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Abstract: A novel algorithmic discussion of the methodological and numerical differences of
competing parametric model reduction techniques for nonlinear problems is presented. First,
the Galerkin reduced basis (RB) formulation is presented, which fails at providing significant
gains with respect to the computational efficiency for nonlinear problems. Renowned methods
for the reduction of the computing time of nonlinear reduced order models are the Hyper-Reduction
and the (Discrete) Empirical Interpolation Method (EIM, DEIM). An algorithmic description and
a methodological comparison of both methods are provided. The accuracy of the predictions
of the hyper-reduced model and the (D)EIM in comparison to the Galerkin RB is investigated.
All three approaches are applied to a simple uncertainty quantification of a planar nonlinear thermal
conduction problem. The results are compared to computationally intense finite element simulations.

Keywords: model order reduction (MOR); reduced basis model order reduction (RB MOR);
uncertainty quantification (UQ); (discrete) empirical interpolation method (EIM; DEIM);
hyper-reduction (HR)

1. Introduction

Numerical models in engineering or natural sciences are getting more and more complex,
may be nonlinear and depending on unknown or controllable design-parameters. Simultaneously,
simulation settings increasingly move from single-forward simulations to higher-level simulation
scenarios. For example, optimization and statistical investigations require multiple solves, interactive
applications require real-time simulation response, or slim-computing environments, e.g., simple
controllers, require rapid and memory-saving models. For such applications, the field of model
reduction has gained increasing attention during the last decade. Their goal is an acceleration of
a given numerical model based on the construction of a low-dimensional approximate surrogate
model, the so-called reduced order model. Due to the reduced dimension, the computation should
ideally be rapid, hence be applicable for the mentioned multi-query, real-time or slim-computing
simulation scenarios. Well-known techniques for linear problems comprise Proper Orthogonal
Decomposition (POD) [1,2], control-theoretic approaches such as Balanced Truncation, Moment
Matching or Hankel-norm approximation [3]. For parametric problems, certified Reduced Basis (RB)
methods have been developed [4,5]. Nonlinear problems pose additional challenges. In particular,
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there exists a well-known drawback with POD, which is that a high-dimensional reconstruction of the
reduced solution is required for each evaluation of the nonlinearity. Several approximation techniques
exist, which provide a remedy of this problem. Mainly, these approaches are sampling-based
techniques such as Empirical Interpolation [6] and discrete variants [7–10] or Hyper-Reduction [11,12].
Note that also further approaches exist, such as Gappy-POD [13], Missing Point Estimation (MPE) [14]
or Gauss–Newton with approximated Tensors (GNAT) [15] and Energy Conserving Mesh Sampling
and Weighting (ECSW) [16]. Most of those methods identify a subset of the arguments of the
nonlinear function. Then, based solely on an evaluation of these few components, they construct an
approximation of the full solution.

Nonlinear problems emerge in many applications. For instance, the effective behavior of
dissipative microstructured materials needs to be predicted by nonlinear homogenization techniques.
These imply a multi-query context in the sense of different loadings (and load paths) applied to the
reference volume element in order to obtain the related effective mechanical response. Reduced basis
methods combining the purely algorithmic gains of the reduced basis with a reformulation of the
problem incorporating micromechanics have shown to be efficient for the prediction of the effective
material response, for multi-level FE simulations and for nonlinear multiscale topology optimization
(e.g., [17,18]).

In this paper, we analyze and compare two of those efficient methods, namely Discrete Empirical
Interpolation (DEIM) and Hyper-Reduction (HR), for the reduction of a non-trivial nonlinear
parametric thermal model. The comparison is carried out on the numerical, algorithmical and
mathematical level. A new condition for which DEIM and HR are equivalent is given and numerical
examples illustrate the application. Similar studies, often with stronger emphasis on the performance,
have also been recently conducted by other authors, e.g., [19].

The paper is structured as follows. We introduce the nonlinear parametrized thermal model
problem in Section 2. Subsequently, in Section 3, the methods under investigation are introduced
and formally compared: as a benchmark, the POD–Galerkin procedure is formulated, then the DEIM
and the hyper-reduction technique. The numerical comparison is provided in Section 4. A classical
scenario from uncertainty quantification is demonstrated since model order reduction is particularly
interesting for such many-query scenarios. Finally, we conclude in Section 5.

1.1. Nomenclature

In the manuscript, the following notation is used: bold face symbols denote vectors (lowercase
letters) or matrices (uppercase letters). The spatial gradient operator is denoted by ∇• and the
divergence is expressed by ∇ · •. The dependence on spatial coordinates is omitted for simplicity
of notation.

2. Nonlinear Reference Problem

2.1. Strong Formulation

In the following, we consider a stationary planar nonlinear heat conduction problem on a plate
with a hole (see Figure 1). The problem is parametrized by a vector p. The nonlinearity of the problem
is introduced by an isotropic Fourier-type heat conductivity µ(u; p) that depends on the current
temperature u and the parameter vector. The Dirichlet and Neumann boundary data are denoted by
u∗ and q∗, respectively. Note that, in the example, q∗ = 0 is considered. However, the formulation
of the weak form is considered with q∗ being arbitrary for the sake of generality. The corresponding
Dirichlet and Neumann boundaries are denoted by Γ1 and Γ2, respectively. The strong formulation of
the boundary value problem is

−∇ · (µ(u; p)∇u) = 0 in Ω, u = u∗(p) on Γ1, −µ(u; p)∇u · n = q∗ on Γ2, (1)

where µ is the temperature dependent conductivity.
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Figure 1. Geometry of the planar benchmark problem (left) and nonlinearity of the temperature
dependent conductivity µ (right).

2.2. Weak Formulation

The weak form of the heat conduction problem (1) is given by

a(u, δu; p)− l(δu; p) = 0 (∀δu ∈ V0), (2)

where

a(u, δu; p) =
∫

Ω

µ(u; p)∇u · ∇δu dΩ, and l(δu; p) = −
∫

Γ2

δu q∗ dΓ, (3)

with the unknown temperature field u ∈ V = V0 + {ū∗(p)} being sought-after. The function space
V0 := {u ∈ H1(Ω) : u = 0 on Γ1} is referred to as space of test functions vanishing on the Dirichlet
boundary Γ1 and ū∗(p) ∈ H1(Ω) is a field defined on the full domain that satisfies the Dirichlet
conditions. The Dirichlet conditions on Γ1 are assumed to depend on two parameters gx and gy via

u∗(p) := gxx + gyy, gx, gy ∈ [0, 1], x, y ∈ Γ1. (4)

A trivial choice is to set ū∗(p) = gxx + gyy in the full domain. This particular choice is considered
in the remainder of this study. While the solution space V depends on the parameters p via ū∗,
the space of test functions V0 is independent of the parameters p. For the heat conductivity µ,
an explicit dependence on the temperature via the nonlinear constitutive model

µ(u; p) := max {µ1, µ0 + cu} (5)

is assumed (see also Figure 1, right). The parameter vector p in the present context is

p := [gx, gy, c, µ0, µ1], (6)

and attention will be confined to the compact parameter domain

p ∈ P := [0, 1]× [0, 1]× [1, 2]× {1} × {0.5}⊂ R5. (7)

2.3. Discrete Formulation

In order to solve the nonlinear problem (1), nodal Finite Elements (FE) are used in a classical
Galerkin formulation (e.g., [20,21]). The space of finite element test functions Vh

0 ⊂ V0 is assumed to be
spanned by n linearly independent and continuous ansatz functions ϕi associated with nodes (xi, yi)

and ϕi(xj, yj) = δij where i, j = 1, . . . , n. We assume a solution expansion into a linear field ū∗ defined
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over the full domain Ω via (4) and comply to the parameterized boundary data and a fluctuation term
according to

uh(p) := ū∗(p) +
n

∑
j=1

wh,j(p)ϕj, ū∗(p):= gxx + gyy ∀x, y ∈ Ω. (8)

Here, the coefficient vector w(p) =
(
wh,j(p)

)n
j=1 ∈ Rn contains the nodal temperature

fluctuations, which represent the unknowns of the system. They define the coefficient vector containing
the nodal temperatures via

u(w; p) = w(p) + ū∗(p), (9)

where ū∗(p) is the vector composed of the nodal values of the superimposed linear field ū∗(p).
The discrete nonlinear equations that have to be solved for any given parameter vector p are given by

ri(w; p) := a
(

ū∗(p) +
n

∑
j=1

wh,j ϕj, ϕi; p
)
− l(ϕi; p) = 0

(
∀i ∈ {1, . . . , n}

)
. (10)

