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Abstract: An extension of the relativistic density functional approach to the equation of state for strongly
interacting matter is suggested that generalizes a recently developed modified excluded-volume mechanism
to the case of temperature- and density-dependent available-volume fractions. A parametrization of this
dependence is presented for which, at low temperatures and suprasaturation densities, a first-order phase
transition is obtained. It changes for increasing temperatures to a crossover transition via a critical endpoint.
This provides a benchmark case for studies of the role of such a point in hydrodynamic simulations of
ultrarelativistic heavy-ion collisions. The approach is thermodynamically consistent and extendable to finite
isospin asymmetries that are relevant for simulations of neutron stars, their mergers, and core-collapse
supernova explosions.

Keywords: equation of state; QCD matter; phase transition; critical point; modified excluded-
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1. Introduction

The simulation of astrophysical phenomena, such as core-collapse supernovae (CCSN) or neutron-star
(NS) mergers, requires a careful modeling of strongly interacting matter in a wide range of densities
and temperatures. The same applies to the theoretical description of heavy-ion collisions (HIC) that
study compressed baryonic matter in the laboratory from low to high beam energies. The properties
of such matter are represented by the equation of state (EoS) that provides information on pressure,
entropy, energies, and other thermodynamic variables of interest.

A particular feature of QCD matter is the supposed phase transition (PT) from hadronic matter to
quark matter when density or temperature increase to sufficiently high values. A strong first-order PT
could allow for the existence of a third branch of compact stars and the occurrence of the twin-star
phenomenon [1–3]. Signals of the PT might also have direct consequences in dynamical processes
when matter in the quark phase expands and cools down, e.g., the release of a second neutrino burst
in CCSN [4–6]. For a recent review on the role of the EoS in CCSN simulations, see [7].

The theoretical description of the hadron–quark PT in strongly interacting matter often relies on
a construction employing different models for the two phases. With such an approach, the coexistence
line of the first-order PT will usually connect a point on the zero-temperature axis at finite baryon
chemical potential µB with a point at finite temperature T on the zero baryon chemical potential axis.
By this construction, the QCD hadron–quark PT is of first order in the whole temperature–density
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plane, see for instance [8]. However, from lattice QCD studies, it is known that there is a smooth
crossover at µB = 0 with increasing T [9,10], so at least one critical point at finite µB and T is expected
to exist. Other possibilities are that the character of the transition is crossover all over the QCD phase
diagram [11] or, as is advocated in studies of the BEC-BCS crossover transition in low-temperature
QCD, that a second critical endpoint exists [12–14]. Since lattice QCD studies are presently incapable
of exploring the EoS close to the presumed critical point with much confidence, unified models
are needed that can account for the existence of these features, see, e.g., [15]. There are dedicated
microscopic models available that incorporate the major expected features in the QCD phase diagram,
e.g., chiral mean-field models [16] or parity-doublet quark–hadron models [17]. Simulations of CCSN
or HIC that are based on a hydrodynamic description of matter during dynamical evolution use the
thermodynamic properties of matter encoded in the EoS as an input. Such data can be provided by
phenomenological models that do not need to incorporate all of the details of the underlying physics.

In this work, a novel approach is introduced to provide a phenomenological EoS of baryonic
matter that exhibits a first-order PT and a critical point at densities and temperatures expected in QCD
matter. The parameters of the model can be adjusted to place the coexistence line at arbitrary positions
in the phase diagram. The description uses an extension of a relativistic energy density functional
for hadronic matter assuming a medium-dependent change in the number of degrees of freedom.
This approach employs a recently developed version of a modified excluded-volume (EV) mechanism
that gives a thermodynamically consistent EoS with nuclear matter properties that are consistent with
present constraints. Here, we concentrate on the hadron–quark transition but not on the liquid–gas
PT, which is also contained in our model. The model allows us to study the PT for arbitrary isospin
asymmetries; however, only isospin-symmetric matter is considered in this first exploratory study for
simplicity. In the present work, no attempt was made to reproduce the EoS of QCD matter at vanishing
baryon chemical potential obtained in lattice QCD studies. With appropriately chosen EV parameters,
the crossover transition with increasing temperature can be well modeled, even for imaginary chemical
potentials, e.g., in a hadron resonance gas model [18]. With improved parametrizations, the structure
of the phase diagram in the full space of variables, i.e., temperature, baryon density/chemical potential,
and isospin asymmetry, can be investigated in the future.

