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Abstract

Design problems in engineering typically involve a large solution space and several potentially conflicting criteria. Selecting
a compromise solution is often supported by optimization algorithms that compute hundreds of Pareto-optimal solutions, thus
informing a decision by the engineer. However, the complexity of evaluating and comparing alternatives increases with the
number of criteria that need to be considered at the same time. We present a design study on Pareto front visualization to
support engineers in applying their expertise and subjective preferences for selection of the most-preferred solution. We provide
a characterization of data and tasks from the parametric design of electric motors. The requirements identified were the basis
for our development of PAVED, an interactive parallel coordinates visualization for exploration of multi-criteria alternatives.
We reflect on our user-centered design process that included iterative refinement with real data in close collaboration with a
domain expert as well as a summative evaluation in the field. The results suggest a high usability of our visualization as part of a
real-world engineering design workflow. Our lessons learned can serve as guidance to future visualization developers targeting
multi-criteria optimization problems in engineering design or alternative domains.

CCS Concepts

¢ Human-centered computing — Visual analytics; * Applied computing — Engineering;

1. Introduction

The world we live in today would be inconceivable without the out-
comes of engineering. It is at the basis of systems, machines, and
processes that drive many diverse areas of our society. We refer to
the design stage of the engineering process as engineering design.
At their core, most real-world decisions pose a conflict between
several criteria. Engineering design is no exception: the key chal-
lenge is a multi-criteria optimization problem. Designs need to sat-
isfy conflicting requirements: efficiency costs money, safety adds to
complexity, durability increases material demands. Added to these
requirements are various performance indicators like stress, defor-
mation, or heat dissipation. A unique optimal solution does gener-
ally not exist. Instead, engineers must find a trade-off in a typically
large solution space. Rather than the perfect solution, they search
for a solution that is optimal for a given application.

To be utilizable by an optimization algorithm, preferences need
to be made explicit in an objective function (a priori). This is of-
ten not desired, because preferences are typically vague and evolve
over time. Without an objective function, optimization algorithms
can only compute a number of mathematically equally good solu-
tions, known as the Pareto front. From there, it is the responsibility
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of the engineer to choose the solution to be realized as a prototype.
This can be classified as a-posteriori decision-making [Hor96].

With simulation being extensively used in engineering design,
many optimization problems typically involve thousands of alter-
native solutions. Large Pareto fronts, multi-criteria solution spaces,
and unstable subjective preferences make the decision process chal-
lenging. Engineers need assistance in making sense of the available
options. Visualizing the Pareto front can help make informed deci-
sions by highlighting conflicts and trade-offs, conveying their na-
ture, and making the effects of applied preferences visible.

In this paper, we describe a design study addressing the role of
multivariate Pareto front visualization for decision-making in engi-
neering design applications. The collaboration with domain experts
over a period of 1.5 years focused on the design and optimization
of electric motors. Inspired by Sedlmair et al.’s nine-stage frame-
work [SMM12] and Munzner’s nested model [Mun(09], we reflect
on the user-centered design of a visualization tool that supports the
process of selecting the most-preferred solution from a large set
of Pareto-optimal designs. Conducting the design study yielded an
interesting set of insights concerning two main topics: 1) the engi-
neers’ expectations and acceptance regarding visualization, and 2)
the collaborative aspects of the user-centered visualization design.
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Our lessons learned from working with engineers to examine the
potential of visualization for their tasks offer guidance to those who
seek to develop visualizations for design engineers in the future.

In particular, the contributions of this paper include:

e A characterization and abstraction of the data, tasks, and require-
ments related to engineering design

e The design and evaluation of an interactive visualization of al-
ternatives in multi-criteria optimization problems

e Reflections on the design process and common guidelines

2. Domain Characterization and Abstraction

We start by developing a characterization of the targeted problem
in the field of electromechanical engineering. First, we provide an
introduction to the design and optimization of electric motors (Sec-
tion 2.1). Based upon that, we provide an abstraction of the data
and tasks that engineers face when searching for the most-preferred
design (Section 2.2). From these abstractions, we derive design re-
quirements to be addressed by the visual design (Section 2.3).

2.1. Electric Motor Design Background

Electric motors have become an indispensable part of many indus-
trial and domestic applications, from microdrives in electric tooth-
brushes to high-performance motors in transportation systems. In
2013, about 70% of the electrical energy in industry was consumed
by electric motors [ZBL*13]. Their performance thus affects key
indicators like energy consumption or productivity of the driven
process. Additional requirements can involve fault tolerance, good
controllability, compactness, and cost-efficiency. This places high
demands on the design and optimization of electric motors.

Design engineers specify the geometry, material, winding pat-
terns, etc. of an electric motor such that its performance and overall
properties optimize given requirements. Up to a dozen of these de-
sign parameters are usually considered in the optimization process
[DI13]. The evaluation of a motor’s operational behavior is realized
using simulation. An optimization algorithm, typically population-
based methods like genetic algorithms, then computes a set of
Pareto-optimal solutions [ZBL*13]. After validation of the results,
the engineer chooses the most-preferred compromise. This selec-
tion is usually verified by additional simulations or experimental
validation before the corresponding motor is taken to production.

Commerecial tools for the design of electric motors provide only
two-dimensional Pareto front visualizations that are not suited for
optimization with multiple criteria. Therefore, our collaborators use
their own optimization tool called SyMSpace [SKW ™ 18] (formerly
MagOpt [SBD*16]). Visual inspection of the Pareto front is per-
formed using an interactive scatterplot matrix conveying pairs of
the criteria to be optimized. The motor experts are quite familiar
with concepts like brushing and linking. A selection of alternatives
can be created, refined, and observed in linked histograms show-
ing the related design parameters. Still, the analysis in SyMSpace
is limited to two-dimensional projections of the Pareto front.

