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The use of wearable devices or “wearables” in the physical activity domain has been

increasing in the last years. These devices are used as training tools providing the

user with detailed information about individual physiological responses and feedback

to the physical training process. Advantages in sensor technology, miniaturization,

energy consumption and processing power increased the usability of these wearables.

Furthermore, available sensor technologies must be reliable, valid, and usable.

Considering the variety of the existing sensors not all of them are suitable to be integrated

in wearables. The application and development of wearables has to consider the

characteristics of the physical training process to improve the effectiveness and efficiency

as training tools. During physical training, it is essential to elicit individual optimal strain to

evoke the desired adjustments to training. One important goal is to neither overstrain nor

under challenge the user. Many wearables use heart rate as indicator for this individual

strain. However, due to a variety of internal and external influencing factors, heart rate

kinetics are highly variable making it difficult to control the stress eliciting individually

optimal strain. For optimal training control it is essential to model and predict individual

responses and adapt the external stress if necessary. Basis for this modeling is the valid

and reliable recording of these individual responses. Depending on the heart rate kinetics

and the obtained physiological data, different models and techniques are available that

can be used for strain or training control. Aim of this review is to give an overview

of measurement, prediction, and control of individual heart rate responses. Therefore,

available sensor technologies measuring the individual heart rate responses are analyzed

and approaches to model and predict these individual responses discussed. Additionally,

the feasibility for wearables is analyzed.

Keywords: wearable sensors, heart rate modeling, heart rate control, heart rate prediction, phenomenological

approaches, training monitoring, load control
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1. INTRODUCTION

The use of wearable devices (“wearables”) as tools for training or
activity tracking has increased considerably. More precise and
accurate data acquisition due to improved sensor technology,
advanced usability, and portability due to miniaturization and
more powerful data analysis due to increased processing power
allows the industry to introduce new and improved wearables
(Chan et al., 2012; Mukhopadhyay, 2015). Therefore, wearables
can be used as “every day” devices providing the user with
detailed and individual information about physical activity (PA),
fitness level, and physiological responses. Especially for non-
athletes, wearables are claimed to be effective and efficient tools
for physical training. “Find your own Fit” (Fitbit.com), “beat
yesterday” (garmin.com), “listen to your body” (POLAR), or
“Eat. Sleep. Move. Better” (Jawbone) are some of the slogans
of well-known distributors of those wearables. In this context,
especially the heart rate (HR) has become an often used indicator
for individual cardiovascular strain during training. Exercise
according to defined HR zones is already well established
in professional and recreational endurance training. Several
wearable devices do not only measure a person’s heart rate, but
might even give visual, acoustic, or vibro-tactile feedback if HR
is outside a specified area. Most apps and devices are connected
to web portals that provide a visualization of a subject’s training
data as well as more or less detailed recommendations for
training.

The wide-spread use of HR is not surprising since the
pumping action of the human heart is the driving force of
blood circulation of the cardiovascular system. The main tasks
of this system are to supply the cells with oxygen and nutrients,
to remove carbon dioxide and metabolites, and to transport
hormones, vitamins, and enzymes (Weiss and Jelkmann, 1989).
This is especially apparent in the physical training process, when
a defined external stimulus (i.e., load, pedal rate, velocity) is
applied to the human body. The increased energy demand of the
working muscles causes an increase in cardiovascular functions.
Depending on the extent of individual strain (e.g., sleep or activity
conditions) the heart has to sensitively adjust the ejection of
blood to fulfill different demands of the human body. In contrast
to other indicators of cardiovascular strain (e.g., stroke volume
(SV), oxygen uptake (VO2), release of carbon dioxide (VCO2),
metabolites as lactate or urea, and hormones) HR can be recorded
non-invasive, with minimal technical effort, and without the
constraints of laboratory conditions.

However, HR responds individually to physical stress or
training load. Due to a high amount of internal (i.e.,
training status, genetics, mood) and external (i.e., environmental
conditions, nutrition, water supply) influencing factors, the HR
response can even fluctuate in the same individual during a
single training session (Bunc et al., 1988; Ewing et al., 1991;
Boushel et al., 2001; Achten and Jeukendrup, 2003; Bouchard
and Hoffman, 2011; Hoffmann et al., 2016). By recording every
single heartbeat, a high variation of longer and shorter heart
cycles can be observed. This heart rate variability (HRV) is
to a large extent modulated by the stimulating sympathetic
and repressing parasympathetic influences of the Autonomous

Nervous System (ANS) (Lacey, 1956; Stauss, 2003). Integrated
in a variety of complexly nested regulatory mechanisms and
reflexes, the antagonistic influences of ANS are modulated
according to afferences from sensors that are situated throughout
the human body. These sensors measure, e.g., changes in blood
pressure, blood volume, or partial pressure of CO2 or O2 in the
blood.

To evoke training responses corresponding to defined training
goals, it is necessary to elicit individual optimal cardiovascular
responses to neither overstrain nor under challenge the training
person. Therefore, it is essential to model and predict these
individual responses. This is the prerequisite for effective and
efficient training.

Although the complex influence of reflexes and mechanisms
on heart performance has been studied for centuries (e.g.,
Starling, 1918; Brandfonbrener et al., 1955), modeling and
predicting every single heartbeat is yet not possible. In particular,
the unpredictability of HRV must be considered as a source of
error in modeling.

Therefore, the following HR kinetics need to be considered for
modeling acute responses to stress:

• Short-term responses, expressed by the kinetics of HR to the
onset or offset of load,

• Individual relationship of stress parameters and
cardiopulmonary indicators.

This review aims at giving an overview of measurement,
prediction, and control of individual HR responses. Therefore,
different sensor technologies measuring HR and their feasibility
for wearables are analyzed. Afterwards, current models of acute,
individual HR responses are addressed, and the implementation
and use cases of these models are discussed.

