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Abstract: Future satellite platforms and 5G millimeter wave systems require Electronically Steerable
Antennas (ESAs), which can be enabled by Microwave Liquid Crystal (MLC) technology. This paper
reviews some fundamentals and the progress of microwave LCs concerning its performance metric,
and it also reviews the MLC technology to deploy phase shifters in different topologies, starting from
well-known toward innovative concepts with the newest results. Two of these phase shifter
topologies are dedicated for implementation in array antennas: (1) wideband, high-performance
metallic waveguide phase shifters to plug into a waveguide horn array for a relay satellite in
geostationary orbit to track low Earth orbit satellites with maximum phase change rates of 5.1◦/s to
45.4◦/s, depending on the applied voltages, and (2) low-profile planar delay-line phase shifter stacks
with very thin integrated MLC varactors for fast tuning, which are assembled into a multi-stack,
flat-panel, beam-steering phased array, being able to scan the beam from −60◦ to +60◦ in about
10 ms. The loaded-line phase shifters have an insertion loss of about 3 dB at 30 GHz for a 400◦

differential phase shift and a figure-of-merit (FoM) > 120◦/dB over a bandwidth of about 2.5 GHz.
The critical switch-off response time to change the orientation of the microwave LCs from parallel
to perpendicular with respect to the RF field (worst case), which corresponds to the time for 90 to
10% decay in the differential phase shift, is in the range of 30 ms for a LC layer height of about 4 µm.
These MLC phase shifter stacks are fabricated in a standard Liquid Crystal Display (LCD) process for
manufacturing low-cost large-scale ESAs, featuring single- and multiple-beam steering with very low
power consumption, high linearity, and high power-handling capability. With a modular concept
and hybrid analog/digital architecture, these smart antennas are flexible in size to meet the specific
requirements for operating in satellite ground and user terminals, but also in 5G mm-wave systems.

Keywords: liquid crystals; microwave liquid crystal technology; tunable delay lines; tunable
loaded-line; phase shifters; electronically steerable antennas; passive phased arrays

1. Introduction

Recent developments in new wireless (particularly satellite and 5G communication) platforms
and network architecture together with innovative wireless technologies promise improved coverage,
greater capacity, higher data rates, more efficient use of spectrum resources, much quicker round-trip
times or lower latency, higher system reliability, and more flexibility for the effective delivery of
services. Their implications in communications, including major market drivers, which trigger a
massive number of use cases, future mobile traffic, economical perspectives, spectrum allocation,
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and key technologies are described in some detail in Appendix A. There are two future scenarios.
Figure 1 illustrates a satellite platform scenario of a Low Earth Orbit (LEO) satellite constellation for
communication links with mobiles on Earth (mobile link), where ground/user terminals might have
access via flat-panel beam-steering antenna arrays, e.g., integrated into the rooftop of automotives (left).
Additionally, a relay satellite in the GEostationary Orbit (GEO) is operating to establish a permanent
link between a fixed ground station on Earth via a parabolic dish antenna (feeder link) and moving
LEO satellites (inter-satellite link), e.g., with an electronic beam-steering horn antenna array to track an
LEO satellite [1,2].
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Figure 1. Satellite platform scenario of a low Earth orbit satellite constellation to communicate with
mobiles, using a relay satellite in the geostationary orbit for an inter-satellite link.

Figure 2 (left) illustrates the 5G cellular network architecture with different cells (layers) [3,4]:
(1) macro cells (coverage layer) with high mounted sector antennas to cover large areas for the use
cases in all three usage scenarios according to Appendix A, i.e., enhanced/extreme Mobile BroadBand
(eMBB), massive Machine-Type Communications (mMTC), and Ultra-Reliable and Low-Latency
Communications (URLLC), usually with relative low capacity, (2) micro and pico cells (coverage and
capacity layer) with small antennas often below rooftops for additional capacity and coverage also
for use cases in all three usage scenarios, and (3) small pico and femto cells (super data layer) with
Multiple Input Multiple Output (MIMO) antennas (see Figure 2 (right)), particularly for the use cases
in usage scenario eMBB with very high data rates. To enable these high data rates, the operating
frequency will be shifted into the mm-wave range, whereas the first two layers are operating in the
sub-6 GHz range (see spectrum recourses in Appendix A).
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Figure 2. 5G network architecture (left). Coverage (footprint) of Electronically Steerable Antennas
(ESAs) and multi-beam antennas at certain distance d, resulting in an area diameter of a ≈ d·HPBW for
small HPBW (right). HPBW: half-power beamwidth.

This evolution of wireless communications is primarily driven by an ever-growing demand
for higher data rates in order to meet the needs for increasing the capacity per subscriber and the
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increasing number of subscribers (see Appendix A), i.e., to keep up with the remarkable speed-up of
fiber optic networks. This demand on extremely high data rates and hence bandwidth leads inevitably
to increasing operating frequencies of wireless communication and access systems up to the mm-wave
range, where still large frequency resources are available. However, power link budget considerations
in particular, which are dominated by the free-space propagation losses at these high frequencies
(see Figure 3, left) require large (in terms of wavelength), highly directive, high-gain antennas to focus
the narrow beam from a user terminal or mobile station toward the desired hub (satellite, access point,
relay, or base station). Traditionally, this is done with a static beam formed, e.g., by a simple parabolic
dish. The larger the antenna, the higher the gain, the narrower the beam for a certain frequency.
This can be seen from Figure 3 (right) for an antenna example with quadratic aperture of size A = B
versus frequency, e.g., a horn antenna or a microstrip patch array. The parameter is the gain G of the
antenna and corresponding half-power beamwidth (HPBW). For a required gain with corresponding
HPBW, the size of the antenna needed to assure the communication link strongly goes down with
frequency, i.e., the number of radiating elements being λ/2 apart in case of an array.
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size A = B and with radiating element distances of λ/2, assuming an aperture efficiency of εap = 0.4
and −10 dB-taper of the aperture field with k = 1.15.

However, when the hub or user terminal is moving, then these antennas have to be steered
by heavy and bulky mechanical systems, which are impractical to deploy wide-scale applications.
Therefore, smart antennas will be a major element in future to alter the narrow beam continuously
toward the desired communication partner for a reliable link and for suppressing interference effectively
as well as to increase the capabilities of wireless platforms, i.e., the overall capacity and spectrum
efficiency. An example of an antenna with multiple beams covering different areas is illustrated
in Figure 2 (right). This requires advanced antenna technologies such as analog, digital, or hybrid
3D-beam-steering/beam-forming, massive Multiple Input Multiple Output (MIMO) and network
MIMO, where a significantly more advanced baseband computation and Radio Frequency (RF)- and
antenna hardware is required to meet the complex requirements [3]. Implementing smart antenna
concepts is very challenging at mm-waves, where complexity, technological constrains, and cost
increase. At present, there are different approaches to enable cost-efficient, low-profile Electronically
Steerable Antennas (ESAs), using different technologies to improve the performance while reducing
the manufacturing cost to an economical price point [2].

Beyond smart antennas, reconfigurable hardware concepts and technologies for smart user
devices and terminals as well as for the base stations and satellites are crucial for the deployment
of the new platforms above, following to some extent the Software-Controlled Radio (SCR) or even
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the Cognitive Radio (CR) approaches, which would enable the user handset to look at the radio
landscape in which it is located and choose the optimum radio access network, modulation scheme,
and other parameters to configure itself to gain the best connection and optimum performance. Hence,
to enable computationally intensive, adaptive air interfaces, programmable digital baseband and
reconfigurable analog RF-frontend components such as tunable filter, phase shifters, and adaptive
matching networks require control by software [2]. Figure 4 illustrates various applications and
platforms with some important characteristics. In particular for mm-wave systems, the bottleneck of
this approach is the reconfigurable/tunable components in the analog Radio Frequency (RF) frontends of
the transceiver hardware and the antennas, to provide smart system functionalities, i.e., to dynamically
change/tune the characteristics of these components electronically (instead mechanically) to enable
(1) adaptive impedance and power matching, (2) dynamic frequency tuning (center frequency and
bandwidth), (3) polarization tuning and converting, (4) electronically reconfigurable multi-beams as
well as electronically beam-steering and beam-forming of single or multi-beams [2].
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These reconfigurable/tunable components such as RF switches, varactors, adaptive matching
networks and filters, frequency-agile antennas, frequency-selective surfaces, polarization-agile antennas
and polarizer, discrete, and continuous phase shifters, and based on it, beam-steering antennas can be
realized with different materials and technologies, which are symbolized in Figure 4 at the lower left:

� in semiconductor technologies [5–10], in particular silicon technologies (Complementary
Metal-Oxide-Semiconductor (CMOS) and Bipolar CMOS) that offer much lower cost as
compared to Indium Phosphide (InP) or Gallium Arsenide (GaAs) technologies, and can address
consumer applications,

� with RF MicroElectroMechanical Systems (RF-MEMS) [11–25], and
� by using functional materials such as ferrites [26–28], ferroelectrics, mainly Barium Strontium

Titanate (BST) capacitors, filters, and phase shifters in thin or thick-film technology [29–44] and
the Microwave Liquid Crystal (MLC) technology beyond optics.

With the emergence and progress of newly developed LC mixtures specifically synthesized
for microwaves since 2002 [45–60], innovative concepts and designs with appropriate biasing
schemes enabled numerous high-performance MLC components and devices in the RF domain,
which fully exploit the microwave LC’s unique properties: various planar delay line, metallic
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and dielectric waveguide phase shifters at different frequencies [45–47,61–84], tunable resonators
and filters [85–99], tunable power dividers and RF switches [80,99–104], tunable metamaterial
structures, frequency-selective and high-impedance surfaces [105–121], and electronically steerable or
reconfigurable antennas, which might be further subdivided into frequency-agile antennas [122–128],
polarizer and polarization-agile antennas [129–133], deflecting gratings and lens antennas [134–140],
mixed beam-switching and beam-steering antennas [141–143], beam-steering reflectarrays [144–157],
leaky-wave antennas [158–164], and beam-steering phased array antennas [68,76,101,128,141,165–179].
These MLC components are discussed in some detail in [2].

In contrast to traditional microwave reconfigurable components with PIN diodes, Field-Effect
Transistor (FET), RF-MEMS, ferrite switches or Monolithic Microwave Integrated Circuits (MMICs),
MLC, and ferroelectric components provide continuous tuning with extremely low power consumption
(quasi powerless), but with different response times. Compared to MLC components with response
times from milliseconds to several tens of seconds (depends on the line topology and biasing scheme),
ferroelectric ones can be tuned extremely fast in the nanosecond range; however, these are accompanied
with much higher dielectric losses above 10 GHz than MLC components.

A first review of the potential of the MLC technology was given in [180] and more specifically
in [181], including material properties and characterization as well as some exemplary examples
of MLC components. A very comprehensive overview on and a comparative review of available
microwave LC materials as well as techniques employed for their characterization and their key
application-relevant properties by incorporating a great number of publications and their results
in this specific field is presented in [182]. An even more comprehensive overview over the MLC
technology with particular details is given in chapter 5 of the book [2], including fundamentals such as
the electromagnetic properties of liquid crystal materials, the elastic continuum theory, orientation
mechanisms, biasing schemes, dedicated wideband and narrowband characterization techniques
over a wide frequency range from few GHz to few THz, concepts, and various approaches to enable
numerous MLC components given above.

The objective of this paper is to review the fundamentals and progress of the MLC technology,
dedicated to the deployment of MLC phase shifters and passive phased arrays (a specific type of
ESAs), starting from well-known toward innovative concepts with the newest results. Therefore,
the next section focuses on the performance metric of microwave Liquid Crystals (LCs), the orientation
mechanisms, the biasing schemes, and the perspective of next generation microwave LCs and their
deployment. Section 3 describes first the concept of passive phased arrays, and then the development of
wideband, high-performance metallic waveguide phase shifters, only partially filled with LC, which are
embedded into a waveguide horn array for a relay satellite in geostationary orbit. Then, continuously
tunable subwavelength fiber, also partially filled with LC and integrated into a fully dielectric 1 × 4
rod antenna array, is briefly summarized at the end of this section. Both metallic and dielectric phase
shifters require high-bias voltages for tuning, accompanied with slow response times in tens of seconds
due to large LC layer heights; however, these are sufficient for some specific applications. Finally,
Section 4 focuses first on well-known planar inverted microstrip line and grounded CPW phase shifters,
then, introducing innovative concepts for flat passive beam-steering phased array antennas, comprising
LC-tunable phase shifter stacks with thin LC varactors for fast tuning in the range of 30 ms for 400◦

phase shift. These stacks are fabricated in a Liquid Crystal Display (LCD) process in partnership with
a display manufacturing company for producing and commercializing cost-efficient large-scale ESAs
that are well suited for satellite ground and user terminals, but also for 5G mm-wave systems.

2. Microwave Liquid Crystal Technology

In the last two decades, novel nematic LC mixtures have been specifically synthesized for
microwaves. These anisotropic microwave Liquid Crystals (LCs) feature tunability in relative permittivityτLC
of about 25–30% with low dielectric losses in the range of tanδ ≈ 10−2 to 10−3 above 10 GHz, decreasing
slightly with frequency, which is different to all other materials above. Moreover, several radiation
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tests of these novel nematic LC mixtures for space qualification, including a total dose test, indicated
no influence of radiation to microwave LCs [92,165,183]. Hence, they are also feasible for space
applications. Moreover, these MLC components exhibit low frequency dispersion and extremely linear
operation [184–186], i.e., very high power-handling capability. However, in contrast to traditional
reconfigurable microwave components made of semiconductor materials, RF-MEMS, or ferroelectrics,
MLC components might face some difficulties. (1) Due to their anisotropic nature, the orientation of
LC molecules controlled by means of an electrostatic field might cause critical response times and
might require complex biasing electrode networks. (2) Since LC is a fluid, it has to be infiltrated after
processing via very small filling holes into some encapsulated packages such as flat panels for phased
and reflect arrays or into long closed/sealed channels with respect to the wavelengths as for delay lines
or into small cavities as for filters. This might complicate the preparation of the MLC components,
but not necessarily when standard processes can be established such as the multi-layer low-temperature
co-fired ceramic (LTCC) [167,187] or the Liquid Crystal Display (LCD) technology [188]. During the
experimental phase, it might be even beneficial, since the LC already being filled into a component
can be exchanged by another one later for improvement or comparison. So far, it allows flexible
handling. Thus, MLC technology definitely enables a low-cost, robust, and reliable mm-wave hardware
solution for the large-scale manufacturing of compact and flat reconfigurable/tunable RF components,
when standard processes such as LTCC or LCD technology can be applied for fabrication.

2.1. Performance Metric of Microwave Liquid Crystals

Liquid Crystals (LCs) are dielectric materials with highly anisotropic characteristics, which can be
grouped into three different mesophases between solid/crystalline and liquid/isotropic states according
to Figure 5. These mesophases can be separated by orientation and positional order into nematic, smetic,
and cholesteric [189–192]. The nematic phase is the most commonly used phase of LCs at microwaves
between the melting point Tm and clearing point Tc. Within this nematic phase, the orientation of
the rod-shaped molecules, which includes a polar group that produces a dipole moment, can be
changed by an external electrostatic field. This results in a highly anisotropic permittivity tensor. At the
macroscopic scale, the time-averaged direction of the molecules’ long axis is denoted by a director

→
n ,

where the permittivity tensor reduces to the one according to Figure 6, due to the molecule’s rotational
symmetry. Some properties of LCs and the elastic continuum theory are given in many books and
publications, e.g., in [2,189–199].
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by the director

→
n ) with order parameter 0 < S < 1 in the nematic phase (middle) and no molecular

ordering with the order parameter S = 0 in liquid state (right).
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Figure 6. Director
→
n parallel to the molecular long axis for a LC unit volume element and

permittivity tensor.

