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Figure S1

 

  

Flake-like structures formed after ball-milling powder mixtures 

with high PTFE/WO3 ratios (A+C+D) and pellet cross-section of 

not ball-milled precursor mixture (B). The black particles in the 

SEM image consist of PTFE-remnants that were formed when 

mixing of the PTFE and WO3 precursors was insufficient (e.g. no 

ball-milling) and result from incomplete PTEF decomposition and 

reaction with WO3. These particles are responsible for “pores” in 

product pellets after the reaction. 
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Figure S2 
 

  

Evolution of WO3-xFx monoclinic, orthorhombic and cubic phases 

during the SPS reaction for two different starting compositions x = 

0.15 (A + C) and x = 1.0 (B + D). 
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Figure S3 
  

Rietveld refinements of conventionally prepared phase pure 

WO2.92F0.08 (A) and WO2.58F0.42 (B). 
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Figure S4 
  

19
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Figure S7 
 

  

Fitted XPS spectra of conventionally (A-C) and SPS (D-F) pre-

pared orthorhombic WO2.90O0.10. The F, O, and W sub-spectra are 

shown in (A,D), (B,E) and (C,F). 
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Figure S8 
 

  

Fitted XPS spectra of conventionally (A-C) and SPS (D-F) pre-

pared cubic WO2.60O0.40. The F, O, and W sub-spectra are shown 

in (A,D), (B,E) and (C,F). 
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Figure S9 
 

UV−vis spectra showing the photocatalytic degradation of RhB in 

aqueous solution for WO2.55O0.45 and WO2.9F0.1 prepared                          
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  by conventional solid state chemistry (A, C) and by SPS (B, D). 

Figure S10 
 

  

Plots showing the concentration development of RhB during 

photocatalytic degradation in aqueous solution for WO2.55O0.45                          

and WO2.9F0.1 prepared by conventional solid state chemistry and                       

by SPS. 
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Figure S11 UV−vis spectra showing the photocatalytic degradation of RhB in 

aqueous solution under dark conditions for SPS prepared ortho-

rhombic WO2.90F0.10 (A) and cubic WO2.40F0.60 (B). 
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Results of cell parameter analysis via ADT 
 

Table S1. Unit cell parameter values obtained by averaging the lattice parameters of 12 EDT data sets from dif-

ferent crystals of the same sample (SPS prepared WO2.90F0.10). Mean values and deviations are calculated ne-

glecting crystal 6 due to complex twinning. 

 

measured crystal a - axis b – axis c – axis 

crystal 1  7.330 7.371 7.714 

crystal 2 7.360 7.390 7.712 

crystal 3 7.364 7.412 7.725 

crystal 4 7.352 7.397 7.717 

crystal 5 7.439 7.480 7.678 

crystal 6 7.361 7.456 7.717 

crystal 7 7.347 7.397 7.726 

crystal 8 7.381 7.433 7.720 

crystal 9 7.355 7.433 7.711 

crystal 10 7.363 7.438 7.693 

crystal 11 7.356 7.455 7.735 

crystal 12 7.373 7.428 7.751 

mean + std. dev. 7.358 ± 0.013 7.419 ± 0.027 7.720 ± 0.014 

powder refinement 7.400 7.462 7.720 
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Table S2. Fit parameter of the three orthorhombic (Figure 4A) and four cubic (Figure 4B) deconvoluted peaks 

from the F
-
 solid state MAS NMR of WO2.90F0.08 (conventional synthesis)/WO2.90F0.10 (SPS-prepared) and 

WO2.60F0.40 (conventional synthesis)/ WO2.40F0.60 (SPS-prepared). 

SPS – orthorh. (Figure S6A) Peak 1 Peak 2 Peak 3 Peak 4 

Peak position / ppm -136.0 -113.7 -109.0  

FWHM / ppm 26.0 3.9 12.2  

Relative peak area 65 % 24 % 11 %  

     

Conv. – orthorh. (Figure S6A)     

Peak position / ppm -138.0 -112.4 -105.2  

FWHM / ppm 28.0 4.8 12.0  

Relative peak area  50 % 35 % 15 %  

     

SPS – cubic (Figure S6B)     

Peak position / ppm -138.0 -108.5 -99.3 -94.7 

FWHM / ppm 28.0 6.6 5.8 15.6 

Relative peak area  39 % 43 % 5 % 13 % 

     

Conv. – cubic (Figure S6B)     

Peak position / ppm -146.0 -108.2 -102.4 94.6 

FWHM / ppm 22.0 7.1 2.2 3.8 

Relative peak area  32 % 48 % 8 % 13 % 
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Figure S1. Flake-like structures formed after ball-milling powder mixtures with high PTFE/WO3 ratios (A+C+D) and pellet 

cross-section of not ball-milled precursor mixture (B). The black particles in the SEM image consist of PTFE-remnants that 

were formed when mixing of the PTFE and WO3 precursors was insufficient (e.g. no ball-milling) and result from incom-

plete PTEF decomposition and reaction with WO3. These particles are responsible for “pores” in product pellets after the 

reaction. 
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Figure S2. Evolution of WO3-xFx monoclinic, orthorhombic and cubic phases during the SPS reaction for two 

different starting compositions x = 0.15 (A + C) and x = 1.0 (B + D). Analyses were carried out by stopping the 

reaction at the indicated points of the reaction on the x axis. The progress of the SPS reaction is shown in C+D 

and that of the conventional synthesis in A+B. 
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Figure S3. Rietveld Refinements of phase pure conventional sample WO2.92F0.08 (A) and WO2.60F0.40 (B). Inten-

sities are weighted with Q-values. 
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Figure S4. (A) 
19

F EXSY solid state spectrum of cubic WO2.6F0.4 at tmix = 50 ms. Three to four distinct fluorine 

environments were identified. Two to three between 100 and 120 ppm and one at 148 ppm. (B) 
19

F EXSY solid 

state spectrum of cubic WO2.6F0.4 at tmix = 250 ms. Three to four distinct fluorine environments were identified. 