2. MEASURING CARDIAC OUTPUT VIA HR

HR kinetics can provide valuable information about the
individual responses and therefore the individual strain of the
human body. However, valid and reliable measurement of HR
is essential to convey the required information and to enable a
valid modeling and prediction of these responses. The following
chapter analyzes the reliability of different sensor technologies
currently available. Additionally, their feasibility for wearables is
discussed.

The exclusive measurement of HR as a body’s physiological
response to exercise is widely used in several areas and
applications. For example, HR is used to estimate a person’s
exhaustion or degree of fatigue (Vautier et al., 1994; She et al.,
2013), to indicate individual cardiovascular function (Carter
et al., 2003; Borresen and Lambert, 2008), to monitor exercise
parameters (e.g., condition, intensity, exercise duration) of single
persons or whole groups (Sornanathan and Khalil, 2010; Lee
et al., 2015), or to control the individual training (Weghorn, 2013;
Hunt and Hunt, 2016).

Due to the central location of the heart inside the torso
and the vulnerability of the cardio-respiratory system, heart
functions are often measured indirectly by acquiring signals that
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are caused by these functions. One possibility to measure cardiac
output is by assessing SV. Although available measurement
technologies (i.e., echocardiography, thermodilution, or direct
Fick-method Smyth et al., 1984) show high reliability and
validity and provide detailed information about the individual
performance of the heart, none of them is suitable to be
used during physical training. All described methods and
techniques require a clinical setting and preferably a stationary
participant.

An alternative way to measure cardiac output is by registering
the individual HR or the electric and mechanical effects caused
by the heartbeat. Due to the technological progress, new sensors
and technologies for reliable and valid measurement of HR
are available. Additionally, the sensors available so far still
improve in quality and feasibility and allow for a more exact
representation of the HR signal. At present, the following
measuring technologies are used (see Table 1):

• Electrographic sensor
• Optical sensors
• Infrasonic cardiac vibration sensors
• Magnetic induction monitoring sensors
• Phonocardiographic sensors
• Sphygmographic sensors

The gold standard technique for measuring HR is by quantifying
the changes of potentials that are caused by the excitation
conduction along a myocardial pathway. This conduction
produces electrical potentials that can be registered on the
skin using an electrocardiograph. In general, 12 electrodes are
arranged at defined sites on the body. However, the obtained
electrocardiogram (ECG) is only an indicator for the process
of excitation. It does not provide information about the actual
contraction work of the heart. The application procedure is time
consuming and complicated. Therefore, complex knowledge
about medical procedures and a clinical setting are essential to
obtain valid information. An appropriate and reliable integration
in wearables is not feasible so far. A more common use of
the electrocardiography are HR breast belts, which also register
varying electrical potentials. In contrast to the ECG, only two
electrodes are used. The belt can be attached to the thorax. The
recorded RR intervals are used to calculate HR. Applied correctly,
these belts show high correlation of 0.85–0.99 to the ECG
(Weippert et al., 2010). As the sensors need direct skin contact,
participants might feel discomfort to undress for application.
Another approach is the capacitive electrocardiogram (cECG).
The electrodes of the cECG do not need any conductive electrical
contact with the participant but can cover distances for example
through at least two layer of clothes. Thus, they can be placed
in chairs, car seats, and bath tubs. Czaplik et al. (2010) obtained
high correlations to conventional ECG at rest in supine position.
However, the correlation varied between 0.10 and 0.85 depending
on the body position, (breathing) movements, type of clothing,
and sweat production of the participants. Additionally, the
technological challenges are still high due to motion artifacts
and possible filter effects (Teichmann et al., 2012). Therefore,
cECG sensors are not feasible to be used in wearables for physical
training.

All electrocardiographic measurements can show measuring
errors caused by electromagnetic waves of electrical devices and
potentials that are caused by muscular activity.

Optical sensors also becamemore andmore popular.Whereas
transmissive photoplethysmographic imaging is widely used
in clinical settings, reflective photoplethysmography imaging
is already applied in smartwatches or activity trackers. Both
technologies use a light source and a detector. In transmissive
photoplethysmographic sensors, the light source is placed toward
the detector, whereas light source and detector are placed on
one side of the captured area in reflective photoplethysmography
imaging. While the pulse wave is running through the captured
area, the amount of arterial blood is slightly increased. The red
blood cells absorb the red light leading to different reflections that
can be detected. The registered pulse wave therefore represents
HR. Although evidence shows a close correspondence of pulse
wave and HR (Drinnan et al., 2001; Opalka, 2009), measuring
errors can occur due to the latency of the pulse wave and
varying vascular resistance (Selvaraj et al., 2008). Therefore,
inconsistent findings regarding the reliability can be found
depending on location of sensor, experimental condition and
performed exercise (0.11–0.99; Schäfer and Vagedes, 2013).
Whereas the sensors show high reliability in clinical settings, at
rest, and during sleep, the accuracy becomes considerably smaller
during movements. Weghorn (2016) found measurements of
118 bpm, while the ECG reference measure was at 65 bpm.
Similar results where obtained by Gillinov et al. (2017). Parak and
Korhonen (2014) evaluated two photoplethysmographic based
HR monitors, where HR measurement lay within a 10 bpm
interval in about 87 % of the time compared to the ECG reference
heart rate. This incongruence is mainly caused by the signal
processing of the pulse wave. In contrast to the sharp increase
of the R-spike in the ECG, the pulse wave shows a slow increase
and decrease leading to different detection depending on the
analyzing algorithm. Additionally, skin color and external light
sources might lead to artifacts.

Due to the comfortable handling and application in different
locations at the upper and lower extremities, optical sensors
have a high potential to be applied in wearables. However, the
reliability essentially needs to improve.

Measuring the alternating magnetic field at distinct areas
(e.g., wrist) is another measuring approach that has already been
implemented in wearable technologies. This technology registers
the pulse wave by measuring the regional changes of tissue
connectivity and corresponding changes of impedance. It has the
advantage that no contact between sensor and measuring site is
needed. At rest, the assessment of heart rate variability (HRV)
shows very high correlations (0.99–1.00) compared to 3 channel
ECG (Kristiansen et al., 2005). However, the interference caused
by movements and muscular activity is still very high; reliable
values were only achieved under laboratory conditions and at rest
(Teichmann et al., 2012). Currently, the technology is not feasible
to be used in wearables for physical training.

