Advanced Synthesis \& Catalysis

Supporting Information

Semi-Synthetic Sialic Acid Probes for Challenging the Substrate Promiscuity of Enzymes in the Sialoconjugation Pathway

Alexander Mertsch, Silvan Poschenrieder, and Wolf-Dieter Fessner*© 2020 The Authors. Published by Wiley-VCH GmbH. This is an open access article under the terms of the Creative Commons Attribution Non-Commercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

Semi-Synthetic Sialic Acid Probes for Challenging the Substrate Promiscuity of Enzymes in the Sialoconjugation Pathway

Alexander Mertsch, Silvan Poschenrieder and Wolf-Dieter Fessner*

Institute of Organic Chemistry and Biochemistry
Technische Universität Darmstadt
Alarich-Weiss-Str. 4, 64287 Darmstadt, Germany
Fax: +49 61511623645
E-mail: fessner@tu-darmstadt.de

Supporting information

Index page
Materials and methods 3
Synthesis of compound 4 4
Synthesis of compound 5 5
Synthesis of compound $\mathbf{6}$ - truncated- C_{7}-aldehyde 6
Synthesis of compound 7 7
Synthesis of compound 8-8,9-Dideoxy-9-methylidene -Neu5Ac 8
Synthesis of compound 9 -8,9-Dideoxy-9-methyl-Neu5Ac 9
Synthesis of compound 10 10
Synthesis of compound 11 -8,9-Dideoxy-9-methylidyne-Neu5Ac 11
Synthesis of compound 12 12
Synthesis of compound 13 -8,9-Dideoxy-8-ethenyl-9-methylidene-Neu5Ac 13
Synthesis of compound 14-8,9-Dideoxy-8-ethyl-9-methyl-Neu5Ac 14
Synthesis of compound 15 15
Synthesis of compound 16-1,7-Lactone 16
Synthesis of compound 17 - 2,7-Anhydro-9-methyl-Neu5Ac 18
Synthesis of compound 18 20
Synthesis of compound 19 21
Synthesis of compound 20 22
Synthesis of compound 21 23
Synthesis of compound $\mathbf{2 3}$ 24
Synthesis of compound $\mathbf{2 5}$ 25
Synthesis of compound 26-8-Deoxy-Neu5Ac 26
Synthesis of compound 27 27
Synthesis of compound 28-8-Deoxy-9-oxo-Neu5Ac 28
Synthesis of compound 29 29
Synthesis of compound 30 -8-Deoxy-9-hydroxymethyl-Neu5Ac 30
Synthesis of compound P35 31
Synthesis of compound $\mathbf{3 5}$ - truncated- $\mathrm{C}_{7}-\mathrm{Neu} 5 \mathrm{Ac}$ 32
Synthesis of compound 31 33
Synthesis of compound 32 34
Synthesis of compound 33 35
Synthesis of compound $\mathbf{3 4}$ - Truncated diacetamido derivative 36
Synthesis of compound $36-\alpha 2,3$-Sialyllactose 37
Synthesis of compound 37 - Allyl analog of $\alpha 2,3$-sialyllactose 38
Synthesis of compound 38 - Propargyl analog of $\alpha 2,3$-sialyllactose 39
Synthesis of compound 39 - Penta-1,4-dien-3-yl analog of $\alpha 2,3$-sialyllactose 40
Synthesis of compound 40 - Pentan- 3 -yl analog of $\alpha 2,3$-sialyllactose 41
Synthesis of compound 41 - Truncated acetamido analog of $\alpha 2,3$-sialyllactose 42
References 43

Materials and methods

The CSS from N. meningitidis was produced by recombinant expression and purified as described earlier. ${ }^{[1]}$ The engineered $\alpha 2,3-S_{i a} T_{\text {pph_A151D }}$ from P. phosphoreum was produced and purified as described recently. ${ }^{[2]}$ Cresol red and CTP were purchased from Carl Roth, Germany. Neu5Ac was from R\&S Pharmchem, China. Column chromatography was performed on Roth silica gel (0.040-0.063 mesh); analytical thin layer chromatography was performed on Merck silica gel plates $60 \mathrm{~F}_{254}$ using anisaldehyde staining or N-(1-Naphthyl)-ethylenediamine for detection. Commercial reagents/solvents were used as received without further purification. Organic solvents were dried freshly by standard methods. NMR spectra were recorded on Bruker DRX500 spectrometer; chemical shifts are referenced to HOD, $\delta=4.79 \mathrm{ppm}$. For quantitative NMR measurements an accurate manual phase correction and a baseline correction with Whittaker Smoother method were performed using MestReNova 11.0.3. High-resolution mass data were determined on a Bruker Impact II ESI-Q-TOF spectrometer. Assays were measured using a SpectraMax 190 plate reader from Molecular Devices and SoftMax Pro 6.5 .1 software. TLC: all R_{f} values are reported for the solvent mixture $\mathrm{n}-\mathrm{BuOH}:$ acetone $: \mathrm{H}_{2} \mathrm{O}: \mathrm{AcOH}=35: 35: 23: 7$. Organic solvents were removed under vacuum using a rotary evaporator, and residues were dissolved in $\mathrm{H}_{2} \mathrm{O}$ and lyophilized.

Compounds 4, 5 and $\mathbf{6}$ were prepared by adaption of reported literature procedures, ${ }^{[3]}$ however, no spectral data had been reported. More recently ${ }^{1} \mathrm{H}$ NMR data for 4 and 5 were recorded in MeOD solution. ${ }^{[4]}$ NMR-data for 6 are in accordance with recent literature data. ${ }^{[5]}$

N-Acetyl-2-O-methyl- β-D-neuraminic acid methyl ester (4)

A mixture of N-acetyl-neuraminic acid (1) ($4.00 \mathrm{~g}, 12.9 \mathrm{mmol}, 1.0 \mathrm{eq})$, freshly regenerated dry Dowex50 resin (H^{+}form; 7.80 g) and molecular sieves ($3 \AA$) in dry methanol (660 mL) was heated to reflux for 24 h . The warm reaction mixture was filtered through celite and the solvent was removed in vacuo to obtain a yellow oil. The residue was dissolved in methanol (17 mL), diluted with diethyl ether (45 mL), and the mixture was refrigerated at $-25^{\circ} \mathrm{C}$ for 24 h . The crystalline solid was filtered off and washed with ether. This procedure was repeated for the filtrate (MeOH :ether $=1: 3$). The product was obtained as a colorless crystalline solid ($3.31 \mathrm{~g}, 76 \%$). $\mathrm{R}_{\mathrm{f}}=0.63$.

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta=4.11$ (ddd, $\left.J=11.4,9.4,5.0 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}\right), 4.01-3.92(\mathrm{~m}, 6 \mathrm{H}, 5-, 6-, 8-, 13-$ H), 3.92-3.89 (m, 1H, 9a-H), 3.74 (dd, J = 6.2, $5.8 \mathrm{~Hz}, 1 \mathrm{H}, 9 \mathrm{~b}-\mathrm{H}$), 3.65 (dd, J=9.3, 1H, $7-\mathrm{H}$), $3.34(\mathrm{~s}, 3 \mathrm{H}$, $12-\mathrm{H}), 2.46\left(\mathrm{dd}, J=13.3,4.9 \mathrm{~Hz}, 1 \mathrm{H}, 3_{\mathrm{eq}}-\mathrm{H}\right), 2.12(\mathrm{~s}, 3 \mathrm{H}, 11-\mathrm{H}), 1.86\left(\mathrm{dd}, J=13.3,11.4 \mathrm{~Hz}, 1 \mathrm{H}, 3_{\mathrm{ax}}-\mathrm{H}\right)$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{D}_{2} \mathrm{O}\right) \delta=175.44(\mathrm{C}-10), 171.00(\mathrm{C}-1), 99.83(\mathrm{C}-2), 71.18(\mathrm{C}-6), 70.49(\mathrm{C}-8), 68.68$ (C-7), 67.03 (C-4), 64.01 (C-9), 54.16 (C-13), 52.34 (C-5), 51.64 (C-12), 39.82 (C-3), 22.70 (C-11).

N-Acetyl-2-O-methyl- β-D-neuraminic acid (5)

A solution of $4(2.20 \mathrm{~g}, 6.52 \mathrm{mmol}, 1.0 \mathrm{eq})$ in $0.06 \mathrm{~N} \mathrm{NaOH}(165 \mathrm{~mL}, 9.90 \mathrm{mmol}, 1.5 \mathrm{eq})$ was stirred at room temperature for 2.5 h . After completion the mixture was neutralized to pH 7.0 by swirling with Dowex-50 resin (H^{+}form; 2.5 g). The suspension was filtered and the volume of the filtrate was reduced to 10 mL in vacuo. This solution was lyophilized to obtain a colorless crystalline solid (2.10 g , quant.). $R_{f}=0.21$.

 H), 3.73 (dd, $J=11.7,5.5 \mathrm{~Hz}, 1 \mathrm{H}, 9 \mathrm{~b}-\mathrm{H}$), 3.62 (dd, $J=9.2,1.1 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}$), $3.30(\mathrm{~s}, 3 \mathrm{H}, 12-\mathrm{H}$), 2.42 (dd, $\left.J=13.2,5.0 \mathrm{~Hz}, 1 \mathrm{H}, 3_{\mathrm{eq}}-\mathrm{H}\right), 2.11(\mathrm{~s}, 3 \mathrm{H}, 11-\mathrm{H}), 1.77\left(\mathrm{dd}, J=13.2,11.4 \mathrm{~Hz}, 1 \mathrm{H}, 3_{\mathrm{ax}}-\mathrm{H}\right)$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta=174.82(\mathrm{C}-10), 174.02(\mathrm{C}-1), 99.98(\mathrm{C}-2), 70.37(\mathrm{C}-8), 70.00(\mathrm{C}-6), 68.34$ (C-7), 66.87 (C-4), 63.53 (C-9), 51.95(C-5), 50.69 (C-12), 39.63 (C-3), 22.15 (C-11).

Methyl 3-(acetylamino)-3,5-dideoxy-L-lyxo-(6S)-heptulo-2,6-pyranosiduronic acid - trunctated $\mathrm{C}_{7}-$ aldehyde (6)

To a solution of $5\left(1.00 \mathrm{~g}, 3.09 \mathrm{mmol}\right.$, 1 eq. in $\left.35 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}\right)$ was added $0.2 \mathrm{M} \mathrm{NaIO}_{4}(80.5 \mathrm{~mL})$. After standing for 2 h in the dark at RT TLC showed completion. A solution of $\mathrm{Ba}(\mathrm{OAc})_{2}(117 \mathrm{~mL}, 0.1 \mathrm{M})$ was added to remove $\mathrm{IO}_{4}{ }^{-}$and I^{-}-salts. After complete precipitation, salts were filtered off and CO_{2} was bubbled through the solution to precipitate excess of barium. After filtration the solvent was removed under vacuum. To remove residual salts, column chromatography was performed with $\mathrm{MeOH}:$ acetone $: \mathrm{H}_{2} \mathrm{O}: \mathrm{DCM}=4: 2: 1: 8$. Yield: 0.79 g colorless solid (98%). $\mathrm{R}_{\mathrm{f}}=0.34$.

${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta=8.52(\mathrm{~s}, 1 \mathrm{NH}, 8-\mathrm{H}), 5.09(\mathrm{~d}, \mathrm{~J}=1.7 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 4.03(\mathrm{ddd}, J=11.4,10.0$, $5.0 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}$), 3.82 (dd, $J=10.0,10.5 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}$), $3.61(\mathrm{dd}, \mathrm{J}=10.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 3.26(\mathrm{~s}, 3 \mathrm{H}$, $11-\mathrm{H}), 2.43\left(\mathrm{dd}, \mathrm{J}=13.2,5.0 \mathrm{~Hz}, 1 \mathrm{H}, 3_{\mathrm{eq}}-\mathrm{H}\right), 2.10(\mathrm{~s}, 3 \mathrm{H}, 10-\mathrm{H}), 1.72\left(\mathrm{dd}, \mathrm{J}=13.2,11.4 \mathrm{~Hz}, 1 \mathrm{H}, 3_{\mathrm{ax}}-\mathrm{H}\right)$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{D}_{2} \mathrm{O}\right) \delta=175.45(\mathrm{C}-1), 175.08(\mathrm{C}-9), 100.97(\mathrm{C}-2), 88.81(\mathrm{C}-7), 74.14(\mathrm{C}-6), 67.49$ (C-4), 53.26 (C-5), 51.10 (C-11), 40.24 (C-3), 22.77 (C-10).

8,9-Dideoxy-2-O-methyl-9-methylidene- β-Neu5Ac (7)

For allylation see general procedure in main paper.
Aldehyde 6 ($622 \mathrm{mg}, 2.38 \mathrm{mmol}$), indium powder ($546 \mathrm{mg}, 4.76 \mathrm{mmol}$), allyl bromide ($864 \mathrm{mg}, 7.14$ mmol). Column chromatography: MeOH :acetone: $\mathrm{H}_{2} \mathrm{O}: \mathrm{DCM}=4: 2: 1: 8$ ($\mathrm{R}_{\mathrm{f}}=0.18$). Yield: 700.5 mg colorless solid (97\%). $\mathrm{R}_{\mathrm{f}}=0.64$.

