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The application of relativistic energy density functionals to the description of nuclei leads

to the problem of solving self-consistently a coupled set of equations of motion to

determine the nucleon wave functions andmeson fields. In this work, the Lagrange-mesh

method in spherical coordinates is proposed for numerical calculations. The essential

field equations are derived from the relativistic energy density functional and the basic

principles of the Lagrange-meshmethod are delineated for this particular application. The

numerical accuracy is studied for the case of a deformed relativistic harmonic oscillator

potential with axial symmetry. Then the method is applied to determine the point matter

distributions and deformation parameters of self-conjugate even-even nuclei from 4He

to 40Ca.

Keywords: Lagrange-meshmethod, relativistic energy density functional, density-dependent couplings, deformed

nuclei, relativistic harmonic oscillator, Dirac equation

1. INTRODUCTION

The theoretical description of nuclei with the help of energy density functionals (EDFs) has
advanced steadily during the last decades. Many improvements were introduced in the physical
modeling and technical methods were developed continuously. EDFs can be designed using
heuristic arguments but their precise form in nuclear physics is often deduced from and guided
by systematic approaches employing mean-field approximations. Two major classes can be
distinguished: non-relativistic EDFs derived from effective interactions, e.g., Skyrme or Gogny
type, in the Hartree–Fock approximation and relativistic or covariant models that start from a
field-theoretical formalism with a Lagrangian density. Refer to the review [1] for details and
examples of both classes.

The application of EDFs to describe deformed nuclei represents a particular challenge because
of the larger complexity of the calculations that is needed to find self-consistent solutions of the
coupled equations. This is particular true for relativistic models in which the Dirac equation has
to be solved to obtain the nucleon single-particle states and Klein–Gordon or Poisson equation
for the mesons and electromagnetic fields [2–9]. In contrast, the Schrödinger equation with given
potentials is relevant for non-relativistic EDFs. Different methods have been applied to solve these
partial differential equations. They can be discretized on a mesh with suitably distributed grid
points, usually in coordinate space using shooting and matching techniques or finite element
methods to find solutions. See, e.g., Horowitz and Serot [10], Bonche et al. [11], Reinhard et al.
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[12], Pöschl et al. [13, 14], Meng [15], Stoitsov et al. [16],
and Typel and Wolter [17]. Alternatively, in configuration
space, solutions can be expanded in a set of carefully chosen
basis functions. Examples are eigenfunctions of the harmonic
oscillator, Woods–Saxon potential, or transformed harmonic
oscillator functions. For examples, refer to Gambhir and Ring
[18], Ring et al. [19], Zhou et al. [20], and Nikšić et al. [21,
22]. Then the diagonalization of more or less large matrices is
required. Also B-splines or wavelet representations have been
used; see, e.g., Umar et al. [23], Pei et al. [24, 25]. Instead of
diagonalizing large matrices, imaginary time-step methods have
been exploited with great success to obtain wave functions from
non-relativistic EDFs; see, e.g., Davies et al. [26], Reinhard and
Cusson [27], and Ryssens et al. [28]. Another method is based on
Fourier transformation techniques [29]. A comparative study of
the numerical accuracy of different methods in non-relativistic
approaches can be found in Bonche et al. [11]. The dependence
of the precision on the characteristic parameters of particular
numerical methods were also explored [30, 31]. Problems of
the imaginary time-step method in solving the Dirac equation
on a three-dimensional lattice and the accuracy of the method
are discussed in Tanimura et al. [32]. An efficient and precise
approach is the Lagrange-meshmethod that combines the virtues
of the discretization and basis methods previously mentioned.
This variational approach has been developed mainly to study
non-relativistic problems and found many applications [33–37].
There are only few applications of the Lagrange-mesh method
to relativistic systems, mainly for simple cases like hydrogenic
atoms [38, 39].

In this work, the Lagrange-mesh method is applied to find
solutions of the Dirac equation with non-spherical potentials
that appear in the description of deformed but axially symmetric
nuclei. The main difference is that the kinetic energy operator in
the non-relativistic case is given by a second derivative, whereas
only first derivatives occur in the relativistic case. As an example,
a relativistic EDF that is derived from a relativistic mean-
field model with density-dependent meson-nucleon couplings
is considered. The method is easily adapted to other types of
relativistic EDFs, e.g., with nonlinear self-interactions of the
mesons.

This work starts in section 2 with a short introduction to the
relativistic EDF with density-dependent couplings that is used
to describe the structure of nuclei. The set of coupled equations
that have to be solved self-consistently is derived. In section 3,
the numerical techniques are introduced. After summarizing the
basic principles of the Lagrange-mesh method, the discussion
focuses on how solutions of the Dirac equation and the meson
field equations are obtained. Results are presented in section
4. First, deformed relativistic harmonic oscillator potentials are
considered. They are used to study the precision of the numerical
methods because quasi-analytical results for the energy levels are
available. Then the techniques are applied to the description of
self-conjugated even-even nuclei from 4He to 40Ca as they show
a large variation of different shapes. Finally, conclusions are given
in section 5. In this work, natural units with h̄ = c = 1 are
used in all the equations. For the conversion of units, the value
h̄c = 197.3269788 MeV fm is utilized [40].

2. RELATIVISTIC ENERGY DENSITY
FUNCTIONAL

The general starting point for relativistic models of nuclei and
nuclear matter is a covariant Lagrangian density L. It contains
the relevant terms to describe nucleons, mesons, and their
interaction, in most cases realized by minimal couplings. From
L, the equations of motion of all degrees of freedom are deduced
with the help of the Euler-Lagrange equations and by applying
approximations in the subsequent steps. Usually, the mean-field
and no-sea approximation are used and meson fields are treated
as classical fields. The system of coupled equations is simplified
further by presuming certain symmetries. Finally, quantities like
the energy density can be obtained from the energy-momentum
tensor. This procedure to derive an EDF from the Lagrangian
density and its application to nuclear structure calculation has
been presented extensively in the literature; see, e.g., Bender et al.
[1], Serot and Walecka [2], Ring [3], Serot and Walecka [4],
Lalazissis et al. [5], Vretenar et al. [6], Meng et al. [7], Nikšić et al.
[8], and Ring et al. [9]. Here, it is sufficient to give only the explicit
form of the relativistic EDF itself and the equations of motion.

In the present work, a relativistic EDF is employed assuming
stationary systems in a fixed frame of reference. In general,
it considers four types of mesons to model the effective in-
medium interaction: a scalar σ meson to describe the attraction
between nucleons and a vector ω meson for repulsion. Besides
these isoscalar mesons, a vector ρ meson and a scalar δ meson
are introduced for the isospin dependence of the strong force.
Furthermore, the electromagnetic interaction is included. These
fields are denoted in the following equations with the symbols σ ,
ω0, ρ0, δ, and A0, respectively. Because of the assumptions, only
the zero component of the Lorentz vector fields are nonzero and
there is only one nonzero component of vectors in isospin space.
With the spinors 9ik for a proton (i = p) or a neutron (i = n) in
a single-particle state k, it is convenient to introduce the kinetic
energy densities of the nucleons

τi =
∑

k

wik9 ikEα · Ep9ik , (1)

the vector densities

n
(v)
i =

∑

k

wikn
(v)
ik

=
∑

k

wik9 ikγ
09ik , (2)

and the scalar densities

n
(s)
i =

∑

k

wikn
(s)
ik

=
∑

k

wik9 ik9ik (3)

with 9 ik = 9
†

ik
γ 0 in the usual notation for the relativistic

matrices Eα and γ 0 = β and the momentum operator Ep. The
symbol wik is the occupation factor of the state k. In addition,
the source densities

nm =
∑

i = n,p

gimn
(s)
i (4)
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form = σ , δ and

nm =
∑

i = n,p

gimn
(v)
i (5)

for m = ω, ρ, γ are defined with factors gnσ = gpσ = gnω =
gpω = −gnρ = gpρ = −gnδ = gpδ = gpγ = 1 and gnγ = 0 that
specify the couplings between nucleons, mesons, and photons.
Then the energy density ε has the explicit form

ε =
∑

i = n,p

(

τi+min
(s)
i

)

− Ŵσσnσ−Ŵδδnδ+Ŵωω0nω+Ŵρρ0nρ

+ŴγA0nγ + 1

2

(

E∇σ · E∇σ +m2
σσ

2 + E∇δ · E∇δ +m2
δδ

2 (6)

−E∇ω0 · E∇ω0−m2
ωω

2
0− E∇ρ0 · E∇ρ0 −m2

ρρ
2
0− E∇A0 · E∇A0

)

with masses of the nucleons mi (i = n, p) and those of the
mesons mm (m = σ ,ω, ρ, δ). It is a functional of the various
nucleon densities, the meson and electromagnetic fields, and
their derivatives. The meson-nucleon couplings Ŵσ , Ŵω, Ŵρ , and
Ŵδ , are assumed to depend on the total vector density ntot =
∑

i=n,p n
(v)
i of the nucleons in the present work. They determine

the effective in-medium interaction. Ŵγ =
√
4πα with α =

e2/(h̄c) = 1/137.035999139 [40] is the standard electromagnetic
coupling constant.