In our specific numerical example, the linear functional l(ϕi; p) is zero due to the chosen
homogeneous Neumann conditions. However, problem (10) still has a nontrivial solution due to
the inhomogeneous Dirichlet data provided through ū∗(p). Condition (10) can be expressed in
a compact representation using the vector notation

r(w; p) :=
(
ri(w; p)

)n
i=1 = 0. (11)

In order to solve the nonlinear problem (11), expressed component-wise in (10), the finite element
method is used to provide the functions for the expansion (8). In the following, N denotes a row vector
of finite element ansatz functions for the temperature, and G and GT are the discrete gradient and
divergence matrices, respectively. The FE approximation of the temperature u and its gradient ∇u are
given by

uh(w; p) = Nu(w; p)= Nw(p) + Nū∗(p), (12)

∇uh(w; p) = Gu(w; p)= Gw(p) + ḡ(p), ḡ(p)=

[
gx

gy

]
. (13)

Then, the exact Jacobian of the finite element system is

J∗(w; p) =
∫

Ω

µ(uh(w; p); p) GTG +
∂µ(uh(w; p); p)

∂uh

(
GTGu(w; p)

)
N dΩ, (14)

where the first part is the classical finite element stiffness matrix and the second part accounts for the
thermal sensitivity of the conductivity µ. In the following, a symmetric approximation of J∗ given by

J(w; p) =
∫

Ω

µ(uh(w; p); p) GTG dΩ (15)

is used, i.e., the thermal sensitivity is neglected. The numerical solution of the nonlinear problem (11) is
then obtained by a fixed-point scheme using J as an approximation of the differential stiffness matrix J∗.
The resulting iteration scheme is commonly referred to as successive substitution (Ref. [22], p. 66).
Note also that J is well defined for arbitrary thermal fields, while the exact Jacobian is not defined,
or more precisely the Jacobian is semi-smooth, for the critical temperature uc = (µ1 − µ0)/c, which
implies a non-differentiability of the conductivity µ.
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Algorithm 1 illustrates the nonlinear finite element solution procedure for the considered problem.
The comment lines in the algorithm comprise references to computational costs creloc (computation of
u and ∇u), cconst (for the constitutive model), crhs (linked to the residual computation), cJac (related to
the Jacobian) and csol (for the linear solver). This will become relevant in the comparison section.

Algorithm 1: Finite Element Solution
Input : parameters p ∈ P , scatter/gather operator Pe of element e and weight vi at the

integration point xi (i = 1, . . . , ngp)

Output : nodal temperature vector u(p)

1 set u(0) = ū∗(p); α = 0 ; // initialize
2 set r = 0, J = 0 ; // reset r.h.s. and Jacobian
3 for e = 1, . . . , nel do // nel: number of elements
4 set re = 0, Je = 0 ; // reset element r.h.s. and Jacobian
5 for i = 1, . . . , ngp

e do // ngp
e : number of int. point in element e

6 evaluate the FE matrices N, G and Ge = GPe at the current int. point; // creloc

7 compute u(α)
h ← Nu(α) and gradient g(α)h ← Gu(α) at int. point ; // creloc

8 evaluate constitutive model µ(α) ← µ(u(α)
h ; p) ; // cconst

9 re ← re + vi µ(α) Ge
T g(α)h ; // crhs

10 Je ← Je + vi µ(α) Ge
TGe ; // cJac

11 r ← r + PT
e re; J ← J + PT

e JePe ; // assembly; crhs, cJac

12 solve Jδu(α) = −r and update nodal temperatures u(α+1) ← u(α) + δu(α); α← α + 1 ; // csol

13 converged (‖δu(α)
h ‖L2(Ω) < εmax)? → end; else: goto 2

2.4. Reduced Basis Ansatz

In the following, an m-dimensional basis of global ansatz functions ψk is considered in the
reduced framework, where m � n is implicitly asserted in order to obtain an actual model order
reduction. The functions ψk define a linear subspace of Vh

0 , which can be characterized by a matrix
V = (Vij) ∈ Rn×m via

ψk :=
n

∑
i=1

Vik ϕi (k = 1, . . . , m). (16)

The reduced coefficient vector γ(p) = (γk(p))m
k=1 ∈ Rm defines the temperature fluctations in the

reduced setting by the affine relation

ũ(p) = ũ(γ(p); p) := u∗(p) + w̃(p), w̃(p) :=
m

∑
k=1

γk(p)ψk. (17)

The corresponding vector of discrete values ũ(p) := (ũj(p))n
j=1 ∈ Rn of the temperature with respect

to the basis of Vh
0 is given by the linear relation ũ = ū∗(p) + w̃(p) with the coefficient vector w̃(p) =

Vγ(p) = (w̃(p))n
j=1 of the reduced fluctuation field. Hence, the reduced fluctuation w̃ can equivalently

be expressed as

w̃(p) =
n

∑
j=1

w̃j(p)ϕj =
n

∑
j=1

ϕj

m

∑
k=1

Vjkγk(p). (18)
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In the following, the matrix V defining the space of the reduced ansatz functions is assumed to
be given by a snapshot POD [23] obtained from full resolution finite element simulations evaluated
at s different parameter vectors p(i) (i = 1, . . . , s). The POD subspace Ṽh

0 ⊂ Vh
0 is then obtained as

best-approximating m-dimensional subspace with respect to the L2(Ω)-error, i.e.,

Ṽh
0 = arg min

Ṽ⊂Vh
0

dim(Ṽ)=m

s

∑
i=1

∥∥∥wh(p(i))− PṼ (wh(p(i))
∥∥∥

2

L2(Ω)
, (19)

where PṼ is the orthogonal projection of the thermal fluctuations onto the subspace Ṽ . Numerically,
a POD-basis of this space can be obtained by a corresponding matrix eigenvalue problem, e.g.,
cf. [1,5,24]. Here, we use the L2(Ω) inner product for the computation of the symmetric snapshot inner
product matrix

C = (Cij)
s
i,j=1 ∈ Rs×s, Cij :=

∫

Ω

wh(p(i))wh(p(j))dΩ. (20)

Note that the correlation matrix is computed from the temperature fluctuations wh only in order
to obtain a reduced basis that will comply with the prescribed Dirichlet conditions that are accounted
for in ū∗(p). The entries of C are defined by the discrete snapshot solutions w(i) via the unit mass
matrix M as follows:

M :=
∫

Ω

NT N dΩ, Cij =
(

w(i)
)T

M
(

w(j)
)

. (21)

A pseudo-code implementation of the snapshot POD is given by Algorithm 2. Alternatively, a weighted
SVD of the snapshot matrix can be used to obtain the same basis. The classical SVD w.r.t. the l2-norm
may be less prone to truncation errors [25], but it will yield a result differing from the optimum in (19),
which is based on optimality with respect to ‖ · ‖L2(Ω). This is due to the missing consideration of the
inner product matrix M.

Algorithm 2: Snapshot Proper Orthogonal Decomposition (Snapshot POD)

Input : s snapshot parameters p(i) ⊆ P ; reduced dimension m (or: threshold δ);
unit mass matrix M

Output : reduced basis functions ψk (k = 1, . . . , m) and coefficient matrix V

1 for i = 1, . . . , s do
2 solve high-fidelity problem (e.g., via FE solution; Algorithm 1) for parameter p(i) → w(i)

3 store w(i) as i-th column of the snapshot matrix S

4 compute snapshot inner product matrix C := ST MS
5 compute m leading eigenpairs (qk, ξk) of C (k = 1, . . . , m)

6 set Vjk := (ξk)
−1/2 ∑s

i=1

(
w(i)

)
j
(qk)i (j = 1, . . . , n) and ψk = ∑n

j=1 ϕjVjk

There are many other techniques to determine reduced projection spaces, e.g., greedy techniques,
balanced truncation, Hankel-norm approximation, moment matching and others (e.g., [3]). However,
we do not aim at a comparison of projection space techniques, but rather focus on the treatment of the
nonlinearities. Therefore, we decide for the POD space as common reduced projection space for all
subsequent methods.
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Note that, for the given problem, the Dirichlet data can be considered via the linear field ū∗(p)
defined in (4). More precisely, ū∗ is parametrized by two independent parameters gx, gy. Its discrete
representation is

ū∗(p) = gxū∗,1 + gyū∗,2, (22)

with the components of the vectors u∗,1, u∗,2 defined as

(u∗,1)
n
i=1 := xi, (u∗,2)

n
i=1 := yi, (23)

where xi and yi denote the coordinates of node number i. By accounting for ū∗(p) via (22), the Dirichlet
data is exactly represented without further algebraic constraints. Additionally, this approach captures
exactly constant temperature gradients.