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta=5.95(\mathrm{ddt}, J=17.2,10.2,6.9 \mathrm{~Hz}, 1 \mathrm{H}, 9-\mathrm{H}), 5.23(\mathrm{dm}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}, 10 \mathrm{a}-$ H), $5.20(\mathrm{dm}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}, 10 \mathrm{~b}-\mathrm{H}), 4.04$ (ddd, $J=11.4,10.1,5.0 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}), 3.90(\mathrm{dd}, J=10.1,10.3$ $\mathrm{Hz}, 1 \mathrm{H}, 5-\mathrm{H}$), 3.81 (ddd, $J=8.5,5.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 3.52(\mathrm{dd}, J=10.3,1.2 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 3.25(\mathrm{~s}, 3 \mathrm{H}$, $13-\mathrm{H}), 2.64-2.55(\mathrm{~m}, 1 \mathrm{H}, 8 \mathrm{a}-\mathrm{H}), 2.50-2.43(\mathrm{~m}, 1 \mathrm{H}, 8 \mathrm{~b}-\mathrm{H}), 2.40\left(\mathrm{dd}, J=13.1,5.0 \mathrm{~Hz}, 1 \mathrm{H}, 3_{\mathrm{eq}}-\mathrm{H}\right), 2.11$ ($\mathrm{s}, 3 \mathrm{H}, 12-\mathrm{H}$), 1.72 (dd, J = $13.2,11.4 \mathrm{~Hz}, 1 \mathrm{H}, 3_{\mathrm{ax}}-\mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta=175.27(\mathrm{C}-1), 174.78(\mathrm{C}-11), 135.49(\mathrm{C}-9), 117.42(\mathrm{C}-10), 100.46(\mathrm{C}-2)$, 73.00 (C-6), 68.55 (C-7), 67.07 (C-4), 52.66 (C-5), 50.59 (C-13), 39.86 (C-3), 37.35 (C-8), 22.14 (C-12).

8,9-Dideoxy-9-methylidene-Neu5Ac (8)

For glycoside deprotection see general procedure in main paper.
Compound 7 ($102.3 \mathrm{mg}, 0.34 \mathrm{mmol}, 1$ eq.), $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, formic acid ($500 \mu \mathrm{~L}, 610 \mathrm{mg}, 13.3 \mathrm{mmol}$, 39 eq.). Column chromatography was performed with MeOH :acetone: $\mathrm{H}_{2} \mathrm{O}: \mathrm{DCM}=4: 2: 1: 8\left(\mathrm{R}_{\mathrm{f}}=0.18\right)$.
Yield: 89.1 mg colorless solid (91%). $\mathrm{R}_{\mathrm{f}}=0.65$.

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta=8.42(1 \mathrm{H}, \mathrm{NH}), 5.92(\mathrm{ddt}, J=17.3,10.3,7.0 \mathrm{~Hz}, 1 \mathrm{H}, 9-\mathrm{H}), 5.23(\mathrm{dm}, J=$ $17.3 \mathrm{~Hz}, 1 \mathrm{H}, 10 \mathrm{a}-\mathrm{H}), 5.19(\mathrm{dm}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}, 10 \mathrm{~b}-\mathrm{H}), 4.08$ (ddd, $J=11.5,9.9,4.9 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}), 3.95$ (dd, J = 9.9, 10.0Hz, 1H, 5-H), $3.81(\mathrm{~m}, 1 \mathrm{H}, 7-\mathrm{H}$), 3.77 (d, J = $10.0 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}$), 2.47 (ddd, J = 14.9, 7.5, $7.0 \mathrm{~Hz}, 1 \mathrm{H}, 8 \mathrm{a}-\mathrm{H}), 2.40-2.33(\mathrm{~m}, 1 \mathrm{H}, 8 \mathrm{~b}-\mathrm{H}), 2.47\left(\mathrm{dd}, J=13.0,4.9 \mathrm{~Hz}, 1 \mathrm{H}, 3_{\mathrm{eq}}-\mathrm{H}\right), 2.14(\mathrm{~s}, 3 \mathrm{H}, 12-\mathrm{H})$, 1.92 (dd, J=13.0, 11.5 Hz, 1H, $3_{\mathrm{ax}}-\mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta=175.50(\mathrm{C}-1), 174.89(\mathrm{C}-11), 135.24(\mathrm{C}-9), 117.54(\mathrm{C}-10), 96.95(\mathrm{C}-2)$, 72.78 (C-6), 68.35 (C-7), 67.14 (C-4), 52.87 (C-5), $39.40(\mathrm{C}-3), 37.24$ (C-8), 22.17 (C-12).

HRMS (ESI) ${ }^{+}: m / z$ calcd for $\left[\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{~N}_{1} \mathrm{O}_{7}\right]+\mathrm{Na}^{+}=312.1054$; found 312.1054

8,9-Dideoxy-9-methyl-Neu5Ac (9)

Compound 8 ($62.7 \mathrm{mg}, 0.207 \mathrm{mmol}$) was dissolved in dry methanol (11 mL), palladium on carbon (50 mg) was added and an orsat rubber expansion bag with ~ 2 bar of H_{2} was placed on the flask for 24 h at RT with vigorous stirring. After filtration through celite the solvent was removed under vacuum. Yield: 63.1 mg colorless solid (98\%). $\mathrm{R}_{\mathrm{f}}=0.59$.

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta=4.08(\mathrm{ddd}, J=11.4,10.0,4.9 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}), 3.94(\mathrm{dd}, J=10.2,10.1 \mathrm{~Hz}, 1 \mathrm{H}$, $5-\mathrm{H}), 3.79-3.71(\mathrm{~m}, 2 \mathrm{H}, 6-7-\mathrm{H}), 2.29\left(\mathrm{dd}, J=12.9,5.0 \mathrm{~Hz}, 1 \mathrm{H}, 3_{\text {eq }}-\mathrm{H}\right), 2.14(\mathrm{~s}, 3 \mathrm{H}, 12-\mathrm{H}), 1.91(\mathrm{dd}, J=$ $13.0,11.5 \mathrm{~Hz}, 1 \mathrm{H}, 3_{\mathrm{ax}-\mathrm{H}}$), $1.67(\mathrm{~m}, 1 \mathrm{H}, 8 \mathrm{a}-\mathrm{H}), 1.55(\mathrm{~m}, 1 \mathrm{H}, 8 \mathrm{~b}-\mathrm{H}), 1.41(\mathrm{~m}, 2 \mathrm{H}, 9-\mathrm{H}), 0.97(\mathrm{t}, 3 \mathrm{H}, 10-\mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{D}_{2} \mathrm{O}\right) \delta=176.13(\mathrm{C}-1), 174.84(\mathrm{C}-11), 96.12(\mathrm{C}-2), 73.03(\mathrm{C}-6), 68.45(\mathrm{C}-7), 67.29$ (C-4), 52.96 (C-5), 39.47 (C-3), 34.63 (C-8), 22.12 (C-12), 18.50 (C-9), 13.17 (C-10).

MS (ESI): m / z calcd for $\left[\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{~N}_{1} \mathrm{O}_{7}\right]-\mathrm{H}^{+}=290.12$; found 290.12

8,9-Dideoxy-9-methylidyne-2-O-methyl- $\beta-\mathrm{Neu} 5 \mathrm{Ac}$ (10)

For allylation see general procedure in main paper.
Aldehyde $6(300 \mathrm{mg}, 1.15 \mathrm{mmol})$, indium powder ($266.1 \mathrm{mg}, 2.30 \mathrm{mmol}$), propargyl bromide
($416.8 \mathrm{mg}, 3.45 \mathrm{mmol}$). Column chromatography: $\mathrm{MeOH}:$ acetone $: \mathrm{H}_{2} \mathrm{O}: \mathrm{DCM}=4: 2: 1: 8$. Yield: 264.1 mg colorless solid (76\%). $\mathrm{R}_{\mathrm{f}}=0.55$.

${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta=4.05(\mathrm{ddd}, J=11.4,10.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}), 3.96-3.92(\mathrm{~m}, 1 \mathrm{H}, 5-\mathrm{H}), 3.90(\mathrm{~d}$, $J=10.4,1 \mathrm{H}, 7-\mathrm{H}$), 3.73 (dd, $J=10.4,1.3 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}$), 3.28 (s, $3 \mathrm{H}, 13-\mathrm{H}$), 2.69 (ddd, $J=7.3,2.7,1.1 \mathrm{~Hz}$, $2 \mathrm{H}, 8-\mathrm{H}), 2.50(\mathrm{t}, \mathrm{J}=2.7 \mathrm{~Hz}, 1 \mathrm{H}, 10-\mathrm{H}), 2.41\left(\mathrm{dd}, J=13.3,5.0 \mathrm{~Hz}, 1 \mathrm{H}, 3_{\mathrm{eq}}-\mathrm{H}\right) 2.11(\mathrm{~s}, 3 \mathrm{H}, 12-\mathrm{H}), 1.72$ (dd, $\left.J=13.3,11.5 \mathrm{~Hz}, 1 \mathrm{H}, 3_{\mathrm{ax}}-\mathrm{H}\right)$.
${ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta=175.17(\mathrm{C}-1), 174.76(\mathrm{C}-11), 100.50(\mathrm{C}-2), 81.92(\mathrm{C}-9), 71.78(\mathrm{C}-6), 71.29$ (C-10), 67.79 (C-7), 67.05 (C-4), 52.44 (C-5), 50.74 (C-13), 39.86 (C-3), 22.71 (C-8), 22.18 (C-12).

8,9-Dideoxy-9-methylidyne-Neu5Ac (11)

For glycoside deprotection see general procedure in main paper. Compound $\mathbf{1 0}$ ($437.1 \mathrm{mg}, 1.451$ $\mathrm{mmol}, 1$ eq.), $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, formic acid ($90 \mu \mathrm{~L}, 109.8 \mathrm{mg}, 2.38 \mathrm{mmol}, 1.6$ eq.). $70^{\circ} \mathrm{C}$ for 24 h , repeated four times (NMR control). Column chromatography was performed with $\mathrm{MeOH}:$ acetone: $\mathrm{H}_{2} \mathrm{O}: \mathrm{DCM}=$ 4:2:1:8. Yield: 73.2 mg colorless solid (18\%). $\mathrm{R}_{\mathrm{f}}=0.54$.

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta=4.06(\mathrm{ddm}, J=9.4,4.9 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}), 4.00-3.86(\mathrm{~m}, 3 \mathrm{H}, 5-, 7-, 6-\mathrm{H}), 2.60$ (ddd, J = 16.8, 7.4, 2.3 Hz, 1H, 8a-H), 2.52 (ddd, J = 16.8, 7.0, 2.3 Hz, 1H, 8b-H), 2.47 (dm, J = 2.3 Hz, $1 \mathrm{H}, 10-\mathrm{H}$), 2.28 (ddd, J = 13.0, $5.0 \mathrm{~Hz}, 1 \mathrm{H}, 3_{\mathrm{eq}}-\mathrm{H}$) $2.13(\mathrm{~s}, 3 \mathrm{H}, 12-\mathrm{H}), 1.89$ (dd, J = 13.0, $11.4 \mathrm{~Hz}, 1 \mathrm{H}, 3_{\mathrm{ax}}-$ H).
${ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta=176.51(\mathrm{C}-1), 174.84(\mathrm{C}-11), 96.36(\mathrm{C}-2), 82.12(\mathrm{C}-9), 72.08(\mathrm{C}-6), 70.95$ (C-10), 67.71 (C-7), 67.27 (C-4), 52.76 (C-5), 39.49 (C-3), 22.84 (C-8), 22.20 (C-12).

MS (ESI): m / z calcd for $\left[\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{~N}_{1} \mathrm{O}_{7}\right]-\mathrm{H}^{+}=286.09$; found 286.09

8,9-Dideoxy-8-ethenyl-2-O-methyl-9-methylidene- β-Neu5Ac (12)

For allylation see general procedure in main paper.
Aldehyde $6(1.00 \mathrm{~g}, 3.83 \mathrm{mmol})$, indium powder ($879.1 \mathrm{mg}, 7.66 \mathrm{mmol}$), pentadienyl bromide (1.688 g, 11.48 mmol). Column chromatography: $\mathrm{MeOH}:$ acetone $: \mathrm{H}_{2} \mathrm{O}: \mathrm{DCM}=4: 2: 1: 10$ Yield: 556.0 mg colorless solid (44\%). $\mathrm{R}_{\mathrm{f}}=0.68$.

