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Summary

In this work, a very efficient numerical solution of three-dimensional bound-
ary value problems of linear elasticity including stress singularities is discussed,
focussing on its convergence behaviour. For the employed scaled boundary finite
element method, a discretization is only needed at the boundary, while the solu-
tion is considered analytically in a scaling coordinate. This presents a major
advantage for two-dimensional problems, when the scaling center is placed at
a stress singularity. Unfortunately, three-dimensional problems usually do not
only include point singularities but also line singularities, which results in singu-
lar gradients in the boundary coordinates and thereby diminishes the method's
original advantages. To alleviate this drawback, this work discusses an enrich-
ment of the separation of variables representation with analytical asymptotic
near fields of the line singularities. In contrast to previous works, besides the
near-field functions with 𝜆 = 0.5, also those with 𝜆 = 1.5 were determined
and used for enrichment. This leads to a high accuracy and it is shown that this
approach is required to recover the convergence properties of smooth bound-
ary value problems without singularities when using quadratic Lagrange shape
functions. In order to recover the convergence rates for higher order shape func-
tions, near-field functions with higher singularity exponent have to be included
for enrichment.
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1 INTRODUCTION

For mechanical problems, singularities occur for example if the domain exhibits cracks, corners, notches, or multimaterial
points. In this case, theoretically infinite values in the first derivatives of the problem variables occur. For linear elasticity
problems, this leads to infinite values of mechanical strains and stresses at certain points. Application of a standard finite
element method (FEM) with piecewise polynomial shape functions to boundary value problems (BVPs), which contain
singularities, usually leads to special challenges (see, eg, other works1-6). In this case, the smoothness condition, which
is required for the standard finite element error estimations, is violated. This leads to low rates of convergence which
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are independent of the polynomial degree of the employed shape functions.3,7-9 In order to achieve better accuracy and
rates of convergence, an appropriate adaptation or a skillful choice of the discretization and element formulation within
the FEM is necessary. Different strategies have been developed, so far. In other works,4,10-17 the employment of a domain
rescaling in the vicinity of the singularity, such that the singular near field is transformed into a smooth one, is proposed.
In order to achieve a better representation of the solution, eg, in other works,8,18-29 the finite element space is chosen in
such a way that not only the commonly used polynomial functions are in this space but also additional functions which
should represent the displacement field in the vicinity of the singularity (enriched FEM, XFEM). Another option is to
perform the discretization only in the circumferential direction, while the solution of the BVP is considered analytically
in a radial direction toward the singularity (FEM eigenanalysis techniques30-41; scaled boundary FEM (SBFEM)42-53). The
SBFEM was successfully applied to fracture mechanics problems, like the analysis of asymptotic near fields, the evaluation
of generalised stress intensity factors54-56 and automatic crack growth algorithms.57-60 The application of the method to
other physical problems is, eg, presented in other works.61-68

The SBFEM is an appropriate method for the treatment of two-dimensional (2D) crack problems, when the singularity
is located entirely within the considered domain. However, in three-dimensional (3D) problems in fracture mechanics,
stress singularities can still occur at the point, where the crack front intersects the discretized boundary. Because the solu-
tion at this point is determined numerically, similar problems as in the standard FEM arise. In order to solve this problem,
other authors69-77 employed a mesh refinement toward the singular point in the circumferential coordinates. Apel et al78

employed the graded mesh approach such that the convergence orders of a smooth problem were obtained again for dis-
placement exponents as well as deformation modes. However, while such graded meshes yield the desired convergence
rates, they generally are not very efficient regarding the necessary degrees of freedom. A more efficient approach, con-
cerning the degrees of freedom, has been proposed in the works of Hell and Becker79,80 where stress singularity exponents
were determined using an enriched formulation of the SBFEM (enrSBFEM) and then compared, within the frame of a
convergence study, to the results obtained from a standard formulation.

This work ties in with these forgoing ones and the previous convergence studies are extended to include the 3D defor-
mation modes and the solution of full BVPs. This formulation is described in detail in Section 2.3 after prerequisites of the
standard FEM using Lagrange shape functions in all spatial dimensions are briefly revisited in Section 2.1 (including con-
vergence issues in the presence of stress singularities). The basics of the standard 3D SBFEM are revisited in Section 2.2.
Numerical results concerning the convergence properties of the enriched SBFEM formulation are thoroughly studied and
compared to the standard SBFEM formulation in Section 3. In Section 3.1, the implementation and numerical models
(including geometry, enriched subdomains, etc.) are described in detail. The results in Section 3.2 refer to an example of
a single crack in a homogeneous isotropic continuum. As there exists an analytical solution for this case, also the error in
the associated deformation modes is studied. Finally, some conclusions on the enrSBFEM and its performance are drawn
in Section 4.

2 THEORY

2.1 Prerequisites
This section includes a short introduction into the established standard FE-approach which makes use of a discretization
in all spatial dimensions and Lagrange shape functions. The corresponding estimates of discretization errors are also
shortly revisited.

Problem. Many physical processes can be modelled using partial differential equations (PDEs). In linear elasticity
theory for static problems, there also exists a system of elliptic PDEs. Including boundary conditions, it can be written as

−∇ · 𝝈(u) = f on Ω, (1)

u = 0 at ΓD,
† (2)

𝝈 · n = t at ΓN, (3)

with 𝜕Ω = ΓN ∪ΓD, ΓD ≠ ∅, where Ω ⊂ R3 is the region covered by the solid, f are the body force intensities, t the surface
tractions, n is the outward surface normal, and u ∶ Ω → R3 the displacements. Finally, ∇u ∶ Ω → R3×3 is the gradient

†Inhomogeneous Dirichlet BVPs can be traced back to homogeneous ones: If u = u0 at ΓD, let u0 = û0|ΓD
hold with a function û0 defined on Ω, then

v ∶= u − û0 equally solves −∇ · 𝝈(v) = f + ∇ · 𝝈(û0) in Ω with v = 0 at ΓD and the solution of the primary problem is u = v + û0.
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of the displacements and 𝜺(u) = 1
2
(∇u + ∇Tu) =∶ ∇su the linearised symmetric strain tensor, which is valid for small

deformations. The stress tensor 𝝈 can be expressed by the constitutive law 𝝈(u) = C ∶ 𝜺(u), where C ∶ R
3×3
s → R

3×3
s

represents the elasticity tensor.‡
Finite element methods provide a numerical approach for the solution of system (1)-(3). The established standard FE

approach, with a spatial discretization in all spatial dimensions and the use of Lagrange shape functions, as well as its
variations are based on a weak formulation of system (1)-(3). In the following, Hm(Ω) denotes the Sobolev-space

Hm(Ω) ∶= {v ∈ L2(Ω)| D𝛼v ∈ L2(Ω) für |𝛼| ≤ m} , (4)

where 𝛼 is a multiindex 𝛼 = (𝛼1, … , 𝛼n), |𝛼| = ∑n
i=1 𝛼i is the length of the multiindex, and D𝛼v is the 𝛼'th weak derivative

of v. For further details, please refer to the literature.81,82 Suppose V ∶= V(Ω) ∶= {v ∈ H1(Ω), v|ΓD = 0} and V ∶= V 3,
then the weak formulation of (1)-(3) reads:

Find u ∈ V such that

a(u,𝝋) ∶ = ∫
Ω

𝝈(u) ∶ 𝜺(𝝋)dΩ

= ∫
Ω

f · 𝝋dΩ + ∫
ΓN

t · 𝝋dΓ =∶ l(𝝋) ∀𝝋 ∈ V .

(5)

Standard Finite Element Discretization. A common finite element space Vh ⊂ V as an N-dimensional subspace
of V, N < ∞, is used for the discretization in each spatial dimension, so that the Cartesian product Vh = Vh × Vh × Vh is
used. Then, the Galerkin approximation reads:

Find uh ∈ Vh with

a(uh,𝝋h) = l(𝝋h) ∀𝝋h ∈ Vh . (6)

Let {𝜑1, … , 𝜑N} be a basis of Vh and {𝝋1, … ,𝝋3N} a basis of Vh. With

N ∶=

(
𝜑1 … 𝜑N 0 … 0 0 … 0
0 … 0 𝜑1 … 𝜑N 0 … 0
0 … 0 0 … 0 𝜑1 … 𝜑N

)
= (𝝋1 … 𝝋3N ) ∈ R

3×3N

and the notation ū = (u1,1, … ,uN,1,u1,2, … ,uN,2,u1,3, … ,uN,3)T = (ū1, … , ū3N)T , uh ∈ Vh can be represented as

uh =
3N∑
i=1

ūi𝝋i = Nū. (7)

With the notations a𝑗i ∶= a(𝝋i,𝝋𝑗),A ∶= (ai𝑗) ∈ R3N×3N and b𝑗 ∶= l(𝝋𝑗),b = (b𝑗) ∈ R3N , we get the linear equation
system

Aū = b .

