Supplementary Materials: Borates—Crystal Structures of Prospective Nonlinear Optical Materials: High Anisotropy of The Thermal Expansion Caused by Anharmonic Atomic Vibrations

Rimma Bubnova, Sergey Volkov, Barbara Albert and Stanislav Filatov License: CC BY 4.0 International - Creative Commons, Attribution Table S1. Experimental details of β-BaB₂O₄ measurements

Chemical formula	BaB ₂ O ₄							
$M_{ m r}$	223							
Crystal system,	Trigonal, R	3с						
space group								
Temperature (K)	98	123	173	223	298	323	293	693
a (Å)	12.5761(3)	12.5868(18)	12.5828(15)	12.5820(15)	12.5685(14)	12.5806(14)	12.5269(3)	12.552(2)
c (Å)	12.6453 (9)	12.709 (2)	12.7291 (18)) 12.7519 (19)	12.7714 (18)	12.7947 (18)) 12.7181(3)	12.985(3)
$V(Å^3)$	1732 02 (14)	1743 7 (4)	1745 4 (4)	1748 3 (4)	1747 2 (4)	1753 7 (4)	1728 38(7)	1771 7(5)
Z	18) 17 10.7 (1)	17 10.1 (1)	17 10.0 (1)	17 17 .2 (1)	1700.7 (1)	1, 20.00(,)	1771.7(0)
Radiation type	Μο Κα							
ц (mm ⁻¹)	10.18	10.11	10.1	10.08	10.09	10.05	10.20	9.95
Crustal size (mm)	0.10 ×0.12×0	0.20					0.05	0.2×0.4×0.5
-)()							×0.10×0.22	
Absorption	Based on cr	wstal shape						
correction		5 1						
No. of measured,	5068,	5100,	5121,	5084,	5177,	5166,	30297,	-
independent and	1021,	1033,	1036,	1040,	1041,	1043,	3517,	914,
observed [I >	1017	1027	1032	1032	1030	1028	3046	809
$3\sigma(I)$] reflections								
Rint	0.090	0.079	0.078	0.079	0.082	0.082	0.078	-
$(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$	0.685	0.686	0.686	0.686	0.685	0.686	1.034	1.087
$R[F^2 > 2\sigma(F^2)],$	0.034,	0.025,	0.029,	0.024,	0.024,	0.029,	0.031,	0.037,
$wR(F^2)$,	0.045,	0.032,	0.039,	0.030,	0.031,	0.038,	0.035,	0.043,
S	4.02	2.84	3.49	2.54	2.66	3.28	1.17	1.26
No. of reflections	1021	1033	1036	1040	1041	1043	3517	914
No. of parameters	65						90	65
$\Delta ho_{\max}, \Delta ho_{\min} (e \text{ Å}^{-3})$	1.03, -1.27	0.90, -0.94	0.95, -0.86	0.86, -0.68	0.79, -0.79	0.92, -0.78	2.50, -0.89	-
Absolute structure	504	509	513	516	516	516	1743	-
No. of Friedel pairs	5							
used in the								
refinement								

Table S2. Atomic coordinates, displacement parameters (Å²) and site–occupancy factors (SOFs) in the structure of β -BaB₂O₄ modifications at different temperatures.

Atom	Occ.	x	у	z	U iso/eq
			98 K		
B1	1	0.0216(7)	-0.1017(7)	0.2434(7)	0.008(3)
B2	1	0.0423(8)	-0.0876(8)	0.5043(7)	0.009(3)
Ba1	1	0.36142(3)	0.35836(3)	0.37990(2)	0.00635(19)
O1	1	-0.0410(5)	0.0834(5)	0.5013(4)	0.0104(19)
O2	1	0.1642(5)	0.2499(5)	0.5091(5)	0.0099(19)
O3	1	0.1186(5)	0.0211(5)	0.2444(5)	0.011(2)
O4	1	0.0451(5)	0.2382(5)	0.7349(5)	0.0095(19)
			123 K		
B1	1	0.0210(5)	-0.1016(5)	0.2428(5)	0.0085(19)
B2	1	0.0428(5)	-0.0872(5)	0.5039(4)	0.0100(18)
Ba1	1	0.36136(2)	0.35829(2)).379896(14)0.00751(13)

O1	1	-0.0412(4)	0.0833(4)	0.5014(3)	0.0113(13)
O2	1	0.1638(4)	0.2497(4)	0.5094(3)	0.0117(13)
O3	1	0.1185(3)	0.0210(3)	0.2445(3)	0.0117(13)
O4	1	0.0452(3)	0.2383(3)	0.7349(3)	0.0101(13)
			173 K		
B1	1	0.0213(6)	-0.1018(6)	0.2430(6)	0.011(2)
B2	1	0.0425(7)	-0.0872(7)	0.5035(6)	0.012(2)
Ba1	1	0.36122(3)	0.35814(3)).379909(18)0.00934(17)
O1	1	-0.0410(5)	0.0833(5)	0.5015(4)	0.0145(17)
O2	1	0.1639(5)	0.2497(5)	0.5090(4)	0.0145(17)
O3	1	0.1184(4)	0.0211(4)	0.2442(4)	0.0145(17)
O4	1	0.0456(4)	0.2383(4)	0.7349(4)	0.0127(16)
			223 K		
B1	1	0.0211(5)	-0.1016(5)	0.2426(5)	0.0117(19)
B2	1	0.0429(5)	-0.0872(6)	0.5034(5)	0.0136(19)
Ba1	1	0.36104(2)	0.35797(2)).379931(14)0.01105(13)
O1	1	-0.0415(4)	0.0826(4)	0.5009(3)	0.0170(14)
O2	1	0.1638(4)	0.2496(4)	0.5088(3)	0.0170(14)
O3	1	0.1185(3)	0.0211(4)	0.2441(3)	0.0170(14)
O4	1	0.0455(3)	0.2380(3)	0.7348(3)	0.0152(13)
			298 K		
B1	1	0.0210(5)	-0.1015(5)	0.2422(5)	0.0154(19)
B2	1	0.0421(6)	-0.0873(6)	0.5031(5)	0.017(2)
Ba1	1	0.36080(2)	0.35774(2)).379938(15)0.01445(13)
O1	1	-0.0410(4)	0.0829(4)	0.5008(4)	0.0223(15)
O2	1	0.1636(4)	0.2493(4)	0.5088(4)	0.0216(14)
O3	1	0.1182(3)	0.0210(4)	0.2440(4)	0.0215(14)
O4	1	0.0460(4)	0.2383(3)	0.7350(3)	0.0191(14)
			323 K		
B1	1	0.0214(7)	-0.1014(7)	0.2425(6)	0.017(3)
B2	1	0.0422(7)	-0.0874(7)	0.5030(6)	0.019(3)
Ba1	1	0.36073(3)	0.35763(3)	0.37993(2)	0.01553(17)
O1	1	-0.0410(5)	0.0830(5)	0.5007(5)	0.024(2)
O2	1	0.1636(5)	0.2494(5)	0.5091(5)	0.0238(19)
O3	1	0.1183(5)	0.0214(5)	0.2441(5)	0.024(2)
O4	1	0.0457(5)	0.2380(4)	0.7349(4)	0.0212(18)
			693 K		
B1	1	0.0228	-0.1005	0.2426	0.029632
B2	1	0.0427	-0.0866	0.5021	0.02952
Ba1	1	0.3587	0.3558	0.3799	0.031132
O1	1	-0.0411	0.0818	0.501	0.046695
O2	1	0.1639	0.25	0.5093	0.046491
O3	1	0.1175	0.0204	0.2438	0.045029
O4	1	0.0463	0.2369	0.7354	0.041366

Table S3. Anisotropic parameters of atomic displacements in β -BaB₂O₄ at different temperatures.

Atom	U11	U22	U33	U12	U13	U23
			98 K			
B1	0.003(4)	0.008(3)	0.012(4)	0.002(3)	0.003(3)	0.001(3)
B2	0.003(3)	0.007(3)	0.013(3)	-0.001(3)	-0.001(3)	-0.003(3)
Ba1	0.0045(2)	0.0045(3)	0.0102(2)	0.00235(15)	-0.00008(19)	0.0001(2)
O1	0.007(2)	0.004(2)	0.018(3)	0.0019(19)	0.001(2)	0.000(2)
O2	0.011(2)	0.006(2)	0.013(2)	0.0043(19)	0.003(2)	0.0022(19)
O3	0.005(2)	0.005(3)	0.024(3)	0.003(2)	0.000(2)	-0.001(2)
O4	0.010(2)	0.004(2)	0.015(2)	0.004(2)	0.0026(19)	0.0012(19)
			123 K			
B1	0.007(2)	0.008(2)	0.011(2)	0.0040(19)	-0.0018(18)	0.0003(18)
B2	0.005(2)	0.009(2)	0.013(2)	0.0014(19)	-0.0010(19)	-0.0015(19)
Ba1	0.00546(17)	0.00543(18)	0.01174(17)	0.00280(10)	-0.00026(13)	0.00001(13)
O1	0.0061(16)	0.0072(16)	0.0210(18)	0.0035(13)	-0.0004(14)	0.0005(14)
O2	0.0106(16)	0.0076(16)	0.0172(18)	0.0048(13)	0.0036(14)	0.0017(13)
O3	0.0075(15)	0.0044(17)	0.0253(19)	0.0046(14)	0.0018(13)	0.0012(14)
O4	0.0093(15)	0.0073(16)	0.0124(15)	0.0031(14)	0.0012(12)	-0.0017(13)
			173 K			

S3 of S17

Crystals 2017, 7, 93; doi:10.3390/cryst7030093

B1 0.008(3) 0.009(3) 0.015(3) 0.004(2) -0.001(2) 0.002(2) B2 0.009(3) 0.010(3) 0.014(3) 0.004(2) -0.0022(16) 0.00007(17) D1 0.010(2) 0.008(2) 0.027(3) 0.0055(17) -0.0011(19) -0.0002(16) D2 0.017(19) 0.007(2) 0.031(3) 0.0005(17) -0.0011(19) -0.0002(17) D3 0.007(19) 0.007(2) 0.031(3) 0.0042(18) 0.0009(7) 0.0002(17) D4 0.0113(2) 0.009(2) 0.016(2) 0.005(2) -0.0019(19) 0.0000(19) B1 0.010(3) 0.009(2) 0.0168(16) 0.00417(10) -0.0034(14) 0.0000(15) D1 0.0087(17) 0.0019(17) 0.032(2) 0.003(14) 0.0002(15) 0.0030(14) D3 0.0146(16) 0.0097(17) 0.0035(17) 0.0014(14) 0.0000(15) 0.0000(15) D2 0.0140(17) 0.0111(17) 0.0256(19) 0.0063(14) 0.00024(13) -0.00003(15)							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	B1	0.008(3)	0.009(3)	0.015(3)	0.004(2)	0.001(2)	0.002(2)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	B2	0.009(3)	0.010(3)	0.014(3)	0.004(2)	-0.002(2)	-0.003(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ba1	0.0068(2)	0.0069(2)	0.0144(2)	0.00351(13)	-0.00026(16)	0.00007(17)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O1	0.010(2)	0.008(2)	0.027(3)	0.0055(17)	-0.0011(19)	-0.0010(18)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O2	0.012(2)	0.010(2)	0.021(2)	0.0054(17)	0.0042(18)	0.0022(17)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	O3	0.0071(19)	0.007(2)	0.031(3)	0.0042(18)	0.0009(17)	0.0002(18)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	O4	0.013(2)	0.009(2)	0.016(2)	0.0047(18)	0.0019(16)	-0.0017(17)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				223 K			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	B1	0.010(3)	0.009(2)	0.016(2)	0.005(2)	-0.0009(19)	0.0000(19)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	B2	0.007(2)	0.011(2)	0.021(3)	0.0030(19)	-0.001(2)	-0.002(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ba1	0.00800(16)	0.00829(18)	0.01698(16)	0.00417(10)	-0.00034(14)	0.00009(15)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O1	0.0087(17)	0.0099(17)	0.032(2)	0.0047(14)	0.0000(15)	0.0000(15)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O2	0.0140(17)	0.0111(17)	0.0258(19)	0.0063(14)	0.0062(15)	0.0030(14)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	O3	0.0068(16)	0.0073(18)	0.037(2)	0.0034(14)	0.0009(15)	0.0007(15)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	O4	0.0145(16)	0.0099(17)	0.0205(17)	0.0056(14)	0.0024(13)	-0.0008(14)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				298 K			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	B1	0.011(3)	0.014(2)	0.021(2)	0.005(2)	0.0024(19)	0.0027(19)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	B2	0.012(2)	0.015(2)	0.024(2)	0.006(2)	-0.001(2)	-0.003(2)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ba1	0.01057(17)	0.01107(19)	0.02176(17)	0.00545(10)	-0.00051(14)	-0.00003(15)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	O1	0.0129(18)	0.0125(17)	0.043(2)	0.0071(14)	0.0000(16)	0.0010(16)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	O2	0.0159(17)	0.0144(17)	0.034(2)	0.0074(14)	0.0071(16)	0.0029(15)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	O3	0.0108(16)	0.0091(18)	0.045(2)	0.0054(14)	0.0000(15)	-0.0001(15)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	O4	0.0177(17)	0.0118(17)	0.0264(17)	0.0064(15)	0.0022(14)	-0.0017(14)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				323 K			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	B1	0.014(3)	0.015(3)	0.022(3)	0.008(3)	0.001(3)	0.003(3)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	B2	0.014(3)	0.016(3)	0.026(3)	0.007(3)	-0.002(3)	-0.005(3)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ba1	0.0114(2)	0.0120(2)	0.0233(2)	0.00596(13)	-0.00061(19)	-0.0001(2)
O2 0.018(2) 0.014(2) 0.039(3) 0.0076(18) 0.007(2) 0.003(2) O3 0.011(2) 0.012(2) 0.048(3) 0.0060(19) 0.000(2) -0.001(2) O4 0.020(2) 0.013(2) 0.029(2) 0.0078(19) 0.0020(18) -0.0020(19) 693 K B1 0.029132 0.024383 0.035821 0.013708 0.006579 -0.00062 B2 0.028114 0.019196 0.042228 0.012561 -0.0035 -0.00715 Ba1 0.02248 0.025255 0.045892 0.012108 -0.00164 -0.00053 O1 0.021963 0.023858 0.090028 0.008278 0.005192 0.005021 O2 0.030928 0.024383 0.076939 0.008411 0.01479 0.00708	O1	0.015(2)	0.013(2)	0.047(3)	0.0087(19)	0.001(2)	0.001(2)
O3 0.011(2) 0.012(2) 0.048(3) 0.0060(19) 0.000(2) -0.001(2) O4 0.020(2) 0.013(2) 0.029(2) 0.0078(19) 0.0020(18) -0.0020(19) 693 K B1 0.029132 0.024383 0.035821 0.013708 0.006579 -0.00062 B2 0.028114 0.019196 0.042228 0.012561 -0.0035 -0.00715 Ba1 0.02248 0.025255 0.045892 0.012108 -0.00164 -0.00053 O1 0.021963 0.023858 0.090028 0.008278 0.005192 0.005021 O2 0.030928 0.024383 0.076939 0.008411 0.01479 0.00708	O2	0.018(2)	0.014(2)	0.039(3)	0.0076(18)	0.007(2)	0.003(2)
O4 0.020(2) 0.013(2) 0.029(2) 0.0078(19) 0.0020(18) -0.0020(19) B1 0.029132 0.024383 0.035821 0.013708 0.006579 -0.00062 B2 0.028114 0.019196 0.042228 0.012561 -0.0035 -0.00715 Ba1 0.02248 0.025255 0.045892 0.012108 -0.00164 -0.00053 O1 0.021963 0.023858 0.090028 0.008278 0.005192 0.005021 O2 0.030928 0.024383 0.076939 0.008411 0.01479 0.00708	O3	0.011(2)	0.012(2)	0.048(3)	0.0060(19)	0.000(2)	-0.001(2)
693 K B1 0.029132 0.024383 0.035821 0.013708 0.006579 -0.00062 B2 0.028114 0.019196 0.042228 0.012561 -0.0035 -0.00715 Ba1 0.02248 0.025255 0.045892 0.012108 -0.00164 -0.00053 O1 0.021963 0.023858 0.090028 0.008278 0.005192 0.005021 O2 0.030928 0.024383 0.076939 0.008411 0.01479 0.00708	O4	0.020(2)	0.013(2)	0.029(2)	0.0078(19)	0.0020(18)	-0.0020(19)
B1 0.029132 0.024383 0.035821 0.013708 0.006579 -0.00062 B2 0.028114 0.019196 0.042228 0.012561 -0.0035 -0.00715 Ba1 0.02248 0.025255 0.045892 0.012108 -0.00164 -0.00053 O1 0.021963 0.023858 0.090028 0.008278 0.005192 0.005021 O2 0.030928 0.024383 0.076939 0.008411 0.01479 0.00708				693 K			
B2 0.028114 0.019196 0.042228 0.012561 -0.0035 -0.00715 Ba1 0.02248 0.025255 0.045892 0.012108 -0.00164 -0.00053 O1 0.021963 0.023858 0.090028 0.008278 0.005192 0.005021 O2 0.030928 0.024383 0.076939 0.008411 0.01479 0.00708	B1	0.029132	0.024383	0.035821	0.013708	0.006579	-0.00062
Ba1 0.02248 0.025255 0.045892 0.012108 -0.00164 -0.00053 O1 0.021963 0.023858 0.090028 0.008278 0.005192 0.005021 O2 0.030928 0.024383 0.076939 0.008411 0.01479 0.00708	B2	0.028114	0.019196	0.042228	0.012561	-0.0035	-0.00715
O1 0.021963 0.023858 0.090028 0.008278 0.005192 0.005021 O2 0.030928 0.024383 0.076939 0.008411 0.01479 0.00708	Ba1	0.02248	0.025255	0.045892	0.012108	-0.00164	-0.00053
O2 0.030928 0.024383 0.076939 0.008411 0.01479 0.00708	O1	0.021963	0.023858	0.090028	0.008278	0.005192	0.005021
	O2	0.030928	0.024383	0.076939	0.008411	0.01479	0.00708
O3 0.025328 0.025108 0.086573 0.014051 -0.00571 0.000103	O3	0.025328	0.025108	0.086573	0.014051	-0.00571	0.000103
O4 0.045314 0.027815 0.055099 0.02138 0.001681 -0.00037	O4	0.045314	0.027815	0.055099	0.02138	0.001681	-0.00037

