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Abstract: The configurational analysis of complex natural products by NMR spectroscopy is still
a challenging task. The assignment of the relative configuration is usually carried out by analysis
of interproton distances from NOESY or ROESY spectra (qualitative or quantitative) and scalar (J)
couplings. About 15 years ago, residual dipolar couplings (RDCs) were introduced as a tool for the
configurational determination of small organic molecules. In contrast to NOEs/ROEs which are local
parameters (distances up to 400 pm can be detected for small organic molecules), RDCs are global
parameters which allow to obtain structural information also from long-range relationships. RDCs
have the disadvantage that the sample needs a setup in an alignment medium in order to obtain the
required anisotropic environment. Here, we will discuss the configurational analysis of five complex
natural products: axinellamine A (1), tetrabromostyloguanidine (2), 3,7-epi-massadine chloride (3),
tubocurarine (4), and vincristine (5). Compounds 1–3 are marine natural products whereas 4 and 5 are
from terrestrial sources. The chosen examples will carefully work out the limitations of NOEs/ROEs in
the configurational analysis of natural products and will also provide an outlook on the information
obtained from RDCs.

Keywords: chirality; configurational analysis; distance geometry; NMR spectroscopy; NOE data;
residual dipolar couplings

1. Introduction

The determination of the relative and absolute configuration of natural products is essential to
understand their interactions in the biological field and to allow their procurement through total
synthesis. The structure determination of natural products by NMR spectroscopy [1–3] is usually
divided into two more or less “independent” approaches: (a) constitutional assignment and (b)
configurational and conformational assignment (see Figure 1). The constitutional assignment will not
be covered in the present manuscript. We will focus on the discussion of the assignment of the relative
configuration and conformation only.

Mar. Drugs 2020, 18, 330; doi:10.3390/md18060330 www.mdpi.com/journal/marinedrugs

http://www.mdpi.com/journal/marinedrugs
http://www.mdpi.com
https://orcid.org/0000-0003-0211-6341
https://orcid.org/0000-0002-6524-2399
http://dx.doi.org/10.3390/md18060330
http://www.mdpi.com/journal/marinedrugs
https://www.mdpi.com/1660-3397/18/6/330?type=check_update&version=2


Mar. Drugs 2020, 18, 330 2 of 22Mar. Drugs 2020, 18, x 2 of 22 

 

COSY
HMBC

C, C13 13

J couplings
NOESY/ROESY

anisotropic parameters

Relative Configuration
ConformationConstitution

 
Figure 1. Structure elucidation of natural products by NMR spectroscopy. 

1.1. NOEs/ROEs in Structure Elucidation 

So far, there is no general NMR method for a secure assignment of the relative configuration of 
non-crystallizable natural products [4–6]. Valuable information is provided by NOEs or ROEs which 
allow to derive actual interproton distances by volume integration of the cross-peaks in the NOESY 
or ROESY spectrum. The H, H distances are obtained by the comparison of the peak volume with a 
cross-peak of known distance (the so-called calibration or reference peaks). The determination of the 
relative configuration from NOE- or ROE-derived interproton distances can be accomplished in 
different ways [3]. In the past, this was mainly carried out in a qualitative way using 
molecular-mechanics or density functional theory (DFT) derived structure models. In particular, the 
DFT approach is restricted to relatively small systems because these types of calculation quickly 
become prohibitively expensive for larger structures or large numbers of diastereomers that need to 
be considered. 

Another possibility would be to run rEM (restrained energy minimization) [7] or rMD 
(restrained molecular dynamics) [8,9] simulations for all possible relative configurations, and 
generally, the one with the lowest error with respect to the experimental restraints is chosen as the 
correct relative configuration of the investigated molecule. The disadvantage of this approach is that 
it is very time consuming, especially for molecules with many unknown stereogenic centers because 
for every diastereomer separate simulations need to be run (2n−1 calculations), albeit these may be 
automated in computer-assisted structure elucidation protocols [10,11]. However, MD simulations 
are biased by the choice of the force-field (for uncommon structural fragments these might even lack 
appropriate parameters at all) and the user’s choice of the initial geometry (“starting configuration 
and conformation”). Relative conformational energies obtained from DFT calculations may be 
inaccurate up to ~1–2 kcal/mol−1 (amounting to errors in Boltzmann weights of conformers differing 
by factors of ~0.20–0.03 at 300 K!) depending on the treatment of electron-electron correlation and/or 
dispersion interactions [12]. 

One method of choice for small molecules with several stereogenic centers is the combination of 
distance geometry (DG) [13–16] and distance bounds driven dynamics (DDD) calculations using 
NOE/ROE-derived distance restraints (r) [3,5,16–19]. The most important aspects of the 
NOE/ROE-restrained DG/DDD method (rDG/DDD) is the possibility to allow configurations to 
dynamically change during the simulation (floating chirality, fc) and therefore to determine the 
conformation and the relative configuration of small organic molecules simultaneously 
(fc-rDG/DDD). The DG approach (see Figure 2) considers holonomic distance restraints as lower 
( ) and upper ( ) bounds of atom-atom distance relations, which are derived from the 
molecular constitution (which must be known!), as well as 1,2- (bonds), 1,3- (angles), and 
1,4-connectivities (torsions) and experimental NOE/ROE-derived restraints can be added to this set 
of limits. Within these restraints, structure models are generated solely based on distance 
information, removing the bias to any initial input reference model, and these models are further 
refined in a simulated annealing approach. Chirality is incorporated in the DG approach using 
signed chiral volumes, which basically describe the volume enclosed by the substituents on 
tetrahedral centers, and which simultaneously encode for opposite configurations through sign 
inversion (see Methods Section). 

Figure 1. Structure elucidation of natural products by NMR spectroscopy.

1.1. NOEs/ROEs in Structure Elucidation

So far, there is no general NMR method for a secure assignment of the relative configuration of
non-crystallizable natural products [4–6]. Valuable information is provided by NOEs or ROEs which
allow to derive actual interproton distances by volume integration of the cross-peaks in the NOESY
or ROESY spectrum. The H, H distances are obtained by the comparison of the peak volume with a
cross-peak of known distance (the so-called calibration or reference peaks). The determination of the
relative configuration from NOE- or ROE-derived interproton distances can be accomplished in different
ways [3]. In the past, this was mainly carried out in a qualitative way using molecular-mechanics or
density functional theory (DFT) derived structure models. In particular, the DFT approach is restricted
to relatively small systems because these types of calculation quickly become prohibitively expensive
for larger structures or large numbers of diastereomers that need to be considered.

Another possibility would be to run rEM (restrained energy minimization) [7] or rMD (restrained
molecular dynamics) [8,9] simulations for all possible relative configurations, and generally, the one
with the lowest error with respect to the experimental restraints is chosen as the correct relative
configuration of the investigated molecule. The disadvantage of this approach is that it is very
time consuming, especially for molecules with many unknown stereogenic centers because for
every diastereomer separate simulations need to be run (2n−1 calculations), albeit these may be
automated in computer-assisted structure elucidation protocols [10,11]. However, MD simulations
are biased by the choice of the force-field (for uncommon structural fragments these might even lack
appropriate parameters at all) and the user’s choice of the initial geometry (“starting configuration and
conformation”). Relative conformational energies obtained from DFT calculations may be inaccurate
up to ~1–2 kcal/mol−1 (amounting to errors in Boltzmann weights of conformers differing by factors of
~0.20–0.03 at 300 K!) depending on the treatment of electron-electron correlation and/or dispersion
interactions [12].

One method of choice for small molecules with several stereogenic centers is the combination
of distance geometry (DG) [13–16] and distance bounds driven dynamics (DDD) calculations
using NOE/ROE-derived distance restraints (r) [3,5,16–19]. The most important aspects of the
NOE/ROE-restrained DG/DDD method (rDG/DDD) is the possibility to allow configurations to
dynamically change during the simulation (floating chirality, fc) and therefore to determine the
conformation and the relative configuration of small organic molecules simultaneously (fc-rDG/DDD).
The DG approach (see Figure 2) considers holonomic distance restraints as lower (dmin) and upper
(dmax) bounds of atom-atom distance relations, which are derived from the molecular constitution
(which must be known!), as well as 1,2- (bonds), 1,3- (angles), and 1,4-connectivities (torsions) and
experimental NOE/ROE-derived restraints can be added to this set of limits. Within these restraints,
structure models are generated solely based on distance information, removing the bias to any initial
input reference model, and these models are further refined in a simulated annealing approach.
Chirality is incorporated in the DG approach using signed chiral volumes, which basically describe
the volume enclosed by the substituents on tetrahedral centers, and which simultaneously encode for
opposite configurations through sign inversion (see Section 4).