In recent years, there have been many comprehensive studies of various high birefringence LCs,
on their mesogenic and physical–chemical properties such as viscosity, birefringence, permittivity,
anisotropy, and elastic constants, discussing the question of how to obtain LCs with a broad range of
nematic phases. A comprehensive review of LCs dedicated for microwave application is given in [55].
In [48], dielectric properties of LC isothiocyanato–tolane derivatives with fluorine atoms at various
lateral positions are analyzed from 1 kHz to 3 GHz. From the same group, a composition of large
birefringence nematic LC, a eutectic mixture of isothiocyanato–tolane molecules are characterized from
26 to 40 GHz in a coplanar waveguide with an active part made of a central cavity with length = 3 cm
and height = 100 µm similar to a rectangular waveguide to determine the dielectric properties and
compare them with the standard display LC K15 (5CB, cyanobiphenyl) [49].

In [50,51,53,54], systematic investigations were focused on how the dielectric anisotropy in the low
frequency region up to 1 GHz and the birefringence of the nematic LC phase at an optical wavelength
(589 nm) influences the performance of LC mixtures at microwave frequencies. For this, the authors
prepared a wide range of mixtures being nematic at room temperature and containing different
classes of promising compounds. Their quasi-static and frequency-dependent dielectric properties,
their birefringence, and the impact of those properties on their microwave behavior were analyzed
by using the cavity perturbation method in [200,201]. As the measuring setup, several rectangular
waveguide resonator cavities are designed for a TE102-mode at 9, 30, and 38 GHz with small holes to
insert empty and LC-filled PolyTetraFluoroEthylene (PTFE) tubes, respectively. Measurements were
carried out over a temperature range from −25 ◦C to 135 ◦C. External magnets were used to orient the
LC molecules parallel and perpendicular to the RF field. Similar resonator measurements for the precise
small-band characterization of LCs were also carried out in [202–208], whereas wideband measurements
were presented in [46,209–212] by using specifically temperature-controlled coaxial-transmission
line setups, and in [77,213–216] by using some other line or capacitance characterization setups.
Beyond these measurements in the micro- and mm-wave range, low-loss LCs were also characterized
and analyzed at THz frequencies from 0.1 to 0.35 THz with a free-space CW THz system in [217] and
with a THz time-domain spectroscopy setup from 0.15 to 1 THz in [218], from 0.2 to 2.5 THz in [219],
and 0.3 to 1.5 THz in [220], and soon later, from 0.3 to 8 THz in [75].

The MLC technology at TU Darmstadt was established by the first author in 2002 in close
collaboration with the Performance Materials Division of Merck KGaA, Darmstadt. Since then,
Merck synthesized and provided novel nematic LC mixtures with the highest material’s figure-of-merit,
which were characterized over a wide frequency range from few GHz up to 8 THz. Beyond the
lab-scale characterization setups above, a stable temperature-controlled LC-characterization system
sketched in Figure 7 was built up, to measure the complex permittivity of new LCs at 19 and
30 GHz directly in Merck’s laboratory with very high accuracy and perfect reproducibility [56,58,59].
This industrial-scale setup is presented in particular detail in [2,74,75,208]. The design is based on the
cavity perturbation method in [200,201] with several improvements to extract the complex permittivity
tensor by formulating the Maxwell equations as an eigen-susceptibility problem of the considered
sample [221,222] and by applying the variational approach to a triple-mode perturbation method [204].
This offers a direct solution of the desired material parameters by utilizing adequate and well-proven
numerical techniques such as the Finite Element Method (FEM). The unloaded Q of the cylindrical
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aluminum cavity, containing a small amount of LC in a quartz tube, is better than 4200, enabling
detecting very low dielectric loss of LCs in a test. The LC orientation is controlled by means of a static
magnetic field of 0.35 T, which is generated by permanent magnets. Very recently, measurements are
extended to 60 GHz [223].

Crystals 2020, 10, x FOR PEER REVIEW 8 of 56 

 

the cylindrical aluminum cavity, containing a small amount of LC in a quartz tube, is better than 
4200, enabling detecting very low dielectric loss of LCs in a test. The LC orientation is controlled by 
means of a static magnetic field of 0.35 T, which is generated by permanent magnets. Very recently, 
measurements are extended to 60 GHz [223]. 

 
Figure 7. Resonator cavity with coupling iris, where the empty or LC-filled quartz tube is placed in 
the center (left). A dual-mode resonator is shown for both TE111 and TM010 mode to measure the LC 
characteristics parallel and perpendicular to the Radio Frequency (RF) field in a single step only 
(middle), where an example of S21 measurements for empty and filled tubes is illustrated below. An 
industrial-scale temperature-controlled LC-characterization setup with permanent magnets (right). 

Table 1 resume the elastic and electromagnetic properties of a few selected nematic LC mixtures 
at 19 GHz and at room temperature, except for MDA-03-2838 and MDA-03-2844, which are 
characterized at 9 GHz. In addition, three well-known LCs from optics are included: K15 (5CB) as a 
benchmark as well as E7 and BL006, since they have been widely used in many studies also for 
microwave applications. From literature to literature, the values of the parameters in Table 1 might 
slightly vary, generally due to measurement errors, but also because of different characterization 
techniques and equipment being used as well as different environmental factors such as humidity 
and temperature. 

Table 1. Dielectric and elastic properties of different LC mixtures at room temperature. The values 
for 𝐾ଵଵ , 𝐾ଶଶ , and 𝐾ଷଷ  are constants for splay, twist, and bend deformations according to 
[191,192,195], 𝛾௥௢௧ is the rotational viscosity, 𝛥𝜀௥,ଵ௞ு௭ the anisotropy at low frequency, typically at 1 
kHz, and 𝜏௅஼  and 𝜂௅஼  are the material´s tunability and figure-of-merit, respectively. Microwave 
parameters are measured at 19 GHz, except for MDA-03-2838 and MDA-03-2844, which are 
characterized at 9 GHz. 

LC 𝜺𝐫,⏊ 𝐭𝐚𝐧 𝜹⏊ 𝜺𝐫,ǁ 𝐭𝐚𝐧 𝜹ǁ 
Δε 

 
τLC 
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Figure 7. Resonator cavity with coupling iris, where the empty or LC-filled quartz tube is placed
in the center (left). A dual-mode resonator is shown for both TE111 and TM010 mode to measure
the LC characteristics parallel and perpendicular to the Radio Frequency (RF) field in a single step
only (middle), where an example of S21 measurements for empty and filled tubes is illustrated below.
An industrial-scale temperature-controlled LC-characterization setup with permanent magnets (right).

Table 1 resume the elastic and electromagnetic properties of a few selected nematic LC mixtures at
19 GHz and at room temperature, except for MDA-03-2838 and MDA-03-2844, which are characterized
at 9 GHz. In addition, three well-known LCs from optics are included: K15 (5CB) as a benchmark
as well as E7 and BL006, since they have been widely used in many studies also for microwave
applications. From literature to literature, the values of the parameters in Table 1 might slightly vary,
generally due to measurement errors, but also because of different characterization techniques and
equipment being used as well as different environmental factors such as humidity and temperature.

Table 1. Dielectric and elastic properties of different LC mixtures at room temperature. The values for
K11, K22, and K33 are constants for splay, twist, and bend deformations according to [191,192,195], γrot

is the rotational viscosity, ∆εr,1kHz the anisotropy at low frequency, typically at 1 kHz, and τLC and ηLC

are the material’s tunability and figure-of-merit, respectively. Microwave parameters are measured at
19 GHz, except for MDA-03-2838 and MDA-03-2844, which are characterized at 9 GHz.

LC εr,⊥ tanδ⊥ εr,‖ tanδ‖ ∆ε
τLC
(%) ηLC K11 (pN) K22 (pN) K33 (pN) γrot

(Pa·s) ∆ε1 kHz
Tc

(◦C) Ref.

K15 (5CB) 2.7 0.0273 3.1 0.0132 0.4 12.9 4.7 7.0 4.2 13.5 0.126 14.4 38.0 [56]

E7 2.53 0.022 2.98 0.009 0.45 15.1 6.86 10.8 0.254 14.3 58.0 [59]

BL006 2.58 0.0191 3.16 0.0069 0.58 18.4 9.6 16.0 0.569 17.1 118.5 [59]

MDA-03-2838 2.55 0.026 3.68 0.008 1.13 30.7 11.8 [186]

MDA-03-2844 2.4 0.021 3.4 0.007 1.0 29.4 14.0 [186]

GT3-23001 2.41 0.0141 3.18 0.0037 0.77 24.2 17.2 24.0 14.0 34.5 0.727 4.0 173.5 [59]

GT5-26001 2.39 0.007 3.27 0.0022 0.88 26.9 38.4 12.0 41.9 1.958 1.0 146.0 [75]

GT5-28004 2.40 0.0043 3.32 0.0014 0.92 27.7 64.4 11.8 52.9 5.953 0.8 151.0 [75]

TUD-566 2.41 0.006 3.34 0.0027 0.93 27.8 46.4 13.0 8.0 48.0 2.100 1.0 105.5 [75]

GT7-29001 2.46 0.0116 3.53 0.0064 1.07 30.3 26.1 14.5 18.0 0.307 22.1 124.0 [59]

The results of many more LC mixtures at different frequencies are summarized in [182]. In general,
all microwave LCs offer low dielectric constants in both principal directions, typically in the range
of 2.4 to 2.6 for perpendicular orientation and 2.9 and 3.5 for parallel orientation of the director

→
n ,

thus satisfying low permittivity requirements. Loss tangents are typically tanδ ≤ 0.015. The following
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performance parameters are directly derived from the measured electromagnetic quantities, the
anisotropy and tunability in relative permittivity, as well as the material’s figure-of-merit:

∆ε = εr,‖ − εr,⊥ (1)

τLC =
∆ε
εr,‖

(2)

ηLC =
τLC

tan δmax
(3)

Compared to standard display mixtures K15, E7, and BL006, Merck’s first-generation LC
compounds such as the GT3 series, having a long conjugation body with biphenyl or terphenyl
structure, exhibit already much higher anisotropy, tunability, and figure-of-merit of the materials.
This has even been improved by Merck’s second-generation LC mixtures such as the GT5 series and
TUD-566, which use single classes, including bistolane and other novel components with triple bonding
in between. With these LC’s, tunability τLC is more than doubled and the material’s figure-of-merit ηLC
is increased by factor 9 to 13 compared to standard LC K15, where to the author’s knowledge, ηLC of
46 to 64 are the highest values reported so far at microwaves. However, the tuning speed or response
time are much slower than for K15 and the first-generation LCs, as can be seen from Figure 8.
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Figure 8. Switch-off response time of a parallel-plate capacitor cell filled with LCs from Table 1 versus
the LC layer height up to 5 µm (left) and up to 140 µm (right). The curves for TUD-566 and GT5-26001
are nearly identical. The lower plot is a zoom out.

2.2. Orientation Mechanisms and Biasing Schemes

Actually, the response time is the most critical parameter for tunable LC components, which is
defined as the time interval required to reach an equilibrium state of LC devices [74,143,175,185,189,
191,192,196,199]. This will be explained for an LC-filled parallel-plate capacitor according to Figure 9a,
using the basic or hybrid biasing scheme, which is known from LCDs.
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Figure 9. (a) Basic or hybrid biasing scheme of a parallel-plate capacitor filled with LC of a layer
height hLC. An alignment layer on the plates is assumed to pre-align the LC molecules initially in
parallel to the surface (left). When bias voltage Vb > Vth is applied on the plates of the capacitor, the
tube-like LC directors

→
n start to change its orientation from the initial state slowly toward the field

lines of the electrostatic bias field
→

Eb (three pictures in the middle). For Vb = Vsat, LC directors
→
n are

almost in parallel to the field
→

Eb (picture 5 from the left). (b) Fully or all-electrical biasing scheme for
a parallel-plate capacitor without any pre-alignment layer by introducing a second pair of electrode,
orthogonal to the plates of the capacitor cell.

To make use of the LC’s anisotropic nature, the orientation of the LC molecules must be controlled
by means of electrostatic fields between the two plates (pair of electrodes) of the capacitor. Similar to
LCDs, additional alignment layers are used, e.g., they are made of a spin-coated, cured polyimide film
such as Nylon 6, having a thickness typically in between 50 and 100 nm, which is mechanically rubbed
with a velvet cloth [185]. The result of this rubbing is a microscopic grooving of the polyimide surface,
which anchors the LC molecules in the vicinity of this thin layer along the rubbing direction in parallel
to the surface, according to Figure 10.
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of the grooves being rubbed into the polyimide film with a velvet cloth.

Accompanied with the tendency of LC molecules to align in parallel to each other, this concept can
be principally used for pre-orientation of the LC molecules in a preferred direction. This pre-alignment
layer is particularly useful in thin planar structures with LC layer heights hLC < 150µm, since with higher
layers, more LC molecules are no longer in parallel to the surface, because of decreasing anchoring forces,
reducing the orientation effectiveness. The effect of alignment layers—their thickness, orientation, and
deepness of the grooves—on an LC device’s tuning effectivity is analyzed in [2,74,175,185,224].

When a bias voltage Vb (AC typically at 1 kHz) is applied on the plates of the capacitor in Figure 9a,
exceeding a certain threshold voltage Vb > Vth, the LC directors

→
n start to change their orientation from

the initial state parallel to the grooves of the alignment layers toward the field lines of the electrostatic

bias field
→

Eb. This threshold phenomenon is well-known as a Fréedericksz transition [185,191,192,199],
which defines the voltage where the electric and elastic forces of the surface anchoring are in an
equilibrium. In thin planar structures, the splay deformation is dominant, resulting in a threshold
voltage of

Vth = EthhLC = π

√
K11

ε0∆εr,1kHz
(4)
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Hence, it is proportional to the square root of the elastic constant for the splay deformation K11

over the anisotropy ∆εr,1kHz at the biasing frequency. It differs for the various LC mixtures of Table 1,
which are typically around 1 V. With Vb > Vth, the electric torques are exceeding the elastic ones,
and the orientation of most LC directors

→
n starts to align more and more toward the orientation of

the field lines of
→

Eb (see the three pictures in the middle of Figure 9a), until nearly all LC directors
→
n

are oriented along the field lines for Vb = Vsat. Beyond this saturation state Vb > Vsat, no change in
permittivity can be observed anymore.

When a RF field
→

ERF is applied at the parallel plate capacitor, it will experience different relative
permittivities ε, and of course, different dielectric losses tanδ, depending on the changing orientation

of the LC directors
→
n with respect to the fixed orientation of the RF field vector

→

ERF, which is vertical

polarized as the tuning field
→

Eb in Figure 9a, since both are not decoupled. Initially, when no bias
voltage is applied between both plates, the LC directors

→
n are oriented in parallel to the surfaces,

i.e., by default, they are perpendicularly aligned to the RF field
→

ERF. Hence, the RF field experiences
a relative permittivity of εr,⊥ and loss tangent tanδ⊥. With increasing biasing voltage, LC directors
→
n starts to align more and more toward the orientation of the field lines of

→

Eb, i.e., in parallel to
→

ERF.

Hence,
→

ERF experiences a material’s effective relative permittivity, which varies from εr,⊥ continuously
toward εr,‖, which is accompanied by a change in the loss tangent from tanδ⊥; toward tan δ‖ (see also
Figure 16 for a tunable inverted microstrip line). Thus, varying εr by changing the orientation of

LC directors
→
n due to the bias field

→

Eb, the capacitance of the parallel plate capacitor can be tuned,
building up a tunable LC varactor.

The time it takes to change from εr,⊥ to εr,‖ by applying a fast voltage source from Vb = 0 V to
Vb > Vsat is the rise or switch-on response time.