Table S4. Anharmonic thermal parameters (×10⁻⁴)of the third and fourth order for barium atoms in the structure of β -BaB₂O₄ at 298 K obtained using Gram–CharLie model.

C111	C112	C113	C122	C123	C133	C222	C223	C233	C333					
0.0002.3(7) 0.0000.5(3)1.0(5)	-0.8(4)	0.6(3)	0.59(8)	-2.7(7)	1.2(5)	-0.57(9)-2.8(9)					
D1111	D1112	D1113	D1122	D1123	D1133	D1222	D1223	D1233	D1333	D2222	D2223	D2233	D2333	D3333
0.25(18)	0.17(9)	0.18(8)	0.09(7)	0.15(6)	-0.34(4)	0.09(11)	0.03(6)	-0.12(2)-0.06(6)-0.1(2)	-0.01(8)-0.38(4)-0.09(6)-1.66(7)

Table S5. B–O (Å) bond len	gths and O–B–O	(°) angles in	the β -BaB ₂ O ₄ st	tructure at different	temperatures.

Т / К	98	123	173	223	298	323	693	Δ(98–693 K)
B1–O3	1.410(8)	1.412(6)	1.413(7)	1.413(6)	1.408(6)	1.410(8)	1.3833(6)	-0.027
B1–O3 ⁱ	1.404(13)	1.398(9)	1.399(12)	1.397(9)	1.393(9)	1.395(13)	1.4102(5)	0.006
B1–O4 ⁱⁱ	1.327(14)	1.335(10)	1.328(12)	1.328(10)	1.329(10)	1.327(13)	1.3072(3)	-0.020
B2–O1 ⁱⁱⁱ	1.409(12)	1.413(8)	1.409(10)	1.405(8)	1.400(9)	1.404(11)	1.3924(5)	-0.017
B2–O1 ⁱ	1.419(10)	1.417(6)	1.415(8)	1.419(7)	1.415(7)	1.417(9)	1.4032(6)	-0.016
B2–O2 ⁱ	1.324(15)	1.323(10)	1.327(13)	1.321(11)	1.323(11)	1.323(15)	1.3328(2)	0.009
O3–B1–O3 ⁱ	116.1(8)	116.4(6)	115.9(7)	116.3(6)	116.2(6)	116.1(8)	115.578(12)	-0.5
O3–B1–O4 ⁱⁱ	120.2(8)	119.7(5)	119.9(7)	119.6(5)	119.5(5)	120.0(7)	120.610(13)	0.4
O3 ⁱ –B1–O4 ⁱⁱ	123.6(6)	123.8(4)	124.1(5)	123.9(4)	124.3(4)	123.9(6)	123.725(10)	0.1
O1 ⁱⁱⁱ –B2–O1 ⁱ	115.6(10)	115.6(7)	115.7(9)	115.2(7)	115.5(7)	115.5(9)	114.885(11)	-0.7
O1 ⁱⁱⁱ –B2–O2 ⁱ	124.4(7)	124.1(5)	124.2(6)	124.1(5)	124.6(5)	124.5(7)	124.264(11)	-0.1
O1 ⁱ -B2-O2 ⁱ	120.1(8)	120.3(6)	120.1(7)	120.7(6)	119.9(6)	120.0(8)	120.755(13)	0.7

Symmetry codes: (i)–*x*+*y*,–*x*,*z*; (ii) *x*,*x*–*y*,*z*–1/2;(iii) –*y*,*x*–*y*,*z*

-		~ ~	D	\sim						\sim	D	> / ^					0.0	-	\sim				1.00				
· • •			17- 4	(<i>\</i> /	· ^ `					<i>(</i>)	17- 1	1 / U	· · -				<i>n</i>	- 17.	1						L		
	inia	50	D'3-			nono	1 Dr	1 CEEPIC	212(1		-0'3-1		1 1 2	THEFTAC	1111	THA	K = D'	300	N 14	CTTIL	TTTTC	T L' 1	(11774)	CONT	TOTA	narat	TTCAC
			110-					121115	<i>a</i> i i i i	· /-	-170-1		10						× 74	51111		·		C 1 11	16111		11155
	~~ ~~	~~.	~~~	\sim $^{\circ}$	/	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~			~~~~~	~	~~ ~					~~~~	~ ~ .	~~~~					~~~~~			~~~~	~~~~~
												•															

Т / К	98	123	173	223	298	323	693	Δ(98–693 K)
Ba1–O1 ⁱ	2.755(7)	2.759(5)	2.760(6)	2.769(5)	2.766(5)	2.768(7)	2.7923(9)	0.037
Ba1–O2	2.701(6)	2.713(4)	2.709(5)	2.708(4)	2.708(4)	2.712(6)	2.7058(8)	0.005
Ba1–O2 ⁱⁱ	3.027(6)	3.038(4)	3.045(5)	3.053(4)	3.058(5)	3.060(6)	3.0969(10)	0.070
Ba1–O2 ⁱ	2.834(8)	2.832(5)	2.833(7)	2.833(6)	2.828(6)	2.830(8)	2.8161(6)	-0.018
Ba1–O3 ⁱⁱⁱ	2.775(7)	2.779(5)	2.781(6)	2.780(5)	2.781(5)	2.786(7)	2.7888(6)	0.014
Ba1–O4 ⁱⁱ	2.910(5)	2.913(4)	2.909(5)	2.911(4)	2.906(4)	2.913(5)	2.9204(13)	0.010
Ba1–O4 ⁱ	2.811(6)	2.822(4)	2.827(5)	2.830(4)	2.837(4)	2.839(6)	2.8843(9)	0.073
Ba1–O4 ^{iv}	2.632(6)	2.638(4)	2.642(5)	2.646(4)	2.643(4)	2.648(6)	2.6549(8)	0.023
O1 ⁱ –Ba1–O2	143.4(2)	143.41(14)	143.41(18)	143.57(15)	143.55(15)	143.5(2)	143.554(7)	0.2
O1 ⁱ –Ba1–O2 ⁱⁱ	81.3(2)	81.23(16)	81.2(2)	81.03(16)	80.99(17)	80.9(2)	80.301(5)	-1.0
O1 ⁱ –Ba1–O2 ⁱ	50.32(16)	50.30(11)	50.27(14)	50.31(11)	50.12(12)	50.14(15)	50.188(9)	-0.1
O1 ⁱ –Ba1–O3 ⁱⁱⁱ	128.27(16)	128.19(11)	128.17(14)	128.00(11)	127.96(11)	128.00(15)	126.903(10)	-1.4
O1 ⁱ –Ba1–O4 ⁱⁱ	79.4(2)	79.35(15)	79.38(19)	79.31(15)	79.35(16)	79.4(2)	79.112(12)	-0.3
O1 ⁱ –Ba1–O4 ⁱ	75.38(17)	75.51(12)	75.48(16)	75.57(13)	75.69(13)	75.70(17)	75.649(8)	0.3
O1 ⁱ –Ba1–O4 ^{iv}	113.0(2)	112.98(15)	113.01(19)	112.90(15)	112.87(16)	112.7(2)	112.712(12)	-0.3
O2–Ba1–O2 ⁱⁱ	134.6(2)	134.74(17)	134.8(2)	134.78(17)	134.84(17)	134.9(2)	135.748(6)	1.1
O2–Ba1–O2 ⁱ	103.07(19)	103.13(13)	103.23(17)	103.32(13)	103.45(14)	103.43(18)	104.163(11)	1.1
O2–Ba1–O3 ⁱⁱⁱ	78.78(19)	78.76(13)	78.79(17)	78.83(14)	78.93(14)	78.84(18)	79.009(11)	0.2
O2–Ba1–O4 ⁱⁱ	118.0(2)	117.94(14)	117.91(17)	117.89(14)	117.83(14)	117.76(19)	116.777(10)	-1.2
O2–Ba1–O4 ⁱ	70.91(18)	70.72(13)	70.73(16)	70.80(13)	70.67(14)	70.65(18)	70.366(12)	-0.5
O2–Ba1–O4 ^{iv}	81.93(18)	82.19(13)	82.23(16)	82.31(13)	82.41(14)	82.59(18)	83.920(17)	2.0
O2 ⁱⁱ –Ba1–O2 ⁱ	105.9(2)	105.93(14)	105.74(18)	105.63(15)	105.55(15)	105.6(2)	105.010(9)	-0.9
O2 ⁱⁱⁱ –Ba1–O3 ⁱⁱⁱⁱ	72.3(2)	72.33(14)	72.35(18)	72.36(15)	72.29(15)	72.3(2)	72.515(9)	0.2
O2 ⁱⁱ –Ba1–O4 ⁱⁱ	65.05(15)	65.07(11)	65.14(13)	65.14(11)	65.21(11)	65.14(15)	65.371(9)	0.3
O2 ⁱⁱ –Ba1–O4 ⁱ	152.99(18)	153.02(13)	153.03(16)	152.94(13)	152.99(13)	152.89(17)	152.144(8)	-0.8
O2 ⁱⁱ –Ba1–O4 ^{iv}	68.43(16)	68.32(11)	68.19(14)	68.13(11)	68.04(12)	68.04(15)	67.685(15)	-0.7
O2 i –Ba1–O3 iii	178.09(16)	178.08(11)	177.93(14)	177.80(11)	177.59(12)	177.71(15)	176.816(4)	-1.3
O2 ⁱ –Ba1–O4 ⁱⁱ	129.5(2)	129.41(14)	129.41(18)	129.39(15)	129.22(15)	129.3(2)	129.038(12)	-0.5
O2 ⁱ -Ba1-O4 ⁱ	68.90(18)	68.98(13)	69.04(16)	69.13(13)	69.19(14)	69.16(18)	69.580(8)	0.7
O2 ⁱ –Ba1–O4 ^{iv}	82.3(2)	82.39(15)	82.41(19)	82.38(15)	82.57(16)	82.5(2)	82.789(10)	0.5
O3 ⁱⁱⁱ –Ba1–O4 ⁱⁱ	49.3(2)	49.26(14)	49.22(18)	49.13(15)	49.09(15)	49.1(2)	48.269(12)	-1.0
O3 ⁱⁱⁱ –Ba1–O4 ⁱ	112.35(19)	112.17(13)	112.26(17)	112.24(13)	112.22(14)	112.14(18)	111.613(7)	-0.7
O3 ⁱⁱⁱ –Ba1–O4 ^{iv}	97.5(2)	97.60(15)	97.49(19)	97.54(15)	97.44(16)	97.5(2)	97.929(9)	0.4
O4 ⁱⁱ – Ba1–O4 ⁱ	97.02(17)	96.93(11)	96.97(14)	96.92(12)	96.85(12)	96.81(16)	96.100(8)	-0.9
O4 ⁱⁱ –Ba1–O4 ^{iv}	129.03(19)	128.98(13)	128.87(17)	128.81(13)	128.76(14)	128.72(18)	128.439(7)	-0.6
O4 ⁱ –Ba1–O4 ^{iv}	133.73(15)	133.87(11)	133.94(13)	134.06(11)	134.17(11)	134.26(14)	135.264(10)	1.5

 $Symmetry \ codes: (i) -y + 2/3, -x + 1/3, z - 1/6; (ii) -x + y + 1/3, -x + 2/3, z - 1/3; (iii) -y + 1/3, -x + 2/3, z + 7/6; (i^v) - x + y, y, z - 1/2; (iv) - x + y,$

Table S7. B–O–B (°) angles in the β -BaB₂O₄ structure at different temperatures.

	98	123	173	223	298	323	693	Δ(98–693 K)
B2 ⁱ –O1–B2 ⁱⁱ	124.3(10)	124.3(7)	124.2(9)	124.8(7)	124.4(7)	124.5(10)	125.094(10)	0.8
B1–O3–B1 ⁱ	123.9(7)	123.5(5)	124.0(6)	123.6(5)	123.8(5)	123.9(7)	124.395(13)	0.5
								*

Symmetry codes: (i) *–y,x–y,z;* (ii) *–x+y, –x,z;* (iii) *x,x–y,z+*1/2

Table S8. O–O–O (°) angles in the β -BaB₂O₄ structure at different temperatures.