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta=8.61(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 6.07$ (ddd, $J=17.1,10.2,8.1 \mathrm{~Hz}, 1 \mathrm{H}, 9 \mathrm{a}-\mathrm{H}$), 5.96 (ddd, $J=$ $17.0,10.7,8.6 \mathrm{~Hz}, 1 \mathrm{H}, 9 \mathrm{~b}-\mathrm{H}), 5.38-5.28(\mathrm{~m}, 4 \mathrm{H}, 10 \mathrm{a}, \mathrm{b}-\mathrm{H}), 4.12$ (ddd, $J=11.4,10.2,4.9 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H})$, 4.02 (dd, J = 10.2 Hz, 1H, 5-H), 3.81 (d, J = 10.2 Hz, 1H, 6-H), 3.73 (d, J = $9.9 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}$), 3.42 (m, 1H, $8-\mathrm{H}$), 3.35 ($\mathrm{s}, 3 \mathrm{H}, 13-\mathrm{H}$), 2.47 ($\mathrm{dd}, \mathrm{J}=13.1,4.9 \mathrm{~Hz}, 1 \mathrm{H}, 3_{\mathrm{eq}}-\mathrm{H}$), $2.21(\mathrm{~s}, 3 \mathrm{H}, 12-\mathrm{H}), 1.79(\mathrm{dd}, \mathrm{J}=13.1,11.4$ $\left.\mathrm{Hz}, 1 \mathrm{H}, 3_{a x}-\mathrm{H}\right)$.
${ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta=175.31(\mathrm{C}-1), 174.83(\mathrm{C}-11), 139.34(\mathrm{C}-9 \mathrm{a}), 137.78$ (C-9b), $117.93(\mathrm{C}-10 \mathrm{a})$, 116.57 (C-10b), 100.81 (C-2), 71.19 (C-6), 70.52 (C-7), 67.03 (C-4), 52.77 (C-5), 51.38 (C-8), 50.87 (C13), 39.96 (C-3), 22.54 (C-12).

For glycoside deprotection see general procedure in main paper. Compound 12 ($503.3 \mathrm{mg}, 1.451$ mmol, 1 eq.), $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, formic acid ($500 \mu \mathrm{~L}, 610 \mathrm{mg}, 13.3 \mathrm{mmol}, 9$ eq.). Column chromatography was performed with $\mathrm{MeOH}:$ acetone $: \mathrm{H}_{2} \mathrm{O}: \mathrm{DCM}=4: 2: 1: 10$. Yield: 294.0 mg colorless solid (61%). $\mathrm{R}_{\mathrm{f}}=$ 0.67.

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta=5.98$ (ddd, $\left.J=17.1,10.3,8.3 \mathrm{~Hz}, 1 \mathrm{H}, 9 \mathrm{a}-\mathrm{H}\right), 5.82$ (ddd, $J=17.1,10.3,8.7$ $\mathrm{Hz}, 1 \mathrm{H}, 9 \mathrm{~b}-\mathrm{H}), 5.27-5.19(\mathrm{~m}, 4 \mathrm{H}, 10 \mathrm{a}, \mathrm{b}-\mathrm{H}), 4.10-4.00(\mathrm{~m}, 1 \mathrm{H}, 4-\mathrm{H}), 4.02(\mathrm{dd}, \mathrm{J}=10.0,9.8 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H})$, 3.93 (d, J = $10.0 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}$), 3.61 (dd, J = 10.0, 1.0 Hz, 1H, 7-H), 3.20 (ddd, J = 10.0, 8.7, $8.3 \mathrm{~Hz}, 1 \mathrm{H}, 8-$ H), $2.29\left(\mathrm{dd}, J=12.9,4.7 \mathrm{~Hz}, 1 \mathrm{H}, 3_{\mathrm{eq}}-\mathrm{H}\right), 2.13(\mathrm{~s}, 3 \mathrm{H}, 12-\mathrm{H}), 1.93\left(\mathrm{dd}, J=12.9,11.3 \mathrm{~Hz}, 1 \mathrm{H}, 3_{\mathrm{ax}}-\mathrm{H}\right)$.
${ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta=175.74(\mathrm{C}-1), 174.75(\mathrm{C}-11), 139.02(\mathrm{C}-9 \mathrm{a}), 137.24$ (C-9b), 117.25 (C-10a), 116.59 (C-10b), 96.10 (C-2), 70.96 (C-6), 70.19 (C-7), 67.27 (C-4), 52.87 (C-5), 50.94 (C-8), 39.54 (C-3), 22.20 (C-12).

HRMS (ESI) ${ }^{+}: m / z$ calcd for $\left[\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{~N}_{1} \mathrm{O}_{7}\right]+\mathrm{Na}^{+}=338.1210$; found 338.1210

8,9-Dideoxy-8-ethyl-9-methyl-Neu5Ac (14)

Compound 13 ($50 \mathrm{mg}, 0.16 \mathrm{mmol}, 1 \mathrm{eq}$.) was dissolved in dry methanol (5 mL), palladium on coal (30 mg) was added and an orsat rubber expansion bag with ~ 2 bar of H_{2} was placed on the flask for 24 h at RT with vigorous stirring. After filtration through celite the solvent was removed under vacuum. Yield: 48.8 mg colorless solid (96\%).

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta=4.06(\mathrm{dm}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}), 4.00-3.87(\mathrm{~m}, 2 \mathrm{H}, 5-, 6-\mathrm{H}), 3.50(\mathrm{~d}, J=8.9$ $\mathrm{Hz}, 1 \mathrm{H}, 7-\mathrm{H}$), 2.27 (dd, J = 12.9, $5.0 \mathrm{~Hz}, 1 \mathrm{H}, 3_{\text {eq }}-\mathrm{H}$), $2.11(\mathrm{~s}, 3 \mathrm{H}, 12-\mathrm{H}), 1.89\left(\mathrm{dm}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}, 3_{\mathrm{ax}}-\mathrm{H}\right)$, $1.69-1.54(\mathrm{~m}, 2 \mathrm{H}, 8-, 9-\mathrm{H}), 1.51-1.36(\mathrm{~m}, 2 \mathrm{H}, 9-\mathrm{H}) 1.33-1.24(\mathrm{~m}, 2 \mathrm{H}, 9-\mathrm{H}), 0.88(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}, 10-\mathrm{H})$, 0.85 ($\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}, 10-\mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta=176.24(\mathrm{C}-1), 174.74(\mathrm{C}-11), 96.23(\mathrm{C}-2), 71.05(\mathrm{C}-6), 70.10(\mathrm{C}-7), 67.33$ (C-4), 53.11 (C-5), 41.08 (C-8), 39.53 (C-3), 22.20 (C-12), 20.39 (C-9), 19.97 (C-9), 9.63 (C-10), 9.22 (C10).

MS (ESI) : m / z calcd for $\left[\mathrm{C}_{14} \mathrm{H}_{25} \mathrm{~N}_{1} \mathrm{O}_{7}\right]-\mathrm{H}^{+}=318.16$; found 318.16

8,9-Dideoxy-9-methyl-2-O-methyl- β-Neu5Ac (15)

Prepared by the same procedure as for 9 . Yield: colorless solid (98\%). $\mathrm{R}_{\mathrm{f}}=0.59$.

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta=4.05$ (ddd, $\left.J=10.7,10.7,5.0 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}\right), 3.92(\mathrm{dd}, J=10.1,10.1 \mathrm{~Hz}, 1 \mathrm{H}$, $5-\mathrm{H}), 3.75$ (dd, J = 8.6, $5.1 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 3.51(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}) 3.26(\mathrm{~s}, 3 \mathrm{H}, 13-\mathrm{H}), 2.41(\mathrm{dd}, J=$ $\left.13.2,5.0 \mathrm{~Hz}, 1 \mathrm{H}, 3_{\mathrm{eq}}-\mathrm{H}\right), 2.13(\mathrm{~s}, 3 \mathrm{H}, 12-\mathrm{H}), 1.82(\mathrm{dtd}, \mathrm{J}=13.6,8.9,5.2 \mathrm{~Hz}, 1 \mathrm{H}, 8 \mathrm{a}-\mathrm{H}), 1.73(\mathrm{dd}, J=13.2$, $11.4 \mathrm{~Hz}, 1 \mathrm{H}, 3_{\mathrm{ax}}-\mathrm{H}$), 1.62 (dtd, $\left.J=13.6,8.9,5.7 \mathrm{~Hz}, 1 \mathrm{H}, 8 \mathrm{~b}-\mathrm{H}\right), 1.55-1.49(\mathrm{~m}, 1 \mathrm{H}, 9 \mathrm{a}-\mathrm{H}), 1.48-1.37$ (m, $1 \mathrm{H}, 9 \mathrm{~b}-\mathrm{H}), 0.99(\mathrm{t}, \mathrm{J}=7.1,3 \mathrm{H}, 10-\mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta=175.36(\mathrm{C}-1), 174.80(\mathrm{C}-11), 100.41(\mathrm{C}-2), 73.33(\mathrm{C}-6), 68.65(\mathrm{C}-7), 67.22$ (C-4), 52.76 (C-5), 50.48 (C-13), 39.90 (C-3), 34.84 (C-8), 22.20 (C-12), 18.91 (C-9), 13.21 (C-10).

1,7-Lactone (16)

The synthesis of 16 was conducted by a procedure adapted from the literature. ${ }^{[6]}$ For details, see main paper. Column chromatography was performed with EtOAc: $\mathrm{MeOH}=9: 1$. Yield: 28.8 mg colorless solid (16\%). $R_{f}=0.85$.

${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}\right.$, methanol $\left.-d_{4}\right) \delta=4.55(\mathrm{dd}, J=7.7,5.4 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 4.11(\mathrm{~s}, 1 \mathrm{H}, 6-\mathrm{H}), 4.05-3.99$ $(\mathrm{m}, 1 \mathrm{H}, 4-\mathrm{H}), 3.93(\mathrm{~m}, 1 \mathrm{H}, 5-\mathrm{H}), 3.33(\mathrm{~s}, 3 \mathrm{H}, 13-\mathrm{H}), 2.09-2.00\left(\mathrm{dm}, J=14.1 \mathrm{~Hz}, 2 \mathrm{H}, 3_{\mathrm{ax} / \mathrm{eq}}-\mathrm{H}\right), 1.99(\mathrm{~s}, 3 \mathrm{H}$, $12-\mathrm{H}), 1.94-1.83(\mathrm{~m}, 1 \mathrm{H}, 8 \mathrm{a}-\mathrm{H}), 1.77-1.70(\mathrm{~m}, 1 \mathrm{H}, 8 \mathrm{~b}-\mathrm{H}), 1.62-1.53(\mathrm{~m}, 1 \mathrm{H}, 9 \mathrm{a}-\mathrm{H}), 1.51-1.44(\mathrm{~m}, 1 \mathrm{H}$, $9 b-H) 0.99(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}, 10-\mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{MeOD}\right) \delta=172.99(\mathrm{C}-12), 170.48(\mathrm{C}-1), 96.12(\mathrm{C}-2), 80.40(\mathrm{C}-7), 76.00(\mathrm{C}-6)$, 67.55 (C-4), 52.66 (C-5), 51.57 (C-13), 39.36 (C-8), 37.77 (C-3), 22.45 (C-12), 18.96 (C-9), 14.04 (C-10).

HRMS (ESI) ${ }^{+}: \mathrm{m} / \mathrm{z}$ calcd for $\left[\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{~N}_{1} \mathrm{O}_{6}\right]+\mathrm{H}^{+}=288.1442$; found 288.1443

2,7-Anhydro-9-methyl-Neu5Ac (17) / 8,9-dideoxy-9-methyl-Neu5Ac (9)

Compound 15 ($221.7 \mathrm{mg}, 0.73 \mathrm{mmol}, 1$ eq.) was dissolved in $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and formic acid ($30.16 \mu \mathrm{~L}$, 1.1 eq.) was added. The solution was heated to $85^{\circ} \mathrm{C}$ for 24 h . The solvents were removed under vacuum and the solid was purified by column chromatography with MeOH :acetone: $\mathrm{H}_{2} \mathrm{O}: \mathrm{DCM}=$ 4:2:1:10. The deprotected product (9) was furnished as a colorless solid: $71.2 \mathrm{mg}(34 \%)$, and the $2,7-$ lactone (17) was isolated with 40.6 mg (20\%).

${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta=4.62(\mathrm{ddd}, J=6.7,6.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 4.33(\mathrm{dd}, J=1.7,1.0 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H})$, $4.00(\mathrm{ddm}, J=5.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}), 3.97(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 2.23\left(\mathrm{dd}, J=15.3,5.7 \mathrm{~Hz}, 1 \mathrm{H}, 3_{\mathrm{ax}}-\mathrm{H}\right)$, $2.10(\mathrm{~s}, 3 \mathrm{H}, 12-\mathrm{H}), 2.05\left(\mathrm{dd}, \mathrm{J}=15.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}, 3_{\mathrm{eq}}-\mathrm{H}\right), 1.56(\mathrm{~m}, 2 \mathrm{H}, 8-\mathrm{H}), 1.41(\mathrm{~m}, 2 \mathrm{H}, 9-\mathrm{H}), 0.97(\mathrm{t}$, $3 \mathrm{H}, 10-\mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta=174.19(\mathrm{C}-1), 173.57(\mathrm{C}-11), 104.99(\mathrm{C}-2), 79.45(\mathrm{C}-6), 77.32(\mathrm{C}-7), 67.04$ (C-4), 52.13 (C-5), 36.48 (C-8), 35.74 (C-3), 21.88 (C-12), 17.92 (C-9), 13.24 (C-10).

HRMS (ESI) ${ }^{+}: m / z$ calcd for $\left[\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{~N}_{1} \mathrm{O}_{6}\right]+\mathrm{Na}^{+}=296.1105 ;$ found 296.1104

To an aqueous solution of $4(302.7 \mathrm{mg}, 0.90 \mathrm{mmol}, 1 \mathrm{eq}$. in 6 mL$)$ was added 0.2 M NaIO (23.3 mL). After standing for 2 h in the dark at RT TLC showed completion. A solution of $\mathrm{Ba}(\mathrm{OAc})_{2}(35 \mathrm{~mL}, 0.1 \mathrm{M})$ was added to remove IO_{4}^{-}and I-salts. Precipitated salts were filtered off, then CO_{2} was bubbled through the solution to precipitate excess of barium ions. After filtration the solvent was removed under vacuum. The residual solid was dissolved in cold MeOH and salts were filtered off. $\mathrm{R}_{\mathrm{f}}=0.84$.