Mar. Drugs 2020, 18, 330 3 of 22
Mar. Drugs 2020, 18, x 3 of 22 

 

 

Figure 2. Workflow of rDG/DDD calculations: Based on distance restraints such as bond lengths 
(1,2-distance), angles and torsions (1,3- and 1,4-distances), excluded van der Waals volumes, and 
NOE/ROE derived distance limits, a matrix of upper (top right triangle) and lower (bottom left 
triangle) distance bounds between all atom-atom pairs ,  is constructed (a). Based on these distance 
limits, initial guess structure models of arbitrary configuration and conformation are generated 
through a “metrization” procedure in 4D space (b, for clarity shown as 3D models). These models are 
subsequently refined through an automated sequence of simulated annealing steps in 4D and 3D 
space (c), by which finally the correct configuration evolves as the best-fit structures of lowest 
pseudo energy (total error). In particular step (a) ensures that the final structures generated are not 
biased by any input structure, and through step (b,c), evolve solely on the basis of experimental data. 
At no point of a rDG/DDD simulation, neither a conventional parametrized force-field is involved, 
nor are any presumptions on conformational preferences implied. All relative configurations of 
stereogenic centers emerge exclusively based on experimental data. 

The concept of floating chirality (fc) was introduced for the assignment of diastereotopic 
protons or methyl groups in proteins. This approach was first applied in 1988 to distance geometry 
(DG) calculations [20] and in 1989 to rMD simulations [21]. In DG calculations, floating chirality is 
achieved by not using chiral restraints (chiral volumes) for unknown prochiral and stereogenic 
centers, whereas in rMD, floating chirality is achieved by reducing or removing the force constants 
of the angles which define the chiral centers. Even more, DG uses no energy penalty or additional 
out-of-plane terms to guarantee that the full set of permutations for all stereogenic centers is 
generated. In general, DG uses a single chiral volume restraint on one selected stereogenic center 
only in order to avoid enantiomeric configurations (see discussions below). However, in contrast to 
rMD simulations, DG does not use any physical force-field of any type, and thus removes any 
intrinsic bias imposed on the results by this choice. DG relies solely on experimental data like 
distances between atoms or anisotropic data (see below) and all stereogenic centers are allowed to 
adopt their relative configuration in accordance with the experimental data. 

Moreover, the strength of the DG approach is that all structure models are first generated in 
four-dimensional (4D) space before these are transferred into “real” 3D space. The extra dimension 
provides additional degrees of freedom to assemble structures of different configurations and 
conformations within the limits of the distance bounds. Most notably, the sequence of 4D and 3D 
simulated annealing steps has major benefits for the robustness and quality of configurational 
sampling, as inversions of 3D objects (e.g., stereogenic centers) become simple rotations in 4D, and 
thus the “energy” barriers between alternate diastereomers are effectively lowered or even removed 
altogether (see Figure 2, and in the Methods Section, Figure 12). 

NMR-derived experimental data such as NOE/ROE distances, scalar couplings, residual dipolar 
couplings (RDCs), residual quadrupolar couplings (RQCs), and residual chemical shift anisotropies 
(RCSAs) can be incorporated in this DG approach. Here, all experimental parameters are accounted 
for as sums of squared violations Δ = ( − )  of experimental versus back-calculated 
values, and these deviations are added up in a harmonic approximation as pseudo energy terms = 1/2 ∑ Δ  with empirical force constants . In total, the sum of these terms based on NMR 
data, and violations of distance bounds or, if applicable chiral volume restraints, define a 

Figure 2. Workflow of rDG/DDD calculations: Based on distance restraints such as bond lengths
(1,2-distance), angles and torsions (1,3- and 1,4-distances), excluded van der Waals volumes, and
NOE/ROE derived distance limits, a matrix of upper (top right triangle) and lower (bottom left triangle)
distance bounds between all atom-atom pairs i, j is constructed (a). Based on these distance limits,
initial guess structure models of arbitrary configuration and conformation are generated through a
“metrization” procedure in 4D space (b, for clarity shown as 3D models). These models are subsequently
refined through an automated sequence of simulated annealing steps in 4D and 3D space (c), by which
finally the correct configuration evolves as the best-fit structures of lowest pseudo energy (total error).
In particular step (a) ensures that the final structures generated are not biased by any input structure,
and through step (b,c), evolve solely on the basis of experimental data. At no point of a rDG/DDD
simulation, neither a conventional parametrized force-field is involved, nor are any presumptions
on conformational preferences implied. All relative configurations of stereogenic centers emerge
exclusively based on experimental data.

The concept of floating chirality (fc) was introduced for the assignment of diastereotopic protons
or methyl groups in proteins. This approach was first applied in 1988 to distance geometry (DG)
calculations [20] and in 1989 to rMD simulations [21]. In DG calculations, floating chirality is achieved
by not using chiral restraints (chiral volumes) for unknown prochiral and stereogenic centers, whereas
in rMD, floating chirality is achieved by reducing or removing the force constants of the angles which
define the chiral centers. Even more, DG uses no energy penalty or additional out-of-plane terms to
guarantee that the full set of permutations for all stereogenic centers is generated. In general, DG uses
a single chiral volume restraint on one selected stereogenic center only in order to avoid enantiomeric
configurations (see discussions below). However, in contrast to rMD simulations, DG does not use any
physical force-field of any type, and thus removes any intrinsic bias imposed on the results by this
choice. DG relies solely on experimental data like distances between atoms or anisotropic data (see
below) and all stereogenic centers are allowed to adopt their relative configuration in accordance with
the experimental data.

Moreover, the strength of the DG approach is that all structure models are first generated in
four-dimensional (4D) space before these are transferred into “real” 3D space. The extra dimension
provides additional degrees of freedom to assemble structures of different configurations and
conformations within the limits of the distance bounds. Most notably, the sequence of 4D and
3D simulated annealing steps has major benefits for the robustness and quality of configurational
sampling, as inversions of 3D objects (e.g., stereogenic centers) become simple rotations in 4D, and
thus the “energy” barriers between alternate diastereomers are effectively lowered or even removed
altogether (see Figure 2, and in the Section 4, Figure 12).

NMR-derived experimental data such as NOE/ROE distances, scalar couplings, residual dipolar
couplings (RDCs), residual quadrupolar couplings (RQCs), and residual chemical shift anisotropies
(RCSAs) can be incorporated in this DG approach. Here, all experimental parameters are accounted for
as sums of squared violations ∆X2 = (Xexp

−Xcalc)
2

of experimental versus back-calculated values, and
these deviations are added up in a harmonic approximation as pseudo energy terms E = 1/2K

∑
∆X2
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with empirical force constants K. In total, the sum of these terms based on NMR data, and violations of
distance bounds or, if applicable chiral volume restraints, define a dimensionless total penalty or pseudo
energy function, which must not be confused with a MD- or DFT-derived “real” molecular energy,
and the lower this pseudo energy penalty becomes, the better the restraints based on experimental
data are fulfilled. A comprehensive description of all energy terms is given in the Section 4. In this
context, these violation energies, and in particular their partial derivatives ∂Etotal/∂r with respect 4D
and 3D Cartesian atomic coordinates, are considered as forces which drive the structure evolution in a
simulated annealing type approach–and thus the structures evolve from the data rather than being
evaluated against pre-calculated structures only.

Up till now a general application of the DG approach to all different kind of natural products
was hindered by the fact that NOEs/ROEs cover only short-range interactions (up to 400 pm for
small molecules) and was hampered or even impossible for proton-deficient structures. This can now
be overcome by the use of anisotropic NMR parameters (RDCs, RQCs, and RCSA) in the structure
under investigation.