The theoretical formalism of the model is presented in Section 2, which includes the main
equations that define the relevant thermodynamic quantities in Section 2.1. In Section 2.2, details of the
parametrization of the interaction and of the effective degeneracy factors are given. They account for
the change in the number of degrees of freedom with density and temperature. The phase transitions
are explored in Section 3 for isospin-symmetric matter. Conclusions follow in Section 4.

2. Theoretical Model

The theoretical description of strongly interacting matter in the present work is adapted from
the model introduced in [19]. It combines a relativistic mean-field (RMF) approach for hadronic
matter with density-dependent nucleon–meson couplings and a modified EV mechanism. Here, it is
sufficient to provide only the main equations without a detailed derivation. The essential quantities
that determine the position of the PT and the critical point in the phase diagram are the effective
degeneracy factors that depend on the number densities of the particles and the temperature.

2.1. Relativistic Energy Density Functional with Modified Excluded-Volume Mechanism

The present model assumes neutrons and protons as well as their antiparticles as the basic degrees
of freedom. These particles interact by the exchange of mesons, and the model effectively describes
the short-range repulsion (ω meson), the intermediate-range attraction (σ meson), and the isospin
dependence of the nuclear interaction (ρ and δ mesons), as is common of RMF models. The contribution
of leptons or other degrees of freedom like nuclei, hyperons or photons, as required for multi-purpose
EoS for astrophysical applications [20], is not considered here.
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The nucleons i = n, p, n̄, p̄ with rest masses mi are treated as quasi-particles of energy,

Ei(k) =
√

k2 + (mi − Si)
2 + Vi (1)

which depends on the particle momentum k and the scalar (Si) and vector (Vi) potentials. Denoting
the particle chemical potentials with µi, the contribution of the quasi-particles to the total pressure

p = ∑
i

pi + pmeson − p(r) (2)

of the system can be written as

pi = Tg(eff)
i

∫ d3k
(2π)3 ln

[
1 + exp

(
−Ei(k)− µi

T

)]
(3)

where the medium-dependent effective degeneracy factors

g(eff)
i = giΦi (4)

are a product of the usual degeneracy factor gi = 2 for nucleons and the available-volume fraction Φi,
which is defined in Section 2.2.

The meson contribution

pmeson =
1
2

(
Cωn2

ω + Cρn2
ρ − Cσn2

σ − Cδn2
δ

)
(5)

to the total pressure in Equation (2) contains the coupling factors of the mesons

Cj =
Γ2

j

m2
j

(6)

given as a ratio of the density-dependent coupling functions Γj and the meson masses mj.
The source densities

nj = ∑
i

gijn
(v)
i (7)

for vector mesons (j = ω, ρ) and
nj = ∑

i
gijn

(s)
i (8)

for scalar mesons (j = σ, δ) in Equation (5) are obtained from the quasi-particle vector densities

n(v)
i = g(eff)

i

∫ d3k
(2π)3 fi(k) (9)

and scalar densities

n(s)
i = g(eff)

i

∫ d3k
(2π)3 fi(k)

mi − Si√
k2 + (mi − Si)

2
(10)

with the Fermi-Dirac distribution function

fi(k) =
[

exp
(

Ei(k)− µi
T

)
+ 1
]−1

. (11)
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The scaling factors

gnω = gpω = −gn̄ω = −gp̄ω = 1 (12)

gnρ = −gpρ = −gn̄ρ = gp̄ρ = 1 (13)

gnσ = gpσ = gn̄σ = gp̄σ = 1 (14)

gnδ = −gpδ = gn̄δ = −gp̄δ = 1 (15)

in Equations (7) and (8) determine the coupling between mesons and nucleons. They also appear in
the vector potential