${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta=8.52(\mathrm{~s}, 1 \mathrm{NH}, 8-\mathrm{H}), 5.16(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1-2 \mathrm{H}, 7-\mathrm{H}), 4.06$ (ddd, J=11.3, 9.9, $5.0 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}$), 3.95 (s, $3 \mathrm{H}, 12-\mathrm{H}$), 3.86 (dd, $J=10.3,10.2 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}$), 3.68 (dd, J = $10.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}$, $6-\mathrm{H}), 3.22(\mathrm{~s}, 3 \mathrm{H}, 11-\mathrm{H}), 2.47\left(\mathrm{dd}, \mathrm{J}=13.3,5.0 \mathrm{~Hz}, 1 \mathrm{H}, 3_{\mathrm{eq}}-\mathrm{H}\right), 2.10(\mathrm{~s}, 3 \mathrm{H}, 10-\mathrm{H}), 1.86(\mathrm{dd}, \mathrm{J}=13.3,11.3$ $\left.\mathrm{Hz}, 1 \mathrm{H}, 3_{\mathrm{ax}}-\mathrm{H}\right)$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{D}_{2} \mathrm{O}\right) \delta=174.58(\mathrm{C}-9), 170.11(\mathrm{C}-1), 99.18(\mathrm{C}-2), 87.88(\mathrm{C}-7), 73.88(\mathrm{C}-6), 66.29(\mathrm{C}-$ 4), 53.69 (C-12), 52.39, (C-5), 51.04 (C-11), 39.10 (C-3), 22.21 (C-10).

Aldehyde 18 (raw product) was dissolved in $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and stirred with BaCO_{3} (282.6 mg ,
$1.43 \mathrm{mmol}, 1.6$ eq.) at $0^{\circ} \mathrm{C}$. Then bromine ($280 \mathrm{mg}, 2.38 \mathrm{mmol}, 2.6$ eq.) was added. The ice bath was removed and the reaction mixture stirred for additional 12 h at RT in the dark. After TLC showed complete conversion, the reaction mixture was filtered. The solvents were removed under vacuum and the remaining solid residue was purified by column chromatography with
$\mathrm{MeOH}:$ acetone: $\mathrm{H}_{2} \mathrm{O}: \mathrm{DCM}=4: 2: 1: 8$. Colorless solid $\mathrm{R}_{\mathrm{f}}=0.44$.
A different synthesis of 19 is described in the literature. ${ }^{[7]}$ No spectral data available.

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta=4.21(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 4.19-4.13(\mathrm{~m}, 1 \mathrm{H}, 4-\mathrm{H}), 4.01-3.95(\mathrm{~m} 1 \mathrm{H}, 5-$ $\mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H}, 11-\mathrm{H}), 3.35(\mathrm{~s}, 3 \mathrm{H}, 10-\mathrm{H}), 2.54\left(\mathrm{dd}, \mathrm{J}=13.4,5.0 \mathrm{~Hz}, 1 \mathrm{H}, 3_{\mathrm{eq}}-\mathrm{H}\right), 2.11(\mathrm{~s}, 3 \mathrm{H}, 9-\mathrm{H}), 1.95$ (dd, J = 13.3, 11.3 Hz, 1H, $3_{\mathrm{ax}}-\mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta=174.89(\mathrm{C}-7), 172.04(\mathrm{C}-8), 169.47(\mathrm{C}-1), 99.47(\mathrm{C}-2), 71.47(\mathrm{C}-6), 65.58$ (C-4), 53.83 (C-11), 53.52 (C-5), 51.35 (C-10), 39.08 (C-3), 22.16 (C-9).

Methyl 5-(acetylamino)-3,5-dideoxy- α-L-arabino-heptulo-2,6-pyranosidaric acid 1-methyl ester 7-(3pentyl)amide (20)

Acid 19 (raw product) was dissolved in DMF (6 mL) and treated with pentan-3-amine ($81.9 \mathrm{mg}, 0.94$ mmol, 1.05 eq.) and HATU ($357.2 \mathrm{mg}, 0.94 \mathrm{mmol}, 1.05 \mathrm{eq}$.). Then DIPEA ($231.3 \mathrm{mg}, 1.788 \mathrm{mmol}, 2.0$ eq.) was added and the reaction mixture stirred for 12 h at RT . The solvents were removed under vacuum and the solid was purified by column chromatography with MeOH :acetone: $\mathrm{H}_{2} \mathrm{O}: \mathrm{DCM}=$ 4:2:1:11. Yield: 99.99mg (31% from 6) colorless solid $R_{f}=0.84$.

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta=4.14-4.09(\mathrm{~m}, 1 \mathrm{H}, 4-\mathrm{H}), 4.07(\mathrm{~d}, \mathrm{~J}=10.3 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 4.04-3.95(\mathrm{dd}, J=$ $10.3,10.1 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}, 14-\mathrm{H}), 3.68(\mathrm{dt}, J=8.2,5.0 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}), 3.32(\mathrm{~s}, 3 \mathrm{H}, 13-\mathrm{H}), 2.51$ (dd, $J=13.4,4.9 \mathrm{~Hz}, 1 \mathrm{H}, 3_{\mathrm{eq}}-\mathrm{H}$), $2.07(\mathrm{~s}, 3 \mathrm{H}, 12-\mathrm{H}), 1.95\left(\mathrm{dd}, J=13.4,11.2 \mathrm{~Hz}, 1 \mathrm{H}, 3_{\mathrm{ax}}-\mathrm{H}\right), 1.69-1.58(\mathrm{~m}$, 2H, 9-H), 1.53-1.45 (m, 2H, 9'-H), 0.93 (t, 7.7 Hz, 3H, 10-H), 0.91 (t, $\left.7.7 \mathrm{~Hz}, 3 \mathrm{H}, 10^{\prime}-\mathrm{H}\right)$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta=174.20(\mathrm{C}-11), 169.58(\mathrm{C}-1), 169.04(\mathrm{C}-7), 99.61$ (C-2), $72.90(\mathrm{C}-6), 65.87$ (C-4), 53.74 (C-5), 53.66 (C-14), 53.29 (C-8), 51.14 (C-13), 39.08 (C-3), 26.57 (C-9), 26.43 (C-9'), 22.20 (C-12), 9.69 (C-10), 9.65 (C-10').

Methyl 5-(acetylamino)-3,5-dideoxy- α-L-arabino-heptulo-2,6-pyranosidaric acid 7-(3-pentyl)amide (21)

A solution of $\mathbf{2 0}$ ($375 \mathrm{mg}, 1.04 \mathrm{mmol}, 1$ eq.) in $0.06 \mathrm{~N} \mathrm{NaOH}(30 \mathrm{~mL})$ was stirred at RT for 3 h . After complete conversion the mixture was neutralized to pH 7.0 by addition of Dowex50 $\mathrm{H}^{+}(2.5 \mathrm{~g})$. The suspension was filtered and the volume of the filtrate reduced to approximately 10 mL in vacuo. This solution was lyophilized to obtain a colorless crystalline solid. Yield: $319.9 \mathrm{mg}(89 \%) \mathrm{R}_{\mathrm{f}}=0.59$.

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta=4.11-4.02(\mathrm{~m}, 1 \mathrm{H}, 4-\mathrm{H}), 4.99-3.94(\mathrm{~m}, 1 \mathrm{H}, 5-\mathrm{H}), 3.94-3.90(\mathrm{~d}, 1 \mathrm{H}, 6-\mathrm{H})$, $3.67(\mathrm{tt}, J=8.6,4.1 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}), 3.25(\mathrm{~s}, 3 \mathrm{H}, 13-\mathrm{H}), 2.44\left(\mathrm{dd}, J=13.3,5.0 \mathrm{~Hz}, 1 \mathrm{H}, 3_{\mathrm{eq}}-\mathrm{H}\right), 2.07(\mathrm{~s}, 3 \mathrm{H}$, $12-\mathrm{H}), 1.80\left(\mathrm{dd}, \mathrm{J}=13.3,11.3 \mathrm{~Hz}, 1 \mathrm{H}, 3_{\mathrm{ax}}-\mathrm{H}\right), 1.68-1.58(\mathrm{~m}, 2 \mathrm{H}, 9-\mathrm{H}), 1.57-1.45\left(\mathrm{~m}, 2 \mathrm{H}, 9^{\prime}-\mathrm{H}\right), 0.94$ (t, $7.3 \mathrm{~Hz}, 3 \mathrm{H}, 10-\mathrm{H}), 0.91\left(\mathrm{t}, 7.3 \mathrm{~Hz}, 3 \mathrm{H}, 10^{\prime}-\mathrm{H}\right)$.
${ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta=174.41(\mathrm{C}-1), 174.20(\mathrm{C}-11), 170.17(\mathrm{C}-7), 100.93(\mathrm{C}-2), 72.93(\mathrm{C}-6), 66.54$ (C-4), 54.45 (C-5), 53.22 (C-8), 50.60 (C-13), 39.82 (C-3), 26.59 (C-9), 26.37 (C-9'), 22.20 (C-12), 9.81 (C-10), 9.71 (C-10').

Aldehyde 6 (350 mg , 1.34 mmol , 1 eq.) was dissolved in $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and stirred with BaCO_{3} ($362.6 \mathrm{mg}, 1.84 \mathrm{mmol}, 1.37 \mathrm{eq}$.) at $0^{\circ} \mathrm{C}$, then bromine ($244.1 \mathrm{mg}, 1.53 \mathrm{mmol}, 1.14 \mathrm{eq}$.) was added. The ice bath was removed and the reaction mixture was stirred for an additional 12 h at RT in the dark. When TLC showed complete conversion, the reaction mixture was filtered. The solvents were removed under vacuum and the remaining solid purified by column chromatography with $\mathrm{MeOH}:$ acetone $: \mathrm{H}_{2} \mathrm{O}: \mathrm{DCM}=4: 2: 1: 8$. Yield: 357.6 mg colorless solid (97%). $\mathrm{R}_{\mathrm{f}}=0.32$.

A different synthesis of $\mathbf{2 3}$ is described in the literature. ${ }^{[7]}$ No spectral data available.

${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta=4.24(\mathrm{ddd}, J=11.4,10.1,5.1 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}), 4.08(\mathrm{dd}, J=10.5,10.1 \mathrm{~Hz}, 1 \mathrm{H}$, $5-\mathrm{H}), 4.03(\mathrm{~d}, \mathrm{~J}=10.5 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 3.39(\mathrm{~m}, 3 \mathrm{H}, 10-\mathrm{H}), 2.56\left(\mathrm{dd}, J=13.2,5.1 \mathrm{~Hz}, 1 \mathrm{H}, 3_{\mathrm{eq}}-\mathrm{H}\right), 2.23(\mathrm{~s}$, $3 \mathrm{H}, 9-\mathrm{H}$), 2.00 (dd, $J=13.2,11.4 \mathrm{~Hz}, 1 \mathrm{H}, 3_{\mathrm{ax}}-\mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{D}_{2} \mathrm{O}\right) \delta=175.69(\mathrm{C}-7), 174.82(\mathrm{C}-1), 174.49(\mathrm{C}-8), 100.84(\mathrm{C}-2), 73.68(\mathrm{C}-6), 66.77$ (C-4), 54.18 (C-10), 50.69 (C-5), 39.64 (C-3), 22.23 (C-9).

Compound 7 ($400.0 \mathrm{mg}, 1.32 \mathrm{mmol}, 1 \mathrm{eq}$.) was dissolved in dry $\mathrm{MeOH}(13 \mathrm{~mL}$) and pyridine (308 mg , $3.90 \mathrm{mmol}, 314 \mu \mathrm{~L}, 3$ eq.) was added. Ozone was bubbled through the solution for 1.28 min with [$3 \mathrm{~g} / \mathrm{h}$] ozone at $-78^{\circ} \mathrm{C}$. Afterwards, argon was bubbled through the solution for 10 min . $\mathrm{NaBH}_{4}(249.4$ $\mathrm{mg}, 6.59 \mathrm{mmol}, 5 \mathrm{eq}$.) and CeCl_{3} ($97.5 \mathrm{mg}, 0.40 \mathrm{mmol}, 0.3 \mathrm{eq}$.) was added. The solution was allowed to warm up to RT over 14 h . The solvent was removed and the solid was column purified with MeOH:acetone: $\mathrm{H}_{2} \mathrm{O}: \mathrm{DCM}=4: 2: 1: 7$. Yield: 258.5 mg colorless solid (61%). $\mathrm{R}_{\mathrm{f}}=0.44$.