The EDF (6) can be used to derive the field equations of
all degrees of freedom using the Euler-Lagrange equations. The
time-independent, inhomogeneous, second-order differential
equations

−1σ +m2
σσ = Ŵσnσ (7)

−1δ +m2
δδ = Ŵδnδ (8)

−1ω0 +m2
ωω0 = Ŵωnω (9)

−1ρ0 +m2
ρρ0 = Ŵρnρ (10)

for the mesons and

−1A0 = Ŵγ nγ (11)

for the electromagnetic field are found. The single-particle states
of the nucleons are obtained from solving the Dirac equation

H9ik(Er) =
[

Eα · Ep+ β (mi − Si)+ Vi

]

9ik(Er) = Eik9ik(Er) (12)

with the energies Eik (including the particle rest mass) and a
Hamilton operator H that explicitly contains scalar and vector
potentials. They are given by

Si = giσŴσσ + giδŴδδ (13)

and

Vi = giωŴωω0 + giρŴρρ0 + giγŴγA0 + V(R) (14)

with a rearrangement contribution

V(R) = dŴω

dntot
nωω0 +

dŴρ

dntot
nρρ0 −

dŴσ

dntot
nσσ − dŴδ

dntot
nδδ (15)

that appears in the vector potential Vi because of the dependence
of the couplings on the total vector density ntot. For other choices
of the density dependence, see Typel [41]. The set of coupled
Equations (7)–(11) and (12) has to be solved self-consistently
with the appropriate boundary conditions for a given number of
neutrons (N) and protons (Z). Finally, the energy of a nucleus
with mass number A = N + Z is obtained by integrating the
energy density (6) over all space. It can be written as

E(N,Z) =
∑

i = n,p

∑

k

wikEik +
∫

d3r εfield(Er) (16)

with occupation factors wik of the single-particle states. The
contribution of the fields

εfield(Er) = 1

2

(

Ŵσnσσ + Ŵδnδδ − Ŵωnωω0 − Ŵρnρρ0 − Ŵγ nγA0

)

−V(R)ntot (17)

contains an explicit rearrangement term and is found from
(6) by using partial integration and the field equations. For
a comparison with experimental data, corrections have to be
added to the energy (16), e.g., for the breaking of translational
and rotational symmetries in the numerical calculation. Also
the effect of pairing correlations has to be considered. However,
these effects are beyond the scope of the present work since the
application of the Lagrange-mesh method to the field equations
is the focus here.

3. NUMERICAL TECHNIQUES

Solutions of the field Equations (7)–(12) can be obtained with
different numerical techniques. These are most efficient when
they are adapted to the particular system of interest, in particular,
if the available symmetries are exploited. For the problem at
hand, deformed nuclei with axial symmetry, an expansion of
the single-particle wave functions and meson fields using a basis
of eigenfunctions of a deformed harmonic oscillator seems to
be the natural choice. But these functions drop off much faster
with increasing distance than expected for the wave functions of
nucleons bound in a nucleus because these basis functions have a
functional behavior of polynomial times Gaussian form. This fact
necessitates the inclusion of functions up to very high numbers
of oscillator quanta leading to a large basis set that has to be used
in the diagonalization to find the eigenfunctions. This problem
is partly solved by switching to suitably transformed harmonic
oscillator functions or by choosing basis functions obtained as
solutions of the Dirac equation with Woods–Saxon potentials.
An alternative is the discretization of the wave functions and
fields on a mesh of well-chosen grid points using cylindrical
coordinates. Function values at points between the mesh points
are found with suitable interpolation rules. To capture the correct
asymptotic behavior, the grid has to be extended to radii far
outside the nucleus itself. However, cylindrical coordinates are
not well adapted to describe the transition from a strongly
deformed system to a nucleus with spherical symmetry.

To avoid some of the problems previously mentioned, the
Lagrange-mesh method with a representation of wave functions
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in spherical coordinates is used in this work. The main ideas
of this approach are presented in section 3.1. An extended
discussion of the Lagrange-mesh method can be found in the
reviews [33, 34, 37]. The specific application to find the single-
particle wave functions and fields for axially-symmetric deformed
nuclei is given in the following two subsections.

3.1. Lagrange-Mesh Method
Solutions of a differential equation in a variable x can be
approximated by a linear combination of mesh functions that
are carefully chosen in the Lagrange-mesh method to exhibit
some specific properties. In the first step, a set of polynomials
pk(x) with k = 0, 1, 2, . . . ,N on an interval [a, b] is selected
that are orthogonal with respect to a certain non-negative weight
function w(x). Examples are Legendre, Laguerre, or Hermite
polynomials that are defined on intervals [−1, 1], [0,∞], and
[−∞,∞] with weight functions w = 1, w = exp(−x), and
w = exp(−x2), respectively [42]. The polynomials are used to
define basis functions

φk(x) =
√

wk(x)

hk
pk(x) (18)

with positive normalization factors hk so that the functions (18)
form an orthonormal basis, i.e.,

∫ b

a
dx φi(x)φj(x) = δij (19)

on the interval [a, b]. From this set of basis functions, the
Lagrange-mesh functions

fi(x) = λi

N−1
∑

k = 0

φk(x)φk(xi) (20)

with i = 1, 2, . . . ,N are constructed with normalization factors

λi =
(

N−1
∑

k = 0

∣

∣φk(xi)
∣

∣

2

)−1

(21)

where the basis functions φk are evaluated at theN distinct simple
zeroes xi of the function φN(x). The definition (20) with the
normalization (21) guarantees that the condition

fi(xj) = δij (22)

is fulfilled. The mesh functions (20) do not constitute an
orthonormal set because

∫ b

a
dx fi(x)fj(x) = λiδij; (23)

instead, the mesh functions constitute an orthogonal basis. With
help of the Christoffel–Darboux formula [42], themesh functions
can also be represented as

fi(x) =
φN(x)

(x− xi)φ
′
N(xi)

(24)

for x 6= xi and the normalization factors can be expressed as

λi =
1

xi
[

φ′N(xi)
]2

(25)

depending only on the basis function φN and its derivative φ′N .
The first derivative of the Lagrange-mesh function (24) is given
by

f ′i (x) =
(x− xi)φ

′
N(x)− φN(x)

(x− xi)2φ
′
N(xi)

(26)

with the particular values

f ′i (xj) = λixi
φ′N(xi)φ

′
N(xj)

(xj − xi)
=
(

λixi

λjxj

)
1
2 1

(xj − xi)

φ′N(xi)
|φ′N(xi)|

φ′N(xj)
|φ′N(xj)|

(27)
for xj 6= xi and

f ′i (xi) =
φ′′N(xi)
2φ′N(xi)

(28)

when the indices of the function and of the zero coincide. These
results will be useful in the later application.

The Lagrange-mesh functions fi are used as a basis to represent
any function g(x) on the interval [a, b] by an N-component
vector (g1, g2, . . . , gN)

T with coefficients gi = g(xi) that are
simply the function values at the zeroes xi of φN . Because of this
condition (22), the expansion

g(x) =
N
∑

i = 1

gifi(x) (29)

is exact at all zeroes xi. For x 6= xi, values of g(x) are easily
determined as usual for a basis expansion without the need for
an additional interpolation method that is required for other
representations on a grid. If a function g(x) can be written as
g(x) = P(x)w(x) with a polynomial P(x) of degree not larger than
2N − 1, then the integral

∫ b

a
dx g(x) =

N
∑

i = 1

λig(xi) (30)

is exactly given by a simple sum. This formula can be considered
as a generalized Gaussian quadrature rule.