1.2. RDCs in Structure Elucidation

In contrast to NOEs/ROEs, residual dipolar couplings (RDCs) are anisotropic NMR parameters,
which are global in nature and independent from the distances between the vectors connecting the
coupling nuclei. RDCs, RQCs, and RCSAs are NMR observables that can now be used within the
fc-rDG/DDD method using the recently published software ConArch+ [22,23]. Within this investigation,
only the usage of RDCs will be discussed here.

Standard NMR investigations are carried out in isotropic solutions, where usually the dipolar
couplings are averaged out by isotropic tumbling of the molecules. If this is not the case, either
by the presence of paramagnetic metal ions [24] or anisotropic susceptibility of diamagnetic
macromolecules [25] or, more general, the presence of an anisotropic medium, the molecules will be
partially oriented with respect to the external magnetic field, and residual dipolar couplings (RDCs) can
be measured (detailed reviews can be found at [26–31]). An anisotropic environment is generated by
an alignment medium (AM), examples for AMs are stretched gels [32–40] or lyotropic liquid crystalline
(LLC) phases [41–49].

The size of 1DCH RDCs depends on the time-averaged orientation of the CH-vector and its
averaged angle with respect to the external magnetic field B0 (see Figure 3). The one-bond (CH)
dipolar coupling is usually obtained by comparison of HSQC-type experiments run in isotropic and
anisotropic environment [50,51]. A very popular variant of these HSQC experiments is the so-called
CLIP/CLAP-HSQC [52], which is run without F2 decoupling in order to observe the one-bond coupling
in F2. The residual dipolar coupling adds to the scalar coupling leading to a total coupling constant
(1TCH) from which the residual dipolar coupling (1DCH) can be calculated (1TCH = 1JCH + 2 1DCH).

Analysis of RDC data is less straightforward than the interpretation of isotropic data such as
chemical shifts and scalar coupling. However, given a molecular geometry for the compound analyzed,
RDCs can be back-calculated from the experimental data and this structural model in a parameter-free
fashion using natural constants only, and an alignment tensor can be computed which describes
the average orientation of the molecule in relation to the magnetic field [53]. Frequently, alternative
relative configurations of analytes imply different relative orientations of CH vectors, and thus RDCs
are very sensitive configuration probes even for cases, where stereogenic centers are separated by
many bonds. Usually, the configuration which displays the best correlation between experimental
and back-calculated RDC data (Dexp vs. Dcalc) is considered as the correct one (see Figure 3). RDC
analysis is based on the assumption that the chemical shifts in the isotropic and anisotropic phases
do not change or change only slightly. The standard procedure does not include a re-assignment of
the molecule under study in the anisotropic phase, but the assignment could be questionable if larger
changes in the chemical shifts are observed.
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Figure 3. Matching of RDC data against two alternative diastereomers of tubocurarine (4), which 
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The stereogenic centers C-1 and C-24 are marked in green and orange, respectively, and the 
directionality of the corresponding methine C-H bonds is indicated by the colored vectors in both 
structure models. The differing average orientation of each of these C-H bond vectors relative to the 
external magnetic field (blue vector) of the NMR spectrometer leads to different RDCs 
back-calculated for both diastereomers (colored values in the plots of  vs. ), the better 
correlation between experimental and back-calculated data identifies (a) as the correct relative 
configuration of 4, whereas (b) could be ruled out. 

However, crucial for the interpretation of RDC data is the fact that accurate structure proposals 
must be provided at first hand, which are then evaluated against the experimental NMR data, and a 
thorough error analysis has to be carried out in order to ascertain configurational assignments [23]. 
The necessity for pre-evaluation of conformational preferences may become problematic for flexible 
or larger molecules. Moreover, this type of analysis has to be repeated for all 2  diastereomers if 
the molecule contains  stereogenic elements. In a recent report [22], we have demonstrated on how 
to include RDC information in DG simulations in both 4D and 3D space, using a pseudo energy 
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pseudo energy error function allows to arbitrarily combine these different types of restraints within 
DG, and structures are generated fulfilling all experimental parameters best. However, there is one 
additional fundamental difference between NOE and RDC data. For the former, only a single NOE 
“data set” can be obtained, whereas for the latter RDCs multiple “data sets” can be obtained when 
measuring the NMR data under different alignment conditions (i.e., different alignment media 
[23,54–57], multi-component multi-phase AM [46], temperature dependent AM [43,58], etc.). 
Though this might entail considerable experimental effort, these multi-alignment data sets can also 
be exploited in the DG implementation of ConArch+ [22]. Under the assumption that the 
conformational preferences of the analyte do not change significantly for alternate alignment 
conditions, different sets of RDCs can provide crucial additional and independent structure 
information, which may contribute significantly to the certainty with which configurational 
assignments are supported by experimental data [23,54–57]. 

In the sequel, the application of the fc-rDG/DDD method will be demonstrated on five complex 
natural products (see Scheme 1). The dimeric cyclic pyrrole-imidazole alkaloid (PIA) axinellamine A 
(1) isolated from the marine sponge Axinella sp. in 1999 [59] is the first compound to study. The 
second example is also a dimeric cyclic PIA from the marine sponge Stylissa caribica, 
tetrabromostyloguanidine (2) from 2007 [60], and the synthetic massadine derivative 
3,7-epi-massadine chloride (3) is the last one of the PIA series from 2008 [61]. Finally, the terrestrial 
plant alkaloids tubocurarine (4) from Chondrodendron tomentosum [62] and vincristine (5) from 
Catharanthus roseus [63] are examples discussed here to illustrate the limitations of configurational 
analysis based on NOE/ROE data solely, and only the combined approach of using distance as well 
as RDC data allows to deduce their configurations unequivocally. 

Figure 3. Matching of RDC data against two alternative diastereomers of tubocurarine (4), which
differ in their configuration at C-24: (a) correct, and (b) wrong relative configuration of C-1 and
C-24. The stereogenic centers C-1 and C-24 are marked in green and orange, respectively, and the
directionality of the corresponding methine C-H bonds is indicated by the colored vectors in both
structure models. The differing average orientation of each of these C-H bond vectors relative to the
external magnetic field (blue vector) of the NMR spectrometer leads to different RDCs back-calculated
for both diastereomers (colored values in the plots of Dexp vs. Dcalc ), the better correlation between
experimental and back-calculated data identifies (a) as the correct relative configuration of 4, whereas
(b) could be ruled out.

However, crucial for the interpretation of RDC data is the fact that accurate structure proposals
must be provided at first hand, which are then evaluated against the experimental NMR data, and a
thorough error analysis has to be carried out in order to ascertain configurational assignments [23].
The necessity for pre-evaluation of conformational preferences may become problematic for flexible
or larger molecules. Moreover, this type of analysis has to be repeated for all 2n−1 diastereomers
if the molecule contains n stereogenic elements. In a recent report [22], we have demonstrated on
how to include RDC information in DG simulations in both 4D and 3D space, using a pseudo energy
penalty function ERDC = 1/2KRDC

∑
(Dexp

−Dcalc)
2

similar as described above. This now provides
the advantage that the prerequisite of the beforehand structure generation is dropped altogether.
Instead, the correct configuration emerges from these RDC-driven rDG types of simulations as a direct
consequence and within the boundaries of these experimental restraints.

Though the mathematical details for the treatment of NOEs/ROEs and RDCs differ vastly, the
pseudo energy error function allows to arbitrarily combine these different types of restraints within DG,
and structures are generated fulfilling all experimental parameters best. However, there is one additional
fundamental difference between NOE and RDC data. For the former, only a single NOE “data set” can
be obtained, whereas for the latter RDCs multiple “data sets” can be obtained when measuring the NMR
data under different alignment conditions (i.e., different alignment media [23,54–57], multi-component
multi-phase AM [46], temperature dependent AM [43,58], etc.). Though this might entail considerable
experimental effort, these multi-alignment data sets can also be exploited in the DG implementation
of ConArch+ [22]. Under the assumption that the conformational preferences of the analyte do not
change significantly for alternate alignment conditions, different sets of RDCs can provide crucial
additional and independent structure information, which may contribute significantly to the certainty
with which configurational assignments are supported by experimental data [23,54–57].