Infrasonic cardiac vibration sensors (i.e., ballistocardiographic
or seismocardiographic sensors) measure the vibration of the
human body that is caused by the heart function and the blood
flow through the body (Teichmann et al., 2012; Inan et al., 2015).

Frontiers in Physiology | www.frontiersin.org 3 June 2018 | Volume 9 | Article 778

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Ludwig et al. Feasibility of HR Models for Wearables

TABLE 1 | Feasibility of measurement techniques used in wearables.

Sensor Method Author Validity r Error sources Feasibility for

wearables

Electrographic ECG 1.00 • Electromagnetic waves −

• Motion artifacts

• Incorrect placement of

electrodes

HR breast belt Weippert et al., 2010 0.85–0.99 • Electromagnetic waves +

• Motion artifacts

• Disturbed signal conduction

• Incorrect placement of belt

cECG Teichmann et al., 2012 0.10–0.85 • Electromagnetic waves −

• Motion artifacts

• Filter errors

Optical Photoplethysmography Selvaraj et al., 2008;

Schäfer and Vagedes, 2013

0.11–0.99 • Latency of pulse wave

depending on measuring point

o

• Varying vascular resistance

• Skin type

• External light sources

• Algorithms that analyze pulse

wave kinetics

Inductive Magnetic induction Teichmann et al., 2012 n.a. • Interference with external

Sources

−

• Motion artifacts

Vibration Ballistocardiographie Teichmann et al., 2012 n.a. • Motion artifacts −

• No direct contact

• External vibration interference

Phonocardiographic Microphone sensors Torres-Pereira et al., 1997 n.a. • Interference with external

noises

−

• Placement of sensors

Sphygmomanometrical Blood pressure sensors Kugler et al., 1997 n.a. • Motion artifacts −

• Contraction of muscles

• Incorrect placement of cuffs

−, not feasible; o, limited feasibility; +, feasible; n.a., no data available for exercise.

These sensors do not require direct skin contact. Therefore, they
can be integrated into devices of daily life (i.e., beds, wheel chair).
Shin et al. (2011) obtained a strong correlation (0.97–0.98) on a
weighing scale type sensor at rest. However, muscular activity,
movements, and floor vibrations may cause measurement errors.
Therefore, these sensors do not provide reliable information
during physical activity.

Phonocardiographic sensors measure the noise that is
produced by the heart function or the blood wave. Modern
technology has replaced the stethoscope by a more reliable
microphone sensor. However, the reliability of the sensor is not
sufficient due to a high amount of interference caused by noise
from the environment (Torres-Pereira et al., 1997).

Sphygmographical and sphygmomanometrical sensors
measure the differences of blood pressure elicited by systole
and diastole. The sphygmo graphical sensor formerly used an

inconvenient device attached to the arm, and is therefore not
feasible to be used in wearables. Sphygmomanometrical sensors
nowadays measure the variance of blood pressure using air
pressure cuffs. However, these sensors must be applied by a
skilled physician and measurements are non-continuous (Kugler
et al., 1997). Therefore, sphygmomanometrical sensors are not
feasible for wearables.

Several recent studies showed that accuracy and precision
of HR measurement not only depend on the technique of
measurement, but is strongly depending on the wearable device
used and the completed activity. El-Amrawy and Nounou (2015)
compared nine smartwatches and eight fitness trackers. Accuracy
for HR measurement (compared to ECG reference heart rate
signal) ranged from 92.8 to 99.9 % dependent on the device, and
precision ranged from 5.9 to 20.6 %, respectively. Another way to
overcome the deficiency of single measurement technologies is to
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combine sensors obtaining multi-input systems. The developed
systems show high reliability and validity (0.993; Brage et al.,
2005; Peter et al., 2005).

3. MODELING AND PREDICTION OF
HEART RATE

In the previous section we discussedmany difficulties and sources
of errors regarding the feasibility of HRmeasurement approaches
for wearables.

While usage of wearables has rapidly increased over the last
few years, modeling aspects of health and health care are also
helpful in numerous applications as stated in Fone et al. (2003).
This is especially accounting for HR. Numerous models have
been discussed with regard to HR modeling within the last
decades. Physiological models are usually built to simulate a
specific behavior of a biological system with high accuracy. These
simulations of the human’s cardiovascular system encompass
a wide range of different purposes and cover wide variations
in complexity. For example, Grodins (1959) described the
cardiovascular system as “a feedback regulator” and emphasized
the importance of identifying the relevant components in a
system with inputs and outputs and the connection between
both. Therefore, he identified input and output parameters for
the right and the left heart, the open pulmonary circuit amongst
others, before formalizing and modeling the cardiovascular
system. Similar kinds of models on special parts of the
cardiovascular system in general can be found in, e.g., Ursino
(1998); McLeod (1966); Hotehama et al. (2003); Whittam et al.
(1998); Asteroth (2000). A detailed review with focus on the
dynamics of the cardiovascular system and physiological models
can be found in Lim et al. (2012).

Following a specific purpose, e.g., providing scientific
explanations, such physiological “white box” models try to
represent special parts of the physiological functions of
a human’s body. Additionally, there are many techniques
which model phenomenological observations. For setting up a
phenomenological model, the phenomena have to be defined,
which can (or should) be covered by the model. HR response
under different load conditions especially in endurance specific
context can be described by the following four phenomena:

1. Delayed exponential attenuated HR response to the onset or
offset of load, e.g., varying speed, incline or decline conditions
on the track (Bunc et al., 1988; Boucsein, 2000);

2. S-shaped HR response with continuous incremental load
(Brooke and Hamley, 1972);

3. Cardiac drift during longer activities (Heaps et al., 1994);
4. Exhaustion, which is also defined as “Hitting the wall,” which is

described as the moment, where glycogen supplies have been
exhausted and energy must be converted from fat (Stevinson
and Biddle, 1998).

