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Abstract: To exploit the whole potential of Additive Manufacturing, it is essential to investigate
the complex relationships between Additive Manufacturing processes, the resulting microstructure,
and mechanical properties of the materials and components. In the present work, Selective Laser
Melted (SLM) (process category: powder bed fusion), Laser Deposition Welded (LDW) (process
category: direct energy deposition) and, for comparison, Continuous Casted and then hot and
cold drawn (CC) austenitic stainless steel AISI 316L blanks were investigated with regard to their
microstructure and mechanical properties. To exclude the influence of surface topography and
focus the investigation on the volume microstructure, the blanks were turned into final geometry of
specimens. The additively manufactured (AM-) blanks were manufactured in both the horizontal and
vertical building directions. In the horizontally built specimens, the layer planes are perpendicular
and in vertical building direction, they are parallel to the load axis of the specimens. The materials
from different manufacturing processes exhibit different chemical composition and hence, austenite
stability. Additionally, all types of blanks were heat treated (2 h, 1070 ◦C, H2O) and the influence of
the heat treatment on the properties of differently manufactured materials were investigated. From
the cyclic deformation curves obtained in the load increase tests, the anisotropic fatigue behavior
of the AM-specimens could be detected with only one specimen in each building direction for
the different Additive Manufacturing processes, which could be confirmed by constant amplitude
tests. The results showed higher fatigue strength for horizontally built specimens compared to the
vertical building direction. Furthermore, the constant amplitude tests show that the austenite stability
influences the fatigue behavior of differently manufactured 316L. Using load increase tests as an
efficient rating method of the anisotropic fatigue behavior, the influence of the heat treatment on
anisotropy could be determined with a small number of specimens. These investigations showed no
significant influence of the heat treatment on the anisotropic behavior of the AM-specimens.

Keywords: additive manufacturing; cyclic deformation behavior; anisotropic fatigue behavior; load
increase tests; selective laser melting; laser deposition welding; 316L; austenite stability
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1. Introduction

Additive Manufacturing is a type of manufacturing technology, which builds three-dimensional
objects by adding materials element by element or layer by layer [1,2]. This offers unique and
novel approaches to product development and manufacturing. Additive Manufacturing enables the
manufacturing of parts with complex geometries that are impractical or even impossible to manufacture
by conventional manufacturing processes. Additively manufactured (AM-) parts can therefore make
use of highly optimized lightweight lattice structures with specific weight saving porosities and
internal stiffening structures, which can be tailored for individual applications [3–5]. A further benefit
of Additive Manufacturing is the feasibility of manufacturing without part-specific tooling, which
enables a cost efficient production of low volume parts or even customized products [6]. Additive
Manufacturing also has the potential to reduce the complexity of process chains through function
integration, to reduce the environmental footprint of the production [7], and it can be used as a repair
technology for worn and damaged metal parts [8]. Additive Manufacturing also enables the possibility
of a partial grading of the properties of materials, optimized with regard to the application [9].

Significant advancements have brought Additive Manufacturing technologies to an extent that
they can be used not only for prototyping, but also for direct manufacturing of functional end-use parts.
A wide range of materials is available including plastics, ceramics, composites, and metallic materials
including, for example, tool steels, stainless steels, aluminum alloys, titanium alloys, nickel-based
alloys, and so forth [10,11].

Two main categories of Additive Manufacturing processes for metal parts are powder bed
fusion and direct energy deposition [12]. Two common Additive Manufacturing processes of these
main categories are Selective Laser Melting (SLM) (process category: powder bed fusion) and Laser
Deposition Welding (LDW) (process category: direct energy deposition). Both technologies use a
laser beam as an energy source to fully melt metallic powder sequentially on a local scale to produce
solid parts. SLM is a powder bed based technology, where the powder is spread evenly on the build
platform. A computer controlled laser beam deflection mechanism diffracts the laser beam, which
selectively scans the powder bed and thereby melts the powder. After the layer is complete, the build
platform lowers the height of the layer thickness and a new layer of powder is spread evenly onto the
platform. The LDW technology is characterized by creating a melt pool on the workpiece by a high
energy laser beam. The powder, which is supplied in an inert gas stream by a nozzle, is fed into the
melt pool and fused with the liquefied material [6].

To enable the whole potential of these manufacturing technologies, it is essential to get sound
knowledge about the material’s properties of the AM-structures. Investigations of the microstructure
and monotonic properties of the AM-materials are available in a large quantity. Microstructural
investigations of Mower et al. [13], Yasa et al. [14], and Casati et al. [15] on selective laser melted
austenitic stainless steel AISI 316L showed an elongation of grains along the building direction and
visibility of the layer boundaries in light optical micrographs (LOMs), which is in accordance to
the investigations of Brandl et al. [16] on laser deposition welded Ti6Al4V, Caiazzo et al. on laser
powder bed fused Inconel 718 [17], and Bauer et al. [18] on the selective laser melted nickel based
superalloy Haynes230®. Mower et al. [13] also observed this typical microstructure in AlSi10Mg. For
the mentioned materials, Lewandowski et al. [10] described a similar tensile and 0.2% yield stress of
AM-materials compared to conventionally manufactured materials and an anisotropic behavior of
the AM-materials with regard to their building direction, which is in accordance to the observations
of References [11,13,15,17–19]. In these investigations, the Horizontal building direction, in which
layer planes are perpendicular to the load axis, showed higher values compared to the vertically
built specimens.

To extend the application of Additive Manufacturing into the field of safety-relevant structural
parts, it is indispensable to get comprehensive and reliable information about the fatigue properties of
AM-materials. Investigations about this important aspect are available to a limited extent regarding
fatigue life oriented and are even more limited regarding fatigue processes and cyclic deformation
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behavior. The available investigations of Günther et al. [20] show a decreased fatigue strength
of the selective laser melted Ti6Al4V compared to conventionally manufactured material, which
is mainly caused by the pores in AM-material resulting from binding defects. Investigations of
Yadollahi et al. [19] on the stainless steel 17-4-PH and Mower et al. [13] on the austenitic stainless steel
316L and AlSi10Mg are in accordance to the observations of Reference [20] and show, additionally,
an increased fatigue strength of AM-specimens in the horizontal building direction compared
to the vertically built specimens. In accordance to these investigations, Leuders et al. [21] and
Greitemeier et al. [22] on Ti6Al4V, and Stoffregen et al. [23] on 17-4-PH showed a high dependency of
the fatigue strength of AM-specimens on microstructural defects, that is, pores.