Choice of the trial space Vh ⊂ V. Let {T1, … ,TnT} be a domain decomposition of Ω. Often a piecewise polynomial ansatz
is employed as follows:

V (p)
h ∶= V (p)

h (Ω) =
{
𝜑h ∈ C(Ω̄)||𝜑h|Ti ∈ p(Ti), 𝜑h|ΓD = 0

}
, (8)

where p(Ti) is the space of polynomials of degree p in the subdomain Ti. Most commonly, Lagrange polynomials are
used as basis functions, ie, a basis function 𝜑i has to be in V (p)

h and fulfil 𝜑i(xj) = 𝛿ij with supports at xj, j = 1, … ,N,
where 𝛿ij denotes the Kronecker delta.

Error estimates. The following norms and seminorm are defined (cf, eg82,83):

||v||L2(Ω) ∶=
⎛⎜⎜⎝∫Ω |v|2dx

⎞⎟⎟⎠
1∕2

, (9)

‡R3×3
s ⊂ R3×3 is the subspace of symmetric matrices {A ∈ R3×3 ∶ ai𝑗 = a𝑗i, ∀i, 𝑗 = 1, 2, 3}.
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||v||Hm ∶=

( ∑
0<|𝛼|≤m

||D𝛼v||2L2

)1∕2

, (10)

|v|Hm ∶=

(∑
|𝛼|=m

||D𝛼v||2L2

)1∕2

=∶ ||∇mv||L2 . (11)

In this section, we assume Ω ⊂ R2 and use L2 as a short notation of L2(Ω). Furthermore, a simplified case of the weak
form (5) is considered using only one-dimensional (1D) displacements u ∶ Ω → R, vanishing surface tractions t ≡ 0
and the identity tensor as an elasticity tensor C = I. Accordingly, the weak formulation here reads ∫Ω∇su · ∇s𝜑dΩ =
∫Ω𝑓 𝜑 dΩ ∀𝜑 ∈ V . For the error of a FEM with finite-dimensional trial spaces V (p)

h ⊂ V , the following estimates hold:

||u − uh||L2(Ω) ≤ chp+1||∇p+1u||L2(Ω) ,||∇s(u − uh)||L2(Ω) ≤ ||∇(u − uh)||L2(Ω) ≤ chp||∇p+1u||L2(Ω),
(12)

where p is the polynomial degree of the basis functions of the trial space (see, eg82). Accordingly, at a uniform refinement
of the discretization, the displacement error in L2-norm converges to zero with the order p + 1. This holds true as long
as solutions u ∈ H1(Ω) are in Hp+1(Ω) and therefore ||∇p+1u||L2(Ω) is bounded. This is not generally the case, eg, when
Ω exhibits notches or cracks and the displacement solutions contain singularities. Then, restriction (12) is weak as the
right-hand side is unbounded and thus does not yield an actual upper bound for the error anymore.

With Equation (12), we have error estimates for the FEM with piecewise polynomial shape functions at hand. In order
to achieve a reasonable estimate for linear shape functions, u has to be at least in H2(Ω), because the right-hand side
otherwise becomes unbounded. The leading term of the asymptotic near-field solution, which is not a rigid body motion,
contains a factor

√
r . For Ω ⊂ R2,

√
r certainly is in H1(Ω), but not in H2(Ω). Consequently, the standard error estimate

is useless. In this case, a different estimate showing that the rate of convergence is bounded to a measure related to the
strength of the singularity has to be considered (cf other works7-9). There also is an estimate for an enriched FEM which
makes use of a displacement representation including piecewise polynomial shape functions extended by enrichment
functions. It states that, for an appropriate choice of enrichment functions, the optimal rates of convergence, being those
of a problem without singularities, can be recovered. In the following, these error estimates are briefly revisited.

Each component of the displacement solution in the vicinity of a crack tip can be represented by an appropriate
asymptotic expansion (see, eg, other works84-86)

ui(r, 𝜑) =
∞∑

n=0
r𝜆n û(𝜆n)

i = ûi0 + r1∕2û(0.5)
i (𝜑) + r1û(1)

i (𝜑) + r3∕2û(1.5)
i (𝜑) + ... (13)

for i = x, y, z, where ûi0 is a rigid body motion. For increasing n, the summands in the solution representation are getting
smoother. 𝛼 ∶= 𝜆1 = 0.5 is designated as the leading singularity. Equation (13) can also be expressed as a finite sum and
a smooth remainder U 8

ui(r, 𝜑) =
S∑

n=1
r𝜆n û(𝜆n)

i + U =∶
S∑

n=1
s(n)i + U. (14)

The differentiability conditions of U depend on the choice of S (the larger S, the smoother U). Finite element solutions
of the standard and enriched version are denoted by ũh ∈ Vh respectively by ũenr

h ∈ V enr
h . Here, Vh ⊂ V enr

h and V enr
h

additionally contains enrichment functions up to and including the singularity r𝜆S . However, the finite element solutions
ũh and ũenr

h fulfil
a(ũh, 𝜑h) = l(𝜑h) ∀𝜑h ∈ Vh ,

a
(

ũenr
h , 𝜑h

)
= l(𝜑h) ∀𝜑h ∈ V enr

h .
(15)

Without enrichment. For a FEM with piecewise polynomial trial spaces V (p)
h (see Equation (8)), in the case of occurring

singularities with leading singularity exponent 0 < 𝜆1 = 𝛼 < 1, the following error estimates, as proven in the work of
Blum,8 hold: ||u − ũh||L2 ≤ ch2𝛼 ,||∇s(u − ũh)||L2 ≤ ch𝛼.

(16)
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It is worth noting that the rates of convergence are independent of the polynomial degree of the employed shape functions.
With enrichment. For a FEM with piecewise polynomial trial spaces with polynomial degree p, which is extended by
enrichment functions up to a singularity exponent 𝜆S, the following error estimates hold8:

‖‖‖u − ũenr
h
‖‖‖L2

≤ chmin{p+1, 𝜆S+1+1, 2𝜆S+1} ,‖‖‖∇s (u − ũenr
h

)‖‖‖L2
≤ chmin{p, 𝜆S+1}.

(17)

The estimates (17) result from a generalisation of the estimates (16). According to them, singular functions up to an
exponent of 𝜆S+1 > p have to be included into the trial space to retrieve optimal orders of convergence.

2.2 Scaled boundary finite element method
For the SBFEM a star-convex domain is presupposed. In the star center the so-called scaling center O is placed and, there,
a new coordinate system is introduced: the scaled boundary coordinate system. It consists of a radial coordinate 𝜉 running
from the scaling center toward the domain's boundary, and (in the 3D case) two surface coordinates 𝜂1, 𝜂2. In contrast to
the standard FE approach, there is no need to discretize the total domain Ω. For the SBFEM, we only have to introduce a
discretization in the surface (or boundary) coordinates of the considered domain. Consequently, the problem dimension
is reduced by one and the number of nodes is thereby reduced drastically compared to a standard FEM. Application of
the FEM in 𝜂1-, 𝜂2-direction leads to an ordinary PDE in variable 𝜉, which can be solved analytically.