3. Sampling-Based Reductions

3.1. Galerkin Reduced Basis Approximation

A classical Galerkin projection on a POD space is used to provide reference solutions for the
HR and the DEIM. In order to solve the weak form of the nonlinear problem for given parameters
gx, gy, a successive substitution is performed in which the local conductivity µ is computed using
the previous iteration of the temperature ũ(α) := u∗(p) + w̃(α) with w̃(α) = NVγ(α) in the reduced
setting, where α ∈ N is the iteration number and γ(α) is the iterate of the reduced degrees of freedom
in iteration α. As in a classical Galerkin approach, we assume the (reduced) test function

ṽ :=
n

∑
i=1

m

∑
j=1

ϕi Vijλj (24)

with arbitrary coefficients λj (j = 1, . . . , m) represented by the vector λ. For convenience, we define the
conductivity corresponding to the α-th iterate γ(α) of the reduced coefficient vector γ(p)

µ(α) := µ
(

ũ(γ(α); p); p
)

. (25)

Here, γ(α) can be interpreted as a constant parameter similar to p during the subsequent iteration,
which provides the new iterate γ(α+1) as the solution of

a(ũ, ṽ; p) =
m

∑
j=1

λj

∫

Ω

µ(α)∇ũ(γ(α+1); p) · ∇ψj dΩ = 0 ∀λ ∈ Rm. (26)

Rewriting (26) using the approximated Jacobian J and the residual r leads to the linear system

V T J(Vγ(α); p)V(γ(α+1) − γ(α)) + V Tr(Vγ(α); p) = 0. (27)

The projection of the residual onto the reduced basis defines the reduced residual

r̃(α) := V Tr(Vγ(α); p). (28)

In view of the definition of the reduced basis by L2(Ω)-orthogonal POD modes and with
δγ(α) := γ(α+1) − γ(α), one obtains

‖δγ(α)‖l2 = ‖ũ(α+1) − ũ(α)‖L2(Ω)= ‖w̃(α+1) − w̃(α)‖L2(Ω). (29)
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This gives rise to the simple convergence criterion ‖δγ(α)‖l2 < εmax, i.e., the iteration should stop
upon sufficiently small changes of the temperature field. Algorithm 3 summarizes the online phase of
the Galerkin RB method.

Algorithm 3: Galerkin Reduced Basis Solution (Online Phase)
Input : parameters p ∈ P ; reduced temperature matrix T i := N(xi)V , gradient matrix

Gi := G(xi)V and weight vi at the integration point xi (i = 1, . . . , ngp)

Output : reduced vector γ and nodal temperatures ũ (optional)

1 set γ(0) = 0; α = 0 ; // initialize

2 set r̃(α) = 0, J̃(α) = 0 ; // reset r.h.s. and Jacobian
3 for i = 1, . . . , ngp do // ngp: number of int. points in the mesh
4 compute temperature ũ(α) ← T iγ

(α) + u∗ and gradient g̃(α) ← Giγ
(α) + ḡ ; // creloc

5 evaluate constitutive model µ(α) ← µ(ũ(α); p) ; // cconst

6 r̃(α) ← r̃(α) + vi µ(α) GT
i g̃(α) ; // crhs; direct assembly

7 J̃(α) ← J̃(α) + vi µ(α) GT
i Gi ; // cJac; direct assembly

8 solve J̃(α)δγ(α) = −r̃(α) and update γ(α+1) ← γ(α) + δγ(α); set α← α + 1 ; // csol

9 converged (‖δũ(α)‖L2(Ω) = ‖δγ(α)‖l2 < εmax)? → end; else: goto 2

The projected system can be interpreted as a finite element method with global, problem specific
ansatz functions ψk, whereas the classical finite element method uses local and rather general ansatz
functions ϕj (e.g., piecewise defined polynomials).

Note that, the solution of (26), (27) is also a minimizer of the potential

Π(γ; γ(α), p) :=
1
2

∫

Ω

µ(α)∇ũ(γ; p) · ∇ũ(γ; p) dΩ. (30)

Therefore, variational methods can directly be applied to solve the minimization problem and
alternative numerical strategies are available. Such variational schemes are also used, e.g., in the
context of solid mechanical problems involving internal variables (e.g., [26]).

The Galerkin RB method with a well-chosen reduced basis functions ψk (represented via the
matrix V ) can replicate the FEM solution to a high accuracy (see Section 4). It also provides a significant
reduction of the memory requirements: instead of u ∈ Rn, only γ ∈ Rm needs to be stored. Despite
the significant reduction of the number of unknowns from n to m, the Galerkin RB cannot attain
substantial accelerations of the nonlinear simulation due to a computationally expensive assembly
procedure with complexityO(ngp) for the residual vector r and for the fixed point operator J (compare
crhs and cJac in Algorithm 1 and Algorithm 3). Here, ngp is the number of quadrature points in the
mesh. However, if the linear systems are not solved with optimal complexity, e.g., using sparse LU
or Cholesky decompositions with at least O(n2), then a reduction of complexity can still be achieved.
It shall be pointed out that, for very large n (i.e., for millions of unknowns), the linear solver usually
dominates the overall computational expense. Then, the Galerkin RB may provide good accelerations
without further modifications.

In order to significantly improve on the computational efficiency while maintaining
the reduced number of degrees of freedom (and thus the reduced storage requirements),
the Hyper-Reduction [11,12] and the Discrete Empricial Interpolation Method (DEIM, [7–9]) are
used. Both methods are specifically designed for the computationally efficient approximation of
the nonlinearity of PDEs.
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3.2. Discrete Empirical Interpolation Method (DEIM)

The empirical interpolation method (EIM) was introduced by [6] to approximate parametric or
nonlinear functions by separable interpolants. This technique is meanwhile standard in the reduced
basis methodology for parametric PDEs. Discrete versions of the EIM for instationary problems
have been introduced as empirical operator interpolation [7,8,27] or alternatively (and in some cases
equivalently) as discrete empirical interpolation (DEIM) [9,10]. In particular, a posteriori [8,27,28] and
a priori [10] error control is possible under certain assumptions (see also [5]).

We present a formulation for the present stationary problem. Instead of approximating
a continuous field variable, the goal of the discrete versions is to provide an approximation r̃ for
the vectorial nonlinearity of the nodal residual vector r of the form

r̃(u; p) := U(PTU)−1PTr(u; p), (31)

where the columns of U ∈ Rn×M are called collateral reduced basis and P = [ei1 , . . . , eiM ] ∈ Rn×M is
a sampling matrix with interpolation indices (also known as magic points) i1, . . . , iM ∈ {1, . . . , n}, with
ei being the i-th unit vector. By multiplication of (31) with PT , we verify that

(r̃(u; p))ij = r(u; p))ij , j = 1, . . . , M. (32)

In this sense, the approximation acts as an interpolation within the set of magic points.
The identification of the interpolation points is an incremental procedure, which is performed during

the offline phase. We assume the existence of a set of training snapshots Y := {y1, . . . , yntrain
} ⊂ Rn with

dim(span(Y)) ≥ M.
Then, a POD of these snapshots results, see e.g., [10], in the collateral basis vectors u1, . . . , uM and

we define U l := [u1, . . . , ul ] for l = 1, . . . , M. The algorithm for the point selection is initialized with
P0 = [ ], I0 := ∅, U0 = [ ] and then computes for l = 1 . . . , M

ql := ul −U l−1(P
T
l−1U l−1)

−1PT
l−1ul , (33)

il := arg max
i∈{1,...,n}

|(ql)i|, (34)

Pl := [Pl−1, eil ], Il := Il−1 ∪ {il}. (35)

Finally, we set P := PM, U := U M and I := IM, which concludes the construction of r̃. Intuitively,
in each iteration, the interpolation error ql for the current POD basis vector ul is determined and the
vector entry il with maximum absolute value is identified, which gives the next index. Regularity of the
matrix PTU is required for a well-defined interpolation. This condition is automatically satisfied under
the aforementioned assumption of a sufficiently rich set of snapshots Y . As training set Y , one can
either use samples of the nonlinearity [8], or use snapshots of the state vector or combinations thereof.
In contrast to the instationary case, we may not use only training snapshots of r: As the residual r is
zero for all snapshots, we would try to find a basis for a zero-dimensional space span(Y) = 0, which
is not possible for M > 0. However, the residual at the intermediate (non-equilibrium) iterates is
non-zero and this is also a good target quantity for the (D)EIM, as these terms appear on the right-hand
side of the linear system during the fixed point iteration. Hence, a reasonable set Y is obtained via