In the application of this work, the Lagrange-mesh method
is used to represent functions of the radius variable r in

spherical coordinates. Then Laguerre polynomials L
(α)
k

(x), which
are defined for 0 ≤ x < ∞, are the appropriate choice as the
fundamental orthogonal polynomials pk in (18) with the weight

function w(α) = xα exp(−x) and the normalization factor h
(α)
k

=
Ŵ(α + k + 1)/k!. The basis functions (18) in the Lagrange-mesh
functions (20) depend on the parameter α, i.e.,

φ
(α)
k

(x) =
[

h
(α)
k

]− 1
2
L
(α)
k

(x)x
α
2 exp

(

−x

2

)

(31)
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and decrease exponentially for large arguments x. The choice of
α will be detailed below. First and second derivatives are given by

d

dx
φ
(α)
k

(x) =
[

h
(α)
k

]− 1
2

[(

α

2x
− 1

2

)

L
(α)
k

(x)+ L
(α)′
k

(x)

]

x
α
2

exp
(

−x

2

)

(32)

and

d2

dx2
φ
(α)
k

(x) =
[

h
(α)
k

]− 1
2

[(

α(α − 2)

4x2
− α + 2k

2x
+ 1

4

)

L
(α)
k

(x)

−1

x
L
(α)′
k

(x)

]

x
α
2 exp

(

−x

2

)

, (33)

respectively, where the second-order differential equation for
Laguerre polynomials

xL
(α)′′
k

(x)+ (α + 1− x)L
(α)′
k

(x)+ kL
(α)
k

(x) = 0 (34)

has been used in the derivation of Equation (33).

Any functionψ(x) is represented by its function valuesψ
(α)
i =

ψ(x
(α)
i ) or ψ

(β)
i = ψ(x

(β)
i ) at the N zeroes x

(α)
i or x

(β)
i of the

Laguerre polynomial L
(α)
N (x) or L

(β)
N (x) as

ψ(x) =
N
∑

i = 1

ψ
(α)
i f

(α)
i (x) or ψ(x) =

N
∑

i = 1

ψ
(β)
i f

(β)
i (x)

(35)

with Lagrange-mesh functions f
(α)
i (x) or f

(β)
i (x). The

transformation between the two vectors is given by

ψ
(β)
j =

N
∑

i = 1

U
(βα)
ji ψ

(α)
i (36)

with a matrixU(βα) containing the real matrix elements elements

U
(βα)
ji = f

(α)
i (x

(β)
j ). Integrals of the form

(ψ |O|χ) =
∫ ∞

0
dx ψ∗(x)Oχ(x) (37)

with an operatorO acting on the coordinate x can be written as

(ψ |O|χ) =
N
∑

i, j = 1

[

λ
(β)
i λ

(α)
j

]
1
2
ψ

(β)∗
i O

(βα)
ij χ

(α)
j (38)

with operator matrix elements

O
(βα)
ij =

[

λ
(β)
i λ

(α)
j

]− 1
2

∫ ∞

0
dx f

(β)
i (x)Of

(α)
j (x) (39)

containing the real Lagrange-mesh functions. They transform as

O
(βα)
ij =

[

λ
(β)
i

]− 1
2

N
∑

k = 1

[

λ
(γ )
k

]
1
2
U

(γβ)
ki

O
(γα)
kj

(40)

when changing between different sets of basis functions. The
prefactors are chosen in (39) such that the unit operator O = 1

is diagonal in the (α,α) representation with (1)
(αα)
ij = δij. Of

particular interest are matrix elements of the derivative operator
O = d

dx
. They can be expressed as

(

d

dx

)(αα)

ij

=
[

λ
(α)
i λ

(α)
j

]− 1
2

∫ ∞

0
dx f

(α)
i (x)f

(α)′
j (x) (41)

with the integrand having the form of the function g(x) in (30).
Thus they are exact in the chosen basis. These matrix elements
will appear when the Dirac equation has to be solved; see section
3.2. Using the orthogonality condition (22), the simple expression

(

d

dx

)(αα)

ij

=
[

λ
(α)
i λ

(α)
j

]− 1
2

N
∑

k = 1

λ
(α)
k

f
(α)
i (x

(α)
k

)f
(α)′
j (x

(α)
k

)

=





λ
(α)
i

λ
(α)
j





1
2

f
(α)′
j (x

(α)
i ) (42)

is obtained with the specific values

(

d

dx

)(αα)

ij

= (−1)i−j

[

x
(α)
i − x

(α)
j

]





x
(α)
j

x
(α)
i





1
2

(43)

for i 6= j and

(

d

dx

)(αα)

ii

= − 1

2x
(α)
i

(44)

for equal indices when Equations (25), (27), (28), (32), and
(33) are taken into account. The factor (−1)i−j arises from the

alternating sign of the derivatives of the basis functions φ
(α)
N at

consecutive zeroes x
(α)
i .

The practical application of the Lagrange-mesh method for
the radial coordinate r is straightforward. A Laguerre polynomial

L
(α)
N (x) of sufficiently high degree N is chosen and its zeroes x

(α)
i

for i = 1, . . . ,N are determined. Then the normalization factors
λ
(α)
i are given by Equation (25). Every function g(r) is represented

by its values g
(α)
i = g(r

(α)
i ) at the mesh points ri = hx

(α)
i

containing a scale factor h. It determines the spatial resolution
and has to be considered in the calculation of integrals over the
radial coordinate r, e.g., as a prefactor appearing in

∫ ∞

0
dr g(r) = h

∫ ∞

0
dx g(hx) = h

N
∑

i = 1

λ
(α)
i g

(α)
i . (45)

The factor h has to be fixed to an appropriate value depending on
the physical problem.
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3.2. Solving the Dirac Equation
For a nucleon with mass m moving in vector and scalar fields V
and S (suppressing the index i to distinguish between neutrons
and protons in the following equations), the single-particle
Hamiltonian in the Dirac Equation (12) has the form

H =
(

V +m− S Eσ · Ep
Eσ · Ep V −m+ S

)

(46)

with a distinct 2 × 2 structure. Correspondingly, it is useful to
represent solutions 9k(Er) of (12) as spinors with an upper and a
lower component. In the case of spherical symmetry, whenV and
S depend only on the radius r, individual states k can be identified
uniquely with three quantum numbers k = (n, κ ,�). The integer
κ = ±1,±2,±3, . . . determines the total angular momentum
j = |κ| − 1/2 of the single-particle state, the orbital angular
momentum l = |κ|−1/2−κ/(2|κ|), and the parity π = (−1)l of
the upper component of9k. Vice versa, one has κ = (j−l)(2j+1).
The quantity � = −j, j + 1, . . . , j − 1, j is the projection of j
on a quantization axis and n = 0, 1, . . . denotes the principal
quantum number counting states with identical κ and �. When
the potentials are no longer spherically but axially symmetric, κ is
no longer a good quantum number of the eigenstates of the Dirac
equation. However, any state can be represented as a sum

9k(Er) =
1

r

∑

κ

(

Fκ (r)Yκ�(r̂)
iGκ (r)Y−κ�(r̂)

)

(47)

with radial wave functions Fκ (r) andGκ (r) in the upper and lower
component of the spinor. Only values of κ with |κ| ≥ |�| + 1/2
are allowed. The angular and spin dependence of the state (47) is
encoded in the spinor spherical harmonics

Yκ�(r̂) =
∑

mlms

(l ml s ms|j�)Ylml
(r̂)χsms (48)

with a coupling of the spherical harmonics Ylml
with the spinors

χsms of spin s = 1/2. Because of the sign change of κ between
the upper and lower component, there is a difference of one
between the orbital angular momenta. If the potentials V and
S in (46) have positive parity, an eigenstate k is characterized
by k = (n,π ,�) and the sequence of components in the sum
(47) is limited further to κ = s(|�| + 1/2), −s(|�| + 3/2),
s(|�| + 5/2), . . .with s = (−1)|�|−π/2, and alternating signs for
κ . The principal quantum number n is now counting states with
identical π and�.