Additionally, other aspects like a pre-exercise HR or a person’s
maximumHR can be considered directly or implicitly in amodel.

In the remaining, we will focus on phenomenological models
because they seem to be more applicable in wearables. Therefore,

we will first define different aspects of modeling and differentiate
between approximation and prediction. Additionally, we will
present different types of models and shortly summarize results
of the corresponding studies. This section will end with a
discussion of the usage of presented models with regard on
modeled physiological phenomena.

3.1. Overview of Phenomenological Models
Phenomenological models and black box models are more
applicable than physiological models in terms of approximation
and prediction of HR under stress, even if they cannot accurately
mirror all effects which occur in a human’s body. However,
they are used to observe and model essential effects during the
training process. Particularly since possibilities of measurement
are restricted during training (see section 2), an accurate model
which depicts too many different physiological aspects is not
applicable.

In this paper, we will focus on modeling acute HR responses
under stress. As stated in section 1, these responses can be
subdivided as following: Short-term responses expressed by HR
kinetics to the change of load and mid-term responses expressed
by individual relationship of stress intensity and HR. These
acute responses of human HR under stress are part of numerous
phenomenological models.

We can define four different aspects which are relevant when
considering HR models from modeling perspective; we have
to discriminate between approximation, short term prediction,
session prediction, and controlling, which will be explained in
more detail in the following.

As defined in Ludwig et al. (press), many (non-black box)
models M can be defined as functions mapping all parameters
Eα required by the model, and a stress curve u, to an artificially
computed HR curve y. In this curve both, input (i.e., stress curve)
and output (i.e., HR curve), are real time series. The estimated
HR at point of time t is labeled by y(t) while y = M(Eα, u), where
Eα ∈ P is the parameter setting1 and u = u1, ..., ut ∈ (R+)∗ serves
as the model input.

Mathematically, approximation is just a curve fitting problem,
which is a specific type of optimization problems. The goal of
curve fitting is to find the best solution to a specific problem
by finding the maximum (or the minimum) of a fitness (or
error) function which correlates to the problem. There are several
methods for finding local optima—usage of variants of least
squares method is most common. In terms of HR modeling,
optimization is used to find parameters Eα as optimal as possible,
such that the error between the measured HR curve and the
modeled HR curve is as small as possible.

Going further, the term prediction2 can be used to forecast HR,
i.e., computing HR values which were not known by the model
beforehand and not used for optimizing the model’s parameter

1Since HR response is delayed, HR increases after a certain time of physical activity

and regeneration in relaxation for example are delayed as well. The speed of these

adaption processes is highly personalized, and therefore the models should be

parametrized for such individual model components.
2In estimation theory estimating the value of a function at a given point in time

based on the observations made up to this point is denoted as filtering rather than

predicting.
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space. A prediction is dependent on the model parameters
previously identified in approximation on different data sets (i.e.,
approximation is performed on training data and prediction on
test data). In short term prediction, we are interested in predicting
HR responses to the change of load based on current input data
over a certain time horizon. This type of prediction is often used
to properly control the stress applied to a subject to prevent
unwanted physical effects. If instead the task is to develop a
sensitive training plan for a subject over a whole workout session
beforehand or to plan a competition, then the input-output
relation between imposed stress and resulting HR needs to be
predicted over a longer period of time. We use the term session
prediction to refer to this capability of a model. This means,
session prediction is used for predicting a whole time series, such
that mid-term HR effects can be modeled as well.

Controlling is a special case of HR prediction in this context.
It is usually based on short term prediction since the model is
used to control the stress which is exposed to a subject, e.g., by an
ergometer. Apart from short term prediction, input and output
are interchanged in the control application, since the power of
an ergometer should be changed dependent on a subject’s HR.
HR models used for control are often some kind of short term
prediction models.

Adjustment of short term prediction models for the usage of
session prediction is mathematically possible, but can lead to a
lack of accuracy as shown in Ludwig et al. (2015) and Hoffmann
and Wiemeyer (2017a). If a short term prediction model makes
use of previous HR values, respective previously computed HR
values could be used in the corresponding session prediction
model. It is possible that the prediction error accumulate quite
fast in doing so. Vice versa, models for session prediction can be
transformed into models of short term prediction by using the
model stepwise.

In general, all HR models have the potential to be used
for any application which requires HR modeling with varying
accuracy. Some effects might be modeled only indirectly and
thus less accurate as in models considering them as phenomena
to be modeled directly. Thus phenomenological models cannot
represent all possible HR behaviors, but best describe the effects
they are built for. For example, Paradiso et al. (2013) stated
that they avoid workloads inducing the cardiovascular drift and
therefore do not need to include the drift effect in their model. On
the other hand, models used for indoor control purposes – like
ergometer or treadmill control – do not need to predict future
HR values for more than a few seconds.

Table 2 gives an overview of common HR models and
summarizes their properties. Each model is first specified by
its property of being a black box model, a regression analysis
model, or a white box model. Most properties are marked with
an “x” if applicable, are further specified, or are marked with
“ø” for clarification if a certain property is not specified within
the corresponding paper; if the model is used for prediction, the
type of prediction is further specified. The number of parameters
which need to be optimized is stated where possible; in case
of Artificial Neural Networks (ANS) , the number results by
multiplication of the number of hidden nodes with aggregation
of number of input and output nodes (and a bias added

if used), since the networks here are built with one hidden
layer. Amount of parameters is not specified if a model is not
explicitly given and the amount of necessary parameters for
optimization is not specified in the correlating paper. The focus
for the effects covered by a model is set to the four effects
identified asmain effects at the beginning of this section—namely
delayed exponential attenuated response, S-shaped response,
cardiovascular drift, and complete exhaustion. The inclusion of
a pre-exercise HR or a person’s maximum HR in the model,
and the way how stress is included as input is stated here, too.
Additionally, some models contain a component for recovery
different from the HR response to increasing stress. In this case,
the function used for recovery is stated in the table.