In the sequel, the application of the fc-rDG/DDD method will be demonstrated on five complex
natural products (see Scheme 1). The dimeric cyclic pyrrole-imidazole alkaloid (PIA) axinellamine A
(1) isolated from the marine sponge Axinella sp. in 1999 [59] is the first compound to study. The second
example is also a dimeric cyclic PIA from the marine sponge Stylissa caribica, tetrabromostyloguanidine
(2) from 2007 [60], and the synthetic massadine derivative 3,7-epi-massadine chloride (3) is the last one of
the PIA series from 2008 [61]. Finally, the terrestrial plant alkaloids tubocurarine (4) from Chondrodendron
tomentosum [62] and vincristine (5) from Catharanthus roseus [63] are examples discussed here to illustrate
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the limitations of configurational analysis based on NOE/ROE data solely, and only the combined
approach of using distance as well as RDC data allows to deduce their configurations unequivocally.Mar. Drugs 2020, 18, x 6 of 22 
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2. Results and Discussion 

Compounds 1–3 are cyclic dimeric pyrrole-imidazole alkaloids (PIAs) with eight contiguous 
stereogenic centers each, resulting in 128 possible relative configurations (diastereomers), 
respectively. Axinellamine A (1) and 3,7-epi-massadine chloride (3) possess tetracyclic cores, 
whereas tetrabromostyloguanidine (2) features an even more complex hexacyclic core. For the PIAs 
1–3 only ROE-derived interproton distances were used. The interproton distances were extracted 
from a ROESY spectrum with a mixing time of 100 ms (in case of 3: 300 ms). For all compounds the 
interproton distances ±10% were used as distance restraints in the floating chirality restrained 
DG/DDD calculations (fc-rDG/DDD), additional details on the calculations on 1–3 are given in the 
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Scheme 1. Structural formulae of the investigated molecules with atom numbering: axinellamine A
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2. Results and Discussion

Compounds 1–3 are cyclic dimeric pyrrole-imidazole alkaloids (PIAs) with eight contiguous
stereogenic centers each, resulting in 128 possible relative configurations (diastereomers),
respectively. Axinellamine A (1) and 3,7-epi-massadine chloride (3) possess tetracyclic cores, whereas
tetrabromostyloguanidine (2) features an even more complex hexacyclic core. For the PIAs 1–3
only ROE-derived interproton distances were used. The interproton distances were extracted from
a ROESY spectrum with a mixing time of 100 ms (in case of 3: 300 ms). For all compounds the
interproton distances ±10% were used as distance restraints in the floating chirality restrained DG/DDD
calculations (fc-rDG/DDD), additional details on the calculations on 1–3 are given in the Section 4 and
the Supporting Information. As NMR can anyhow determine relative configurations only, in all rDG
simulations a single stereogenic center of 1–3 each was fixed by applying a chiral volume restraint in
order to avoid enantiomeric structures. The number of the generated structures in the fc-rDG/DDD
calculations was set to 1000 to allow for reasonable sampling of the configurational and conformational
space. Additional simulations applying different chiral volume restraints and/or sampling lengths,
as well as in-depth analyses of the rDG runs are described in the Supporting Information. In the
following, we report the application of the fc-rDG/DDD method to assign the relative configuration of
all stereogenic centers for compounds 1–3 simultaneously, and based on ROE data alone.

2.1. Configurational Assignment with ROEs Only

2.1.1. Axinellamine A (1)

For the configurational assignment of axinellamine A (1) 35 interproton distances from ROESY
spectra were used (the complete list of ROEs of 1 is given in the SI, Table S1). As mentioned above,
one stereogenic center of 1 was fixed and set as reference (C-14). In the traditional approach of
pre-calculating structures, this would entail the necessity to evaluate a total of 128 diastereomers.
Indeed, inspection of the output on the rDG protocol shows that all 128 configurations are actually
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generated by the “metrization” process in 4D space, but many of these molecular geometries severely
violate the restraints imposed by the ROE data even in this higher dimension, and thus do not “survive”
even the 4D refinement of simulated annealing. At the end of the 4D sampling phase, 40 alternative
configurations were obtained (see Supplementary Figures S2 and S3), out of which even only 37 did
emerge finally from the 3D sampling, albeit many of these structures display severe ROE violations.

The over-all exceedingly high efficiency of configurational sampling by rDG, and the results for
1000 generated possible structural candidates of axinellamine A (1) are shown in Figure 4a (“best 700”)
as a graphical representation of the total error (dimensionless) for each structure, ordered according
to ascending total errors. The first wrong structure (wrong configuration of 1) in respect to the eight
stereogenic centers is No. #598 (red circle in Figure 4a). This structure differs from structures #1 to
#597 by the configuration of C-1. The first “pseudo-configurational” change was already observed at
structure No. #365 (orange circle in Figure 4a). This is the alternative assignment of the diastereotopic
protons at the methylene group C-1′. Mathematically there is no difference between stereogenic and
prochiral centers, which means that for axinellamine A (1) altogether ten centers needed to be assigned.
Chemically only the stereogenic centers are of importance for the differentiation of the stereoisomers,
but the prochiral centers are important to support the configurational assignment. In this example,
only C-1′ is used, whereas the second prochiral center (C-1′’) does not contribute to the results since no
ROE to both H’s of C-1′’ have been observed.

Most notably, the first wrong configuration of 1 (#598) appears rather late in this sequence of energy
sorted structures sampled, visualizing the efficiency of sampling (the total number of structures with the
correct configuration for axinellamine A (1) is even 760/1000). Additionally, the second best (first wrong)
alternative configuration is separated from the best-fit global energy minimum structure by significant
energy steps and a large pseudo energy difference of the penalty error function (∆Etotal = 3.15). Within
the rDG approach, both of these characteristics are indicative for an unambiguous configurational
assignment of 1 based on the experimental NMR data used, and the plot in Figure 4b shows, that all
structures #1 to #597 indeed feature the same relative configuration of all stereogenic centers.

Figure 4a illustrates very well that the correct relative configuration of axinellamine A (1) appears
in different conformations with respect to the orientation of the side chains. There are already six
steps before a different configuration is observed, which originate from alternate local conformational
changes that mainly include the orientation of the side chains (see Figure 4b). The inset plot in Figure 4a
shows the first “energy” step in detail.

It must be stressed, that this rDG simulation is actually a single, fully automated sequence of
calculations–and not 128 individual calculations on alternate diastereomers–by which the correct
configuration of axinellamine A (1) is quickly and highly reliably identified. At no point of this
simulation is a physical force-field involved, and the final assignment emerges based on experimental
data only irrespective of the starting configuration.

2.1.2. Tetrabromostyloguanidine (2)

For the configurational assignment of tetrabromostyloguanidine (2) 27 interproton distances from
ROESY spectra were used (the complete list of ROEs of 2 is given in the SI, Table S2). Using the same
methodology as in case of axinellamine A (1), the results for the 1000 generated possible structures of
tetrabromostyloguanidine (2) are shown in Figure 5a (“best 400”) as a graphical representation of the
total error (dimensionless) for each structure, ordered according to ascending total errors. As already
discussed for 1, one stereogenic center of 2 was again set as reference and fixed by the application of a
chiral volume restraint (C-10). In order to verify and demonstrate that the results of the fc-rDG/DDD
calculations do not depend on the choice of the stereogenic center that is fixed, these calculations
were also repeated for all eight centers of 2 and are reported in the Supporting Information (see
Supplementary Figures S5–S7).
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Figure 4. (a) Plot of the total “pseudo energy” of ranked rDG structures of axinellamine A (1), showing
the first 700 out of 1000 structures generated (KNOE = 10.0 Å−2), the minimum energy level is indicated
by the green line. The dashed lines at higher energies indicate the differentiability of the best-fit solution
with respect to alternate assignments of diastereotopic methylene protons (orange) or wrong (red)
configurations, the corresponding ∆E values are given on the right. The inset plot shows the first 100
structures with all-correct assignments and their separation into distinct conformational families by
smaller energy steps. (b) Molecular structures of axinellamine A (1) showing the superposition of
all DG structures identified up to the first wrong configuration (597 structures); the central fragment
(green circle) of the DG best-fit (lowest pseudo energy) structure is plotted below, displaying the correct
configuration of 1.