Y = [y1, . . . , yntrain
] = [r(u(0)(p(1)); p(1)), . . . , r(u(α1)(p(1)); p(1)),

. . . , r(u(αs)(p(s)); p(s))], (36)

where α1, . . . , αs are the number of fixed point iterations of the full simulation scheme for parameters
p(1), . . . , p(s).
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Inserting r̃ from (31) for the nonlinearity into the full problem and projection by left-multiplication
with a weight matrix W ∈ Rn×m yields the POD-DEIM reduced m-dimensional nonlinear system for
the unknown γ

W TU(PTU)−1PTr(ū∗(p)+Vγ; p) = 0. (37)

This low-dimensional nonlinear problem is iteratively solved by a fixed point procedure, i.e.,
at the current approximation γ(α), we solve the linearized problem for δγ(α)

W TU(PTU)−1PT J(ū∗(p)+Vγ(α); p)Vδγ(α) = −W TU(PTU)−1PTr(ū∗(p)+Vγ(α); p) (38)

and set γ(α+1) := γ(α) + δγ(α). As in the previous sections, if M < m, this linear system cannot
be solved uniquely. In that case, an alternative would be to solve a residual least-squares problem,
similar to the GNAT-procedure, cf. [15]. Note that the assembly of this system does not involve any
high-dimensional operations, as the product of the first four matrices on the left- and right-hand
side can be precomputed as a small matrix X := W TU(PTU)−1. Then, the terms PT J, PTr also do
not require any high-dimensional operations, as the multiplication with PT(·) = (·)I corresponds
to evaluation of the “magic” rows of the Jacobian and right-hand side, respectively. Typically,
in discretized PDEs, these M rows only depend on few M̄ entries of the unknown variable (e.g.,
the DOFs related to neighboring elements). This number M̄ is typically bounded by a certain multiple
of M due to regularity constraints on the mesh [8].

In (38), what is required for the collateral basis U can be recognized: If J(Vγ; p)Vδγ ∈ colspan(U)

and r(Vγ; p) ∈ colspan(U), then we are exactly solving the Galerkin–POD reduced linearized system

W T J(Vγ; p)Vδγ = −W Tr(Vγ; p). (39)

Hence, this gives a guideline for an alternative reasonable choice of the training set Y , namely
consisting of snapshots of both (columns of) J or JV and r.

In the Galerkin projection case, one can choose W = V . This is the choice that we pursue in
the experiments to make the procedure more similar to the other reduction approaches. The offline
phase of the DEIM is summarized in Algorithm 4 and an algorithm of the online phase is provided
in Algorithm 5.

Algorithm 4: Offline Phase of the Discrete Empirical Interpolation Method (DEIM)
Input : collateral basis functions uk (and related matrix U) from POD of snapshots Y
Output : sampling matrix P; magic point index set I := {i1, . . . , iM};

reduced basis (q̂l)l=1,...,M (optional)
1 set P0 ← [ ], U0 = [ ], I0 := ∅ ; // initialize
2 for l = 1 . . . , M do
3 U l ← [u1, . . . ul ] ; // truncated POD matrix
4 ql ← ul −U l−1(PT

l−1U l−1)
−1PT

l−1ul ; // interpolation residual
5 il ← arg maxi∈{1,...,n} |(ql)i| ; // maximum of residual
6 q̂l ← ql/ (ql)il

; // normalization

7 Pl ← [Pl−1, eil ], Il := Il−1 ∪ {il} ; // extend projection/magic points

8 set P := PM, I := IM.



Math. Comput. Appl. 2018, 23, 8 11 of 25

Algorithm 5: Online Phase of the Discrete Empirical Interpolation Method (DEIM)
Input : parameters p ∈ P reduced basis V , POD-DEIM sampling matrix

X := W TU(PTU)−1 and magic point index set I
Output : reduced vector γ and nodal temperatures ũ (optional)

1 set γ(0) = 0; ũ(0) = ū∗(p); α = 0 ; // initialize
2 J̄ ← (J(ũ(α); p)V)I ; // cJac; evaluate M rows of right-projected Jacobian
3 r̄ ← (r(ũ(α); p))I ; // crhs; evaluate M rows of right hand side
4 solve X J̄δγ(α) = −Xr̄ ; // csol; fixpoint iter. for δγ(α)

5 update γ(α+1) ← γ(α) + δγ(α); // update
6 compute PM̄ũ(α+1) ← PM̄ũ(α) + PM̄Vδγ(α) and set α← α + 1 ; // creloc

7 converged (‖δũ(α)‖L2(Ω) = ‖δγ(α)‖l2 < εmax)? → end; else: goto 2

3.3. Hyper-Reduction (HR)

In order to improve the numerical efficiency, the Hyper-Reduction method [11] introduces
a Reduced Integration Domain (RID) denoted ΩZ ⊂ Ω. The RID depends on the reduced basis.
It is constructed by offline algebraic operations. The hyper-reduced equations are a Petrov–Galerkin
formulation of the equilibrium equations, obtained by using truncated test functions having zero
values outside the RID. The vector form of the reduced equations is similar to the one obtained by
the Missing Point Estimation method [14] proposed for the Finite Volume Method. The strength of
the Hyper-Reduction is its ability to reduce mechanical models in material science while keeping
the formulation of the constitutive equations unchanged [12]. The smaller the RID, the lower the
computational complexity and the higher the approximation errors. These points have been developed
in previous papers dealing with various mechanical problems (e.g., [29,30]).

The offline procedure of the Hyper-Reduction method involves two steps. The first step is the
construction of the Reduced Integration Domain ΩZ. For the present benchmark test, the RID is the
union of a subdomain denoted by Ωu generated from the reduced vector gradients (∇ψk)k=1,...,m, and a
domain denoted by Ω+ corresponding to a set of neighboring elements to the previous subdomain.
Usually, in the Hyper-reduction method, the user can select an additional subdomain of Ω in order
to extend the RID over a region of interest. This subdomain is denoted by Ωuser. In the sequel, to get
small RIDs, Ωuser is empty. The set Ωu consists of aggregated contributions Ωu

k , k = 1, . . . , m from all
the reduced vectors:

ΩZ := Ωu ∪Ω+ ∪Ωuser, Ωu := ∪m
k=1Ωu

k . (40)

To give the full details of the procedure, we introduce the domain partition in finite elements
denoted (Ωe

j ⊂ Ω)j=1,...nel
: Ω = ∪nel

j=1Ωe
j , where nel is the number of elements in the mesh.

The domain Ωu
k is the element where the maximum L2(Ω) norm of the reduced vectors ∇ψ̃k is

reached. In [11], ∇ψ̃k was set equal to ∇ψk. Here, when applying the DEIM to (∇ψk)k=1,...,m, the
interpolation residuals provide a new reduced basis (qk)k=1,...,m (cf. Algorithm 6) related to temperature
gradients. In this paper, ∇ψ̃k is the output reduced basis produced by the DEIM, when it is applied
to (∇ψk)k=1,...,m. Other procedures, for the RID construction, are available in previous papers on
hyper-reduction, e.g., [11,12]. The element selection reads for k = 1, . . . , m:

Ωu
k = arg max

Ωe
j ,j=1,...,nel

∥∥∇ψ̃k
∥∥

L2(Ωe
j )

, (41)

where ‖.‖L2(Ωe
j )

is the L2 norm restricted to the element Ωe
j . Several layers of surrounding elements

denoted Ω+ can be added to Ωu.
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The second step of the offline Hyper-Reduction procedure is the generation of truncated test
functions that are zero outside of the RID. The truncation operator PZ is defined for all uh ∈ Vh

0 by

PZ(uh) := ∑
i∈F

ϕi uh,i, F =
{

i ∈ {1, . . . , n}
∣∣∣
∫

Ω\ΩZ

ϕi ϕi dΩ = 0
}

. (42)

Here, F is the set of indices of internal points, i.e., inner FE nodes, in ΩZ, which are related to the
available FE equilibrium for predictions, which are forecasted only over ΩZ, i.e., for all w ∈ Vh