It can clearly be seen that most phenomenological models
discussed in this paper are modeled and evaluated for control
purposes or for analyzing correlations between HR and specific
other measurements or influences. Prediction of complete
training sessions beforehand (“C”)—which corresponds to a
proper evaluation with a test set independent of training sets
used for parameter estimation—is not yet evaluated very well.
Regarding the effects, it is noticeable that most models include
both, an exponential response to stress and the S-shaped HR
response. Many models use some initial or pre-exercise HR, and
all other effects are considered more sparsely. Additionally, while
only fewmodels incorporate stress linearly, most authors seem to
assume a polynomial influence.

Although black box (or gray box) models (e.g., Hammerstein
and Wiener models, ANNs) usually do not have physiological
correspondence, simulating an existing HR curve or predicting
the next few seconds works very well. But when it comes
to planning of training or competition, HR approximation of
existing training sessions and prediction of only some seconds
into the future is not enough any more. For planning a
whole training session or simulating a person’s capabilities in
a competition, HR needs to be predicted over a complete
training session. However, black box models tend to overfit in
HR response prediction of a complete training session. This is
caused by the high number of parameters, which are also often
used in non-black-box phenomenological HR models (Ludwig
et al., press). Particularly interpretability of a model’s parameters
is favorable in HR prediction: to model not artifacts but real
factors influencing the HR significantly improves the accuracy of
prediction. Ludwig et al. (2015) gives a comparison of different
types of phenomenological models and presents their accuracy
in approximation and prediction of different time horizons of
HR. The results illustrate that good accuracy in approximation or
prediction of few seconds does not transfer to prediction accuracy
in session prediction.

In the following, all considered models are allocated in
subsections appropriate to the underlying type of model. Results
cited there are always results of approximation (i.e., evaluation of
training data set) if not specified otherwise.

3.1.1. Artificial Neural Networks
Yuchi and Jo (2008) implemented a feedforward ANN to predict
HR for the next second based on physical activity (obtained as 3-
D acceleration signals), while Mutijarsa et al. (2016) did the same
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based on cycling cadence. In both networks, the current HR and
the respective stress value (physical activity respectively cadence)
were used as input variables. HR for the directly following second
was set as output. Yuchi and Jo (2008) found a mean absolute
error of 3.31 bpm in their test set and found a number of 50
neurons in the hidden layer suitable. Mutijarsa et al. (2016) found
a mean absolute error of 3.02 bpm in their test set and identified
a number of 333 neurons in the hidden layer via trial and error.
The test set is specified as 30 s prediction interval.

Xiao et al. (2009, 2010, 2011) presented different optimization
methods based on evolutionary algorithms to train neural
networks for HR prediction based on physical activity based on
the network described by Yuchi and Jo (2008). HR values were
predicted every 30 s for one subject with a short term prediction
accuracy of 4.38 bpm (test set) in the mean absolute error.

3.1.2. Differential Equation (DE) Models
To have a closer look at the differences within the following three
DE models, the models share the following general structure:

ẋ1(t) = −a1 · x1(t)+ a2 · x2(t)+ f (u(t))

ẋ2(t) = −a4 · x2(t)+ g(x1(t), x2(t))

y(t) = x1(t)

(1)

Here, ai, i ∈ N
+ are the parameters, u serves as model input

(stress), and y serves as model output (computed HR). The
functions f and g will be specified in the model description to
clarify differences in the models.

Cheng et al. (2007) proposed aDEmodel, which was originally
used for treadmill walking and is stated to describe HR behavior
during even longer lasting exercises as well as for the recovery
phase. One year later, Cheng et al. (2008) published a slightly
different DE model used to control speed of a treadmill for
regulation of HR in walking at different speeds. In both DE
models, the authors formulate two short-term components for
different responses in HR changes: One component (x1) is
stated to describe changes in HR based on parasympathetic and
sympathetic neural effects as a central response to exercise stress,
the second component (x2) is stated to describe changes in HR
based on effects from the hormonal system, increase in body
temperature or other slowly-acting effects from the peripheral
local metabolism. The output in both models describes the
changes in HR from resting HR, while the input signal is set to the
walking velocity during the training (and set to 0 for recovery).
Velocity is supposed to have a quadratic influence on changes of
HR in both models: regarding Equation 1, Cheng et al. (2007)
defined:

f (u(t)) =
a2 · u

2(t)

1+ exp(−u(t)+ a3)
, a2 = 1,

where the exponential function is used to depict further non-
linear effects of the HR; and Cheng et al. (2008) reduced this part
of the model to:

f (u(t)) = a2 · u
2(t).

Furthermore, Cheng et al. (2007)model slow recovery of HR after
exercise again with a hyperbolic tangent function within:

g(x1(t), x2(t)) = a4 · tanh(x2(t))+ a5 · x1(t).

Only changes of the first component were dependent on
input velocity within a sigmoidal function. The five parameters
used in this model were estimated using Levenberg-Marquardt.
Approximation accuracy is analyzed only visually. The model
proposed in Cheng et al. (2008) has no such explicit component
to cover slow recovery. While input velocity in this model
still only effects changes of the first component, the sigmoidal
function here covers changes of the second component, but
dependent on the first component, using:

g(x1(t), x2(t)) =
a4 · x1(t)

1+ exp(−(x1(t)− a5))
.

The possibility to individualize the model using the set of
five parameters is retained for this DE model, but the authors
estimated fixed parameters based on data of all their subjects
to identify a model with no free parameters for their controller
design. Approximation accuracy is analyzed only visually, since
the focus of the presented work was on controller design and
parameter stability. While Scalzi et al. (2012) used the model by
Cheng et al. (2008) to describe a new controller design, Paradiso
et al. (2013) slightly adapted this model for usage in ergometer
cycling. Compared to the original model, they used a new scaling
parameter for multiplication with the quadratic input term, i.e.,

f (u(t)) = a6 · u
2(t).