We define the following differential operator:


T =

(
𝜕∕𝜕x 0 0 0 𝜕∕𝜕z 𝜕∕𝜕𝑦

0 𝜕∕𝜕𝑦 0 𝜕∕𝜕z 0 𝜕∕𝜕x
0 0 𝜕∕𝜕z 𝜕∕𝜕𝑦 𝜕∕𝜕x 0

)
. (18)

Using Voigt notation, here denoted as 𝝈V, 𝜺V, CV, the representation 𝜺V(u) = u can be obtained for the strains and
𝝈V(u) = CVu for the stresses. Furthermore, 𝝈(u) ∶ 𝜺(𝝋) = 𝝈T

V(u)𝜺V(𝝋) = uTTCT
V𝝋 holds. In the following, the Voigt

notation will be employed and the index · V omitted for brevity.
In order to apply the SBFEM, a transformation T from the global x-, y-, z-coordinate system to the 𝜉-, 𝜂1-, 𝜂2-coordinate

system is required. The scaling variable 𝜉 is zero at the scaling center O = (x0, y0, z0) and one at the boundary. The
boundary coordinates 𝜂1 and 𝜂2 are tangential to the surface of domain Ω (Figure 1). The corresponding transformation
reads

T−1

((
𝜉
𝜂1
𝜂2

))
=
⎛⎜⎜⎝

x0 + 𝜉x𝜂(𝜂1, 𝜂2)
𝑦0 + 𝜉𝑦𝜂(𝜂1, 𝜂2)
z0 + 𝜉z𝜂(𝜂1, 𝜂2)

⎞⎟⎟⎠ , (19)

where [x𝜂, y𝜂, z𝜂] ∶ R2 → R3 is a parametric surface representation of the domain boundary. The transformation T is
characterized by ⎛⎜⎜⎜⎜⎝

𝜕

𝜕𝜉
𝜕

𝜉𝜕𝜂1
𝜕

𝜉𝜕𝜂2

⎞⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎝
𝜕x
𝜕𝜉

𝜕𝑦

𝜕𝜉

𝜕z
𝜕𝜉

𝜕x
𝜉𝜕𝜂1

𝜕𝑦

𝜉𝜕𝜂1

𝜕z
𝜉𝜕𝜂1

𝜕x
𝜉𝜕𝜂2

𝜕𝑦

𝜉𝜕𝜂2

𝜕z
𝜉𝜕𝜂2

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎝

𝜕

𝜕x
𝜕

𝜕𝑦
𝜕

𝜕z

⎞⎟⎟⎟⎠ =∶ J(𝜂1, 𝜂2)
⎛⎜⎜⎜⎝

𝜕

𝜕x
𝜕

𝜕𝑦
𝜕

𝜕z

⎞⎟⎟⎟⎠ . (20)

Therefore, the differential operator of Equation (18) can be decomposed in the following manner:

 = Lx
𝜕

𝜕x
+ L𝑦

𝜕

𝜕𝑦
+ Lz

𝜕

𝜕z
= b𝜉

𝜕

𝜕𝜉
+ b𝜂1

𝜕

𝜉𝜕𝜂1
+ b𝜂2

𝜕

𝜉𝜕𝜂2
. (21)

Here, the entries of the matrices Lx, Ly, and Lz consist of zeros and ones and b𝜉 , b𝜂1 , and b𝜂2 are obtained from
Equation (20) (ie, from the inverse of J). The definitions

B𝜉(𝜂1, 𝜂2) ∶= b𝜉N(𝜂1, 𝜂2)

and B𝜂(𝜂1, 𝜂2) ∶= b𝜂1

𝜕N(𝜂1, 𝜂2)
𝜕𝜂1

+ b𝜂2

𝜕N(𝜂1, 𝜂2)
𝜕𝜂2

(22)
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FIGURE 1 Transformation from
cartesian to scaled boundary coordinate
system, with scaling variable 𝜉 and
boundary variables 𝜂1, 𝜂2 and
transformation from the boundary variables
to the reference element

then lead to the following representation:

N(𝜂1, 𝜂2) = B𝜉(𝜂1, 𝜂2)
𝜕

𝜕𝜉
+

B𝜂(𝜂1, 𝜂2)
𝜉

. (23)

Only the boundary of the region Ω is discretized so that the shape functions 𝝋i only depend on the two boundary
coordinates 𝜂1, 𝜂2 (3D case; in the 2D case, there naturally is only one boundary coordinate 𝜂). The resulting equations
will be solved analytically with respect to the scaling variable 𝜉. To achieve this, a separation of variables representation
is employed. Together with the basis functions {𝝋1, … ,𝝋3N}, 𝝋i ∶ R2 → R3, i = 1, … , 3N the separation of variables
representation reads

uh(𝜉, 𝜂1, 𝜂2) =
3N∑
i=1

ūi(𝜉)𝝋i(𝜂1, 𝜂2) = N(𝜂1, 𝜂2)ū(𝜉) , (24)

with coefficient functions ūi ∶ R → R. Using an analogous approach for virtual displacements δuh ∈ Vh, which serve as
test functions, leads to

a(uh, δuh) = l(δuh) , (25)

and accordingly∫
Ω

uT
h

TCT
δuhdΩ = ∫

Ω

f · δuhdΩ + ∫
ΓN

t · δuhdΓ. (26)

The separation of variables representations of uh and δuh as well as Equation (23) are applied in Equation (26). After that,
under transformation (19), by use of the matrices

E0 = ∫
𝜕Ω

BT
𝜉
(𝜂1, 𝜂2)CB𝜉(𝜂1, 𝜂2) det(J)d𝜂1d𝜂2,

E1 = ∫
𝜕Ω

BT
𝜂 (𝜂1, 𝜂2)CB𝜉(𝜂1, 𝜂2) det(J)d𝜂1d𝜂2,

E2 = ∫
𝜕Ω

BT
𝜂 (𝜂1, 𝜂2)CB𝜂(𝜂1, 𝜂2) det(J)d𝜂1d𝜂2,

(27)

where J = J(𝜂1, 𝜂2) and after partial integration, we obtain

a(uh, δuh) = −∫
1

𝜉=0
δūT(𝜉)

[
E0𝜉

2ū,𝜉𝜉(𝜉) +
(
2E0 − E1 + ET

1
)
𝜉ū,𝜉(𝜉) +

(
ET

1 − E2
)

ū(𝜉)
]

d𝜉

+ δūT(𝜉)
[
E0𝜉

2ū,𝜉(𝜉) + ET
1 𝜉ū(𝜉)

]1
𝜉=0 .

(28)

The assumption of vanishing body forces f = 0 and again the application of transformation (19) for the linear form yields

l(δuh) = δūT(𝜉)𝜉2p
𝜉=1
= δūT(1)p. (29)
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Using Equations (28) and (29), the following relations can be derived from the weak formulation (26):

𝜉2E0ū,𝜉𝜉(𝜉) + 𝜉
(
2E0 − E1 + ET

1
)

ū,𝜉(𝜉) +
(
ET

1 − E2
)

ū(𝜉) = 0, (30)

p − E0ū,𝜉(1) − E1ū(1) = 0. (31)
Equation (30) represents a Cauchy-Euler differential equation system of second order. Its solution yields a number of
deformation modes fulfiling the field equations as well as boundary conditions along the boundary faces which origi-
nate at the scaling center. The linear equation system (31) serves to additionally enforce the boundary conditions on the
discretized boundary.

Substituting 𝜉 = et and introducing the functions v̄(t) ∶= ū,t(t) in the differential equation system (30), we get a system
of ordinary differential equations (ODEs) of first order with constant coefficients:(

v̄,t(t)
ū,t(t)

)
=
(

E−1
0
(
E0 − E1 + ET

1
)

E−1
0
(
ET

1 − E2
)

I 0

)(
v̄(t)
ū(t)

)
=∶ 𝜿 w̄(t).