For the reasons indicated above, in the present work, the microstructure and mechanical properties
of Selective Laser Melted (SLM-) and Laser Deposition Welded (LDW-) materials were investigated.
Additionally, Continuous Casted and then hot and cold drawn (CC-) material was investigated to get a
comparison of the AM- to the conventionally manufactured materials. The focus of the investigations
was the fatigue behavior of AM-materials, especially the influence of the following aspects:

• the orientation of the load axis with respect to the building direction
• the post Additive Manufacturing heat treatment (1070 ◦C, H2O), especially on anisotropy
• the austenite stability, which is strongly affected by chemical composition
• defects like pores or oxide inclusions resulting out of the Additive Manufacturing process

Therefore, microstructural investigations using light optical microscopy and scanning electron
microscopy were conducted. The fatigue behavior was investigated via cyclic microindentation,
load increase tests (LITs), and constant amplitude tests (CATs). LITs and CATs were performed with
stress-strain measurement and in-situ high precision measurement of change in temperature and
electrical resistance.

2. Materials

The present study extends the comparison of the microstructure, monotonic properties, and
results of indentation tests of differently manufactured materials out of 316L in the as-built condition
published in Reference [24] by investigations of the fatigue behavior and the influence of a post
Additive Manufacturing heat treatment (HT). The specimens used in the present study are made of
austenitic stainless steel AISI 316L (1.4404). The material is available as a conventional Continuous
Casted and subsequently hot and cold drawn (CC-) material, but also widely used as ingot powder for
Selective Laser Melting (SLM) and Laser Deposition Welding (LDW) processes. AISI 316L belongs
to the widely used AISI 300 series austenitic stainless steels, that is, Fe-C-Cr-Ni alloys containing
about 18 wt. % of Cr and 8 wt. % of Ni [25]. In this group, several austenitic steels are metastable, for
example, AISI 304 and 348 [26,27], as well as 316L, which is considered in the present study. Therefore,
thorough investigations of the monotonic and cyclic deformation induced phase transformations from
paramagnetic austenite into a thermodynamically more stable microstructure—that is, paramagnetic
ε-martensite and/or ferromagnetic α′-martensite—as well as their influences on the monotonic and
cyclic properties were performed [26–30].

Tensile specimens were manufactured with a geometry according to DIN EN ISO 6892-1 [31] and
a diameter in the gauge length of 8 mm. The geometry of the fatigue specimens is given in Figure 1.
Note that all fatigue specimens were finally mechanically polished in the gauge length to a surface
roughness of Rz = 0.4 µm.

To keep the Additive Manufacturing process simple and to exclude influences of surface
topography on the test results for focusing the investigations on the volume microstructure,
LDW-specimens were pre-manufactured as cuboids and afterward turned to their final geometrical
shapes. Similarly, the SLM-specimens were pre-manufactured with cylindrical geometry and afterward
turned to their final shape (see Table 1). Compared to SLM, the layer thickness was ten times larger in
the LDW process. The average particle size of the ingot powder is bigger for the LDW than for the
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SLM process (see Table 1), and the particle size distribution shows a larger scatter of the LDW ingot
material. To investigate the influence of the building direction in Additive Manufacturing processes
on the material’s properties, blanks were manufactured in the vertical (LDW-V and SLM-V) as well
as horizontal (LDW-H and SLM-H) building directions. Note that in the vertical building direction
the layer planes are oriented perpendicular and in the horizontal building direction the layer planes
are oriented parallel to the loading direction of the specimens. These two building directions were
chosen for comparison of most different orientations possible. The CC-reference-specimens were
manufactured by turning from continuous casted and then hot and cold drawn bars with a diameter
of 15 mm.
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Table 1. The manufacturing parameters of the Additive Manufacturing (AM)-blanks [24].

Additive
Manufacturing

Technology
SLM LDW

Manufacturing
machine EOS M 290 DMG MORI LASERTEC 65 3D

Powder size in µm 25–45 50–150

Av. Layer thickness
in µm 40 400

Dimension as-built
in mm Ø14 × 102 15 × 15 × 103

Building direction
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To investigate the influence of a heat treatment on the microstructure and mechanical properties
of AM-specimens, some blanks from each manufacturing process were heat treated in a resistance
furnace (Nabertherm GmbH, Lilienthal, Germany) at ambient air. According to the typical parameters
for austenitic steels given in Reference [26] and based on a parameter study within the present research,
the material was solution annealed at 1070 ◦C for 2 h and afterwards quenched in water. After the heat
treatment, the blanks were turned to the final specimen geometry (see Figure 1). Hence, four specimen
variants were tested for each Additive Manufacturing process: the vertical and horizontal building
direction and each in an as-built and heat treated condition.

The chemical compositions of the investigated AISI 316L austenitic stainless steel (1.4404) batches,
determined by spectrophotometric analysis, are given in Table 2. All batches meet the specifications
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given in ASTM A 182/A 182M-14a [32]. However, it should be noted that chromium, nitrogen, nickel
contents and, hence, austenite stability, evaluated by the Md30,Angel-temperatures (Equation (1) [28]),
differ significantly.

Md30,Angel = 413 − 462 (C + N) − 9.2Si − 8.1Mn − 13.7Cr − 9.5Ni − 18.5Mo. (1)

Note that Md30,Angel represents the temperature where 50% of the initial austenite transforms
to α′-martensite, when subjected to a plastic strain of 30%. Lower Md30,Angel-temperatures indicate
higher austenite stability. From Table 2, it becomes obvious that both AM-materials show distinctly
higher austenite stability compared to the CC-material.

Table 2. The chemical compositions and Md30,Angel-temperatures of the investigated AISI austenitic
stainless steel 316L (1.4404) batches [24].