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta=4.05(\mathrm{ddd}, J=11.3,10.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}), 3.96-3.87(\mathrm{~m}, 2 \mathrm{H}, 5-7-\mathrm{H}), 3.81$ (ddd, J=10.0, 5.5, $3.1 \mathrm{~Hz}, 2 \mathrm{H}, 9-\mathrm{H}$), 3.47 (dd, J = 10.3, $1.2 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}$), $3.24(\mathrm{~s}, 3 \mathrm{H}, 12-\mathrm{H}), 2.41(\mathrm{dd}, J=$ $13.1,5.1 \mathrm{~Hz}, 1 \mathrm{H}, 3_{\text {eq }}-\mathrm{H}$), $2.12(\mathrm{~s}, 3 \mathrm{H}, 11-\mathrm{H}), 2.12-2.04(\mathrm{~m}, 1 \mathrm{H}, 8 \mathrm{a}-\mathrm{H}), 1.83(\mathrm{dtd}, \mathrm{J}=14.5,7.4,3.9 \mathrm{~Hz}, 1 \mathrm{H}$, $8 b-H), 1.72$ (dd, J = 13.2, 11.4 Hz, 1H, $3_{a x}-H$).
${ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta=175.32(\mathrm{C}-1), 174.87(\mathrm{C}-10), 100.45(\mathrm{C}-2), 73.93(\mathrm{C}-6), 67.08(\mathrm{C}-4), 65.78$ (C-7), 58.80 (C-9), 52.63 (C-5), 50.49 (C-12), 39.87 (C-3), 35.26 (C-8), 22.17 (C-11).

8-Deoxy-Neu5Ac (26)

For glycoside deprotection see general procedure in main paper. Compound $\mathbf{2 5}$ ($228.5 \mathrm{mg}, 0.74$ $\mathrm{mmol}, 1$ eq.), $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, formic acid ($500 \mu \mathrm{~L}, 610 \mathrm{mg}, 13.3 \mathrm{mmol}, 18$ eq.). Column chromatography was performed with MeOH :acetone: $\mathrm{H}_{2} \mathrm{O}: \mathrm{DCM}=4: 2: 1: 7$ Yield: 111.74 mg colorless solid (51%). $\mathrm{R}_{\mathrm{f}}=$ 0.39

Spectral data are in accordance with the literature.

${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta=4.06$ (ddd, $\left.J=11.5,10.0,4.9 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}\right), 3.94$ (dd, J=10.2, $10.1 \mathrm{~Hz}, 1 \mathrm{H}$, $5-H$), 3.89 (ddd, $J=9.0,4.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}$), 3.75 (dd, $J=7.1,5.8 \mathrm{~Hz}, 2 \mathrm{H}, 9-\mathrm{H}$), 3.68 (dd, $J=10.4,1.4$ $\mathrm{Hz}, 1 \mathrm{H}, 6-\mathrm{H}$), 2.27 (dd, J = 12.9, $4.9 \mathrm{~Hz}, 1 \mathrm{H}, 3_{\text {eq }}-\mathrm{H}$), 2.12 (s, 3H, 11-H), 1.96 (ddt, J = 14.5, 9.0, 5.8 Hz ,

${ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta=176.70(\mathrm{C}-1), 174.91(\mathrm{C}-10), 96.35(\mathrm{C}-2), 73.60(\mathrm{C}-6), 67.31(\mathrm{C}-4), 65.79$ (C-7), 58.67 (C-9), 52.91 (C-5), 39.54 (C-3), 35.18 (C-8), 22.13 (C-11).

MS (ESI): m / z calcd for $\left[\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{~N}_{1} \mathrm{O}_{8}\right]-\mathrm{H}^{+}=292.10$; found 292.10

8-Deoxy-2-O-methyl-9-oxo- β-Neu5Ac (27)

Compound 7 ($250.0 \mathrm{mg}, 0.82 \mathrm{mmol}, 1$ eq.) was dissolved in dry $\mathrm{MeOH}(10 \mathrm{~mL}$) and ozone was bubbled through the solution for 15 min with $[3 \mathrm{~g} / \mathrm{h}]$ ozone at $-78^{\circ} \mathrm{C}$. Afterwards, argon was bubbled through the solution for $10 \mathrm{~min} . \mathrm{NaBH}_{4}\left(155.9 \mathrm{mg}, 4.12 \mathrm{mmol}\right.$, 5 eq .) and CeCl_{3} ($60.9 \mathrm{mg}, 0.25 \mathrm{mmol}$, 0.3 eq.) was added. The solution was allowed to warm to RT over 14 h . The solvent was removed and the solid was column purified with $\mathrm{MeOH}:$ acetone: $\mathrm{H}_{2} \mathrm{O}: \mathrm{DCM}=4: 2: 1: 7$. Yield: 108.9 mg colorless solid (41\%). $R_{f}=0.27$.

${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta=4.19$ (ddd, $J=7.8,6.5,1.3 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}$), 4.05 (ddd, $J=11.4,10.0,5.0 \mathrm{~Hz}$, $1 \mathrm{H}, 4-\mathrm{H}), 3.93$ (dd, J = 10.1, $10.2 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}$), 3.54 (dd, J = 10.3, 1.3 Hz, 1H, $6-\mathrm{H}$), $3.23(\mathrm{~s}, 3 \mathrm{H}, 12-\mathrm{H}$), 2.73 (dd, $J=15.4,7.8 \mathrm{~Hz}, 1 \mathrm{H}, 8 \mathrm{a}-\mathrm{H}$), $2.65(\mathrm{dd}, J=15.4,6.5 \mathrm{~Hz}, 1 \mathrm{H}, 8 \mathrm{~b}-\mathrm{H}), 2.41(\mathrm{dd}, J=13.1,5.1 \mathrm{~Hz}, 1 \mathrm{H}$, $3_{\text {eq }}-H$), $2.15(\mathrm{~s}, 3 \mathrm{H}, 11-\mathrm{H}), 1.73\left(\mathrm{dd}, \mathrm{J}=13.2,11.4 \mathrm{~Hz}, 1 \mathrm{H}, 3_{\mathrm{ax}}-\mathrm{H}\right)$.
${ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta=179.05(\mathrm{C}-9), 175.32(\mathrm{C}-1), 174.95(\mathrm{C}-10), 100.51(\mathrm{C}-2), 73.05(\mathrm{C}-6), 67.14$ (C-4), 66.67 (C-7), 52.61 (C-5), 50.52 (C-12), 40.74 (C-8), 39.92 (C-3), 22.22 (C-11).

8-Deoxy-9-oxo-Neu5Ac (

For glycoside deprotection see general procedure in main paper. (3x).
Compound 27 ($108.9 \mathrm{mg}, 0.34 \mathrm{mmol}, 1$ eq.), $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, formic acid ($500 \mu \mathrm{~L}, 610 \mathrm{mg}, 13.3 \mathrm{mmol}$, 39 eq.). Column chromatography was performed with $\mathrm{MeOH}:$ acetone: $\mathrm{H}_{2} \mathrm{O}: \mathrm{DCM}=4: 2: 1: 8$. Yield: 30.7 mg colorless solid (30\%). $\mathrm{R}_{\mathrm{f}}=0.25$

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta=4.19-4.14(\mathrm{~m}, 1 \mathrm{H}, 7-\mathrm{H}), 4.05$ (ddd, $\left.J=11.5,10.0,4.9 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}\right), 3.94$ (dd, $J=10.1,10.2 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 3.73(\mathrm{dd}, J=10.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 2.63(\mathrm{dd}, J=15.1,7.9 \mathrm{~Hz}, 1 \mathrm{H}, 8 \mathrm{a}-\mathrm{H})$, 2.53 (dd, J = 15.1, $6.0 \mathrm{~Hz}, 1 \mathrm{H}, 8 \mathrm{~b}-\mathrm{H}$), 2.27 (dd, J = 13.0, $4.9 \mathrm{~Hz}, 1 \mathrm{H}, 3_{\mathrm{eq}}-\mathrm{H}$), 2.13 (s, 3H, 11-H), 1.88 (dd, J $\left.=13.0,11.5 \mathrm{~Hz}, 1 \mathrm{H}, 3_{\mathrm{ax}}-\mathrm{H}\right)$.
${ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta=178.92(\mathrm{C}-9), 176.72(\mathrm{C}-1), 174.97(\mathrm{C}-10), 96.42(\mathrm{C}-2), 73.19(\mathrm{C}-6), 67.25$ (C-4), 66.46 (C-7), 52.81 (C-5), 40.77 (C-8), 39.44 (C-3), 22.20 (C-11).

MS (ESI) $)^{-}: m / z$ calcd for $\left[\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{~N}_{1} \mathrm{O}_{9}\right]-\mathrm{H}^{+}=306.08$; found 306.08

8-Deoxy-9-hydroxymethyl-2-O-methyl- β-Neu5Ac (29)

AD-mix $\beta(0.923 \mathrm{~g})$ was dissolved in $\mathrm{H}_{2} \mathrm{O}(3 \mathrm{~mL})$ and ${ }^{\mathrm{t}} \mathrm{BuOH}(3 \mathrm{~mL})$. The solution was cooled to $0^{\circ} \mathrm{C}$ and compound 7 ($140 \mathrm{mg}, 0.46 \mathrm{mmol}, 1 \mathrm{eq}$.) was added (dissolved in $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$ and ${ }^{\mathrm{t}} \mathrm{BuOH}(1 \mathrm{~mL})$). The solution was stirred for 24 h and then allowed to warm up to RT. To stop the reaction, $\mathrm{Na}_{2} \mathrm{SO}_{3}$ solution was added to the slurry. The reaction mixture was filtered over celite and dried directly under vacuum. The resulting slightly orange solid was column purified with MeOH :DCM = 5:1 gradient towards MeOH :acetone $: \mathrm{H}_{2} \mathrm{O}: \mathrm{DCM}=4: 2: 1: 7$. Yield: 64.7 mg colorless solid (42%). $\mathrm{R}_{\mathrm{f}}=0.28$.

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta=4.09-4.03(\mathrm{~m}, 1 \mathrm{H}, 7(R / \mathrm{S})-\mathrm{H}), 4.02-3.96(\mathrm{~m}, 2 \mathrm{H}, 4(R)-, 9(R)-, 10(S)-\mathrm{H})$, 3.96-3.89 (m, 1.8H, 5(R/S)-, 4(S)-, 9(S)-H), 3.69 (ddd, $J=11.8,3.7,1.8 \mathrm{~Hz}, 1.2 \mathrm{H}, 10 \mathrm{a}(R)-\mathrm{H}), 3.57$ (ddd, J $=17.1,11.8,6.8 \mathrm{~Hz}, 1.2 \mathrm{H}, 10 \mathrm{~b}(R)-\mathrm{H}), 3.51(\mathrm{dd}, J=10.3,1.2 \mathrm{~Hz}, 0.4 \mathrm{H}, 6(S)-\mathrm{H}), 3.44(\mathrm{dd}, J=10.3,1.3 \mathrm{~Hz}$, $0.6 \mathrm{H}, 6(R)-\mathrm{H}), 3.24(2 \mathrm{xs}, 3 \mathrm{H}, 13-\mathrm{H}), 2.41\left(2 x d d, J=13.2,5.1 \mathrm{~Hz}, 1 \mathrm{H}, 3_{\text {eq }}-\mathrm{H}\right), 2.13,2.12(2 \mathrm{xs}, 3 \mathrm{H}, 12-\mathrm{H})$, 1.99 (ddd, $J=14.6,10.9,2.8 \mathrm{~Hz}, 0.6 \mathrm{H}, 8 \mathrm{a}(R)-\mathrm{H}), 2.01-1.94(\mathrm{~m}, 0.4 \mathrm{H}, 8 \mathrm{a}(\mathrm{S})-\mathrm{H}), 1.94-1.86(\mathrm{~m}, 0.4 \mathrm{H}$, $8 \mathrm{~b}(\mathrm{~S})-\mathrm{H}), 1.73\left(\mathrm{dd}, J=13.2,11.5 \mathrm{~Hz}, 1 \mathrm{H}, 3_{\mathrm{ax}}-\mathrm{H}\right), 1.53(\mathrm{ddd}, J=14.6,10.2,2.6 \mathrm{~Hz}, 0.6 \mathrm{H}, 8 \mathrm{~b}(R)-\mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta=174.83(\mathrm{C}-1), 174.74(\mathrm{C}-1), 174.42(\mathrm{C}-11 R), 170.59(\mathrm{C}-11 \mathrm{~S}), 100.01(\mathrm{C}-2 \mathrm{~S})$, 99.95 (C-2R), 74.03 (C-6R), 72.63 (C-6S), 69.29 (C-4S), 68.23 (C-4R), 66.58 (C-7R), 66.53 (C-7S), 65.96 (C-9S), 65.62 (C-10R), 64.74 (C-9R), 64.69 (C-10S), 52.23 (C-5R), 52.05 (C-5S), 50.06 (C-13S), 49.99 (C$13 R$), 39.38 (C-3), 35.88 (C-8R), 35.38 (C-8S), 21.68 (C-12).

8-Deoxy-9-hydroxymethyl-Neu5Ac (30)

For glycoside deprotection see general procedure in main paper. (2x).
Compound 29 ($64.7 \mathrm{mg}, 0.192 \mathrm{mmol}, 1 \mathrm{eq}$), , $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, formic acid ($500 \mu \mathrm{~L}, 610 \mathrm{mg}, 13.3 \mathrm{mmol}$, 39 eq.). Chromatography was performed with $\mathrm{MeOH}:$ acetone $: \mathrm{H}_{2} \mathrm{O}: \mathrm{DCM}=4: 2: 1: 8$. Yield: 24.68 mg colorless solid (40\%). $R_{f}=0.27$.