The potentials in the Dirac Hamiltonian (46) can be expanded
in multipole series

V(Er) =
∑

L

VL(r)PL and S(Er) =
∑

L

SL(r)PL (49)

with Legendre polynomials PL =
√

4π/(2L+ 1)YL0(r̂) due to
the presumed axial symmetry. Using the identities Eσ · Er Yκ� =
−rY−κ� and

Eσ · Ep f (r)

r
Yκω = i

r

(

d

dr
− κ

r

)

f (r)Y−κ� , (50)

the Dirac Equation (12) transforms to a set of coupled first-order
differential equations

∑

L,κ ′
(VL−SL)C

L�
κκ ′Fκ ′+mFκ −

(

d

dr
+ κ

r

)

Gκ = EkFκ (51)

(

d

dr
− κ

r

)

Fκ −mGκ+
∑

L,κ ′
(VL+SL)C

L�
−κ−κ ′Gκ ′ = EkGκ(52)

for the radial wave functions after projection on Y±κ� states. The
factors

CL�
κκ ′ =

∫

d� Y
†

κ�PLYκ ′� (53)

= (−1)s+j′+l′
√

(2l′ + 1)(2j′ + 1)(l′ 0 L 0|l 0)(j′ � L 0|j�)
{

l′ s j′

j L l

}

with Clebsch–Gordan and 6j coefficients satisfy the symmetry
CL�
κκ ′ = CL�

−κ−κ ′ . They have the particular value C
0�
κκ ′ = δκκ ′ .

To apply the Lagrange-mesh method, the radial wave
functions Fκ and Gκ are represented by vectors of finite
dimension N that corresponds to the number of zeroes of the

Laguerre polynomial L
(α)
N (x). The parameter α is set to 2|κ| so

that the basis functions (31) have the correct asymptotic form in
the limit r → 0 for the radial wave function in the component
with the lower orbital angular momentum. The radial grid points

are defined as r
(α)
i = hx

(α)
i for i = 1, . . . ,N with a scale parameter

h. Then the vector

Xκ =

























Fκ (r
(α)
1 )
...

Fκ (r
(α)
N )

Gκ (r
(α)
1 )
...

Gκ (r
(α)
N )

























(54)

of dimension 2N for a given channel κ is introduced. The
differential Equations (51) and (52) constitute an infinite set
of coupled equations that has to be truncated for solving the
Dirac equation numerically. Choosing a sequence κ1, . . . , κNc

of Nc channels, the coupled Equations (51) and (52) become an
eigenvalue problem in matrix form







Hκ1κ1 · · · Hκ1κNc
...

. . .
...

HκNcκ1 · · · HκNcκNc













Xκ1
...

XκNc






= Ek







Xκ1
...

XκNc






(55)

for the state k with quadratic sub-matrices Hκκ ′ of dimension
2N × 2N. These have the form

Hκκ ′ =
(

W
(−)
κκ ′ +mδκκ ′ −D

(+)
κ δκκ ′

D
(−)
κ δκκ ′ W

(+)
κκ ′ −mδκκ ′

)

(56)

where W
(±)
κκ ′ and D

(±)
κ are potential and derivative matrices of

dimension N × N itself. Since the derivative matrix D
(±)
κ only
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appears in the diagonal sub-matrices of the Hamiltonian matrix
in (55), its elements are given by

(

D(±)
κ

)(αα)

ij
= 1

h

(

d

dx
± κ

x

)(αα)

ij

= 1

h

[

(

d

dx

)(αα)

ij

± κ

x
(α)
i

δij

]

(57)
with the representations (43) and (44) of the first derivative.
Hence they are analytic in the Lagrange-mesh method. When
solving the Schrödinger equation to obtain wave functions using
non-relativistic EDFs, an analytic representation of the second
derivative would occur instead of the first derivative here. The
potential matrices W

(±)
κκ ′ connect components of the total wave

function with equal and different values of κ . Hence, their
elements are given in general by

(

W
(±)
κκ ′

)(αα′)

ij
=

√

√

√

√

λ
(α′)
j

λ
(α)
i

(

∑

L

[

VL(r
(α′)
j )± SL(r

(α′)
j )

]

CL�
κκ ′

)

U
(α′α)
ji

(58)
using the transformation rule (40). In total, a d × d matrix with
dimension d = 2N × Nc has to be diagonalized where Nc is
the number of channels characterized by different values of κ
that are considered. This is achieved numerically by applying
a householder reduction of the real, symmetric matrix in (55)
to tridiagonal form and subsequently the QL algorithm with
implicit shifts to determine eigenvalues and eigenvectors as
described in Press et al. [43]. The spectrum of eigenvalues Ek
decomposes into two sets with positive and negative values,
respectively. Only those that are positive with Ek < m correspond
to the bound states relevant in the description of nuclei. For
axially symmetric systems, there is an energetic degeneracy of the
single-particle states (n,π ,�) and (n,π ,−�) and every level of
this form can be populated with one particle at most due to the
Pauli principle, i.e., the occupation factor wik can be 0 or 1.

The wave functions serve as an input to solve the field
Equations (7)–(11) of the mesons and the photon. The source
densities are obtained from the total scalar and vector densities
according to Equations (4) and (5) with the single-particle
densities. The single-particle vector and scalar densities (2) and
(3) itself can be expanded in multipole series

n
(v)
k
(Er) =

∑

L

n
(v)
kL
(r)YL0(r̂) and n

(s)
k
(Er) =

∑

L

n
(s)
kL
(r)YL0(r̂)

(59)
with spherical harmonics and radial functions

n
(v)
kL
(r) = 1

r2

√

2L+ 1

4π

∑

κκ ′

[

CL�
κκ ′F

∗
κ (r)Fκ ′ (r)+ CL�

−κ−κ ′G
∗
κ (r)Gκ ′ (r)

]

(60)

n
(s)
kL
(r) = 1

r2

√

2L+ 1

4π

∑

κκ ′

[

CL�
κκ ′F

∗
κ (r)Fκ ′ (r)− CL�

−κ−κ ′G
∗
κ (r)Gκ ′ (r)

]

(61)

that are easily mapped to any given radial grid using the
representation with the Lagrange-mesh functions (24). The wave

functions are normalized as

1 =
∫

d3r n
(v)
k
(Er) =

∑

κ

N
∑

i = 1

λ
(α)
i

[

∣

∣

∣
Fκ (r

(α)
i )

∣

∣

∣

2
+
∣

∣

∣
Gκ (r

(α)
i )

∣

∣

∣

2
]

(62)
using the integral (30).

3.3. Solving the Meson-Field Equations
The field Equations (7)–(11) of mesons and photons have the
generic form

−1A(Er)+m2A(Er) = S(Er) (63)

where the massm is zero in case of the electromagnetic potential.
Since the system is assumed to be axially symmetric, the series
expansions

A(Er) = 1

r

∞
∑

L = 0

aL(r)YL0(r̂) and S(Er) = 1

r

∞
∑

L = 0

sL(r)YL0(r̂)

(64)
can be introduced. After the separation of radial and angular
coordinates, the inhomogeneous second-order differential
equation

[

− d2

dr2
+ L(L+ 1)

r2
+m2

]

aL(r) = sL(r) (65)

for the radial functions aL(r) is obtained for all angular momenta
L. The source functions sL(r) have to be determined by numerical
angular integration

sL(r) =
∫

d� S(Er)YL0(r̂) (66)

for the meson fields because the source term S(Er) in (63) is
in general a product of a coupling and a source density that
both depend on the position in space. The integration over the
azimuthal angle ϕ is trivial and gives a factor 2π . The integration
over the polar angle ϑ is performed using a Gauss-Legendre
integration rule with Nϑ = 23 grid points that is sufficient in
the applications of this work. Only for the electromagnetic field
with constant couplingŴγ the angular integration is analytic with

sL(r) = rŴγ n
(L)
γ (r) for nγ (Er) =

∑∞
L=0 n

(L)
γ (r)YL0(r̂).