The first wrong structure with respect to the eight stereogenic centers is No. #378 (red circle
in Figure 5). This structure differs from structures #1 to #377 by the configuration of C-20, which is
actually the same position (different atom numbering, see Scheme 1) for the first change as observed in
case of axinellamine A (1). The first “pseudo-configurational” change, i.e., an alternative diastereotopic
assignment of methylene protons of the exocyclic methylene group C-19, was already observed at
structure No. #99 (orange circle in Figure 5) with a very low energy difference of ∆E = 0.14, indicating
some ambiguity in the assignment of these CH2-protons. The second and more characteristic “jump” in
energy is observed at structure No. #203. This jump in energy includes both either a new conformation
of 2 and its side chains, or an alternative assignment of the diastereotopic protons at the endocyclic
methylene group C-13, both changes have similar penalties in experimental versus calculated NMR
parameters. At structure No. #277 the alternative assignment of the diastereotopic protons at C-13
is observed, and at structure No. #302 both methylene groups are inverted and both changes are
manifested in rather small changes in pseudo energy only. The total number of structures with the
correct configuration for tetrabromostyloguanidine (2) generated is 702/1000. Though all 128 relative
configurations of 2 were initially generated by the rDG “metrization” step, only a few “survived” the
4D (36 configuration) and 3D (19 diastereomers) stages of sampling, and of the latter, all 18 wrong
configurations appear after structure No. #377, and are ranked in their pseudo energy significantly
higher (∆E ≥ 5.32) than the best-fit geometry of 2 with correct configuration (see discussion of 1).

The diastereotopic assignment of the methylene protons can also be alternatively obtained by a
J coupling approach (3JHH and HMBC intensities). Using this information within the fc-rDG/DDD
calculation, the results can still be improved (see Supporting Information, Figures S8 and S9). For this
calculation the two methylene groups are used with a fixed chiral volume, changing the number of
floating centers from nine to seven (C-10 fixed). The first wrong structure for this calculation in respect
to the eight stereogenic centers changes from No. #378 to No. #420, and many of the smaller steps in
pseudo energy originating from alternate CH2-assignments vanish altogether.
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showing the first 400 out of 1000 structures generated (KNOE = 10.0 Å−2), the minimum energy level
is indicated by the green line. The dashed lines at higher energies indicate the differentiability of the
best-fit solution with respect to alternate assignments of diastereotopic methylene protons (orange)
or wrong (red) configurations. (b) Molecular structures of tetrabromostyloguanidine (2) showing the
superposition of all DG structures identified up to the first wrong configuration (377 structures); the
central fragment (green circle) of the DG best-fit (lowest pseudo energy) structure is plotted below,
displaying the correct configuration of 2.

In total, the relative configuration of all stereogenic centers in 2 is unequivocally determined by
the ROE data used, although some ambiguities remain on the assignment of diastereotopic protons.
However, both the unambiguity of the configurational assignment, as well as the ambiguity of the
CH2-assignments is again established by a single rDG simulation, without any other assumptions or
restraints used rather than experimental NMR data exclusively.

2.1.3. 3,7-epi-Massadine chloride (3)

For the configurational assignment of 3,7-epi-massadine chloride (3) 36 interproton distances from
ROESY spectra were used (the complete list of ROEs of 3 is given in the SI, Table S3). Results for the
1000 generated structures of 3,7-epi-massadine chloride (3) are shown in Figure 6a (“best 200”) as a
graphical representation of the total error for each structure, ordered according to ascending total
errors. As already discussed for 1 and 2 one stereogenic center of 3 was set as reference (C-13).

The first wrong structure in respect to the eight stereogenic centers is No. #56 (red circle in
Figure 6). This structure differs from the preceding structures by a configurational change of C-3 and
C-7, which represents the original massadine configuration. The first “pseudo-configurational” change
was again observed earlier at structure No. #25 (orange circle in Figure 6a), which represents the
alternative assignment of the diastereotopic protons at the methylene group C-1′’. The results of the
calculations for 3 can be improved if a diastereotopic assignment of the methylene protons is carried
out prior to the DG/DDD calculations (see discussion of compound 2). In this case, the first wrong
structure becomes No. #123 (see Figures S11 and S12). The diastereomeric differentiability in this case
is not as pronounced as for compounds 1 and 2. This becomes obvious just by looking at the occurrence
of the first wrong structure (1: #597, 2: #377, and 3: #56), but it is still an unambiguous result. Another
difference to the first two examples is the energy difference between the different configurations, which
is much lower for 3. This indicates that the extent and certainty with which the experimental data does
differentiate between the different structures (diastereomers) is not as pronounced as it was observed
for 1 and 2. For 3,7-epi-massadine chloride (3), the NMR data set was less well defined because of the
longer mixing time of the ROESY experiment.
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2.2. Configurational Assignment with NOEs and RDCs

The terrestrial alkaloids tubocurarine (4) and vincristine (5) form the completion of the current
investigation. In case of 4 only one stereogenic center relative to a second one needs to be assigned
and is therefore a seemingly rather simple model for the described approach, but was chosen for
demonstration purposes and its long-range separated stereogenic centers. Vincristine (5) is a more
complex structure with nine stereogenic centers. In both examples, NOEs involving diastereotopic
protons of methylene groups were used as unassigned and averaged restraints only, and in the case of
4, the o/o’-protons of the p-disubstituted aryl ring were treated similarly (see Supplementary Tables S4
and S5 and Figure S4). As it will be demonstrated later in the manuscript, NOEs are not sufficient for
the unambiguous assignment of the relative configuration of compounds 4 and 5. Further data was
necessary for a complete assignment. Due to the lack of experimental RDC data, we have decided to
use synthetic RDC data sets for both compounds. Though one might argue that is a general weakness
of the method, it is important to know for demonstration purposes that additional NMR parameter
may help to solve the structural problem. Where applicable, RDCs involving CH2-groups were also
treated as unassigned values, and only the sum of both individual 1DCH methylene RDCs are used as
restraining parameters. Though this reduces the quality of the data set that might be experimentally
accessible, this method was chosen to reduce the amount of prior information to learn more about the
limits of the DG based structure analysis described here. The full data sets of NOEs and RDCs used for
4 and 5 are listed in Supplementary Tables S4–S7. As this data explicitly does not allow to differentiate
diastereotopic CH2-protons, we will not get into a debate on the subject of assignments on prochiral
centers in this chapter.

2.2.1. Tubocurarine (4)

The toxic alkaloid (“arrow poison”) tubocurarine (4) was chosen as a model compound with only
two stereogenic centers (C-1 and C-24) being nine bonds apart from each other (either counting the
orange or the blue pathway in the macrocycle; see Figure 7). Additionally, along either way only three
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out of the eight atoms in between have a proton attached, and thus 4 represents a prototype example
where the relative configuration of the two remote stereogenic centers is expected to be indefinable on
the basis of NOE data alone. The question is now: can RDCs contribute significantly to the assignment
of the relative configuration of tubocurarine (4)?
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Figure 7. Structure of tubocurarine (4). The two stereogenic centers (C-1 and C-24) are represented
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For the configurational assignment of tubocurarine (4), a total of 17 NOE-derived interproton
distances and 16 1DCH RDCs were used for up to three independent alignment media, respectively, the
RDC data for 4 was taken from Ref. [22] (see also Supplementary Tables S4 and S5).

Results for 1000 structures of tubocurarine (4) are shown in Figure 8a (“best 500”) as a graphical
representation of the total error for each structure, ordered according to ascending total errors.
Following the methodology outlined in the previous chapter for 1 to 3, one stereogenic center of 4 was
set as reference and fixed by a single rDG chiral volume restraint (C-1), and therefore, only one center
needed to be assigned in the calculations. Using NOE data exclusively, the first wrong structure is No.
#80 (black curve/circle in Figure 8a). The energy difference between the two structures of opposite
configuration at C-24 is extremely low (∆Etotal = 0.04, see black symbols in Figure 8a). Accordingly,
the total number of structures for tubocurarine (4) generated by rDG is almost equally distributed
between both possibilities (the correct and the wrong configuration), and therefore a differentiation of
the two alternative relative configurations of 4 by the NOE data set used here is impossible, as long as
no further assumptions are made or additional experimental data is included.