(32)

To solve this, the exponential ansatz ū(t) = e𝜆t𝚽u (respectively v̄(t) = ū,t(t) = e𝜆t𝜆𝚽u) is employed. With𝚽 ∶= (𝜆𝚽u,𝚽u)T

the complete ansatz reads w̄(t) = e𝜆t𝚽 so that we obtain

𝜆e𝜆t𝚽 = 𝜿e𝜆t𝚽 ⇔ (𝜿 − 𝜆I)𝚽 = 0 , (33)

where the equivalence holds as e𝜆t ≠ 0 for all t ∈ R. In conclusion, we have to solve an eigenvalue problem to determine
the solution w̄(t). Suppose that n𝜆 is the number of eigenvalues of 𝜿. Furthermore, it is assumed that the geometric
multiplicity is equal to the algebraic one for each eigenvalue and that the eigenvectors are linearly independent. This is a
valid assumption in 3D problems. Then, the solution of the ODE-system (32) is the linear combination of the fundamental
solutions. After a back-substitution t = ln 𝜉, the solution ū(𝜉) of Equation (30) is

ū(𝜉) =
n𝜆∑
i=1

ci𝜉
𝜆i (𝚽u)i, (34)

with coefficients ci ∈ C to be determined from Equation (31). The eigenvectors (𝚽u)i describe the nodal displacements
at the boundary 𝜉 = 1. We also denote them deformation modes as they contain the essential deformation information.
The respective eigenvalues 𝜆i can be interpreted as their associated decay (Re(𝜆i) < 0) or growth rates (Re(𝜆i) > 0) in the
scaling direction 𝜉.49 This makes representation (34) similar to asymptotic expansions usually employed in the analysis
of stress singularities. The spectrum of eigenvalues is symmetric, in the 3D case with respect to −0.5. There are as many
eigenvalues in every half of the spectrum as there are DOF due to discretization. However, as long as only an outer
boundary is considered, ie, the scaling center is located within or on the considered body, the coefficients ci corresponding
to 𝜆 ≤ 0 need to be zero to keep the displacement bounded at the scaling center (regularity condition).

According to Equation (23), a derivative of the displacements with respect to 𝜉, respectively their division by 𝜉 is needed
to calculate the stresses. Consequently, in the representation of the stresses, the exponent of 𝜉 is reduced by one, ie, stress
singularities occur for exponents Re(𝜆i −1) < 0. In the context of the current work, we will refer to 𝜆i as the displacement
exponents and 𝜆i − 1 simply as the stress exponents.§ In summary, solution (34) is obtained by application of the SBFEM,
in which the eigenvalues 𝜆i and the eigenvectors (𝚽u)i follow from the differential equation system (30), whereas the
coefficients ci follow from the linear equation system (31) for enforcing the boundary conditions.

2.3 Enrichment of the SBFEM
Especially in the 2D case, the SBFEM has proven to be a powerful method for the treatment of cracks and stress singular-
ities (see, eg, the work of Song et al48). For 3D problems, the method is still advantageous because of the accompanying

§Re(|𝜆i − 1|) are commonly called stress singularity exponents.
Note that the spectrum of lambda is symmetric to −0.5. Deformation modes with lambda smaller than −0.5 only become active, when an inner scaled
boundary exists (eg, at 𝜉 = 0.1). This case is not considered within the scope of this work.
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FIGURE 2 Coordinate systems at crack
tip/front. 2D, two-dimensional [Colour
figure can be viewed at
wileyonlinelibrary.com]

information about the eigenvectors and eigenmodes of the BVP and its efficiency caused by the reduced number of degrees
of freedom since not the whole domain but only the boundary is discretized. However, in 3D problems of fracture mechan-
ics, stress singularities do not only occur at points but also along lines (eg, along crack fronts and notch fronts). Points
of stress singularities with a true 3D decay behaviour then usually occur at discontinuities of such singularity lines. As
the SBFEM approach can only account for point singularities (by placing the scaling center there), the singularity lines
remain to be represented by the shape functions in the boundary coordinates. Consequently, in such cases, the 3D SBFEM
must suffer from similar drawbacks as the standard FEM approach.

The objective of the current work is to retrieve the improved accuracy and rate of convergence with as few additional
degrees of freedom as possible. The idea of enrichment is to choose the trial space in such a way that not only the com-
monly used polynomial shape functions are in this space but also additional trial functions which should represent the
displacement in the vicinity of singularity lines. In order to get appropriate additional trial functions for cases involving
cracks in homogeneous isotropic materials, we use the classical crack tip near field with displacement exponent 𝜆 = 0.5.
With respect to the crack tip coordinates r and 𝜑 from Figure 2, the classical crack tip near field reads86

û(0.5)(r, 𝜑) = 1
𝜇

√
r

2𝜋

⎛⎜⎜⎝
KI cos 𝜑

2
(𝜅 − cos𝜑) + KII sin 𝜑

2
(𝜅 + cos𝜑 + 2)

KI sin 𝜑

2
(𝜅 − cos𝜑) − KII cos 𝜑

2
(𝜅 + cos𝜑 − 2)

KIII sin 𝜑

2

⎞⎟⎟⎠
=
√

r û(0.5)(1, 𝜑) =∶
√

r û(0.5)(𝜑)

(35)

in the x′-, y′-, z′-coordinate system (Figure 2B), wherein 𝜇 denotes the shear modulus. Each of its components can be
represented by a linear combination of the basis functions26

{𝑓1, 𝑓2, 𝑓3, 𝑓4} =
{√

r sin 𝜑

2
,
√

r cos 𝜑
2
,
√

r cos𝜑 sin 𝜑

2
,
√

r cos𝜑 cos 𝜑
2

}
. (36)

The functions f1(r, 𝜑), … , f4(r, 𝜑) have to be represented in terms of 𝜂1 and 𝜂2. Accordingly, an additional transformation
from r-, 𝜑- to 𝜂1-, 𝜂2-coordinates is needed. In addition to Equation (35), which represents the deformation modes with
respect to the eigenvalue 𝜆 = 0.5, further deformation modes can be determined by means of the method of complex
potentials.86 The deformation modes with respect to the eigenvalue 𝜆 = 1.5 are

û(1.5)(r, 𝜑) = 1
𝜇

√
r3

2𝜋
·

⎛⎜⎜⎝
KIV cos 𝜑

2
(𝜅 + 2 − (2𝜅 + 1) cos𝜑) + KV sin 𝜑

2
(𝜅 + 4 + (2𝜅 + 5) cos𝜑)

KIV sin 𝜑

2
(−𝜅 + 2 + (−2𝜅 + 1) cos𝜑) + KV cos 𝜑

2
(𝜅 − 4 + (−2𝜅 + 5) cos𝜑)

KVI sin 𝜑

2
(2 cos𝜑 + 1)

⎞⎟⎟⎠
=
√

r3û(1.5)(𝜑).

(37)
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For every point R, where the crack front meets the discretized boundary, nodes in its neighbourhood are chosen to be
enriched. Let I = {1, … ,N} be the index set of the nodes of the finite element discretization. Then, IR

enr ⊂ I denotes the
index set of the nodes, which should be enriched, close to the point R. We assume that Is

enr ∩ It
enr = ∅ for s ≠ t, so that a

node cannot belong to more than one enriched domain at the same time. Suppose {𝜑1, … , 𝜑N} is the Lagrange basis of a
piecewise polynomial function space V (p)

h (𝜕Ω) (8) defined in the boundary coordinates 𝜂1, 𝜂2. A very general approach for
the enrichment in the standard FEM (cf, eg, the work of Mohammadi29) is employing a set of enrichment coefficients for
every enriched node. The transfer of this approach to the SBFEM leads to the following enriched separation of variables
representation for a component uh of uh:

uh(𝜉, 𝜼) =
N∑

i=1
ūst

i (𝜉)𝜑i(𝜼) +
nR∑

R=1

∑
i∈IR

enr

4∑
𝑗=1

āR
i𝑗(𝜉)𝑓𝑗(𝜼)𝜑i(𝜼) . (38)

Here, nR is the number of singular points to be enriched, 𝜉 is the scaling coordinate, and 𝜼 = (𝜂1, 𝜂2) are the boundary
coordinates.