The source functions S(Er) are rapidly decreasing for radii r
that are sufficiently larger than the radius of the nucleus under
consideration. They can be assumed to be zero for r larger than
a fixed radius R. Since the interaction described by the mesons
is short-ranged, the functions aL(r) can also be considered to
vanish for radii beyond R. Hence it is convenient to introduce
the expansion

aL(r) =
∞
∑

n = 1

a(L)n N(L)
n zL(y

(L)
n r/R) (67)
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and similar for sL(r) on the interval [0,R] with coefficients a
(L)
n

(s
(L)
n ) and Riccati–Bessel functions zL(y) = yjL(y). The quantities

y
(L)
n are the zeroes of the spherical Bessel functions jL(y) and

N(L)
n =

√

2

R
×
{ ∣

∣

∣
zL−1(y

(L)
n )
∣

∣

∣

−1
if L ≥ 1

1 if L = 0
(68)

are normalization factors. After inserting this series into the
differential Equation (65), utilizing the differential equation of
the Riccati–Bessel functions and the orthogonality relation [42]

∫ 1

0
dt zL(y

(L)
n t)zL(y

(L)
m t) = 1

2

[

zL−1(y
(L)
n )
]2
δnm, (69)

the coefficients in (67) are immediately found as

a(L)n = s(L)n



m2 +
(

y
(L)
n

R

)2




−1

(70)

with

s(L)n = N(L)
n

∫ R

0
dr sL(r)zL(y

(L)
n r/R) (71)

that have to be calculated numerically.
A similar method can be used for the electromagnetic field,

however, with a few modifications. Since the mass m is zero,
the terms with y

(L)
n = 0 are excluded from the sum (67). The

obtained function aL(r) vanishes at r = R and a correction
has to be implemented by adding a contribution bL(r) that gives
the correct asymptotic behavior of the long-range field, i.e., the
electromagnetic potential is written as

A(Er) = 1

r

∞
∑

L=0

[

aL(r)+ bL(r)
]

YL0(r̂) . (72)

The additional term is given by

bL(r) =
{

cLr
L+1 if r ≤ R

cLr
−L if r > R

(73)

with a coefficient

cL = 1

2L+ 1

∫ R

0
dr r sL(r) (74)

that is related to multipole moments of the charge distribution,
e.g., c0 = Ŵ2

γZ/
√
4π with the charge Z of the nucleus.

4. RESULTS

The numerical methods that were introduced in the preceding
section are applied to two cases in this work. First, the motion
of a fermion in a deformed harmonic oscillator potential is
considered to study the numerical accuracy of solving the
Dirac equation with the Lagrange-mesh method in spherical

coordinates. The relativistic harmonic oscillator was often
considered in the connection with pseudo-spin symmetry in
different versions [44–47]. Second, the ground states of self-
conjugate even-even light nuclei are calculated by a self-
consistent solution of the Dirac equation of the nucleons and the
field equations for mesons and the photon. Light self-conjugate
nuclei are well-studied theoretically, in particular regarding the
occurrence of α-particle clusters [48–50].

4.1. Deformed Harmonic Oscillator
Potential
Using simple vector and scalar potentials in theHamiltonian (46),
it is possible to find analytic solutions of the Dirac equation.
A comparison with numerical results allows to estimate how
the accuracy of the calculation depends on the parameters of
the method. A particularly simple case is the three-dimensional
harmonic oscillator of mass m with different oscillator constants
ωx, ωy, and ωz that define the potentials

Ux =
m

2
ω2
xx

2 Uy =
m

2
ω2
yy

2 and Uz =
m

2
ω2
zz

2

(75)
for the spatial coordinates x, y, and z, respectively, in a Cartesian
system. Setting

V = −S = 1

2
U = 1

2

(

Ux + Uy + Uz

)

, (76)

the Dirac equation can be written as

H9 =
(

U +m Eσ · Ep
Eσ · Ep −m

)

9 = E9 (77)

with the potential U appearing only in the upper left diagonal
position. Introducing upper and lower components ϕ and χ in
the wave function as

9 =
(

ϕ

χ

)

, (78)

the partial differential equation

(

p2

E+m
+ U

)

ϕ = (E−m) ϕ (79)

is found for the upper component by decoupling using

χ = Eσ · Ep
E+m

ϕ (80)

and Eσ · Ep Eσ · Ep = p2. A separation of variables with ϕ =
ϕx(x)ϕy(y)ϕz(z) and E − m = Ex + Ey + Ez gives the simple
ordinary second-order differential equation

(

1

2
mω2

x +
p2x

E+m

)

ϕx = Exϕx (81)

for the oscillation in x direction and similarly for the y and
z oscillators. This can be compared with the corresponding
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equation of a one-dimensional non-relativistic harmonic
oscillator

(

1

2
M�2 + p2

2M

)

8 = ε8 (82)

with massM and oscillator frequency �. It has the eigenenergies
εn = (n+ 1/2) h̄� with n = 0, 1, 2, . . . . Identifying mω2

x =
M�2, E+m = 2M, and Ex = ε, the energy eigenvalues Enxnynz of
the three dimensional relativistic oscillator can be found from the
implicit equation

Enxnynz −m =
√

2m

Enxnynz +m

[(

nx +
1

2

)

h̄ωx +
(

ny +
1

2

)

h̄ωy

+
(

nz +
1

2

)

h̄ωz

]

(83)

with the three quantum numbers nx, ny, and nz that are non-
negative integers. In fact, (83) is a cubic equation for Enxnynz with
only one positive solution that is easily found by iteration.

For the application of the Lagrange-mesh method, it is
convenient to transform the potential U = V − S from the
Cartesian to the spherical basis. Assuming axial symmetry with
ω⊥ = ωx = ωy and ω|| = ωz , the potential U can be written as

U = m

2

[

ω2
⊥(x

2 + y2)+ ω2
||z

2
]

= m

2

4π

3

(

ω2
||Y

2
10 − 2ω2

⊥Y11Y1−1

)

r2

(84)
where the definition of the spherical harmonics Y1µ was used.
Considering the multiplication theorem for spherical harmonics
and the parametrization

ω⊥ = ω(1+ d) and ω|| = ω(1− 2d) (85)

with frequency ω and deformation parameter d, the expression
for the potential further reduces to

U = m

2
ω2r2

[(

1+ 2d2
)

P0 − 2d
(

2− d
)

P2
]

(86)

with Legendre polynomials Pλ. The contribution in U
proportional to P2 is responsible for the coupling of different
angular momentum states in the wave function.

The test of the numerical method is performed for
an oscillator with h̄ω = 20 MeV and mass m =
938 MeV/c2. The corresponding oscillator parameter b =
√

h̄/(mω) [2m/(E+m)]1/4 ≈ 1.44 fm defines the characteristic
length scale of the system. In Table 1, the energies Erelnxnynz

−m of

a relativistic spherical harmonic oscillator with these parameters
are compared with those of a non-relativistic oscillator with
Enon−rel
nxnynz

− m = (n + 3/2)h̄ω = (20n + 30) MeV. The

energies only depend on the total oscillator quantumnumber n =
nx + ny + nz because of the degeneracy of the spherical system.
This degeneracy will be lifted for non-vanishing deformation
parameter d. The energies in the relativistic case are lower than
those in the non-relativistic case and the relative deviation

δnxnynz =
Erelnxnynz

−m

Enon−rel
nxnynz −m

− 1 (87)

TABLE 1 | Energies of the lowest eigenstates of a spherically symmetric harmonic

oscillator with -hω = 20 MeV and m = 938 MeV/c2 in the non-relativistic and

relativistic case and relative difference (87).

n = nx + ny + nz Enon-rel
nxnynz −m Erel

nxnynz −m δnxnynz

[MeV] [MeV]

0 30 29.764803566511 −7.840 10−03

1 50 49.354983903832 −1.290 10−02

2 70 68.751534464049 −1.784 10−02

3 90 87.961463300185 −2.265 10−02

4 110 106.991355968166 −2.735 10−02

5 130 125.847410589339 −3.194 10−02

is sizable. It is in the order of a few percent and increases with n
as can be seen from Table 1.

In general, numerical solutions of the Dirac equation depend
on the deformation parameter d and three parameters that
define the Lagrange-mesh method: the scale parameter h, the
number of zeroes N of the Laguerre polynomial in (24) and (25),
and the number of channels Nc in the expansion of the wave
function as in (55). As baseline for the following calculations and
comparisons, the values h = 0.1 fm, N = 25, and Nc = 11
are chosen. Because the coupling potential has positive parity,
there are two distinct sequences of κ values in the expansion
(47) of the single-particle state that do not couple as discussed in
section 3.2. They are {1,−2, 3,−4, . . . } and {−1, 2,−3, 4, . . . } for
states of positive and negative parity, respectively. From these sets
Nc consecutive values κ1, . . . , κNc are chosen as the considered
channels with the lowest value |κ1| = |�|+1/2. InTables 2, 3, the
exact energies Eexactnxnynz

−m of the deformed relativistic harmonic

oscillator with deformation parameters d = 0.1 and d = −0.1,
respectively, are given for the lowest states with nx+ny+nz ≤ 3.
The corresponding parities π , principal quantum numbers n, and
angular momentum projections � are also shown. A degeneracy
of states with identical values for nx + ny and nz is clearly seen
because of the rotational symmetry around the z axis. The last
column in Tables 2, 3 gives the absolute deviations

1nxnynz =
∣

∣

∣
ELMM
nxnynz

− Eexactnxnynz

∣

∣

∣
(88)

of the energies ELMM
nxnynz

, which were determined with the

Lagrange-mesh method using the baseline parameters, from the
exact values Eexactnxnynz

, which are shown in the next-to-last column.