The authors stated that the model can be used for cycling
ergometer control.

A different DE model was proposed by Stirling et al. (2008).
Here, changes of HR are modeled as a function dependent on
speed (or other intensity measures) and time. Their model is
based on two basic components: changes in HR and the exercise
demand, which are both dependent on speed and time and
constrained by the minimum and maximum HR values of a
subject. Three differences are modeled, which are scaled with
different parameters and multiplied afterwards: the difference
between current HR and minimal HR, between maximum HR
and current HR, and between actual exercise demand and current
HR. The parameters are used for scaling and to control how
quickly HR approaches or diverges from maximum/minimum
HR. Parameters do not change during a certain period of training.
Changes in parameters over different training seasons are stated
to give information about the subject’s cardiovascular condition.
Approximation accuracy is analyzed only visually. Improved
versions of this model with less parameters were presented by
Zakynthinaki (2015) andMazzoleni et al. (2016); we will describe
their work in section 3.1.5.

3.1.3. Regression Models
Analyzing HR using probabilistic approaches as multiple
regression, a frequent goal is to test certain correlations between
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HR and other parameters3. Hoffmann and Wiemeyer (2017b)
used multiple regression methods to find factors, which may
have a significant effect on changes in HR additional to
training effort. They analyzed 19 variables (like restfulness of
sleep, nutrition, current mood and others) in terms of their
impact on three different parameters of the Bunc equation
(Bunc et al., 1988) of HR, i.e., HR at start of the exercise,
steady state HR, and a factor used in a basic underlying HR
model for slope of the HR curve. The authors found that
influences on HR response are very individual, but that physical
health, negative mood, the number of intervals in training,
as well as time of the day seem to generally influence HR
changes. Jang et al. (2016) aimed to find a relationship between
running speed and HR using statistical regression methods.
In 217 subjects with incremental step tests they analyzed
a regression for linear and non-linear HR components; the
latter are important because of metabolic demands and cardiac
drift effects. In both, inter- and intra-subject analysis, they
found a strong correlation between HR and running speed.
Smallest errors were achieved with higher regression orders.
The regression model of fourth order yielded a correlation of
0.997 and a mean error in HR difference of 2.04 bpm. Similarly,
Fairbarn et al. (1994) found linear relationships between HR and
oxygen uptake for different aged groups of men and women
by analyzing data of 231 subjects during incremental cycle
ergometer tests with random effects regression. Richards (1980)
provides a good overview comprising (amongst other topics)
the HR analysis with statistical measures, multivariate statistical
methods, and time series analysis of HR with auto regression.
A short workflow of choosing the appropriate statistical method
when working with HR data is also given for analysis of raw
data.

Bennett et al. (1993) discussed four different autoregressive
methods to fit and predict HR time series based on past HR
values and noise. They found that the bilinear autoregressive
model describes HR dynamics best in comparison to
autoregression with and without moving average and polynomial
autoregression, but performs poorly in prediction. A similar
analysis of Christini et al. (1995) confirms the results. Both
concluded that control of HR dynamics should be non-linear.

Wang et al. (2008, 2009) used linear regression and support
vector regression (SVR) to examine the relationship between
oxygen uptake and other cardiovascular variables like HR.
The regression here was focused between oxygen uptake and
other cardiovascular factors. Hence, no conclusions were drawn
for correlations between HR and other cardiovascular factors.
Ludwig et al. (2015) showed that support vector regression can
also be used to simulate and predict HR dynamics based upon
earlier HR measurements. Esmaeili and Ibeas (2016) applied a
particle swarm optimizationmethod for the SVRmodel proposed
by Wang et al. (2008) and claimed to reach better model
parameters compared to other studies. Girard et al. (2016) used
this model to successfully regulate HR response during treadmill
exercise with a PID-controller for treadmill speeds lower than
8 km/h.

3In this specific context, parameters mean measures or effects.

3.1.4. Hammerstein and Wiener Models
Su et al. (2007a,b, 2010) identified a Hammerstein model for HR
modeling. Model identification was done separately for the linear
and non-linear part of the model by decoupling these parts using
pseudorandom binary sequences, which were found to be helpful
in this task. Bothmodel parts were identified bymachine learning
algorithms (e.g., SVR) based on collected experimental treadmill
data. The model was used for PID control of the treadmill, which
is the focus of the respective work. Based on these Hammerstein
model approaches, a modified Hammerstein model is presented
and tested by Mohammad et al. (2011). Here, the non-linear part
is approximated by a polynomial function.

Gonzalez et al. (2016) focused on approximation and
prediction of V̇O2 but showed that their identified model can
also be applied to HR modeling and prediction. In their work,
they analyzed different types ofmodels like autoregressivemodels
with and without a moving average, State-Space models, and
Hammerstein-Wiener models and stated that a Hammerstein-
Wiener model showed best results in their experiments.
Optimization finally leads to a pure Wiener model. In an analysis
of five subjects each performing four different bicycle ergometer
protocols, average approximation accuracy (training set) of HR
was 4.55 bpm, and average session prediction accuracy (test set)
was 7.46 bpm.

The model proposed by Ludwig et al. (press) can be illustrated
as Wiener model, but has a strong focus on reduction of
parameters and thus is presented in section 3.1.5.

3.1.5. Parameter-Reduced HR Models
Zakynthinaki (2015) stated that HR dynamics in response to
movement should be dependent on one parameter describing the
cardiovascular condition only. They built their model upon the
DE model by Stirling et al. (2008), but added, e.g., different HR
phases and time delays and simultaneously reduced parameters
to only one global parameter, which represents the cardiovascular
condition. The basic structure of their model is still a DE model
with difference between current HR and minimal HR, maximum
HR, or actual exercise demand. For example, the difference
between actual and maximum HR is now part of a sigmoidal
function similar to Cheng et al. (2008) instead of scaling this
difference by one exponent as before (i.e., (HR − HRmax)

A with
parameter A). The number of parameters was reduced via trial-
and-error such that all parameters except one could be fixed. The
author states that the model is able to predict complete training
sessions. The published evaluation is performed visually without
numeric values and based on a single protocol for two subjects. In
Zakynthinaki (2016), the same model is used to predict different
stress courses for synthetic data. Transferability to real training
data seems to be not yet proved completely.