The enrichment approach (38) introduces a large number of additional free functions in 𝜉. This number can be reduced
by a factor of nR∕

∑nR
R=1 |IR

enr | by supposing that the enrichment coefficient functions āR
i1(𝜉), … , āR

i4(𝜉) are equal for every
enriched node i ∈ IR

enr:

uh(𝜉, 𝜼) =
N∑

i=1
ūst

i (𝜉)𝜑i(𝜼) +
nR∑

R=1

4∑
𝑗=1

āR
𝑗 (𝜉)𝑓𝑗(𝜼)

∑
i∈IR

enr

𝜑i(𝜼) . (39)

Let (1, 𝜼1), … , (1, 𝜼N) be the nodal coordinates of the discretized boundary. In order to keep the interpolation property
uh(𝜉, 𝜼k) = ūst

k (𝜉), Equation (39) evolves to

uh(𝜉, 𝜼) =
N∑

i=1
ūst

i (𝜉)𝜑i(𝜼) +
nR∑

R=1

4∑
𝑗=1

āR
𝑗 (𝜉)

(
𝑓𝑗(𝜼) −

N∑
l=1

𝜑l(𝜼)𝑓𝑗(𝜼l)

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=∶F𝑗 (𝜼)

∑
i∈IR

enr

𝜑i(𝜼) . (40)

This approach was developed and first employed79,80 and later also applied87,88 in the works of Hell and Becker.
Now, uh(𝜉, 𝜼k) = ūst

k (𝜉), since 𝜑i(𝜼k) = 𝛿ik, because of the choice of {𝜑1, … , 𝜑N} as Lagrange basis and Fj(𝜼k) = 0. As an
enriched set of basis functions defined on the domain boundary V enr

h (𝜕Ω) ⊂ V(𝜕Ω), we obtain (for one spatial direction)

{𝜑1, … , 𝜑N} ∪
⎧⎪⎨⎪⎩F1

∑
i∈IR

enr

𝜑i, … ,F4
∑

i∈IR
enr

𝜑i, R = 1, … ,nR

⎫⎪⎬⎪⎭ =∶
{
𝜑1, … , 𝜑N , 𝜑

enr
1 , … , 𝜑enr

4nR

}
. (41)

The effect of the term
∑

i∈IR
enr
𝜑i is called blending (see, eg, the work of Mohammadi29). Because of the choice of 𝜑i as

Lagrange basis,
∑

i∈IR
enr
𝜑i(𝜼) = 1 will hold if (1, 𝜼) is located within an element which has all of its nodes enriched, and∑

i∈IR
enr
𝜑i(𝜼) = 0 will hold if (1, 𝜼) is located within an element that has none of its nodes enriched. In elements containing

enriched nodes as well as not enriched nodes, the function decreases from one (enriched node) to zero (not enriched
node) with the smoothness of the chosen polynomial shape functions of degree p (Figure 3).

A set of basis functions of the enriched function space defined on the discretized boundary (for all spatial
directions) Venr,𝜕

h = V enr
h (𝜕Ω) × V enr

h (𝜕Ω) × V enr
h (𝜕Ω) reads

⎧⎪⎨⎪⎩𝝋1, … ,𝝋3N ,

⎛⎜⎜⎝
𝜑enr

1
0
0

⎞⎟⎟⎠ , … ,

⎛⎜⎜⎝
𝜑enr

4nR

0
0

⎞⎟⎟⎠ ,
⎛⎜⎜⎝

0
𝜑enr

1
0

⎞⎟⎟⎠ , … ,

⎛⎜⎜⎝
0

𝜑enr
4nR

0

⎞⎟⎟⎠ ,
⎛⎜⎜⎝

0
0

𝜑enr
1

⎞⎟⎟⎠ , … ,

⎛⎜⎜⎝
0
0

𝜑enr
4nR

⎞⎟⎟⎠
⎫⎪⎬⎪⎭

=∶
{
𝝋1, … ,𝝋3N ,𝝋

enr
1 , … ,𝝋enr

12nR

}
, (42)
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FIGURE 3 Exemplary illustrations for
blending of an enrichment

with dimension 3N + 12nR. Therefore, the number of DOF in the eigenvalue problem is increased by four per spatial
dimension and crack, which results in a total increase of only 12nR. Thereby, an ansatz for the complete discrete solution
uh reads

uh(𝜉, 𝜼) =
3N∑
i=1

ūst
i (𝜉)𝝋i(𝜼) +

12nR∑
𝑗=1

ā𝑗(𝜉)𝝋enr
𝑗 (𝜼). (43)

The enrichment with a decomposition of the crack tip field was first introduced by Fleming et al26 for an element-free
Galerkin formulation. In this work, we will refer to this enrichment method as decomposition method.

Alternatively, the enrichment can be conducted by directly using the complete crack tip near field (35) as originally
proposed by Benzley18 and Gifford and Hilton19 for a 2D FEM. We use the definitions

g1 ∶=
√

r
⎛⎜⎜⎝

cos 𝜑

2
(𝜅 − cos𝜑)

sin 𝜑

2
(𝜅 − cos𝜑)

0

⎞⎟⎟⎠ , g2 ∶=
√

r
⎛⎜⎜⎝

sin 𝜑

2
(𝜅 + cos𝜑 + 2)

cos 𝜑

2
(𝜅 + cos𝜑 − 2)

0

⎞⎟⎟⎠ , g3 ∶=
√

r
⎛⎜⎜⎝

0
0

sin 𝜑

2

⎞⎟⎟⎠ (44)

and again the transformation from r-, 𝜑- to 𝜂1-, 𝜂2-coordinates. Together with

Gm(𝜼) ∶= gm(𝜼) −
N∑

l=1
𝜑l(𝜼)gm(𝜼l), m = 1, 2, 3, (45)

we get the following basis: Venr,𝜕
h

{𝝋1, … ,𝝋3N} ∪
⎧⎪⎨⎪⎩G1

∑
i∈IR

enr

𝜑i, … ,G3
∑

i∈IR
enr

𝜑i, R = 1, … ,nR

⎫⎪⎬⎪⎭
=∶

{
𝝋1, … ,𝝋3N ,𝝋

enr
1 , … ,𝝋enr

3nR

}
. (46)

To this enrichment method, we will refer as the direct method in the following. Here, the dimension is 3N + 3nR, which
means that, in comparison with the decomposition method, even less additional DOF are obtained in the eigenvalue
problem (only 3nR instead of 12nR).



890 BREMM ET AL.

Additionally, this reduction makes it feasible to also include further crack modes in the enrichment. In the case of an
enrichment up to 𝜆 = 1.5, the enrichment functions

g4 ∶=
√

r3
⎛⎜⎜⎝

cos 𝜑

2
(𝜅 + 2 − (2𝜅 + 1) cos𝜑)

sin 𝜑

2
(−𝜅 + 2 + (−2𝜅 + 1) cos𝜑)

0

⎞⎟⎟⎠ , (47)

g5 ∶=
√

r3
⎛⎜⎜⎝

sin 𝜑

2
(𝜅 + 4 + (2𝜅 + 5) cos𝜑)

cos 𝜑

2
(𝜅 − 4 + (−2𝜅 + 5) cos𝜑)

0

⎞⎟⎟⎠ , g6 ∶=
√

r3
⎛⎜⎜⎝

0
0

sin 𝜑

2
(2 cos𝜑 + 1)

⎞⎟⎟⎠
are additionally appended to Equation (44) (see Equation (37)), so that the number of DOF in the eigenvalue problem
then amounts to 3N + 6nR.

Let generally nenr denote the number of enrichment functions.¶ Then, the enriched separation of variables representa-
tion of the direct method reads

uh(𝜉, 𝜼) =
3N∑
i=1

ūst
i (𝜉)𝝋i(𝜼) +

nenr∑
𝑗=1

ā𝑗(𝜉)𝝋enr
𝑗 (𝜼). (48)

Due to the direct incorporation of the crack modes as enrichment functions, the weighting functions ā𝑗(𝜉) can be inter-
preted as the corresponding weights of the crack modes and, in case of 𝜆j < 1, even as generalised stress intensity factors.
With the coefficient function vectors ūst(𝜉) = [ūst

1 (𝜉), … , ūst
3N(𝜉)]

T , ā(𝜉) = [ā1(𝜉), … , ānenr(𝜉)]
T and ū(𝜉) = [ūst(𝜉), ā(𝜉)]T ∈

R3N+nenr , as well as the shape function matrix

N(𝜼) =
[
𝝋1, … ,𝝋3N
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

=∶Nst(𝜼)

,𝝋enr
1 , … ,𝝋enr

nenr
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

=∶Nenr(𝜼)

]
(𝜼) = [Nst(𝜼),Nenr(𝜼)] ∈ R

3×3N+nenr , (49)

we again obtain the common form of the SBFEM separation of variables approach

uh(𝜉, 𝜼) = N(𝜼)ū(𝜉). (50)

(cf Equation (24)), which can be employed in accordance with the SBFEM procedure, described in Section 2.2.