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta=4.11-4.03(\mathrm{~m}, 1 \mathrm{H}, 7(R / S)-\mathrm{H}), 4.00-3.90(\mathrm{~m}, 3 \mathrm{H}, 4(R)-, 5(R / S)-, 9(\mathrm{R} / \mathrm{S})-$, $\mathrm{H} 10(\mathrm{~S})-\mathrm{H}), 3.89-3.82(\mathrm{~m}, 0.4 \mathrm{H}, 4(\mathrm{~S})-\mathrm{H}), 3.76(\mathrm{dd}, \mathrm{J}=10.3,1.3 \mathrm{~Hz}, 0.4 \mathrm{H}, 6(\mathrm{~S})-\mathrm{H}), 3.70-3.63(\mathrm{~m}, 1.6 \mathrm{H}$, $6(R)-, 10 \mathrm{a}(R)-\mathrm{H}), 3.60-3.49(\mathrm{~m}, 1 \mathrm{H}, 10 \mathrm{~b}(R)-\mathrm{H}), 2.32\left(2 x d d, J=13.1,5.0 \mathrm{~Hz}, 1 \mathrm{H}, 3_{\mathrm{eq}}-\mathrm{H}\right), 2.13(2 \mathrm{x} \mathrm{s}, 3 \mathrm{H}$, $12-\mathrm{H}), 2.12-2.09(\mathrm{~m}, 0.6 \mathrm{H}, 8 \mathrm{a}(R)-\mathrm{H}), 1.93-1.80\left(\mathrm{~m}, 1.8 \mathrm{H}, 8 \mathrm{a} / \mathrm{b}(\mathrm{S})-, 3_{\mathrm{ax}}-\mathrm{H}\right), 1.48$ (ddd, J=14.7, 9.9, 2.9 $\mathrm{Hz}, 0.6 \mathrm{H}, 8 \mathrm{~b}(\mathrm{R})-\mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta=\delta 176.67(\mathrm{C}-1), 174.98(\mathrm{C}-11), 96.29(\mathrm{C}-2), 74.43(\mathrm{C}-6 R), 72.69(\mathrm{C}-6 \mathrm{~S})$, 69.39 (C-4S), 68.80 (C-4R), 67.29 (C-7) 66.27 (C-9S), 66.05 (C-10), 65.42 (C-10), 65.35 (C-9R), 53.03 (C$5 R$), 52.86 (C-5S), 39.58 (C-3S), 39.55 (C-3R), 36.50 (C-8R), 35.67 (C-8S), 22.18 (C-12).
$\mathrm{MS}(\mathrm{ESI})^{-}: m / z$ calcd for $\left[\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{~N}_{1} \mathrm{O}_{9}\right]-\mathrm{H}^{+}=322.11$; found 322.11

Aldehyde 6 ($150 \mathrm{mg}, 0.57 \mathrm{mmol}$, 1 eq.) was dissolved in $10 \mathrm{mM} \mathrm{NaOH}(40 \mathrm{~mL})$ containing NaBH_{4} ($65.2 \mathrm{mg}, 1.72 \mathrm{mmol}, 3$ eq.) and the mixture stirred for 1 h at RT. When TLC showed complete conversion, the reaction was quenched by addition of Dowex50 $\left(\mathrm{H}^{+}\right)$. The solvents were removed under vacuum and the remaining solid was purified by column chromatography using EE:MeOH:AcOH = 80:20:1. Yield: 143.6 mg colorless solid (95%). $\mathrm{R}_{\mathrm{f}}=0.35$.

Synthesis of P35 was described in the literature ${ }^{[8]}$ but no spectroscopic data are available.

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta=4.05(\mathrm{ddd}, J=11.4,9.9,5.1 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}), 3.80-3.71(\mathrm{~m}, 3 \mathrm{H}, 5-, 7-\mathrm{H}), 3.62$ (ddd, J = 10.5, 5.6, 2.4 Hz, 1H, 6-H), $3.25(\mathrm{~s}, 3 \mathrm{H}, 10-\mathrm{H}), 2.44\left(\mathrm{dd}, J=13.2,5.1 \mathrm{~Hz}, 1 \mathrm{H}, 3_{\mathrm{eq}}-\mathrm{H}\right.$), $2.10(\mathrm{~s}$, $3 \mathrm{H}, 9-\mathrm{H}$), 1.72 (dd, J = 13.3, 11.4 Hz, 1H, $3_{\mathrm{ax}}-\mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta=174.77(\mathrm{C}-8), 174.58(\mathrm{C}-1), 99.93(\mathrm{C}-2), 72.72(\mathrm{C}-6), 66.74(\mathrm{C}-4), 61.19(\mathrm{C}-$ 7), 52.30 ($\mathrm{C}-5$), 50.43 (C-10), 39.71 (C-3), 22.11 (C-9).

5-(Acetylamino)-3,5-dideoxy-L-arabino-heptulosonic acid (35)

For glycoside deprotection see general procedure in main paper. (2x).
Compound P35 (143.6 mg, 0.55 mmol , 1eq.), $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, formic acid ($500 \mu \mathrm{~L}, 610 \mathrm{mg}, 13.3 \mathrm{mmol}$, 24 eq.). Column chromatography was performed with $\mathrm{MeOH}:$ acetone: $\mathrm{H}_{2} \mathrm{O}: \mathrm{DCM}=4: 2: 1: 8$. Yield:
114.1 mg colorless solid (85%). $\mathrm{R}_{\mathrm{f}}=0.34$.

Synthesis of $\mathbf{3 5}$ was described in the literature ${ }^{[8]}$ but no spectroscopic data are available.

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta=8.49(1 \mathrm{H}, \mathrm{NH}), 4.04$ (ddd, $\left.J=11.8,9.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}\right), 3.87-3.82(\mathrm{~m}, 1 \mathrm{H}$, $6-\mathrm{H}), 3.76$ (dd, J = 10.1, $10.2 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}$), $3.71-3.59(\mathrm{~m}, 2 \mathrm{H}, 7-\mathrm{H}), 2.28\left(\mathrm{dd}, \mathrm{J}=13.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}, 3_{\mathrm{eq}}-\mathrm{H}\right.$), 2.09 (s, 3H, 9-H), 1.86 (dd, J = 13.0, $11.8 \mathrm{~Hz}, 1 \mathrm{H}, 3_{\mathrm{ax}}-\mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta=176.42(\mathrm{C}-8), 174.79(\mathrm{C}-1), 96.22(\mathrm{C}-2), 72.67(\mathrm{C}-6), 66.98(\mathrm{C}-4), 61.10(\mathrm{C}-$ 7), 52.50 (C-5), 39.49 (C-3), 22.12 (C-9).

MS (ESI): m / z calcd for $\left[\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{~N}_{1} \mathrm{O}_{7}\right]-\mathrm{H}^{+}=248.08$; found 248.08

Aldehyde 6 ($404 \mathrm{mg}, 1.55 \mathrm{mmol}, 1$ eq.) was dissolved in a mixture of $1 \mathrm{M} \mathrm{NaOH}(30 \mathrm{~mL}$) and 30 mL THF. Hydroxylammonium chloride ($322.4 \mathrm{mg}, 4.64 \mathrm{mmol}, 3$ eq.) was added and the mixture stirred for 6 h at RT. After completion, 2 M HCl was added to $\mathrm{pH}=7$ and the solvents were removed under vacuum and the solid was purified by column chromatography with EE:MeOH:DCM = 10:5:1 ($\mathrm{R}_{\mathrm{f}}=$ $0.15)$. Yield: 341.7 mg colorless solid (80%) ($\mathrm{E}: \mathrm{Z=94:6)}$.

${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta=7.56(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}, 7 \mathrm{E}-\mathrm{H}), 6.97(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 7 \mathrm{Z}-\mathrm{H}) 4.16-4.07(\mathrm{~m}, 2 \mathrm{H}$, $4-, 6-H), 3.83(\mathrm{t}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 3.25(\mathrm{~s}, 3 \mathrm{H}, 10-\mathrm{H}), 2.47\left(\mathrm{dd}, J=13.3,5.1 \mathrm{~Hz}, 1 \mathrm{H}, 3_{\mathrm{eq}}-\mathrm{H}\right), 2.08(\mathrm{~s}$, $3 H, 9-H), 1.87-1.70\left(m, 1 H, 3_{a x}-H\right)$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta=174.73(\mathrm{C}-1), 173.87(\mathrm{C}-8), 149.15(\mathrm{C}-7), 100.45(\mathrm{C}-2), 70.83(\mathrm{C}-6), 65.85$ (C-4), 54.12 (C-5), 50.71 (C-10), 39.72 (C-3), 22.12 (C-9).

Oxime 31 ($211.5 \mathrm{mg}, 0.77 \mathrm{mmol}$, 1 eq.) was dissolved in dry $\mathrm{MeOH}(5 \mathrm{~mL})$. Then premixed $\mathrm{NaBH}_{3} \mathrm{CN}$ ($192.5 \mathrm{mg}, 3.06 \mathrm{mmol}, 4$ eq.), $\mathrm{MoCl}_{5}\left(209.2 \mathrm{mg}, 0.77 \mathrm{mmol}, 1 \mathrm{eq}\right.$.), and $\mathrm{NaHSO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ (317.1 mg , $2.30 \mathrm{mmol}, 3$ eq.) was added at once under argon atmosphere. The slurry was refluxed for 3 hours. The reaction mixture was neutralized with NaHCO_{3} ($5 \% \mathrm{aq}$.), the solvents were removed under vacuum, and the solid was purified by column chromatography with MeOH :acetone: $\mathrm{H}_{2} \mathrm{O}: \mathrm{DCM}=$ 4:2:1:8. Yield: 86.3 mg colorless solid (43\%). $\mathrm{R}_{\mathrm{f}}=0.32$.

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta=4.17$ (ddd, $\left.J=11.4,9.9,5.0 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}\right), 3.89$ (ddd, $J=9.9,6.8,2.7 \mathrm{~Hz}$, $1 \mathrm{H}, 6-\mathrm{H}) 4.72$ (dd, $J=10.2,10.3 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 3.41(\mathrm{dd}, J=13.6,2.8 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 3.29(\mathrm{~s}, 3 \mathrm{H}, 10-\mathrm{H})$, 3.25 (dd, $J=13.6,7.0 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}$), 2.51 (dd, $J=13.3,5.0 \mathrm{~Hz}, 1 \mathrm{H}, 3_{\text {eq }}-\mathrm{H}$), 2.18 ($\mathrm{s}, 3 \mathrm{H}, 9-\mathrm{H}$), 1.78 (dd, $J=$ $\left.13.3,11.4 \mathrm{~Hz}, 1 \mathrm{H}, 3_{\mathrm{ax}}-\mathrm{H}\right)$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta=175.51(\mathrm{C}-1), 174.55(\mathrm{C}-8), 100.48(\mathrm{C}-2), 68.88(\mathrm{C}-6), 65.85(\mathrm{C}-4), 53.39$ (C-5), 50.79 (C-10), 40.70 (C-7), 39.91 (C-3), 22.10 (C-9).

Amine 32 ($200.8 \mathrm{mg}, 0.77 \mathrm{mmol}, 1 \mathrm{eq}$.) was dissolved in dry MeOH, acetic anhydride ($781.7 \mathrm{mg}, 7.66$ $\mathrm{mmol}, 10$ eq.) was added and the mixture stirred for 3 h at RT. After completion, the solvents were removed and the solid was purified by column chromatography using MeOH :acetone: $\mathrm{H}_{2} \mathrm{O}: \mathrm{DCM}=$ 4:2:1:8. Yield: 221.3 mg colorless solid (95%). $\mathrm{R}_{\mathrm{f}}=0.44$.

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta=4.05-3.92(\mathrm{~m}, 1 \mathrm{H}, 4-\mathrm{H}), 3.77-3.61(\mathrm{~m}, 2 \mathrm{H}, 5-, 6-\mathrm{H}) 3.50(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}, 7-$ H), $3.22(\mathrm{~s}, 3 \mathrm{H}, 12-\mathrm{H}), 2.42\left(\mathrm{dd}, J=13.2,5.0 \mathrm{~Hz}, 1 \mathrm{H}, 3_{\mathrm{eq}}-\mathrm{H}\right.$), $2.09(\mathrm{~s}, 3 \mathrm{H}, 9-\mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}, 11-\mathrm{H}), 1.71$ (dd, J = 13.3, 11.4 Hz, 1H, $3_{\mathrm{ax}}-\mathrm{H}$).
${ }^{13} \mathrm{CNMR}\left(126 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta=174.91(\mathrm{C}-1), 174.44$ (C-8), 173.93 (C-10), 100.30 (C-2), 70.97 (C-6), 66.93 (C-4), 53.17 (C-5), 50.38 (C-12), 39.96 (C-7), 39.71 (C-3), 22.24 (C-9), 21.85 (C-11).

MS (ESI) ${ }^{+}: m / z$ calcd for $\left[\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{7}\right]+\mathrm{H}^{+}=305.13$; found 305.13

5,7-Di(acetylamino)-3,5,7-trideoxy-L-arabino-heptulosonic acid (34)

For glycoside deprotection see general procedure in main paper. Compound 33 ($137.3 \mathrm{mg}, 0.451$ $\mathrm{mmol}, 1$ eq.), $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, formic acid ($500 \mu \mathrm{~L}, 610 \mathrm{mg}, 13.3 \mathrm{mmol}, 29 \mathrm{eq}$.). Column chromatography was performed with MeOH :acetone: $\mathrm{H}_{2} \mathrm{O}: \mathrm{DCM}=4: 2: 1: 8$. Yield: 64.9 mg colorless solid $(50 \%) . \mathrm{R}_{\mathrm{f}}=$ 0.43 .