Mazzoleni et al. (2016) also built their model based on the
DE model by Stirling et al. (2008) for HR modeling in cycling
exercises. Additionally, they included a term, which considered
torque and cadence, which they stated to be crucial in cycling.
They ended up with fourteen parameters, but with a stability
analysis using eigenvalues they were able to reduce the number
of free parameters to 11 and to restrict ranges of at least two
parameters. Parameters were computed based on synthetic data,
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resulting in a coefficient of determination of r2 = 0.90, when
both cadence and power output are used as model input values.

Koenig et al. (2009) aimed to identify themain effect of change
in treadmill speed and human energy expenditure to HR to
predict HR during Lokomat walking. Therefore, they calculated
the average HR increase for different walking velocities after
subtracting a pre-exercise HR value and built a model presented
as relay block chart with 11 parameters to scale the effects of the
input values including, e.g., fatigue of the subject, and were able
to reduce number of free parameters to four.

Ludwig et al. (2016, press) proposed a model which can be
described asWienermodel. The basic model has four parameters,
which can be reduced to one free parameter. Similar to the idea
in Zakynthinaki (2015), this parameter is meant to represent the
cardiovascular condition of a person. Furthermore, this model
intended to be as simple as possible without lack of accuracy. The
model was compared to different other models and yielded lower
errors in a complete session prediction. In one study, the average
prediction error (test set) was 7.08 bpm in a leave-one-out cross
validation of altogether 17 tests of three subjects (Ludwig et al.,
2016). In a second study, average approximation error (training
set) of 4.95 bpm and an average prediction error (test set) of
7.34 bpm in altogether 20 tests of five subjects was observed
(Ludwig et al., press).

3.1.6. Further Types of Models
Some furthermodel types are occasionally used for HRmodeling;
to give a short impression of the variety the models will be shortly
mentioned in this section.

Dur-e Zehra Baig et al. (2010) compared a linear time
invariant (LTI) model with a linear time varying (LTV) model
for HR approximation during walking, cycling, and rowing, each
at three different intensities, i.e, nine different tasks per subject.
The model using parameters varying in time performed better
than the LTI model in all analyzed cases with an average mean
squared error of 0.158 bpm2 for the LTI and 0.071 bpm2 for the
LTV model over both subjects and all performed tasks.

Le et al. (2009), Sinclair et al. (2009), and Yang et al. (2012)
all defined HR as sum of an initial HR value before the start
of the exercise and changes due to stress at every point in
time. The changes in HR are subdivided into a phase where HR
increases, and some phase where the cardiac drift occurs. While
Le et al. (2009) differentiated between moderate and exhaustive
intensities for the phase of increase, Sinclair et al. (2009) defined
a steady-state HR phase including the cardiac drift and used
accumulated work instead of plain stress values. Le et al. (2009)
and Yang et al. (2012) additionally defined a recovery phase,
defined by an exponential function in Yang et al. (2012), and a
sum of the HR at anaerobic thresholdminus calculatedHR values
up to exhaustion in Le et al. (2009) – basically the counterpart to
their implementation of HR exhaustion. The phase of increase
respective HR at moderate intensity is modeled as a single
parameter in Sinclair et al. (2009), Le et al. (2009) summed up
workload and change in HR at the preceding point in time—each
scaled by a parameter—and Yang et al. (2012) additionally added
up some noise. The drift is againmodeled as a single parameter in
Sinclair et al. (2009), while Le et al. (2009) and Yang et al. (2012)

used a scaled exponential function depending on the current or
last workload respectively.

Endler (2013) adapted a model by Perl (2004) to running,
which was initially developed for modeling training processes.
PerPot-Run uses speed as input, which is divided antagonistically
in a positive and negative potential. The model determines HR as
output by flow equations, where positive and negative potentials
are effecting the HR with different delays. For prediction usage
of the model, it has to be calibrated to an individual subject
by a graded incremental test of the subject. PerPot-Run can be
used to calculate the individual anaerobic threshold (Endler et al.,
2017). Furthermore, it is used to optimize endurance running
competitions and training. Endler and Friedrich (2016) presented
an extension of PerPot-Run, including incline and decline of
tracks.

3.2. Usage of HR Models and Applicability
in Wearables
A commonly used application for HR models is control of
HR on a treadmill (Mazenc et al., 2010; Nguyen et al., 2011;
Pătraşcu et al., 2014; Hunt and Fankhauser, 2016; Hunt and
Liu, 2017), on a bicycle ergometer (Mohammad et al., 2012;
Paradiso et al., 2013; Argha et al., 2014, 2015a,b; Leitner et al.,
2014), for gait training (Koenig et al., 2011) or to control strain
in exergames (Sinclair et al., 2009). Even apart from strain or
stress control, use of HR models is conceivable for many other
areas like training planning (Brzostowski et al., 2013; Schäfer
et al., 2015), generating individualized training zones based on
past training sessions, keeping track of performance development
and adjustment of HR training zones, potentially enhancing
accuracy by predicting the HR after a model is individualized
and adjust the displayed HR according to measurement and
model prediction, compensate missing or incorrectly detected
HR values [see Jang et al. (2016)], and more.