The highest accuracy is found for the states of lowest energy. It
decreases with increasing principal quantum number n for fixed
|�| and π . Nevertheless, the level of accuracy is impressive as the
absolute scale of the energies in the eigenvalue problem is given
by the massm, i.e., of the order of 1 GeV.

The dependence of the accuracy of the calculation on the
parameters h, N, and Nc will be studied in the following sections.
The parameters h and N are specific to the Lagrange-mesh
method since they define the position of the discretization points
for the radius. In contrast, the parameterNc appears only because
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TABLE 2 | Exact energies of the eigenstates of a prolate relativistic harmonic oscillator with d = 0.1, -hω = 20 MeV, and m = 938 MeV/c2 and absolute deviation (88) of a

calculation using the Lagrange-mesh method with scaling factor h = 0.1 fm, number of grid points N = 25, and number of channels Nc = 11.

nx + ny nz π n |�| Eexact
nxnynz −m 1nxnynz

[MeV] [MeV]

0 0 + 0 1/2 29.764803566511 1.996 10−11

0 1 − 0 1/2 45.452670280853 7.764 10−09

1 0 − 0 3/2 51.303233213365 6.732 10−11

1 0 − 1 1/2 51.303233213365 3.756 10−09

0 2 + 1 1/2 61.015691317114 4.612 10−08

1 1 + 0 3/2 66.820389556220 2.736 10−08

1 1 + 2 1/2 66.820389556220 4.836 10−08

2 0 + 0 5/2 72.608233438670 1.498 10−10

2 0 + 1 3/2 72.608233438670 6.656 10−09

2 0 + 3 1/2 72.608233438670 2.149 10−08

0 3 − 2 1/2 76.457522573685 4.130 10−06

1 2 − 1 3/2 82.217680215790 1.621 10−07

1 2 − 3 1/2 82.217680215790 5.948 10−06

2 1 − 0 5/2 87.961463300185 5.905 10−08

2 1 − 2 3/2 87.961463300185 9.856 10−08

2 1 − 4 1/2 87.961463300185 5.674 10−06

3 0 − 0 7/2 93.689045769955 2.524 10−10

3 0 − 1 5/2 93.689045769955 9.625 10−09

3 0 − 3 3/2 93.689045769955 3.780 10−08

3 0 − 5 1/2 93.689045769955 1.364 10−06

a partial-wave expansion of the three-dimensional wave fuctions
was introduced in the present work. Hence, the convergence
with respect to h and N is rather independent from that of Nc.
Alternatively, different versions of the Lagrange-mesh method
based on other basis functions using cylindrical or Cartesian
coordinates could be used.

4.1.1. Variation of the Scale Parameter

The scale parameter h connects the radial grid points ri = hx
(α)
i

in a given channel κ with α = 2|κ| to the zeroes x
(α)
i of

the Laguerre polynomial L
(α)
N (x). It has to be selected so that

the details and the gross structure of the wave functions can
be well represented. The effect of changing h can be clearly
demonstrated by looking at the radial wave function of the
ground and first excited state with orbital angular momentum
l = 0 of a spherical relativistic harmonic oscillator. They are
depicted in the left and right panel of Figure 1, respectively.
In this case, only a single channel with κ = 1 has to be
considered and the matrix Hamiltonian in (55) has dimension
2N × 2N with N = 25 radial grid points. The exact result for
the upper component is given by a simple Gaussian ϕ(r) =
[2/(π1/4b3/2)] exp

[

−r2/(2b2)
]

for the ground state and ϕ(r) =
(3/2 − r2/b2)[23/2/(31/2π1/4b3/2)] exp

[

−r2/(2b2)
]

for the first
excited state with oscillator parameter b. Of course, the choice
of Lagrange-mesh functions (20) with an exponential decay for

large radii is not very well adapted to represent Gaussian-type
functions and some deviation can be expected. In Figure 1,
the modulus |Cϕ(r)| of the exact and numerically determined
wave functions are depicted. The factor C is determined such
that the radial wave function of the upper component is
normalized to one. Hence C = 1 for the exact result and
C =

[∫

dr r2|ϕ(r)|2
]−1/2

with ϕ(r) = Fκ (r)/r in case of the
numerical calculation. For small radii r, the exact wave function
(full line) practically coincides with the numerically determined
wave function if the scale parameter h varies between 0.05 fm and
0.80 fm. Deviations show up for radii larger than approximately
4 fm if h = 0.05 (red squares). This fact is not surprising because

the highest grid point is located at hx
(α)
N ≈ 4.45 fm in this case

and the Gaussian decrease of the exact wave function cannot be
described well with the asymptotic form of the Lagrange-mesh
functions. For h = 0.10 fm, the exact wave function is very well
reproduced up to about 9.5 fm in the calculation (green circles)
with a value of about 10−10 fm−3/2 for the ground state and
10−9 fm−3/2 for the first excited state, much smaller than that
at the center. For larger values of h, the tail of the wave function
develops an oscillatory behavior indicating that the location of
the grid points is not chosen properly and the number of grid
points within the major part of the wave function is too small.
For example the highest grid point is at a radius of approximately
71.2 fm for h = 0.8 fm, much above the relevant range, and there
are 15 points beyond 10 fm, leaving only 10 points for the region

Frontiers in Physics | www.frontiersin.org 10 August 2018 | Volume 6 | Article 73

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Typel Lagrange-Mesh Method for Deformed Nuclei

TABLE 3 | Exact energies of the eigenstates of an oblate relativistic harmonic oscillator with d = −0.1, -hω = 20 MeV, and m = 938 MeV/c2 and absolute deviation (88) of

a calculation using the Lagrange-mesh method with scaling factor h = 0.1 fm, number of grid points N = 25, and number of channels Nc = 11.

nx + ny nz π n |�| Eexact
nxnynz −m 1nxnynz

[MeV] [MeV]

0 0 + 0 1/2 29.764803566511 3.659 10−12

1 0 − 0 3/2 47.404798676897 2.683 10−11

1 0 − 0 1/2 47.404798676897 1.584 10−09

0 1 − 1 1/2 53.249553811103 3.062 10−09

2 0 + 0 5/2 64.887371970464 5.457 10−11

2 0 + 0 3/2 64.887371970464 2.887 10−09

2 0 + 1 1/2 64.887371970464 9.418 10−09

1 1 + 1 3/2 70.680813502683 1.113 10−08

1 1 + 2 1/2 70.680813502683 1.975 10−08

0 2 + 3 1/2 76.457522860205 1.767 10−08

3 0 − 0 7/2 82.217680215790 9.749 10−11

3 0 − 0 5/2 82.217680215790 4.279 10−09

3 0 − 1 3/2 82.217680215790 1.710 10−08

3 0 − 2 1/2 82.217680215790 7.763 10−07

2 1 − 1 5/2 87.961463300185 2.461 10−08

2 1 − 2 3/2 87.961463300185 4.135 10−08

2 1 − 3 1/2 87.961463300185 2.974 10−06

1 2 − 3 3/2 93.689045769955 6.410 10−08

1 2 − 4 1/2 93.689045769955 2.866 10−06

0 3 − 5 1/2 99.400598434452 1.833 10−06

of lower radii since N = 25 in the baseline case. The tails of
the wave functions of the ground and first excited state show a
very similar pattern, except that the values of the excited state are
about one to two order of magnitude larger. In addition, the node
in this wave function is clearly visible.

The dependence on the scale parameter can also be studied
by looking at the deviations (88) between the calculated energies
and the exact energies. They are depicted in Figure 2 for selected
values of h between 0.05 fm and 1.00 fm and deformation
parameters d = 0.1, d = 0.0, and d = −0.1 in (85). Only
states with nx + ny + nz ≤ 2 are considered. If h is in the
range of 0.08 fm to 0.3 fm, there is almost no change in the
accuracy of the calculation. Only for h values outside this interval,
a deterioration is observed with stronger effects at low h. In the
deformed calculations also, a systematic trend with the number of
excited oscillator quanta is found. The energies of higher-excited
states are less well reproduced. This is related to the fact that
several channels are needed for a good representation of the wave
functions; see section 4.1.3. For the spherical case, the effect is
much less obvious because here a single κ channel is sufficient
for the calculation.