The results can be significantly improved by adding RDC data to the restraints. A single alignment
medium RDC data set with 16 individual 1DCH RDCs added to the restraints of the rDG/DDD
simulation leads to a clearly recognizable step in pseudo energy separating the first occurrence of a
structure with wrong configuration (#334) from the energy minimum family of structures displaying the
correct configuration of 4 (blue line and symbols in Figure 8a). This already pronounced diastereomeric
differentiability is improved considerably when adding a second (Figure 8a, green line) or even third
(Figure 8a, dark red line) RDC data set. Though these data sets require NMR measurements under
different alignment conditions (alignment media) and are associated with quite some experimental
effort, the resultant additional structural restraints add valuable information to the discrimination of
diastereomers. With an increasing number M of alignment data sets used, the rDG/DDD simulations
show a significantly increasing step in pseudo energy (M = 1: ∆E = 0.95, M = 2: ∆E = 1.73, and M =

3: ∆E = 11.33, cf. Figure 8a) between both alternate configurational assignments of 4, and the total
number of correctly identified structures increases consistently. The second and third AM RDC data
sets remove the last remaining doubts on the configuration of 4 that might prevail after single-AM
analysis. The predictive power of AM data sets cannot be estimated in advance of a measurement,
but needs to be evaluated thoroughly after the NMR data has been acquired. For the experimentalist,
this is of high significance, as adding further data and re-running a rDG/DDD simulation is very
straight-forward–it simply requires adding a new RDC table in an additional input file–and within a
couple of minutes a clear-cut answer on the decidability of a given structural problem is provided by
the DG method presented here.
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as very complex natural product. Vincristine (5) is an approved drug in cancer therapy. It has nine 
stereogenic centers, six of which are arranged consecutively in a six-membered ring and three are 
located in a remote ring fragment connected to the former segment by a single rotatable bond only, 
and therefore 5 is a challenging goal for a configurational analysis by NMR spectroscopy. For the 
configurational assignment of vincristine (5) altogether 23 NOEs and 24 RDCs in up to three AM, 
respectively, were used (all restraints were again used without assignments of diastereotopic 
methylene protons as described for 4). The RDC data for 5 were taken from Ref. [22] for three 
independent alignment scenarios, respectively (see also Supplementary Tables S6 and S7). It also 
must be noted that due to the absence of NOE and RDC associated with the substituents of C-42 (a 
quaternary carbon carrying a hydroxyl group and a COOMe ester moiety), the configuration of this 
stereogenic center is not assignable based on the data used here, and thus C-42 was excluded from 
any further analysis. 

Results for 1000 structures of vincristine (5) are shown in Figure 9a (“best 100”) as a graphical 
representation of the total error for each structure, ordered according to ascending total errors. 
Again, a single stereogenic center of 5 was set as reference and fixed (C-9). Using NOE data only, the 
first wrong structure is already the structure No. #1 ranked best (black curve/circle in Figure 9a), 
which is a clear indication that NOEs alone are insufficient to accomplish the configurational 

Figure 8. (a) Plot of the total “pseudo energy” of ranked rDG structures of tubocurarine (4), showing
the first 500 out of 1000 structures generated (KNOE = 10.0 Å−2, KRDC = 1.5/M Hz−2) using only NOE
restraints (black symbols) and an increasing number M of additional RDC data sets (blue, green, and
dark red with M = 1–3 alignment media). The dashed lines and ∆E values on the right indicate the
energy levels of the first wrong configuration identified (M = 1: #334, M = 2: #342, M = 3: #429),
respectively, and thus the increasing differentiability of the correct configuration when using an
increasing number of RDC restraints. The inset plot shows the corresponding data obtained using only
RDCs (M = 1–3 data sets) without any NOE restraints. (b) Superposition of the first 428 DG structures
(top plot) of correct configuration (M = 3), and backbone representation of the best-fit geometry (lowest
pseudo energy, bottom plot, hydrogen atoms not connected to stereogenic centers have been omitted
for clarity) of tubocurarine (4).

The main plot of Figure 8a shows the combined usage of NOE and RDC data, whereas the inset
graph reveals, that the discriminative power for alternate configurations based on RDCs alone is smaller
than the combined usage of NOE and RDC data. Though the level of differentiation still increases with
the number of alignment media data sets applied, the energy is smaller and less significant (M = 1:
∆E = 0.41, M = 2: ∆E = 0.41, and M = 3: ∆E = 2.86, cf. Figure 8a, inset plot).

2.2.2. Vincristine (5)

The alkaloid vincristine (5) from the pink-colored catharanthe (Catharanthus roseus) was chosen
as very complex natural product. Vincristine (5) is an approved drug in cancer therapy. It has nine
stereogenic centers, six of which are arranged consecutively in a six-membered ring and three are
located in a remote ring fragment connected to the former segment by a single rotatable bond only,
and therefore 5 is a challenging goal for a configurational analysis by NMR spectroscopy. For the
configurational assignment of vincristine (5) altogether 23 NOEs and 24 RDCs in up to three AM,
respectively, were used (all restraints were again used without assignments of diastereotopic methylene
protons as described for 4). The RDC data for 5 were taken from Ref. [22] for three independent
alignment scenarios, respectively (see also Supplementary Tables S6 and S7). It also must be noted that
due to the absence of NOE and RDC associated with the substituents of C-42 (a quaternary carbon
carrying a hydroxyl group and a COOMe ester moiety), the configuration of this stereogenic center is
not assignable based on the data used here, and thus C-42 was excluded from any further analysis.

Results for 1000 structures of vincristine (5) are shown in Figure 9a (“best 100”) as a graphical
representation of the total error for each structure, ordered according to ascending total errors. Again,
a single stereogenic center of 5 was set as reference and fixed (C-9). Using NOE data only, the first
wrong structure is already the structure No. #1 ranked best (black curve/circle in Figure 9a), which
is a clear indication that NOEs alone are insufficient to accomplish the configurational analysis of
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vincristine (5). In analogy to the methodology employed in the case of 4, the results can be improved
by further adding RDC data to the restraints.

Mar. Drugs 2020, 18, x 13 of 22 

 

analysis of vincristine (5). In analogy to the methodology employed in the case of 4, the results can 
be improved by further adding RDC data to the restraints. 

 
(a) 

 
(b) 

Figure 9. (a) Plot of the total “pseudo energy” of ranked rDG structures of vincristine (5), showing the 
first 100 out of 1000 structures generated (KNOE = 10.0 Å-2, KRDC = 1.5/M Hz-2) using only NOE 
restraints (black symbols) and an increasing number of additional RDC data sets (blue, green, and 
dark red with M = 1–3 alignment media). The dashed lines and Δ  values on the right indicate the 
energy levels of the first wrong configuration identified, respectively, and thus the increasing 
differentiability of the correct configuration when using an increasing number of RDC restraints. The 
inset plot shows the corresponding data obtained using only RDCs (M = 1–3 data sets) without any 
NOE restraints. (b) Superposition of the first 86 DG structures (top plot, M = 3) of correct 
configuration, and backbone representation of the best-fit geometry (lowest pseudo energy, bottom 
plot, only hydrogen atoms connected to stereogenic centers are shown) of vincristine (5). 

Successively adding multiple AM, RDC data sets slowly increases the certainty with which the 
correct configuration of 5 can be assigned: with M = 1 (blue curve), 2 (green), and 3 (dark red) AMs 
(see Figure 9a). However, the level of differentiability of the correct configuration from alternate 
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the first wrong structure is No. #87 (dark red triangle in Figure 9a), and this diastereomer is already 
separated from the best-fit (pseudo energy minimum) correct diastereomer of 5 by a now significant 
step in the error function, which is due to a configurational change of the quaternary carbon C-17 (at 
structure #87). Another step (not shown) follows at structure #245 ( Δ = 6.04 ) due to a 
misassignment of C-41. In conclusion, the most problematic stereogenic centers to be determined for 
vincristine (5) are–as discussed above–C-42, C-17, and C-41 (in this order), whereas the reliability 
with which any of the other six stereogenic centers is differentiated from alternate configurations is 
high when NOE and RDC data is used in combination (see Figure 10 for a traffic-light type encoded 
pictorial description of these assignment probabilities). The problems associated with C-17 arise 
from limited RDC data available for the rotating ethyl side chain, and for C-41, only a single CH 
RDC and two NOEs indicate some preference for the correct configuration over a wrong 
assignment. However, Figure 9a and the inset plot therein clearly indicate the importance of using 
combinations of both NOE and RDC data sets, as neither NOEs nor RDCs alone provide conclusive 
evidence for the correct configuration of 5, and in particular calculations relying on RDCs only gave 
much less conclusive results as compared to the combined approach. 