Vi = Cωgiωnω + Cρgiρnρ + BiV
(r)
meson + V(r)

i (16)

and the scalar potential
Si = Cσgiσnσ + Cδgiδnδ + S(r)

i (17)

in the quasi-particle energy (Equation (1)). The rearrangement potential

V(r)
meson =

1
2

(
C′ωn2

ω + C′ρn2
ρ − C′σn2

σ − C′δn2
δ

)
(18)

contributes to the vector potential (Equation (16)) because the couplings Γj in Equation (6) are assumed

to depend on the baryon density nB = ∑i Bin
(v)
i , where Bi = giω is the baryon number of particle i,

and the quantities C′j = dCj/dnB are the derivatives of the coupling factors.
The dependence of the available-volume fractions Φi in the effective degeneracy factor (Equation (4))

on the vector or scalar quasi-particle densities (9) and (10) also generates rearrangement contributions

V(r)
i = −∑

j
pj

∂ ln Φj

∂n(v)
i

(19)

and

S(r)
i = ∑

j
pj

∂ ln Φj

∂n(s)
i

(20)

in the potentials (Equations (16) and (17)), respectively. Furthermore, there is a rearrangement term

p(r) = p(r)meson + p(r)Φ (21)

in the total pressure (Equation (2)) with two contributions from the density dependence of the couplings

p(r)meson = −V(r)
mesonnB (22)

and
p(r)Φ = ∑

i

(
n(s)

i S(r)
i − n(v)

i V(r)
i

)
(23)

from the EV effects.
The free energy density of the system

f = ∑
i

µin
(v)
i − p (24)

is obtained with the total pressure (Equation (2)) and the chemical potentials of the particles µi. They are
not independent since, for nucleons with baryon number Bi and charge number Qi, they are given by

µi = BiµB + QiµQ (25)
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with the baryon chemical potential µB and the charge chemical potential µQ. Only the latter two are
independent quantities. For the internal energy density

ε = f + Ts (26)

the entropy density

s = −∑
i

g(eff)
i

∫ d3k
(2π)3 [ fi ln fi + (1− fi) ln (1− fi)] +∑

i
pi

∂ ln Φi
∂T

(27)

is needed. Besides the standard contribution depending on the distribution functions fi, there is a term
from the possible temperature dependence of the available-volume fractions Φi. In order to guarantee
the third law of thermodynamics, i.e., limT→0 s = 0, the temperature derivative of the available-volume
fractions has to vanish for T→ 0. After solving the equations above for a given T, µB, and µQ, a fully
consistent thermodynamic EoS is obtained. For practical purposes, however, the baryon density nB
and the hadronic charge fraction

Yq =
∑i Qin

(v)
i

nB
(28)

are used as independent variables instead of µB and µQ.
A possible shortcoming of models that consider EV effects is the potential appearance of

a superluminal speed of sound in certain regions of the space of thermodynamic variables, see,
e.g., [21,22]. This causality constraint has to be checked case by case depending on the specific
implementation of the EV mechanism.

2.2. Available-Volume Fractions and Model Parameters

For a quantitative evaluation of the EoS in the present approach, the functional forms of the
meson–nucleon couplings Γj and the available-volume fractions Φi have to be specified as well as
all parameters. Here, we use the masses of nucleons and mesons and the coupling functions of
the DD2 parametrization presented in [23]. It only considers ω, ρ, and σ mesons for the effective
description of the nuclear interaction but not the δ mesons. The parameters were obtained by
fitting observables (binding energies, radii, etc.) of selected nuclei. With this set, the EoS of nuclear
matter at zero temperature exhibits characteristic nuclear matter parameters, e.g., the saturation
density (nsat = 0.149065 fm−3), binding energy at saturation (B = 16.02 MeV), incompressibility
(K = 242.7 MeV), symmetry energy (J = 32.73 MeV), and slope (L = 57.94 MeV), that are consistent
with modern constraints from experiment and theory.