A simple way to control the individual HR response is by
using the closed loop principles of regulatory circuits. Wagner
et al. (1993) used the approach of a PD controller for HR
control that is solely influenced by the applied load on a bicycle
ergometer (u). Thus, the load is adapted proportionally and
differentially according to the adaptation course of the HR. Since
HR response is delayed the load is adapted at distinct time points.
The proportional part analyzes the deviation of the desired target
(HRtarget) to the actual measured HR (HRcurrent). The differential
part analyzes the increase of HR represented by the deviation
of HRcurrent and the starting HR (HRstart) within these intervals.
The following formula was used:

u(t) = Kp · (HRtarget − HRcurrent(t))

+ Kd · (HRcurrent(t) − HRstart(t))

Wagner et al. (1993) obtained sufficient results adapting the
parameters Kp and Kd individually.

Stirling and Zakynthinaki (2003) provide additional examples
how modeling can be used for different processes in sport with a
focus on modeling physiological responses to exercise.

In addition to these use cases, applicability of
phenomenological models to wearables is an interesting
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issue. But how can wearables benefit from integration of models?
Since several wearables already provide some general training
information on a computer based platform, inclusion of HR
models could be used to already inform the user during the
training about, e.g., the training progress or provide suggestions
according to a training plan. Even more, it could help to control
the strain a person summons up during a competition [similar
to the idea of PerPot-Run by Endler (2013)] by providing useful
information about an expected HR or performance progress
based on current HR data. Independent of concrete activities
or goals, information based on model predictions provided
by wearables could help to avoid overstrain, enhance training
progresses, and altogether motivate the user to train in an
expedient and suitable way. In addition, a well-individualized
model could improve the accuracy of wearables by comparing
current measurements to predicted HR values.

Some limitations of wearables such as a small screen size
and moderate computer performance have to be considered.
To provide predictive information during training, it would be
necessary that either stress is known beforehand, which might
be the case only for very specific applications, or to update the
model predictions regularly during the training and based on
current strain or stress. Since most HRmodels use only one input
(or input curve), which can be power, velocity, physical activity
values, and so forth, the kind of stress considered has to be
chosen carefully. For example, in running it might be beneficial
to include both, running velocity and slope, which would need
to be combined to one stress value for usage in most HR
models. While a stress value can be well defined in, e.g., walking,
running, and cycling, finding an appropriate measure might be
much more difficult in other sports. Here, the use of machine
learning algorithms (like ANNs, SVR, or Hammerstein orWiener
models) could be beneficial, since they allow easily to include any
desired number of different inputs. However, machine learning
algorithms need a huge amount of data to be appropriately
trained, and training or updating a model sometimes requires
a high computational power and a corresponding computing
time depending on the underlying system. Especially for ANNs, a
small network with up to 10 neurons should be sufficient for HR
prediction. Higher amounts of neurons in the hidden layer can
quickly lead to overfitting resulting in bad prediction accuracy.
On the other hand, simply using an already trained ANN does
not require much time and can easily be executed in real time
even on wearables. Therefore, an ANN would be feasible to be
used on demand, but should be trained beforehand and not on a
wearable.

A potential workability of a model on a wearable is strongly
dependent on the specific implementation of this model. Models
used for control purposes are often feasible in predicting
a few seconds of HR which could also be applicable to
wearables. Predicting longer time horizons of HR or controlling
a complete training session can also be implemented with
models, which are able to accurately predict complete training
sessions. Using a suitable implementation, most models will
be efficient in just computing current HR values based on a
given stress value, while parameter optimization can be time
expensive.

In general, individualization of a given model always requires
optimization of model parameters, which need data to be trained
on and can hardly be performed online during a training.
Statistical models and results from statistical analysis can help
identifying important parameters affecting HR (like gender, age,
body mass index, or similar). With this additional information,
HR models could be improved such that less parameters have
to be optimized. Adjusting model parameters can certainly be
performed faster for less parameters, such that a less complex
model with only few parameters could possibly be optimized
and adjusted online on a wearable and during training. HR
models by Zakynthinaki (2015) and Ludwig et al. (press) are
reduced to one parameter and might be good candidates for this
purpose. Additionally, results obtained in regression analysis as
in Hoffmann andWiemeyer (2017b) can help reducing necessary
parameters in other models. Actual applicability of particular
models to wearables has to be analyzed and compared against
each other in more detail in the future.

4. SUMMARY

Wearables controlling individual strain via HR have the potential
to be used as effective and efficient tools for the physical training
process. As the HR is integrated in a variety of nested regulatory
mechanisms and reflexes, different and highly individual HR
kinetics can be observed.

Currently, different sensor technologies measuring HR are
available: electrographic sensors, optical sensors, infrasonic
vibration sensors, magnetic induction monitoring sensors,
phonocardiographic sensors, and sphygmographic sensors.
Whereas the electrocardiogram is the “gold standard” for
measuring HR, most sensors show high reliability and validity
in clinical settings as well. HR breast belts are considered
an acceptable compromise of reliability, validity, and usability.
Especially optical sensors have a high potential due to high
usability and acceptability. However, signal processing, i.e.,
analysis of pulse wave representing heartbeat, has to be improved.
The integration of HR sensors operating on different principles
(e.g., photoplethysmography) in wearables for training control
is not (yet) feasible due to a variety of possible error sources.
Modeling individual responses can be performed using biological
and phenomenological models. As biological models are very
complex and are more appropriate for offline analysis, they
are not feasible to be integrated in wearables for physical
training. Phenomenological models in contrast focus specifically
on HR response integrating many relevant aspects as cardiac
drift or maximum HR. Among other classifications, modeling
approaches can be divided into ANN, DE models, regression
models, Hammerstein and Wiener models, parameter-reduced
HR models, and further models that are occasionally used. The
described models can be integrated into wearables for controlling
HR on a treadmill, a bike ergometer, for gait training, or strain
control within exergames. Additionally, some models can be
applied to provide information regarding the long term training
process. The feasibility of model implementation in wearables
is depending on the reliability of the model, the required
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processing power, and the output of the model. Currently, pre-
trained ANNs, models with individually pre-adapted parameters,
or parameter-reduced models seem to be most appropriate
for integration into wearables. However, most models were
optimized and tested on specific samples. A comparison of the
models based on independent data sets is required for objective
and reliable evaluation.
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