All fluorine environments are independent due to the absence of cross correlation. Spinning side bands at 45 

ppm and 180 ppm are correlated to the fluorine signal at approx. 110 ppm.  
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Figure S5. Overview TEM image for conventionally synthesized WO2.58F0.42 (A + B) and SPS-prepared 

WO2.40F0.60 (C + D) using identical procedure for mixing by ball-milling prior to the reactions. The grains in the 

SPS-prepared sample are more uniform and smaller than in the conventionally-prepared sample. 



S10 

X-ray photoelectron spectroscopy (XPS). For additional XPS measurements of air heated 

samples, powders were pressed into indium foil and transferred into the XPS spectrometer 

(SPECS GmbH, Germany). When the pressure inside the vacuum chamber was below 5 × 10
-

8
 mbar, the spectra were recorded using both non-monochromatized Al Kα radiation (1486.6 

eV) and Mg Kα radiation (1253.6 eV) from the twin-anode X-ray source XR 50, which was 

operated at 10 kV and 10 mA. To measure a survey spectrum, the hemispherical energy ana-

lyzer PHOIBOS 100 was operated at constant analyzer pass energy Ep = 50 eV. High-

resolution spectra of W 4f and 5p, and O 1s were recorded with ten sweeps, F 1s with 50 

sweeps each at Ep = 13 eV. 

CasaXPS (Casa Software Ltd., UK) was used for XPS data analysis. After subtraction of the 

X-ray satellites and calculation of the background according to Shirley, the individual spec-

tral components of the W 4f and 5p, F 1s, and O 1s spectra were fitted using a product of a 

Gaussian function with a Lorentzian (GL(60)). 

 

Results of XPS spectroscopy of air heated WO3-xFx samples 

Figure S5 and S6 show the F (A+D), O (B+E), and W (C+F) regions of the XPS spectra of 

WO2.9O0.1 (S5) and WO2.55O0.45 (S6) synthesized by SPS (A-C) and conventionally (D-F). 

The XPS overview spectrum (Figure S4) confirms the presence of the elements W, O, and F. 

Furthermore the absence of Carbon after air heating can be confirmed. In Figure S5/6 C and 

F, the peaks centered at 36 and 39 eV are assigned to the W 4f 7/2 and W 4f 5/2 orbitals, re-

spectively, revealing the oxidation states of VI for WO2.9F0.1 and WO2.55O0.45. Independent of 

the synthesis method. No W(V) states could be clearly identified leading to the conclusion 

that the particle surface gets at least partially oxidized during air-heating. Fitting the W 4f 

orbitals leaves a small residue which could indicate a small amount W(V) states. The O 1s 

areas in Figure S5/6 B and E show two signals at 531 and 533 eV for conventional synthe-

sized samples, which correspond to lattice O and surface hydroxyl groups. Compared to Fig-

ure 6, surface water was completely removed and for SPS synthesized samples, surface hy-

droxyl was be removed too. The XPS spectra of the F 1s core electrons (Figure 6A and D) 

show a signal centered at 685 eV, originating from W− F bonds on the surface of the tungsten 

oxyfluoride samples. A second F 1s peak at 687 eV, only present in the spectrum of the ox-

yfluoride synthesized conventionally, is assigned to substitutional F atoms that occupy oxy-

gen sites in the lattice with their associated W− O− H bonds.  
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Figure S6. XPS overview spectra of conventional (C,D) and SPS (A,B) synthesized orthorhombic WO2.90O0.10 

(A,C) and cubic WO2.60O0.40 (B,C). 
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Figure S7. Fitted XPS spectra of conventionally (A-C) and SPS (D-F) prepared orthorhombic WO2.90O0.10. The 

F, O, and W sub-spectra are shown in (A,D), (B,E) and (C,F). 

  



S13 

 

Figure S8. Fitted XPS spectra of conventionally (A-C) and SPS (D-F) prepared cubic WO2.60O0.40. The F, O, 

and W sub-spectra are shown in (A,D), (B,E) and (C,F). 
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Figure S9. UV−vis spectra showing the photocatalytic degradation of RhB in aqueous solution for cubic (A + 

B) and orthorhombic (C + D) WO3-xFx  prepared by conventional solid state chemistry (A - WO2.60F0.40, C - 

WO2.92F0.82) and by SPS (B - WO2.40F0.60, D- WO2.90F0.10).  
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Figure S10. Plots showing the concentration development of RhB during photocatalytic degradation in aqueous 

solution for WO2.55O0.45 (B + D) and WO2.9F0.1 (A + C) prepared by conventional solid state chemistry (C, D) 

and by SPS (A, B).  
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Figure S11. UV−vis spectra showing the photocatalytic degradation of RhB in aqueous solution under dark 

conditions for SPS prepared orthorhombic WO2.90F0.10 (A) and cubic WO2.40F0.60 (B). 

 