τon ∝
γrot

ε0∆εr,1kHz

(
E2

b − E2
th

) =
γroth2

LC

K11π2
(

V2
b

V2
th
− 1

) =
τoff(

V2
b

V2
th
− 1

) → T10
90 (5)

When the bias voltage is released, the LC directors
→
n (in parallel to

→

ERF) are going back to the

initial state in parallel to the alignment layers (perpendicular to
→

ERF) by means of the surface anchoring
forces. Hence, the time it takes to change from εr,‖ to εr,⊥ is the decay or switch-off response time.

τoff ∝
γrot

ε0∆εr,1kHzE2
th

=
γrot·h2

LC

ε0∆εr,1kHz·V2
th

=
γroth2

LC

K11π2 → T90
10. (6)

The switch-on response time τon according to Equation (5) is always much faster by
1/{[Vb/Vth]

2
− 1} than the switch-off response time τoff according to Equation (6), since it is driven

by the voltage Vb < Vsat, which is much stronger than the low anchoring forces to reorient the LC
molecules back into the initial state after releasing the voltage. Therefore, the switch-off response
time is the most critical parameter for tunable LC devices. It is plotted in Figure 8 for most LCs in
Table 1 versus the effective LC layer height hLC, where it is getting obvious that the simple hybrid
biasing concept is only feasible for low profile (thin, flat), planar structures with hLC ≤ 5 µm to achieve
switch-off response times τoff < 100 ms for some LCs, and at the same time, control voltages Vb < 10 V.
With increasing effective LC layer height hLC, the control voltage will increase up to a few tens of volts,
and particularly, the switch-off response time will increase, e.g., up to about 30 s for hLC ≈ 100 µm,
which might be still feasible for portable applications, just to reconfigure the characteristics such as the
antenna beam or for slow-moving applications such as for a relay GEO satellite to track LEO satellites,
but this will be impractical for on-the-move applications, e.g., to track the signal from a satellite by a
moving car, ship, train, or airplane. Hence, the effective LC layer thickness hLC is a decisive design
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parameter to reduce the control voltage and the switch-off response time. However, the decreasing LC
layer thickness is limited in planar line topologies, because of the increasing metallic losses and 50 Ω
impedance mismatch; e.g., a typical 50 Ω design of a microstrip delay line (see Section 4.1) would be of
an effective LC layer height of 60 to 100 µm and a width of the signal electrode of 100 to 200 µm to avoid
increasing metallic losses, which exceeds the dielectric one [74]. Hence, high performances combined
with fast switch-off response times is not possible to achieve at the same time for standard planar
line topologies. Here, innovative concepts are required to overcome these problems. A promising
solution is the loaded-line concept, where lines are periodically loaded by very thin, fast-tuned LC
varactors with hLC < 5 µm [175,185,225–228]. Figure 11 exhibits the side view of such a LC varactor,
presenting two capacitors in series. Floating top and bottom electrodes are processed on 700 µm thick
fused silica substrate, respectively. After applying a polyimide film to both substrates to pre-align the
LC molecules, they are glued together. Two such varactors with different geometry, both filled with
GT3-23001, had been realized and characterized in [225,226]:

â Var1 with w = 1000 µm, ` = 450 µm, hLC ≈ 5 µm, C = 0.95 pF, fR = 7 GHz, τon = 22 ms,
τoff = 92 ms and

â Var2 with w = 300 µm, ` = 225 µm, hLC ≈ 1 µm, C = 0.8 pF, fR = 7.5 GHz, τon = 1 ms, τoff = 4 ms,

where the response times measured for hLC of about 1 µm and 5 µm, respectively, clearly follow
the square law. Taking into account some uncertainty in the determination of the exact rotational
viscosity γrot, elastic constant K11, and in particular, LC layer height hLC, the values for τoff above agree
well with the one from Equation (6) of 3.2 ms and 80 ms for a thin LC capacitor of 1 µm and 5 µm
height for GT3.
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Figure 11. Schematic of an LC varactor with a floating top electrode and bottom electrodes, forming
the two plates of the capacitor with distance hLC, where later LC is filled in.

Beyond hLC > 100 µm, the hybrid biasing concept is not feasible at all, not only because of
the dramatic increase in response times, but also because tunability decreases with increasing hLC,
since more and more LC molecules are not perfectly pre-aligned in parallel to the surface due to lower
anchoring forces. Hence, for bulky or “thick” voluminous metallic or dielectric waveguide-based
components with LC layer heights of several hundred of µm or even of few mm, only a fully- or
all-electrical biasing scheme is sensible, using multiple pairs of electrodes without any pre-alignment
layer. For the LC-filled capacitor, it would be by introducing a second pair of electrodes (e.g., made of
very thin Indium–Tin–Oxide (ITO) material), orthogonal to the parallel plates of the capacitor in
Figure 9b. In this case, a voltage is applied on the second pair of electrodes after releasing the voltage
on the first one, forcing the re-orientation of the LC molecules toward the perpendicular direction

to
→

ERF. This reduces the switch-off response time to change from εr,‖ to εr,⊥ significantly, since it is
now driven by τoff,V = τoff/{[Vb/Vth]

2
− 1} according to Equation (5) for τon and not by the weak

alignment layer forces, taking into account the horizontal effective LC layer thickness hLC in Figure 9b.
Moreover, the voltage-driven response time can be further accelerated by overshooting with higher
applied voltages for a very short time [74].

2.3. Software Design Tool for MLC Devices

A major objective in designing MLC components/devices is to maximize the material’s tunability,
i.e., to achieve a high tuning effectivity ∆τϕ = τϕ(Vsat)− τϕ(0), where τϕ(0) is the orientation effectivity
of a device in the unbiased state Vb = 0 and τϕ(Vsat) is the orientation effectivity in the fully biased
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state beyond saturation Vb > Vsat. Hence, ∆τϕ describes quantitatively how much of the material’s
tunability can be utilized by a proposed device layout, e.g., to optimize the tuning capacitance range of
a specific LC varactor or to maximize the differential phase shift of a certain phase shifter topology.

E.g., for the capacitor in Figure 9a, where only pre-alignment by means of surface anchoring
is active, the optimum τϕ(0) = 0 would be achieved when all LC molecules are perpendicular to
the RF field lines, whereas not all LC molecules can be tuned in parallel to the RF field for fully
biasing with Vb > Vsat, leading to an orientation effectivity τϕ(Vsat) < 1, and thus to a tuning effectivity
∆τϕ < 1. Hence, for the design and investigation generally of arbitrary microwave structures, including
LC-based varactors, phase shifters, filters, polarizers, etc., an in-house software tool “SimLCwg” has
been implemented at TU Darmstadt [74,229,230], combining

• the finite difference method for static fields to simulate the director dynamics and
• the finite difference frequency domain method for a full RF wave simulation.

The flow chart of this software tool is given in Figure 12.
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Figure 12. Flow chart of the in-house software tool “SimLCwg”, combining the finite difference method
for static fields to simulate the director dynamics and the finite difference frequency domain method
for a full RF wave simulation [74,229,230].
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It allows a physical insight and systematic analysis of MLC-based structures in dependence of
the LC’s properties, the alignment layers, and their orientation, as well as the design parameters,
e.g., in terms of the tuning effectivity ∆τϕ and how to improve it, in terms of orientation effectivity
τϕ(Vb) over time and its response times τon and τoff [74,175,231,232].

2.4. Next Generation of Microwave Liquid Crystals for Electronically Steerable Antennas

Beside the strong dependents of the response times on the effective LC layer height hLC, i.e., on
the chosen device’s topology and biasing concept, it also depends very much on the elastic properties
(the rotational viscosityγrot and the elastic constant K11 for the splay deformation) of the material itself as
obvious from Figure 8, since the switch-off response time for the various LCs differ significantly. E.g., for
the LC capacitor cell with a height hLC of 1, 2, 4, 5 µm filled with Merck’s first and second-generation
LCs, τoff is 3.1, 12.3, 49.1, 76.7 and 16.4, 65.5, 261.9, 409.2 ms for GT3-23001 and TUD-566, respectively,
compared to 1.8, 7.2, 29.2, 45.6 ms for the benchmark LC K15.

In general, Figure 8 implies relatively slow switch-off response times compared to a fast shift
of the ion from and back to the lattice center of a 1 to 5 µm thick ferroelectric capacitor, which is at
least in the ns range. However, this sloth of nematic LCs implies excellent linear behavior [184–186].
To enable faster relaxation of the LC molecules, special classes of LC materials have been investigated
such as polymer-stabilized nematic LCs [72,233,234], porous PTFE membranes impregnated with
LC [185,235,236], nematic LCs doped with nanoparticles [51,185,237–240], ferroelectric LCs [51,241,242],
ferroelectric LC mixtures doped with carbon nanotubes [243], BaTiO3 nanoparticles suspended in a
ferroelectric LC mixture [244] and dual-frequency LCs [51,62,186,245]. This can improve the response
time by one up to two orders of magnitude compared to pure nematic LCs. E.g., the phase shift
response time could be reduced from more than 1 s down to 33 ms for a microstrip line phase shifter
with a 100 µm thick membrane impregnated LC layer [235] or from about 20 s down to less than 0.4 s
in an ITO glass cell and from 80 s down to 2 s in a CoPlanar Waveguide (CPW)-type phase shifter by
using a polymer-stabilized nematic LC [72]. However, this improvement in response time is usually at
the expense of much higher dielectric losses or lower anisotropy. Moreover, it often requires larger
driving voltages for components with the same thickness. Therefore, despite a slower response time,
research on nematic LCs is going on, since there is still room for improvements in the performance
metrics in terms of tunability, the material’s figure-of-merit, and response time, where the overall
performance metric can be tailored to match the requirements of a specific application.

Thus, some groups are developing LC materials of the third generation, focusing on a high
tunability class, still with low losses. Thus, the systematic investigations in [50,51,53,54] have been
updated in [60] with newly developed LC compositions with large optical anisotropy and low melting
point on the basis of synthesized quaterphenyl and quinquiphenyl LC compounds, containing lateral
substituents. Some selected four-ring compounds have a low melting point of less than 70 ◦C and
exhibit large anisotropy ∆ε ≈ 1.12 to 1.34, which is accompanied by low maximum loss tangent
max(tan δ) ≈ 0.002 to 0.006 at 29 GHz. However, the elastic properties, and hence, the switch-off

response times, are not given there.
Merck too, developed LC materials of the third generation [58,59]. These are subdivided into a

low-loss material class and a high tunability class with a substantially improved tunability of more
than 30%. An example is GT7-29001 in Table 1 with a high anisotropy ∆ε = 1.07 and high tunability τLC
= 30.3%, but a moderate material’s figure-of-merit ηLC = 26.1; however, it does exhibit a fast response
time τoff = 2.1, 8.6, 34.3, 53.6 ms for hLC = 1, 2, 4, 5 µm height, respectively, similar to the standard LC
K15 (see Figure 8). Beyond microwave properties, parameter improvements related to the usage of LC
in a real product aim (1) to increase the temperature range, (2) to reduce the tuning voltage, and (3) to
increase the switch-off response time [58,59].

(1.) Important improvements have been made to the low-temperature stability of the third generation
of mixture classes by lowering the crystallization temperature Tc down to below −20 ◦C and
−30 ◦C, respectively.
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(2.) The dielectric anisotropy at low frequencies ∆ε1 kHz could be increased significantly to values of
10 to 20 and above, leading to much lower threshold voltages, and hence, lower tuning voltages.

(3.) Response times are proportional to the rotational viscosity. This parameter has been decreased
to around 0.3 Pa·s for the third-generation LCs compared to 2100 Pa·s for second-generation
LC TUD-566, thus enabling considerable improvements in response time, as can be seen from
Figure 8.

These improved performance metrics of the third-generation LC mixtures combined with the
parallel progress in the processing, manufacturing, and assembly technology will bring MLC-based
components and devices, in particular passive LC-based antenna technology, a step closer toward
becoming a part of the ground and user terminals of future LEO/MEO-satellite constellations and hubs
of 5G mm-wave systems. A comprehensive survey of commercial mm-wave phased array companies
focused on SATCOM and 5G applications is given in [2,246,247].

Thus, Kymeta has demonstrated a flat LC-metamaterial surface antenna in a satellite communication
setup [248–251], where a first lab-scale demonstrator was already presented in 2010 by Damm et al. [158].
ALCAN Systems also demonstrated recently a first flat passive beam-steering phased array antenna
with an LC-tunable phase shifter stack [252–256]. Both antennas have been fabricated in a partnership
with display manufacturing companies for producing and commercializing cost-efficient large-scale
Electronically Steerable Antennas (ESAs). All of them aim for low-profile and light ESAs with a
modular concept to be scaled to any requirement and a thickness of a few centimeters only. Moreover,
all work on the form factor of their ESAs, for compact stand-alone terminals with aesthetic appearance
and to integrate them smartly or nearly seamlessly into the structure or body of a carrier object such as
into the skin of an airplane or into the rooftop of a vehicle.

3. Passive Phased Arrays with Integrated Metallic and Dielectric Waveguide Phase Shifters

Phased arrays are most common, where the first phased array transmission was originally shown
in 1905 by Nobel laureate Karl Ferdinand Braun, who demonstrated enhanced transmission of radio
waves in one direction. Figure 13 sketches an electronic steerable antenna array, receiving an arbitrary
incident plane wave from a satellite, which leads to a time delay of τ = ∆/c0 = (d/c0)· cos(Θ) from
one radiating element to the next one, where d is the distance between adjacent radiating elements and
c0 is the speed of light. This results in a differential phase shift along the equally spaced array with
respect to the first radiating element of ξn =

∑N
n=1(n− 1)·k·d· cos(Θ), where N = 4 is the total number

of elements in our example.
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Therefore, the hardware implementation of Electronically Steerable Antennas (ESAs) in the analog
domain requires by default tunable phase shifters with a differential phase shift of up to 360◦ beneath
each radiating element of an array with a limited size of about λ0/2 × λ0/2 (λ0 is the wavelength in free
space), and in addition, variable gain amplifiers when beam-forming is desired. By adjusting the right
phase shift αn =

∑N
n=1(N − n)·k·d· cos(Θ) of each radiating element (large to low from right to left),

all their small signals are summed up properly in the feeding network to a provide maximum signal.

Sreceived =
N∑

n=1

Sn·e j{αn+(n−1)·k·d· cos (Θ)} =
N∑

n=1

Sn·e j(N−1)·k·d· cos (Θ) (7)

This signal is being further proceed in the receiver (1) by frequency-down and analog-digital
conversion, and (2) in the digital baseband. As a result of reciprocity, the same array can be used
in the transmit mode, too. Then, the signal from the transmitter is first distributed equally by the
feeding network to the phase shifter. By the proper electronic change of the relative phase of the small
signal that each antenna element transmits, their overall contribution in the far field creates a larger
focused beam in a particular direction. This beam can be directed instantaneously in any direction by
fully electronic control, and hence, track the movement, e.g., of any satellite, no matter how or where
you move, without the need for any mechanical moving parts. The gain and HPBW of an ESA are
proportional and inversely proportional to the number of radiating elements.

A 16 × 16 horn antenna array is exemplary shown in Figure 14 for a relay satellite in geostationary
orbit, which will be discussed in Section 3.2. It consists of circular horns and a three-dimensional
feeding network in rectangular waveguide topology because of its intrinsically low loss. Beam-steering
capability is achieved with a plug-in solution of a partially LC-filled waveguide phase shifter
(see Section 3.1) between horns and the feeding network.
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Figure 14. Example of a 16 × 16 horn antenna array for a GEostationary Orbit (GEO) relay satellite.
Beam-steering can be achieved by a plug-in solution of a partially LC-filled waveguide phase shifter
(middle) between horns (left) and the feeding network (right). At both ends of the phase shifter section,
there is a taper section to reduce reflections.