Amount of Alloying
Element in wt. % C N Si Mn Cr Ni Mo Fe Md30,Angel in ◦C

SLM 0.02 0.08 0.61 1.44 17.68 13.07 2.26 64.68 −58.3
LDW 0.03 0.10 0.53 1.30 16.41 10.54 2.04 68.75 −28.5
CC 0.02 0.03 0.38 1.65 16.59 10.48 2.03 68.18 9.1

ASTM A 182
min - - - - 16.00 10.00 2.00 60.80 61.8
max 0.03 0.10 1.00 2.00 18.00 15.00 3.00 72.00 −117.1

3. Experimental Methods

Light optical micrographs (LOMs) were taken with a Leica DM 6000 M device (Leica, Mannheim,
Germany). SLM- and CC-samples were etched using V2A etchant while for the LDW-samples, Adler
etchant was used, which leads to a better visualization of the microstructure of LDW-material with
lower chromium and higher nitrogen content. Scanning electron microscopy (SEM) was performed
using an FEI Quanta 600 device (FEI, Hillsboro, OR, USA). Microhardness measurements and cyclic
microindentation tests were conducted with a Fischerscope H100 C device (Helmut Fischer GmbH,
Sindelfingen, Germany). Macrohardness measurements were performed on a Zwick/Roell ZHU250 top
device (Zwick Roell, Ulm, Germany) in the center of the cross-sections of the fatigue specimen shafts.

Microhardness line scans were determined with 120 indentations with a point to point distance of
100 µm and a minimum distance to the sample edge of 50 µm (see Figure 2), in the cross-sections of
the shafts of two different fatigue specimens, which show, within tight tolerances, the same results.

Tensile tests were performed on a Zwick/Roell Z250 electromechanical testing device (Zwick Roell,
Ulm, Germany) with a testing procedure according to DIN EN ISO 6892-1 [31].
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Figure 2. The schematic description of the microhardness measurements.

The cyclic hardening potential of the differently manufactured microstructures has been
determined by the PhyBaLCHT method similar to the work of Kramer et al. [33]. Cyclic
microindentation tests were conducted using a Vickers indenter on a planar material surface at
20 different positions in the middle of the cross-sections of the fatigue specimen shafts and were
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performed at two different samples, resulting in values, which differed less than 5%. At each position,
10 indentation cycles with a cosine waveform, a maximum load of 1000 mN, and a frequency of
1/12 Hz were performed. Up from the second cycle, the load-indentation depth-relation forms a
hysteresis loop. The half width of the hysteresis at the mean load was determined as the plastic
indentation depth amplitude ha,p (see Figure 3a). The ha,p-N-relation can be described from the 5th
to the 10th cycle by a power law function (see Figure 3b). The differences of the ha,p-values to the
power law ha,p II between the 2nd and 4th cycle can be described by a further power law representing
ha,p I. The sum of both power laws describes the whole ha,p-N-relation. Due to the fact that ha,p II is
part of both power laws and that after the 4th cycle, significant macroplastic deformation processes
are mainly completed, indicated by the slope change of the ha,p-N-curve, the exponent of the second
power law can be considered representative for the cyclic behavior of the material [33]. The exponent
of the power law describes the hardening potential of the material and is called cyclic hardening
exponentCHT eII [33].
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Figure 3. PhyBaLCHT: the schematic description of (a) the indentation force-indentation
depth-hysteresis loop and (b) the ha,p-N-curves described by two power laws according to
Reference [33].

The LITs were performed on a servo-hydraulic fatigue testing system with a load ratio of R = −1
and a frequency of 5 Hz in laboratory air at ambient temperature. For each type of specimen, two LITs
were performed. The load amplitude of the first step was 100 MPa, the step length was 9000 cycles,
and the load increase between each step was 20 MPa. To further investigate the fatigue behavior of
the AM-microstructures, additional CATs were conducted at a frequency of 2 Hz and a stress ratio of
R = −1. The stress levels of the CATs were determined by means of the cyclic deformation behavior in
the LITs. Based on the results in LITs, the frequency in CATs was reduced to avoid temperature increase
under high constant amplitude loading. The plastic strain amplitude εa,p was determined from the
stress-strain-hysteresis loops measured by an extensometer. The area of each hysteresis loop describes
the cyclic plastic strain energy dissipated per unit volume during a given loading cycle, which is mainly
dissipated into heat and, hence, results in a change in the specimen temperature [34]. The temperature
was measured with one thermocouple in the middle of the gauge length (T1) and two reference
thermocouples at the elastically loaded specimen shafts (T2 and T3; see Figure 4). The temperature
change induced by cyclic plastic deformation was calculated according to Equation (2) [34].

∆T = T1 −
T2 + T3

2
(2)
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Additionally, the change in the electrical resistance ∆R of the material during the fatigue tests
was measured. The specific electrical resistance is influenced by microstructural defects—for example,
pores, microcracks, vacancies, and dislocation structures, which makes this measurement sensitive
to fatigue processes [34]. For ∆R measurements, a constant direct current of 8 A was applied to the
specimen and the voltage drop was measured between the ends of the gauge length (see Figure 4).

The content of the ferromagnetic phase of the specimens was measured before and after
tensile tests as well as fatigue tests using a FERITSCOPE™ MP 30E device (Helmut Fischer GmbH,
Sindelfingen, Germany) to determine and quantify the transformation from paramagnetic austenite to
ferromagnetic α′-martensite (∆ξ) given in Fe-%. Measurements before the tests were conducted on the
surface of the gauge length, while measurements after the tests were performed on both the surface of
the gauge length and on the fracture surface.
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4. Results and Discussion

4.1. Microstructure

Figure 5 shows the LOMs of cross-sections of differently manufactured and heat treated (HT)
specimens. The AM-specimens showed a typical elongation of grains along the building direction,
both in the as-built and heat treated condition, which could also be observed in the electron backscatter
diffraction (EBSD) orientation maps (see Figure 5a,c,f,h and Figure 6a,c,e,g). This typical feature
of AM-specimens, especially in the as-built condition, was already shown in other investigations
of additively manufactured 316L [14,15,35] and can be explained by the directed heat flux during
solidification, from the melt pool into the already applied material. In the cross-sections of the
horizontally built specimens, the boundaries of the melt pools can be identified (see Figure 5a,c,f,h)
according to the results of References [13,15,16,35]. In the heat treated SLM-H-specimens the visibility
of the melt pool boundaries was much less pronounced than in the as-built condition (compare
Figure 5a,f).
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Figure 6. The electron backscatter diffraction (EBSD) orientation maps of the cross-sections for
(a) SLM-H [24]; (b) SLM-V [24]; (c) LDW-H [24]; (d) LDW-V [24]; (e) SLM-H-HT, (f) SLM-V-HT;
(g) LDW-H-HT; and (h) LDW-V-HT.