0 holds
with ΓZ

2 := Γ2 ∩ ∂ΩZ

a(uh, PZ(w); p)− l(PZ(w)) =
∫

ΩZ

µ(uh; p)∇uh · ∇(PZ(w))dΩ−
∫

ΓZ
2

PZ(w)q∗ dΓ. (43)

The operator PZ can be represented by a truncated projector denoted Z. More precisely, if F =

{i1, i2, . . . , il} with l := card(F ), then

Z := [ei1 , ei2 , . . . , eil ] ∈ Rn×l , PZ(uh) :=
n

∑
i=1

ϕi (Z ZT u)i (44)

with ei ∈ Rn the i-th unit vector. Therefore, the hyper-reduced form of the linearized prediction step is:
for a given γ(α), find δγ(α) such that,

V T Z ZT J(Vγ(α); p) V δγ(α) = −V T Z ZT r(Vγ(α); p), (45)

where J is given by (15) and γ(α+1) := γ(α) + δγ(α).
In addition to Z, we introduce also the operator Z̄ ∈ Rn×l̄ that is a truncated projection operator

onto the l̄ points contained in the RID. In practice, the discrete unknowns are computed at these l̄ ≥ l
points in order to compute the residual at the inner points l. Note that often l̄ is significantly larger
than l, especially if the RID consists of disconnected (scattered) regions.

The complexity of the products related to the fixed point operator J on the left-hand side term
scale with 2ζlm + 2lm2, where ζ is the maximum number of non-zero entries per row of J. For the
right-hand side, the computational complexity is 2lm. For both products, the complexity reduction
factors are n/l. To obtain a well-posed hyper-reduced problem, one requires to fulfill the following
condition l ≥ m. If this condition is not fulfilled, the linear system of Equation (45) is rank deficient. In
case of rank deficiency, one has to add more surrounding elements to the RID. The closer l to m, and the
lower m, the less complex is the solution of the hyper-reduced formulation. The RID construction must
generate a sufficiently large RID. If not, the convergence can be hampered, the number of correction
steps can be increased and, moreover, the accuracy of the prediction can suffer. When ΩZ = Ω, then Z
is the identity matrix and the hyper-reduced formulation coincides with the usual system obtained by
the Galerkin projection. An a posteriori error estimator for hyper-reduced approximations has recently
been proposed in [31] for generalized standard materials.

The offline phase of the hyper-reduction is summarized in Algorithm 6 and an algorithm of the
online phase is provided in Algorithm 7.

3.4. Methodological Comparison

We comment on some formal commonalities and differences between the HR and the (D)EIM.
We first note that both methods reproduce the Galerkin–POD case, if l = M = n. For the HR, this

means that the RID is the full domain, which implies that Z is a square permutation matrix, hence
being invertible and yielding ZZT = I, thus (45) reduces to the POD–Galerkin reduced system (27).
For the (D)EIM, this implies that the magic points consist of all grid points. We similarly obtain
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that P and U are invertible and thus U(PTU)−1PT = I and (38) also reproduces the POD–Galerkin
reduced system (27).

Algorithm 6: Offline Phase of the Hyper-Reduction (HR)
Input : POD basis functions ψk (and related matrix V ) from snapshot POD, global matrix

G ∈ R(ngpD)×n (D : space dimension) for the gradient of the FE ansatz functions,
the number ` of additional layers of elements used to extend the RID and the
user-defined subdomain Ωuser ⊂ Ω

Output : reduced integration domain ΩZ; truncated identities Z, Z̄

1 set U = GV , Ũ = [ ], P = [ ] ; // initialize gradient at all int. points from RB
// uk ∈ RngpD is a column vector containing ∇ψk at all ngp int. points

2 for l = 1, . . . , m do // select interpolation points for mode gradients
3 q← ul − Ũ(PTŨ)−1PTul ; // project onto current sampling sites
4 j← arg max

i∈{1,...,ngpD}
|qi| ; // pick gradient component with largest amplitude

5 P← [P ej], Ũ ← [u1 . . . ul ] ; // enrich projection and sampling set
6 ΩZ ← ΩZ∪ ElementContaining(j)

7 for k = 1, . . . , ` do // add element layers
8 ΩZ ← GrowOneElementLayer(ΩZ)

9 ΩZ ← ΩZ ∪Ωuser ; // zone of interest is considered
10 construct Z̄ and Z based on all/internal-only points of ΩZ

Algorithm 7: Online Phase of the Hyper-Reduction (HR)
Input : parameter vector p ∈ P ; scatter/gather operator Pe of element e and weight vi at the

integration point xi (i = 1, . . . , ngp)

Output : reduced vector γ(p) and nodal temperatures ũ (optional)

1 set u(0) = ū∗(p); α = 0 ; // initialize
2 set r = 0, J = 0 ; // reset r.h.s. and Jacobian
3 for e ∈ ΩZ do // loop over reduced integration domain
4 re = 0, Je = 0; // initialize element residual and stiffness
5 for i = 1, . . . , ngp

e do // loop over the ngp
e int. points of element e

6 evaluate the FE matrices N, G and Ge = GPe at the current int. point; // creloc

7 compute temperature u(α)
h ← Nu(α) and gradient g(α)h ← Gu(α) at int. point ; // creloc

8 evaluate constitutive model µ(α) ← µ(u(α)
h ; p) ; // cconst

9 re ← re + vi µ(α) Ge
T g(α)h ; // crhs

10 Je ← Je + vi µ(α) Ge
TGe ; // cJac

11 r ← r + PT
e re; J ← J + PT

e JePe ; // crhs, cJac

12 r ← V TZZTr ; // project residual at inner nodes of ΩZ; crhs
13 J ← V TZZT JV ; // project Jacobian at inner nodes of ΩZ; cJac

14 solve Jδγ(α) = −r ; // csol

15 compute u(α+1) ← u(α) + Vδγ(α) and set α← α + 1 ; // update nodal temperatures; creloc

16 converged (‖δũ(α)‖L2(Ω) = ‖δγ(α)‖l2 < εmax)? → end; else: goto 2

Furthermore, we can state an equivalence of the DEIM and the HR under certain conditions, more
precisely, the reduced system of the HR is a special case of the DEIM reduced system. Let us assume
that the sampling matrices coincide and the collateral basis is also chosen as this sampling matrix,
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i.e., U = P = Z. Let us further assume that we have a Galerkin projection by choosing W = V for
the DEIM. Then, PTU = ZTZ = IM is the M-dimensional identity matrix, hence we obtain

U(PTU)−1PT = Z(ZTZ)−1ZT = ZZT . (46)

Then, (38) yields

V TZZT JVδγ = −V TZZTr, (47)

which is exactly the HR reduced system (45).
A common aspect of HR, and (D)EIM obviously is the point selection by a sampling matrix.

The difference, however, is the selection criterion of the internal points. In case of the DEIM, these
points are used as interpolation points, while, for the HR, they are used to specify the reduced
integration domain.

A main difference of (D)EIM to HR is the way an additional collateral reduced-space is introduced
in the reduced setting of the equations. The HR is more simple by not using an additional basis
related to the residuals, but the implicit assumption, that colspan(V) (which approximates u) also
approximates r and J well. This is a very reasonable assumption in symmetric elliptic problems
and—in a certain way—it mimics the idea of having the same ansatz and test space as in any Galerkin
formulation. However, from a mathematical point of view, it may not be valid in some more general
cases, as in principle U and V are completely independent. For example, we can multiply the vectorial
residual Equation (11) by an arbitrary regular matrix, hence arbitrarily change r (and thus U for the
DEIM), but not changing u at all (i.e., not changing the POD-basis U). Hence, the collateral basis in the
(D)EIM is first an additional technical ingredient and difficulty, which in turn allows for adopting the
approximation space to the quantities that needs to be approximated well.

Theoretically, the EIM is well founded by analytical convergence results [32]. However, in
addition, as a downside, the Lebesgue-constant, which essentially bounds the interpolation error
to the best-approximation error, can grow exponentially. The DEIM is substantiated with a priori
error estimates [10]. In particular, the error bounds depend on the conditioning of the small matrix
PTU. We are not aware of such a priori results for the HR, but also a posteriori error control has been
presented in [31].

3.5. Computational Complexity

While the aim of model reduction is ultimately a reduction of the computing time, this quantity
may heavily depend on the chosen implementation (see Section 4.6). Generally, the computational
effort can be decomposed into the following contributions:

• the computation of the local unknowns and of their gradients creloc (gradient/temperature
computation),

• the evaluations of the (nonlinear) constitutive model cconst,
• the assembly of the residual crhs and of the Jacobian cJac,
• the solution of the (dense) reduced linear system csol.