The key element of such phased arrays are the phase shifters, which can be realized in different
line and waveguide topologies, and where tunability can be achieved by components in different
technologies, as mentioned before. The focus here is on passive phase shifting by using the MLC
technology only. As a measure for the performance of phase shifters, a figure-of-merit is defined by

FoM =
∆ϕmax

ILmax
(8)
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where ∆ϕmax is the maximum differential phase shift and ILmax is the maximum insertion loss in all
tuning states. The insertion losses depend on the topology, material, and operational frequency. The
FoM in dependence on the voltage is [47,74,186]:

FoM(V) = 360
π·1 Np ·

√
εr(V)−

√
εr,⊥

√
εr(V)· tan δLC,max

= 360
π·1 Np ·

1−
√

1−τLC(V)
tan δLC,max

, with τLC(V) =
εr(V)−εr,⊥
εr(V)

(9)

For the maximal tunability τLC(V = Vsat) = τLC and by using the approximation
√

1− τLC ≈

1− 1
2τLC for small τLC, the maximal possible or optimal FoM is

FoMopt =
180

π·8.686 dB
·

τLC
tan δLC,max

≈ 6.6·ηLC in
◦

/dB (10)

where tan δLC,max is the maximal loss factor of the LC and ηLC is the material’s figure-of-merit.
This equation is only valid by presuming a constant dielectric loss of the LC for all tuning states, while
all other materials are assumed to be loss-free. FoMopt would be 113.5◦/dB, 306.2◦/dB, and 172.3◦/dB
for GT3, TUD-566, and GT7, respectively. In practice, the FoM is typically in the range of 60 to 80%
of FoMopt.

Voltage-controlled MLC-phase shifters are aimed for adjustments and flexible operation, i.e., to
reconfigure their characteristics in operation. The requirements are generally a high FoM or high FoM
per unit length, low power consumption to tune the device, and high power-handling capabilities
with low intermodulation distortion. They can be built up in different topologies, including various
tunable low-profile planar transmission delay lines as well as high-performance metallic and dielectric
waveguides. While planar line topologies are inherently flat and compact, volumetric waveguide-based
structures and devices are bulky, more complex and usually more expensive to implement. However,
the electrical losses of metallic and dielectric waveguide structures, particularly at higher frequencies
f > 30 GHz, are significantly lower than for corresponding planar structures. However, these bulky
structures require complex biasing electrode configurations with higher biasing voltages than planar
structures. Due to their trade-off properties between conventional planar and waveguide structures,
Substrate Integrated Waveguide (SIW) structures have attracted many researchers in recent years.

3.1. High-Performance Metallic Waveguide Phase Shifter

Since metallic waveguides have intrinsically lower metal losses than planar transmission lines,
they will provide higher FoM for the same LC, particularly with higher frequencies. This can be
decisive for applications where limited power is available or where generally high effectivity is required
by handling high power and where its bulky appearance is not critical as for the horn-antenna array in
Figure 14.

The first experiments on an LC-tuned waveguide phase shifter at 30 GHz, using display LCs
BL006 and E7, are presented in [257]. There, a center plane electrode, parallel to the broadside of a

modified section of an WR28 rectangular waveguide applies a static field parallel to
→

ERF, and a pair of

magnets on both small sides of the waveguide apply a static field perpendicular to
→

ERF, providing
a phase shift of a bit more than 100◦ from 60 V to 200 V. The response times by the bias electric and
magnetic fields was given as 0.1 s and typically 2 s, respectively.

An innovative approach in [64] made also use of a WR28 rectangular waveguide, but it was only
partially filled with LC in a Teflon or Rexolite container, which was centered in the waveguide as shown
in Figure 15 (middle), and by tuning the LC phase shifter section with multiple pairs of electrodes on the
top and bottom wall of the waveguide according to Figure 15. It exhibits snapshots for the two extreme
tuning states, where the simulation was carried out with the in-house software tool “SimLCwg” [74,229].

On the left, LC directors are mainly vertical oriented, i.e., in parallel to
→

ERF experiencing εr,‖ and tan δ‖
(left), and on the right, LC directors are mainly horizontally oriented, i.e., in perpendicular to

→

ERF of the
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TE10 mode, which experiences εr,⊥ and tanδ⊥. This purely voltage-driven biasing concept is necessary
to achieve high tuning effectivity and reasonable response times, despite large LC layer heights hLC of
several millimeters, since additional alignment layer forces have nearly no effect anymore. Large hLC
values require also high bias voltages Vb.
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ERF, using a
configuration of three electrode pairs. The values below are given for the LC TUD-566. Reprinted
from [2], Cambridge University Press, 2020.

To improve the performance, the phase shifter section is built up by an LC-filled container in the
center, since the field strength of the TE10 fundamental mode is strongest there, providing high tuning
effectivity. Since εr,‖ > εr,⊥, the RF field will be more concentrated in the center for LC orientation

parallel to
→

ERF (Figure 15 left) than for LC orientation perpendicular to
→

ERF (Figure 15 right). At the
same time, tan δ‖ < tanδ⊥; thus, losses can be nearly equal in both tuning states by the right design,
mainly the width of the container, which was chosen to be 1/7 of the width a of the waveguide. This has
a positive impact in terms of lower average losses and higher differential phase shift, i.e., on higher FoM.

From measurements of a lab-scale demonstrator with a total length ` = 5 cm and a phase shifter
section of 3 cm filled with LC TUD-566 in [64], the FoM was more than 200◦/dB at frequencies around
35 GHz for magnetically biasing and drops down to about 140◦/dB for electrical biasing, due to the
losses of the biasing electrodes processed on a 12 µm thin Mylar foil and because the tuning effectivity
could not fully be exploited as for magnetic biasing. To avoid reflections at the material edges, the LC
container has a taper of 0.5 cm length at each side, while the metallic taper is integrated into the
transition from the feed waveguide to the phase shifter section. For this lab-scale demonstrator [64],
a voltage range of −200 V ≤ Vb ≤ 200 V was chosen, resulting in an internal electric field of almost
Eb = 200 V/mm. The electrical biasing configuration uses five electrodes on each side, where parts
of the electrodes has to be equipped with λ/4-stub lines and stepped impedance low-pass filters to
suppress the coupling of the TE10 mode into stripline modes between the waveguide walls and the
biasing electrodes. The waveguide itself was built up in a split-block design made of brass, in which
the LC container is inserted. The split block has small gaps for the biasing electrodes to be lead out.

This concept has been also proved and demonstrated for W-band frequencies in [67,143].
The reflection is below −10 dB, the insertion loss is below −3 dB, and the differential phase shift
is between 300◦ and 320◦; hence, the FoM is in between 116◦/dB and 148◦/dB from 95 to 105 GHz
for magnetic biasing only, nevertheless revealing the potential of this technology also for W-band
applications. Electrical biasing with electrodes made of chromium and processed on a 20 µm thin
PET film reacts very sensitively on the metal evaporation and photolithography process, causing
microscopic cracks. These processing problems could not be solved sufficiently up to now.
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3.2. Electronic Steerable Horn Antenna Array

For a relay satellite in geostationary orbit, establishing a link between moving low-Earth orbit
satellites and a fixed ground station on Earth according to Figure 1, a light-weight Tx/Rx electronic
beam-steering horn antenna array was aimed to design for down- and uplink in the frequency bands
of 23 to 23.5 GHz and 27 to 27.5 GHz, respectively, within the project Lightweight InterSatellite
Antenna-Electronical Steering (LISA-ES) funded by the German Aerospace Center (DLR) [75,76,176].
The desired scanning range is±11◦, aiming for a phase change rate of at least 5◦/s to track the LEO satellite.
For the final application, a 16× 16 horn antenna array according to Figure 14, i.e., with 256 phase shifters
for one polarization, is aimed to implement into the satellite. To achieve beam-steering capabilities,
partially the LC-filled waveguide phase shifters sketched in Figure 14 aimed to plug into each branch
of the rectangular waveguide feeding network for robustness, reliability, and long lifetime, to each
horn of the array. All components are built up of micro-machined low loss, which was hard plastic
(Rexolite 1422) electroplated with Ag/Cu for minimum weight. The materials used are space approved,
including the LC [75,76,176].

The first experiments in the lab have been carried out with waveguide phase shifters in a
split-block design made of brass [68,69]. To assure single-mode propagation in the LC-filled waveguide,
smaller dimensions of a = 5.5 mm and b = 2.2 mm are used than those for regular waveguides in this
frequency range. The design and measurement results with LC GT5-26001 over a frequency range
from 21 to 35 GHz are given in [68,69]. Over the frequency range from 23 to 27.5 GHz, the matching
is better than −12 dB. Only below 23 GHz does it go up to more than −10 dB. The IL is between −2
and −4.0 dB in this range, which was underestimated in the simulation, because waveguide losses
could not be estimated precisely and the effects of the electrode sheets could not be taken into account
in the simulations. The differential phase shift ∆ϕ is above 450◦ for electrical biasing; hence, the
FoM was about 120◦/dB in the desired frequency range and 130◦/dB in the frequency range of 27 to
32 GHz. The response times of this phase shifter were estimated to be between one and two minutes at
room temperature. Since the phase shifter is designed for a temperature-controlled antenna at 60 ◦C,
improvements in the order of magnitude of 10 to 12 is expected for the response time.

Based on these promising results, a light-weight 4 × 4 horn antenna array prototype with plug-in
LC-based phase shifters is realized for individual measurements [75,76]. Each waveguide phase shifter
with a length of 12 cm consists of an LC-filled Rexolite container, including the biasing electrodes,
which is enclosed by a galvanically deposited silver-primed copper cladding of 0.5 mm thickness,
and additional aluminum flanges with screws with a total weight of 12 g only. For biasing the LC-phase
shifter, custom-built electronics provide up to 513 voltage channels. One provides a fixed voltage pair
of ±164 V, while the other channels are tunable between ±164 V. In this way, each phase shifter can be
individually tuned to a desired differential phase shift. The final outcome of various design iterations
for environmental and RF-performance tests in [76] are as follows. In the frequency range from 23 to
27.5 GHz, reflection is below −13.7 to −18.7 dB in the lower band and below −11.1 to −11.7 dB in the
upper band. The measured maximum differential phase shift is about 450◦ as predicted by simulations.
However, the measured insertion loss varies between −4 and −6 dB in the frequency range above,
and it is larger than expected from simulations. The minimum time for a 360◦ phase change is in
between 16.1 and 138 s, while the maximum phase change rate reaches 5.1◦/s to 45.4◦/s, depending on
the applied voltages. As a consequence, when losses could be reduced, the concept would become a
viable option for the desired application [76].

3.3. Fully Dielectric Beam-Steering Rod-Antenna Array

Very recently, some investigations are also focused on an electrically tunable dielectric delay line
phase shifter, inserting an LC section inside the dielectric core [78,80,82,83,100,177,181]. They offer
low-loss propagation at very high frequencies and potentially low-cost fabrication by using processing
technologies such as 3D printing, injection molding, or milling, since no metallic component is required
for it. Thus, in [83], a continuously tunable subwavelength fiber, partially filled with LC G7 exhibits
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a FoM of about 130◦/dB (with 22◦/mm) in the frequency range from 85 to 110 GHz. Four of them
had been integrated into a fully dielectric 1 × 4 rod antenna array, including the feeding network.
Similar to a metallic waveguide phase shifter, dielectric ones require high voltages above 100 V (up to
200 V), and response times are slow. Thus, the switch-on response time is about 17 s, and the switch-off

response time takes a few minutes. A summary of these new LC-tuned dielectric components such as
filters, phase shifters, RF switches, multi-mode interference power divider networks, arrays, and lenses
is given in [258].

4. Flat-Panel Beam-Steering Antennas with Low-Profile Phase Shifters with Fast Response

Among LC-based devices, the inverted microstrip line (IMSL) topology has been widely studied
because of its relative high performance in the lower mm-wave bands. Moreover, particularly for
ESAs, it enables low-profile phase shifters, which can be placed or integrated beneath any individual
radiating element within an area of about λ0/2 × λ0/2. Even the length for a 360◦-differential phase
shift is more than λ0/2, this is feasible by spiraling/meandering or employing a specific feeding concept
for a straight-line phase shifter or by miniaturization using, e.g., the slow-wave effect. In addition, it is
possible to achieve high performances at mm-waves, combined with low response times, while reducing
the manufacturing cost to an economical price point by using standard LCD processes. Its development
toward the current state will be discussed in the following subsections.

4.1. Low-Profile Planar Inverted Microstrip Line and Grounded Coplanar Waveguide Phase Shifter

An early example of a 4 cm long inverted microstrip line (IMSL) delay line phase shifter filled
with K15 can be found in [259]. It exhibits a FoM < 20◦/dB for the X-band and a response time of
about one second for a LC layer height of hLC = 50 µm and width of the strip line of w = 100 µm.
A similar FoM < 20◦/dB at 20 GHz was achieved in [260] by using a display LC BL-008 filled in an
IMSL phase shifter on a glass substrate, yielding a phase shift of 370◦, accompanied by an insertion
loss of about 20 dB. The width of the strip line was w = 100 µm and the LC layer height hLC = 50 µm.
In [261], two-phase shifter configurations have been studied, using inverted microstrip lines with
two coplanar waveguide accesses, where the active parts are 3 cm and 1.1 cm long, respectively, and
both are 100 µm thick filled with K15. The phase shift at 20 GHz was 61◦ with a bias voltage of up to
20 V, accompanied with an insertion loss roughly between 4 and 5 dB, i.e., an FoM in between 12◦/dB
and 15◦/dB. With the emergence and progress of newly developed LC mixtures, the FoM could be
improved significantly. Thus, with Merck’s first-generation LCs, an FoM of about 110◦/dB at 24 GHz
was already achieved in 2003 with an IMSL phase shifter [45–47]. Since then, various IMSL phase
shifters at different frequencies are presented, e.g., in [65,70,74,77,128,166,173–175,185].

Figure 16 (left) illustrates its assembly: the strip or signal line (top) and ground plane (bottom) are
processed on separated glass carrier substrates with εr,s. The inner sides of these carrier substrates with
the strip line and ground plane, respectively, are covered by thin, rubbed polyimide films (thin blue
lines in Figure 16 center) for pre-alignment of the LC director

→
n . Then, the substrate carrying the signal

electrode is flip-chipped, introducing a cavity in between both substrates with a height hLC fixed by
spacers. Then, this cavity is sealed to prevent a leakage of LC afterwards, when the LC is filled inside
this cavity. This LC has a dielectric constant εr,LC, which varies in between εr,⊥ and εr,‖, depending on
the bias voltage Vb according to Figure 16 (right), where a few values of εr,LC and tan δLC for TUD-566
are indicated for different bias voltages. For electrical tuning, the strip line and the ground plane are
used as biasing electrodes according to the hybrid biasing scheme, as explained before. With the change
of ε(V) due to the bias voltage V, the propagation constant γ(V) ∼

√
µ·ε(V) changes, and hence,

the differential phase shift ∆ϕ(V) ∼ 2π
λ0

{√
ε(0) −

√
ε(V)

}
·` for a certain physical length `.
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Figure 16. Schematic of a tunable LC-filled inverted microstrip line (IMSL), using the hybrid biasing
concept with polyimide films on top of the ground plane and strip line, both processed on a carrier
substrate with εr,s (left). The cross-section illustrates its assembly: strip line (top) and ground plane
(bottom) processed on glass carrier substrates with εr,s, each covered by thin, rubbed polyimide films
(thin blue lines) for the unbiased state Vb = 0 V and a fully biased state Vb > Vsat (center). Permittivity
and loss tangent versus bias voltage Vb (right). The values are given for the LC TUD-566.