EV effects are frequently employed to describe an effective repulsive interaction between particles,
in particular in calculations of the EoS in the framework of hadron resonance gas models, see, e.g., [24].
For zero baryon density, a comparison of the resulting EoS with results from lattice QCD calculations
can be used to fix the volume parameters. If a finite volume vi is attributed to each particle i,
the available volume for the motion of the particle is reduced from the total system volume V to
VΦ(cl) with the classical available-volume fraction

Φ(cl) = 1−∑
i

vin
(v)
i . (29)

Clearly, there is a limiting density above which a compression of the system becomes impossible.
In general, the volumes and available-volume fractions can depend on the particle species, and the
EV mechanism can be used to suppress particles, e.g., nuclei, in a mixture, causing them to disappear
above a certain density, see, e.g., [25] for applications to the low-temperature and low-density EoS in
astrophysical simulations.
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In [19], the interpretation of the EV mechanism was changed by moving the factor Φi from the
system volume V to the degeneracy factor gi as in Equation (4) and allowing the available-volume
fractions to be arbitrary functions of the particle densities and temperature. The medium dependence
of the effective degeneracy factors is interpreted as a change in the effective number of degrees of
freedom. A decrease in g(eff)

i has the effect of a repulsive interaction between the particles, whereas
an increase can be seen as the action of an attractive interaction, c.f., the softening of the nuclear EoS
when hyperons are included, see, e.g., [26,27]. This freedom leaves the room to modify the properties
of an EoS in a favored way.

In the present application of the modified EV mechanism, the available-volume fraction is defined
to be identical for all particles i as

Φi = 1+ sg1(T)θ(x) exp
(
− 1

2x2

)
(30)

depending on the temperature T and an auxiliary quantity

x = v

(
∑

j
Bjn

(v)
j − g8(T)ncut

)
(31)

depending on T and the quasi-particle vector densities n(v)
i with parameters s, v, and a cutoff density

of ncut. The θ function in Equation (30) guarantees that Φi = 1 for x ≤ 0 and the EV mechanism has no
effect on the EoS. The functions g1 in Equation (30) and g8 in Equation (31) are defined as

gt(T) = θ (T0− T) exp

[
− t

2

(
T

T0− T

)2
]

(32)

with parameters t and T0. In the limit T → 0, the function gt approaches one and it decreases with
increasing temperature. Furthermore, the derivatives ∂Φi/∂T approach zero for T → 0, as required
for the thermodynamic consistency, because of the choice of the function gt(T). For T → T0,
the function gt vanishes very smoothly and there are no effects at higher temperatures because
Φi = 1. In order to reproduce the correct high-temperature limit, given by a Stefan–Boltzmann-type
behavior, a modification of the available-volume fractions for temperatures well above T0 is required.
This is left to future extensions of the model. According to Equation (31), the quantity x is only positive
for baryon densities larger than g8ncut, a quantity that decreases with increasing temperature. There are
no artificial singularities due to the presence of the θ functions in Equations (30) and (32) because
all derivatives of the exponential functions are zero when the arguments of the θ functions vanish.
The actual values of the parameters for the modified EV mechanism used in the present study are
s = 3, v = 2 fm3, T0 = 270 MeV, and ncut = nsat of the DD2 parametrization.