Figure 9. (a) Plot of the total “pseudo energy” of ranked rDG structures of vincristine (5), showing the
first 100 out of 1000 structures generated (KNOE = 10.0 Å−2, KRDC = 1.5/M Hz−2) using only NOE
restraints (black symbols) and an increasing number of additional RDC data sets (blue, green, and dark
red with M = 1–3 alignment media). The dashed lines and ∆E values on the right indicate the energy
levels of the first wrong configuration identified, respectively, and thus the increasing differentiability
of the correct configuration when using an increasing number of RDC restraints. The inset plot shows
the corresponding data obtained using only RDCs (M = 1–3 data sets) without any NOE restraints. (b)
Superposition of the first 86 DG structures (top plot, M = 3) of correct configuration, and backbone
representation of the best-fit geometry (lowest pseudo energy, bottom plot, only hydrogen atoms
connected to stereogenic centers are shown) of vincristine (5).

Successively adding multiple AM, RDC data sets slowly increases the certainty with which the
correct configuration of 5 can be assigned: with M = 1 (blue curve), 2 (green), and 3 (dark red) AMs
(see Figure 9a). However, the level of differentiability of the correct configuration from alternate wrong
diastereomers is at first very low (M = 1: ∆E = 0.04, and M = 2: ∆E = 0.12), but raises constantly
to ∆E = 1.63 when using RDCs from three alignment media (M = 3). In the latter case, the first
wrong structure is No. #87 (dark red triangle in Figure 9a), and this diastereomer is already separated
from the best-fit (pseudo energy minimum) correct diastereomer of 5 by a now significant step in the
error function, which is due to a configurational change of the quaternary carbon C-17 (at structure
#87). Another step (not shown) follows at structure #245 (∆E = 6.04) due to a misassignment of C-41.
In conclusion, the most problematic stereogenic centers to be determined for vincristine (5) are–as
discussed above–C-42, C-17, and C-41 (in this order), whereas the reliability with which any of the
other six stereogenic centers is differentiated from alternate configurations is high when NOE and RDC
data is used in combination (see Figure 10 for a traffic-light type encoded pictorial description of these
assignment probabilities). The problems associated with C-17 arise from limited RDC data available
for the rotating ethyl side chain, and for C-41, only a single CH RDC and two NOEs indicate some
preference for the correct configuration over a wrong assignment. However, Figure 9a and the inset
plot therein clearly indicate the importance of using combinations of both NOE and RDC data sets, as
neither NOEs nor RDCs alone provide conclusive evidence for the correct configuration of 5, and in
particular calculations relying on RDCs only gave much less conclusive results as compared to the
combined approach.
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Figure 10. Structure of vincristine (5). The color-coded atom markers in the formula of 5 correspond to
difficulties in the configurational assignment (for details, see text).

3. Conclusions

In this study, we have shown with the aid of five examples of natural products, that the ROEs
or NOEs/RDCs driven floating chirality distance geometry (fc-rDG/DDD) approach represents a
valuable method to assign the configuration (and conformation) of complex molecules in just one single
calculation. Given the known constitution of a compound, the method produces all configurations
that are in accordance with the experimental NMR data, without the necessity to carry out separate
configurational and conformational analyses on 2n−1 diastereomers for n stereogenic centers. In
the case of the marine natural products 1–3, the relative configuration of eight stereogenic centers
is unequivocally derived in just one instead of individual 128 simulations. In addition, it was
demonstrated for the terrestrial alkaloids 4 and 5, that the DG method also clearly reveals remaining
ambiguities if NOE data alone is insufficient for configurational assignments–as e.g., for the long-range
separated stereogenic centers of 4–and indicates to the NMR spectroscopist that additional data such
as RDCs has to be acquired. Successively adding RDC data obtained for different alignment media as
additional restraints to the DG calculations is straight forward, and can be easily repeated until the
level of confidence of the assignment is raised beyond any reasonable doubt.

The method discussed here neither requires individual treatment of alternate diastereomers under
consideration, nor does it rely on force-field based MM/MD or DFT derived pre-calculated structures.
In particular the use of force-field parameters–which may not even be available for uncommon
structural fragments of natural products–in the traditional MD approach introduces an implied bias
towards low-energy structures (in a thermodynamic sense) that might be misleading as in the case of
tetrabromostyloguanidine (2). Here, the correct configuration of two trans-anellated five-membered
rings is about 24 kJ mol−1 less favorable than the more stable wrong configuration with cis-fused rings
(which represents the original palau’amine configuration from 1993 [64–68]; see Figure 11), and any MD
approach would have to overcome this pronounced bias in order to identify the correct configuration
of 2.

Most importantly, the methodology outlined here does not depend on pre-calculated structures
that are traditionally evaluated against experimental data, but DG represents the opposite approach,
which produces structures that evolve from experimental restraints exclusively. The “FF- and DFT-free”
types of simulations are unbiased, reliable, and fast (completed within minutes), and the NMR data
itself governs the mode with which these structures emerge.

The full methodology outlined here for the interpretation of NOEs/ROEs and RDCs has been
implemented in our ConArch+ (Configurational Architect) program, which also produces convenient
pseudo energy and configuration sorted lists that were used for all plots presented here. The software
can be obtained along with the source code (free of charge for academic institutions) from our web site
(https://www.chemie.tu-darmstadt.de/reggelin).

https://www.chemie.tu-darmstadt.de/reggelin
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Figure 11. Selected structure plots underpinning the importance of an unbiased rDG/DDD approach
compared to the traditional force-field based rMD approach: the left plot of tetrabromostyloguanidine
(2) features a wrong configuration of two C–11/C–12 cis-anellated five-membered ring systems, which
is energetically significantly favored over the correct configuration with an trans-type anellation of
both ring systems (energy difference given based on DFT B3LYP/6-311+G(2d,p) optimized structures
including thermal corrections at T = 298.15 K, the lower dibromopyrrole ring and the side chain have
been removed for clarity).

4. Methods

4.1. NMR Data

The ROEs for compounds 1–3 were taken from refs [60,69]. For compounds 1 and 2 three ROESY
spectra with different mixing times (100, 150 and 200 ms) were measured [60,69]. In the case of 3, only
one ROESY spectrum with a mixing time of 300 ms was recorded [69]. The spectra were integrated
with TOPSPIN and SPARKY.

For the compounds 4 and 5, sets of NOEs were predicted using the corresponding X-ray structures
and all proton-proton contacts ≤ 3.5 Å. All NOEs involving CH3– or CH2– groups were treated as
averaged values between unassigned (diastereotopic) protons only, in order to reduce the amount
of prior information, thus simulating situations where no diastereotopic assignment was possible.
The ortho- and ortho’-protons of the central benzene ring (C-17 to C-22) were treated equivalently (see
Tables S4 and S5). Simulated RDC data for 4 and 5 was taken from Ref. [22] for three independent
alignment scenarios, respectively.