A major objective in designing an IMSL phase shifter is to maximize the material’s tunability,
to achieve a high tuning effectivity ∆τϕ, and hence, a high differential phase shift ∆ϕ and FoM.
For example, if a carrier substrate with a significantly higher permittivity compared to the LC is chosen
(εr,s >> εr,LC), the RF field will propagate partially in this substrate instead in the LC section, reducing
the tuning effectivity ∆τϕ, and hence, the FoM. E.g., for εr,s = 2.2, 3.82, 7, and 10, the FoM is about 92,
87, 82, and 78◦/dB at 30 GHz and 110, 106, 93, and 62◦/dB at 100 GHz for an IMSL with w = 200 µm,
s ≈ hLC = 100 µm and hs = 300 µm filled with GT3-23001 [74]. To compensate for the decreasing tuning
effectivity, the length of a line phase shifter could be extended in practice to maintain the desired
differential phase shift; however, this is at the expense of a larger size and higher insertion losses.

Another parameter that might affect the tuning effectivity is the rubbing direction of the polyimide
film, since there are two different pre-orientations of the LC molecules possible: (1) along the
cross-sectional plane and (2) along the propagation direction. This has been analyzed for an IMSL
design with an effective LC layer height of hLC = 100 µm and a width w of the signal electrode
of 200 µm to achieve a line impedance of 50 Ω [74]. Figure 17 shows the simulation results with
the in-house software tool “SimLCwg” for the orientation effectivity τϕ(Vb) of the IMSL filled with
GT3 versus time in seconds after the switch-on and switch-off of the bias voltage for cross-sectional
pre-orientation. The parameter is the biasing voltage Vb from 1 to 15 V. To stress the switch-on and
switch-off processes, there are logarithmically scaled curves specifically for Vb = 4 V, corresponding
with the upper horizontal time axis.
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University Press, 2020.
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In the unbiased state Vb = 0, where only pre-alignment by means of surface anchoring is active,
not all LC molecules are perpendicular to the RF field lines, i.e., the orientation effectivity τϕ(0) > 0,
which is actually around 0.14. In the fully biased state beyond saturation (Vb > Vsat), not all LC
molecules are in parallel to the RF field, leading to an orientation effectivity τϕ = τϕ(Vsat) < 1, which is
actually 0.86 for 15 V. Thus, the tuning effectivity is ∆τϕ = τϕ(Vsat) − τϕ(0) ≈ 0.72 for cross-sectional
pre-orientation. For pre-orientation in the propagation direction, where only the short axis of the LC
directors is effective for the RF field and the biasing field, τϕ(Vsat) is less, but τϕ(0) = 0 is optimum,
leading to a similar tuning effectivity ∆τϕ ≈ 0.72. However, in this case, the tuning effectivity is equal
to the orientation effectivity ∆τϕ = τϕ. To sum up the results in Figure 17, the higher the bias voltage
Vb, the higher the orientation effectivity τϕ(Vb), having its maximum at the saturation voltage Vsat.
Note that the response times approach theoretically infinite for each curve, i.e., for each bias voltage.
Therefore, in practice, it is often defined as the 10 to 90% rise T10

90 and the 90 to 10% decay T90
10 in the

orientation effectivity τϕ(Vb). While the rise time depends very much on the bias voltage, the decay
time is nearly independent. Hence, T10

90 and T90
10 correspond to the switch-on and switch-off response

times in Equations (5) and (6), respectively, and related to that, to the 10 to 90% rise and 90 to 10%
decay in the measured capacitance for LC varactors or differential phase shift for LC phase shifters.

Beside the microwave LC properties, the performance of an MLC-based IMSL phase shifter
depends strongly on its geometry and frequency. Plots to design an IMSL phase shifter are shown
in Figure 18: filled with first-generation LC GT3-23001 (above), second-generation LC TUD-566
(middle) and third-generation LC GT7-29001 (below) at 30 GHz (left) and 60 GHz (right), respectively.
These plots are calculated by using the in-house software tool “SimLCwg” according to the flow chart
of Figure 12, which has been proven as an accurate simulation tool to predict the characteristics
and dynamics of MLC-based structures and components over a wide frequency range in excellent
agreement with microwave measurements in almost all of our investigations. These plots exhibit curves
of the same phase shifter figure-of-merit FoM (full red lines), line impedances ZLine (thin dotted gray
lines), and orientation effectivity τϕ (dashed blue lines), which is equal to the tuning effectivity ∆τϕ for
pre-orientation of the LC in the propagation direction, as a function of the strip line width w (vertical
axis), thickness s (lower horizontal axis), and the 90 to 10% decay time T90

10 (upper horizontal axis),
which corresponds to the switch-off response time and the decay in differential phase shift [74,230].
For a thin strip line of few µm only, the thickness between the substrate and the ground plane is about
the effective LC layer height: s ≈ hLC. With these plots, LC-based IMSL phase shifters can be designed
with desired performances before realization. As the top substrate, fused silica is chosen for simulation,
assuming a height of hs = 300 µm, a relative permittivity of εr,s = 3.82, and a dielectric loss factor of
tan δs = 5·10−5.

For a 50 Ω design, the IMSL phase shifter with an LC layer thickness of hLC = 100 µm requires
a signal electrode of about w = 200 µm. At 30 GHz, the tuning and orientation effectivity is around
∆τϕ = τϕ ≈ 0.72 for GT3 and slightly higher for TUD-566 and GT7, due to the higher anisotropy.
The FoM reaches values of up to 90◦/dB, 142◦/dB, and 132◦/dB for GT3, TUD-566, and GT7, respectively.
The large difference in FoM between TUD-566 and GT3 can be explained by the drastically reduced
dielectric losses of TUD-566; however, this is at the expense of a much longer decay T90

10 of 199 s
compared to 35.2 s, which is due to the much larger ratio of rotational viscosity over the elastic
constant, γrot

K11
= 0.16 compared to 0.03. Similar for GT7, its dielectric loss is lower and its anisotropy

is significantly larger than for GT3, resulting in a higher FoM. However, in contrast to TUD-566,
its ratio of rotational viscosity over the elastic constant is γrot

K11
= 0.02; i.e., it is even lower than for GT3,

resulting in a faster switch-off response time T90
10 of 24.2 s. Hence, the third-generation LC has nearly

the same FoM than the second-generation LC, but it has an 8.2 times faster switch-off response time.
Nevertheless, the response time remains still the critical parameter of the LC-based line phase shifter.
It can be dramatically reduced by a thinner LC layer thickness hLC, which is accompanied with a higher
orientation effectivity τϕ, but at the same time, with steeply increasing impedance mismatch to 50 Ω
and significantly decreasing FoM due to increasing electrical losses. For the same design parameter
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at 60 GHz, the FoM increases, while the response time remains the same. This is mainly because the
electrical losses decrease (despite the

√
f -law), since electrically, the dimensions increase by a factor of

2, and in addition, dielectric losses due to the LCs slightly decrease. Hence, these topologies are well
suited for higher frequencies.
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Figure 18. Plots for designing an IMSL phase shifter filled with first-generation LC GT3-23001 (above),
with second-generation LC TUD-566 (middle) and third-generation LC GT7-29001 (below) for 30 GHz
(left) and 60 GHz (right), respectively. As the top substrate, use is made of fused silica with a
height hs = 300 µm, a relative permittivity of εr,s = 3.82, and a dielectric loss factor of tan δs = 5·10−5.
The electrical conductivity of the metal parts is set to σ = 4·107 S/m. A pre-orientation of the LC
in the propagation direction was chosen. These plots exhibit the curves of a constant phase shifter
figure-of-merit (FoM) (full red lines), orientation effectivity τϕ (dashed blue lines), and line impedance
Zline (dotted gray lines), depending on the strip line width w (vertical axis), the thickness s ≈ hLC

(lower horizontal axis), and the 90 to 10% decay time T90
10 , which corresponds to the switch-off response

time (upper horizontal axis).



Crystals 2020, 10, 514 24 of 56

Another planar topology often used in the literature for LC-tunable phase shifters are grounded
CPWs [66,74,262,263], where the schematic is shown in Figure 19 together with the calculated parameter
plots for GT3 at 30 GHz by using the in-house software tool “SimLCwg” again. Comparing it with
Figure 18 (upper left) indicates that the orientation effectivity τϕ (dashed blue lines) and the phase
shifter figure-of-merit FoM (full red lines) are significantly less than for an IMSL. Therefore, IMSL is
the preferred planar line topology.

Crystals 2020, 10, x FOR PEER REVIEW 24 of 56 

 

 
Figure 19. Plots for designing a grounded CPW phase shifter filled with LC GT3-23001 for 30 GHz 
(right). As substrate, use is made of fused silica. The electrical conductivity of the metal parts is set to 
𝜎 = 4 ∙ 10଻ S/m. These plots exhibit curves of constant phase shifter figure-of-merit (FoM, full red 
lines), orientation effectivity 𝜏ఝ (dashed blue lines), and line impedance 𝑍௅௜௡௘ (dotted gray lines), 
depending on the signal line width 𝑤 (vertical axis) and the thickness 𝑠  hLC (horizontal axis). 

Beside this analysis, some lab-scale demonstrators have been implemented to investigate the 
feasibility. In [45–47,186], two inverted microstrip line-based phase shifters were realized with similar 
geometry, i.e., with a physical length of about 50 mm and LC layer heights of hLC = 230 µm and 254 
µm, respectively, as well as a line width of w = 600 µm, using a polyimide film PI-2555. Both result in 
a FoM of 110°/dB at 24 GHz with a Merck´s first-generation LC, MDA-03-2838, having a material´s 
figure-of-merit 𝜂௅஼11.8. The phase shifters were tuned by a bias voltage of up to 40 V, where 90% of 
the maximal differential phase shift was achieved by less than 20 V. A schematic and the realized 
phase shifter are shown in Figure 20. As substrate material, TMM3 from Rogers Corp. was chosen, 
which has a permittivity of 𝜀୰ = 3.27 and a dielectric loss of tan 𝛿 = 2 ∙ 10ିଷ. The ground electrode 
and the carrier substrate on the top side are separated by a spacer made of RT/Duroid5880 from 
Rogers Corp. with 𝜀୰ = 2.2 and tan 𝛿 = 9 ∙ 10ିସ , forming the LC cavity. Thin polyimide films of 
about 200 to 300 nm thickness was spin coated on both inner surfaces to pre-align the LC molecules. 

    
Figure 20. Realized broadband inverted microstrip line (IMSL) phase shifter for frequencies from 
1.125 up to 35 GHz. Different parts (left) and assembled phase shifter with filling channels (right) 
[47,186]. 

For another IMSL phase shifter with a thinner LC layer height of hLC = 127 µm and line width of 
w = 300 µm for nearly 50 Ω design, using a polyimide film AL-3046, and two LCs, MDA-03-2838 and 
MDA-03-2844, the FoMs reduce to about 67°/dB and 75°/dB, respectively, because of increasing ohmic 
losses with decreasing electrode distances. However, for both, the FoM was nearly constant over a 
frequency range from 20 to 33 GHz. This time, fused silica was used instead of TMM3 [47,186]. 
Compared to GT3 with a FoM of around 100°/dB at 30 GHz according to Figure 18, it is less, due to 
the lower material´s figure-of-merit. At 30 GHz, the measured differential phase shift was 

45W

60

75

30 80 °/dB

70

60

50

0.6

0.55

0.65

0.7

0.8

40

15
0.75

s (µm) 

w
 (

µm
) 

FoM
t!

ZLine

hs = 300 µm

s

Fused Silica

Fused Silica
LC sw

Ground 
Plane Spacer

Line
Top 

Substrate
Bottom
Substrate

Filling Channels

Figure 19. Plots for designing a grounded CPW phase shifter filled with LC GT3-23001 for 30 GHz
(right). As substrate, use is made of fused silica. The electrical conductivity of the metal parts is set to
σ = 4·107 S/m. These plots exhibit curves of constant phase shifter figure-of-merit (FoM, full red lines),
orientation effectivity τϕ (dashed blue lines), and line impedance ZLine (dotted gray lines), depending
on the signal line width w (vertical axis) and the thickness s ≈ hLC (horizontal axis).

Beside this analysis, some lab-scale demonstrators have been implemented to investigate the
feasibility. In [45–47,186], two inverted microstrip line-based phase shifters were realized with similar
geometry, i.e., with a physical length of about 50 mm and LC layer heights of hLC = 230 µm and 254 µm,
respectively, as well as a line width of w = 600 µm, using a polyimide film PI-2555. Both result in
a FoM of 110◦/dB at 24 GHz with a Merck’s first-generation LC, MDA-03-2838, having a material’s
figure-of-merit ηLC ≈ 11.8. The phase shifters were tuned by a bias voltage of up to 40 V, where 90%
of the maximal differential phase shift was achieved by less than 20 V. A schematic and the realized
phase shifter are shown in Figure 20. As substrate material, TMM3 from Rogers Corp. was chosen,
which has a permittivity of εr = 3.27 and a dielectric loss of tan δ = 2·10−3. The ground electrode and
the carrier substrate on the top side are separated by a spacer made of RT/Duroid5880 from Rogers
Corp. with εr = 2.2 and tan δ = 9·10−4, forming the LC cavity. Thin polyimide films of about 200 to
300 nm thickness was spin coated on both inner surfaces to pre-align the LC molecules.
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Figure 20. Realized broadband inverted microstrip line (IMSL) phase shifter for frequencies from 1.125
up to 35 GHz. Different parts (left) and assembled phase shifter with filling channels (right) [47,186].
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For another IMSL phase shifter with a thinner LC layer height of hLC = 127 µm and line width
of w = 300 µm for nearly 50 Ω design, using a polyimide film AL-3046, and two LCs, MDA-03-2838
and MDA-03-2844, the FoMs reduce to about 67◦/dB and 75◦/dB, respectively, because of increasing
ohmic losses with decreasing electrode distances. However, for both, the FoM was nearly constant
over a frequency range from 20 to 33 GHz. This time, fused silica was used instead of TMM3 [47,186].
Compared to GT3 with a FoM of around 100◦/dB at 30 GHz according to Figure 18, it is less, due to the
lower material’s figure-of-merit. At 30 GHz, the measured differential phase shift was ∆ϕmax ≈ 330◦

and 340◦, which was accompanied with insertion losses of ILmax ≈ 5 and 4.5 dB for MDA-03-2838 and
MDA-03-2844, respectively, while the reflection coefficient S11 was less than −10 dB over the whole
frequency range [47,186]. The measured 90 to 10% decay time in the differential phase shift was in the
range of roughly 30 to 50 seconds, which agrees well with the switch-off response times for GT3.