Grain sizes were rated in conformity to DIN EN ISO 643 [31] (see Table 3) on the cross-sections of
the differently manufactured specimens. Due to the abovementioned grain elongation corresponding
with a grain aspect ratio of <1, the grain size number of the AM-specimens was higher perpendicular
to the building direction than along the building direction (see Table 3).

The grain sizes of the SLM-specimens (G = 6–7) were lower than that of the LDW-specimens
(G = 1–3), due to the higher cooling rates correlating with smaller melt pool sizes in the SLM process.
The CC-specimens (G = 5) showed a higher grain size than the SLM-specimens but a lower grain size
than the LDW-specimens. Note that the ε-martensite and the twin boundaries were not taken into
account in the grain size determination. Figure 5e shows that very thin, dark needles exist in a few
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austenitic grains, which indicate the presence of ε-martensite in the CC-specimens. The ε-martensite
has a hexagonal crystallographic structure, is paramagnetic, and can be formed by plastic deformation.
Furthermore, intersections of ε-martensite are nuclei for deformation induced α′-martensite [26,36].
The heat treatment did not influence the grain structure of the AM-specimens significantly (Figures 5
and 6; Table 3), while CC-specimens showed an increased grain size and no ε-martensite was detected
after the heat treatment.

Table 3. The grain sizes of the differently manufactured and heat treated specimens.

Specimen SLM-H SLM-V LDW-H LDW-V CC

Grain size number G 6 7 1 3 5

Specimen SLM-H-HT SLM-V-HT LDW-H-HT LDW-V-HT CC-HT

Grain size number G 6 7 1 3 4

Note that the LOMs of cross-sections of vertically/ horizontally built specimens correspond to
the LOMs of longitudinal sections of horizontally/vertically built specimens (see Figure 7).

One of the main aspects in the microstructure of the AM-material is the occurrence of
inhomogeneities like pores or oxide inclusions [15,20,37]. The porosity of the differently manufactured
and heat treated materials was rated based on a minimum of ten LOMs for each type of specimen,
which was taken from a minimum of five different samples, respectively. In addition to the results
given in Reference [24], a larger number of specimens were investigated. The SLM-specimens exhibited
a higher porosity than the LDW-specimens (Table 4). Because of the higher laser power [38] and the
bigger layer thickness [39] in the LDW process, the porosity of the LDW-specimens was lower. Due
to these differences in the process parameters, the penetration depth of the laser in LDW-process
was higher, which led to a higher level of bonding compared to the SLM-specimens. Hence, the
LDW-specimens exhibited a lower amount of incomplete bonding between melt pools, which is the
main reason for the pores in the AM-materials (see Figure 8a).
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The horizontally built SLM-specimens exhibited a higher porosity compared to the vertically built
SLM-specimens. This could be caused by the slight differences in the parameters in the manufacturing
process, which has, as can be seen in Figure 7, obviously no influence on the microstructure except on
the porosity of the SLM-material. In Figure 7, the longitudinal sections (LS) and cross-sections (CS) of
the SLM-specimens manufactured in the different building directions are shown. The microstructure
of the different building directions exhibit no significant differences and also the heat treatment has no
significant influence on the porosity of the AM-materials (see Table 4).
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Table 4. Porosities of the differently manufactured and heat treated specimens.

Specimen SLM-H SLM-V LDW-H LDW-V CC

Porosity in area % 1.54 ± 0.49 0.85 ± 0.27 0.03 ± 0.01 0.02 ± 0.01 0

Specimen SLM-H-HT SLM-V-HT LDW-H-HT LDW-V-HT CC-HT

Porosity in area % 1.26 ± 0.19 0.93 ± 0.38 0.02 ± 0.01 0.03 ± 0.01 0

Oxide inclusions were observed in LDW-specimens (see Figures 8b and 9). These inclusions
showed a higher concentration of O, Si, and Mn, and a lower content of Fe, indicating the prevalence
of SiMn-Oxides (see Figure 9). The oxide inclusions resulted from an incomplete coverage of the
melt pool by the protective inert gas flow during the LDW-process [37] and were significantly more
extended than the pores in the LDW-specimens (see Figure 8b). This leads to the assumption that the
influence of oxide inclusions on the fatigue behavior is more pronounced.
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4.2. Indentation and Tensile Tests

To investigate the mechanical properties of the differently manufactured and heat treated
specimens, tensile tests, cyclic indentation tests, and macro- and microhardness measurements
were conducted.

Note that for the AM-specimens, the indentations were placed in the cross-sections (see Figure 2)
of the specimens with horizontal building direction parallel to the layer planes, while in vertically built
specimens the indents were placed perpendicular to the layer planes. As can be seen from Figure 10,
the microhardness distribution of the AM-specimens is not influenced by the building direction. In the
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as-built condition, the AM-specimens, both from the LDW and from SLM processing, showed a rather
flat microhardness distribution. While the cooling rate and temperature gradient at the individual melt
pools were very high, the distribution of the cooling rates along the cross section of the AM-specimens
was nearly homogeneous due to the small volume fraction of each single melt pool, which led to
the observed flat microhardness distributions. The CC-specimens showed an increased hardness
in the near surface regions caused by the inhomogeneous plastic deformation during cold drawing,
which led to the enhanced work hardening close to the surface. The SLM-specimens in the as-built
condition showed a higher hardness than in the center of the CC- and in the overall cross section of the
LDW-specimens (see Figure 10 and Table 5). The LDW-specimens showed the lowest hardness, which
correlates to their relatively large grain sizes (see Figures 5 and 6; Tables 3 and 5).

Table 5. The macrohardness measurements of the differently manufactured and heat treated specimens.