One challenge for the choice of a solution is the large number
of available options, as a Pareto front can easily contain 100 to 200

/ LT WY
s SN / //T*\J
; & AX A\\,:.‘ -
/3 Y‘J,ALL!L”“‘ ) SSS 2 :;,,'. { ; \:_:l‘—::(‘“
(a) Neodymium,  (b) Neodymium, (¢) Ferrite, (d) Ferrite,
20 magnets 12 magnets 20 magnets 12 magnets

Figure 1: Four topologies of an internal rotor design resulting from
combinations of magnet material and number of magnets. Variation
of geometry, winding patterns etc. yields the actual design options.

multidimensional alternatives. Another challenge is the handling of
conflicts between criteria, in particular when applying constraints.
Due to the manufacturing tolerances to be expected during produc-
tion, the selected solution also needs to be tolerant towards slight
design parameter changes. The engineer’s primary needs can be
summarized as: a simultaneous overview of both criteria and alter-
natives together with an efficient drill down, perception of redun-
dancies and conflicts among criteria, and sensitivity analysis.

The design and optimization of motors is mostly conducted as
commissioned work. This introduces a second type of stakeholders:
the engineers’ customers. Not all customers are experts in motor
development themselves. Depending on their level of experience,
either high trust is put in the choice made or the engineer is asked
for clarification about design decisions. Our primary target users
are the engineers responsible for the design of electric motors. The
support of a joint decision-making between engineers and their cus-
tomers will be addressed in future research.

2.2. Data and Task Analysis

This section covers the data, tasks, and design requirements for this
design study, moving from domain-specific details to abstractions.

PMSM Simulation Model

The simulation considered as a running example throughout this
work describes the operational behavior of a permanent magnet
synchronous motor (PMSM) whose intended function is to drive
a fan that cools the engine of a vehicle. The order made by an au-
tomotive supplier contains several specifications to be met: a rated
power of 700 watt, a rated torque of 2.6 Newton meters, an outer
diameter smaller than 136 millimeters, and an internal rotor. The
motor should also fit the existing system setup in terms of size and
shape. The customer’s major interests are power and cost efficiency,
small length, smooth running, and simple power electronics.

The design engineer has narrowed down the design space to ei-
ther ferrite or neodymium for the magnet material as well as 12 or
20 for the number of magnets. All four combinations make up the
available motor topologies (Figure 1). Within each topology, be-
tween eight and ten parameters related to geometrical dimensions,
winding patterns, or material properties are varied stepwise. Any
combination of parameters is called a design option. For each de-
sign option, the simulation evaluates the motor’s operational behav-
ior in terms of the criteria stator length, costs, power loss, maximum
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Figure 2: An abstraction of the analysis tasks for multi-attribute choice in engineering design. T1 to T3 reflect the tasks that the engineer
faces. T4 and T5 involve the customer as additional stakeholder. Derived design requirements Ry to Ry3 are assigned to the respective tasks.

current, and torque ripple. The optimization returns 359 design op-
tions that are Pareto-optimal with respect to each topology consid-
ered separately. Options that are geometrically invalid or do not
meet specified hard constraints are excluded during this process.

Data Abstraction  Simulation models are basically input-
output models that approximate a function X — Y mapping some
input dimensions X = {Xj,...,Xs} to a number of output dimen-
sions Y ={Y1,..., Y }. We refer to the input dimensions X as design
parameters. The dependent output dimensions Y are known as cri-
teria. For the exemplary PMSM model, n € {8,9,10} and m = 5.
Each criterion needs to be either minimized or maximized. The in-
formation about the desired direction of change is given as meta-
data. The union (¥,¥) of a design option ¥ = (x1,...,xs);x; € X; and
its criteria ¥ = (y1,...,ym);yi € ¥; as provided by a simulation run is
called alternative. In contrast to the motor experts, who adopted the
terms "objectives" and "individuals" from genetic optimization the-
ory, we use the terms "criteria" and "alternatives", as they provide
a better link to the field of multi-criteria decision-making.

The challenge of engineering design lies in the absence of a di-
rect inverse relation ¥ — X [STDS95]. Different Pareto-optimal
design options thus need to be explored, which are computed by
an optimization algorithm based on regular sampling of the input
space. The sampling range and step size is specified separately for
each design parameter. The final Pareto front contains a few hun-
dred alternatives where no criterion can be improved without sac-
rificing at least one other criterion. Our collaborators do not expect
to need more than ten criteria to reflect their customers’ interests.

Analysis Tasks and Workflow  As Ullman states: "[engineer-
ing] design is decision-making" [Ull01]. The decision-maker’s pri-
mary goal is to identify the solution that best matches their cus-
tomers’ interests within the specified hard constraints. Given the
previous data abstraction, this goal refers to the task of multi-
attribute choice as defined by Dimara et al. [DBD17]. It describes
the identification of the best among a finite number of multi-criteria
alternatives that are known ahead of time.

A variety of strategies for multi-attribute choice have been stud-
ied in decision theory. In their position paper, Torsney-Weir and
colleagues propose to consider such strategies for visual tool de-
sign [TWSM15]. We therefore began the task characterization by
classifying the decision strategy of our primary domain expert. Ac-
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cording to the taxonomy described by Payne et al. [PPBJ93], the
expert’s decision-making process is most similar to the elimination
by aspects strategy. This strategy is about filtering options into ac-
ceptable and unacceptable regions until a final choice remains.

Our task abstraction (Figure 2) is based on selected tasks from
12 taxonomies that we found in the visualization literature. Please
refer to the supplementary material for details on the task extrac-
tion and analysis questions underlying the selected tasks. Our task
abstraction is not specific to the engineering domain and can be
mapped to any multi-criteria decision-making scenario.

The decision process starts with the inform task (T1). It includes
an inspection of the optimization results for their validity to answer
questions like "Does the simulation produce plausible results?".
The task is also about gaining a first overview of the design space,
i.e. "What is the shape of the Pareto front? How diverse are the
alternatives?", as well as the criteria space, i.e. "What is the distri-
bution of alternatives? What is the nature of conflicts?".