To assess the linearity of the phase shifter, first large-signal measurements at f 0 = 7.4 GHz were
carried out for an IMSL section of 6 cm length; however, seven times meandered. The LC layer
height was hLC = 100 µm filled with the LC MDA-03-2844. The measured reflection coefficient was
|S11| < −21.5 dB and the insertion losses were less than 3.3 dB, leading to a FoM = 40◦/dB [184–186].
The setup used in [184] allows a resolution of IP3 measurements of at least 60 dBm at a total available
power level of approximately 40 dBm to the device under test or P0 = 37 dBm per tone, respectively.
Figure 21 shows the measured IP3 versus the frequency difference ∆f of the two tones at room
temperature and the maximum input power for three device configurations: empty (air), filled with
K15, and MDA-03-2844. The noise floor generated by the sources is at −55 dBc in close proximity
to the tone at 100 Hz and decreases to −80 dBc for distances ∆f >10 kHz. Hence, the IP3 values for
∆f < 1 kHz are only an estimate. For K15 with respect to air, a slightly increased IP3 for a small ∆f is
visible, whereas for MDA-03-2844, it is not visible. This is because the reorientation (response times)
is much slower in reaction to an external stimulation such as the RF beat, despite higher anisotropy.
Generally, the IP3 measurements exhibit excellent large signal characteristics, i.e., an extreme high
linearity for the phase shifter device with both LCs.
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One way of realizing a reliable, hermetically sealed cavity for LC is by using the standard low-cost
multi-layer low-temperature co-fired ceramic (LTCC) technology, which is space qualified. LTCC is
mechanically stable and allows a three-dimensional structuring, using conductivity, resistance, or
capacitive pastes between the layers. Structures on different layers can be connected by vias, and those
vias can also be used to form metallic cavities inside the LTCC structure. By this, a cavity similar to a
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metallic waveguide can be built up inside the LTCC, thus combining high performance with low profile.
After processing the LTCC structure, microwave LC mixtures are filled into these cavities, thus enabling
compact and tunable components such as filters and phase shifters [27,97,103,165–167,183,264–266].
These phase shifters can easily be integrated into an LTCC module together with biasing lines and
electronics for tuning as well as with individual antenna elements to form an array.

In [74], a LTCC delay line phase shifter based on an IMSL topology was investigated, using different
LTCC CT707 layers with εr,CT707 = 6.13 at 30 GHz. For a proof-of-concept and a comparison, the realized
LTCC-IMSL phase shifter was filled with TUD-188 (having similar performance than GT3) and TUD-566.
Matching |S11| is better than −13 dB over the frequency range from 25 to 35 GHz, while the insertion
losses are below 3.5 dB and 4.5 dB, respectively. Measurements of the empty phase shifter indicated
that the insertion losses are dominated by metallic losses, leaving, e.g., for TUD-566 a proportion of
just around 1.3 dB. The maximum differential phase shift rises from about 220, 250◦ to around 300, 350◦

over the above frequency range, while the FoM keeps around 45, 70◦/dB for TUD-188 and TUD-566.
The measured switch-off response times T90

10 are about 33 s and 150 s, respectively, which might be
feasible for portable applications, just to reconfigure the antenna beam, or for slow-moving applications,
but definitely not for on-the-move applications, requiring high beam-scanning rates. To speed up
tuning, the LC layer height hLC has to be decreased significantly, but this means increasing insertion
losses [74,175], i.e., a lower FoM, according to Figure 18. Hence, with the IMSL topology, high FoM
and fast switch-off response times, i.e., fast beam-scanning rates, are not achievable at the same time.

4.2. Fast Tuning Low-Profile Planar Delay Line Phase Shifter

To overcome the response time limitations for on-the-move applications, innovative approaches
and concepts are required for LC-based phase shifters. An early approach in [61] was introduced
with a finline-based phase shifter. Using MDA-03-2838, τon and τoff have been 0.09 s and 14.3 s
compared to 0.035 s and 4.7 s for K15, respectively, measured at 40 GHz. However, these values are
still too slow. Very promising line topologies for fast LC-tunable phase shifters are periodically loaded
lines [74,175,228], e.g., slot lines or microstrip lines with periodically thin overlapping areas filled with
LC, which builds up LC varactors, as sketched in Figure 22.
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Figure 22. Schematic of a serially loaded microstrip delay line with LC varactors, build up by an
overlapping area of an interrupted microstrip line filled with LC.

A very promising approach involves coplanar waveguides loaded with periodically arranged,
very thin LC varactors with heights hLC < 5 µm [72,175,185,225–228]. This provides a significant
reduction in switch-off response times down to less than 35 ms, when third-generation LC-filled
varactors and a standard LCD process are used for production (see Section 4.3). A further advantage is
the possibility of reducing the physical length of LC-based phase shifters due to the slow-wave effect
of those structures. The schematic depiction of this concept is shown in Figure 23.
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If those two segments are electrically short, the overall inductance L′ of the loaded line is approximately
(L′A + L′B)/2 ≈ L′A/2 and the capacitance corresponds to (C′A + C′B)/2 ≈ C′B/2. Therefore, the relation
between the specific capacitance C′ and inductance L′ of a homogeneous line can be decoupled in
favor of a higher tunability by preserving a desired input impedance of the loaded line at the same
time. The complex propagation constant for the entire structure becomes:

γ ≈
√[(

R′A + jωL′A
)
+

(
R′B + jωL′B

)]
·

[(
G′A + jωC′A

)
+

(
G′B + jωC′B

)]
. (11)

It can be evaluated by using the aforementioned simulation tool, treating the dielectric and ohmic
loss mechanisms in each of the line segments independently to calculate R′A/B and G′A/B for each tuning
state, which results in four RF-eigenmode calculations for each section.

A detailed analysis and a proof-of-concept of such CPWs loaded with periodically arranged LC
varactors along the line was first reported in [185,227,228]. The design schematic of a realized unit
element is illustrated in Figure 24 (right), where the dark gray printed patch is a floating electrode
of dimension (wV,1 × LV,1) processed on the top layer and biased by Indium–Tin–Oxide (ITO) strips
of 10 µm width and 30 nm thickness (white colored). On the bottom layer, the CPW with width w
and gap g is processed, where the center line widens to width wc along the length LV,1 beneath the
floating electrode. The relatively large overlapping area of wc × LV,1, where the center line underlies
the floating electrode form the parallel plates of the capacitor with a small height < 5 µm, being filled
later with LC. Moreover, there are also ITO bias lines (gray) on the bottom layer, connecting the center
line and the ground conductors, to assure that the center line is kept on the ground potential for DC
or low AC bias voltages. After having processed the 1 µm thick gold structures (CPW and floating
electrode) on both substrates by a standard lithography process, polyimide films are rubbed on both
processed substrates in propagation direction with a thickness much lower than 100 nm to pre-orient
the LC molecules. Hence, this device is fabricated in a fashion similar to LCDs.

For its realization, fused silica with a height of hs = 700 µm, a relative permittivity of εr,s = 3.82,
and a dielectric loss factor of tan δs = 5·10−5@16 GHz were used as the top and bottom layer, which were
separated by spacers with a diameter of about 5 µm to determine the height of the LC cavity, which was
filled afterwards with TUD-566. Although the whole structure was actually filled with the LC, Segments
A without additional ground plane behave as a standard CPW line, since the thin LC layer is not
affecting its properties significantly. The center conductor width was set to w = 60 µm, while the gap
between the center and adjacent conductors was set to g = 195 µm. The total length ` of the phase
shifter was 12.7 mm. A bias voltage of Vb of up to 60 V is applied via the ITO biasing lines. By this,
the LC can be tuned from the perpendicular pre-orientation to the parallel orientation, using the full
anisotropy. The results of the S-parameter measurements versus frequency are shown in Figure 25.
For a frequency of 20 GHz, more than a 130◦ differential phase shift has been achieved, accompanied
with a ILmax of slightly more than 2 dB, thus obtaining a FoM better than 60◦/dB. Note that since a
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length ` of this loaded line phase shifter of 12.7 mm (≈ 0.85λ0) provides ∆ϕmax > 130◦ at 20 GHz,
a 360◦-phase shifter would be ` ≈ 3.3λ0.
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Figure 24. Design schematic of a realized unit element. Cross-section of CPW Section A (left) and
grounded CPW (varactor) section B (middle), both with the corresponding transmission line parameters
of the proposed structure on the right side [185,227].

Due to its small LC layer height hLC of 4.5 to 5 µm, the measured response time τon is less than
110 ms from zero bias to a fully tuned state, and τoff is now less than 340 ms from the fully tuned state
back to zero, which is significantly faster than for the IMSL with the same LC above. This experimental
value of τoff ≈ 340 ms for the second-generation LC TUD-566 agrees well with the theoretical values of
τoff ≈ 330 to 410 ms for 4.5 to 5 µm of the parallel-plate cell in Figure 8. It is somewhat slower than
those measured for the single varcator of τoff = 92 ms, using the first-generation LC GT3, because of its
lower viscosity.
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Using the aforementioned analysis method with the transmission line parameters R′, L′, G′, and C′

for each Section A and B according to Figure 24, in order to calculate the effective line parameters for an
input impedance around 50 Ohm, the differential phase shift obtained by using TUD-566 is about 124◦

at 20 GHz. The simulated switch-off response time is τoff ≈ 319 ms, which agrees quite well with the
experimental results. However, the resulting FoM of 108◦/dB significantly overestimated the measured
one above, because this analysis method does not deal with the low-pass filter like characteristic of the
structure and the reduction of the Q-factor (reduction of more than 30% at 20 GHz [185]) due to cross
currents and the resulting shunt inductance.

Another practical approach with slightly different unit elements of the periodic structure is
reported in [175] for a loaded-line phase shifter with a total length of ` = 27 mm. It provided similar
results. This time, a low-cost 700 µm thick BF33 glass (εr = 4.53, tan δ = 0.008) is used as the top
and bottom substrate, forming a LC cavity of about 4 µm height filled with TUD-566. According to
Figure 26, these varactors with a relatively large overlapping area of w × LOverlap are built up by metal



Crystals 2020, 10, 514 29 of 56

bridges and the signal line of the CPW. These bridges connect the two ground planes of the CPW
on the bottom substrate by using gold via pillars, creating a small grounded coplanar waveguide
(gCPW) segment with an additional ground plane on the top substrate. For both ends of the bridge,
a trapezoidal geometry was chosen for implementing the vias over a large area to reduce their resistance.
The geometrical parameters are set to w = 50 µm, g = 150 µm, LVia = 240 µm, LOverlap = 200 µm,
wVia = 60 µm, and wTrop = 60 µm. The loaded-line phase shifter, which is built up by 38 identical unit
elements, provides a differential phase shift of ∆ϕmax = 360◦ at the operating frequency of 20 GHz with
a bias voltage of Vb of up to 30 V. By this, the LC can be tuned from the perpendicular pre-orientation
to the parallel orientation, using the full anisotropy. The return loss was less than −20 dB and the
maximum insertion loss was about ILmax < 5.5 dB, thus yielding a FoM of 65◦/dB. The response times
to change the phase of 360◦ is τon = 40 ms and τoff = 260 ms, respectively. It agrees well with τoff of the
parallel-plate cell. The response times could further be reduced by using varactors with a thinner LC
layer and/or a nematic LCs with lower rotational viscosity γrot as for Merck’s third-generation LCs.
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Figure 26. Schematic of a LC varactor build up by a metal bridge on the top substrate (left), connecting
the two ground planes of the CPW by vias and the signal line on the bottom substrate, filled with LC.
Top view (right) [175].

Improved FoMs can be achieved by using a modified strip line arrangement on both layers
according to Figure 27 (upper right) to reduce the shunt inductance of the loaded segments, but allowing
a reduced input impedance. In this case, impedance matching sections are required at both ends for 50
Ω input and output ports. Due to the reduced shunt inductances, this approach provides much better
results than the structure in Figure 24.
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Figure 27. Plots for designing CPW loaded-line structure given in the upper right picture. The varactors
are filled with second-generation LC TUD-566 (upper left) and third-generation LC GT7-29001 (below)
for 30 GHz (left) and 60 GHz (right). As the top and bottom layer, use is made of fused silica with
height hs = 300 µm, relative permittivity of εr,s = 3.82, and a dielectric loss factor of tan δs = 5·10−5.
The electrical conductivity of the metal parts is set to σ = 4·107 S/m. A pre-orientation of the LC in the
propagation direction was chosen. These plots exhibit curves of constant phase shifter figure-of-merit
(FoM, full red lines), orientation effectivity τϕ (dashed blue lines), and line impedance ZLine (dotted
gray lines), depending on the strip line width w (vertical axis) and the distance s ≈ hLC (lower horizontal
axis) between the metallic conductors and the decay time T90

10 (upper horizontal axis).

As mentioned before, the slow-wave effect enables orientation effectivities τϕ greater than one,
which refers to the tunability of a completely filled homogeneous gCPW or parallel plate waveguide.
Here, the propagation constant is determined by the dielectric parameters of the LC. Using a loaded-line
topology, the effective propagation constant can be increased by using proper L′A and C′B as independent
design parameters. In order to achieve the same phase shift, the reduction in the required phase shifter
length goes up to a factor of four for very thin layers and wide strip lines, as depicted in Figure 27.
The plots show that the FoM is almost constant over the distance s between the conductors, which
is slightly less than the effective LC layer height hLC, depending on the conductor thickness. Thus,
for a width w = 200 µm, FoMs of about 130 and 115◦/dB can be achieved using TUD-566 and GT7 at
30 GHz, respectively, and 138◦/dB with GT7 at 60 GHz. As expected, the decay time for this modified
loaded-line topology filled with GT7 is much faster than that with TUD-566. It is in the range of 10
to 35 ms for s = 2 to 4 µm. Note that the decay time given on the top axis is slightly different to the
switch-off response time derived from the parallel capacitor cell in Figure 8, because the effective LC
layer height hLC is a bit larger than s. For a wider width w, the FoM increases, but the line impedances
decrease. Analogous to the analysis with the IMSL in Figure 18, the FoM is always better for the same
design parameter at 60 GHz than for at 30 GHz.

As already mentioned, important requirements for phase shifters implemented in electrically
steerable planar phased array antennas is the provision of a 360◦ differential phase shift and an overall
size not exceeding λ0/2 × λ0/2 to fit behind a single antenna element. Even the length ` of a 360◦-phase
shifter exceeds λ0/2, it can be meandered or spiraled within this squared area. However, each bend of a
line could cause additional losses. Therefore, a straight delay line phase shifter is always a preferred
solution. This might be achieved by utilizing (1) phase shifters with less differential phase shift,
i.e., physical length, or (2) by using the slow-wave effect as above, by which the phase velocity of the
line can be reduced to miniaturize it by factor of two to five.

First, a 90◦-phase shifter with reduced length compared to a 360◦-phase shifter was used in
combination with a MEMS switch at the end, as shown in Figure 28, which means a 0◦ or 180◦ phase
shift of the reflected wave for OPEN or SHORT of the MEMS switch. Hence, this reflection-type phase
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shifter requires a 90◦ tunable delay line only to tune the overall phase shift continuously between 0◦

and 360◦. In order to reduce the response time at the same time, this reflection-type phase shifter uses
the loaded-line concept in Figure 24 with an LC layer height in between 4.5 and 5 µm.
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Figure 28. Principle of the reflection-type phase shifter with a 90◦-loaded line phase shifter and a
MicroElectroMechanical Systems (MEMS) switch at the end [267,268].

This concept was proposed for the first time in [267,268] and realized in the W-band. The CPW line
was processed on a 300 µm thick fused silica substrate, where the ground planes are made of a 5 µm
thick gold layer, while the signal line is made of a 600 nm thick multi-metal Ti–TiN–Al–Ti–TiN layer
with a 150 nm thick gold layer on top, creating a floating metal bridge. To realize the moveable bridge,
and thus to form the thin LC cavity, photoresist was deposited above and around this multi-metal
gold layer, before the gold parts such as the bridge, the pillars, or the grounds have been processed by
using an electroplating process. Finally, the photoresist has been removed by using oxygen plasma.
The LC has been filled under the MEMS bridges by using a micro-injector, which was kept in due to the
capillary forces. The results of the S-parameter measurements of this loaded-line phase shifter in MEMS
technology filled with GT3-23001 in the frequency range from 65 up to 95 GHz have been [267,268]:
Matching is better than −15 dB, the maximum differential phase shift ∆ϕmax goes up from 100◦ to 240◦,
while the maximum ILmax varies between −2 and −4 dB. This results in a FoM between 40◦/dB and
60◦/dB. The maximum biasing voltage was set to Vb = 40 V.