T / K	98	123	173	223	298	323	693	Δ(98–693 K)
O1–O2–O1 ⁱⁱ	59.9(3)	59.9(2)	59.8(3)	59.7(2)	59.7(2)	59.8(3)	58.957(11)	-0.9
O3 i –O3–O4 iii	59.4(3)	59.3(2)	59.3(3)	59.3(2)	59.2(2)	59.4(3)	58.812(11)	-0.6
O2–O1–O2 ⁱ	175.3(3)	175.1(2)	175.4(3)	175.2(2)	175.1(3)	174.8(4)	174.7351(19)	-0.6
O3 ii –O3–O4 iii	119.3(4)	119.2(3)	119.3(4)	119.2(3)	119.2(3)	119.4(4)	118.743(11)	-0.6
O3 v –O4–O3 vi	59.9(3)	59.9(2)	59.8(3)	60.0(2)	59.8(2)	59.8(3)	59.887(13)	0.0
O1 ⁱ –O1–O1 ⁱⁱ	60.0(3)	60.00(19)	60.0(2)	60.0(2)	60.00(11)	60.0(3)	60.000(11)	0.0
O3 ⁱ –O3–O3 ⁱⁱ	60.0(3)	60.0(2)	60.0(3)	60.0(2)	60.00(11)	60.0(3)	60.000(13)	0.0
O1 ⁱⁱ –O1–O2	60.9(3)	60.88(19)	60.9(2)	60.7(2)	61.0(2)	61.0(3)	61.171(13)	0.3
O1 ⁱ -O1-O2	120.8(4)	120.8(3)	120.9(4)	120.7(3)	120.9(3)	120.9(4)	121.103(11)	0.3
O4 ⁱⁱⁱ –O3–O4 ^{iv}	174.2(4)	174.2(2)	174.3(3)	174.3(3)	174.5(3)	174.3(3)	174.7211(15)	0.5
O3 ⁱⁱ –O3–O4 ^{iv}	60.7(3)	60.81(19)	60.9(2)	60.8(2)	61.0(2)	60.8(3)	61.301(11)	0.6
O1 ⁱⁱ –O1–O2 ⁱ	119.2(4)	119.1(3)	119.2(3)	119.5(3)	119.2(3)	119.2(4)	119.806(13)	0.6
O3 i -O3-O4 iv	120.6(3)	120.7(2)	120.8(3)	120.7(2)	120.9(2)	120.7(3)	121.229(11)	0.6
01 ⁱ -01-02 ⁱ	59.2(3)	59.2(2)	59.2(3)	59.6(2)	59.3(2)	59.3(3)	59.872(11)	0.7

Symmetry codes: (i) -*y*,*x*-*y*,*z*; (ii) -*x*+*y*,-*x*,*z*;(iii) -*x*+*y*,*y*,*z*-1/2;(iv) *x*,*x*-*y*,*z*-1/2;(v) -*x*+*y*,*y*,*z*+1/2;(vi) *x*,*x*-*y*,*z*+1/2.

Chemical formula	BaB2O4	
Mr	223	
Crystal system, space group	Trigonal, R–3c	
Temperature (K)	298	673
a, c (Å)	7.227 (6), 39.031 (2)	7.242 (6), 39.250 (2)
V (Å3)	1765 (2)	1783 (2)
Ζ	18	
Radiation type	Mo Ka	
m (mm ⁻¹)	29.96	29.67
Crystal size (mm)	0.11×0.14×0.21	
Absorption correction	Based on crystal shape	
No. of independent and observed reflections	1729,1558	760, 696
$(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$	1.26	1.26
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.036, 0.041	0.037,0.032
No. of parameters	33	

Table S9. Experimental details of α -BaB₂O₄ measurements.

Table S10. Atomic coordinates displacement parameters (Å²) and site–occupancy factors (SOFs) in the structure of α -BaB₂O₄ modifications at different temperatures.

Atom	Occ.	x y		z	U iso/eq
			298 K		
O1	1	-0.1610(15)	-0.4630(10)	0.3733(9)	0.018854
O2	1	-0.2620(15)	-0.2722(10)	0.7031(9)	0.015128
B1	1	-0.368(2)	-0.4882(14)	0.3720(14)	0.012173
Ba1	1	0.000000(7)	0.000000(13)	0.349970(7)	0.0132
Ba2	1	0	0	0.25	0.013496
			673 K		
O1	1	-0.1601(15)	-0.4649(10)	0.3743(9)	0.047535
O2	1	-0.2641(15)	-0.2737(10)	0.7031(9)	0.043081
B1	1	-0.371(2)	-0.4900(14)	0.3722(14)	0.03548
Ba1	1	0.000000(7)	0.000000(13)	0.350400(7)	0.036046
Ba2	1	0	0	0.25	0.035099

Table S11. Anisotropic parameters of atomic displacements in α -BaB₂O₄ at different temperatures.

Atom	U11	U22	U33	U12	U13	U23
			298 K			
O1	0.008509	0.010578	0.037283	0.004628	0.001711	-0.00095
O2	0.010085	0.013932	0.021441	0.00606	-0.00205	-0.00345
B1	0.008895	0.01101	0.017575	0.005697	0.001717	0.001291
Ba1	0.010803	0.010803	0.017992	0.005401	0	0
Ba2	0.013309	0.013309	0.01387	0.006654	0	0
			673 K			
O1	0.021903	0.018677	0.098787	0.007716	0.008057	-8.3E-05
O2	0.026548	0.039643	0.063948	0.01722	-0.00345	-0.00617
B1	0.025524	0.03252	0.046966	0.013439	0.004543	0.002894
Ba1	0.028984	0.028984	0.05017	0.014492	0	0
Ba2	0.034579	0.034579	0.036138	0.017289	0	0

Table S12. B–O (Å) bond lengths and O–B–O (°) angles in the α-BaB₂O₄ structure at different temperatures.

	293	673	∆(293–673 K)
B1–O1	1.42(2)	1.45(2)	0.030
B1–O1 ⁱ	1.393(13)	1.365(13)	-0.028
B1–O2 ⁱⁱ	1.30(2)	1.30(2)	0.000
O1-B1-O1 ⁱ	115.7(12)	115.1(12)	-0.6
O1–B1–O2 ⁱⁱ	120.9(8)	120.1(8)	-0.8
O1 ⁱ –B1–O2 ⁱⁱ	123.4(14)	124.7(14)	1.3

Symmetry codes:(i) -y-1,x-y-1,z;(ii) -y-2/3,x-y-1/3,z-1/3

	293	673	Δ(293–673 К)
Ba1–O1	3.080(14)	3.107(14)	0.027
Ba1–O2 ⁱⁱⁱ	2.742(14)	2.739(14)	-0.003
Ba1–O2 ^{vi}	2.83(3)	2.86(3)	0.03
Ba2–O2	2.66(3)	2/68(3)	0.02
O1–Ba1–O2 ^{iv}	47.5(4)	47.5(4)	0
O1–Ba1–O2 v	66.9(3)	66.9(3)	0
O1–Ba1–O2 viii	67.1(8)	67.5(8)	0.4
O2 ^{vi} –Ba1–O2 ^{vii}	72.4(6)	72.2(6)	-0.2
O2 ⁱⁱⁱ –Ba1–O2 ^{vi}	76.8(7)	76.8(7)	0
O2 vi –Ba2–O2 vii	77.9(7)	78.0(7)	0.1
O2 vi –Ba2–O2 ix	87.0(8)	86.9(8)	-0.1
O2 ⁱⁱⁱ –Ba1–O2 ^{vii}	90.0(7)	89.6(7)	-0.4
O1–Ba1–O2 ^{vii}	107.9(5)	108.4(5)	0.5
O1–Ba1–O1 ⁱ	111.7(5)	111.3(5)	-0.4
O2 ⁱⁱⁱ –Ba1–O2 ^{iv}	112.4(6)	112.6(6)	0.2
O2 vi –Ba2–O2 xi	134.9(5)	135.0(5)	0.1
O2 ^{vi} –Ba2–O2 <i>x</i>	140.0(5)	139.8(5)	-0.2
O1–Ba1–O2 ⁱⁱⁱ	145.0(10)	144.8(10)	-0.2
O2 ⁱⁱⁱ –Ba1–O2 ^{viii}	147.9(9)	147.6(9)	-0.3

Table S13. Ba–O (Å) bond lengths and O–Ba–O (°) angles in the α -BaB₂O₄ structure at different temperatures.

Symmetry codes: (i) -y, x-y, z; (ii) -x+y, -x, z; (iii) x+1/3, y+2/3, z-1/3; (i') -y-2/3, x-y-1/3, z-1/3; (') -x+y+1/3, -x-1/3, z-1/3; ('i) -x, -y, -z+1; (vii) y, -x+y, -z+1; (viii) x-y, x, -z+1; (ix) -y, -x, z-1/2; (x) -x+y, y, z-1/2; (x) x, x-y, z-1/2

Table S14. O–O–O (°) angles in the *α*-BaB₂O₄ structure at different temperatures.

	293	673	∆(293–673 K)
01 ⁱ –01–01 ⁱⁱ	60.0(5)	60.0(5)	0
O1 ⁱ –O1–O2 ⁱⁱⁱ	119.6(5)	120.1(5)	0.5
O1 ⁱ -O1-O2 ^{iv}	60.0(5)	59.5(5)	-0.5
O1 ⁱⁱ –O1–O2 ⁱⁱⁱ	59.7(4)	60.3(4)	0.6
O1 ⁱⁱ –O1–O2 ^{iv}	119.9(5)	119.4(5)	-0.5
O2 ⁱⁱⁱ –O1–O2 ^{iv}	173(2)	171(2)	-2
O1 v –O2–O1 vi	60.3(5)	60.1(5)	-0.2

Symmetry codes: (i) -y-1, x-y-1, z; (ii) -x+y, -x-1, z; (iii) x+1/3, y-1/3, z-1/3; (i^v) -y-2/3, x-y-1/3, z-1/3; (^v) x-1/3, y+1/3, z+1/3; (vi) -x+y-1/3, -x-2/3, z+1/3

Table S15. Experimental details of LiB₃O₅ measurements.

Chemical formula	LiB ₃ O ₅								
Mr	119.4								
Crystal system, space	Orthorho	mbic, Pna2	1						
group									
Temperature (K)	98	123	148	173	198	223	248	273	298
a (Å)	8.478(5)	8.4386(11)	8.4524(12)	8.437(13)	8.5010(12)	8.4460(11)	8.4605(11)	8.4453(10)	8.5109(11)
b (Å)	7.398(4)	7.3725(16)	7.3868(18)	7.3770(19)	7.4043(18)	7.3749(17)	7.3809(16)	7.3653(15)	7.4112(17)
c (Å)	5.220(3)	5.1954(19)	5.202(2)	5.189(2)	5.211(2)	5.175(2)	5.1703(19)	5.1564(19)	5.173(2)
V (Å ³)	327.4(3)	323.22(14)	324.78(17)	323.22(17)	328.02(17)	322.32(15)	322.87(14)	320.74(14)	326.27(16)
Ζ	4								
Radiation type	Μο Κα								
μ (mm ⁻¹)	0.23								
Crystal size (mm)	0.09×0.19	×0.27							
Diffractometer	IPDS Sto	e							
Absorption correction	Based on	crystal sha	pe						
No. of measured,	1907,	1898,	1884,	1893,	1884,	1874,	1874,	1859,	1903,
independent and	760,	750,	751,	756,	750,	745,	745,	743,	755,
observed $[I > 3\sigma(I)]$	617	638	608	614	607	606	586	590	586
reflections									
Rint	0.044	0.032	0.046	0.041	0.039	0.049	0.065	0.076	0.064
(sin θ/λ) _{max} (Å-1)	0.688	0.687	0.688	0.693	0.686	0.685	0.688	0.686	0.686
$R[F^2 > 2\sigma(F^2)],$	0.029,	0.025,	0.029,	0.026,	0.026,	0.027,	0.035,	0.037,	0.032,
$wR(F^2)$,	0.029,	0.025,	0.030,	0.027,	0.025,	0.027,	0.035,	0.040,	0.034,
Σ	1.39	1.26	1.40	1.30	1.14	1.25	1.54	1.77	1.46

No. of reflections	760	750	751	756	750	745	745	743	755
No. of parameters	83	83	83	83	83	83	78	83	83
$\Delta ho_{max}, \Delta ho_{min} (e \text{ Å}^{-3})$	0.20,	0.15,	0.20,	0.26,	0.17,	0.22,	0.21,	0.31,	0.19,
	-0.22	-0.17	-0.18	-0.24	-0.16	-0.23	-0.24	-0.30	-0.19
No. Friedel pairs used in	268	267	266	267	264	264	263	262	266
the refinement									

Table S16. Atomic coordinates, displacement parameters ($Å^2$) and site–occupancy factors (SOFs) in the structure of LiB₃O₅ at different temperatures.

Atom	Occ.	x	у	z	U iso/eq					
	98 K									
Li1	1	0.4160(4)	0.5677(6)	-0.0073(9)	0.0115(11)					
B1	1	0.5094(3)	0.8357(3)	0.3530(5)	0.0067(7)					
B2	1	0.6949(3)	0.0578(4)	0.5492(6)	0.0065(7)					
B3	1	0.6575(2)	0.7510(3)	0.7317(6)	0.0067(7)					
01	1	0.58596(14)	0.9970(2)	0.3466(3)	0.0063(4)					
O2	1	0.38335(15)	0.7943(2)	0.1974(3)	0.0065(4)					
O3	1	0.55842(15)	0.7014(2)	0.5272(3)	0.0071(4)					
04	1	0.74019(16)	0.90979(19)	0.7321(3)	0.0059(4)					
05	1	0.65948(16)	0.6263(2)	0.9270(3)	0.0062(4)					
т • 1	1	0 41 5 4 (2)	123 K	0.00(5(0)	0.0100(0)					
LII	1	0.4154(3)	0.5676(4)	-0.0065(8)	0.0132(9)					
BI	1	0.5096(2)	0.8353(3)	0.3534(4)	0.0069(5)					
B2	1	0.6949(2)	0.0575(3)	0.5504(4)	0.0063(6)					
B3	1	0.6573(2)	0.7514(3)	0.7328(4)	0.0068(5)					
	1	0.58576(12)	0.99648(17)	0.3466(3)	0.0065(3)					
02	1	0.38337(13)	0.79419(17)	0.1971(3)	0.0065(3)					
03	1	0.55845(12)	0.70169(18)	0.5277(3)	0.0073(4)					
04	1	0.74037(13)	0.90971(16)	0.7322(3)	0.0064(3)					
05	1	0.65972(13)	0.62602(18) 148 K	0.9272(2)	0.0069(3)					
I i1	1	0 4145(4)	0.5674(6)	_0.0068(10)	0.0132(12)					
B1	1	0.4140(4) 0.5093(3)	0.8358(4)	0.3540(6)	0.0102(12) 0.0067(7)					
B2	1	0.6947(3)	0.0572(4)	0.5340(0)	0.0007(7)					
B3	1	0.0547(0) 0.6569(2)	0.0072(4) 0.7507(3)	0.3477(0) 0.7331(6)	0.0007(7)					
01	1	0.58588(15)	0.9965(2)	0.3469(3)	0.0004(7) 0.0068(4)					
02	1	0.38360(16)	0.7944(2)	0.0109(0)	0.0000(1)					
03	1	0.55836(15)	0.7013(2)	0.5276(3)	0.0073(5)					
04	1	0.73999(17)	0.9099(2)	0.7321(3)	0.0066(4)					
O5	1	0.65974(17)	0.6261(2)	0.9273(3)	0.0072(5)					
		()	173 K	()	()					
Li1	1	0.4150(4)	0.5669(5)	-0.0046(9)	0.0149(11)					
B1	1	0.5093(2)	0.8356(3)	0.3535(5)	0.0076(6)					
B2	1	0.6947(2)	0.0574(3)	0.5505(5)	0.0070(6)					
B3	1	0.6574(2)	0.7515(3)	0.7333(5)	0.0073(6)					
01	1	0.58579(13)	0.9965(2)	0.3465(3)	0.0084(4)					
O2	1	0.38333(14)	0.79470(19)	0.1970(3)	0.0084(4)					
O3	1	0.55835(13)	0.7015(2)	0.5276(3)	0.0086(4)					
O4	1	0.73984(15)	0.90982(18)	0.7322(3)	0.0074(4)					
O5	1	0.65972(15)	0.6259(2)	0.9270(3)	0.0084(4)					
.			198 K							
Li1	1	0.4142(4)	0.5677(5)	-0.0054(9)	0.0155(10)					
B1	1	0.5094(2)	0.8358(3)	0.3530(5)	0.0083(6)					
B2	1	0.6942(2)	0.0571(3)	0.5503(5)	0.0071(6)					
B3	1	0.6574(2)	0.7513(3)	0.7331(5)	0.0078(6)					
	1	0.28220(12)	0.99649(19)	0.3462(3)	0.00/9(4)					
02	1	0.58339(13)	0.79463(18)	0.19/0(3)	0.0080(4)					
03	1	0.72067(14)	0.70187(20)	0.5280(3)	0.0085(4)					
04	1	0.73907(14)	0.90981(1/)	0.7325(3)	0.00/4(4) 0.0081(4)					
05	1	0.03982(14)	223 K	0.9271(3)	0.0081(4)					
Li1	1	0.4129(4)	0.5673(5)	-0.0061(10)	0.0167(12)					
B1	1	0.5099(2)	0.8359(3)	0.3539(5)	0.0086(7)					