Next, the actual decision-making takes place: the decision-maker
needs to identify the most-preferred alternative (T2). Ullman states
that two thirds of activity spent on engineering design tasks is re-
lated to searching the design space [UllO1]. The search task (T2.1)
includes sub-tasks like browsing through the alternatives (T2.1.1),
developing preferences as relations between criteria become appar-
ent (T2.1.2), and using these preferences to judge and filter alter-
natives (T2.1.3). The search phase typically results in a subset of
interest and is followed by a comparison phase. The compare task
(T2.2) is primarily about judging the superiority of alternatives with
respect to the preferences developed throughout the search phase.
Of course, the identification of the most-preferred alternative might
involve going back and forth between the sub-tasks.

As the decision-making is characterized by conflicting criteria,
analysts need to confirm (T3) their decisions to increase confi-
dence in their choice. Confirmation includes reviewing the per-
ceived quality of the chosen design, revisiting its superiority com-
pared to other favorite designs, and checking its sensitivity with
respect to minor changes of the design parameters.

Once the decision has been confirmed by the engineer, it needs to
be presented to the customer. It is highly important that engineers
verify (T4) the chosen design with their customers and communi-
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cate (T5) on what insights the decision is based. One domain expert
summarized why this is so important: "The decision-making pro-
cess should be comprehensible for the customer to prove its plausi-
bility" (A3). This might also include general recommendations with
respect to why certain options should be considered or avoided.

2.3. Design Requirements

From the aforementioned data and task abstractions, we have de-
rived the following design requirements to guide the visual design:

Ry Validation — Show criteria ranges for simulation steering
Ry Overview — Provide an overview of complete alternatives such
that any criteria value of any alternative can be retrieved
R3 Criteria Relations — Highlight redundant or conflicting criteria
R4 Trade-offs — Support subjective perception of superiority
Rs Filter — Support perception of the effect of constraints
R¢ User Interaction — Support simple and effective selection
R7 Provenance — Store favorite alternatives for future comparison
Ry Comparison — Support criteria-wise comparison of alternatives
Rg Details — Enable direct reading of raw criteria values
Rio Sensitivity — Show design parameter values of alternatives
Ry1 Transparency — Support awareness of intermediate decisions
R1» Accessibility — Make the decision accessible to customers
R13 Export — Provide the data of the selected design for production

3. Related Work

Previous design studies on multi-criteria decision-making have
been conducted in domains other than engineering design. SOM-
MOS focused on decision-making as a high-level goal [CAS*13].
Although it is applicable to different domains, additional potential
might be unlocked by considering domain-specific tasks and re-
quirements. Vismon was introduced as a trade-off analysis tool for
users working in fisheries management [BMPM12]. Arbesser et al.
provide a high-level view on challenges and lessons learned from
distributing visualizations to engineers [AMKP17]. RelEx resulted
from a design study on optimization of traffic flow in communi-
cation networks [SFMB12]. They address an engineering design
problem on a different data abstraction, namely graphs. Basole et
al. present a visual analytics tool to support the design of complex
engineered systems [BQP*15]. However, they focus on the early
design phase and the modeling of a system, not on multi-attribute
choice from a number of generated alternatives. To the best of our
knowledge, no design study on multi-attribute choice exists that
particularly addresses the needs of users from engineering design.

3.1. Multivariate Pareto Front Visualization

Depicting a Pareto front as a set of multi-criteria alternatives
[KWOS] requires visualization methods that effectively map large
multivariate data to two-dimensional visual space [LMO8]. Either
dimension reduction or lossless projection [DBD17] can be used.

A popular approach to dimension reduction is the self-organizing
map (SOM) [KohO1]. In SOMMOS, Chen et al. semantically en-
hance a SOM with criteria anchors on a regular convex poly-
gon as well as radial bar charts depicting individual alternatives
[CAS*13]. In engineering design, the SOM has been employed

for criteria-wise design space exploration in the context of aerody-
namic optimization [OJCOS5]. Zhao et al. use t-SNE as a projection
method for their system SkyLens and also employ radial glyphs to
represent individual alternatives [ZWC*17]. While useful for navi-
gating Pareto fronts, dimension reduction does not allow for a direct
retrieval of any criteria value from any alternative. Thus, we do not
consider SOM or t-SNE as applicable projections for our purpose.

In contrast, a lossless projection preserves the raw information.
Tabular visualizations have been extended with weight-based rank-
ing to simplify multi-attribute choice [GLG™ 13, SOL*15]. To help
users better understand the effects of different weights, Weightlifter
has been introduced [PSTW™16]. However, preferences are often
too complex to be captured by weights. Miihlbacher et al. use scat-
terplots to visualize the trade-off between accuracy and complexity
of decision trees [MLMP17]. Scatterplot matrices depict more than
two criteria, e.g. for the design of an aircraft engine [MGH*07].
Similar to our consideration of motor topologies, the authors ob-
serve distinct engine concepts. Lotov et al. depict ensembles of
two-dimensional Pareto fronts that result from discretely varying
a third criterion [LBK13]. Still, scatterplot-based methods provide
a limited perception of complete multi-criteria alternatives.

For visualizing Pareto fronts with respect to all criteria simulta-
neously, parallel coordinates are predominantly used [BC03]. An-
drienko and Andrienko propose modifications regarding axis ori-
entation, scaling, alignment, and ranking of alternatives [AAO1].
Among others, parallel coordinates have been applied to de-
sign problems from automotive engineering [MJJ*05, BPFG11],
aerospace engineering [SKW98, GBS*99], and aerodynamic engi-
neering [KIPS13]. Fleming et al. describe the use of parallel co-
ordinates for multi-criteria optimization in real-world engineering
design, but do not study the visualization design [FPLOS5]. Parallel
coordinates used in engineering mainly depict the design space to-
gether with up to three criteria. Our approach provides support in
interactively exploring trade-offs involving up to ten criteria, while
also considering the design space.