4.1.2. Variation of the Number of Grid Points

The choice of the orderN of the Laguerre polynomial in (24) and
(25) determines the number of radial grid points of the mesh.
The effect of changing N can again be demonstrated by looking

at the radial wave functions of the ground and excited states with
l = 0 of a spherical relativistic harmonic oscillator in comparison
to the exact result as in section 4.1.1. In Figure 3, the modulus
|Cϕ(r)| of the exact and numerically determined wave functions
are depicted for constant scale parameter h = 0.1 fm varying
the number of grid points. The ground and first excited states for
orbital angular momentum l = 0 are considered in panels A and
B, respectively. A clear improvement in the approximation of the
exact wave function is found with increasing N with an increase
of the radial range where the wave function is well represented.
N = 10 grid points are obviously not sufficient for a good
representation of the wave functions.

Keeping h = 0.1 fm and Nc = 11 fixed, the deviations (88) of
the energies are depicted in Figure 4 as a function of the number
of grid points N in each channel. The deviation is largest for the
lowest values of N, and no accurate results for the single-particle
energies are obtained from the application of the Lagrange-mesh
method. The accuracy increases withN, and above approximately
N = 20, a stabilization of the deviations occurs. A further
increase of the number of grid points does not result in smaller
differences between exact and numerical eigenvalues.

4.1.3. Variation of the Number of Channels

The third parameter that is relevant in the application of the
Lagrange-mesh method is the number of channels Nc in the
expansion of the single-particle wave function (47). In Figure 5,
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FIGURE 1 | Modulus of the scaled radial wave function of the ground (A) and

first excited (B) state with orbital angular momentum l = 0 in a spherically

symmetric relativistic harmonic oscillator with h̄ω = 20 MeV and

m = 938 MeV/c2 in the exact case (full black line) and the calculation with the

Lagrange-mesh method for different scale parameters h (colored symbols) and

constant number of grid points (N = 25). The normalization factor C is

explained in the text.

FIGURE 2 | Deviation (88) of the calculated lowest energies of a relativistic

harmonic oscillator with h̄ω = 20 MeV and m = 938 MeV/c2 from the exact

results for constant number of grid points (N = 25) and constant number of

channels (Nc = 11). Results are shown as a function of the scaling factor h for

the spherical case (full symbols), prolate deformation with d = 0.1 (open

diamonds), and oblate deformation with d = −0.1 (open squares).

the deviations (88) of the energies of the lowest states are shown
for values of Nc ranging from 4 to 14. As in Figures 2, 4, the
relativistic harmonic oscillator with parameters h̄ω = 20 MeV
and m = 938 MeV/c2 is chosen as test case with the baseline
values for h and N. The spherical harmonic oscillator displays

FIGURE 3 | Modulus of the scaled radial wave function of the ground (A) and

first excited (B) state with orbital angular momentum l = 0 in a spherically

symmetric relativistic harmonic oscillator with h̄ω = 20 MeV and

m = 938 MeV/c2 in the exact case (full black line) and the calculation with the

Lagrange-mesh method for different number of grid points N (colored

symbols) and constant scale parameter (h = 0.10 fm). The normalization factor

C is explained in the text.

FIGURE 4 | Deviation (88) of the calculated lowest energies of a relativistic

harmonic oscillator with h̄ω = 20 MeV and m = 938 MeV/c2 from the exact

results for constant scaling factor (h = 0.1 fm) and constant number of

channels (Nc = 11). Results are shown as a function of the number of grid

points N for the spherical case (full symbols), prolate deformation with d = 0.1

(open diamonds), and oblate deformation with d = −0.1 (open squares).

no dependence of 1nxnynz on Nc because there is no coupling
between different κ channels and the accuracy of the calculation
only depends on h and N as discussed in sections 4.1.1 and 4.1.2.
In contrast to this case, the accuracy of the single-particle energies
exhibits a clear trend of improvement with increasing number
of channels in the calculations for harmonic oscillator potentials
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FIGURE 5 | Deviation (88) of the calculated lowest energies of a relativistic

harmonic oscillator with h̄ω = 20 MeV and m = 938 MeV/c2 from the exact

results for constant scaling factor (h = 0.1 fm) and constant number of grid

points (N = 25). Results are shown as a function of the number of channels Nc
for the spherical case (full symbols), prolate deformation with d = 0.1 (open

diamonds), and oblate deformation with d = −0.1 (open squares).

with prolate and oblate deformations. The ground state energy
seems to converge for Nc reaching the baseline value but an
even larger number of channels are required to obtain a similar
accuracy in the calculation of excited states.

4.2. Deformed Nuclei
In the description of nuclei that employs a relativistic EDF, two
coupled problems have to be solved self-consistently. The single-
particle wave functions of the nucleons are found as solutions of
the Dirac Equation (12) with vector and scalar potentials that are
determined by the meson and electromagnetic fields. These are
calculated with the help of the field Equations (7)–(11) from the
source densities (4) and (5) that in turn depend on the single-
particle wave functions. An iterative approach is usually selected
with a predefined accuracy that has to be reached for some
quantities.

In the present application, the numerical methods of section 3
for the description in spherical coordinates are employed. The
iteration of the coupled equations is stopped when the single-
particle energies of the occupied levels do not change more than
10−6 MeV in consecutive steps. The number of grid points N
in the Lagrange-mesh method and the number of channels Nc

are set to the baseline values, i.e., N = 25 and Nc = 11. In
contrast, the scale parameter h changes from nucleus to nucleus.
With the radius estimate R = 1.2 · A1/3 fm for a nucleus
with mass number A and the largest zero x

(α)
N for the Laguerre

polynomial L
(α)
N (x) with α = 0, the scale parameter is defined as

h = 0.95(R+ 10 fm)/x
(0)
25 with x

(0)
25 ≈ 85.26. This choice provides

a suitable discretization of the wave functions and densities in the
range that is relevant for the calculation including the asymptotic
behavior at large radii. Since a defined parity is imposed on
the single-particle wave functions, only even angular momenta
appear in the expansions of potentials (49), densities (59), fields,

and sources (63). Other possibilities, e.g., octupole distributions,
that would require to include odd angular momenta, are not
considered here.

The EDF selected in this work is based on a relativistic
mean-field model with density-dependent meson-nucleon
couplings [17]. It has been applied successfully with different
parametrizations in the description of nuclear structure and
nuclear matter. Here, the parameter set DD2 [51] is used; this
includes σ , ω, and ρ but not δ mesons to describe the effective
interaction. The masses of neutrons and protons are fixed to
mn = 939.565379 MeV/c2 and mp = 938.272046 MeV/c2,
respectively. The nuclear matter parameters calculated with this
parametrization are very reasonable and consistent with present
constraints [52].

As examples for the application of the Lagrange-mesh
method, the ground states of self-conjugate even-even nuclei
from 4He to 40Ca are calculated with mass numbers that are
multiples of four. They show large structural differences and
the nucleon distribution changes between spherical, oblate, and
prolate shapes. The rather small number of nucleons allows a
fast calculation and the choice of the baseline parameters N =
25 and Nc = 11 in the Lagrange-mesh method is sufficient
to obtain faithful results. It is expected that the exponential
decrease of the radial Lagrange-mesh functions gives a better
approximation of the single-particle wave functions in a nucleus
than in a harmonic oscillator. The obtained accuracy is fully
adequate for a representation of single-particle energies and
density distributions in the manner of the figures in this work.
The matter radii and deformation parameters are expected to
change at most by one unit in the last digit given in Table 4 if
the precision is improved by increasing the number channels Nc

as trial calculations have shown.
In Figures 6, 7, the single-particle energies of neutrons and

protons are shown, respectively. Each circle represents a pair
of states (n,π ,�) and (n,π ,−�). Degenerate levels are clearly
identified in the spherical closed-shell nuclei 4He, 16O, and 40Ca
where the orbital angular momentum is an additional good
quantum number that characterizes a level. These levels belong
to p, d, and f states. There is no such degeneracy found in the
remaining deformed nuclei. Owing to the Coulomb repulsion,
the proton levels are less bound than the neutron levels with
increasing charge number of the nucleus. Shell gaps are easily
identified, in particular, for the less strongly deformed nuclei.