B2	1	0.6942(2)	0.0567(3)	0.5509(5)	0.0068(7)
B3	1	0.6574(2)	0.7512(3)	0.7331(5)	0.0077(6)
01	1	0.58631(14)	0.9960(2)	0.3459(3)	0.0088(4)
O2	1	0.38369(15)	0.7950(2)	0.1969(3)	0.0083(4)
O3	1	0.55818(14)	0.7017(2)	0.5277(3)	0.0091(4)
O4	1	0.73946(16)	0.90956(19)	0.7329(3)	0.0075(4)
O5	1	0.66029(15)	0.6260(2)	0.9268(3)	0.0084(4)
			248 K		
Li1	1	0.4129(6)	0.5672(8)	-0.0059(14)	0.0193(17)
B1	1	0.5099(3)	0.8365(5)	0.3533(7)	0.0087(9)
B2	1	0.6938(3)	0.0565(5)	0.5499(7)	0.0061(9)
B3	1	0.6569(3)	0.7513(4)	0.7340(7)	0.0070(6)
O1	1	0.58614(18)	0.9960(3)	0.3458(4)	0.0083(5)
O2	1	0.3836(2)	0.7949(3)	0.1965(4)	0.0084(6)
O3	1	0.55823(19)	0.7020(3)	0.5280(4)	0.0095(6)
O4	1	0.7392(2)	0.9099(3)	0.7333(4)	0.0072(5)
O5	1	0.6604(2)	0.6256(3)	0.9269(4)	0.0076(6)
			273 K		
Li1	1	0.4119(7)	0.5677(9)	-0.0041(16)	0.0209(19)
B1	1	0.5103(4)	0.8359(5)	0.3543(8)	0.0092(10)
B2	1	0.6942(4)	0.0567(5)	0.5504(8)	0.0075(10)
B3	1	0.6572(4)	0.7509(5)	0.7341(9)	0.0085(10)
O1	1	0.5864(2)	0.9962(3)	0.3450(5)	0.0097(6)
O2	1	0.3835(2)	0.7950(3)	0.1965(5)	0.0090(7)
O3	1	0.5577(2)	0.7024(3)	0.5284(5)	0.0106(7)
O4	1	0.7391(2)	0.9093(3)	0.7332(5)	0.0090(6)
O5	1	0.6609(2)	0.6260(3)	0.9266(4)	0.0094(6)
			298 K		
Li1	1	0.4114(6)	0.5668(8)	-0.0046(14)	0.0225(17)
B1	1	0.5099(3)	0.8363(4)	0.3532(7)	0.0091(9)
B2	1	0.6935(3)	0.0565(4)	0.5502(7)	0.0065(9)
B3	1	0.6574(3)	0.7507(4)	0.7346(7)	0.0082(8)
O1	1	0.58655(18)	0.9956(3)	0.3447(4)	0.0094(5)
O2	1	0.38380(19)	0.7951(3)	0.1966(4)	0.0092(6)
O3	1	0.55813(19)	0.7021(3)	0.5284(4)	0.0108(6)
O4	1	0.7387(2)	0.9096(2)	0.7337(4)	0.0081(5)
O5	1	0.6611(2)	0.6252(3)	0.9266(4)	0.0088(6)

Table S17. Anisotropic parameters of atomic displacements in LiB_3O_5 at different temperatures.

Atom	U_{11}	U22	U33	U12	U13	U ₂₃					
	98 K										
Li1	0.0134(17)	0.0082(18)	0.013(2)	0.0000(15)	-0.0049(16)	0.0021(18)					
B1	0.0087(10)	0.0057(13)	0.0056(12)	0.0022(9)	0.0041(10)	-0.0010(11)					
B2	0.0075(11)	0.0045(12)	0.0075(14)	0.0003(9)	0.0005(10)	0.0003(11)					
B3	0.0050(9)	0.0062(11)	0.0088(14)	0.0027(7)	0.0022(10)	-0.0026(13)					
O1	0.0080(6)	0.0050(7)	0.0057(8)	-0.0001(5)	-0.0017(7)	0.0002(7)					
O2	0.0071(6)	0.0038(7)	0.0084(9)	0.0000(6)	-0.0011(7)	0.0005(8)					
O3	0.0081(7)	0.0062(7)	0.0068(8)	-0.0010(6)	-0.0009(6)	0.0001(8)					
O4	0.0068(6)	0.0046(7)	0.0064(8)	-0.0004(5)	0.0000(7)	0.0012(8)					
O5	0.0061(6)	0.0062(8)	0.0064(8)	-0.0004(5)	-0.0012(6)	-0.0004(7)					
			123 K								
Li1	0.0174(14)	0.0075(14)	0.0148(20)	-0.0007(12)	-0.0031(13)	-0.0009(15)					
B1	0.0072(8)	0.0061(10)	0.0074(10)	0.0027(7)	0.0034(8)	-0.0014(9)					
B2	0.0074(9)	0.0050(9)	0.0066(11)	-0.0008(7)	-0.0004(8)	-0.0001(9)					
B3	0.0062(7)	0.0053(9)	0.0091(11)	0.0023(6)	0.0017(8)	-0.0022(10)					
O1	0.0076(5)	0.0055(6)	0.0064(6)	-0.0007(4)	-0.0011(5)	0.0009(6)					
O2	0.0073(5)	0.0045(6)	0.0077(7)	0.0001(5)	0.0000(5)	0.0013(7)					
O3	0.0091(6)	0.0056(6)	0.0072(7)	-0.0001(5)	-0.0014(5)	0.0002(6)					
O4	0.0080(5)	0.0051(6)	0.0061(6)	-0.0004(4)	-0.0006(5)	0.0014(7)					
O5	0.0060(5)	0.0065(6)	0.0083(6)	-0.0005(4)	-0.0006(5)	0.0007(6)					
			148 K								
Li1	0.0151(18)	0.010(2)	0.015(3)	-0.0020(16)	-0.0024(17)	-0.001(2)					
B1	0.0082(10)	0.0051(14)	0.0067(13)	0.0032(9)	0.0037(11)	-0.0017(12)					
B2	0.0086(12)	0.0059(13)	0.0055(14)	-0.0015(9)	0.0002(11)	0.0011(12)					

B3	0.0038(9)	0.0053(12)	0.0100(15)	0.0025(7)	0.0012(10)	-0.0044(14)
O1	0.0082(6)	0.0056(8)	0.0065(8)	-0.0005(6)	-0.0028(7)	0.0007(8)
O2	0.0071(7)	0.0050(8)	0.0081(9)	0.0003(6)	-0.0009(7)	0.0014(9)
O3	0.0071(7)	0.0069(8)	0.0078(9)	0.0006(7)	-0.0010(7)	0.0007(8)
O4	0.0083(7)	0.0053(8)	0.0062(8)	-0.0005(6)	-0.0007(7)	0.0030(9)
O5	0.0068(7)	0.0071(8)	0.0076(8)	-0.0005(6)	-0.0011(6)	0.0010(8)
	,	(-)	173 K			
Li1	0.0168(16)	0.0096(17)	0.018(2)	0.0000(13)	-0.0040(15)	0.0026(18)
B1	0.0086(9)	0.0068(11)	0.0075(11)	0.0018(8)	0.0025(9)	0.0001(10)
B2	0.0065(10)	0.0070(11)	0.0076(12)	-0.0006(8)	-0.0001(9)	0.0004(10)
B3	0.0061(8)	0.0059(10)	0.0098(13)	0.0014(7)	0.0022(9)	-0.0001(10)
01	0.0098(5)	0.0007(10)	0.0090(10)	-0.0002(5)	-0.00022(5)	0.0000(12)
Ω^{1}	0.0098(6)	0.0075(7)	0.0002(7)	-0.0002(3)	-0.0009(0)	0.0011(7)
02	0.0000(0)	0.0000(7)	0.0099(8)	0.0003(3)	-0.0012(0)	-0.0009(8)
03	0.0104(7)	0.0009(7)	0.0085(8)	0.0001(0)	-0.0019(0)	-0.0002(7)
04	0.0065(6)	0.0066(7)	0.0072(7)	-0.0013(3)	0.0006(6)	0.0013(8)
05	0.0075(6)	0.0078(7)	0.0099(7)	-0.0009(5)	-0.0011(5)	0.0009(7)
T *4	0.0150(15)	0.000((1.()	198 K	0.0001/10	0.0007(1.5)	0.0010(15)
Lil	0.0178(15)	0.0096(16)	0.019(2)	0.0001(13)	-0.0027(15)	-0.0013(17)
B1	0.0091(9)	0.0079(12)	0.0078(11)	0.0024(8)	0.0038(9)	-0.0028(10)
B2	0.0092(10)	0.0053(10)	0.0067(12)	-0.0003(8)	-0.0003(9)	0.0001(10)
B3	0.0060(8)	0.0065(10)	0.0108(12)	0.0028(6)	0.0013(9)	-0.0032(12)
01	0.0097(5)	0.0062(6)	0.0079(7)	-0.0006(5)	-0.0026(6)	0.0014(6)
O2	0.0085(6)	0.0059(6)	0.0096(8)	-0.0002(5)	-0.0011(6)	0.0009(7)
O3	0.0100(6)	0.0071(6)	0.0083(8)	-0.0002(5)	-0.0012(6)	0.0001(7)
O4	0.0090(5)	0.0054(6)	0.0078(7)	-0.0011(5)	-0.0006(6)	0.0028(7)
O5	0.0071(5)	0.0080(7)	0.0094(7)	-0.0006(5)	-0.0014(5)	0.0012(6)
			223 K			
Li1	0.0215(18)	0.0087(18)	0.020(2)	0.0006(15)	-0.0050(17)	-0.0007(19)
B1	0.0100(10)	0.0080(13)	0.0080(12)	0.0021(8)	0.0029(10)	-0.0021(11)
B2	0.0085(10)	0.0060(11)	0.0059(12)	-0.0006(8)	-0.0011(10)	0.0009(10)
B3	0.0061(8)	0.0076(11)	0.0094(13)	0.0017(7)	0.0023(9)	-0.0030(12)
O1	0.0101(6)	0.0070(7)	0.0092(8)	-0.0005(5)	-0.0011(7)	0.0013(7)
O2	0.0093(6)	0.0063(7)	0.0092(8)	0.0004(5)	-0.0014(6)	0.0011(8)
O3	0.0104(7)	0.0071(7)	0.0099(8)	-0.0004(6)	-0.0020(6)	0.0013(8)
O4	0.0085(6)	0.0058(7)	0.0080(8)	-0.0008(5)	-0.0004(6)	0.0019(8)
05	0.0076(6)	0.0075(8)	0.0100(8)	-0.0008(5)	-0.0018(6)	0.0009(7)
			248 K			
Li1	0.021(2)	0.010(3)	0.027(4)	-0.001(2)	-0.010(2)	0.000(3)
B1	0.021(2)	0.010(0)	0.025(17)	0.001(2)	0.010(2)	-0.0026(15)
B2	0.0004(10)	0.0001(17) 0.0048(15)	0.0000(17)	0.0029(11)	-0.0020(10)	0.0020(10)
01	0.0083(7)	0.0010(10)	0.0096(11)	-0.0016(7)	-0.0012(9)	0.0000(11)
Ω^2	0.0000(7)	0.0005(10)	0.0000(11)	0.0010(7)	0.0012(9)	0.0013(10)
02	0.0079(0)	0.0000(10)	0.0100(12)	-0.0009(7)	-0.0012(9)	0.0001(11)
03	0.0094(9)	0.0073(10)	0.0119(12)	-0.0007(8)	-0.0013(9)	0.0000(11)
04	0.0077(8)	0.0064(10)	0.0073(10)	-0.0009(7)	-0.0003(8)	0.0014(11)
U5	0.0064(8)	0.0076(10)	0.0088(10)	-0.0003(7)	-0.0021(7)	0.0008(9)
L11	0.021(2)	0.010(3)	0.027(4)	-0.001(2)	-0.010(2)	0.000(3)
T '1	0.025(2)	0.010(2)	2/3 K	0.001/0	0.000/2)	0.001(2)
LII	0.025(3)	0.012(3)	0.025(4)	-0.001(2)	-0.009(3)	-0.001(3)
BI	0.0103(15)	0.0075(19)	0.0097(19)	0.0018(13)	0.0026(15)	-0.0019(17)
B2	0.0102(16)	0.0054(17)	0.007(2)	-0.0012(13)	0.0014(15)	0.0018(16)
B3	0.0077(13)	0.0059(16)	0.012(2)	0.0034(11)	0.0004(15)	-0.0032(20)
01	0.0103(9)	0.0081(11)	0.0108(12)	-0.0018(8)	-0.0021(11)	0.0025(11)
O2	0.0089(9)	0.0062(11)	0.0120(14)	-0.0006(8)	-0.0018(10)	0.0006(13)
O3	0.0108(11)	0.0092(11)	0.0116(13)	-0.0002(9)	-0.0039(10)	0.0013(12)
O4	0.0080(9)	0.0091(11)	0.0100(12)	-0.0011(8)	-0.0010(10)	0.0036(13)
O5	0.0060(9)	0.0101(12)	0.0120(12)	-0.0007(8)	-0.0022(9)	0.0022(11)
			298 K			
Li1	0.027(3)	0.011(3)	0.029(4)	0.000(2)	-0.010(3)	0.001(3)
B1	0.0096(13)	0.0083(17)	0.0094(16)	0.0038(11)	0.0036(13)	-0.0007(15)
B2	0.0091(14)	0.0057(15)	0.0046(16)	0.0003(11)	0.0000(13)	0.0009(14)
B3	0.0070(11)	0.0055(14)	0.0121(18)	0.0024(9)	0.0024(13)	-0.0048(17)
O1	0.0120(8)	0.0070(10)	0.0094(10)	-0.0019(7)	-0.0032(9)	0.0025(9)
O2	0.0098(8)	0.0067(9)	0.0110(12)	-0.0002(7)	-0.0019(9)	0.0000(11)
O3	0.0116(9)	0.0080(9)	0.0128(12)	-0.0005(8)	-0.0034(9)	0.0007(11)
04	0.0101(8)	0.0057(9)	0.0084(10)	-0.0018(7)	-0.0011(8)	0.0027(11)
05	0.0067(8)	0.0091(10)	0.0106(10)	-0.0009(7)	-0.0023(7)	0.0018(9)

Table S18, Li– $O(A)$ bond lengths and O–Li– $O(C)$ angles in the LiB ₃ O ₅ structure at different temperatu	
Table bio 21 o (1) bona lengalo ana o 21 o () angles in the 215000 strateate at american temperata	atures.