3.2. Visual Parameter Space Analysis

Gaining insight into the correspondence between design options
and performance is an important aspect of multi-attribute choice
[SKWO98]. The same goal is pursued by parameter space analysis.
Sedlmair et al. provide a conceptual framework that includes a data
flow model, navigation strategies, and analysis tasks [SHB*14].
The current body of work in visual exploration of parameter spaces
mainly comprises approaches from different application areas like
meteorology [PWB™*09] or image analysis [PBCR11, TWSM*11].
Beham et al. employ parallel coordinates to relate the parameter
space of a geometry generator to the resulting shapes [BHGK14].

Closest to our work are approaches addressing simulation-based
engineering. Matkovic et al. use interactive visual analysis for ex-
ploring the parameter spaces of fuel injection systems [MJJ*05].
ParaGlide allows for interactive partitioning of parameter spaces
exemplified with a fuel cell simulation [BSM*13]. Berger et al.
propose an interactive approach for car engine design that enables
users to navigate a multivariate design space while observing the
behavior of multiple criteria [BPFG11]. Originating from a focal
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Figure 3: An overview of our design process, inspired by storyline visualizations [TM12]. A mechatronics scientist (green) accompanied
us (blue) during the domain characterization and visual design stage. The process involved two intermediate prototypes (a, b). The final
prototype (c) was qualitatively evaluated by a group of five engineers (orange). For the usability testing, three additional engineers (yellow)
were considered. A shortcut in the design phase (d) could have been taken if we had listened more carefully to the primary expert’s feedback.

design, star sampling in the design space is performed to observe
criteria ranges that are within reach. The sensitivity of criteria to
changes of the focal point is conveyed by neighborhoods in the cri-
teria space being mapped back into the design space.

Previous work related to specific visual encodings and interac-
tion techniques is discussed in the context of the visual design in
Section 5. Previous work on design study methodology and evalu-
ation is referred to in the respective Sections 4, 6, and 7.

4. Iterative Design Process

Our user-centered design process was organized in three stages: 1)
characterization of the problem domain, 2) visual design, and 3)
summative evaluation. An overview of the design process is pre-
sented in Figure 3. A mechatronics scientist at LCM (a co-author
of this paper) with extensive experience in the design and optimiza-
tion of electric motors was our primary domain expert. He accom-
panied the first two stages of the design process with constant in-
sights into the domain on the one hand and feedback to our visual
design on the other hand. The exchange took place in the form of 1)
scheduled meetings in person, where fundamental characterization
and design aspects were discussed, 2) phone calls for instant clari-
fication of open issues, and 3) e-mail communication for summary
feedback as well as confirmation of our documented insights. The
primary outcomes of this process are the prototypes.

The understanding of the problem domain that led to its charac-
terization was informed by different sources. We started by reading
about the target domain background, in particular literature sug-
gested by the domain expert. Asking the expert about tasks, tools,
practices, and challenges in multiple sessions and discussing a sce-
nario of use provided us with a fundamental understanding of the

© 2020 The Author(s)
Computer Graphics Forum © 2020 The Eurographics Association and John Wiley & Sons Ltd.

domain. A pre-design field study, where we observed the domain
expert on a real-world use case, made sure that we did not run into
the threat of mischaracterizing the problem [Mun(9]. By having
the primary expert constantly review the identified key tasks and
their abstractions we ensured a common understanding of the use
case and additionally contributed to an immediate validation.

The design stage mainly involved in-person meetings where we
sketched and discussed visual encodings using the same pen and
paper. To minimize the learning effort, we decided to start the de-
velopment of our visual design from the interactive scatterplots that
the domain experts already used for pairwise trade-offs. In mul-
tiple iterations, we implemented and refined an initial prototype,
shown in Figure 3a. At its core, it contained an augmented scat-
terplot, where points were interactively shown as radial bar charts
[CAS™13] to encode additional criteria. Solutions of interest could
be cached and used for a detailed, criteria-wise comparison.

However, the expert’s criticism of this visual encoding discour-
aged us from following up on the glyph-based scatterplot. It made
us realize that we did not prioritize the criteria-wise overview high
enough in our initial task abstraction. As a consequence, we dis-
cussed other visualization designs regarding the ability to convey
both an alternative-wise and a criteria-wise overview. We then de-
veloped a second prototype that made use of parallel coordinates
(Figure 3b) and iteratively developed it towards a parallel coordi-
nates visualization, whose interactions better reflect the optimiza-
tion operations performed by the engineer (Figure 3c). In retro-
spect, the detour via the first glyph-based prototype would not have
been necessary, if we had listened more carefully to the domain
expert, who already expressed his interest in parallel coordinates
early in the domain characterization process (Figure 3d).

We performed a downstream validation against the threats of
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problem mischaracterization and wrong abstractions [Mun(09]. For
this, we evaluated the usefulness of the final tool with a qualita-
tive field study and a quantitative usability scale. Both were con-
ducted with five domain experts other than the primary domain ex-
pert. The usability study was extended by an additional group of
three domain experts. We also validated the domain characteriza-
tion by following up on the experts’ interest in adopting the tool for
their daily work. The evaluation details are discussed in Section 6.

5. PAVED Design

Motivated by the domain characterization and abstraction, we de-
signed the visual encodings and interactions of PAVED, a parallel
coordinates visualization that supports analysts in exploring Pareto-
optimal designs to make an informed preferential choice. While
it has been designed for engineers, our approach generalizes to
any multi-criteria decision where the preferences cannot be quan-
tified in advance. It is our ambition to provide the simplest solu-
tion that works well for the described multi-criteria optimization
problem. Our visualization is designed to be intuitive, easy to learn
and seamlessly integrated into the engineers’ workflow. Simplic-
ity is achieved by a one-view approach and a reduced yet effective
user interaction for drilldown. To not neglect potentially relevant
information, the focus is on simultaneously depicting all design
options with all associated criteria (R, Overview). Raw data can
be accessed at any time in a tabular view (Rg Details, R{3 Export).