Specimen SLM-H SLM-V LDW-H LDW-V CC

HV30/10 219 215 171 177 202

Specimen SLM-H-HT SLM-V-HT LDW-H-HT LDW-V-HT CC-HT

HV30/10 175 179 159 154 131

The heat treatment led to a decreased and, in case of the CC-material flattened, microhardness
distribution in all specimens. Compared to the LDW- and SLM-specimens, the CC-specimens exhibited
the most pronounced decrease of hardness, indicating a reduction of the work hardening induced
effects during the heat treatment. These assumptions correlate to the investigations of Altenberger
et al. on austenitic steel AISI 304 [29] and are currently under further investigation. Furthermore,
the ε-martensite detected in the initial state (Figure 5e) transforms completely to austenite (Figure 5j).
Moreover, the ferromagnetic phase fraction, that is, the α′-martensite, is reduced by the heat treatment
up to 0.0 Fe-% (compare Table 8 to Table 9), which also decreases the hardness of all specimen variants.

Metals 2018, 8, x FOR PEER REVIEW  11 of 23 

 

Table 5. The macrohardness measurements of the differently manufactured and heat treated specimens. 

Specimen SLM-H SLM-V LDW-H LDW-V CC 
HV30/10 219 215 171 177 202 

Specimen SLM-H-HT SLM-V-HT LDW-H-HT LDW-V-HT CC-HT 
HV30/10 175 179 159 154 131 

The heat treatment led to a decreased and, in case of the CC-material flattened, microhardness 
distribution in all specimens. Compared to the LDW- and SLM-specimens, the CC-specimens 
exhibited the most pronounced decrease of hardness, indicating a reduction of the work hardening 
induced effects during the heat treatment. These assumptions correlate to the investigations of 
Altenberger et al. on austenitic steel AISI 304 [29] and are currently under further investigation. 
Furthermore, the ε-martensite detected in the initial state (Figure 5e) transforms completely to 
austenite (Figure 5j). Moreover, the ferromagnetic phase fraction, that is, the α′-martensite, is reduced 
by the heat treatment up to 0.0 Fe-% (compare Table 8 to Table 9), which also decreases the hardness 
of all specimen variants. 

 
Figure 10. The microhardness distribution in the cross-sections of (a) SLM-H, (c) SLM-V, (b) LDW-H, 
(d) LDW-V, and (e) continuous casted (CC) in the as-built condition [24] and the heat treated 
condition. 

The results of the cyclic microindentation tests exhibited significant differences between the 
differently manufactured specimens in the as-built condition. The SLM-specimens showed lower ha,p-
values than the LDW- and CC-specimens (see Figure 11). In the as-built condition, the hardening 
potential of the LDW-specimens was the highest and differed significantly to the eII-values of the 
SLM- and CC-specimens (see Figure 11 and Table 6). 

The heat treatment significantly influences the results of the cyclic microindentation tests. In the 
first cycles, the ha,p-values of the heat treated specimens are similar to those in the as-built condition, 
while for N > 5, ha,p becomes significantly lower than in the as-built condition (see Figure 11). Hence, 
it can be concluded that the hardening potential of the heat treated specimens is higher, which can 

Figure 10. The microhardness distribution in the cross-sections of (a) SLM-H, (c) SLM-V, (b) LDW-H,
(d) LDW-V, and (e) continuous casted (CC) in the as-built condition [24] and the heat treated condition.



Metals 2018, 8, 220 12 of 23

The results of the cyclic microindentation tests exhibited significant differences between the
differently manufactured specimens in the as-built condition. The SLM-specimens showed lower
ha,p-values than the LDW- and CC-specimens (see Figure 11). In the as-built condition, the hardening
potential of the LDW-specimens was the highest and differed significantly to the eII-values of the SLM-
and CC-specimens (see Figure 11 and Table 6).

Table 6. The cyclic hardening exponentsCHT eII of the differently manufactured and heat treated specimens.

Specimen SLM-H SLM-V LDW-H LDW-V CC

|eII| 0.391 ± 0.025 0.399 ± 0.016 0.456 ± 0.025 0.455 ± 0.009 0.396 ± 0.020

Specimen SLM-H-HT SLM-V-HT LDW-H-HT LDW-V-HT CC-HT

|eII| 0.491 ± 0.021 0.467 ± 0.013 0.540 ± 0.022 0.540 ± 0.016 0.568 ± 0.021

The heat treatment significantly influences the results of the cyclic microindentation tests. In the
first cycles, the ha,p-values of the heat treated specimens are similar to those in the as-built condition,
while for N > 5, ha,p becomes significantly lower than in the as-built condition (see Figure 11).
Hence, it can be concluded that the hardening potential of the heat treated specimens is higher,
which can be seen by comparison of the values of eII in the as-built and heat treated conditions
(see Table 6). The highest increase of the hardening potential due to the heat treatment was observed in
the CC-specimens (Figure 11 and Table 6), which was caused by the reduction of the work hardening
after the heat treatment.

Similar to the results of the microhardness measurements, no anisotropic behavior of the
AM-specimens was observed in cyclic microindentation tests.
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(d) LDW-V, and (e) CC in the as-built condition [24] and the heat treated condition.

Tensile tests were conducted at the differently manufactured specimens in the as-built condition
as published in Reference [24]. Young’s moduli of all specimens were in a similar range. However, as
soon as the elastic range was exceeded, the AM-specimens showed an anisotropic behavior, that is,
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the horizontally built specimens showed a higher tensile strength, 0.2% yield stress, and elongation
at the fracture (see Table 7). This anisotropic behavior is typical for AM-specimens; see for example,
References [10,15,19,40,41].

The SLM-V-specimens showed similar tensile and 0.2% yield stress as the CC-specimens, while
SLM-H-specimens showed even higher values. The tensile strength and the 0.2% yield stress of
the LDW-H specimens were also close to the CC-specimens, while the LDW-V-specimens showed
significantly lower values (see Table 7). The increase of the magnetic fraction (ξ in Fe-%) correlates
with the austenite stabilities caused by the different chemical compositions (see Table 2). However, the
different austenite stabilities influenced the elongation at the fracture. Accordingly, the CC-specimens
showed the highest elongation at the fracture and the LDW-specimens showed the higher elongation
at fracture than the SLM-specimens, for each building direction.