	98	123	148	173	198	223	248	273	298	500	650	$\Delta(98$
Т/К												-650 K)
Li1–O2	2.007(5)	1.995(4)	2.001(5)	1.998(4)	2.001(4)	1.996(5)	1.996(6)1.98 (1)	2.000(6)1.968(3)	1.953(4)	-0.054
Li1–O3 ⁱ	2.011(5)	2.006(4)	2.006(5)	2.000(4)	2.017(4)	2.006(4)	2.009(6)2.01(1)	2.017(6)2.023(3)	2.049(4)	0.038
Li1–O4 ⁱⁱ	2.025(5)	2.013(4)	2.012(5)	2.021(4)	2.024(4)	2.000(5)	2.002(6)2.00(1)	2.006(6)2.004(4)	1.998(6)	-0.027
Li1–O5 ⁱⁱⁱ	2.137(4)	2.134(3)	2.146(4)	2.141(4)	2.161(3)	2.162(4)	2.166(5)2.18(1)	2.198(5)2.382(4)	2.576(7)	0.439
Li1–O5 ⁱ	2.759(5)	2.741(4)	2.745(5)	2.727(5)	2.744(5)	2.726(5)	2.723(7)2.71(1)	2.717(7)2.571(4)	2.469(6)	-0.290
O2–Li1–O3 ⁱ	142.6(3)	142.8(2)	142.8(3)	143.5(3)	143.2(2)	143.2(3)	143.3(4)143.8(5)143.8(4)148.8(1)	150.6(2)	8.0
02–Li1–O4 ⁱⁱ	100.8 (2)	100.9(2)	101.1(2)	100.6(2)	101.0(2)	101.1(2)	101.0(2)101.2(3)101.0(2)101.6(1)	102.8(2)	2.0
O2–Li1–O5 ⁱⁱⁱ	92.82(17)	92.72(14)	92.35(18)	92.58(15)	92.58(15)	92.04(16)	92.1(2)	92.0(3)	91.8(2)	89.44(11)	86.3(2)	-6.5
O2–Li1–O5 ⁱ	87.99(18)	88.22(15)	88.34(19)	88.72(17)	88.61(16)	88.81(18)	88.9(3)	89.4(3)	89.4(3)	94.43(11)	98.8(2)	10.9
O3 i –Li1–O4 ii	102.8(2)	102.9(2)	103.1(2)	102.9(2)	103.0(2)	103.5(2)	103.4(3)103.5(3)103.8(3)104.6(1)	105.6(2)	2.8
O3 i –Li1–O5 iii	96.37(16)	96.18(13)	95.95(17)	96.13(15)	95.66(14)	95.42(16)	95.4(2)	94.9(3)	94.8(2)	90.51(11)	86.32)	-10.1
O3 ⁱ –Li1–O5 ⁱ	55.68(12)	55.74(10)	55.78(13)	56.00(11)	55.88(11)	55.88(12)	55.9(2)	56.0(2)	56.1(2)	58.44(11)	60.0(2)	4.3
O4 ⁱⁱ –Li1–O5 ⁱⁱⁱ	125.9(2)	125.7(2)	125.7(3)	125.2(2)	125.6(2)	125.6(2)	125.8(3)125.3(4)125.6(3)122.57(12)119.5(2)	-6.4
O4 ⁱⁱ –Li1–O5 ⁱ	115.10(16)115.34(14)115.54(17)115.46(15)115.44(15)115.69(17)115.5(2)115.7(3)115.7(2)117.35(15)120.1(2)	5.0
O5 ⁱⁱⁱ –Li1–O5 ⁱ	117.48(18)117.45(15)117.22(19)117.75(17)117.34(16)117.12(18)117.1(3)117.3(3)117.1(3)117.66(12)117.1(2)	-0.4

Symmetry codes: (i) -x+1,-y+1,z-1/2; (ii) x-1/2,-y+3/2,z-1; (iii) x,y,z-1.

Table S19. B–O (Å) bond lengths and O–B–O (°) angles in the LiB₃O₅ structure at different temperatures.

T/K	98	123	148	173	198	223	248	273	298	500	650	Δ(98–650 K)
B1–O1	1.359(3)	1.351(2)	1.352(3)	1.352(3)	1.357(3)	1.346(3)	1.343(4)1.345(4)1.349(4)1.3474(16	6)1.349(2)	-0.010
B1–O2	1.377(3)	1.373(2)	1.375(3)	1.372(3)	1.379(3)	1.374(3)	1.376(4)1.378(4)1.379(4)1.363(3)	1.364(4)	-0.013
B1–O3	1.409(3)	1.400(3)	1.405(3)	1.402(3)	1.410(3)	1.398(3)	1.403(4)1.391(5)1.407(4)1.394(3)	1.395(5)	-0.014
B2–O1 ⁱ	1.475(3)	1.474(2)	1.471(3)	1.473(3)	1.475(3)	1.469(3)	1.464(4)1.466(4)1.471(4)1.458(4)	1.454(5)	-0.021
B2–O2 ii	1.495(3)	1.487(2)	1.491(3)	1.484(3)	1.492(3)	1.483(3)	1.485(4)1.480(4)1.489(4)1.484(3)	1.483(4)	-0.012
B2–O4 ⁱ	1.503(3)	1.492(3)	1.493(3)	1.489(3)	1.497(3)	1.487(3)	1.489(4)1.487(5)1.495(4)1.488(3)	1.489(5)	-0.014
B2–O5 🗉	1.479(3)	1.473(2)	1.477(3)	1.476(2)	1.487(2)	1.477(3)	1.479(4)1.471(4)1.483(3)1.457(3)	1.457(4)	-0.022
B3–O3	1.407(3)	1.402(2)	1.404(3)	1.405(3)	1.409(3)	1.402(3)	1.402(4)1.399(5)1.408(4)1.392(4)	1.390(6)	-0.017
B3–O4	1.368(3)	1.362(2)	1.370(3)	1.360(2)	1.366(2)	1.358(3)	1.362(4)1.357(4)1.365(3)1.3556(16	6)1.3567(19)–0.011
B3–O5	1.375(3)	1.369(3)	1.367(3)	1.367(3)	1.373(3)	1.363(3)	1.362(4)1.353(5)1.361(4)1.365(4)	1.363(5)	-0.012
O1-B1-O2	123.5(2)	123.22(1	7)123.3(2)	123.2(2)	123.49(19)123.1(2)	123.5(3)122.9(3)123.4(3)123.1(2)	122.8(3)	-0.7
O1-B1-O3	119.6(2)	119.70(1	6)119.8(2)	119.69(1	8)119.45(17	/)120.04(1	9)120.0(3)120.4(3)119.9(3)119.7(2)	119.8(3)	0.2
O2-B1-O3	116.91(19)117.08(1	6)116.9(2)	117.11(1	8)117.07(17)116.83(1	9)116.6(3)116.7(3)116.7(2)117.14(10	0)117.39(13)0.5
01 i - B202 ii	108.44(16)108.36(1	3)108.36(17)108.37(1	4)108.50(14)108.50(1	5)108.6(2)108.4(2)108.7(2	108.99(1	1)109.34(16	0.9
01 ⁱ -B2-O4 ⁱ	113.16(19)113.10(1	5)113.2(2)	113.07(1	7)113.36(16	5)113.24(1	8)113.5(2)113.2(3)113.2(2)112.47(10	0)111.92(15)–1.2
01 ⁱ -B2-05 ⁱⁱⁱ	108.5(2)	108.22(1	6)108.4(2)	108.22(1	8)108.24(17	ý)107.91(1	9)108.3(3)108.0(3)108.1(2	()108.3(3)	108.4(4)	-0.1
02 ⁱⁱ - B2O4 ⁱ	108.5(2)	109.08(1	6)108.9(2)	109.06(1	8)108.98(17)109.24(1	9)109.0(3)109.2(3)109.2(2)109.0(3)	109.3(4)	0.8
02 ⁱⁱ – B2–O5 ⁱⁱ	110.07(19))109.91(1	5)109.74(19)109.89(1	7)109.78(16	5)109.60(1	7)109.4(2)109.5(3)109.6(2)109.85(9)	109.75(12)–0.3
04 ⁱ – B2–O5 ⁱⁱⁱ	108.10(16)108.14(1	3)108.15(17)108.21(1	4)107.94(14)108.31(1	5)108.0(2)108.4(2)108.0(2	108.29(10	0)108.08(14	0.0
O3-B3-O4	122.1(2)	121.90(1	8)121.6(2)	121.8(2)	121.81(19)121.9(2)	121.7(3)121.6(3)121.5(3)122.5(2)	122.4(3)	0.3
O3-B3-O5	113.26(18)113.14(1	5)113.48(19)112.91(1	6)113.06(16	5)113.0S(1	8)113.1(2)113.4(3)113.1(2)112.55(1	1)112.44(16)-0.8
O4-B3-O5	124.7(2)	124.95(1	7)124.9(2)	125.3(2)	125.13(19)125.0(2)	125.2(3)125.1(3)125.5(3)125.0(3)	125.2(4)	0.5

Symmetry codes: (i) *x*,*y*-1,*z*; (ii) -*x*+1,-*y*+1,*z*+1/2; (iii) -*x*+3/2,*y*-1/2,*z*-1/2.

Table S20. B–O–B (°) angles in the LiB₃O₅ structure at different temperatures.

-650 H	
	S)
$B1-O1-B2^{1}$ 123.33(19)123.16(16)123.2(2) 123.16(18)123.18(17)122.86(19)123.0(3)122.6(3)123.0(2)123.4(3) 123.6(4) 0.3	<i>,</i>
B1-O2-B2 ⁱⁱ 119.15(18)119.01(14)118.96(19)119.07(16)118.89(16)118.91(17)118.6(2)118.9(3)118.7(2)119.47(8) 119.56(11)0.4	
B1-O3-B3 118.79(18)118.87(15)118.74(19)118.71(17)118.97(16)118.54(18)118.6(2)118.8(3)118.9(2)118.46(10)118.32(14)-0.5	
B2 ⁱ -O4-B3 119.60(18)119.69(14)119.77(18)119.98(16)119.69(15)119.81(17)119.6(2)120.0(3)120.0(2)120.2(2) 120.8(3) 1.2	
$B2^{\text{iii}}-O5-B3124.04(17)124.37(13)124.46(17)124.30(15)124.19(14)124.64(16)124.6(2)125.0(2)124.6(2)126.48(12)127.82(16)3.86(12)127.86(12)127.82(1$	

Symmetry codes: (i) *x*,*y*+1,*z* (ii) –*x*+1, –*y*+1,*z*–1/2 (iii) –*x*+3/2,*y*+1/2,*z*+1/2

Table S21. O–O–O (°) angles in the LiB₃O₅ structure at different temperatures.

Т/К	98	123	148	173	198	223	248	273	298	500	650	Δ(98 -650 K)
O1 ^v –O5–O4	91.01(7)	91.11(6)	91.23(7)	91.23(6)	91.17(6)	91.53(7)	91.56(9)	91.67(10)	91.82(9)	94.18(8)	95.98(10)	5.0
O2 ⁱ -O4-O5	133.4(1)	133.4(1)	133.52(8)	133.6 (1)	133.6(1)	133.8(1)	134.0(1)	134.1(1)	134.3(1)	136.6 (1)	138.3(1)	4.9
O1 v – O5–O3	105.7(1)	105.8(1)	105.76(8)	105.84(7)105.92(7)106.01(8)106.12(10)106.30(12)106.38(10)108.44(16)110.2(2)	4.5
02-03-05	162.0(1)	162.1(1)	162.15(9)	162.12(8)162.24(7)162.36(8)162.43(11)162.76(12)162.67(11)164.39(13)165.95(18)4.0
O2O1O5 ⁱⁱ	161.2(1)	161.2(1)	161.22(9)	161.28(8)161.36(8)161.61(8)161.53(11)161.73(13)161.87(11)163.44(9)	164.18(13)3.0
O3-O5-O4 ^v	151.8(1)	151.9(1)	151.81(10)151.93(8)152.08(8)151.98(9)152.20(12)152.11(14)152.36(12)153.63(10)154.19(14)2.4