5.1. Design Rationales

Before we present the actual visual encodings, we describe high-
level design rationales that result from the design requirements.

Prefer simple over flexible user interaction As elimination-by-
aspects is the prevalent strategy, the decision process is all about
eliminating undesired alternatives (Rg User Interaction) to move
towards a small subset of favorites, from which the final choice is
made. Thus, interaction should not demand more effort than ab-
solutely necessary to achieve an intended selection. This means to
reduce the interaction to the minimal set of operations needed for
the fundamental optimization tasks. *Simple’ also includes that a
selection is easy to describe, e.g. by means of a range, to effectively
communicate decisive turning points (R; Transparency).

Prefer web-based over desktop applications Accessibility (R;2
Accessibility) is a key factor for a visualization that is designed
to be adapted by domain experts. In our case, accessibility is even
more important as our target users need to share their results with
their own customers. We therefore provide our visualization tool as
a web application. It can be easily accessed without having to worry
about installation or set-up times. A web application also lays the
foundation for communicating analysis results and recommenda-
tions that goes beyond the currently used presentation slides.

Prefer objectivity over biased perception of criteria In the con-
text of multi-attribute choice, the importance of criteria can hardly
be deduced from the data themselves, as this requires the subjective
judgement of the decision-maker. Each criterion is thus meaningful
for the evaluation of alternatives and for the interpretation of trade-
offs. In the absence of prior importance information, a visualization

should make use of the same visual mapping for all criteria, unless
the user explicitly requested a visual distortion.

Prefer lossless mapping over dimension reduction Dimension
reduction approaches to Pareto front visualization sacrifice infor-
mativeness for the purpose of intuitive exploration and navigation.
However, Dimara et al. found that "the majority of [...] visualiza-
tion tools meant to support multi-attribute choice employ lossless
geometric projections" [DBD17]. To make a multi-attribute choice,
users need to be able to visually retrieve any criteria value from
any alternative without interaction (R, Overview, Ry Details). We
therefore prefer a lossless mapping over dimension reduction. Our
design target is a dozen design parameters and up to ten criteria.
It is thus possible to depict all alternatives and criteria without the
need for aggregation or selection of a data subset to view.

5.2. Parallel Coordinates View

PAVED’s primary view shows a parallel coordinates visualization.
Though the initial prototype, the scatterplot matrix, provided a loss-
less mapping of the Pareto front, it depicted multi-criteria trade-offs
only via glyph overlay and pairwise trade-offs otherwise. However,
engineers need to view alternatives as a whole (R, Overview). In
addition, the glyph-based scatterplots did not meet the objectivity
requirement, because the two criteria mapped to position are con-
sidered most important. To meet both requirements, we decided for
parallel coordinates [ID90] as our final visual encoding.

Parallel coordinates present a compact and lossless two-
dimensional visual representation for multi-dimensional alterna-
tives. Different axis layouts have been proposed, e.g. many-to-
many, force-directed, and three-dimensional layouts [JF15]. How-
ever, as parallel coordinates were unknown to the engineers, we
stuck to the standard two-dimensional layout. For the same reason,
we decided in favor of the more common vertically laid out axes
(R Validation). To maintain an unbiased perception of the criteria,
we chose to neither invert nor scale the axes like suggested by some
works [AAO1]. Instead, we mark the desired direction of change by
a triangular indicator at the respective end of the axis [PSTW™16].

Motivated by the need to scale with hundreds of depicted alter-
natives, our focus was on enhancing the perception of trade-offs
and individual alternatives. For this purpose, we took advantage of
standard visual encoding and interaction techniques known from
literature. These techniques modify either the polylines or the axes.

Parallel coordinates are well-known for being sensitive to visual
clutter, which might hide patterns and alternatives of interest. Tech-
niques that render aggregates only are not an option, because they
violate our design choice of a lossless projection. Instead, we ren-
der each individual polyline with a constant line transparency. Still,
lossless projections are not scalable beyond a certain point. With a
large number of polylines being depicted, two or more lines might
intersect an axis at nearly the same position. In such a case, it is dif-
ficult to trace the individual lines. To resolve ambiguities, the user
can activate curve smoothing, which replaces the polylines by cu-
bic splines that interpolate the original values at the axes [GKO03].
Finally, each alternative is associated with a motor topology as cat-
egorical metadata. An effective technique to support the perception
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Figure 4: This image shows different interaction modes that drive an optimization analysis. Standard brushes include a line brush for open
exploration (a) and range brushes at the parameter axes (b). For criterion axes, we propose preference brushes (c), which are locked at the
desired end of the axis and dragged via the labeled handle at their other end. The gradient color brush (d) is applied to Motor.Pv, revealing
its correlation with both Masses.Cost and Model Ife. Favorite alternatives (blue) can be stored independently of the brushes. At any time, they
represent the current search result, which might also be presented to the customer. The preferred choice is the hovered alternative (orange).

of nominal data is color-coding [HW13]. Categorical dimensions
like the motor topology can also be considered for filtering.

Gaining an overview of a Pareto front also benefits from observ-
ing the relationships between criteria (R3 Criteria Relations). The
axis order affects the pairwise relations between adjacent axes that
are revealed by parallel coordinates. As axis ordering is a complex
research problem on its own, we arrange axes by dimension order
and enable users to explicitly reorder the axes according to their
needs. We implemented an animated translation guided by a drag-
and-drop operation, where a uniform axis spacing is reconstructed
after releasing an axis [HW13]. To adjust the complexity of the par-
allel coordinates depending on the decision stage, the axis visibil-
ity can be controlled individually for design parameter and criteria
axes (R Sensitivity). Design parameters are hidden by default, as
large parts of an engineer’s decision focus on the criteria.

5.3. Interactive Selection

Interaction is essential for an effective use of parallel coordinates.
Selecting a subset of favorite alternatives for detailed analysis (R4
Trade-offs) is complemented with filtering alternatives according to
performance constraints and preferences (R5 Filter). From a techni-
cal point of view, this corresponds to a selection by elements versus
a selection by dimension values. Available interactions are indi-
cated by a transformation of the mouse cursor. We provide a video
in the supplementary material, which shows interactions by our do-
main expert, highlighting how practitioners use our tool.