Table 7. The mechanical properties in the tensile tests of differently manufactured specimens in the
as-built condition [24].

Specimen SLM-H SLM-V LDW-H LDW-V CC

Rm in MPa 681 ± 7 612 ± 2 629 ± 7 564 ± 9 639 ± 2
Rp0.2 in MPa 609 ± 43 490 ± 2 438 ± 40 322 ± 2 454 ± 4

Young’s modulus in GPa 167 ± 12 152 ± 7 172 ± 12 170 ± 10 161 ± 6
A in % 28.9 ± 3.9 21.4 ± 1.6 37.8 ± 0.3 26.8 ± 4.9 44.5 ± 1.5

ξbefore TT in Fe-% 0.13 ± 0.01 0.11 ± 0.02 0.68 ± 0.01 0.68 ± 0.09 0.17 ± 0.01

ξafter TT in Fe-% Surface gauge length 0.13 ± 0.01 0.15 ± 0.01 1.13 ± 0.13 1.05 ± 0.26 2.90 ± 0.10
Fracture surface 0.13 ± 0.02 0.15 ± 0.01 1.80 ± 0.70 2.30 ± 0.90 8.55 ± 0.15

4.3. Fatigue Behavior of the Differently Manufactured Specimens

4.3.1. Fatigue Behavior in As-Built Condition

Load Increase Tests (LITs)

To rate the fatigue properties of the differently manufactured and heat treated specimens, cyclic
deformation curves (εa,p-), ∆T-curves, and ∆R-N-curves obtained by LITs were analyzed. Besides the
shape of the εa,p-, ∆T- and ∆R-N-curves, the load step at failure σf and the last load step—during
which the linear growth of the measured material reaction occurs (indicated as σl) and after which a
nonlinear increase of the εa,p, ∆T, and ∆R is indicated—are observed (see Figure 12). To compare the
fatigue properties at lower stress amplitudes σl and at higher stress amplitudes σf can be used as the
reference value.
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Figure 12. The determination of the load step of the first significant reaction of the material based on
the measurements of the plastic strain amplitude (εa,p), the change in temperature (∆T), and the change
in electrical resistance (∆R) for a load increase test (LIT) of a SLM-H-specimen in the as-built condition.
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As obvious from Figures 12 and 13, the development of all measured materials reactions correlate
well and result in identical stress amplitudes σ1.

In accordance with the anisotropic tensile properties, the horizontally built specimens in the
as-built condition show a higher fatigue performance in the LIT (see Figure 13; Tables 7 and 8).

The SLM-H-specimens exhibited the highest values of σf and σl. The SLM-V- and CC-specimens
showed the same values of σl and the SLM-V-specimens had a slightly lower σf value than the
CC-material. The LDW-H specimens exhibited lower values of σf but a delayed increase in the
material’s reactions compared to the CC- and SLM-V-specimens, while the LDW-V-specimens showed
lowest values of both σf and σl.Metals 2018, 8, x FOR PEER REVIEW  14 of 23 
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Figure 13. The measurements of (a) plastic strain amplitude (εa,p), (b) change in temperature (∆T), (c)
change in electrical resistance (∆R), and (d) magnetic fraction (ξ) on the surface of the gauge length in
LITs of differently manufactured specimens in the as-built condition.

Table 8. The load step of failure (σf), last load step of linear growth of measurements (σl), and the
development of ξ on the fracture surface and gauge length after LIT in the as-built condition.

Specimen SLM-H SLM-V LDW-H LDW-V CC

σf in MPa 440 360 340 280 380
σl in MPa 300 240 260 220 240

ξbefore LIT in Fe-% 0.15 ± 0.01 0.15 ± 0.02 0.48 ± 0.10 0.53 ± 0.10 0.17 ± 0.00

ξafter LIT in Fe-% Surface gauge length 0.15 ± 0.01 0.17 ± 0.01 0.99 ± 0.22 0.69 ± 0.09 0.86 ± 0.08
Fracture surface 0.19 0.19 1.60 1.50 2.10

Constant Amplitude Tests and S-Nf-Curves

To further investigate the fatigue behavior of the differently manufactured specimens, CATs were
conducted. To get sufficiently reliable information for the comparison of the fatigue behavior of the
differently manufactured specimens, for each specimen type, a minimum number of ten CATs were
performed in the HCF-regime. As seen in Figure 14, the anisotropic behavior of the AM-materials also
occurs in CATs, that is, the vertically built specimens from both Additive Manufacturing processes
exhibited a decreased fatigue strength, a slightly steeper slope in the S-Nf-curve, and also a higher
scatter compared to the horizontal building direction, although the SLM-H-specimens (1.54 area %)
showed a higher porosity than the SLM-V-specimens (0.85 area %) (see Table 4).
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Figure 14. The S-Nf-curves of the differently manufactured specimens with ∆ξ-measurements in the
gauge length before and after the constant amplitude tests (CATs) on a lower stress level.

The cyclic deformation behavior of the differently manufactured specimens reflects the differences
in austenite stabilities. The SLM- and LDW-specimens showed cyclic softening during the whole
duration of the CATs, while the CC-specimens exhibited cyclic hardening, after a shorter phase of cyclic
softening at the beginning of the CATs, due to a larger extent of α′-martensite formation (see Figure 15).
Besides the decreased plastic strain amplitude, this resulted in an increased change in the electrical
resistance as seen in Figure 15c. The relatively small amount of austenite-α′-martensite-transformation
in the LDW-specimens does not lead to the global cyclic hardening and seems to be a locally restricted
process in the microstructure in the LDW-material (see Figures 14 and 15b).