Q4-O2-O4* 138.6(1) 138.7(1) 138.7(0) 138.64(7) 138.5(7) 138.7(8) 138.66(7) 112.8(7) 12.7(10) 73.95(1) 74.19(0) 74.89(0) 75.28(8) 1.2 O1-O2-O4* 73.92(8) 73.89(5) 73.91(6) 74.19(6) 74.89(6) 75.22(8) 1.2 O2-O-O5* 138.6(1) 138.5(1) 138.50(9) 138.55(7) 112.86(7) 112.86(7) 112.86(7) 111.86(7) 111.18.5(1) 111.36(1) 113.36(1) 113.36(1) 111.36(1) 113.36(1) 111.36(1) 113.36(1) 111.36(1) 113.36(1) 111.36(1) 111.36(1) 111.36(1) 111.36(1) 111.36(1) 111.36(1) 111.36(1) 111.36(1) 111.36(1) 111.36(1) 111.36(1) 111.36(1) 111.36(1) 111.36(1) 111.36(1) 111.36(1) 111.36(1) 111.36(1) 111.36(1) 111.36(1) 111.36(1)			
$\begin{split} & Ol-O2-O4^{IIII} 73.92(8) 73.89(6) 73.89(7) 73.91(6) 74.04(6) 74.02(6) 73.98(9) 73.95(10) 74.11(9) 74.89(6) 75.22(8) 1.3 \\ & O3-O1-O5^{IIII} 112.6(1) 112.5(1) 112.63(1) 112.58(7) 112.58(7) 112.86(10) 112.83(11) 112.76(10) 113.64(14) 1.1 \\ & O3-O4-O5^{IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII$	O4O5O4 v	138.6(1) 138.7(1) 138.70(8)	138.64(7)138.56(7)138.75(8)138.66(10)138.89(12)138.75(10)139.53(8) 140.29(12)1.7
$\begin{split} & O_3 - O_1 - O_5 = 112.6(1) 112.5(1) 112.6(3) 112.58(7) 112.58(7) 112.68(10) 112.83(11) 112.63(10) 113.36(10) 113.4(14) 1.1 \\ & O_2^{-u} - O_5 = 110.7(1) 110.8(1) 110.8(19) 110.88(9) 110.88(1) 10.87(7) 110.83(8) 110.87(7) 111.38.75(13) 138.54(11) 113.95(11) 11.0(7) 111.16(2) 0.9 \\ & O_1 - O_4 - O_5 = 110.7(1) 110.8(1) 110.88(9) 110.88(9) 110.87(7) 110.83(8) 110.58(11) 110.86(12) 110.93(11) 111.10(7) 111.16(2) 0.9 \\ & O_1 - O_4 - O_2 = 59.7(7) 59.87(5) 59.79(7) 59.78(6) 59.72(5) 59.86(6) 59.78(5) 59.72(9) 59.88(8) 60.27(9) 60.37(13) 0.6 \\ & O_1 - O_2 - O_2 = 59.7(7) 59.87(5) 59.79(7) 59.78(6) 59.72(5) 59.86(6) 59.78(5) 59.72(9) 59.88(8) 60.27(9) 60.37(13) 0.6 \\ & O_1 - O_4 - O_5 59.66(7) 59.68(5) 59.71(7) 59.64(6) 59.62(6) 59.67(6) 59.72(6) 59.72(6) 59.88(8) 58.59(9) 59.86(13) 0.4 \\ O_2^{-u} - O_2^{-d} 51.61, 01.21, 0$	01–02–04 ⁱⁱⁱ	73.92(8) 73.89(5) 73.89(7)	73.91(6) 74.04(6) 74.02(6) 73.98(9) 73.95(10) 74.11(9) 74.89(6) 75.22(8) 1.3
$\begin{array}{llllllllllllllllllllllllllllllllllll$	O3–O1–O5 ⁱⁱ	112.6(1) 112.5(1) 112.63(8)	$112.58(7) \\ 112.56(7) \\ 112.80(7) \\ 112.68(10) \\ 112.83(11) \\ 112.76(10) \\ 113.36(10) \\ 113.64(14) \\ 1.1$
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	O2 vi –O5–O3	138.6(1) 138.5(1) 138.50(9)	138.51(8)138.47(7)138.63(8)138.47(11)138.75(13)138.54(11)139.03(9) 139.59(13)1.0
$\begin{split} & Q-CS & 114.5(1) & 114.4(2) & 114.5(2(8) & 114.5(7) & 114.5(7) & 114.5(1) & 114.7(011) & 114.7(011) & 114.5(8)) & 114.8(8) & 115.16(12)0.6 \\ & Q^{++}-QS-Q^{++} & Q.21(7) & Q.39(5) & Q.30(7) & Q.26(6) & Q.22(6) & Q.30(6) & Q.30(8) & Q.36(8) & Q.06(8) & Q.06(8) & Q.37(13) & 0.6 \\ & Q^{++}-Q1-Q4 & 59.60(7) & 59.87(5) & 59.77(7) & 59.86(6) & 59.72(5) & 59.86(6) & 59.72(9) & 59.88(8) & 59.91(10) & Q.016(14) & 0.6 \\ & Q^{+-}-Q1-Q4 & 59.60(7) & 59.86(5) & 59.71(7) & 59.46(6) & 59.62(6) & 59.72(8) & 59.92(9) & 59.88(8) & 58.39(9) & 58.30(11) & 22.99(14)0.6 \\ & Q^{+-}-Q1-Q4 & 58.65(5) & 58.66(7) & 58.66(7) & 58.68(5) & 58.68(6) & 58.53(8) & 58.57(9) & 58.86(8) & 58.39(9) & 59.37(9) & 79.37(8) & 79.21(9) & 79.37(8) & 79.37(8) & 79.37(11) & 0.4 \\ & Q^{-+}-Q3-Q5 & 79.36(7) & 79.26(6) & 79.33(7) & 79.33(7) & 79.36(1) & 79.22(9) & 79.38(10) & 79.20(9) & 79.37(8) & 79.44(11) & 0.4 \\ & Q^{+-}-Q1-Q3 & 10.73(1) & 107.3(1) & 107.3(9) & 107.36(8) & 107.22(8) & 107.37(11) & 107.19(11) & 107.48(11) & 107.36(8) & 107.26(8) & 107.32(8) & 107.32(8) & 107.32(11) & 107.34(11) & 107.36(8) & 107.67(8) & 59.69(6) & 59.77(8) & 59.46(8) & 59.93(9) & 60.01(12) & 0.3 \\ & Q^{+-}-Q1-Q3 & 13.20(8) & 131.9(6) & 131.96(7) & 131.96(7) & 132.07(11) & 132.04(10) & 132.33(5) & 132.32(7) & 133.06(131.196.73(12) & 107.32(11) & 112.44(11) & 125.57(7) & 126.65(10).0.3 \\ & Q^{+-}-Q-Q-3 & 132.0(8) & 131.9(6) & 134.9(6) & 153.9(7) & 153.8(10) & 152.8(11) & 113.20(11) & 123.4(1) & 107.32(11) & 107.34(11) & 107.34(11) & 105.38(8) & 103.68(131.124.57(11) & 107.34(11) & 1$	O3–O4–O5 ⁱⁱ	110.7(1) 110.8(1) 110.88(9)	110.88(8)110.87(7)110.83(8)110.85(11)110.86(12)110.93(11)111.10(17)111.6(2) 0.9
$\begin{array}{llllllllllllllllllllllllllllllllllll$	01-04-05	114.5(1) 114.4(2) 114.52(8)	$114.50(7)114.51(7)114.58(7)114.50(10)114.70(11)114.58(9) \ 114.88(9) \ 115.16(12)0.6$
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	O2 vi -O5-O4 v	60.21(7) 60.39(5) 60.33(7)	60.26(6) 60.22(5) 60.29(6) 60.30(8) 60.38(9) 60.36(8) 60.60(8) 60.82(12) 0.6
$\begin{array}{llllllllllllllllllllllllllllllllllll$	O1 v - O5 - O2 vi	59.77(7) 59.87(5) 59.79(7)	59.78(6) 59.72(5) 59.86(6) 59.78(8) 59.92(9) 59.88(8) 60.27(9) 60.37(13) 0.6
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	O2 ⁱ -O1-O4	59.60(7) 59.68(5) 59.71(7)	59.64(6) 59.62(6) 59.70(6) 59.69(8) 59.72(9) 59.74(8) 59.91(10) 60.16(14) 0.6
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	01-03-05	122.4(1) 122.6(1) 122.46(9)	122.57(8)122.67(7)122.55(8)122.70(11)122.66(13)122.81(11)122.97(10)122.99(14)0.6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	01–04–02 ⁱ	58.65(6) 58.66(5) 58.66(7)	58.68(6) 58.65(5) 58.68(6) 58.63(8) 58.59(9) 58.68(8) 58.93(9) 59.05(13) 0.4
$\begin{array}{llllllllllllllllllllllllllllllllllll$	04-03-05	61.44(7) 61.56(5) 61.55(7)	61.60(6) 61.58(6) 61.49(6) 61.60(9) 61.42(10) 61.61(8) 61.70(10) 61.82(13) 0.4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	O2 vi –O5–O4	79.36(7) 79.26(6) 79.33(7)	79.33(6) 79.27(6) 79.36(7) 79.22(9) 79.38(10) 79.20(9) 79.37(8) 79.74(11) 0.4
$\begin{array}{llllllllllllllllllllllllllllllllllll$	01-04-03	58.27(7) 58.21(5) 58.31(7)	58.31(6) 58.25(6) 58.29(6) 58.27(8) 58.31(10) 58.32(8) 58.41(9) 58.64(13) 0.4
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	O2 ⁱ -O1-O3	107.3(1) 107.3(1) 107.43(9)	107.36(8)107.22(8)107.32(8)107.37(11)107.19(13)107.28(11)107.45(17)107.6(2) 0.4
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	03-01-04	59.67(6) 59.66(5) 59.74(6)	59.69(6) 59.67(5) 59.69(6) 59.70(8) 59.57(9) 59.64(8) 59.93(9) 60.01(12) 0.3
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	O1 ⁱⁱⁱ –O2–O3	132.0(8) 131.9(1) 132.08(8)	131.96(7)131.96(7)132.15(7)132.00(10)132.07(11)132.04(10)132.33(5) 132.32(7) 0.3
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	O4–O1–O5 ⁱⁱ	59.22(6) 59.15(5) 59.22(6)	59.22(5) 59.18(5) 59.36(6) 59.27(8) 59.40(9) 59.32(8) 59.47(9) 59.54(13) 0.3
$\begin{array}{llllllllllllllllllllllllllllllllllll$	O1–O2–O5 ^{iv}	126.3(1) 126.3(1) 126.36(9)	126.38(8)126.45(7)126.50(8)126.44(11)126.45(13)126.43(11)126.59(7) 126.65(10)0.3
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	O2 ⁱ -O4-O3	105.4(1) 105.3(1) 105.45(8)	105.48(7)105.32(6)105.39(7)105.38(10)105.28(11)105.38(9) 105.46(9) 105.67(12)0.3
$\begin{array}{llllllllllllllllllllllllllllllllllll$	O3–O2–O4 ⁱⁱⁱ	118.4(1) 118.3(1) 118.33(9)	118.36(8)118.25(8)118.32(8)118.18(11)118.08(13)118.21(11)118.54(14)118.6(2) 0.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	02-01-04	118.4(1) 118.5(1) 118.54(9)	$118.50(8) \\ 118.51(7) \\ 118.45(8) \\ 118.50(11) \\ 118.30(12) \\ 118.39(11) \\ 118.42(10) \\ 118.55(15) \\ 0.2$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	02-01-03	59.27(7) 59.39(5) 59.36(7)	59.38(6) 59.41(6) 59.35(6) 59.39(8) 59.31(9) 59.37(8) 59.30(8) 59.43(11) 0.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	03-05-04	61.40(7) 61.32(5) 61.35(7)	61.35(6) 61.33(6) 61.42(6) 61.39(9) 61.45(10) 61.42(8) 61.50(9) 61.50(13) 0.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	01-02-03	60.01(7) 59.94(5) 60.02(7)	60.01(6) 59.87(6) 60.03(6) 59.95(8) 59.98(10) 59.96(8) 60.08(8) 60.10(12) 0.1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	O1–O4–O5 ⁱⁱ	58.58(7) 58.62(5) 58.66(6)	58.68(6) 58.69(5) 58.54(6) 58.63(8) 58.45(9) 58.58(8) 58.45(9) 58.61(13) 0.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O3-O2-O5 iv	167.5(1) 167.5(1) 167.32(9)	167.45(8)167.40(7)167.36(8)167.33(11)167.33(13)167.38(11)167.51(14)167.5(2) 0.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$O2^{i}-O1-O5^{ii}$	60.93(6) 60.82(5) 60.86(6)	60.83(6) 60.90(5) 60.84(6) 60.82(8) 60.75(9) 60.81(8) 60.79(9) 60.70(12) -0.2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	O4 ⁱⁱⁱ -O2-O5 ⁱ	59.42(6) 59.34(5) 59.38(7)	59.44(6) 59.40(5) 59.51(6) 59.48(8) 59.61(9) 59.45(8) 59.30(8) 59.18(11) -0.2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	O1–O3–O2	60.72(6) 60.67(5) 60.62(7)	60.61(6) 60.72(6) 60.62(6) 60.66(8) 60.71(10) 60.67(8) 60.62(8) 60.47(11) -0.3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	O1 v - O5 - O4 v	62.20(7) 62.23(5) 62.12(7)	62.11(6) 62.13(6) 62.10(6) 62.10(8) 62.16(10) 62.10(8) 62.08(9) 61.85(13) -0.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O1 ⁱⁱⁱ -O2-O5 ^{iv}	59.30(6) 59.31(5) 59.35(6)	59.39(6) 59.39(5) 59.30(6) 59.40(8) 59.34(9) 59.30(8) 58.93(8) 58.93(12) -0.4
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$O2^{i}-O4-O5^{ii}$	60.37(7) 60.27(5) 60.29(7)	60.30(6) 60.38(5) 60.20(6) 60.22(8) 60.02(9) 60.19(8) 60.10(8) 60.00(11) -0.4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	03-04-05	57.16(7) 57.12(5) 57.09(7)	57.06(6) 57.10(6) 57.09(6) 57.02(8) 57.14(9) 56.97(8) 56.80(10) 56.68(14) -0.5
$\begin{array}{llllllllllllllllllllllllllllllllllll$	01-03-04	62.06(7) 62.13(5) 61.95(7)	62.00(6) 62.08(6) 62.02(6) 62.03(8) 62.12(10) 62.04(8) 61.66(9) 61.35(13) -0.7
$\begin{array}{llllllllllllllllllllllllllllllllllll$	O1–O2–O1 ⁱⁱⁱ	76.70(7) 76.62(6) 76.70(7)	76.64(7) 76.68(6) 76.69(7) 76.60(9) 76.57(10) 76.53(9) 76.30(10) 75.99(13) -0.7
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	O1 ⁱⁱⁱⁱ –O2–O4 ⁱⁱ	61.75(7) 61.67(5) 61.64(7)	61.68(6) 61.73(6) 61.63(6) 61.68(9) 61.68(10) 61.57(8) 61.17(10) 60.79(14) -1.0
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	02-03-04	122.2(1) 122.2(1) 121.97(9)	122.00(8)122.18(8)122.00(8)122.05(11)122.20(13)122.04(11)121.41(8) 120.90(10)-1.3
$O5-O4-O5 \ ^{\text{ii}} 161.5(1) \ 161.5(1) \ 161.51(9) \ 161.41(8) \\ 161.33(8) \\ 161.28(8) \\ 161.06(12) \\ 161.20(13) \\ 160.88(11) \\ 158.93(15) \\ 157.7(2) -3.8 \ ^{\text{ii}} \ -3.8 \ ^{\text{ii}} \$	O2-O1-O2 ⁱ	136.2(1) 136.3(1) 136.31(8)	136.25(7)136.08(7)135.95(8)136.04(10)135.88(12)135.69(10)134.26(12)133.75(16)-2.4
	05–04–05 ⁱⁱ	161.5(1) 161.5(1) 161.51(9)	161.41(8)161.33(8)161.28(8)161.06(12)161.20(13)160.88(11)158.93(15)157.7(2) -3.8

Symmetry codes: (i) -x+1,-y+2,z+1/2; (ii) -x+3/2,y+1/2,z-1/2; (iii) -x+1,-y+2,z-1/2; (iv) x-1/2,-y+3/2,z-1; (v) -x+3/2,y-1/2,z+1/2; (vi) x+1/2,-y+3/2,z+1.

Table S22. Experimental details of K ₂ Al ₂ B ₂ O ₇ measurement	s.
---	----

Crystal data						
Chemical formula	K2Al2B2O7					
Mr	265.8	265.8	265.8	265.8	265.8	265.8
Crystal system, space group	Trigonal, P321					
Temperature (K)	98	123	173	223	298	348
a (Å),	8.5550 (12),	8.5592 (12),	8.5852 (13),	8.5683 (12),	8.5843 (9),	8.5987 (13),
c (Å)	8.4430 (13)	8.4485 (13)	8.4855 (14)	8.4633 (13)	8.486 (2)	8.5052 (15)
V (ų)	535.14 (13)	536.01 (13)	541.64 (15)	538.10 (13)	541.56 (15)	544.60 (15)
Z	3					
Radiation type	Μο Κα					
μ (mm ⁻¹)	1.57	1.57	1.55	1.56	1.55	1.54
Crystal size (mm)	0.1×0.2×0.4					
Data collection						
Diffractometer	IPDS Stoe					
Absorption correction	Based on crysta	ıl shape				
No. of measured,	5079, 970, 895	5022, 962, 872	5171, 993, 914	5097, 982, 896	5153 <i>,</i> 993,	5176, 998, 877
independent and					896	
observed $[I > 3\sigma(I)]$						
reflections						
Rint	0.043	0.048	0.041	0.043	0.043	0.047

Crystals 2017, 7, 93; doi:10.3390/cryst7030093

$(\sin \theta / \lambda)_{max} (Å^{-1})$	0.686	0.684	0.689	0.687	0.686	0.687
Refinement						
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.023, 0.026,	0.023, 0.024,	0.022, 0.023,	0.021, 0.022,	0.023, 0.024,	0.025, 0.024,
	1.52	1.34	1.31	1.22	1.27	1.19
No. of reflections	970	962	993	982	993	998
No. of parameters	63	63	63	63	63	63
$\Delta ho_{ ext{max}}$, $\Delta ho_{ ext{min}}$ (e Å ⁻³)	0.30, -0.27	0.23, -0.20	0.23, -0.25	0.16, -0.17	0.18, -0.21	0.19, -0.26
Absolute structure	390	388	402	395	401	405
No. of Friedel pairs used in						
the refinement						

Table S23. Atomic coordinates, displacement parameters ($Å^2$) and site–occupancy factors (SOFs) in the structure of K₂Al₂B₂O₇ at different temperatures.