The main observable considered here is the point nuclear
matter distribution in the intrinsic frame of the nucleus. It is
obtained by adding the vector densities as given in (59) of all
occupied single-particle states. This intrinsic density depends on
the three Cartesian coordinates xyz in the body-fixed frame of the
nucleus. The nuclearmatter distributions in the laboratory frame,
obtained from a projection on good total angular momentum J,
would be spherical since only even-even nuclei in their ground
state with J = 0 are considered here. Instead of showing radial
density distributions that would depend on the the polar angle,
intrinsic matter distributions are depicted for all 10 nuclei in
Figures 8–11 using lines of constant density in the xz plane to
show the deformation clearly. Owing to the axial symmetry, the
density distributions are invariant for a rotation around the z axis
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TABLE 4 | Point matter radius rmatter and deformation parameters β2, …, β10 for nuclei 4He, …, 40Ca.

Nucleus rmatter β2 β4 β6 β8 β10

[fm]

4He 1.987 0.000 0.000 0.000 0.000 0.000

8Be 2.495 1.192 0.771 0.452 0.252 0.136

12C 2.411 −0.309 0.059 −0.010 0.002 0.000

16O 2.600 0.000 0.000 0.000 0.000 0.000

20Ne 2.861 0.542 0.525 0.367 0.258 0.175

24Mg 2.956 0.503 0.111 0.000 −0.013 −0.007

28Si 3.049 −0.363 0.167 −0.067 0.027 −0.011

32S 3.143 0.254 −0.047 −0.035 −0.006 0.001

36Ar 3.273 −0.208 −0.038 0.028 −0.006 0.000

40Ca 3.356 0.000 0.000 0.000 0.000 0.000

FIGURE 6 | Neutron levels in the self-conjugated even-even nuclei 4He -
40Ca. Occupied levels (with two neutrons) are denoted by a full red circle and

unoccupied levels by an open blue circle.

and hence the lines of constant density in the yz plane would look
identical to those in the xz plane or any plane that contains the z
axis. As expected for doubly-magic nuclei, 4He, 16O, and 40Ca are
spherically symmetric. In the case of 4He and 40Ca, themaximum
density is at the center of the nucleus, whereas 16O exhibits a
central depression; see Figure 9. The nuclei 8Be, 20Ne, 24Mg,
and 32S show a prolate point matter distribution, however, with
distinct differences. A pronounced two-alpha cluster structure is
visible in 8Be. A pronounced bulge in the xy plane is found in
20Ne but not in 24Mg. The prolate deformation is less obvious
for 32S and the density maxima lie even in the xy plane and not
on the z axis as for the other prolate nuclei. An oblate density
distribution of the ground state is predicted for 12C, 28Si, and
36Ar. A bulge along the z axis is obtained for 28Si and density
maxima on this symmetry axis are seen for 36Ar in contrast to 12C
and 28Si. Looking at the sequence of nuclei with increasing A, an

FIGURE 7 | Proton levels in the self-conjugated even-even nuclei 4He - 40Ca.

Occupied levels (with two protons) are denoted by a full red circle and

unoccupied levels by an open blue circle.

increasing extension of the density distribution can be also traced
that will be reflected in the matter root-mean-square radius.

In Table 4, the point matter root-mean-square radii rmatter of
the nuclei are explicitly given in the second column. They are
calculated as

rmatter =
[

1

A
〈r2〉

]
1
2

=





1

A

∫

d3r r2
∑

i = n,p

n
(v)
i (Er)





1
2

(89)

with the vector densities (2) of neutrons and protons. The radii
rmatter increase with the mass number A except for the step from
A = 8 to A = 12 because the nucleus 8Be has a particular
large radius due to the pronounced cluster structure with two
α particles. In reality, 8Be is even unbound for the decay into
two 4He. It is only a resonance in this channel at an energy of
91.84 keV [53]. Besides the point matter radii, Table 4 also gives
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FIGURE 8 | Lines of constant intrinsic matter density ρ of the nuclei 4He (A) and 8Be (B). Points of maximum density are indicated with a ×.

FIGURE 9 | Lines of constant intrinsic matter density ρ of the nuclei 12C (A), 16O (B), and 20Ne (C). See Figure 8 for the legend. Points of maximum density are

indicated with a × or a full black line in case of 16O.

FIGURE 10 | Lines of constant intrinsic matter density ρ of the nuclei 24Mg (A), 28Si (B), and 32S (C). See Figure 8 for the legend. Points of maximum density are

indicated with a ×.
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FIGURE 11 | Lines of constant intrinsic matter density ρ of the nuclei 36Ar (A) and 40Ca (B). See Figure 8 for the legend. Points of maximum density are indicated

with a ×.

the deformation parameters βL for L = 0, 2, 4, 6, 8, and 10. They
are defined as

βL = 4π

3ARL
〈rLYL0(r̂)〉 (90)

with factors A and R in the denominator to obtain a
dimensionless quantity that is approximately independent of the
size of the nucleus and thus comparable between different nuclei.
The radius estimate R = 1.2 · A1/3 fm is defined as above in the
determination of the scale parameter h. The value of βL for all
L vanishes for the spherical nuclei 4He, 16O, and 40Ca. Prolate
nuclei have a positive β2 and oblate nuclei have a negative β2
but the signs of βL with L > 2 are not strictly correlated with
the occurrence of a prolate or oblate deformation. The moduli
of the deformation parameters usually become smaller with
increasing L. The decrease is fast in the case of 12C, 32S, and 36Ar
where higher-order deviations from a quadrupole distribution
are not very significant. 28Si is an intermediate case and the
most extreme variation of the distribution is found for 8Be and
20Ne. Substantial values of βL for large L indicate that channels
with large differences of the κ values couple strongly in the
diagonalization of the single-nucleon Dirac Hamiltonian. Hence
a large number of channels is required for the convergence of the
results.

Binding energies of the nuclei are not given here since the
energy (16) has to be corrected by a proper projection on center-
of-mass momentum and specific total angular momentum or
by applying approximate treatments. Methods to perform these
corrections will be discussed elsewhere. The angular momentum
projection will profit from the representation of the single-
particle wave functions in spherical coordinates as proposed in
this work.

5. CONCLUSION

The Lagrange-mesh method is a very efficient variational
approach to solve differential equations numerically with high
precision. It has been used extensively in non-relativistic
problems but in this work it has been formulated for the
application to the Dirac equation to find bound states of

fermions moving in deformed but axially symmetric potentials.
This problem appears in the description of nuclei employing
relativistic energy density functionals. The use of spherical
coordinates leads to an eigenvalue problem with coupled
equations of the radial wave functions. They are expanded
in a set of Lagrange-mesh functions derived from Laguerre
polynomials. Finally, a Hamiltonian matrix of moderate size has
to be diagonalized.

The accuracy of the Lagrange-mesh method depends on three
parameters: the scale factor, the number of grid points, and the
number of channels. The dependence of the numerical precision
on these parameters was studied by comparing analytical
solutions for a deformed relativistic harmonic oscillator potential
with numerical results obtained with the proposed formulation
of the Lagrange-mesh method. With appropriate choices of the
parameters, very accurate solutions are found without extensive
computational efforts.

The description of ground states of self-conjugated even-
even nuclei from 4He to 40Ca was chosen as an application of
the Lagrange-mesh method to a problem in nuclear structure
physics. The equations of motion of nucleons, mesons, and the
electromagnetic field were derived from a relativistic energy
density functional based on a relativistic mean-field approach
with density-dependent nucleon-meson couplings. The field
equations were solved self-consistently by iteration, yielding
the single-particle states of the nucleons and the intrinsic
density distributions. A strong variation of the shapes and
deformation parameters is found with spherical, oblate, and
prolate distributions.

The present work focused on formulating the basic application
of the Lagrange-mesh method to relativistic nuclear structure
calculations. The presented approach can be extended easily
in the future. The restriction to intrinsic states of given
parity can be lifted allowing, e.g., also the description of
octupole deformations. Proper projections, e.g., on given angular
momentum and parity, are needed for a comparison of densities,
radii, and energies with experimental data. Constraints on
different multipole moments can be introduced and beyond
mean-field calculations, e.g., using the generator-coordinate
approach, are foreseeable.
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