Selecting Favorite Alternatives

© 2020 The Author(s)
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To support the user in scanning through the alternatives, we provide
hovering as the most basic interaction (Figure 4, orange). From the
label to the right end of the hovered polyline, users can retrieve the
alternative ID. This allows them to join insights about the alterna-
tive in focus with e.g. offline data. To select a group of alternatives,
we provide a line brush (Figure 4a), which makes it easy to isolate
alternatives with particular characteristics (Rg User Interaction).

Users can flag alternatives by clicking on a polyline. Flagged
options are permanently visible, even when they are not part of any
other selection (Figure 4, blue). This enables a direct comparison
with respect to each of their dimension values (Rg Comparison).
They can also be considered the current result of the exploration.
While exploring the Pareto front, the engineers flagged alternatives
to cache a small number of favorites for later in-depth comparison
(R7 Provenance). This set of superior compromises can also be kept
in case the customer questions the first choice (R|; Transparency).

Eliminating Undesired Alternatives

We provide filtering of alternatives in the form of range brushes ap-
plied to criteria and design parameters axes (Figure 5a). As a choice
in engineering design needs to satisfy multiple constraints and pref-
erences, several of these brushes are combined to a composite brush
using the logical AND operation (Figure 4b) .

On a criterion axis, the desired direction of change is known, i.e.
whether low or high values are preferred. In any case, it does not
make sense to exclude alternatives that are located on the desired
end of an axis. We deliberately limit the interaction on the range
brush in this regard to match the set of filtering operations actu-
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Figure 5: Parameters are filtered using a range brush (a). For crite-
ria, brushes are locked to the high-quality end of the axis indicated
by a triangle (b) and can be augmented with a color gradient (c).

ally needed for optimization (Rg User Interaction). We propose the
preference brush, a range brush that is locked at the high-quality
end of the respective axis (Figure 5b). Only the low-quality end
of the brush can be dragged for filtering (Figure 4c). Regarding
the observed criterion, this ensures that a preference brush always
includes the best solutions, while the interaction complexity is sig-
nificantly reduced. A value label at the draggable end of the brush
makes the current constraint settings readable for the engineer.

Each criterion axis is equipped with a preference brush, which
initially covers the full axis range. Its expressiveness can be en-
hanced by applying a red-green color gradient to its range that trig-
gers a corresponding color-coding of the brushed polylines (Fig-
ure 5¢). The gradient color brush was first introduced by Matkovic
et al. [MJJ*05]. They mapped red to the lower and green to the
upper end of the brush range to explore the influence of parame-
ter changes on the output of an investigated system. We introduce
slight modifications to help users explore where trade-offs between
criteria need to be made by observing how value changes in one
criterion manifest in the remaining criteria (R3 Criteria Relations).
First, we adjust the color scale such that green encodes desired and
red encodes undesired criteria values. Second, the start and end col-
ors are not assigned to the ends of the brush range, but to the ends
of the axis. The meaning of colors then does not change when the
brush is modified. With these modifications, desired and undesired
values of a criterion can be traced across axes more easily, allowing
users to observe one-to-many trade-offs (Figure 4d).

5.4. Implementation

The prototype presented in Figure 4 is a single-page web applica-
tion written in TypeScript using the JavaScript framework React.
The parallel coordinates view is based on the visualization library
D3.js [BOH11]. Data are managed on the client and can be read
from a JSON file or an external server. The data volumes provided
by our experts can be processed with interactive response on aver-
age hardware, involving only a few seconds of initial data fetching.

6. Evaluation

The goal of this evaluation is to validate the domain usefulness of
the proposed visualization in terms of effectiveness and problem-

solving characteristics for experts doing their own work. By deal-
ing with decision-making, we address a high-level cognitive task,
which is difficult to measure objectively and quantitatively [TMO0S5].
As realism in tasks, data, and users is important, we performed a
qualitative field study. This study combined qualitative coding of
user feedback with a quantitative usability scale. The results sug-
gest that the tool supports the identified analysis tasks for making
a multi-attribute choice from simulated design options. They also
provide indications where there is potential for improvement.

6.1. Methodology

The field study was performed with motor engineers in applied re-
search using real-world data from one of their design optimization
use cases. We wanted to observe how the target users interact with
the deployed visualization in their own working environment to see
whether the tool met their needs. The study was conducted in the
form of one-hour think-aloud sessions with one observer who was
also taking notes. Each session involved a prescribed walk-through
of the tool, open-ended questions about its usage, and a usability
questionnaire. Five experts other than our primary domain expert
participated in the study: the major contributor of the tool currently
used by the engineers, a simulation expert and three experienced
motor designers. A rapport was established during a preceding in-
troduction in visual analysis where all participants were present.

The notes taken during the think-aloud sessions were analyzed
using a qualitative coding methodology [SC90]. Repeated state-
ments, ideas, or topics in the collected feedback and observations
were labeled with codes extracted from the data. These codes were
then grouped into more abstract categories to summarize the re-
sults of the think-aloud sessions. The categorization is aligned to
a set of questions that was proposed by Lam et al. for evaluating
user experience [LBI*11]. In addition to that, we quantitatively as-
sessed the usability of our tool using the System Usability Scale
(SUS), which is composed of ten statements that are rated on a Lik-
ert scale [Saull]. On top of the five experts who already took part
in our field study, we acquired a second group of three experts from
another engineering field. The qualitative coding scheme together
with the quantitative usability scores convey a comprehensive pic-
ture of our tool’s deployment readiness level.