Atom	Occ.	x	у	z	U iso/eq
7/4		0.00011(10)	98 K	2	0.000 ((0)
K1	1	0.30811(12)	0	0	0.0224(3)
K2	1	0.35912(12)	0	0.5	0.0228(3)
Al1	1	0	0	0.29952(18)	0.0128(4)
Al2	1	0.3333	0.6667	0.18217(17)	0.0108(4)
Al3	1	0.6667	0.3333	0.22148(16)	0.0116(4)
01	1	0.1572(3)	0.2132(3)	0.2261(3)	0.0212(9)
02	1	0.3971(3)	0.5149(3)	0.2512(3)	0.0209(9)
O3	1	0.4526(3)	0.2743(3)	0.2925(3)	0.0198(9)
04	1	0	0	0.5	0.0404(19)
O5	1	0.6667	0.3333	0.0193(4)	0.0335(11)
B1	1	0.3355(5)	0.3344(5) 123 K	0.2583(4)	0.0123(12)
K1	1	0.31102(12)	0	0	0.0097(3)
K2	1	0.35750(11)	0	0.5	0.0095(3)
Al1	1	0	0	0.29786(19)	0.0069(4)
Al2	1	0.3333	0.6667	0.18327(18)	0.0053(4)
Al3	1	0.6667	0.3333	0.22292(17)	0.0048(4)
O1	1	0.1568(3)	0.2145(3)	0.2249(2)	0.0100(9)
O2	1	0.4010(3)	0.5168(3)	0.2523(2)	0.0091(8)
O3	1	0.4511(3)	0.2719(3)	0.2944(2)	0.0096(8)
O4	1	0	0	0.5	0.0175(14)
O5	1	0.6667	0.3333	0.0205(4)	0.0149(9)
B1	1	0.3356(6)	0.3339(6) 173 K	0.2577(5)	0.0075(13)
K1	1	0.31053(10)	0	0	0.0131(2)
K2	1	0.35789(9)	0	0.5	0.0130(2)
Al1	1	0	0	0.29834(16)	0.0082(3)
Al2	1	0.3333	0.6667	0.18306(15)	0.0072(3)
Al3	1	0.6667	0.3333	0.22287(15)	0.0077(3)
O1	1	0.1568(3)	0.2146(3)	0.2253(2)	0.0135(8)
O2	1	0.3999(3)	0.5162(3)	0.2523(2)	0.0124(7)
O3	1	0.4513(3)	0.2721(2)	0.2942(2)	0.0118(7)
O4	1	0	0	0.5	0.0231(13)
O5	1	0.6667	0.3333	0.0198(4)	0.0196(8)
B1	1	0.3349(5)	0.3339(4) 223 K	0.2583(4)	0.0086(11)
K1	1	0.30978(10)	0	0	0.0161(3)
K2	1	0.35844(10)	0	0.5	0.0158(3)
Al1	1	0	0	0.29866(16)	0.0100(0)
A12	1	0.3333	0 6667	0.18263(15)	0.0083(3)
A13	1	0.6667	0.3333	0.22243(14)	0.0087(3)
01	1	0 1570(3)	0 2143(3)	0.2257(2)	0.0156(8)
02	1	0.3989(3)	0.5160(3)	0.2520(2)	0.0153(7)
03	1	0.4515(3)	0.2728(2)	0.2938(2)	0.0149(7)
04	1	0	0	0.5	0.0283(14)
05	1	0.6667	0.3333	0.0194(4)	0.0244(9)
B1	1	0.3343(5)	0.3334(5) 298 K	0.2579(4)	0.0102(11)

K1	1	0.30894(11)	0	0	0.0206(3)
K2	1	0.35876(11)	0	0.5	0.0207(3)
Al1	1	0	0	0.29908(17)	0.0125(3)
Al2	1	0.3333	0.6667	0.18258(16)	0.0107(4)
A13	1	0.6667	0.3333	0.22179(15)	0.0109(4)
O1	1	0.1578(3)	0.2140(3)	0.2262(2)	0.0203(8)
O2	1	0.3981(3)	0.5158(3)	0.2518(2)	0.0195(8)
O3	1	0.4518(3)	0.2733(3)	0.2932(2)	0.0183(8)
O4	1	0	0	0.5	0.0350(17)
O5	1	0.6667	0.3333	0.0197(4)	0.0311(10)
B1	1	0.3345(5)	0.3342(5)	0.2580(4)	0.0128(12)
			348 K		
K1	1	0.30811(12)	0	0	0.0224(3)
K2	1	0.35912(12)	0	0.5	0.0228(3)
Al1	1	0	0	0.29952(18)	0.0128(4)
Al2	1	0.3333	0.6667	0.18217(17)	0.0108(4)
Al3	1	0.6667	0.3333	0.22148(16)	0.0116(4)
O1	1	0.1572(3)	0.2132(3)	0.2261(3)	0.0212(9)
O2	1	0.3971(3)	0.5149(3)	0.2512(3)	0.0209(9)
O3	1	0.4526(3)	0.2743(3)	0.2925(3)	0.0198(9)
O4	1	0	0	0.5	0.0404(19)
O5	1	0.6667	0.3333	0.0193(4)	0.0335(11)
B1	1	0.3355(5)	0.3344(5)	0.2583(4)	0.0123(12)

Table S24.	Anisotropi	c parameter	rs of atomic of	displacement	ts in K2Al2B2	O7 at dif	ferent temperatures.
	* *	* *	* *	T T	* *	T T	

Atom	U11	U22	U33	U12	U13	U ₂₃
			98 V			
K1	0.0086(3)	0.0072(4)	0 0098(4)	0.00361(19)	0 00098(16)	0.0020(3)
K1 K2	0.0085(3)	0.0072(4)	0.0000(4)	0.00301(19)	0.00000(10)	0.0020(3)
A11	0.0063(3)	0.0070(4)	0.0100(4)	0.0031(2)	0.00107(17)	0.0022(3)
Δ12	0.0002(4)	0.0002(4)	0.0000(7)	0.0031(2)	0	0
Δ13	0.0045(5)	0.0045(5)	0.0030(7)	0.0022(2)	0	0
01	0.0043(0)	0.0043(3)	0.0070(7)	0.0022(2)	-0.0014(8)	0.0013(8)
02	0.0000(10)	0.0004(12)	0.0142(10) 0.0127(9)	0.0029(10)	-0.0013(7)	0.0019(0)
03	0.0073(5)	0.0000(11) 0.0073(10)	0.0127(9)	0.00007(10)	-0.0013(7)	0.0007(7)
04	0.0071(11) 0.0190(17)	0.0070(10)	0.0104(2)	0.0045(9)	0.0005(0)	0.0027(7)
05	0.0170(17) 0.0171(12)	0.0170(17) 0.0171(12)	0.000(2)	0.0095(9)	0	0
B1	0.0171(12)	0.0171(12) 0.0086(18)	0.0000(14)	0.0000(0)	0 0007(8)	0 0002(9)
DI	0.0000(10)	0.0000(10)	193 K	0.0040(14)	0.0007(0)	0.0002(9)
K1	0.0095(3)	0.0079(4)	0.0112(5)	0 00393(19)	0.00125(16)	0.0025(3)
K1 K2	0.0096(3)	0.0075(4)	0.0112(5)	0.000000(10)	0.00129(17)	0.0025(3)
A11	0.0063(5)	0.0063(5)	0.0099(3)	0.0043(2)	0.00122(17)	0.0020(0)
A12	0.0000(0)	0.0000(0)	0.0001(7)	0.0031(2)	0	0
A13	0.0040(5)	0.0040(5)	0.0000(7)	0.0024(2)	0	0
01	0.0042(0)	0.0042(0)	0.0000(11)	0.0021(2)	-0.0015(8)	0.0020(8)
02	0.0069(9)	0.0002(12)	0.0100(11)	0.0021(9)	-0.0013(0)	0.0020(0)
03	0.0000(0)	0.0030(11) 0.0085(10)	0.0140(9)	0.0032(9)	0.0014(7)	0.0011(7)
04	0.0071(11) 0.0226(18)	0.0226(18)	0.007(2)	0.0013(9)	0	0
05	0.0220(10) 0.0175(12)	0.0220(10) 0.0175(12)	0.007(2)	0.0088(6)	0	0
B1	0.0175(12)	0.0175(12) 0.0095(18)	0.0050(14)	0.0000(0)	0.0016(9)	0.0012(10)
DI	0.007 5(10)	0.0000(10)	173 K	0.0040(10)	0.0010())	0.0012(10)
K1	0.0128(3)	0.0118(3)	0.0144(4)	0.00588(17)	0.00170(14)	0.0034(3)
K2	0.0127(3)	0.0123(3)	0.0139(4)	0.00616(17)	0.00187(16)	0.0037(3)
Al1	0.0073(4)	0.0073(4)	0.0101(6)	0.00363(19)	0	0
Al2	0.0065(4)	0.0065(4)	0.0086(6)	0.0032(2)	0	0
A13	0.0065(4)	0.0065(4)	0.0101(6)	0.0033(2)	0	0
01	0.0078(9)	0.0080(10)	0.0217(10)	0.0019(8)	-0.0027(7)	0.0018(7)
02	0.0100(8)	0.0075(9)	0.0204(8)	0.0049(8)	-0.0031(7)	0.0007(7)
O3	0.0083(9)	0.0095(9)	0.0184(8)	0.0050(8)	0.0017(7)	0.0036(6)
04	0.0294(17)	0.0294(17)	0.010(2)	0.0147(9)	0	0
O5	0.0235(11)	0.0235(11)	0.0116(12)	0.0118(5)	0	0
B1	0.0086(14)	0.0099(15)	0.0079(10)	0.0051(12)	0.0020(7)	0.0006(8)
			223 K			
K1	0.0155(3)	0.0141(3)	0.0181(4)	0.00706(17)	0.00215(15)	0.0043(3)

Crystals **2017**, *7*, 93; doi:10.3390/cryst7030093

K2	0.0155(3)	0.0156(4)	0.0165(4)	0.00779(18)	0.00220(16)	0.0044(3)
Al1	0.0089(4)	0.0089(4)	0.0128(6)	0.00447(19)	0	0
Al2	0.0075(4)	0.0075(4)	0.0099(6)	0.0038(2)	0	0
Al3	0.0076(4)	0.0076(4)	0.0108(6)	0.0038(2)	0	0
O1	0.0087(9)	0.0083(10)	0.0262(10)	0.0015(8)	-0.0030(7)	0.0034(7)
O2	0.0111(8)	0.0093(10)	0.0262(9)	0.0056(8)	-0.0034(7)	0.0008(7)
O3	0.0098(10)	0.0111(9)	0.0252(8)	0.0063(8)	0.0023(7)	0.0048(7)
O4	0.0354(18)	0.0354(18)	0.014(2)	0.0177(9)	0	0
O5	0.0293(12)	0.0293(12)	0.0147(13)	0.0147(6)	0	0
B1	0.0078(13)	0.0112(15)	0.0113(10)	0.0046(12)	0.0015(7)	0.0010(8)
			298 K			
K1	0.0202(3)	0.0186(4)	0.0225(5)	0.00928(19)	0.00264(17)	0.0053(3)
K2	0.0201(3)	0.0206(4)	0.0217(5)	0.0103(2)	0.00294(18)	0.0059(4)
Al1	0.0109(4)	0.0109(4)	0.0158(6)	0.0055(2)	0	0
Al2	0.0092(4)	0.0092(4)	0.0138(6)	0.0046(2)	0	0
Al3	0.0094(4)	0.0094(4)	0.0139(6)	0.0047(2)	0	0
O1	0.0119(10)	0.0117(11)	0.0333(11)	0.0030(9)	-0.0042(8)	0.0040(8)
O2	0.0151(9)	0.0105(10)	0.0334(10)	0.0068(9)	-0.0038(8)	0.0017(7)
O3	0.0117(10)	0.0148(9)	0.0306(10)	0.0083(9)	0.0040(8)	0.0073(7)
O4	0.044(2)	0.044(2)	0.018(2)	0.0219(11)	0	0
O5	0.0388(14)	0.0388(14)	0.0158(14)	0.0194(7)	0	0
B1	0.0109(14)	0.0135(16)	0.0147(10)	0.0066(13)	0.0013(8)	0.0016(9)
			323 K			
K1	0.0222(3)	0.0205(4)	0.0239(5)	0.0103(2)	0.00303(19)	0.0061(4)
K2	0.0222(3)	0.0228(5)	0.0237(5)	0.0114(2)	0.0033(2)	0.0066(4)
Al1	0.0112(4)	0.0112(4)	0.0159(7)	0.0056(2)	0	0
Al2	0.0096(5)	0.0096(5)	0.0132(6)	0.0048(2)	0	0
Al3	0.0095(5)	0.0095(5)	0.0157(7)	0.0047(2)	0	0
O1	0.0113(11)	0.0122(12)	0.0357(12)	0.0024(9)	-0.0046(8)	0.0047(9)
O2	0.0146(10)	0.0107(11)	0.0381(11)	0.0068(10)	-0.0058(8)	0.0001(8)
O3	0.0134(11)	0.0159(10)	0.0320(10)	0.0088(9)	0.0028(9)	0.0074(8)
O4	0.053(3)	0.053(3)	0.016(3)	0.0264(13)	0	0
O5	0.0420(15)	0.0420(15)	0.0166(15)	0.0210(8)	0	0
B1	0.0090(14)	0.0125(17)	0.0144(10)	0.0046(14)	0.0025(8)	0.0013(10)

Table S25. K–O (Å) bond lengths and O–K–O (°) angles in the $K_2Al_2B_2O_7$ structure at different temperatures.

T / K	98	123	173	223	298	348	Δ(98–348 K)
K101	3.344(3)	3.339(3)	3.350(3)	3.337(3)	3.335(3)	3.335(3)	-0.009
K1–O1 ⁱ	2.680(3)	2.684(3)	2.693(2)	2.689(2)	2.700(3)	2.701(3)	0.021
K1–O1 ⁱⁱⁱ	3.344(3)	3.339(3)	3.350(3)	3.337(3)	3.335(3)	3.335(3)	-0.009
K1–O2 ^{iv}	3.020(3)	3.026(3)	3.046(3)	3.046(3)	3.061(3)	3.074(3)	0.054
K1-O3	3.198(2)	3.201(2)	3.213(2)	3.207(2)	3.213(2)	3.219(2)	0.021
K1-O5	2.9537(14)2.9583(14)2.9692(14)2.9667(13)2.9764(11)2.9851(15)	0.031
K2–O1 ⁱ	3.212(3)	3.216(3)	3.228(3)	3.223(3)	3.235(3)	3.244(3)	0.032
K2–O2 ^{iv}	2.751(3)	2.754(3)	2.768(3)	2.766(3)	2.775(3)	2.788(3)	0.037
K2–O3	2.679(2)	2.686(2)	2.698(2)	2.698(2)	2.710(2)	2.726(2)	0.047
K2–O3 ^{iv}	3.252(2)	3.251(2)	3.259(2)	3.246(2)	3.250(2)	3.251(3)	-0.001
K2–O3 ⁱ x	2.679(2)	2.686(2)	2.6979(19)2.6980(19)2.710(2)	2.726(2)	0.047
K2–O3 viii	3.252(3)	3.251(3)	3.259(3)	3.246(3)	3.250(3)	3.251(3)	-0.001
K2–O4	3.0580(12)3.0599(13)3.0725(12)3.0712(12)3.0797(11)3.0880(14)	0.03
O1 ⁱ –K1–O1 ⁱⁱ	112.21(10)112.20(10)112.47(9)	112.65(9)	112.88(10)112.93(11)	0.72
O1 ⁱ –K1–O1 ⁱⁱⁱ	79.63(7)	79.80(7)	80.04(7)	80.23(7)	80.49(7)	80.64(8)	1.01
O1 ⁱ -K1-O2 ^{iv}	74.90(9)	75.01(9)	74.97(8)	75.05(8)	75.07(9)	75.28(9)	0.38
O1 ⁱ -K1-O2 ^v	169.94(11)169.89(11)169.82(10)169.73(10)169.56(10)169.46(11)	-0.48
O1 ⁱ -K1-O3	74.16(6)	74.26(6)	74.23(5)	74.36(5)	74.53(6)	74.68(6)	0.52
O1 ⁱ –K1–O3 ⁱⁱⁱ	106.44(7)	106.46(7)	106.60(6)	106.58(6)	106.56(6)	106.60(7)	0.16
O1 ⁱ -K1-O5	128.78(8)	128.70(8)	128.73(7)	128.81(7)	128.79(8)	128.80(8)	0.02
O1 i –K1–O5 vi	88.98(9)	89.12(9)	89.04(8)	89.00(8)	89.01(9)	89.09(9)	0.11
O1 ⁱⁱ –K1–O1 ⁱⁱⁱ	55.34(6)	55.21(6)	55.20(6)	55.24(5)	55.31(6)	55.18(6)	-0.16
$O1^{iii}$ – $K1$ – $O2^{iv}$	134.45(7)	134.59(7)	134.60(6)	134.56(6)	134.56(7)	134.67(7)	0.22
O1 ⁱⁱⁱ –K1–O2 ^v	99.86(6)	99.80(6)	99.81(6)	99.90(6)	99.82(6)	99.97(7)	0.11
O1 ⁱⁱⁱ –K1–O3	138.34(9)	138.53(9)	138.72(7)	138.95(7)	139.32(8)	139.51(9)	1.17
01 ⁱⁱⁱ -K1-03 ⁱⁱⁱ	42 70(9)	42 72(9)	42 71(8)	42 68(8)	42 58(9)	42 72(9)	0.02