3 RESULTS AND DISCUSSION

3.1 Implementation and numerical modelling
In the following, the SBFEM with and without enrichment will be compared. A homogeneous isotropic 3D continuum#

is considered and a cubic subdomain Ω with corners {[x, y, z]|x, y, z ∈ {−1, 1}} is modelled using the SBFEM. The cube
exhibits one crack, whose crack front meets the discretized boundary at x1 = [1, 0, 0] and x2 = [−1, 0, 0] (Figure 4). The
crack is modelled by doubling all nodes at the crack faces and assigning them to a crack side (cf Figure 5). The scaling
center is placed at x0 = [0, 0, 0]. For every point xR, R = 1, 2, where the crack front meets the discretized boundary, all
nodes xk with ||xR − xk||∞ ≤ 1 − h (51)

were enriched (ie, all nodes on a corresponding side of the cube except for the ones on the cube edges).
In order to determine the rate of convergence, a uniform discretization (equally sized quadrilateral elements) is

employed in each case. Discretizations ne = 2, 4, … , 16, 20, … , 32 with ne being the number of elements per edge of the
considered cubic domain were applied. With an edge length of 2 mm, this corresponds to mesh sizes h = 2 mm

ne
.

¶Enrichment up to 𝜆 = 0.5: nenr = 12nR using the decomposition method and nenr = 3nR using the direct method. Enrichment up to 𝜆 = 1.5: nenr = 24nR
using the decomposition method and nenr = 6nR using the direct method.
# The material data of steel E = 210 GPa, 𝜈 = 0.3 are employed, but due to the assumption of homogeneous material properties, the results are
independent of Young's modulus E and in fact only moderately dependent on the chosen value of Poisson's ratio 𝜈.
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FIGURE 4 Deformation modes for a single crack in a homogeneous isotropic three-dimensional continuum. Modes I-III: classical crack
modes with 𝜆 = 0.5 (z.B.86). Modes IV-VI: higher crack modes with 𝜆 = 1.5

FIGURE 5 Coordinates for the enriched scaled boundary finite
element method (enrSBFEM) [Colour figure can be viewed at
wileyonlinelibrary.com]

We considered various modes and respective displacements at the boundary. The convergence of the following norms
will be investigated:

||u − uh||L2(𝜕Ω) ∶= ||||u − uh||||L2(𝜕Ω) =
⎛⎜⎜⎝∫𝜕Ω ||u − uh||2 dΓ

⎞⎟⎟⎠
1∕2

, (52)

to which we will simply refer as the L2-norm and where || · || is the Euclidean vector norm, and

||u − uh||a(𝜕Ω) ∶=√
a(u − uh,u − uh) =

⎛⎜⎜⎝∫𝜕Ω 𝝈(u − uh)T𝜺(u − uh) dΓ
⎞⎟⎟⎠

1∕2

= 1
2

⎛⎜⎜⎝∫𝜕Ω ∇s(u − uh)TCT∇s(u − uh) dΓ
⎞⎟⎟⎠

1∕2

,

(53)

which we will simply denote the energy norm. As only the boundary is discretized, the norms are also determined by only
integrating over the boundary coordinates 𝜂1, 𝜂2.

Error estimates for the standard FEM on subsets of R2 (and the case of 1D displacements) were revisited in Section 2.1.
The resulting expected rates of convergence are shown in Table 1 for linear as well as quadratic Lagrange shape functions
without and with enrichment, ie, with extension of the trial space using deformation modes up to a displacement exponent
of 𝜆S = 0.5, 1.5. According to these error estimates, the order of convergence without enrichment is independent of the
polynomial degree of the employed shape functions limited to (h) in the L2-norm and (h1∕2) in the energy norm.
When using linear shape functions with enrichment, the optimal order of convergence can already be recovered by an
enrichment with deformation modes up to the strongest singularity with displacement exponent 𝜆S = 0.5. When using
quadratic shape functions, an enrichment with singular functions up to a displacement exponent of 𝜆S = 1.5 is necessary.

No enr. With enr. up to 𝝀S = 0.5 With enr. up to 𝝀S = 1.5|| · ||L2
|| · ||a || · ||L2

|| · ||a || · ||L2
|| · ||a

C4 1.0 0.5 2.0 1.0 2.0 1.0
C8 1.0 0.5 2.5 1.5 3.0 2.0

TABLE 1 Expected rates of convergence
corresponding to a two-dimensional standard finite
element method with Lagrange shape functions (error
estimates (17))

http://wileyonlinelibrary.com
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FIGURE 6 Quasi polar integration: decomposition of the
quadrilateral domain into two triangular domains; then, mapping of
a quadrilateral domain and its Gauss points to each of the two
triangular domains (by collapsing one side of the quadrilateral), so
that the Gauss points near r = 0 move closer together

For the nonenriched version of the SBFEM, Apel et al78 found similar convergence properties as those being valid for
the standard FEM. To the authors' knowledge, there is no error estimate for an enriched SBFEM so far but the results of
Apel et al78 indicate that the convergence properties might also be similar to the ones of the standard FEM. This is why we
will use the values of Table 1 for comparison with the rates of convergence that we obtained in our convergence studies,
measured in norms (52) and (53). As will be seen from our observations, this assumption seems to be reasonable.

Numerical Integration. To determine the matrices (27) on the one hand and the norms in postprocessing on the
other, a Gaussian quadrature rule has been employed for numerical integration. While this is the standard procedure
for nonenriched displacement representations (working very well in this case), a problem arises in the case of using an
enrichment.

The matrix of shape functions reads

N =
[
𝝋1, … ,𝝋3N ,𝝋

enr
1 , … ,𝝋enr

nenr

]
. (54)

The integrands of the matrices E1 and E2 in Equation (27) contain B𝜂 , which in turn contains the derivatives N,𝜂1(𝜂1, 𝜂2)
and N,𝜂2(𝜂1, 𝜂2). By application of the chain rule, the derivatives of the enrichment functions 𝝋enr with respect to 𝜂1 and
𝜂2 read

𝜕𝝋enr
i

𝜕𝜂𝑗
=

𝜕𝝋enr
i

𝜕r
𝜕r
𝜕𝜂𝑗

+
𝜕𝝋enr

i

𝜕𝜑

𝜕𝜑

𝜕𝜂𝑗
i = 1, … ,nenr, 𝑗 = 1, 2 . (55)

As the enrichment functions with a displacement exponent 𝜆 = 0.5 contain the factor
√

r (Equation (36) for decomposi-
tion method; Equation (44) for direct method), 𝜕r𝝋

enr
i exhibits a factor 1√

r
. Consequently, near the crack front (r → 0), a

singularity occurs so that Gaussian quadrature is a rather suboptimal integration procedure.
The determination of the energy norm (53) in postprocessing involves a very similar problem.
An integration scheme, which is well suited in this case and also easy to implement, is a quasi polar integration method

as proposed by Laborde et al.89 This is because the integration in polar coordinates includes an area differential rdrd𝜑,
whose factor r cancels out the factor

√
r
−1√

r
−1

from the matrices B𝜂 in E2. Quasi polar integration is applied in the
elements adjacent to the crack front. That means, if an element node lies on the crack front, the integrals on the quadri-
lateral element will be transformed to two integral domains of triangular shape, so that the tip of the triangles coincides
with the crack front (cf Figure 6). Then, in each of the triangular domains, the same number of integration points (10×10)
as in a quadrilateral domain is considered (thus, the domain of an isoparametric quadrilateral is mapped to a triangular
domain). In all the other elements which contain enriched nodes (fully enriched as well as blending elements), the occur-
ring gradients are not as severely high as in the very vicinity of the crack front, so that a simple 10×10 Gauss integration
seemed sufficient. Finally, for all the other elements, only a 3×3 Gauss integration was employed.