6.2. Results

After coding and sorting the participants’ comments and our obser-
vations, we ended up with five categories: usability, useful features,
missing features, limitations, and the perceived potential of visual-
ization. The usability category includes codes that indicate the un-
derstandibility and learnability of the tool. The dynamic brushing
(preference brush as well as gradient color brush) and flagging of
interesting solutions were highlighted as particularly useful. This
feedback was supplemented by feature suggestions like details-on-
demand, automatic warnings about critical brushes, or documen-
tation support. Hot topics regarding the potential of visualization
were decision-making transparency and revisiting decisions with
customers. Talking to the domain experts also revealed features that
were irrelevant to them. They indicate that we over-prioritized the
underlying task abstractions in the domain characterization stage.
We provide more detailed reflections in Section 7.1 and 7.2.
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QI Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 QIO Total
Al 75 10 10 75 10 10 75 10 75 10 90
A2 10 10 10 10 75 10 10 10 7.5 10 95
A3 10 10 10 75 75 10 10 10 10 7.5 925
A4 75 75 10 10 75 75 7.5 10 7.5 10 85
A5 10 75 10 7.5 75 75 10 10 10 10 90
BI 5 10 10 10 75 5 10 10 10 10 875
B2 5 10 10 10 75 7.5 10 10 7.5 10 875
B3 75 10 75 75 10 75 10 10 7.5 10 875
Avg 94 97 88 8.1 81 94 10 84 97 894

Table 1: Results of the System Usability Scale [Saull] with two
groups A and B of domain experts. The tool achieved a total score
of 89.4 out of 100. Interest in frequent use (Q1) received the lowest
score, while ease of use (Q8) was rated particularly high.

The qualitative feedback of the target users also uncovered a
comprehensibility issue. Three of five participants were confused
by the brushes being locked to one end of the axes. Most of the se-
lection rectangles that they encounter in their daily or working life
can be modified with respect to all directions. However, explaining
the reasoning behind the proposed preference brushes led the par-
ticipants to reconsider their initial expectation and to confirm our
underlying abstraction: "you’re right, I cannot think of any situa-
tion, where I would want to move the other side, too" (A5).

According to the experts, the scatterplots in their current tool are
well-suited for observing the progress of genetic optimization and
steering it. However, they like our visualization tool for making the
actual preferential choice on the resulting Pareto front. They spec-
ify different reasons for this. Two of them stated that our tool pro-
vides them with a more intuitive and flexible brushing functionality.
Another one preferred scatterplots for pairwise trade-offs, because
they convey how a Pareto front is bent. Still, he agreed that higher-
dimensional trade-offs require techniques like parallel coordinates.
When comparing both tools, the experts became particularly aware
of how different visualizations support different kinds of tasks.
Consequently, one of them suggested to combine the strengths of
both, i.e. to simultaneously observe scatterplots and parallel coor-
dinates without having to switch views.

The quantitative results of the usability survey suggest that our
exploration tool provides an excellent usability, according to the
adjective equivalent of the achieved SUS score [BKMO09]. With a
score of 89.4, we found the usability of our tool to be highly above
average, which is reflected by a score of 68 out of 100 [Saull].
We present the individual scores broken down by question in Ta-
ble 1. We noticed that our tool scored highest on ease of use (QS8),
where all participants agreed on the strongest possible approval. In
contrast, the statement about the participants’ prognosis of using
the tool frequently (Q1) received the lowest ratings (which were
still agreeing in total). Here, the two groups’ ratings differed sig-
nificantly (9 versus 5.8 out of 10). A possible explanation might be
the different visualization and domain background of either group,
which affects the tool’s perceived benefit for their daily work.

© 2020 The Author(s)
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7. Reflections

As Sedlmair et al. point out, contributions that make design stud-
ies useful for other visualization researchers focus on various as-
pects of the problem domain, a validated visualization tool, or re-
flections on design guidelines [Sed16]. Meyer and Dykes particu-
larly stress that the knowledge acquired through a design study is
highly subjective and needs to be viewed in the context of its gener-
ation [MD19]. Inspired by their proposed subdivision of contribu-
tions into three topics, we provide our reflections on 1) the problem
domain, 2) visualization idioms, and 3) methodological guidelines.

7.1. Problem Domain

While being strongly interested in the potential of visualization,
design engineers are rarely visualization experts themselves. Re-
search on multi-criteria optimization in engineering design mainly
focuses on advancing simulation and optimization algorithms. As
the ability to simulate even larger design spaces increases, the im-
portance of visualization to make sense out of the growing Pareto
fronts raises to the same extent. In line with the insight "simpler
dashboards are better" of Arbesser et al. [AMKP17], we realized
that our simple interactive visualization provided a clear benefit
for the domain experts, although these techniques are considered
a standard in our domain. We thus argue for a greater consideration
of well-known visualizations like parallel coordinates under careful
consideration of their practicability in new industry applications.

We found the most important design requirements to be 1) the
ability to retrieve any criteria value of any design from the visual
encoding (R, Overview) and 2) the transparency of the decision-
making process (R} Transparency). The latter is important because
a comprehensible decision process "helps to prove plausibility and
Justify the decision" (A3). This is closely related to the need to com-
municate and collaboratively revisit a decision. Design engineers
need to be able to explain how they reached their design decision
because "an understanding of the optimization problem and selec-
tion process is highly important to customers" (A4). From their ex-
perience, an interactive exploration of alternatives is highly benefi-
cial for such explanations. The interactive visualization even offers
the potential to involve customers in the decision-making (A3).

The engineers did not consider guidance relevant for an explo-
ration. We suggested an automatic highlighting of the next best
solution to guide them towards interesting regions of the solution
space. However, they prefer to explore the available alternatives
by themselves using the brushing mechanism. This might originate
from their awareness that the simulation model itself can contain
inaccuracies that a fully automated optimization would overlook.

Our collaboration and discussions made the domain experts
think differently about their tasks and workflow. Interacting with
the dynamic brush led them to realize why they perceived the in-
teraction in their current tool as not very straightforward: because
it involved quite a few mouse clicks and its effects were thus not
instantly visible. The brushing mechanism also made the simula-
tion expert think about applying fuzzy logic to the brushes: "maybe
vague preferences are better represented by a fuzzy selection” (A3).
In our domain, this is known as smooth brushing [DHO02]. We were
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also pointed towards optimization scenarios involving interdepen-
dent components. They remain an open challenge for now, thus of-
fering a promising perspective for continued collaboration.