Investigations of the transient behavior of this loaded-line phase shifter in MEMS technology is
shown in Figure 29, where the rise and decay of the measured differential phase shift with respect to its
maximum ∆ϕ

∆ϕmax
in % at 77 GHz is plotted versus time t in ms for different temperatures. Meanwhile,

the measured rise time (for 10 to 90% in ∆ϕ
∆ϕmax

) is sparsely dependent on temperature and less than
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) changes significantly

with temperature: T90
10 = 136, 69, 37, 17, 11, 7 and 5.2 ms for 10, 23, 30, 40, 50, 70, and 90 ◦C, respectively.

The value at room temperature agrees well with τoff = 62 to 77 ms for GT3-23001 in Figure 8 for hLC in
between 4.5 and 5 µm.
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Based on measurements of the reflection-type phase shifter with an MEMS switch at the end,

the rise time and decay time were modeled in [268] by taking the following formulas: T10
90 =

t (ms)
t (ms)+0.2

and T90
10 = 2.96

t (ms)+2.96 , respectively. The last one reveals 0.33 ms and 26.64 ms for the 90% and 10%
values, respectively. Both formulas were taken for the phase change rate of the phase shifter to simulate
the beam-scanning duration of a phased array and reflectarray at 77 GHz, consisting of 38× 38 radiating
elements 0.51λ apart, for different scanning scenarios [268]. To scan the beam from −45◦ to +45◦, it took
1 ms for the reflecctarray; however, this was accompanied with some higher side lobe levels and 9 ms
(a beam-scanning rate of 10◦/ms) for the phased array with lower side lobe levels. The difference is
mainly because the path length between the feed and the unit cells on the reflectarray are different,
and hence, so is the initial phase distribution, which has to be compensated first in the phase shifters
of the phased array. Hence, for scanning the beam in a certain angle range, e.g., ±45◦, not all phase
shifters have to change its phase completely, i.e., 360◦ within T10

90 or T90
10 , depending on the start or aim

position of the phase shifters for the scan. This means that the overall performance is governed by the
distribution of the phase change rate rather than a minimum or maximum value. This means that the
beam-scanning duration is always less than the decay time T90

10 (maximum, worst case) or switch-off

response time τoff of the LC phase shifter.
Another option aims for miniaturized and fast tunable slow-wave phase shifters with thin LC

layers hLC ≤ 4 µm, which can be realized either by a 0.35 µm CMOS process in connection with a
CPW topology [71] or by using a nanowire membrane (NaM) [269] on top of the ground plane on the
backside of an inverted microstrip line [81]. It is separated from the top substrate (glass) with the strip
line and alignment layer by spacers, where the thin cavity between the NaM and glass of few µm only
is filled later with LC. The schematic is shown in Figure 30. While the magnetic field is able to pass
through the nanowires almost unperturbed, the electric field is confined in between the signal line
and the nanowires. Hence, an increase of the equivalent capacitance C′ of the transmission line is
obtained, while the inductance L′ remains unchanged, thus providing a slow-wave effect characterized
by a decrease of the phase velocity vph = 1/

√
L′·C′. This slow-wave effect strongly enhances when the

strip line is narrow to the end caps of the nanowires, i.e., when the LC layer height hLC is very thin.
The NaM technology allows the realization of tunable microstrip lines for 50 Ω design with an LC
layer height of hLC ≤ 4 µm. This enables a significant reduction of the switch-off response time τoff.
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Figure 30. Cross-section of a slow-wave microstrip line and its working principle: unbiased,
quasi-perpendicular orientation (above) and full-biased, parallel orientation (below). It is built
up by a nanowire membrane (NaM) on top of the ground plane, where the space in between the NaM
and the top substrate (glass) with the strip line is filled with LC. The parameters are hNaM = 50 µm,
hGold = 2 µm, hLC = 4 µm, and wLC = 500 µm [84].
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For the realization [81,84], the microstrip line has been processed on a glass substrate by means of
photolithography. Additionally, the alignment layer as well as cavity walls made of SU8 have been
processed on the same substrate. The SU8 cavity walls are processed in a way that the LC layer height of
hLC = 4 µm is ensured. Afterwards, the membrane with hNaM = 50 µm is glued to the already processed
substrate. LC filling is done under vacuum conditions, and the parallel orientation is achieved by
the application of an AC biasing voltage of 1 kHz to the strip line itself. Recent results in [84] looks
very promising, since it shows a FoM of up to 70◦/dB in a frequency range between 30 and 60 GHz,
which is accompanied with |S11| < −15 dB and a miniaturization factor of more than 2 compared to
an IMSL phase shifter, providing the same differential phase shift. The switch-on response time are
3.1 and 9.4 ms, and most decisively, the switch-off response time are 116 and 125 ms for GT3-23001
and GT7-29001, respectively. The switch-off response time is less than expected, which is due to just
one alignment layer on the top substrate only. Hence, it can be reduced by even thinner LC layers
hLC ≤ 2 µm and by more effective alignment layers on both inner surfaces of the cavity.

4.3. Flat-Panel Beam-Steering Antenna Arrays

This subsection will focus on flat-panel beam-steering antennas, combining state-of-the-art LCD
technology with the introduced MLC technology, featuring very low power consumption and enabling
the low-cost, large-scale manufacturing of large arrays with a great number of radiating elements,
since the LC phase shifter stack is fabricated in standard LCD processes and established LCD production
lines. Moreover, those smart antennas can provide combinations of frequency, polarization, and pattern
agility as well as steered multiple beams.

A first small lab-scale demonstrator was already presented in [170,175] for a proof-of-concept
at 17.5 GHz, using a 100 µm thick inverted microstrip delay line phase shifter. It is depicted in
Figures 31 and 32. It is a 2 × 2 microstrip patch array with an element spacing of 0.65λ0 × 0.65λ0.
The overall thickness is 1.5 mm only, where the four spiraled 360◦-delay line phase shifters are on the
backside together with an SMA connector for the RF signal and a four-pin DC biasing connector to
control the four delay line phase shifters. These inverted microstrip line phase shifters have to be
spiraled in order to implement them within the limited area beneath the radiating element, since their
total length ` is about 4.7λ0 for a 360◦-phase shift. Their FoM is around 105◦/dB without noticeable
coupling at the bends. The insertion loss is in a range between 3.5 and 4.25 dB at 17.5 GHz.
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Figure 31. First realized two-dimensional electronic steerable antenna array using a spiraled IMSL
phase shifter with 100 µm LC layer height, being processed similar to LCD technology [170,175].
Side view of the array with an overall thickness of 1.5 mm only (left). Bottom view with the four
spiraled IMSL lines, the feeding network, and four thin bias lines (not visible) on the substrate as well
as an SMA connector for the RF signal and a four-pin DC connector to control the four delay line phase
shifters (right). Courtesy of ALCAN Systems GmbH.
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Front view with the four patch elements (above, left). Back view with the spiraled IMSL lines (above,
right). Cross-section of the array (below).

The assembly of this lab-scale demonstrator consists of three stacked substrates according to
Figure 32, where the LC material layer of 100 µm thickness is sandwiched in between two 700 µm
thick Borofloat glass (front and back) substrates with relative permittivity and dielectric loss tangents
of 4.65 and 0.008, respectively. Both sides of a large glass substrate are processed one by one by using
the same lithography processes, which are chromium (Cr)/gold (Au) evaporation, photolithography,
Au plating, and wet etching. When the lithography is completed, the substrate is diced precisely
within ±5 µm accuracy into two pieces [170]. On the front glass substrate, 2 × 2 microstrip patches
made of gold are processed on top, and on the backside, a ground plane is coated with a thin polyimide
film for pre-alignment of the LC. On the back substrate, the spiraled microstrip lines for 360◦ phase
shifting are processed within the limited area; then, there is the RF feeding network by using standard
λ/4-impedance transformers and four thin highly resistive Cr bias lines for controlling each phase shifter
individually, which are again coated with a thin polyimide film for pre-aligning the LC molecules
on top. As spacers, micro pearls with 100 µm diameter are used to maintain a cavity of constant
thickness. Then, after gluing both glass substrates together and sealing them, the LC TUD-566 is
filled in. The signals of the four microstrip delay lines are coupled through the first polyimide film,
the LC layer, and the second polyimide film, through the four slots in the ground plane and then
through the front glass to the radiating elements. Test measurements with this aperture-coupled array
exhibited an antenna matching of around −20 dB for broadside (unbiased), going down to −15 dB
when it is steered at 17.5 GHz. Figure 33 exhibits the far-field radiation pattern in an anechoic chamber,
where the antenna is mounted on top of a turn table and electronically scanned within ±25◦ in both
planes. Since it is a small array with 2 × 2 elements only and with a relatively large element spacing
of 0.65λ0, the antenna gain reduces by about 2 dB and the side lobe level (SLL) increases to −4 dB at
wide-scanning angles Θm = ±25◦. Both are confirmed by the simulations [170,175]. When the main
beam is steered to Θm = −45◦, a grating lobe occurs at +45◦. The measured beam-scanning duration is
about 150 s to tilt the main beam from Θm = 0◦ (broadside) to Θm = 45◦ and vice versa. This empirical
result verifies that the beam-scanning duration is lower than the response time of the delay line, which
is about 180 s for the LC TUD-566, as discussed above and found out in [268].
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Figure 33. Measured antenna gain patterns in the E (left) and H (right) principal planes [170,175].
Reprinted from [2], Cambridge University Press, 2020.

The larger size of the proposed array and a larger spacing between the radiating elements
d = 0.65λ0 provides higher gain, while a smaller spacing d = 0.55λ0 allows a wider scanning range,
in which the antenna can be steered with SLL less than −11 dB, as can be seen from the simulations in
Figure 34.
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Figure 34. Antenna gain G and side lobe level (SLL) versus main beam direction Θm of a 16 × 16 and
32 × 32 array of the proposed topology with two spacings—d = 0.65λ0 and d = 0.55λ0—between the
radiating elements at 17.5 GHz [175]. Reprinted from [2], Cambridge University Press, 2020.

Based on these scientific results, ALCAN’s first-generation antenna was fabricated with an IMSL
phase shifter stack, using a 100 µm LCD process and a modular concept, where several basic modules
of 8 × 8 radiating elements build up the ESA with an appropriate size to meet the application’s specific
requirements. The feasibility was first demonstrated in 2018 with a flat-panel antenna array in Figure 35
that allowed steering the antenna beam between different Ku-band satellites in geostationary orbit for
television reception with a bandwidth of about 2.5 GHz [253]. To improve the beam-scanning rate,
a new third-generation LC was used with much lower viscosity, with which the beam could be scanned
within Θm = ±60◦ in less than 20 s, i.e., a beam-scanning rate of 6◦/s.
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Figure 35. (a) Ku-band TV reception demonstrator with ALCAN’s first-generation antenna to steer
the beam between different GEO satellites, using a 100 µm LCD process for the phase shifter stack.
(b) Horizontal and (c) vertical antenna pattern for a beam in the boresight direction (note the different
angular scales) [253]. Courtesy of ALCAN Systems GmbH.

To speed up the response times significantly, and hence, the beam-scanning duration to single-digit
milliseconds, ALCAN’s second-generation antenna for Ka-band satellite communications made use
of a phase shifter stack again, but this time, it was being filled into loaded-delay lines similar to the
one in Figure 27 with LC varactors of hLC ≤ 4 µm, with some modifications in the design for simpler
implementation and improvements in the FoM. However, details cannot be published yet because of IP
issues. However, this concept enables a lower loss and more compact size. Experimental investigations
indicate an insertion loss of a phase shifter of about 3 dB at 30 GHz for a phase shift of 400◦, and hence,
a FoM > 120◦/dB over a bandwidth of more than 2.5 GHz. The switch-off response time depends
strongly on the liquid crystal mixture, which is a new third-generation LC from Merck with a bit larger
ratio of rotational viscosity over the elastic constant γrot

K11
than GT7, which was specifically synthesized

for this application: with current design choices, it is in the range of 30 ms for an hLC of about 4 µm at
room temperature. It should be noted that the switch-on response times are an order of magnitude
faster and the overall performance is governed by the distribution of the phase change rate rather than
a minimum or maximum value [179]. Therefore, it was not surprising that the empirical result for
the beam-steering duration of phased arrays based on these phase shifter stacks was about 10 ms to
scan the beam from −60◦ to +60◦ (beam-scanning rate of 12◦/ms); i.e., it was less than the switch-off

response time of 30 ms (maximum), which consolidates our experience.
Again, use is made of the modular concept with several basic modules of 8 × 8 radiating elements

with an appropriate size to meet the application’s specific requirements. Each module is built up
in different stacks, which mainly consist of a feeding network stack, a LC-phase shifter stack, and a
radiator stack, where all parts are designed independently and in a modular fashion. Figure 36 shows
the schematic of an antenna module. At the end of the assembly, a radom will cover the antenna on top
and a Low-Noise Amplifier (LNA)/Power Amplifier (PA) with an Rx/Tx-modem as well as the control
unit is placed behind the feeding network. Herein, the core LC-phase shifter stack consists of two
glass sheets with the metallic structures and the alignment layers separated by spacers where the LC
material is filled in between. It is fabricated with standard LCD processes by an LCD manufacturing
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company. This allows large-scale fabrication as well as virtually any aperture size, including segments
or antenna groups, thus providing a cost advantage [179,246].
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of ALCAN Systems GmbH.

This technology is entirely passive, and biasing requires only low power and takes advantage of
existing LCD driver technology. Controlling up to 512 radiating elements will consume a power of less
than 1/2 Watt, which represents a 30 times improvement over a standard semiconductor-based phase
shifter [256]. Moreover, by leveraging the existing mass production capabilities of LCD production lines,
as well as the low marginal cost of producing additional types of LC panels, ALCAN claims to be able
to reduce the LC phase shifter costs by 100 times to around 300 $/m2 compared to semiconductor-based
phase shifter costs, which are estimated to be around 30.000 $/m2 when using 30 cm diameter
wafers [255,256]. At present, an antenna prototype is aimed for satellite ground terminals, which are
this time made up by stacking unit tiles, where each identical tile has a fixed number of radiating
elements (typically 256, 512, or 1024). The Rx (blue) and Tx (red) aperture for non-GEO ground stations
in Figure 37 will be operating in the Ka-band. The antenna will be mounted onto a roof and will
provide more than 150 Mpbs throughput, while the power consumption without Low-Noise Block or
Block UpConverter (LNB or BUC), and modem is below 30 W.
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Courtesy of ALCAN Systems GmbH.

At first, ALCAN’s second-generation antenna was aimed for ground and user terminals of
MEO/LEO satellite constellations only [179]. However, because of its low power consumption,
potentially low costs for the phase shifter stack, low weight, and small form factor, it is also viable for
5G mm-wave systems, despite the “slow” beam-steering duration to scan the beam within ±60◦ in
about 10 ms seeming to be a limitation factor at first glance compared to much faster beamformer ICs.
However, End-to-End (E2E) latency is not equivalent to the antenna beam-steering speed, as in most
of the cases they are independent. Thus, in many URLLC use cases with E2E latency requirements
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less than 1 ms, beam-steering is not required dynamically. Considering latency requirements of 10 ms
for eMBB use cases such as broadband access in dense areas or indoor ultra-high broadband access,
and assuming that users are moving by a car or walking, this beam-steering speed is sufficient to keep
track and to fulfill E2E latency requirements. Even for high-speed mobile vehicles, e.g., trains and
airplanes, the beam-scanning rate of about 12◦/ms seems to be fast enough to maintain connection.
Possible beam-steering scenarios and possible beam-forming architectures for mm-wave antenna
arrays are given in [255]. Figure 38 above sketches the fully analog beam-steering antenna (single-beam
ESA) for Point-to-Point (PtP) links as for satellite communications, where one RF chain is used for the
entire array, offering the best performance in terms of cost and simplicity. Figure 38 below presents
a hybrid analog/digital beam-steering antenna architecture with multi-beam capability (multi-beam
ESA) for Point-to-Multipoint (PtM) links such as Massive–MIMO base stations. A multi-beam ESA is
demonstrated under the public link [257]. Here, one RF chain is used per subarray, where a single RF
chain comprises one PA, one LNA, and a T/R (Transmit/Receive) switch and shall be compliant with
5G power levels and TDD requirements [246,255]. This hybrid architecture offers the best compromise
between beam-forming flexibility and RF frontend cost/complexity. It requires less RF components
compared to MMIC-based hybrid or fully digital beam-forming antenna solutions. Moreover, the power
consumption is less. Thus, for an EIRP of about 50 dBm, the MLC technology-based 8 × 8 module,
operating at the 28 GHz, consume less than 5.5 Watts compared to 20 Watts of an Si-based 8 × 8
array [247,255]. This becomes more significant for larger arrays, since the MLC-based array does not
increase linearly with increasing number of radiating elements, i.e., phase shifters. For example, in case
of a 16 × 16 array with 4 beams and a minimum EIRP of 60 dBm, the MLC-based antenna has an
overall power consumption of around 19 Watts compared to 65 Watts for antenna arrays based on
silicon-based ICs [247]. Some usage scenarios are given in [255].