4.2. DG/DDD

The ROE-/NOE-interproton distances as well as the RDCs served as input for the distance geometry
(DG) and distance bounds driven dynamics (DDD) calculations. The DG pseudo force-field employed
for all simulations presented in this study takes the form defined by Equation (1):

Etotal = Edist + Echir + ENOE + ERDC + EDBL, (1)

where the dimensionless total pseudo energy Etotal is a sum of distance (holonomic bond lengths)
errors (Edist), chiral volume violations (Echir), NOE (ENOE), and RDC (ERDC) deviations of experimental
data from values back-calculated from structures and a special term denoting the deviations of double
bonds from planarity (EDBL). There are no additional or customary atom-type dependent force-field
parameters of physical force-fields used. All pseudo energy terms take the form of sums of squared
violations (∆X)2 as defined by Equation (2):

EX =
1
2

KX

∑
(∆X)2, (2)

with ∆X = Xexp
−Xcalc, and empirically chosen force-constants KX to appropriately account for the

size and allowed ranges of each type of parameter violations ∆X.
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Edist and Echir (Equation (1)) represent the violations originating from differences in holonomic
distances ∆ri, j (i.e., bond lengths) and ∆Vi (chiral volumes). The latter are defined by the scalar triple

product Vchir =
→
a ·(
→

b ×
→
c ) of three vectors spanning planar sp2-type (Vchir = 0) or tetrahedral sp3-type

atomic centers (i.e., stereogenic centers with Vchir , 0), thus encoding for the configuration of the

latter through opposite signs (
∣∣∣∣V(S)

chir

∣∣∣∣ = ∣∣∣∣V(R)
chir

∣∣∣∣), respectively (see Figure 12a). For reference, holonomic
distance bounds (for all atom-atom pairs for which upper and lower bounds of inter-atom distances
can be established based on the molecular constitution) and chiral volumes are obtained from an initial
guess (input) structure of arbitrary configuration and conformation. As these values depend solely on
the constitution (which must be known), the DG approach is completely independent from the structure
initially assumed [22]. Here, chiral volume restraints were used only on a single stereogenic center
simply to avoid enantiomeric structures, as well as on CH3-groups (to keep them tetrahedral) and all
sp2-centers (to keep them planar, Vchir = 0). Thus, through the deliberate absence of chiral volume
restraints, all stereogenic centers (except one), and all CH2-groups with diastereotopic protons were
allowed to “float” and thus their configurations and/or assignments evolve on the basis of experimental
NMR data (NOEs and/or RDCs) only.

In Equation (1), ENOE denotes the deviations of back-calculated (and < r−6 > averaged where
applicable) NOE distances from experimental upper and lower distance bounds with ∆r defined
as follows:

∆r =


ri, j − rlower for ri, j < rlower

0 for rlower ≤ ri, j ≤ rupper

ri, j − rupper for ri, j > rupper

. (3)

In this study, all NOE bounds rlower and rupper were derived from the corresponding NMR volume
integrals and used as rmean ± 10%, with force-constants KNOE = 10.0 Å−2 unless stated otherwise.

The mathematics of RDC calculations used here has been taken from Glaser et al. [53], and
the formalism on how to include RDC data in 4D and 3D DG simulations (see below) has been
described in full detail in Ref. [22]. The harmonic RDC “pseudo energy” ERDC is based on violations
∆D = Dexp

−Dcalc between experimental and back-calculated values, and RDC data sets derived
from multiple alignment media can be used simultaneously as an increasing number of experimental
NMR restraints in our ConArch+/DG approach simply by expanding the corresponding sum in ERDC.
Empirically, it proved best to scale the force-constant KRDC used with the number of RDCs, or
equivalently, with the number M of alignment media used, and thus we employ KRDC = 1.5/M Hz−2

in this study.
In addition to the application of chiral volume restraints on sp2-type atomic centers (Vchir = 0),

the term EDBL in Equation (1) is used to reasonably restrain double bonds and aryl rings to planarity
(restraining Vchir = 0 on neighboring atomic centers alone is not sufficient). Here, ∆X (used cf.
Equation (2)) is defined as ∆X = 1 − cos2 φ, where φi, j,k.l are the corresponding torsion angles
i − j − k − l with sp2-sp2-type central bonds, and ∆X vanishes for φ = 0◦ and φ = 180◦ only (cis-
and trans-configurations). The rather high force-constant KDBL = 100 used here efficiently removes
local energy minima which originate from slight bending of C=C-double bonds and aromatic rings,
revealing more distinctive energy steps separating alternate conformational families. In general, the
final best-fit energy-minimum structures have very low distortional energy terms of EDBL ≤ 5× 10−3,
and the efficiency with which different configurations and conformations are sampled on the basis of
experimental NMR data is largely unhampered by these types of restraints.
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sp2-type atomic centers. (b) In analogy to 2D chiral objects that can be transformed into each other
through a rotation in higher dimensions (3D), the configuration of 3D-chiral objects can be inverted
by simple rotations in 4D (see text for details). (c) Projection mode of higher dimensional objects into
lower dimensional space (here visualized as 3D→2D) along the eigenvector associated with the largest
eigenvalue λ3 of the inertia tensor (with λ1 < λ2 . . . < λn ). Similar projections 4D→3D optimally
preserve interatomic distances. (d) Temperature dependent scaling factors of projection forces applied
to 4D simulated annealing smoothly transforms higher dimensional objects into 3D structures (τT = 150
K, see text for details).

The initial input structure is used by DG only for setting up the holonomic bounds and distance
matrices (±1% bond lengths), and subsequent configurational and conformational sampling is carried
out by our ConArch+/DG approach in an automated sequence of steps. First, molecular structures are
generated in four-dimensional (4D) space (“metrization” step, i.e., embedding based on holonomic
distance bounds), followed by a 4D “floating-chirality” restrained DG (fc-rDG) and distance bounds
driven dynamics (DDD) simulation (simulated annealing). After reduction of dimensionality, the
simulated annealing is repeated in 3D space, and each simulation in 4D and 3D is concluded by a
gradient-descent type optimization of structures against all restraints, minimizing the total pseudo
energy Etotal. In all dynamics and optimization calculations, the partial derivatives ∂Etotal/∂rα of all
energy terms with respect 4D and 3D Cartesian atomic coordinates (α ∈ x, y, z(, w) for all atoms) are
interpreted and used as forces governing the evolution of the system. All derivatives are calculated
analytically by ConArch+/DG. During each step of the rDG/DDD runs using RDCs, full updates of the
Saupe or alignment tensors are computed based on a singular value decomposition (SVD) algorithm.

Sampling molecular structures first in 4D very efficiently generates diastereomeric geometries
as inversion barriers can be overcome easily [70,71]. Configurational inversion in 3D is reduced to a
simple rotation in 4D (see Figure 12b), and consequently during simulated annealing in 4D space with
chiral restraints removed on all but selected chiral centers (fc-DDD), the transition barriers between
diastereomers are significantly lowered or removed altogether.

For an increased sampling efficiency, it is crucial to transport as much 4D information as possible
into 3D, in order to produce chemically relevant structure models. Projection from higher to lower
dimensionality optimally preserves atom-atom distances when carried out along the eigenvector
associated with the largest eigenvalue of the inertia tensor I defined by Equation (4):

I =
∑

k

((
→
r k·
→
r k)E−

→
r k

⊗
→
r k), (4)

where the sum runs over all atomic positional vectors (
→
r k for k particles) centered about the origin

(
∑→

r k = 0) and weighted with unity mass (see Figure 12c) [72]. During 4D simulated annealing, we
apply a temperature dependent scaling factor f = exp (−(T/τT)

2) with an empirical temperature
coupling factor τT = 150 K to forces acting along this eigenvector, which gradually restrain the 4D
molecular models into a 3D subspace thereof (see Figure 12d). At high temperatures (T > 300 K),
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all structures evolve freely, but are restrained increasingly and smoothly to 3D sub-space during the
cooling phase (T < 300 K) of the simulated annealing. Finally, all models are projected into pure 3D
space and are subjected to an additional simulated annealing therein.

In this study, for each compound 1–5 a total of 1000 structures (configurations and conformations)
were generated initially in 4D space. All consecutive simulated annealing simulations in 4D and
3D used 5000 steps of equilibration (T = 300 K) and 5000 steps of cooling (T→ 0 K) each (2 fs time
steps). The final structures were collected, sorted by their pseudo energy, and a final selection of the
ranked structures of lowest energy were used for the plots presented here. For the global energy
minimum best-fit structures, errors in calculated RDCs are estimated from Monte-Carlo bootstrapping
analysis including tensor updates [22,23]. Total single processor CPU (Intel(R) Core(TM) i7-4790 CPU
@ 3.60GHz) wall time used was about 7–8 min. for each compound 1–3, and up to approx. 50 min
for 4 and 5 when three alignment media RDC data sets are used. However, the entire process can be
parallelized very efficiently on an arbitrary number of shared memory CPU cores, reducing the total
wall time accordingly to a few minutes only.
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