From a theoretical point of view, the presented methods differ with respect to creloc, cconst, crhs
and cJac:
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• Finite Element Simulation (ngp: number of integration points; nel: number of elements; nDOF
el :

degrees of freedom per element)

creloc = 2ngpnDOF
el (gradient/temperature computation)

cconst ∼ ngp (constitutive model)

crhs = 2ngpnDOF
el (residual assembly)

cJac = ngp

[
(nDOF

el )2 + 4nDOF
el

]
(Jacobian assembly)

csol ∼ n2.

• Galerkin–POD

creloc = 3ngpm (gradient/temperature computation)

cconst ∼ ngp (constitutive model)

crhs = 2mngp (direct residual assembly)

cJac = (4m + m2)ngp (direct Jacobian assembly)

csol ∼ m3.

• Hyper-Reduction

In the following, nRID
gp is the number of integration points in the RID. Furthermore, cN,B

FE denotes
the cost for the evaluation of u and ∇u using the FE matrices N and G and cr

FE is the related to
the cost for the residual computation on element level (both at least linear in the number of nodes
per element + scattered assembly + overhead) and cK

FE is the cost related to the contribution to the
element stiffness at one element (∼number of nodes per element squared + scattered assembly +
overhead). Lastly, cA is the cost for the Jacobian assembly (i.e., matrix scatter operations).

creloc = l̄m + nRID
gp cN,B

FE (get u, ∂xu, ∂yu in ΩZ)

cconst ∼ nRID
gp (constitutive model)

crhs = nRID
gp cr

FE + ml (residual assembly and projection)

cJac = (mω + m2)l + nRID
gp cK

FE + cA (Jacobian assembly and projection)

csol ∼ m3.

• Discrete Empirical Interpolation Method

The computational cost for the DEIM is closely related to the one of the HR by substituting M
for l and M̄ for l̄ (denoting the number of nodes which are needed to evaluate the residual at the
M magic points). Similar to the other methods, we denote nDEIM

gp as the number of quadrature
points to evaluate the entries of the residual and Jacobian. In the cost notation of the Algorithm 5,
we obtain

creloc ∼ m + nm

cconst= nDEIM
gp (constitutive model)

crhs ∼ MM̄ (residual assembly and projection)

cJac ∼ MM̄m (Jacobian assembly and projection)

csol ∼ m3.

From these considerations, the following conclusions can be drawn: First, the number of
integration points (ngp, nRID

gp , nDEIM
gp ) required for the residual and Jacobian evaluation enter linearly
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into the effort. Second, the reduced basis dimension m enters linearly into the residual assembly and
both linearly and quadratically into the Jacobian assembly. Third, for the HR and the (D)EIM, the ratio
l̄/l and M̄/M have a significant impact on the efficiency: for the considered 2D problem with quadratic
ansatz functions, these ratios can range from 1 up to 21, i.e., for the same number of magic points
pronounced variations in the runtime are in fact possible. The ratio l̄/l is determined by the topology
of the RID, i.e., for connected RIDs it is smaller than for a scatter RID (i.e., for many disconnected
regions forming the RID). Similarly, the (D)EIM has much smaller computational complexity in the
case of magic points belonging to connected elements. Fourth, the Galerkin-POD can be based on
simplified algebraic operations as no nodal variables need to be computed. This is due to the fact that
the reduced residual and Jacobian are directly assembled without recurse to nodal coordinates and to
any standard FE routine.

4. Numerical Results

4.1. ONLINE/OFFLINE Decomposition and RB Identification

In the following, we investigate the behavior of the heat conduction problem (1) for parameters,
which we recall from Equation (7)

p = [gx, gy, c, µ0, µ1] ∈ [0, 1]× [0, 1]× [1, 2]× {1} × {0.5}. (48)

First, a regular parameter grid containing 125 equidistant snapshot points is generated and the
high-fidelity FE model is solved for all those points yielding solutions uh,i, i = 1, . . . , 125. Here, the FEM
discretization is based on a discretization into 800 biquadratic quadrilateral elements comprising
a total of 2560 nodes (including 160 boundary nodes). The problem hence has n = 2400 unknowns.
In order to exemplify the nonlinearity of the problem due to the temperature dependent conductivity,
the conductivity (top row) and the temperature field (bottom row) are shown for three different
parameters in Figure 2.
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Figure 2. Parameter dependent conductivity µ(u; p) (top row) and solution u(x; p) (bottom row) for
three different snapshot parameters.
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Then, a snapshot POD is performed in order to obtain an RB from the snapshots, and the
normalized spectrum of the snapshot correlation matrix is shown in Figure 3. Different dimensions of
the RB are considered with the projection error

Em =

√√√√√
∑125

i=1 ‖uh(pi)− P̃muh(pi)‖2
L2(Ω)

∑125
i=1 ‖uh(pi)‖2

L2(Ω)

(49)

given in Table 1 and the decay is visualized in Figure 3 (right). Here, P̃m denotes the orthogonal
projection operator onto the m-dimensional RB with respect to the standard inner product 〈·, ·〉L2(Ω) in
the L2(Ω) function space

P̃muh(p) =
m

∑
i=1

m

∑
k=1

ψi (M̃−1
)ik 〈uh(p), ψk〉L2(Ω) , M̃ik = 〈ψi, ψk〉L2(Ω) i, j = 1, . . . , m. (50)

Table 1. Dimension of the RB vs. projection error for the snapshots.

Dimension of RB 16 24 32 48 60

Em 6.629 × 10−3 4.120 × 10−3 3.180 × 10−3 2.017 × 10−3 1.486 × 10−3
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Figure 3. Decay of the spectrum of C (normalized to largest eigenvalue ξ1) and the relative projection
error Em of the snapshot data defined by (49).

The low approximation errors Em given in Table 1 and in Figure 3 (right) indicate that the training
data can essentially be represented rather accurately by the RB using a projection. Additionally,
the projection error naturally decreases with increasing dimension. However, the solution of the
reduced problem does not necessarily follow the same monotonicity. Since µ is bounded away from 0
due to µ0 > 0, the problem under consideration is coercive. Similar to the linear case, we expect that
the approximation error e(p) = w̃(γ(p); p)− wh(p) and the projection error are comparable in the
sense that

η(p) :=
‖e(p)‖L2(Ω)

‖uh − P̃muh‖L2(Ω)

(51)

is small. Due to the best-approximation by the orthogonal projection, we certainly have η(p) ≥ 1.
Numerical Values are provided in the following. The constant η(p) is generally not available in closed
form for the considered nonlinear problem. Assuming a constant conductivity µ evaluated at the
solution u(p), an upper bound ηUB(p) for the numerically determined η(p) is provided via Cea’s
Lemma (for symmetric problems):
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ηh
UB :=

√
ĉh(p)
čh(p)

, ĉh := sup
vh,wh∈Vh

0 \{0}

ac(vh, wh; p)
‖vh‖L2(Ω)‖wh‖L2(Ω)

, čh := inf
vh∈Vh

0 \{0}

ac(vh, vh; p)
‖vh‖2

L2(Ω)

. (52)

Here, ĉh and čh are the continuity constant and the coercivity constant of the condensed
bilinear form

ac(wh, vh; p) :=
∫

Ω

∇wh · µ(uh(p); p)∇vh dΩ (∀vh, wh ∈ Vh
0 ), (53)

with uh(p) denoting the Finite Element solution of the nonlinear problem. The estimate ηh
UB is not

a tight bound and, at the same time, its numerical evaluation is computationally expensive, so it is
typically considered to be of limited practical use.

4.2. Test Cases

In order to investigate the accuracy of the reduced models, additional parameter vectors need to
be considered that are not matching the training data. Two test cases are considered in the sequel:

[A] A diagonal in the parameter space is considered with

p(j) := p0 + β(j)(p̂− p0), p0 := [0, 0, 1, 1, 1/2], p̂ := [1, 1, 2, 1, 1/2]. (54)

A total of 101 equally spaced values of β(j) was chosen, i.e., β(j) = j
100 for j = 0, 1, . . . , 100.

[B] A set of 1000 random parameters p(j) was generated using a uniform distribution in parameter
space, i.e., a uniform distribution U ([0, 1]) was chosen for gx, gy and the parameter c was
assumed to be distributed via U ([1, 2]).