Furthermore, the anisotropic cyclic deformation behavior of the AM-specimens from both SLM
and LDW are characterized by the higher plastic strain amplitudes and lower lifetimes of the vertically
built variants (see Figure 15a,b).
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Figure 15. The cyclic deformation behavior of (a) SLM-specimens in CATs, (b) LDW-specimens in
CATs, and of CC-specimens in (c) LIT and (d) CATs with measurements of plastic strain amplitude
εa,p (in (a–d)), plastic deformation induced change in temperature ∆T (in (a)) and change in electrical
resistance ∆R (in (a)).
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In each building direction, the SLM-specimens showed an increased fatigue life at higher stress
amplitudes and a decreased fatigue life at lower stress amplitudes compared to the LDW-specimens.
This correlates with the austenite-α′-martensite-transformation in the LDW-specimens indicated by an
increase in the ferromagnetic fraction (∆ξ) of about 0.1–0.2 Fe-%. In the SLM-specimens, no increase of
magnetic fraction during the CATs was observed (see Figure 14). Obviously, this leads to an increase
in the fatigue life of the LDW-specimens, especially at lower stress amplitudes, due to the reduction of
the stress concentrations at oxide inclusions by the austenite-α′-martensite-transformation, leading to
local compressive residual stresses according to the results of References [42,43]. The CC-specimens
showed—similar to LDW-specimens—a lower fatigue life than the SLM-H-specimens at high-stress
amplitudes, while at lower stress amplitudes, the CC-specimens reach a higher number of cycles to
failure. This is caused by a more extended cyclic hardening at lower stress amplitudes of CC-specimens
(see Figure 15d) caused by the austenite-α′-martensite-transformation, resulting in a flatter S-Nf-curve.
These results show that the austenite stability has a significant influence on the fatigue behavior of the
differently manufactured 316L-specimens.

Fractography of differently manufactured specimens after fatigue failure showed crack initiation
in the AM-specimens at microstructural defects, that is, oxide inclusions or pores. The CC-specimens
showed crack initiation from slip bands at the surface. As expected, crack initiation in the
SLM-specimens occurred for both building directions at the pores in the near surface area (less than
1 mm distance to the surface of the gauge length) (see Figure 16a). For the LDW-specimens in both
building directions, cracks were initiated at the oxide inclusions in the near surface area (see Figure 16b).
Therefore, pores can be considered as the main crack initiating defects under cyclic loading for SLM-
and oxide inclusions for LDW-specimens. Pores are hence, the main reason for the scatter in the
determined S-Nf-curves (see Figure 14).
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Figure 16. The fracture surfaces in the region of the crack initiation due to pores at (a) SLM-H-specimen
(σa = 300 MPa; Nf = 212,218) and due to inclusions at (b) LDW-H-specimen (σa = 260 MPa; Nf = 982,098).

By comparison of the different S-Nf-curves, the AM-specimens showed a significantly lower
fatigue strength compared to the CC-specimens, which is mainly caused by the occurrence of defects
in the AM-material and work hardening in the CC-specimens, but also because of the influence by
the different austenite stabilities resulting from the individual chemical compositions. Hence, the
influence of the austenite stability has to be taken into account when comparing the fatigue behavior
of differently manufactured 316L.
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By comparison of the results of the LITs and CATs, it can be seen that the influence of the
austenite-α′-martensite-transformation, which is prevalent especially at lower stress amplitudes,
cannot be detected with LITs. However, if the material shows the same austenite stability, the anisotropy
in the fatigue behavior can be described with low experimental effort by LITs in good accordance with
CATs. Hence, LITs can be used to efficiently determine the influence of the process parameter variation
or the post-treatment on the anisotropic fatigue behavior.

4.3.2. Fatigue Behavior in the Heat Treated Condition

Because LITs provide an efficient means to describe the anisotropic fatigue behavior of
AM-specimens, this method was applied for the investigation of the heat treatment influence on
the fatigue properties of the investigated material variants.

In Figure 17, the representative results of LITs at two different SLM-H-HT-specimens are shown.
Both the changes in the electrical resistance ∆R and the plastic strain amplitude εa,p show nearly
the same development up to the last three loading steps, resulting in identical values of σl and σf,
indicating the repeatability of the results of LITs.

In the heat treated condition, as in as-built condition, the AM-specimens show an anisotropic
fatigue behavior (see Figure 18 and Table 9). Because, in both conditions, the microstructure shows an
elongation of grains and the boundaries of the melt pools from the Additive Manufacturing process
are retained after heat treatment, it can be concluded that the grain structure and layer arrangement
cause the typical anisotropic fatigue behavior of AM-specimens.
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Table 9. The load step of failure (σf), last load step of linear growth of measurements (σl), and
development of ξ on the fracture surface and gauge length after load increase (LIT) in the heat
treated condition.

Specimen SLM-H-HT SLM-V-HT LDW-H-HT LDW-V-HT CC-HT

σf in MPa 380 320 300 220 280
σl in MPa 240 200 180 140 160

ξbefore LIT in Fe-% 0.00 0.00 0.00 0.00 0.00

ξafter LIT in Fe-% Surface gauge length 0.10 ± 0.06 0.08 ± 0.06 0.21 ± 0.06 0.16 ± 0.02 0.29 ± 0.02
Fracture surface 0.13 0.15 0.36 0.64 1.40
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(c) change in electrical resistance (∆R) in LITs of differently manufactured specimens in the heat treated
condition and (d) Fe-Signal (ξ) in the gauge length after specimen failure.

In the heat treated condition, all specimens showed decreased fatigue performance and higher
plastic deformation compared to the as-built condition (see Figure 19 and compare Tables 8 and 9),
which may be caused by a lower amount of α′-martensite, indicated by a smaller content of the
ferromagnetic phase of 0.0 Fe-% after annealing at 1070 ◦C/2 h/H2O (compare Tables 8 and 9). The
CC-HT-specimens especially showed a significant decrease in the fatigue performance and lower
values of σf and σl, which was caused by the decrease of both the work hardening and the content of
ε-martensite (see Section 4.2). For each building direction, the SLM-HT-specimens exhibited, similar
to the as-built condition, a higher fatigue performance than the LDW-HT-specimens. The location of
the crack initiation of the heat treated specimens is similar to the as-built condition at the surface near
defects, that is, pores (SLM) and oxide inclusions (LDW).