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta=4.05(\mathrm{dd}, \mathrm{J}=11.5,4.9 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}), 3.98(\mathrm{~m}, 1 \mathrm{H}, 6-\mathrm{H}) 3.82-3.71(\mathrm{~m}, 1 \mathrm{H}$, $5-\mathrm{H}$), 3.57 (ddd, $J=14.5,5.3,1.0 \mathrm{~Hz}, 1 \mathrm{H}, 7 \mathrm{a}-\mathrm{H}$), 3.35 (dd, , J = 14.5, $2.6 \mathrm{~Hz}, 1 \mathrm{H}, 7 \mathrm{~b}-\mathrm{H}$), 2.30 (dd, $J=$ $13.1,4.9 \mathrm{~Hz}, 1 \mathrm{H}, 3_{\mathrm{eq}}-\mathrm{H}$), $2.09(\mathrm{~s}, 3 \mathrm{H}, 9-\mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}, 11-\mathrm{H}), 1.90\left(\mathrm{dd}, \mathrm{J}=13.1,11.5, \mathrm{~Hz}, 1 \mathrm{H}, 3_{\mathrm{ax}}-\mathrm{H}\right)$.
${ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta=176.01(\mathrm{C}-1), 174.44(\mathrm{C}-8), 174.06(\mathrm{C}-10), 96.29(\mathrm{C}-2), 70.94(\mathrm{C}-6), 67.06$ (C-4), 53.28 (C-5), 39.81 (C-7), 39.57 (C-3), 22.28 (C-9), 21.90 (C-11).

MS (ESI): $: m / z$ calcd for $\left[\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{7}\right]-\mathrm{H}^{+}=289.10$; found 289.10

General procedure see main paper.
(50 mg Neu5Ac starting material) Yield: 93.4 mg colorless solid (91\%), $\mathrm{R}_{\mathrm{f}}: \mathbf{0 . 2 4 .}$

${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta=5.29(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 0.4 \mathrm{H}, 1 \alpha-\mathrm{H}), 4.73(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 0.6 \mathrm{H}, 1 \beta-\mathrm{H}), 4.59(\mathrm{~d}, J$ $=7.9 \mathrm{~Hz}, 1 \mathrm{H}, 1^{\prime} \beta-\mathrm{H}$), 4.18 (ddd, J=9.9, 1.9, $2.9 \mathrm{~Hz}, 1 \mathrm{H}, 3^{\prime}-\mathrm{H}$), 4.06-3.99 (m, 1.8H, 4'-, $6 \alpha-\mathrm{H}$), 3.98-3.85 (m, 5H, 6'-, 5''-, 5-, 6'-H), 3.82-3.74 (m, 4H, 6ß-, 5'-, 4-H) 3.74-3.68 (m, 4H, 4'-, 3-, 9''H), 3.68-3.65 (m, 2.4H, 7'-, $2 \alpha-, 8^{\prime \prime}-\mathrm{H}$), $3.64-3.61\left(\mathrm{~m}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right), 3.35$ (dd, J = $8.5 \mathrm{~Hz}, 0.6 \mathrm{H}, 2 \beta-\mathrm{H}$), 2.82 (dd, $J=12.4$, 4.6 Hz, 1H, $\left.3_{\text {eq }}{ }^{\prime \prime}-H\right), 2.10\left(\mathrm{~s}, 3 \mathrm{H}, 11^{\prime \prime}-\mathrm{H}\right), 1.86$ (dd, J = 12.4, $12.1 \mathrm{~Hz}, 1 \mathrm{H}, 3_{\mathrm{ax}}{ }^{\prime \prime}-\mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta=175.08\left(\mathrm{C}-1^{\prime \prime}\right), 173.90\left(\mathrm{C}-10^{\prime}\right)$), $102.71\left(\mathrm{C}-1^{\prime}\right)$, 99.89 (C-2') $95.83(\mathrm{C}-1 \beta)$, $91.88(\mathrm{C}-1 \alpha), 78.46(\mathrm{C}-4 \alpha), 78.32(\mathrm{C}-4 \beta), 75.56\left(\mathrm{C}-3^{\prime}\right), 75.21\left(\mathrm{C}-5{ }^{\prime}\right), 74.85(\mathrm{C}-2 \alpha), 74.39(\mathrm{C}-2 \beta), 73.89(\mathrm{C}-$ $\left.4^{\prime \prime}\right), 72.94$ (C-3), 71.83 (C-6'), 71.44 (C-5 α), 71.23 (C-5 3), 69.43 (C-2'), 68.37(C-8'), 68.19 (C-7'), 67.57 (C-4'), 62.68 (C-9' $), 61.08$ (C-6'), 60.18 (C-6 α), 59.48 (C-6ß), 51.77(C-5'), $39.70\left(C-3^{\prime \prime}\right), 22.14$ (C-11').

HRMS (ESI) $)^{+}: m / z$ calcd for $\left[\mathrm{C}_{23} \mathrm{H}_{39} \mathrm{~N}_{1} \mathrm{O}_{19}\right]+\mathrm{Na}^{+}=656.2009$; found 656.2010

Allyl analog of $\alpha 2,3$-sialyllactose (37):

General procedure see main paper.
Yield: 67.8 mg colorless solid (80%), R_{f} : 0.31.

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta=5.96$ (ddt, J=17.2, 10.2, $\left.7.0 \mathrm{~Hz}, 1 \mathrm{H}, 9 "-\mathrm{H}\right), 5.26(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}, 1 \alpha-\mathrm{H})$, 5.22 (dd, J = 17.2, 1.9 Hz, 1H, 1H, 10' -H), 5.22 (dd, J = 10.2, 1.9 Hz, 1H, $10^{\prime \prime}-\mathrm{H}$), $4.70(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}$, $1 \beta-\mathrm{H}), 4.57\left(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, 1^{\prime}-\mathrm{H}\right), 4.18-4.13\left(\mathrm{~m}, 1 \mathrm{H}, 3^{\prime}-\mathrm{H}\right), 4.07-4.03\left(\mathrm{dm}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}, 4^{\prime}-\mathrm{H}\right) 4.03$ - $3.96(\mathrm{~m}, 1 \mathrm{H}, 6 \beta-\mathrm{H}), 3.95-3.90(\mathrm{~m}, 1 \mathrm{H}, 6 \alpha-\mathrm{H}), 3.90-3.87\left(\mathrm{~m}, 4 \mathrm{H}, 5^{\prime \prime}-, 6^{\prime}-, 3 \beta-, 4^{\prime \prime}-\mathrm{H}\right) 3.87-3.75(\mathrm{~m}, 2 \mathrm{H}$, $\left.6^{\prime \prime}-\mathrm{H}\right), 3.73-3.79\left(\mathrm{~m}, 3 \mathrm{H}, 5^{\prime}-, 4 \alpha+\beta-, 3 \alpha-\mathrm{H}\right), 3.69-3.65\left(\mathrm{~m}, 2 \mathrm{H}, 7{ }^{\prime \prime}-, 5 \alpha+\beta-\mathrm{H}\right), 3.65-3.59\left(\mathrm{~m}, 2 \mathrm{H}, 2^{\prime}-, 2 \alpha-\right.$ $\mathrm{H}), 3.33(\mathrm{dd}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, 2 \beta-\mathrm{H}), 2.72\left(\mathrm{dd}, J=12.2,4.5 \mathrm{~Hz}, 1 \mathrm{H}, 3^{\prime \prime}-\mathrm{H}\right), 2.56-2.38\left(\mathrm{~m}, 2 \mathrm{H}, 8^{\prime \prime}-\mathrm{H}\right), 2.06$ ($\mathrm{s}, 3 \mathrm{H}, 12^{\prime \prime}-\mathrm{H}$), 1.81 (dd, J = $12.1 \mathrm{~Hz}, 1 \mathrm{H}, 3^{\prime \prime}-\mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta=175.03\left(\mathrm{C}-12^{\prime \prime}\right), 173.77$ (C-1'), 135.44 (C-9"), 117.56 (C-10'), 102.83 (C$\left.1^{\prime}\right), 100.41\left(C-2^{\prime \prime}\right), 95.89(C-1 \beta), 91.95(C-1 \alpha), 78.51(C-4 \alpha), 78.36(C-4 \beta), 75.65(C-3 '), 75.29(C-3 \beta)$,
 (C-2'), 68.73 (C-4'), 68.24 (C-4'), 67.88 (C-5'), 60.48 (C-6'), 60.23 (C-6 $), 60.08$ (H-6 $), 52.48\left(C-5^{\prime \prime}\right)$, 39.78 (C-3"), 37.52 (C-8') 22.16 (C-12").

HRMS (ESI) ${ }^{+}: m / z$ calcd for $\left[\mathrm{C}_{24} \mathrm{H}_{39} \mathrm{~N}_{1} \mathrm{O}_{17}\right]+\mathrm{Na}^{+}=636.2110$; found 636.2110

Propargyl analog of $\alpha 2,3$-sialyllactose (38):
General procedure see main paper.
Yield: 78.2 mg colorless solid (92\%), R_{f} : 0.24.

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta=5.22(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 0.4 \mathrm{H}, 1 \alpha-\mathrm{H}), 4.65(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 0.6 \mathrm{H}, 1 \beta-\mathrm{H}), 4.50(\mathrm{~d}, J$ $\left.=7.9 \mathrm{~Hz}, 1 \mathrm{H}, 1^{\prime}-\mathrm{H}\right), 4.08\left(\mathrm{ddm}, J=9.9,2.9 \mathrm{~Hz}, 1 \mathrm{H}, 3^{\prime}-\mathrm{H}\right), 3.98\left(\mathrm{dm}, J=3.2,1 \mathrm{H}, 4^{\prime}-\mathrm{H}\right) 3.97-3.91(\mathrm{~m}, 1.6 \mathrm{H}$, $\left.6^{\prime \prime}-, 6 \beta-\mathrm{H}\right), 3.88-3.82\left(\mathrm{~m}, 2 \mathrm{H}, 7^{\prime \prime}-, 6 \alpha-\mathrm{H}\right), 3.83-3.77\left(\mathrm{~m}, 2 \mathrm{H}, 5 \alpha / \beta-, 5^{\prime \prime}-\mathrm{H}\right) 3.76-3.72\left(\mathrm{~m}, 2 \mathrm{H}, 6^{\prime}-\mathrm{H}\right), 3.69-$ 3.61 (m, 4H, $\left.5^{\prime}-, 4 \alpha / \beta-, 4^{\prime \prime}-, 3 \alpha / \beta-H\right), 3.61-3.52\left(\mathrm{~m}, 2 \mathrm{H}, 2^{\prime}-, 2 \alpha-\mathrm{H}\right), 3.28(\mathrm{dd}, J=9.0,8.0 \mathrm{~Hz}, 0.6 \mathrm{H}, 2 \beta-$ H), 2.65 (dd, $J=12.2,4.4 \mathrm{~Hz}, 1 \mathrm{H}, 3_{\text {eq }}{ }^{\prime \prime}-\mathrm{H}$), 2.59 (ddd, $J=16.9,7.8,2.6 \mathrm{~Hz}, 1 \mathrm{H}, 8^{\prime \prime}-\mathrm{H}$), 2.51 (ddd, $J=16.9$, $\left.5.9,2.7 \mathrm{~Hz}, 1 \mathrm{H}, 8^{\prime \prime}-\mathrm{H}\right) 2.40\left(\mathrm{t}, \mathrm{J}=2.6 \mathrm{~Hz}, 1 \mathrm{H}, 10^{\prime \prime}-\mathrm{H}\right), 2.02\left(\mathrm{~s}, 3 \mathrm{H}, 12^{\prime \prime}-\mathrm{H}\right), 1.75(\mathrm{dd}, J=12.2,12.1 \mathrm{~Hz}$, $\left.1 \mathrm{H}, 3_{\mathrm{ax}}{ }^{\prime \prime}-\mathrm{H}\right)$.
${ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta=175.03\left(\mathrm{C}-1^{\prime \prime}\right), 173.64\left(\mathrm{C}-11^{\prime \prime}\right), 107.48\left(\mathrm{C}-1^{\prime}\right), 102.71\left(\mathrm{C}-2^{\prime \prime}\right), 95.84(\mathrm{C}-1 \beta)$, 91.88 (C-1 α), 82.25 (C-9"), 78.46(C-4 $), 78.31$ (C-4 β), 75.50 (C-3'), $75.20\left(C-4{ }^{\prime \prime}\right), 74.87(C-3 \alpha), 74.61$
 $\left.2^{\prime}\right), 68.09$ (C-5'), 67.84 (C-4'), 67.02 (C-7'), 61.11 (C-6'), 60.20 (C-6 $), 60.08$ (C-6 α), $52.30\left(C-5^{\prime \prime}\right), 39.63$ (C-3'), 22.68 (C-8'), 22.28 (C-12'').

HRMS (ESI) ${ }^{+}: m / z$ calcd for $\left[\mathrm{C}_{24} \mathrm{H}_{37} \mathrm{~N}_{1} \mathrm{O}_{17}\right]+\mathrm{H}^{+}=612.2134$; found 612.2135

General procedure see main paper.
Yield: 62.9 mg colorless solid (78\%), R_{f} : 0.35 .