O1 ⁱⁱⁱ –K1–O5	142.91(7)	142.90(7)	142.78(6)	142.70(7)	142.70(7)	142.62(7)	-0.29
O1 ⁱⁱⁱ –K1–O5 ^{vi}	86.26(7)	86.29(7)	86.37(6)	86.43(6)	86.37(7)	86.52(7)	0.26
O1–K1–O1 ⁱ	55.34(8)	55.21(8)	55.20(7)	55.24(7)	55.31(7)	55.18(8)	-0.16
O1–K1–O1 ⁱⁱ	79.63(8)	79.80(8)	80.04(7)	80.23(7)	80.49(7)	80.64(8)	1.01
O1–K1–O1 ⁱⁱⁱ	95.67(8)	95.83(8)	96.03(7)	96.29(7)	96.75(8)	96.79(8)	1.12
O1-K1-O2 iv	99.86(8)	99.80(8)	99.81(7)	99.90(7)	99.82(7)	99.97(8)	0.11
O1–K1–O2 v	134.45(8)	134.59(8)	134.60(7)	134.56(7)	134.56(8)	134.67(8)	0.22
O1-K1-O3	42.70(7)	42.72(7)	42.71(6)	42.68(6)	42.58(6)	42.72(6)	0.02
O1–K1–O3 ⁱⁱⁱ	138.34(8)	138.53(8)	138.72(7)	138.95(7)	139.32(8)	139.51(8)	1.17
O1-K1-O5	86.26(5)	86.29(5)	86.37(5)	86.43(5)	86.37(5)	86.52(5)	0.26
O1-K1-O5 vi	142.91(7)	142.90(7)	142.78(6)	142.70(7)	142.70(7)	142.62(7)	-0.29
O2 ^{iv} –K1–O2 ^v	99.03(8)	98.80(8)	98.58(7)	98.22(7)	97.93(8)	97.43(9)	-1.6
O2 ^{iv} -K1-O3	67.91(8)	67.93(8)	67.96(7)	68.15(7)	68.23(8)	68.35(8)	0.44
$O2^{iv}-K1-O3^{iii}$	111.36(9)	111.20(9)	111.04(8)	110.70(8)	110.44(8)	110.07(9)	-1.29
O2 ^{iv} -K1-O5	80.97(7)	80.77(7)	80.79(6)	80.77(6)	80.61(7)	80.46(7)	-0.51
$O2^{iv}-K1-O5^{vi}$	56.54(9)	56.54(9)	56.32(8)	56.02(8)	55.91(9)	55.69(9)	-0.85
O3–K1–O3 ⁱⁱⁱ	178.95(9)	178.75(9)	178.57(8)	178.37(8)	178.10(8)	177.77(9)	-1.18
O3-K1-O5	54.91(8)	54.73(8)	54.81(7)	54.77(7)	54.61(7)	54.48(7)	-0.43
O3–K1–O5 ^{vi}	124.40(8)	124.43(9)	124.24(7)	124.14(7)	124.11(8)	124.02(8)	-0.38
O1 ⁱ –K2–O1 ^{vii}	108.05(8)	107.80(9)	107.71(7)	107.40(7)	107.16(8)	106.96(9)	-1.09
O1 ⁱ –K2–O2 ^{iv}	70.85(9)	71.01(9)	71.05(7)	71.18(7)	71.28(8)	71.38(9)	0.53
O1 ⁱ –K2–O2 ^{viii}	176.33(7)	176.28(6)	176.32(6)	176.28(6)	176.17(6)	176.19(6)	-0.14
O1 ⁱ –K2–O3	73.95(6)	73.99(6)	73.93(5)	73.98(5)	74.03(6)	73.94(6)	-0.01
O1 ⁱ –K2–O3 ^{iv}	101.38(6)	101.38(6)	101.32(6)	101.38(6)	101.38(6)	101.20(7)	-0.18
O1 ⁱ – K2–O3 ⁱ x	96.74(7)	96.69(7)	96.70(6)	96.49(6)	96.38(7)	96.46(7)	-0.28
O1 ⁱ –K2–O3 ^{viii}	132.30(8)	132.42(8)	132.47(7)	132.54(7)	132.59(7)	132.79(7)	0.49
O1 ⁱ –K2–O4	54.03(7)	53.90(7)	53.86(6)	53.70(6)	53.58(6)	53.48(7)	-0.55
O2 ^{iv} –K2–O2 ^{vii}	110.47(10)110.41(10)110.39(8)	110.45(8)	110.50(9)	110.48(10)	0.01
O2 ^{iv} -K2-O3	79.60(9)	79.59(9)	79.64(8)	79.83(8)	79.84(9)	79.81(9)	0.21
$O2^{\rm iv}\text{-}K2\text{-}O3^{\rm iv}$	45.57(7)	45.49(7)	45.50(6)	45.55(6)	45.53(7)	45.41(7)	-0.16
O2 ^{iv} –K2–O3 ⁱ x	109.57(9)	109.56(9)	109.56(8)	109.48(8)	109.50(9)	109.53(10)	-0.04
O2 iv -K2-O3 viii	81.67(9)	81.76(9)	81.81(8)	81.89(8)	82.04(8)	82.25(9)	0.58
O2 ^{iv} -K2-O4	124.77(6)	124.80(6)	124.80(5)	124.77(5)	124.75(6)	124.76(6)	-0.01
O3 ^{iv} -K2-O3 ^{viii}	84.41(7)	84.55(7)	84.76(6)	84.94(6)	85.20(7)	85.58(7)	1.17
O3 ^{iv} -K2-O4	137.80(6)	137.72(6)	137.62(5)	137.53(5)	137.40(6)	137.21(6)	-0.59
O3-K2-O3 ^{iv}	56.54(9)	56.47(9)	56.42(7)	56.45(7)	56.37(8)	56.20(9)	-0.34
O3–K2–O3 ⁱ x	164.43(11)164.47(11)164.39(9)	164.18(9)	164.11(10)164.14(11)	-0.29
O3–K2–O3 viii	138.76(7)	138.79(7)	138.92(6)	139.08(6)	139.22(7)	139.36(7)	0.6
O3-K2-O4	82.22(6)	82.23(6)	82.19(5)	82.09(5)	82.06(6)	82.07(6)	-0.15
05-K1-05 vi	11387(3)	11371(3)	113 56(3)	113 35(3)	113 12(3)	112 89(4)	-0.98

Symmetry codes: (i) -x+y,-x,z;(ii) y,x,-z;(iii) x-y,-y,-z;(iv) -y+1,x-y,z;(v) -x+1,-x+y,-z;(vi) y,x-1,-z;(vii) y,x,-z+1;(viii) -x+1,-x+y,-z+1;(ix) x-y,-y,-z+1

Table S26. *T*–O (Å) bond lengths and O–*T*–O (°) angles, T = Al, B in the K₂Al₂B₂O₇ structure at different temperatures.

T / K	98	123	173	223	298	348	Δ(98–348 K)
Al1-01	1.762(2)	1.757(2)	1.764(2)	1.7585(19)1.762(2)	1.761(2)	-0.001
Al1–04	1.7063(16)1.7078(17)1.7112(14)1.7040(14)1.7050(16)1.7051(17)	-0.001
A1202	1.749(3)	1.751(3)	1.754(3)	1.747(3)	1.747(3)	1.750(3)	0.001
Al205 v	1.717(4)	1.722(4)	1.721(4)	1.709(4)	1.717(4)	1.714(4)	-0.003
A1303	1.755(3)	1.754(3)	1.758(2)	1.754(2)	1.756(2)	1.754(3)	-0.001
A1305	1.715(4)	1.710(4)	1.723(4)	1.719(4)	1.715(4)	1.719(4)	0.004
B1–O1	1.380(4)	1.378(4)	1.378(4)	1.368(4)	1.369(4)	1.383(4)	0.003
B1–O2	1.374(5)	1.374(5)	1.375(4)	1.376(4)	1.371(5)	1.368(5)	-0.006
B1–O3	1.369(6)	1.371(6)	1.379(5)	1.375(5)	1.379(6)	1.373(6)	0.004
01–Al1–O1 ⁱ	108.38(15)108.40(15)108.34(13)108.37(13)108.37(14)108.13(15)	-0.3
01–Al1–O4	110.54(8)	110.52(8)	110.58(7)	110.55(7)	110.55(8)	110.78(9)	0.2
O2-Al2-O5 v	109.46(9)	109.46(9)	109.56(8)	109.64(8)	109.65(8)	109.61(9)	0.2
O2 ⁱⁱⁱ –Al2–O2 ^{iv}	109.48(14)109.48(14)109.38(12)109.31(12)109.29(13)109.33(14)	-0.2
O3–Al3–O3 vi	108.83(12)108.81(12)108.81(10)108.78(10)108.75(11)108.80(12)	0
O3-A13-O5	110.10(8)	110.13(8)	110.13(7)	110.16(7)	110.19(8)	110.13(8)	0
O1–B1–O2	120.0(4)	120.5(4)	120.4(4)	120.4(4)	120.7(4)	120.1(4)	0.1
O1–B1–O3	120.4(3)	120.4(4)	120.4(3)	120.7(3)	120.0(3)	120.2(3)	-0.2
O2-B1-O3	119.6(3)	119.1(3)	119.1(2)	118.9(2)	119.2(3)	119.7(3)	0.1

T / K	98	123	173	223	298	348	Δ(98–348 K)
Al101B1	133.1(3)	133.6(3)	133.5(2)	133.9(2)	134.6(3)	134.3(3)	1.2
Al2O2B1	138.7(2)	138.6(3)	139.0(2)	139.3(2)	139.7(2)	140.6(2)	1.9
Al3-O3-B1	131.0(2)	131.4(2)	131.70(17)	132.05(18)	132.24(19)	132.8(2)	1.8
Al1-O4-Al1 ⁱ	180.0(5)	180.0(5)	180.0(5)	180.0(5)	180.0(5)	180.0(5)	0
Al2 ⁱⁱ –O5–Al3	180.0(5)	180.0(5)	180.0(5)	180.0(5)	180.0(5)	180.0(5)	0

Table S27. *T*–O–T (°) angles, *T* = Al, B in the K₂Al₂B₂O₇ structure at different temperatures.

Symmetry codes: (i) y,x,-z+1 (ii) y,x,-z.

Table S28. O–O–O (°) angles in the K₂Al₂B₂O₇ structure at different temperatures.

T / K	98	123	173	223	298	348	Δ(98–348 K)
O2 ⁱⁱⁱ -O2-O3	157.15(12)156.97(12)156.51(11)156.10(11)155.78(12)155.18(12)–2.0
O1 ⁱ -O1-O2	154.31(18)154.08(18)153.97(16)153.64(16)153.07(17)153.02(18)–1.3
O1–O3–O3 vi	152.18(12)151.84(12)151.83(11)151.59(11)151.41(12)150.99(12)–1.2
O2 v -O5-O3 v	ⁱ 164.97(6)	164.83(6)	164.67(5)	164.45(5)	164.29(5)	163.98(6)	-1.0
O1–O4–O1 ⁱ x	163.01(10)162.87(10)162.88(9)	162.72(9)	162.38(10)162.44(10)–0.6
O2 v - O5 - O3	112.49(8)	112.43(8)	112.48(7)	112.39(7)	112.36(7)	112.22(8)	-0.3
01-04-01 i	60.18(6)	60.07(7)	60.07(6)	60.14(6)	60.18(6)	59.97(7)	-0.2
O3–O5–O3 vi	60.23(11)	60.29(11)	60.12(9)	60.11(9)	60.20(10)	60.12(11)	-0.1
01-03-02	60.20(11)	60.36(11)	60.16(9)	60.13(9)	60.14(10)	60.10(11)	-0.1
02-01-03	59.59(11)	59.42(11)	59.53(9)	59.61(10)	59.77(10)	59.54(11)	-0.1
O2 v –O5–O2 x	ⁱ 60.60(12)	60.56(12)	60.55(10)	60.58(10)	60.44(11)	60.58(12)	0.0
01 ⁱ –01–01 ⁱⁱ	60.00(12)	60.00(12)	60.00(11)	60.00(10)	60.00(11)	60.00(12)	0.0
O2 iii -O2-O5	59.70(8)	59.72(8)	59.72(7)	59.71(7)	59.78(8)	59.71(8)	0.0
O3 vi –O3–O5	59.89(8)	59.85(8)	59.94(7)	59.95(7)	59.90(7)	59.94(8)	0.0
01–04–01 viii	112.08(6)	112.15(6)	112.15(5)	112.03(5)	111.88(6)	112.13(6)	0.0
O3–O2–O5 v	133.76(12)133.73(12)133.76(10)133.82(11)133.68(11)133.83(12)0.1
01 ⁱ -01-04	59.91(6)	59.96(6)	59.96(6)	59.93(6)	59.91(6)	60.02(6)	0.1
01-02-03	60.21(11)	60.22(11)	60.31(10)	60.26(10)	60.09(11)	60.35(11)	0.1
02-01-04	119.61(9)	119.63(9)	119.69(8)	119.90(8)	120.07(9)	120.02(10)0.4
O1–O4–O1 <i>x</i>	131.48(10)131.69(10)131.69(8)	131.74(8)	131.98(9)	132.13(10)0.7
01-03-05	110.88(10)111.06(10)111.05(9)	111.20(9)	111.45(10)111.58(11)0.7
O2 v - O5 - O3 v	ii129.72(8)	129.82(8)	130.03(7)	130.19(7)	130.34(8)	130.55(9)	0.8
02–03–05	95.68(9)	95.88(9)	96.01(8)	96.22(8)	96.48(9)	96.78(9)	1.1
03-01-04	92.06(10)	92.34(10)	92.43(9)	92.73(9)	93.13(9)	93.35(10)	1.3
O1–O2–O5 v	98.21(10)	98.35(10)	98.61(9)	98.99(9)	99.32(9)	99.61(10)	1.4
O1 ⁱⁱ –O1–O2	144.71(17)144.97(17)145.10(15)145.48(15)146.10(16)146.17(17)1.5
O1 ⁱⁱ –O1–O3	85.25(14)	85.67(14)	85.69(12)	85.98(12)	86.44(13)	86.74(14)	1.5
O1 ⁱ -O1-O3	142.61(15)143.05(15)143.10(13)143.43(13)143.92(14)144.25(15)1.6
01–03–03 vii	141.70(14)142.16(14)142.25(12)142.62(12)142.95(13)143.51(14)1.8
O1–O2–O2 ^{iv}	82.59(12)	82.77(12)	83.16(10)	83.62(10)	84.12(11)	84.46(12)	1.9
O2–O3–O3 vii	82.86(10)	83.16(10)	83.43(9)	83.83(9)	84.13(10)	84.73(11)	1.9
O2–O3–O3 vi	141.92(10)142.23(11)142.50(9)	142.89(9)	143.20(10)143.79(11)1.9
O1–O2–O2 ⁱⁱⁱ	142.20(16)142.38(16)142.78(14)143.26(14)143.76(15)144.12(16)1.9
O2 ^{iv} -O2-O3	140.42(10)140.63(10)141.12(9)	141.56(9)	141.94(10)142.56(11)2.1

(i) -y, x-y, z;(ii) -x+y, -x, z;(iii) -y+1, x-y+1, z;(iv) -x+y, -x+1, z;(v) y, x, -z;(vi) -y+1, x-y, z;(vii) -x+y+1, -x+1, z;(viii) y, x, -z+1;(ix) x-y, -y, -z+1;(x) -x, -x+y, -z+1;(xi) x-y+1, -y+1, -z;(xii) -x+1, -x+y, -z

Figure S1. Changing of O–O distances and O–O–O in boron-oxygen groups in structures (a) β -BaB₂O₄, (b) LiB₃O₅, (c) K₂Al₂B₂O₇.