Crystals 2020, 10, x FOR PEER REVIEW 38 of 56 

 

Figure 37. Microwave Liquid Crystal (MLC)-based receive (blue) and transmit (red) ESAs made up 
of a variable number of tiles, where each tile has a fixed number of radiating elements, depending on 
requirements. This visualization shows one possible configuration for a high-gain non-GEO antenna. 
Courtesy of ALCAN Systems GmbH. 

At first, ALCAN´s second-generation antenna was aimed for ground and user terminals of 
MEO/LEO satellite constellations only [179]. However, because of its low power consumption, 
potentially low costs for the phase shifter stack, low weight, and small form factor, it is also viable 
for 5G mm-wave systems, despite the “slow” beam-steering duration to scan the beam within 60° 
in about 10 ms seeming to be a limitation factor at first glance compared to much faster beamformer 
ICs. However, End-to-End (E2E) latency is not equivalent to the antenna beam-steering speed, as in 
most of the cases they are independent. Thus, in many URLLC use cases with E2E latency 
requirements less than 1 ms, beam-steering is not required dynamically. Considering latency 
requirements of 10 ms for eMBB use cases such as broadband access in dense areas or indoor ultra-
high broadband access, and assuming that users are moving by a car or walking, this beam-steering 
speed is sufficient to keep track and to fulfill E2E latency requirements. Even for high-speed mobile 
vehicles, e.g., trains and airplanes, the beam-scanning rate of about 12°/ms seems to be fast enough 
to maintain connection. Possible beam-steering scenarios and possible beam-forming architectures 
for mm-wave antenna arrays are given in [255]. Figure 38 above sketches the fully analog beam-
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simplicity. Figure 38 below presents a hybrid analog/digital beam-steering antenna architecture with 
multi-beam capability (multi-beam ESA) for Point-to-Multipoint (PtM) links such as Massive–MIMO 
base stations. A multi-beam ESA is demonstrated under the public link [257]. Here, one RF chain is 
used per subarray, where a single RF chain comprises one PA, one LNA, and a T/R 
(Transmit/Receive) switch and shall be compliant with 5G power levels and TDD requirements 
[246,255]. This hybrid architecture offers the best compromise between beam-forming flexibility and 
RF frontend cost/complexity. It requires less RF components compared to MMIC-based hybrid or 
fully digital beam-forming antenna solutions. Moreover, the power consumption is less. Thus, for an 
EIRP of about 50 dBm, the MLC technology-based 8×8 module, operating at the 28 GHz, consume 
less than 5.5 Watts compared to 20 Watts of an Si-based 8×8 array [247,255]. This becomes more 
significant for larger arrays, since the MLC-based array does not increase linearly with increasing 
number of radiating elements, i.e., phase shifters. For example, in case of a 16×16 array with 4 beams 
and a minimum EIRP of 60 dBm, the MLC-based antenna has an overall power consumption of 
around 19 Watts compared to 65 Watts for antenna arrays based on silicon-based ICs [247]. Some 
usage scenarios are given in [255].  
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5. Conclusions

This paper presented some fundamentals and the progress of microwave liquid crystals, concerning
its performance metric with a focus on its response times, as well as for phase shifters in different
topologies, starting from well-known LC-tuned waveguide phase shifters and planar inverted microstrip
delay lines toward innovative loaded line and nanowire membrane-filled LC concepts with the newest
results, featuring different microwave performances and response times, ranging from tens of seconds
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down to few tens of milliseconds. For manufacturing low-cost large-scale ESAs with very low power
consumption for single- and multiple-beam steering, low-profile planar loaded-line phase shifter
stacks with 4 µm thin integrated MLC varactors with switch-off response times of about 30 ms for
400◦ differential phase shift at room temperature are currently assembled into multi-stack, flat-panel,
beam-steering phased arrays, where the MLC phase shifter stacks with a FoM > 120◦/dB over 2.5
GHz bandwidth are fabricated in a standard LCD process. Beam-steering within ±60◦ is in the range
of 10 ms in practice, which is less than the response time above, since not all phase shifters of the
array require a full 360◦ phase shift at the same time during the beam-steering process. In a few cases,
it might need more than 10 ms to reduce the side lobe level for fitting the mask requirements. Further
developments are going into three directions:

1. Next-generation microwave LCs are aiming for higher low-temperature stability in the range
of −30 ◦C, higher anisotropy in relative permittivity up to 1.2, and a larger ratio of rotational
viscosity over the elastic constant γrot

K11
< 0.02 for even faster switch-off response times of less than

25 ms for an LC layer height of 4 µm.
2. Progress in the processing and manufacturing of the phase shifter stack (1) with a lower LC layer

height hLC < 2.5 µm, which reduces the response time significantly, down to below 10 ms, without
affecting the other performance parameters, (2) using thinner glass with low dielectric constant
and low dielectric losses, and (3) with compacter loaded lines for 360◦ phase shift.

3. Progress in the assembly technology of the whole electronically steerable antenna, including the
electronics for the antenna control unit, the feeding network, and the radiator stack.

With the modular concept and the hybrid analog/digital architecture, these smart antennas are
flexible in size to meet the specific requirements for operating in future satellite ground and user
terminals, but also in 5G mm-wave systems.

6. Patents

Jakoby, R.; Karabey, O.H.; Goelden, F.; Manabe, A. Electronically steerable planar phased array antenna.
US20190260139A1, 2011.
Jakoby, R.; Karabey, O.H.; Hu, W. Phase shift device. US20190103644A1, 2013.
Gölden, F.; Gäbler, A.; Karabey, O.H. Radio frequency phase shifting device. US20200044300A1, 2018.
Gölden, F.; Gäbler, A.; Karabey, O.H. Funkfrequenz phasen ver schieb ungs vor richt ung.
EP3609017A1, 2018.
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Appendix A

Information and communication technologies (ICT) are the foundation of growth and development
in the modern global economy and society, striving to bring robust connectivity to all corners of the
globe. New means of connectivity, i.e., enhanced and new wireless platforms and network architectures,



Crystals 2020, 10, 514 40 of 56

together with innovative wireless technologies promise improved coverage, greater capacity, higher
data rates, more efficient use of spectrum resources, much quicker round-trip times or lower latency,
higher system reliability, and more flexibility for the effective delivery of the ICT services. This will
open up new applications, where the major market drivers beyond 2020, which trigger a massive
number of use cases are [4,270,271]:

� Mobile Internet (MI) focused on people-oriented communications with use cases such as
Ultra-High Density (UHD) and 3D video, augmented reality, virtual reality, online gaming,
mobile cloud, remote computing, tactile internet, 3D connectivity to aircrafts and drones,
collaborative robots, smart office and

� Internet of Things (IoT), including Machine-to-Machine (M2M) and Device-to-Device (D2D)
communications, which provides communications between things AND between things and
people with use cases such as smart grid and critical infrastructure monitoring, mobile surveillance,
environmental monitoring, industrial automation, eHealth services, smart wearables and smart
body area networks, sensor networks, smart homes/buildings, smart cities, smart transportation,
self-driving and connected cars (Internet of Vehicles).

All these use cases can be grouped into three usage scenarios [4,270], or generic 5G services [271],
addressing different use case characteristics, as illustrated in Figure A1.
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Figure A1. Usage scenarios (generic 5G services) for mobile communications beyond 2020 with key
use case characteristics and some exemplary use cases.

The evolution of wireless communications is primarily driven by the anticipated data traffic
explosion and its economical perspective. Some drivers, characteristics, and trends that are expected to
impact the anticipated traffic growth are given in detail in the Report ITU-R M.2370 [272], containing
global international mobile telecommunications (IMT) traffic beyond 2020 from several sources.
It reaches 62 EB/57 EB, 607 EB/543 EB, and 5016 EB/4394 EB with/without M2M traffic in 2020, 2025,
and 2030, respectively. The network capacity unit ExaByte (EB) is 1018 (=1 Trillion) Bytes. This means
a compounded annual growth rate (CAGR) of around 55% in 2020 to 2030 with and without M2M
traffic, respectively. Hence, global IMT traffic will grow in the range of 10 to 100 times from 2020
to 2030, where M2M will have a traffic volume of about 7% and 12% of the total one in 2020 and
2030, respectively. By far, the largest traffic volume will be consumed by video usage with ultra-high
resolution. Video streaming will account for almost 75% of all global mobile traffic, being more than 4.2
times and 6 times than non-video in 2025 and 2030, respectively. In Report ITU-R M.2370 [272] three
major drivers have been identified, influencing the growth of future mobile traffic. All are expected to
evolve over time. These three major drivers are:
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� enhanced mobile broadband, in particular by video usage with 75% of all global mobile traffic,
� application uptake, i.e., the rate at which applications are being adopted, e.g., annual global

downloading of applications was about 270 billion apps in 2017 and
� device proliferation, accompanied with an evolution toward ever smarter mobile devices in

different form factors and with continuously enhanced capabilities and intelligence, which require
increasing bit rates and bandwidth.

Globally, the growth of wireless devices, accessing mobile networks worldwide, will grow
significantly. Thus, [272] estimates the global mobile subscriptions of 10.7 billion in 2020, 13.8 billion in
2025, and 17.1 billion in 2030, respectively. Together with the estimated number of mobile connected
M2M devices, numbers will be around 7 billion in 2020, 34 billion in 2025, and 97 billion in 2030,
respectively. Hence, it is expected that the total number of devices connected by global mobile
communications networks will surpass 100 billion by 2030. Moreover, the popularity of ultra-high
resolution and large screens as well as the increasing number of high-performance smart devices such
as smartphones and tablets, together with the growth of mobile subscriptions will dramatically increase
the mobile traffic volume consumed by each user. [272] estimates that each subscriber will consume
5.3 GB, 39.4 GB, and 257.1 GB of data traffic per month in average in 2020, 2025, and 2030, respectively.

Beyond the major market and mobile traffic growth drivers, innovative wireless technologies will
be a critical component in this development, which opens up new applications. In this frame, ICT are
advancing in the following key areas and technologies [2,270–274]:

� Wireless communication platforms and infrastructure such as 5G (IMT-2020) systems and beyond,
High-Throughput Satellites (HTS) in geostationary (GEO) or Medium Earth Orbits (MEOs),
Low Earth Orbit (LEO) satellite mega-constellations, High Altitude Platforms (HAPS) and future
hybrid terrestrial–satellite networks will enable new forms of connectivity for the delivery of
broadband services and the possibility of being always connected. Their evolution, key technology
drivers, the markets, and perspectives are summarized in [2].

� Spectrum resources: in order to cope with the higher traffic capacity and higher typical user data
rate in 5G and in mobile satellite networks, considerably more spectrum is required than currently
available. Spectrum has been in the past and will be also in the future one of the most valuable
resources for mobile communications. Therefore, agencies and standardization organizations
worldwide aim for international harmonized spectrum and full-spectrum access, especially above
6 GHz. Hence, beyond the sub-6 GHz bands for 5G in Europe 3.4–3.8 GHz, USA 3.1–3.55 GHz
and 3.7–4.2 GHz, Japan 3.6–4.2 GHz and 4.4–4.9 GHz and China 3.3–3.6 GHz, 4.4–4.5 GHz and
4.8–4.99 GHz for 5G Phase I, frequency bands in the mm-wave range are already foreseen for 5G
Phase II: in Europe 24.25–27.5 GHz and 31.8–33.4 GHz, USA 27.5–28.35 GHz and 37–40 GHz, Japan
27.5–29.5 GHz, 4.4–4.9 GHz, China 24.75–27.5 GHz, South Korea 26.5–29.5 GHz [275]. The technical
feasibility of radio interface technology and systems operating in these frequency bands, taking
into account propagation characteristics, antenna technology, active and passive components,
physical layers, and medium access control design as well as deployment architectures, are
carried out by simulations and performance tests and trials. Some are published in [271,276–279].
In Europe, the European Telecommunications Standards Institute (ETSI) is working to facilitate
the use of the E-Band from 71–76 GHz and 81–86 GHz, and in the future, on the channelization
of the W-band from 92 to 114.5 GHz and the D-band from 130 to 174.8 GHz for large-volume
(high capacity) backhaul and front-haul systems as well as for innovative solutions for fixed
broadband access [279]. Most of the HTS in GEO and MEO make efficient use of both, Ku-band
and Ka-band (e.g., O3b downlink 17.7–20.2 GHz, uplink 27.5–30 GHz). Low Earth Orbit (LEO)
high-throughput satellite constellations also aiming to operate in the Ku-band and Ka-band.

� Network architectures: while previous generations of wireless networks are characterized by fixed
radio parameters and spectrum blocks, software advances, and other complementary technologies
will increase the flexibility, configurability, and efficiency of services such as cloud-radio access
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network (RAN), heterogeneous networks, network slicing, and network function virtualization
(NFV) [270,271,280,281].

� Integrated access node and backhaul design will enable the ultra-dense networking of radio nodes,
where such nodes will need to access and self-organize available spectrum blocks for both access
and backhauling. This capability will be a key for enabling high-frequency spectrum radio access.
It will allow for the best delivery of services and to speed up the creation of massive-scale services
and applications with flexibility, including ubiquitous ultra-broadband network infrastructure,
mass-scale cloud architectures, ultra-dense radio networking with self-backhauling, M2M and
D2D communications, and dynamic radio access infrastructure sharing [280].

� Programmable/flexible air interfaces will be enabled by various advanced waveform technologies
combined with advances in modulation and coding as well as advances in multiple access
schemes such as filtered OFDM (Orthogonal Frequency Division Multiplexing), filter bank multi
carrier, pattern division multiple access, sparse code multiple access, interleave division multiple
access and beam division multiple access (BDMA) [270,271,274,282]. These schemes are essential
to achieve continuing improvements in spectral efficiency, which correspondingly increases
the capacity of the system. Moreover, flexible uplink/downlink resource allocation such as
TDD–FDD joint operation and dynamic TDD (FDD/TDD = Frequency/Time Division Duplex) will
address the growing traffic demand and allow more efficient and flexible use of radio resources.
This could also be attained by advanced RF-domain processing, e.g., using single-frequency
full-duplex radio technologies, where simultaneous transmission and reception on the same
frequency with self-interference cancellation could increase spectrum efficiency significantly.
Improvements in all these areas will drive overall network costs down while achieving improved
energy efficiency [270,274,280,281]. Moreover, smart antenna and new reconfigurable hardware
concepts, in particular at higher frequencies are required for programmable/flexible air interfaces.
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