4.3. Certification of the Galerkin RB Method

First, the ability of the Galerkin RB solution to approximate the optimal orthogonal projection and,
thereby, the high-fidelity solution, was verified. Therefore, the constant η(p) was evaluated for all
snapshots of case [A] and [B]. The minimum, the mean and the maximum of η(p) were determined
for the 101 and 1000 test of case [A] and [B], respectively. The results shown in Table 2 state the POD
approximation error is found close to the projection error. This confirms the quality of the chosen RB.

Table 2. Computed values of η(p) for different modes sets and for test cases [A], [B]; the last row
represents the upper bound ηh

UB ≥ η(p)

Test Case [A] [B]
min. mean max. min. mean max.

m = 16 1.000 1.4708 1.8248 1.000 1.3185 2.0239
m = 24 1.000 1.9088 2.8926 1.000 1.3187 2.6559
m = 32 1.000 1.7273 2.7441 1.000 1.3679 2.4393
m = 48 1.000 1.5386 2.0232 1.000 1.3051 1.9371
m = 60 1.000 1.5096 1.9333 1.000 1.3447 1.8922

ηh
UB cf. (52) 62.12 64.693 70.581 62.51 74.728 82.504

Note that in test case [B] only a finite number of random parameter vectors was chosen which
does not necessarily contain the extreme values of η(p). The numerical data in Table 2 for test case [A]
shows that indeed, [A] contains parameters leading to larger values of η(p). When increasing the size
of the random parameter set for [B], the maximum values of η(p) in case [B] should be equal or larger
than the maximum values of case [A].
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In addition to the error magnification parameter η(p), the minimum, average and maximum of
the relative error

δ(ũ(p), p) =
‖ũ(p)− uh(p)‖L2(Ω)

‖uh(p)‖L2(Ω)
(55)

are also computed for all samples. The results are provided in Table 3. Note that for test case [A] the
minimum error is truly zero for gx = gy = 0, which implies a homogeneous zero temperature. For an
RB of dimension 32, the mean error is well below 10−3 for all tests and the maximum error over all
tests is 3.23 × 10−3. This basis provides a compromise between accuracy and computational cost and
is therefore used for the comparison of the methods in the sequel.

Table 3. Relative error of the Galerkin RB approximation

Test Case [A] [B]
min. mean max. min. mean max.

m = 16 0.00 10−3 2.54 10−3 7.28 10−3 0.67 10−3 1.75 10−3 7.49 10−3

m = 24 0.00 10−3 1.07 10−3 3.80 10−3 0.16 10−3 0.88 10−3 5.29 10−3

m = 32 0.00 10−3 0.82 10−3 3.23 10−3 0.18 10−3 0.63 10−3 3.13 10−3

m = 48 0.00 10−3 0.31 10−3 1.14 10−3 0.06 10−3 0.33 10−3 2.07 10−3

m = 60 0.00 10−3 0.20 10−3 0.70 10−3 0.05 10−3 0.26 10−3 1.55 10−3

Note that the slow decay of the accuracy of the Galerkin approximation indicated by the data
provided in Table 3 indicates that the information content captured in the training snapshots is not
sufficient to provide better accuracies. Therefore, we decided on a dimension m = 32 for the reduced
basis in the subsequent experiments.

In order to further reduce the computational cost, the use of additional reduction techniques such
as the Hyper-Reduction (HR) and Discrete Empirical Interpolation Method (DEIM) is required. Note
also that the reduction techniques using a POD basis are only approximations of the Galerkin RB.
Hence, the HR and DEIM cannot be better than the Galerkin RB solution except in few cases where
ηHR(p) < η(p) or ηDEIM(p) < η(p), where ηHR(p) and ηDEIM(p) denote the constant η from (51) for
the HR and DEIM method. In our numerical tests, this occurred only exceptionally, which can be
explained by the slightly different considered residual in comparison to the Galerkin RB. Let us now
turn to a more realistic multi-query situation where RB is crucial for non-prohibitive runtimes.

4.4. Application to Uncertainty Quantification

In real world simulation scenarios, material coefficients and boundary conditions are often not
exactly known and one is interested in the impact of this uncertainty on the quantities of interest.
To this end, uncertainty quantification (UQ) has been proposed and has become an active research
field on its own. In classical forward UQ, the critical parameters are modeled as random variables;
the distributions and correlation are derived from measurements as for example shown for nonlinear
material curves in [33]. Finally, the forward model is evaluated at collocation points pi in the parameter
space according to a quadrature method as e.g., Monte Carlo, [34]. Typically, many collocations
(or ‘sampling’) points are needed and therefore model order reduction has been shown to significantly
reduce the computational costs, e.g., [35].

In the case of our thermal benchmark problem, the parameter vector p = P(ω) is considered
as a realization of the random vector, where ω ∈ Ωp and (Ωp,F ,P) is the usual probability space.
We refer to this as test case [C] and assume that the random variables are independent and uniformly
distributed as already introduced in test case [B]

P(ω) = [Gx(ω), Gy(ω), C(ω)] with Gx, Gy ∼ U ([0, 1]) and C ∼ U ([1, 2]).
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Figure 4. Statistical distribution function of the relative error of the DEIM for different numbers of
magic points M ∈ {150, 200, 250, 300} (dimension of POD basis: m = 32).

Finally, the statistical moments of the solution u?(x; P(ω)) are approximated by the Monte Carlo
method, e.g., [34]

E
(
u?(x; P)

)
≈ 1

np

np

∑
j=1

u?(x; p(j)) =: ū?(x), (56)

Mk(u?(x; P)
)
≈ 1

np

np

∑
j=1

(
u?(x; p(j))− ū?(x)

)k
=: mk

?

(
x
)
, (57)

where p(j) are the same np = 1000 random sample points generated for case [B] and u? and mk
? are the

approximations of the solution and its k-th centered moment (k > 1) obtained from Finite Elements,
Galerkin RB, DEIM and HR, i.e., ? ∈ {h, RB, DEIM, HR}, respectively (e.g., m3

h is the third statistical
moment obtained from Finite Element computations). For the DEIM, we selected a fixed number
of M = 400 magic points, which is a conservative choice (see Figure 4 for a discussion). In practice,
one may choose an adaptive selection strategy.

An estimation of the normalized root mean square error of the finite element solution due to
Monte Carlo sampling can be obtained by

EMC =
1√np ‖ūFE‖L2(Ω)

∥∥∥∥
√

m2
h

∥∥∥∥
L2(Ω)

≈ 1.78 · 10−2 ≡ 1.78%.

This implies that the accuracy of the reduced models in the prediction of ū? should be around
2% or better, in order to render the reduced models capable of providing meaningful quantitative
statistical information. Figure 5 shows the error in the moments computed for the various reduction
techniques with respect to the finite element reference solution

Ek
? =
‖mk

? −mk
h‖L2(Ω)

‖mk
h‖L2(Ω)

.

The figure indicates that the approximations of the expected value ū? are at least accurate
up to 10−3 and thus below (i.e., better than) the sampling accuracy EMC. Generally, the DEIM
tends to perform better than the HR; the largest errors occur for E7

HR = 1.09 × 10−1 and
E7

DEIM = 3.46× 10−2, respectively.
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Figure 5. L2(Ω) error of the centered moments w.r.t. the finite element solution. Please note that we
have set m1

? := ū? for simplicity of notation.

4.5. Accuracy of the HR and DEIM vs. Number of Interpolation Points

Both the HR and the DEIM sample the nonlinearity only at entries on the right-hand side:
the interpolation points. The HR has one additional parameter ` describing how many element
layers around a certain degree of freedom (DOF) should be considered in order to generate Ω+,
which add additional interpolation points to the RID. The location of the DOF around which the
interpolation points are located are selected based on the criterion described in Section 3.3. In contrast
to that, the DEIM selects the points using only the right-hand side information of the system. For
the DEIM, the number of sampling points M is an input parameter describing the dimension of the
collateral basis. The effect of the number of points is investigated in the following. Based on the
considerations in Section 3.4, both the HR and the DEIM should reproduce the POD solution for
a large number of sampling sites, while, for a lower number of points, the accuracy is a trade-in for
computational efficiency.

For the DEIM, different interpolation point numbers are considered for both test cases [A] and [B].
The resulting relative errors are compared in Figure 4 in terms of the statistical distribution function
P(t) of the relative error, i.e., the probability of finding a relative error δ that is smaller than or equal to t.
Obviously the number of interpolation points has a pronounced impact on the distribution. Generally,
the error function for a low number of points states a significant increase of the computational error
due to DEIM in comparison with the POD. With an increasing number of points, the distribution
function approaches the one of the POD. In our test, the use of more than 300 sampling points can only
improve the accuracy in a minor way. We must note that, in general, the accuracy of the DEIM must
not be a monotonic function of interpolation points number.

