Supporting Information

Hazy Al₂O₃-FTO Nanocomposites: A Comparative Study with FTO-Based Nanocomposites Integrating ZnO and S:TiO₂ Nanostructures

Shan-Ting Zhang ^{1,2,*}, Guy Vitrant ³, Etienne Pernot ¹, Carmen Jiménez ¹, David Muñoz-Rojas ¹ and Daniel Bellet ^{1,*}

- ¹ Université Grenoble Alpes, CNRS, Grenoble INP, LMGP, F-38000 Grenoble, France; etienne.pernot@grenoble-inp.fr (E.P.); carmen.jimenez@grenoble-inp.fr (C.J.); David.Munoz-Rojas@grenoble-inp.fr (D.M.-R.)
- ² Technische Universität Darmstadt, Jovanka-Bontschits-Strasse 2, Darmstadt 64287, Germany
- ³ Université Grenoble Alpes, CNRS, Grenoble INP, IMEP-LAHC, F-38000 Grenoble, France; guy.vitrant@minatec.grenoble-inp.fr
- * Correspondence: shanting.zhang@gmail.com (S.-T.Z.); daniel.bellet@grenoble-inp.fr (D.B.); Tel.: +33-4-56-52-93-37 (S.-T.Z. & D.B.)

Step 1: spin coating Al₂O₃ nanoparticles

Step 2: deposit FTO film by ultrasonic spray pyrolysis

Figure S1: Schematic drawing of the two-step process (not to scale) for fabricating Al₂O₃-FTO nanocomposites.

Figure S2: SEM image of a 1 wt % S:TiO₂-FTO nanocomposite presenting the cross section of a nanoparticle agglomerate, which resembles and thus is approximated as a truncated circular pyramid.

Figure S3: (a) AFM image of a 1 wt % ZnO-FTO nanocomposite; right panel summarizes the height profiles of the six grains indicated; (b) AFM image of a 1 wt % S:TiO₂-FTO nanocomposite; right panel summarizes the height profiles of the six grains indicated; (c) AFM image of a 1 wt % Al_2O_3 -FTO nanocomposite; right panel summarizes the height profiles of the six grains indicated.

Table S1: The values of equivalent radius r_{eq} of the grains 1–12 marked in Figure 9 in the main text.

	r _{eq} (nm)		r _{eq} (nm)		r _{eq} (nm)
grain 1	1800	grain 5	1060	grain 9	98.6
grain 2	1590	grain 6	919.5	grain 10	170.75
grain 3	1220	grain 7	881.7	grain 11	360.9
grain 4	1340	grain 8	610.9	grain 12	253.2