The temperature increase during the LITs was more pronounced in the horizontally built
specimens than in the vertically built specimens, which is associated with the higher amount of
plastic strain amplitude occurring at the last load steps of LITs in the horizontally built specimens. For
LDW-H-HT and SLM-H-HT, the specimen temperature exceeded 50 ◦C in the last two load steps and
for CC-HT-specimens in the last three load steps, respectively. This temperature increase could be
avoided with a lower test frequency. In the present work, a uniform test frequency of 5 Hz was chosen
for the LITs to ensure the comparability of the as-built condition. Furthermore, the active cooling of
the specimens during the fatigue tests was not conducted in order to ensure the comparability of the
plastic deformation induced change in the temperature ∆T between the LITs of the as-built and heat
treated specimens.
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The magnetic fraction before the LIT is zero for all types of specimens in the heat treated condition
due to the complete re-transformation of the ferromagnetic phase into austenite during the heat
treatment (see Table 9). Taking the higher plastic strain amplitudes of the heat treated specimens into
account, it could be expected that the content of the ferromagnetic phase of those specimens to be
higher after the LIT. However, in case of the heat-treated LDW- and CC-specimens, the content of the
ferromagnetic phase after the LIT was lower than in the as-built condition. This can be explained by
the larger increase in temperature and lower stress amplitudes during the LIT compared to the as-built
condition. Furthermore, the lower content of ε-martensite in the CC-HT-specimens leads to a lower
number of nuclei for the deformation induced α′-martensite transformation.

The CC-HT-specimens showed pronounced cyclic hardening during the different load steps
in the LIT and a lower increase of the content of magnetic fraction compared to the as-received
condition. Hence, the cyclic hardening of CC-HT-specimens seems not to be dominated by the
austenite-α′-martensite-transformation and the cyclic hardening of the austenitic phase must determine
the cyclic deformation behavior. Note that the scale of the plastic strain amplitude εa,p in Figure 19e is
two times larger compared to the graphs representing the results of AM-specimens. In all the load
steps with plastic strain amplitudes significantly above 2 × 10−3, the CC-HT-material showed cyclic
hardening. All the AM-specimen variants and the as-received CC-specimens exhibited significantly
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lower plastic strain amplitudes and therefore, no cyclic hardening in LITs. These details of cyclic
deformation behavior are currently under further investigation.

5. Summary and Conclusions

Additively manufactured (AM-) austenitic stainless steel AISI 316L blanks, produced by Selective
Laser Melting (SLM) (process category: powder bed fusion [12]) and Laser Deposition Welding (LDW)
(process category: direct energy deposition [12]), were investigated with regard to their microstructure
and mechanical properties. The results were compared to Continuous Casted, hot and cold drawn
(CC) 316L blanks. The blanks were turned into final specimen geometry. For fatigue investigations,
the fatigue specimens were additionally mechanically polished in the gauge length in order to exclude
the influence of surface topography resulting from the different manufacturing processes and to
focus the investigations on the volume microstructure. The AM-blanks were manufactured in the
horizontal building direction in which the layer planes are parallel to the load axis of the specimens
(SLM-H, LDW-H) and in the vertical building direction (SLM-V, LDW-V) in which the layer planes are
perpendicular to the load axis of the specimens. Additionally, the differently manufactured specimens
were heat treated (HT) and their results were compared to those of the as-built condition.

The differently manufactured specimens exhibited differences in chemical composition and, hence,
in austenite stability, leading to the highest austenite stability in the CC-materials and the lowest in
the SLM-material.

The heat treatment (2 h, 1070 ◦C, H2O) did not influence the grain structure of the AM-specimens
significantly, while the heat-treated CC-specimens showed increased grain size than in the
as-built condition.

Microhardness measurements of the specimens in the as-built condition showed a rather flat
microhardness distribution of the SLM- and LDW-specimens, while the CC-specimens showed an
increased hardness in the near surface regions. The heat-treated specimens generally showed a
decreased hardness compared to the as-built condition.

The results of the cyclic microindentation tests showed differences in the hardening potential of the
differently manufactured specimens, while the building direction had no influence. The heat treatment
led to an increased hardening potential for all specimens, with a major influence on the CC-specimens.

Fatigue investigations were conducted with load increase tests (LITs). The AM-specimens showed
in the as-built condition an anisotropic fatigue behavior with regard to the building direction in
correlation to tensile tests. The SLM-H specimens showed highest values for the load step of failure
σf and the last load step before the first significant material reaction σl. Similar to tensile tests, the
LDW-H-specimens and SLM-V-specimens showed, in the as-built condition, a competitive fatigue
performance in LIT compared to CC-specimen, while the LDW-V-specimens showed significantly
lower values of σf and σl.

In constant amplitude tests (CATs), the AM-specimens showed a decreased fatigue strength
compared to the CC-specimens, which was mainly caused by defects in the AM-materials, that
is, pores (SLM) and oxide inclusions (LDW). Therefore, these defects have to be avoided as far
as possible in additive manufacturing of cyclically loaded components. It can also be seen that
the austenite stability has a big influence on the fatigue behavior of the differently manufactured
specimens and hence, has to be taken into account in the rating of the fatigue properties of additively
and conventionally manufactured 316L. Furthermore, the CATs showed an anisotropic fatigue behavior
of the AM-specimens with regard to the building direction: horizontally built specimens showed a
higher fatigue strength, lower scatter, and flatter slope in S-Nf-curves.

The results showed that LITs can characterize the anisotropic fatigue behavior of AM-materials
with only one fatigue test for each building direction in an efficient way. LITs could be used to
investigate the influence of different post-treatments or variation of manufacturing parameters on the
anisotropic fatigue behavior of AM-materials. In the present study, LITs were used to show that an
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additional heat treatment (2 h, 1070 ◦C, H2O) leads to significantly lower fatigue performance of all
specimen variants, but did not influence the anisotropic fatigue behavior of AM-specimens.

Based on the results of microstructural investigations, it is concluded that the anisotropic behavior
is based on the elongation of grains and the arrangement of boundaries of the melt pools, which are
both influenced by the building direction.

The main conclusions of the present work are that for determination of fatigue behavior, the
austenite stability of the additively manufactured 316L has to be taken into account and that the load
increase test can characterize the anisotropic fatigue behavior of AM-materials efficiently. This method
was used for rating the fatigue behavior of the heat treated specimens.

In further investigations, the influence of defects, chemical composition, and building direction
on additively manufactured 316L, with a stronger focus on the process parameters in the additive
manufacturing process will be investigated by means of the short-time procedures LIT, PhyBaLCHT,
and PhyBaLLIT [33].
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