3.2 Convergence of the deformation modes in the BVP
In contrast to the displacement exponents 𝜆, the convergence behaviour of the deformation modes (𝚽u)i cannot be stud-
ied directly. As eigenvectors, they generally are freely scalable and, consequently, need to be appropriately normalised
before further investigation. This, eg, can be done by solving a full BVP, ie, also requesting the fulfilment of the boundary
conditions at the discretized boundary (Equation (31)), thereby determining the weighting factors ci (in (34)), and finally
evaluating the product ci(𝚽u)i instead of (𝚽u)i alone. Of course, when only one deformation mode shall be studied, the
boundary conditions at the discretized boundary must be defined appropriately and this can easily be implemented, when
the exact analytical representation of the deformation mode is known. Then, the boundary conditions are chosen such
that the resulting displacements represent the analytical deformation mode of interest, which in this case is one of the
crack modes.
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Mode I II III IV V VI
SBFEM, || · ||L2

0.99 1.05 1.17 1.98 1.99 1.98
enrSBFEM, || · ||L2

2.12 2.12 1.91 1.98 1.98 1.98
SBFEM, || · ||a 0.52 0.52 0.56 0.99 0.99 1.00
enrSBFEM, || · ||a 1.57 1.56 1.50 0.99 0.99 1.00

Abbreviations: enrSBFEM, enriched scaled boundary finite element
method; SBFEM, scaled boundary finite element method.

TABLE 2 Obtained rates of convergence of the error ||u − uh||
measured in || · ||L2(𝜕Ω)- and || · ||a(𝜕Ω)-norm for C4-elements without
(SBFEM) and with (enrSBFEM) enrichment (with 𝜆2D = 0.5)

Using the analytical solution of the crack modes I-VI as a reference, in the following, the obtained orders of convergence
of the error norms (52) and (53) (L2-norm and energy norm) are studied. The results with and without enrichment are
compared for the three crack opening modes associated to the eigenvalue 𝜆I-III = 0.5 (see Figure 4, first row), as well as to
𝜆IV-VI = 1.5 (see Figure 4, second row). The respective analytical solutions are given in Equations (35) and (37). In order
to produce a plane strain condition, for modes I, II, IV, and V, homogeneous Dirichlet boundary conditions are specified
at x = −1 and x = 1 in x-direction (ux = 0). For modes III and VI, which only include a displacement in x-direction,
homogeneous Dirichlet boundary conditions are specified in y- and z-directions (uy = uz = 0). Additionally, to completely
inhibit any displacement in x-direction for modes I, II, IV, and V and a displacement in y- and z-directions for modes III
and VI, the following boundary conditions for the enrichment coefficients aj (see Equation (48)) have to be specified

a𝑗 = 0 , 𝑗 = 3, 6, … ,nenr for modes I, II, IV and V, as well as
a𝑗 = 0 , 𝑗 = 1, 2, 4, 5, … ,nenr − 2,nenr − 1 for modes III and VI.

At the nodes of the remaining four cube faces, the displacement of the analytical solution is prescribed. Thus, in this area,
the error will constitute the classical interpolation error. Consequently, optimal convergence properties will prevail there
automatically, independent of an enrichment. This means that only the two-dimensional displacements at the cube faces
where a crack front meets the discretized boundary need to be studied. For symmetry reasons, we only determined the
error norms on one of these two cube faces (at x = −1). Detailed numerical experiments indicated that the results obtained
using the decomposition enrichment method hardly differ from those obtained using the direct enrichment method. This
is why we choose the more efficient direct method for further considerations.

Bilinear shape functions on discretized boundary (C4). Figure 7 shows the convergence of the displacement
solutions with increasing mesh density in a double-logarithmic plot. Particularly, the results for the six considered crack
modes I-VI in the L2-norm and energy norm are depicted. The corresponding numerical calculations were performed
using bilinear shape functions (C4-elements, p = 1). Black data points represent results from computations without
enrichment and red data points those with an enrichment using the singular crack modes with 𝜆 = 0.5. The straight lines
again originate from regression calculation with exponential approximation functions. For this regression, the two finest
discretizations were employed. In both norms, a significant improvement of both the accuracy and rate of convergence
can be observed due to the enrichment (see also Table 2) for the modes I-III (solid lines). Without enrichment, the rate of
convergence for all three crack modes is mst

L2,I-III ≈ 1 in the L2-norm and mst
a,I-III ≈ 0.5 in the energy norm. With enrichment,

the rates of convergence improve to menr
L2,I-III ≈ 2 in the L2-norm and to menr

a,I-III ≈ 1.5 in the energy norm. These values
correspond to the optimal values which would also be expected from the error estimates of a standard FEM with and
without enrichment (cf Table 1). However, the rate of convergence of the relative error in the energy norm even exceeds
the expected value of 1. For the crack modes IV-VI, which contain the weaker singular factor r3/2 (dashed lines in Figure 7),
the results with and without enrichment are hardly distinguishable: The rates of convergence are mst

L2,IV-VI ≈ menr
L2,IV-VI ≈ 2

in the L2-norm and mst
a,IV-VI ≈ menr

a,IV-VI ≈ 1 in the energy norm. This corresponds to the expected values from Table 1.

Biquadratic shape functions on discretized boundary (C8) As we have seen, the rates of convergence expected
for the classical FEM (Table 1) coincide with those obtained from numerical calculations with the SBFEM using bilin-
ear shape functions, at least for the canonical example described above. Now, the question arises whether this can also
be observed when using higher order shape functions. To answer this question, biquadratic shape functions at the dis-
cretized boundary are considered. The respective SBFEs contain eight nodes‖ at the boundary and we denote them
C8-elements in the following. Analogously to Figure 7 for C4-elements, Figure 8 shows the results of the convergence

‖Finite elements with a reduced polynomial Lagrange-basis are also called serendipity elements (see, eg, Zienkiewicz et al5).
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FIGURE 7 Relative displacement error of three-dimensional (3D) crack modes for C4-elements without (SBFEM) and with (enrSBFEM)
enrichment (with 𝜆2D = 0.5): – 3D crack modes I-III; - - 3D crack modes IV-VI. enrSBFEM, enriched scaled boundary finite element method;
SBFEM, scaled boundary finite element method

(A) (B)

(C) (D)

FIGURE 8 Relative error in L2-norm (A,B) and energy norm (C,D) for C8-elements without (SBFEM) and with enrichment (enrSBFEM):
– crack modes I-III; - - crack modes IV-VI. Enrichment with two-dimensional crack modes up to 𝜆2D = 0.5 (A,C) and up to 𝜆2D = 1.5 (B,D).
enrSBFEM, enriched scaled boundary finite element method; SBFEM, scaled boundary finite element method

study for C8-elements. Figures 8A and 8C show the convergence of the relative error in L2-norm respectively energy
norm with the same enrichment which was used for the C4-elements (crack modes with 𝜆 = 0.5). For crack modes I-III
(solid lines), the accuracy significantly improves in the L2-norm as well as in the energy norm due to the enrichment.
Since the crack modes I-III do not contain any further singularity than the one associated to 𝜆 = 0.5, the expected orders
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Mode I II III IV V VI
SBFEM, || · ||L2

1.01 1.04 1.09 2.36 2.39 2.46
enrSBFEM (up to 𝜆 = 0.5), || · ||L2

3.82 3.83 3.67 2.43 2.42 2.46
enrSBFEM (up to 𝜆 = 1.5), || · ||L2

3.82 3.83 3.67 3.60 3.61 3.52
SBFEM, || · ||a 0.52 0.52 0.53 1.50 1.50 1.56
enrSBFEM (up to 𝜆 = 0.5), || · ||a 2.80 2.80 2.65 1.50 1.50 1.56
enrSBFEM (up to 𝜆 = 1.5), || · ||a 2.80 2.80 2.65 2.61 2.61 2.53

Abbreviations: enrSBFEM, enriched scaled boundary finite element method; SBFEM, scaled
boundary finite element method.

