

SupplementaryMaterials:SynthesisandCharacterizationof40wt%Ce0.9Pr0.1O2-δ-60wt%NdxSr1-xFe0.9Cu0.1O3-δDual-PhaseMembranesforEfficient Oxygen Separation

Guoxing Chen ^{1,*}, Zhijun Zhao ², Marc Widenmeyer ¹, Ruijuan Yan ¹, Ling Wang ¹, Armin Feldhoff ² and Anke Weidenkaff ^{1,3,*}

- ¹ Department of Materials and Earth Sciences, Technische Universität Darmstadt, Alarich-Weiss-Str. 2, 64287 Darmstadt, Germany, marc.widenmeyer@mr.tu-darmstadt.de (M.W.); ruijuan.yan@mr.tu-darmstadt.de (R.Y.); lingwang0729@gmail.com (L.W.)
- ² Institute of Physical Chemistry and Electrochemistry, Leibniz University Hannover, Callinstr. 3A, 30167, Hannover, Germany; zhijun.zhao@pci.uni-hannover.de (Z.Z.); armin.feldhoff@pci.uni-hannover.de (A.F.)
- ³ Fraunhofer Research Institution for Materials Recycling and Resource Strategies IWKS, Rodenbacher Chaussee 4, 63457 Hanau, Germany
- * Correspondence: guoxing.chen@mr.tu-darmstadt.de (G.C.); Anke.weidenkaff@mr.tu-darmstadt.de (A.W.)

Received: 27 July 2020; Accepted: 10 August 2020; Published: date

Figure S1. Schematic diagram of the experimental setup for oxygen permeation measurements.

Figure S2. Long-term oxygen permeation flux through a $Ce_{0.9}Pr_{0.1}O_{2-\delta}$ -Nd $_{0.5}Sr_{0.5}Fe_{0.9}Cu_{0.1}O_{3-\delta}$ membrane at 1223 K under air/He or air/CO₂ gradient. Test conditions: 150 mL min⁻¹ synthetic air as the feed gas; 29 mL min⁻¹CO₂ as the sweep gas; 1 mL min⁻¹Ne as an internal standard gas; membrane thickness: 0.6 mm.

Figure S3. XRD pattern of the sweep side (pure CO₂) of the Ce_{0.9}Pr_{0.1}O_{2- δ}–Nd_{0.5}Sr_{0.5}Fe_{0.9}Cu_{0.1}O_{3- δ} dualphase membrane after 70 h O₂ permeation measurements as shown in Figure S2 under air/CO₂ gradient (Bruker D8 Advance instrument with Cu-*K* α _{1,2} radiation).

Metal nitrate	Amount	Price	Purity	Euro/ 100 g	Euro/ mol
$Ca(NO_3)_2 \bullet 4H_2O$	500 g	145.0 <u>€</u>	99%	29.0	68.5
Fe(NO ₃) ₃ •9H ₂ O	100 g	34.9 <u>€</u>	>98%	34.9	141.0
Co(NO3)3•6H2O	100 g	88.5 <u>€</u>	>98%	88.5	257.6
Cu(NO ₃)2•2.5H ₂ O	100 g	32.1 <u>€</u>	>98%	32.1	74.7
Sr(NO ₃) ₂	100 g	31.8 <u>€</u>	>99%	31.8	67.3
La(NO3)3•6H2O	100 g	42.6 <u>€</u>	99.9%	42.6	184.5
Ce(NO ₃) ₃ •6H ₂ O	100 g	53.5 <u>€</u>	99.5%	53.5	232.3
Pr(NO ₃)₃●6H ₂ O	250 g	437.0 <u>€</u>	99.9%	174.8	760.4
Nd(NO3)3•6H2O	100 g	108.0 <u>€</u>	99.9%	108.0	473.4
Sm(NO ₃) ₃ •6H ₂ O	100 g	293.0 <u>€</u>	99.9%	293.0	1302.3
Gd(NO3)3•6H2O	100 g	218.0 <u>€</u>	99.9%	218.0	984.0

Table S1. Summary of the starting material costs generally used in dual-phase membrane materials.

The chemicals price is calculated based on the data from Sigma-Aldrich company (<u>www.sigmaaldrich.com</u>) (29/06/2020).

© 2020 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).