $5^{\prime}-3^{\prime}$ ) |
| :---: | :---: |
| Amplification of BCR $V_{H}$ and $V_{L}$ |  |
| VH1-5'clon | CAGGTGCAGCTGGTGCAGTCTGG |
| VH2-5'clon | CAGGTCACCTTGAAGGAGTCTGG |
| VH3-5'clon | GAGGTGCAGCTGGTGGAGTCTGG |
| VH4-5'clon | CAGGTGCAGCTGCAGGAGTCGGG |
| VH5-5'clon | GAGGTGCAGCTGGTGCAGTCTGG |
| VH6-5'clon | CAGGTACAGCTGCAGCAGTCAGG |
| C $\mu$-3' | CTCTCAGGACTGATGGGAAGCC |
| Cu -clon | GGAGACGAGGGGGAAAAG |
| IgG-3' | GCCTGAGTTCCACGACACC |
| IgG-clon | CAGGGGGGAAGACCGATGG |
| Vк1-5'clon | GACATCCAGATGACCCAGTCTCC |
| Vк2/3-5'clon | GATATTGTGATGACCCAGACTCCA |
| IgкC-3' | CCCCTGTTGAAGCTCTTTGT |
| IgкC-clon | AGATGGCGGGAAGATGAAG |


| VL1_(51)_clon | CAGTCTGTGTTGACGCAGCCGCCCTC |
| :---: | :---: |
| VL1_(36-47)_clon | TCTGTGCTGACTCAGCCACCCTC |
| VL1_(40)_clon | CAGTCTGTCGTGACGCAGCCGCCCTC |
| VL2-clon | TCCGTGTCCGGGTCTCCCTGGACAGTC |
| VL3-clon | ACTCAGCCACCCTCGGTGTCAGTG |
| VL4-clon | TCCTCTGCCTCTGCTTCCCTGGGA |
| VL5-clon | CAGCCTGTGCTGACTCAGCC |
| IGLC-3' | GTGTGGCCTTGTTGGCTTG |
| IGLC2-7_clon | CGAGGGGGCAGCCTTGGG |
| IGLC1_clon | AGTGACCGTGGGGTTTGGCCTTGGG |
| Cloning for Production of B-Cell Receptors: Variable heavy chain |  |
| Daudi_HC_BamHI_up | GCTGATGTTCTGGATCCCTGCTAGCTTAAGCGAGGTGCAGCTGGTGGAGTCTGG |
| Daudi_HC_ApaI_lo | GGGAAGACCGATGGGGCCCTTGGTGGAGGCTGAGGAGACGGTGACCAG |
| IM9_HC_ BamHI_up | GCTGATGTTCTGGATCCCTGCTAGCTTAAGCGAGGTGCAGCTGGTGGAGTCTGGG GGAGGC |
| IM9_HC_ ApaI_lo | GGGAAGACCGATGGGCCCTTGGTGGAGGCTGAAGAGACGATGACCAT |
| SUPB8_HC_ BamHI_up | GCTGATGTTCTGGATCCCTGCTAGCTTAAGCCAGATTCAGCTGGTGCAGTCTGGA GGTGAG |


| SUPB8_HC_Apal_lo | GGGAAGACCGATGGGCCCTTGGTGGAGGCTGAGGAGACGGTGACCA |
| :---: | :---: |
| Cloning for Production of B-Cell Receptors: Variable light chain |  |
| Daudi_LC_BamHI_up | GCTGATGTTCTGGATCCCTGCTAGCTTAAGCGAGCTCCAGATGACCCAGTCTCCAT CCTCC |
| Daudi_LC_SOE_LO | GAAGACAGATGGTGCAGCCACAGTTCGTTTGTTGTCCACCTT |
| Daudi_LC_SOE_UP | AAGGTGGACAACAAACGAACTGTGGCTGCACCATCTGTCTTC |
| IM9_LC_BamHI_up | GCTGATGTTCTGGATCCCTGCTAGCTTAAGCGAGCTCCAGATGACCCAGTCTCCTT CCACCCTG |
| IM9_LC_SOE_lo | GAAGACAGATGGTGCAGCCACAGTTCGTTTGATTTCCACCTTGGT |
| IM9_LC_SOE_up | ACCAAGGTGGAAATCAAACGAACTGTGGCTGCACCATCTGTCTTC |
| SUPB8_Lambda_NotI_lo | CCTACAGAATGTTCGTAATAGGCGGCCGC AGATCCCCCGACCTC |
| SUPB8_LC_BamHI_up | GCTGATGTTCTGGATCCCTGCTAGCTTAAGCCAGTCTGTGTTGACGCAGCCG |
| SUPB8_LC_SOE_lo | TGGCGGGAACAGAGTGACCGAGGGGGCAGCCTTGGG |
| SUPB8_LC_SOE_up | CCCAAGGCTGCCCCCTCGGTCACTCTGTTCCCGCCA |
| SUPB8_Lambda_NotI_lo | GAGGTCGGGGGATCTGCGGCCGCCTATTACGAACATTCTGTAGG |
| Sequencing |  |
| pCT_seq_up | TACCCATACGACGTTCCAGACTAC |
| pCT_seq_lo | CAGTGGGAACAAAGTCGATTTTTGTTAC |


| pExp_seq_up | GAGAACCCACTGCTTACTGGC |
| :--- | :--- |
| pExp_seq_lo | CACGCCGTCCACATACCAGTTGAAC |
| Expression | GCGCGCGCTAGCCGCTGAGAACCTGTACTTCCAGAGCGCCGTGACGTTGGACGAG |
| pExp_Nhel_up | GGTGTGGGTCTTGTCGCAGCTCTTGGGCTCGCTTCCGCTCTGGAAGTACAGGTTCT |
| pExp_F1_lo | GGTGTGGGTCTTGTCGCAGCTCTTGGGCTCGCTTCCGCTCTGGAAGTACAGGTTCT |
| pExp_F2_lo | GGTGTGGGTCTTGTCGCAGCTCTTGGGCTCGCTTCCGCTCTGGAAGTACAGGTTCT |
| CTTTCACAGTCAGAATGGTCCCCCCTCC |  |$|$| pExp_F4_lo | GGTGTGGGTCTTGTCGCAGCTCTTGGGCTCGCTTCCGCTCTGGAAGTACAGGTTCT |
| :--- | :--- |
| CTTTCACAGTCACAGTGGTGCCCCCACC |  |