TABLE 3 Obtained rates of convergence of the error||u − uh||, measured in || · ||L2(𝜕Ω)- and || · ||a(𝜕Ω)-norm for
C8-elements (biquadratic Lagrange shape functions in
𝜂1, 𝜂2) without enrichment (SBFEM) and with
enrichment (enrSBFEM, enriched with
two-dimensional crack modes 𝜆2D = 0.5, 1.5)

of convergence with enrichment are 3 for the L2-norm and 2 for the energy norm, already when using an enrichment
with deformation modes up to 𝜆 = 0.5. Indeed, when using this enrichment, the rates of convergence can be signifi-
cantly improved from mst

L2,I-III ≈ 1 to menr0.5
L2,I-III ≈ 3.8 in the L2-norm and from mst

a,I-III ≈ 0.5 to menr0.5
a,I-III ≈ 2.8 in the energy

norm. These convergence orders are even higher than the expected order of 3, respectively, 2 and remain unchanged for
a further enrichment with crack modes up to 𝜆 = 1.5 (see also Figure 8B and 8D). In contrast to that, the deformation
modes IV-VI (dashed lines) do contain a singularity associated to 𝜆 = 1.5, but none associated to 𝜆 = 0.5. Consequently,
the expected rates of convergence without enrichment are 2.5 in the L2-norm and 1.5 in the energy norm. Indeed, with
mst

L2,IV-VI ≈ 2.4 and mst
a,IV-VI ≈ 1.5 (see Table 3), higher rates of convergence than for deformation modes I-III without

enrichment are achieved. An enrichment with crack modes with displacement exponent 𝜆 = 0.5, here, does not lead to
the desired improvement. On the other hand, an enrichment up to a displacement exponent of 𝜆 = 1.5 yields the rates of
convergence of menr1.5

L2,IV-VI ≈ 3.6, respectively menr1.5
a,IV-VI ≈ 2.6 (cf Table 3 and Figure 8B and 8D). Thus, with an appropriate

enrichment, the same orders of convergence as they are from the known error estimates of the standard FEM are obtained.

Distribution of the relative error In order to gain a deeper insight into the impact of enrichment on the displace-
ment solution, we consider the error distribution as well as the local convergence in certain patches at the discretized
boundary. In the following, we denote the cube faces containing points where the crack front meets the discretized bound-
ary (here at x = ±1) Γs and the remaining cube faces Γns, so that 𝜕Ω = Γs ∪ Γns. Figure 9 shows the distribution of the
relative error measured in the L2-norm (A,B) and energy norm (C,D), without (A,C) and with (B,D) enrichment, when
considering the example of the BVP for crack mode I. This example uses a discretization with 14 C4-elements per cube
edge (ie, bilinear shape functions) and, in this case sufficient, the enrichment with 2D crack modes up to 𝜆 = 0.5. Even
without enrichment, the L2-error at the boundary Γns already is very small (Figure 9A). This is since the analytical solu-
tion is directly prescribed at the boundary nodes here making the error simply represent the interpolation error. Because

(A) (B)

(C) (D)

FIGURE 9 Distribution of the relative
error for ne = 14 C4-elements along each
edge of the cubic subdomain in L2-norm
(first row) and in energy norm (second row)
when solving the full BVP to represent
crack mode I. SBFEM (first column),
enrSBFEM (second column, enrichment up
to 𝜆2D = 0.5). enrSBFEM, enriched scaled
boundary finite element method; SBFEM,
scaled boundary finite element method
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of the fact that at Γns only the smooth angular function 𝚽 of the crack mode has to be reproduced with bilinear shape
functions, this error is small in comparison. In contrast, at the boundary Γs, the error is expectedly large when no enrich-
ment is considered since there the

√
r -function with an infinite gradient at the crack front has to be reproduced. With

enrichment, the error at Γs decreases to approximately the level of the interpolation error at Γns, which means a drastic
reduction. When considering the distribution of the relative error measured in the energy norm (Figure 9C,D), it becomes
apparent yet from the different scale that the error in the energy norm exceeds the error in the L2-norm by more than an
order of magnitude. Without enrichment, the energy error mainly concentrates in the vicinity of the crack faces, ie, also at
Γns where only the interpolation error exists (Figure 9A). This results from the fact that the stress vector at the crack faces
reduces to exactly zero in the analytical solution, which is difficult to reproduce for the approximate solution. The result-
ing error in the stresses enters the integrand of the energy norm quadratically. If there is an enrichment with the exact 2D
solution (Figure 9D), obviously, the stress boundary conditions are fulfiled exactly, so that the relative error, particularly
in fully enriched elements, is drastically reduced. In blending elements, the error is reduced so that it approximately cor-

FIGURE 10 Patches on the discretized boundary of the considered subdomain Ω:
numbered for Table 4 and coloured for Figure 11

FIGURE 11 Convergence of
relative error in patches on the
discretized boundary using
C4-elements and solving the full
BVP to represent crack mode I.
Relative error in L2-norm (first
line) and in energy norm
(second line) using SBFEM (first
column) and enrSBFEM
(second column, enrichment up
to 𝜆2D = 0.5). enrSBFEM,
enriched scaled boundary finite
element method; SBFEM, scaled
boundary finite element method

(A) (B)

(C) (D)
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Patch Error in L2-norm Error in energy norm
number SBFEM enrSBFEM SBFEM enrSBFEM

E1 0.849 2.051 0.441 2.075
E2 0.992 2.048 0.519 2.045
E3 1.261 2.236 1.039 1.575
E4 1.249 2.179 1.131 1.518
E5 1.030 2.201 1.027 1.593
E6 0.837 2.025 0.939 1.554
E7 1.346 2.119 1.088 1.525
E8 1.769 2.119 0.986 1.628
E9 2.001 2.001 1.011 1.001

E10 1.982 1.982 0.999 0.999

Abbreviations: enrSBFEM, enriched scaled boundary finite element
method; SBFEM, scaled boundary finite element method.

TABLE 4 Patchwise orders of convergence of relative error when
solving full boundary value problem (C4-elements) to represent crack
mode I (cf Figure 10)

responds to the interpolation error. The energy error close to the crack faces at Γns (interpolation error) naturally remains
unchanged as there is no enrichment in effect.

Local convergence. For the analysis of local convergence, patches E1,… ,E10 were defined (Figure 10) and the dis-
cretizations with K = 4, 8, 12, 16, 20 elements per cube edge were considered. The discretizations with C4-elements are
chosen such that the nodes of the coarsest mesh also are nodes of the finer meshes. Figures 11A and 11B show the
convergence of the relative error of the displacements in the L2-norm for these patches at the example of crack mode I.
Figure 11A contains the results for the standard formulation of the SBFEM. As expected, the error is particularly high in
the patches E1 and E2, which are located directly adjacent to the crack front, whereas the error in patches E9 and E10
describing the interpolation error is particularly small. The corresponding rates of convergence are mst

L2 ≈ 1, respectively,
mst

L2 ≈ 2 (Table 4). The rate of convergence as well as the accuracy for patches E3-E8 moves between these two extremes
but also shows that the negative influence of the singularity is not limited to its immediate vicinity. This indicates that
the use of simple quarter point elements might not be sufficient here to recover the optimal rate of convergence and that
an enrichment of a constant sized domain is required.

Figure 11B shows the respective results of the enrSBFEM. Here, the relative error of all considered patches converges
with the same optimal order. Figures 11C and 11D contain the results for the energy norm. Without enrichment, the rel-
ative error is particularly high in patches E1 and E2 close to the singularity. In the further patches E3 and E10, which
are located in the vicinity of the crack faces, the error also is comparably high. Nevertheless, the error only converges in
patches E1 and E2 with the reduced order (h0.5) and otherwise with (h). With enrichment, the accuracy again is sig-
nificantly improved, especially in patches E1 and E2, where the error now even converges quadratically and is more than
two orders of magnitude smaller for all discretizations. However, the rate of convergence is also consistently improved on
patches E3-E8 to a value of about menr

a ≈ 1.5. Only on patches E9 and E10 the error still converges with the expected rate
of the interpolation error and, consequently, remains unchanged.

4 CONCLUSIONS

The SBFEM is already established as an appropriate method for 2D crack problems when the crack tip is entirely located
within the considered domain. However, in 3D, the crack front describes a line so that there still exists a singularity
at the point where the crack front intersects the discretized boundary. The impact of an additional use of enrichment
(enrSBFEM, newly introduced in the work of Hell and Becker79) on the convergence properties of deformation modes
𝚽 has been studied and discussed for the example of a single straight crack in a homogeneous isotropic continuum. The
results have been compared to the known improvements on convergence rates achieved for an enrichment of a standard
FEM for a problem including a singularity. According to numerical investigations, the enrichment of the SBFEM with
singular asymptotic near fields seems to have a similar effect on the convergence properties as a corresponding enrichment
in a standard FEM, such that the accuracy and rates of convergence could be retrieved. In contrast to previous works,
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besides the asymptotic near-field functions with 𝜆 = 0.5 also those with 𝜆 = 1.5, 2.5, … were used for the enrichment,
which is required to recover the optimal rates of convergence when Lagrange shape functions of higher order than one
are used.
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