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta=6.00$ (ddd, $J=17.8,10.4,7.9 \mathrm{~Hz}, 1 \mathrm{H}, 9{ }^{\prime}-\mathrm{H}$), 5.94 (ddd, $J=16.5,11.2,8.6$ $\left.\mathrm{Hz}, 1 \mathrm{H}, 9^{\prime \prime}-\mathrm{H}\right), 5.26-5.24(\mathrm{~m}, 1 \mathrm{H}, 1 \alpha-\mathrm{H}), 5.23-5.18\left(\mathrm{~m}, 4 \mathrm{H}, 10^{\prime \prime}-\mathrm{H}\right), 4.70(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}, 1 \beta-\mathrm{H})$, $4.55\left(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, 1^{\prime}-\mathrm{H}\right), 4.13\left(\mathrm{dm}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}, 3^{\prime}-\mathrm{H}\right), 4.04\left(\mathrm{dm}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}, 4^{\prime}-\mathrm{H}\right) 4.03-3.97$ $(\mathrm{m}, 1 \mathrm{H}, 6 \beta-\mathrm{H}), 3.94-3.91(\mathrm{~m}, 1 \mathrm{H}, 6 \alpha-\mathrm{H}), 3.91-3.87\left(\mathrm{~m}, 2 \mathrm{H}, 5^{\prime \prime}-, 6^{\prime \prime}-\mathrm{H}\right) 3.87-3.68\left(\mathrm{~m}, 6 \mathrm{H}, 5 \alpha+\beta-, 3 \beta-, 6^{\prime}-\right.$, $4 \beta-, 3 \alpha-H), 3.68-3.64\left(\mathrm{~m}, 2 \mathrm{H}, 4^{\prime \prime}-, 5^{\prime}-\mathrm{H}\right), 3.64-3.58\left(\mathrm{~m}, 3 \mathrm{H}, 2^{\prime}-, 4 \alpha-, 2 \alpha-\mathrm{H}\right.$), $3.54\left(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}, 7{ }^{\prime \prime}-\right.$ H), 3.32 (dd, $J=9.1,8.0 \mathrm{~Hz}, 1 \mathrm{H}, 2 \beta-\mathrm{H}$), $3.23\left(\mathrm{dm}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, 8^{\prime \prime}-\mathrm{H}\right.$), $2.68(\mathrm{dd}, J=12.2,4.4 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.3^{\prime \prime}-\mathrm{H}\right), 2.04\left(\mathrm{~s}, 3 \mathrm{H}, 12^{\prime \prime}-\mathrm{H}\right), 1.78$ (dd, J=12.1 Hz, 1H, $\left.3^{\prime \prime}-\mathrm{H}\right)$.
${ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta=174.92$ (C-12') , 173.80 (C-1'), 138.59 (C-9"), 137.39 (C-9'), 117.33 (C$\left.10^{\prime \prime}\right), 117.06$ (C-10'), 102.92 (C-1'), 100.37 (C-2'), $95.90(C-1 \beta), 91.95(C-1 \alpha), 78.43(C-4 \alpha), 78.30(C-$ 4β), 75.82 (C-3'), 75.31 (C-3 β), $74.97(C-3 \alpha), 74.44$ (C-2 $\alpha), 73.95(C-2 \beta), 73.18\left(C-6{ }^{\prime \prime}\right), 71.49(C-5 \beta)$, 71.30 (C-5 α), 70.69 (C-2'), 70.27 (C-7'), 69.58 (C-4'), 68.15 (C-4'), 67.91 (C-5'), 61.14 (C-6'), 60.47 (C6β),60.16 (C-6 α), 52.54(C-5'), 50.90 (C-8'), 39.87 (C-3'), 22.16 (C-12').
$\mathrm{MS}(\mathrm{ESI})^{-}: \mathrm{m} / \mathrm{z}$ calcd for $\left[\mathrm{C}_{26} \mathrm{H}_{41} \mathrm{~N}_{1} \mathrm{O}_{17}\right]-\mathrm{H}^{+}=638.23$; found 638.23

Pentan-3-yl analog of $\alpha 2,3$-sialyllactose (40):

3-Pentenyl-Sia-Lac (24.2 mg) was dissolved in dry methanol (15 mL), then palladium on coal (25 mg) was added and an orsat rubber expansion bag with ~ 2 bar of H_{2} was placed on the flask for 24 h at RT with vigorous stirring. After filtration over celite the solvent was removed under vacuum. Yield: 21.5 mg (89\%) colorless solid, R_{f} : 0.31 .

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta=5.25(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}, 1 \alpha-\mathrm{H}), 4.70(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, 1 \beta-\mathrm{H}), 4.50(\mathrm{dd}, J=$ $\left.7.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}, 1^{\prime}-\mathrm{H}\right), 4.09\left(\mathrm{dd}, J=9.8,3.1 \mathrm{~Hz}, 1 \mathrm{H}, 3^{\prime}-\mathrm{H}\right), 4.02-3.99\left(\mathrm{~m}, 1 \mathrm{H}, 4^{\prime}-\mathrm{H}\right) 3.93-3.90(\mathrm{~m}, 1 \mathrm{H}$, $6 \beta-\mathrm{H}), 3.90-3.82\left(\mathrm{~m}, 4 \mathrm{H}, 5^{\prime \prime}-, 6^{\prime \prime}-, 5 \beta+\alpha-, 6 \alpha-\mathrm{H}\right), 3.82-3.79\left(\mathrm{~m}, 2 \mathrm{H}, 6{ }^{\prime}-\mathrm{H}\right) 3.74-3.66(\mathrm{~m}, 3 \mathrm{H}, 3 \beta+\alpha-$, $\left.4 \beta+\alpha-, 5^{\prime}-H\right), 3.65-3.57\left(\mathrm{~m}, 3 \mathrm{H}, 2 \alpha-, 4^{\prime \prime}-, 2^{\prime}-\mathrm{H}\right), 3.47\left(\mathrm{~d}, J=8.8,1 \mathrm{H}, 7^{\prime}-\mathrm{H}\right), 3.32(\mathrm{dd}, J=8.9,7.9 \mathrm{~Hz}, 1 \mathrm{H}$, $2 \beta-\mathrm{H}), 2.70\left(\mathrm{dd}, J=12.2,4.4 \mathrm{~Hz}, 1 \mathrm{H}, 3^{\prime \prime}-\mathrm{H}\right), 2.06\left(\mathrm{~s}, 3 \mathrm{H}, 12^{\prime \prime}-\mathrm{H}\right), 1.78\left(\mathrm{dd}, J=12.1,12.1 \mathrm{~Hz}, 1 \mathrm{H}, 3^{\prime \prime}-\mathrm{H}\right)$, 1.69-1.56 (m, 3H, $\left.8^{\prime \prime}-, 9^{\prime \prime}-H\right), 1.53-1.39\left(\mathrm{~m}, 2 \mathrm{H}, 9^{\prime \prime}-\mathrm{H}\right), 0.89\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.3 \mathrm{~Hz}, 10^{\prime \prime}-\mathrm{H}\right), 0.85(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}$, 3H, 10'-H).
${ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta=174.93$ (C-12'), 173.84 (C-1'), 102.98 (C-1'), 100.35 (C-2'), $95.90(\mathrm{C}-1 \beta)$, $91.96(\mathrm{C}-1 \alpha), 78.45(\mathrm{C}-4 \alpha), 78.32(\mathrm{C}-4 \beta), 75.86(\mathrm{C}-3 '), 75.37(\mathrm{C}-3 \beta), 75.01(\mathrm{C}-3 \alpha), 74.42(\mathrm{C}-2 \alpha), 73.95$ (C-2 β), 73.57 (C-6'), 71.48 (C-5 β), 71.31 (C-5 α), 70.68 (C-4'), 70.31 (C-7' $), 69.44$ (C-2'), 68.22 (C-5'), 67.91 (C-4'), 60.25 (H-6 α), 59.47 (C-6ß), 58.11 (C-6'), 52.75(C-5'), 41.63 (C-8'), 40.03 (C-3'), 22.15 (C12'), 20.47 (C-9''), 19.77 (C-9'), 9.94 (C-10' $), 9.28$ (C-10').

HRMS (ESI) ${ }^{+}: m / z$ calcd for $\left[\mathrm{C}_{26} \mathrm{H}_{45} \mathrm{~N}_{1} \mathrm{O}_{17}\right]+\mathrm{H}^{+}=644.2760$; found 644.2761

Truncated acetamido analog of $\alpha 2,3$-sialyllactose (41):
General procedure see main paper.
Yield: 53.7 mg colorless solid (63\%), R_{f} : 0.22.

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta=5.25(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}, 1 \alpha-\mathrm{H}), 4.70(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, 1 \beta-\mathrm{H}), 4.55(\mathrm{~d}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}, 1^{\prime}-\mathrm{H}$), 4.11 (ddd, $\left.J=9.8,3.3,1.9 \mathrm{~Hz}, 1 \mathrm{H}, 3^{\prime}-\mathrm{H}\right), 4.02-3.99\left(\mathrm{~m}, 1 \mathrm{H}, 4^{\prime}-\mathrm{H}\right) 4.00-3.99(\mathrm{~m}, 1 \mathrm{H}, 6 \alpha-\mathrm{H})$, 3.94-3.89 (m, 1H, 6ß-H), 3.88-3.79 (m, 2H, 6'-H) 3.79-3.77 (m, 1H, 4'-H), 3.75-3.68 (m, 5H, 6"-, 4 $/ \beta$-, $\left.3 \beta-5^{\prime \prime}-, 5 \alpha / \beta-H\right), 3.69-3.65\left(\mathrm{~m}, 2 \mathrm{H}, 5^{\prime}-, 3 \alpha-\mathrm{H}\right), 3.63-3.58\left(\mathrm{~m}, 2 \mathrm{H}, 2 \alpha-, \mathrm{H}^{\prime}-\mathrm{H}\right), 3.56-3.50(\mathrm{dm}, J=14.2$ $\left.\mathrm{Hz}, 1 \mathrm{H}, 7^{\prime \prime}-\mathrm{H}\right), 3.41-3.36\left(\mathrm{dm}, \mathrm{J}=14.2 \mathrm{~Hz}, 1 \mathrm{H}, 7^{\prime \prime}-\mathrm{H}\right), 3.32(\mathrm{~m}, 0.6 \mathrm{H}, 2 \beta-\mathrm{H}), 2.73(\mathrm{dd}, \mathrm{J}=12.3,4.5 \mathrm{~Hz}$, 1H, 3"-H) 2.04 (s, 6H, 9"-, 11'-H), 1.81 (dd, J = 12.3, $\left.12.2 \mathrm{~Hz}, 1 \mathrm{H}, 3^{\prime \prime}-\mathrm{H}\right)$.
${ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta=174.80\left(\mathrm{C}-11^{\prime \prime}\right)$, $174.27\left(\mathrm{C}-8^{\prime \prime}\right), 173.75\left(\mathrm{C}-1^{\prime \prime}\right) 102.77\left(\mathrm{C}-1^{\prime}\right), 100.50\left(\mathrm{C}-2^{\prime}\right)$, $95.93(\mathrm{C}-1 \beta), 91.98(\mathrm{C}-1 \alpha), 78.62(\mathrm{C}-4 \alpha), 78.47(\mathrm{C}-4 \beta), 75.65(\mathrm{C}-3$) $, 75.30(\mathrm{C}-3 \beta), 74.93(\mathrm{C}-3 \alpha), 74.52$
 67.80 (C-4'), 60.52 (C-6'), 60.29 (C-6ß), 60.16 (C-6 α), 53.13 (C-5'), 40.28 (C-7'), 39.69 (C-3'), 22.26 (C9'), 22.09 (C-10').

HRMS (ESI) ${ }^{+}: m / z$ calcd for $\left[\mathrm{C}_{23} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{17}\right]+\mathrm{H}^{+}=615.2243$; found 615.2239

References

[1] M. Knorst, W.-D. Fessner, Adv. Synth. Catal. 2001, 343, 698-710.
[2] A. Mertsch, N. He, D. Yi, M. Kickstein, W. D. Fessner, Chem. Eur. J. 2020, 26, 11614-11624.
[3] P. A. Veronesi, P. E. A. Rodriguez, E. Peschechera, S. L. Veronesi, WO 2008/090151 A1, 2008.
[4] S. Buchini, F. X. Gallat, I. R. Greig, J. H. Kim, S. Wakatsuki, L. M. Chavas, S. G. Withers, Angew. Chem. Int. Ed. 2014, 53, 3382-3386.
[5] G. J. Ray, N. Ravenscroft, J. Siekmann, Z. Zhang, P. Sanders, U. Shaligram, C. M. Szabo, P. Kosma, Bioconjug. Chem. 2014, 25, 665-676.
[6] P. Allevi, P. Rota, R. Scaringi, R. Colombo, M. Anastasia, J. Org. Chem. 2010, 75, 5542-5548.
[7] R. Brossmer, L. Holmquist, FEBS Lett. 1974, 40, 250-252.
[8] a) R. L. McLean, M. Suttajit, J. Beidler, R. J. Winzler, J. Biol. Chem. 1971, 246, 803-809; b) N. He, D. Yi, W.-D. Fessner, Adv. Synth. Catal. 2011, 353, 2384-2398.