For the hyper-reduced predictions, different layers of elements are added in Ω+ in order to extend
the RID. We have considered here ` = 1, 2, 3 and 4 layers of elements connected to Ωu, for both test
cases [A] and [B]. The resulting relative errors are compared in Figure 6 in terms of the statistical
distribution function P(t) of the relative error. With increasing number of layers, the distribution
function approaches the one of the POD. The number of internal points, l, increases rapidly when
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increasing the number of layers. In the case of the DEIM, the growth of interpolation points is much
more progressive. More than two layers of elements do not improve the accuracy significantly.
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Figure 6. Statistical distribution function of the relative error of the hyper-reduction for different layers
of elements added to the RID ` ∈ {1, 2, 3, 4} (dimension of POD basis: m = 32).

One layer of additional elements gives predictions less accurate than the DEIM for approximately
the same number of internal points/interpolation points (here: l = 416 for the HR and M = 300 for
the DEIM). However, the number of additional points required for the residual evaluation differs
considerably: l̄ = 657 vs. M̄ = 1490. This can be explained by direct comparison of the reduced
domains in Figure 7. For the Hyper-reduction, the RID is rather compact (leftmost plot) while the
magic points of the DEIM are rather scattered, thus requiring the temperature evaluation at many
additional points.

Figure 7. Position of the magic points (blue points) and the additional points required for the evaluation
of the residual (green points); Hyper-reduction (left) vs. DEIM (middle, right) for m = 32.

The predictions of the Hyper-reduction are particularly less accurate, which can especially be seen
by comparing Figure 4 (left, test case [A], black line) and Figure 6 (left, test case [A], red line), where
80% of the samples lead to errors below ≈ 0.002 for the DEIM and ≈ 0.01 for the HR. Nevertheless,
the accuracy of the hyper-reduced predictions is generally of the same order of magnitude as the
accuracy of the DEIM.

4.6. Computing Times

Although the main objective of model reduction is the reduction of computing time, this paper
does not aim at benchmarking HR and DEIM. If not optimized properly, runtime benchmarks compare
rather the performance of the implementations than that of the algorithms. Nonetheless, the numbers
in Table 4 indicate the effect of varying parameters in the respective techniques using our Matlab
implementation. In the case of a few magic points, divergence of the fixed point iteration was observed
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for a small number of configurations in the parametric space. The number is stated in the table as
failure. HR and DEIM have similar performance, although HR seems to be slightly more robust for
the problem at hand in the sense that it exhibits slightly less failures of the iterative solver. Finally,
as expected, the overall runtime scales linearly with the number of solves, i.e., computing test case [B]
is approx. 10 times slower than [A].

Table 4. Elapsed time and number of failures of the nonlinear solver for the solution of all computations
of test case [A] (101 solves) and [B] (1000 solves) for Finite Element (FE), Hyper-Reduction (HR) with
varying number of additional element layers ` ∈ {1, 2, 3, 4}, DEIM for M ∈ {200, 250, 300, 400}magic
points; all computations are carried out using N = 32 POD modes.

Test Case [A] Test Case [B]

Time Fail Time Fail

FE 59.9 s - 660.5 -

HR, ` = 1 10.6 s 0 118.9 s 5
HR, ` = 2 17.4 s 0 180.6 s 2
HR, ` = 3 24.5 s 0 247.2 s 1
HR, ` = 4 30.9 s 0 303.5 s 0

DEIM, M = 200 20.6 s 0 292.3 s 108
DEIM, M = 250 21.4 s 0 240.6 s 7
DEIM, M = 300 24.4 s 0 249.0 s 3
DEIM, M = 400 27.6 s 0 272.7 s 2

5. Conclusions

The presented study revisits an—at first sight—rather simple nonlinear heat conduction
problem. In order to accelerate the nonlinear computations, a Galerkin reduced basis ansatz is
proposed (see Section 3.1) using preliminary offline computations in the established framework of the
snapshot POD.

Both the HR and the (D)EIM can achieve significant accelerations of the computing time. These
scale approximately with the number of magic points (here: l or M) and/or with the number of points
connected to the magic points (l̄ and M̄, respectively). In the presented examples, less than 25% of
the original mesh were considered in both the (D)EIM and the HR. By virtue of the considerations
presented in Section 3.5, the computing times are reduced accordingly.

The selection of the magic points in the HR and the (D)EIM requires the computation of the
solution at an increased number of nodes, i.e., l̄ ≥ l and M̄ ≥ M, respectively. The higher the space
dimension (2D, 3D, . . . ), the more scattered the magic points and the higher the number of degrees of
freedom per element, the more are l̄ and M̄ increased in comparison to l and M.

With respect to the implementation, it shall be noted that the HR is less intrusive than the (D)EIM
as it uses standard simulation outputs to generate the modes, while the (D)EIM requires additional
outputs for the construction of the collateral basis. Other than that, both techniques can be implemented
using mostly the same implementation, which is also confirmed by the similarity of both techniques
presented in Section 3.4.
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25. Ştefănescu, R.; Sandu, A.; Navon, I.M. Comparison of POD reduced order strategies for the nonlinear 2D
shallow water equations. Int. J. Numer. Methods Fluids 2014, 76, 497–521.

26. Fritzen, F.; Hodapp, M.; Leuschner, M. GPU accelerated computational homogenization based on
a variational approach in a reduced basis framework. Comput. Methods Appl. Mech. Eng. 2014, 278, 186–217.

27. Haasdonk, B.; Ohlberger, M.; Rozza, G. A Reduced Basis Method for Evolution Schemes with
Parameter-Dependent Explicit Operators. ETNA Electron. Trans. Numer. Anal. 2008, 32, 145–161.

28. Wirtz, D.; Sorensen, D.; Haasdonk, B. A Posteriori Error Estimation for DEIM Reduced Nonlinear Dynamical
Systems. SIAM J. Sci. Comput. 2014, 36, A311–A338.

29. Ryckelynck, D.; Missoum Benziane, D. Multi-level a priori hyper reduction of mechanical models involving
internal variables. Comput. Methods Appl. Mech. Eng. 2010, 199, 1134–1142.

30. Ryckelynck, D.; Vincent, F.; Cantournet, S. Multidimensional a priori hyper-reduction of mechanical models
involving internal variables. Comput. Methods Appl. Mech. Eng. 2012, 225, 28–43.

31. Ryckelynck, D.; Gallimard, L.; Jules, S. Estimation of the validity domain of hyper-reduction approximations
in generalized standard elastoviscoplasticity. Adv. Model. Simul. Eng. Sci. 2015, 2, 6.

32. Maday, Y.; Nguyen, N.; Patera, A.; Pau, G. A General, Multi-Purpose Interpolation Procedure: The Magic
Points; Technical Report RO7037; Laboratoire Jaques-Louis-Lions, Université Piere et Marie Curie: Paris,
France, 2007.

33. Römer, U.; Schöps, S.; Weiland, T. Stochastic Modeling and Regularity of the Nonlinear Elliptic curl-curl
Equation. SIAM/ASA J. Uncertain. Quantif. 2016, 4, 952–979.

34. Xiu, D. Numerical Methods for Stochastic Computations: A Spectral Method Approach; Princeton University Press:
Princeton, NI, USA, 2010.

35. Haasdonk, B.; Urban, K.; Wieland, B. Reduced Basis Methods for parameterized partial differential equations
with stochastic influences using the Karhunen-Loeve expansion. SIAM/ASA J. Uncertain. Quantif. 2013,
1, 79–105.

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Nomenclature

	Nonlinear Reference Problem
	Strong Formulation
	Weak Formulation
	Discrete Formulation
	Reduced Basis Ansatz

	Sampling-Based Reductions
	Galerkin Reduced Basis Approximation
	Discrete Empirical Interpolation Method (DEIM)
	Hyper-Reduction (HR)
	Methodological Comparison
	Computational Complexity

	Numerical Results
	ONLINE/OFFLINE Decomposition and RB Identification
	Test Cases
	Certification of the Galerkin RB Method
	Application to Uncertainty Quantification
	Accuracy of the HR and DEIM vs. Number of Interpolation Points
	Computing Times

	Conclusions
	References