3. Results

In order to illustrate the characteristic effects of the modified EV mechanism on the EoS, we limit
the presentation to the case of symmetric matter, i.e., Yq = 0.5. The pressure p and baryon chemical
potential µB are calculated as a function of the baryon density nB. Due to the increase in the
available-volume fractions Φi or the effective degeneracy factors g(eff)

i , a considerable softening of the
EoS is observed in a certain range of densities. Below the critical temperature Tcrit, the pressure is not
a monotonous function of the baryon chemical potential for an isotherm. A Maxwell construction is
used to determine the two densities of the coexisting phases where p and µB are identical. The pressure
p as a function of the baryon density nB is depicted in Figure 1 for selected temperatures. Note that an
integral part of the underlying RMF model is a detailed description of the liquid–gas PT in nuclear
matter and the formation and dissociation of nuclear clusters in compact-star matter. For details,
see, e.g., [28].
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Figure 1. Isotherms in isospin-symmetric strongly interacting matter in the pressure–baryon density
diagram at temperatures from 0 to 160 MeV in steps of 20 MeV (dashed colored lines) and at the critical
temperature Tcrit of the pseudo hadron–quark phase transition (black dot-dashed line). The binodals
and critical points are denoted by full black lines and a full (open) circle of the pseudo hadron–quark
(liquid-gas) phase transition, respectively.

In the coexistence region of the pseudo hadron–quark PT between the low and high density
phases, the pressure is constant as typical for a first-order PT. The area of coexistence is enclosed by the
binodal, and, above the critical temperature Tcrit ≈ 155.5 MeV, there is no PT anymore. The peculiar
shape of the binodal is a result of the specific form (30) of the available-volume fractions. It can be
adjusted with appropriate changes in the functional form and parameters.

The binodals of the liquid–gas and pseudo hadron–quark PT in the temperature–baryon density
plane are shown in panel (a) of Figure 2. At vanishing temperatures, the coexistence region of the
pseudo hadron–quark PT covers a density range from 0.270 to 0.408 fm−3, well above the nuclear
saturation density nsat. At higher temperatures, it moves to lower densities with an almost constant
extension in baryon density except for temperatures close to Tcrit. Here, the critical density is found as
0.201 fm−3, still above nsat. The dashed line in panel (a) marks the boundary between regions without
(lower left) and with (upper right) effects of the modified EV mechanism in the present parametrization.
It corresponds to the condition x = 0. There is another region in the phase diagram without modified
EV effects at temperatures above T0, outside the figure.

Panel (b) of Figure 2 depicts the lines of the first-order PT in the temperature–baryon chemical
potential diagram ending in critical points. With increasing temperature, the baryon chemical potential
at the pseudo hadron–quark PT reduces from 979.1 to 591.8 MeV at the critical point. By crossing the
transition line, an abrupt change in the density occurs that becomes continuous at the critical point.
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Figure 2. Binodals (full lines) and critical points (full and open circles) of isospin-symmetric strongly
interacting matter in (a) the temperature–baryon density diagram and (b) the temperature–baryon
chemical potential diagram. The dashed line in panel (a) separates the region without effects of the
modified excluded-volume mechanism (lower left) from the region with effects (upper right). Results
for the liquid–gas phase transition are shown at subsaturation densities.

4. Conclusions

The extension of the modified EV approach to a density- and temperature-dependent
parametrization of the available-volume fractions as introduced in this work was successful in
achieving the main goal of this study: As a generic structure of the QCD phase diagram, a first-order
pseudo hadron–quark phase transition at low temperatures and a crossover for low baryon densities
could be modeled that also includes a critical endpoint at Tcrit = 155.5 MeV and µB,crit = 591.8 MeV.
Other patterns of the QCD phase diagram that have been theoretically motivated could also be modeled
within the present approach. Further extensions of the model are straightforward. They include the
extension to a larger number of components of the hadron resonance gas in the underlying RMF model
and an isospin dependence of the EV model. It would be worthwhile to study further thermodynamic
quantities such as the speed of sound, heat capacities, or the susceptibilities in such an enlarged model.
It would also be interesting to elaborate on a parametrization that would result in a second endpoint
at low temperatures, as suggested by Hatsuda et al. [14]. The so-generalized parametrization of the
QCD EoS can be used in Bayesian analysis studies for astrophysical applications pertaining to compact
stars [29,30], their mergers, and core-collapse supernova explosions, as well as heavy-ion collisions
analogous to those studied in [31].
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