We have also been approached by a party from the rail supply
industry, who is interested in using our tool for optimizing the pro-
duction process of transportation pallets. Their interest confirms
that our abstraction seems to be at the right level, because our visu-
alization can adapt to different optimization problems from differ-
ent domains, targeting both products and processes. However, this
is subject to a formal evaluation. Also, parallel coordinates rarely
scale well with the number of data items. This issue is partly miti-
gated by the fact that the number of items in focus is reduced very
early during exploration via filtering.

7.2. Visualization Idioms

Motivated by the recommendation that "studies [of parallel coordi-
nates] in new application areas should be encouraged” [JF15], we
discuss aspects of our visual encoding, interaction techniques, and
envisioned analysis work flow regarding their acceptance by design
engineers. We also comment on visualization design guidelines.

Johansson and Forsell have found parallel coordinates to be "ad-
vantageous to state-of-the-art techniques when introduced in a new
application area"” [JF15]. Our findings align with this. The do-
main experts quickly became familiar with the visual encoding.
Due to the lossless projection, they had no difficulties in gaining
an overview of the available multi-criteria alternatives. They par-
ticularly appreciated the brushing mechanism and observing its di-
rect effect on the selection of alternatives. This even seemed to have
outweighed the well-known issue of parallel coordinates being sen-
sitive to visual clutter. For optimization, we would like to promote
the preference brush as a simplification of composite brushes.

The existing analysis tool for the design and optimization of mo-
tors is built around an interactive scatterplot matrix depicting pair-
wise trade-offs. Scatterplots are known to convey correlations more
effectively than parallel coordinates [LMVW10]. Our experts also
stated that they prefer to observe pairwise trade-offs in a scatterplot.
Still, due to their ability to convey an overview, parallel coordinates
were rated high as a complement to the traditional scatterplots. This
aligns with Yuan’s et al. combination of scatterplots and parallel co-
ordinates to exploit the strengths of both [YGX*09]. In their recent
study, Dimara et al. found that tabular layouts were preferred over
parallel coordinates for decision-making tasks [DBD17]. However,
tabular layouts often require users to explicitly express their crite-
ria preferences for ranking purposes [GLG™ 13]. Still, some experts
confirmed the relevance of tabular visualizations: they would have
appreciated a linked brushing functionality for the table view.

Some visual encodings were not effective in this domain. Al-
though the radial bar charts provide a compact representation of
individual alternatives, the engineers were not satisfied with the
overview of the criteria space. The curve smoothing that should
support users in tracing lines that intersect the axes in common
points was not considered relevant for the perception of alterna-
tives. The interactive translation of axes was initially discussed
controversially, but some engineers quickly adapted to using this

feature. For one-to-many correlations the experts commonly ap-
preciated the gradient color brush as "intuitive” (A4) and "practi-
cal" (AS). In particular, the experts used this brush to observe how
changing values in one criterion affected the remaining criteria.

7.3. Methodological Guidelines

Real data being available from the very beginning of the project
helped a lot in developing an understanding of the problem state-
ment and identifying valid abstractions that shaped the design of
our tool early in the process. Our domain experts committed a lot
of time for problem analysis and design discussions. This commit-
ment was in large parts based on an exceptional intrinsic motivation
that stemmed from their personal interest in visualization as well as
enjoying problem and design discussions through a positive rapport
between researchers and domain experts.

Apart from that, our collaboration was effective for two more
reasons. First, both parties were willing to familiarize themselves
with the subjects of the other party. The domain experts already
knew basic visualization and interaction concepts, which signifi-
cantly reduced the initial knowledge gap. Second, we encouraged
meetings in person for joint sketching on the same whiteboard or
piece of paper to generate and evaluate ideas. This led to results
more efficiently than having one party prepare content that is re-
viewed by the other. By constantly providing prototypes, we were
able to reinforce the experts’ engagement and keep their attention.
In the end, our discussions with the domain experts were so inspir-
ing that we even identified an entirely new problem that poses an
interesting research question in both domains.

We should have listened more carefully when the domain experts
encouraged the use of parallel coordinates shortly after our collab-
oration started. We initially missed this suggestion due to a blind
spot that grew from our assumption that building upon familiar vi-
sualizations would 1) avoid the pitfall of ignoring practices that
work well and 2) keep the tool easy to learn. However, from this de-
tour, we had to acknowledge that, despite their limited visualization
background, our domain experts had a meaningful understanding
of their visualization needs. Consequently, when performing user-
centered design, we learned to consider the users’ suggestions more
strongly, even if we might feel our expertise being underrated.

8. Conclusion

In this work, we present the results of a design study on Pareto
front visualization in the field of engineering design. In close col-
laboration with electromechanical engineers, we studied their tasks
and needs related to making a multi-attribute choice. The result-
ing problem characterization guided our development of PAVED,
an interactive parallel coordinates visualization that enables the ex-
ploration of design alternatives, which are characterized by about
a dozen design parameters and up to ten criteria. The visualization
supports engineers in applying both formal constraints and infor-
mal preferences as they learn what level of performance is achiev-
able under different conditions. This allows them to understand the
trade-offs involved, which is essential for justifying the final choice
to their customers. Although designed for engineers, our visualiza-
tion can also be used by other decision-makers like consumers or
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professional buyers, policy makers, or event managers. A qualita-
tive field study indicates the usefulness of our approach for per-
forming real-world optimization, which also manifests in the re-
sults of a usability testing. Finally, we reflect on domain character-
istics, visualization design, and methodological considerations and
showed the benefit of a well-known visualization like parallel coor-
dinates for industry applications. Our future research will focus on
adapting the parallel coordinates visualization to support the opti-
mization of systems consisting of interdependent components.
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