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A note on the finitization of Abelian and Tauberian theorems
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We present finitary formulations of two well known results concerning infinite series, namely Abel’s theorem,
which establishes that if a series converges to some limit then its Abel sum converges to the same limit, and
Tauber’s theorem, which presents a simple condition under which the converse holds. Our approach is inspired by
proof theory, and in particular Gödel’s functional interpretation, which we use to establish quantitative versions
of both of these results.
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1 Introduction

In an essay of 2007, Tao discussed the so-called correspondence principle between ‘soft’ and ‘hard’ analysis,
whereby many infinitary notions from analysis can be given an equivalent finitary formulation ([17]; later pub-
lished as part of [18]). An important instance of this phenomenon is provided by the simple concept of Cauchy
convergence of a sequence {cn}:

∀ε > 0 ∃N ∀m, n ≥ N (|cm − cn| ≤ ε).

This corresponds to the finitary notion of {cn} being metastable, which is given by the following formula:

∀ε > 0 ∀g : N → N ∃N ∀m, n ∈ [N;N + g(N)] (|cm − cn| ≤ ε), (1)

where [N;N + k] := {N,N + 1, . . . ,N + k − 1,N + k}. Roughly speaking, a sequence {cn} is metastable if for
any given error ε > 0 it contains a finite regions of stability of any ‘size’, where size is represented by the function
g : N → N.

The equivalence of Cauchy convergence and metastability is established via purely logical reasoning, and
indeed, as was quickly observed, the correspondence principle as presented in [17] has deep connections with
proof theory. More specifically, the finitary variant of an infinitary statement is typically closely related to its
classical functional interpretation [1], which provides a general method for obtaining quantitative versions of
mathematical theorems.

Finitary formulations of infinitary properties play a central role in the proof mining program developed by
Kohlenbach from the early 1990s [7]. Here, it is often the case that a givenmathematical theorem has, in general, no
computable realizer (for Cauchy convergence this is demonstrated by the existence of so-called Specker sequences
[16], whichwill be discussed further in § 3). On the other hand, the corresponding finitary formulation can typically
not only be realized, but a realizer can be directly extracted from a proof that the original property holds. The
extraction of a computable bound �(ε, g) on N in (1)—a so-called rate of metastability—is a standard result in
this area (e.g., [6, 8, 9, 14]), and techniques from proof theory are often used to give finitizations of more complex
statements, including, e.g., the Bolzano-Weierstrass theorem [15] and Ramsey’s theorem [11, 13].

In this article, we apply the aforementioned ideas to study the relationship between two distinct forms of con-
vergence from a finitary perspective, namely (I) the convergence of an infinite series of reals, and (II) the limit as
x → 1− of the power series it generates, i.e.,

(I) sn :=
∑n

i=0 ai as n → ∞, and
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(II) F (x) := ∑∞
i=0 aix

i as x → 1−.

Several classic results apply here. Abel’s theorem covers one direction, and states that if limn→∞ sn = s then we
also have limx→1− F (x) = s. The converse also holds, subject to the additional condition that an = o(1/n), a result
due to A. Tauber which is has since become the first and simplest instance of a whole class of results known as
Tauberian theorems. In this article, we provide new quantitative versions of these two theorems, which take the
shape of a route between various forms of metastability.

Though both Abel’s and Tauber’s theorems are elementary to state and prove, establishing in each case a nat-
ural finitary formulation from which the original theorem can be rederived is non-trivial, as is generally the case
when it comes to correctly finitizing infinitary statements (an illuminating discussion of the subtleties which arise
from the similarly elementary infinite pigeonhole principle is given in [5]). We begin by establishing Cauchy
variants of Abel and Tauber’s theorems which do not explicitly mention limit points. We show that Specker phe-
nomena propagate through both theorems, and as such, in order to give quantitative versions we are forced to
consider metastable variants of the associated limiting processes. We then state and prove our finitary theorems,
and demonstrate how the original theorems can be reobtained in a uniform way.

Formally speaking, our quantitative theorems are obtained by analysing standard proofs of Abel’s and Tauber’s
theorems using Gödel’s functional interpretation, although the underlying logical aspects of this transformation on
proofs are not necessary to understand the resulting finitizations. Indeed, the reader will see that the transformed
proofs retain the combinatorial core of the originals, but replace infinitary arguments withmore precise quantitative
reasoning. The usual infinitary theorems can then be derived from ours using purely logical steps.

There are two main motivating factors behind this short article. The first is the fact that Abelian and Tauberian
theorems give rise to simple and yet revealing examples of the correspondence principle and related concepts
such as metastability, which can be presented in such a way that we are not required to explicitly introduce any
proof theoretic concepts (indeed, even the notion of a higher order functional is only needed in § 5 to rederive the
original results). As such, it is hoped that our analysis will be of interest to a general mathematical audience. A
brief note on the underlying proof theory and the role played by Gödel’s functional interpretation is provided in
§ 6, but this is not required in order to follow the main part of the paper.

More importantly though, we consider the relatively simple results here as paving the way for a more advanced
study of theorems of Abelian or Tauberian type, of which those studied here are the simplest. In particular, Tauber’s
theorem was significantly generalised by Hardy and Littlewood and then byWiener (cf. [19, 20] and, e.g., [10] for
a modern survey covering these and later developments). We conjecture that a wealth of interesting case studies for
applied proof theory can be found in this area, and hope that in this article to have taken a first step in this direction.

2 Cauchy variants of convergence properties

We start off with some preliminary mathematical results, with the aim of setting up suitable Cauchy formulations
of both Abel’s and Tauber’s theorem, which will then be analysed over the remainder of the paper. For the sake of
completeness, we begin by stating these theorems as they are usually formulated.

Theorem 2.1 (Abel’s theorem) Let {an} be a sequence of reals and suppose that
∑∞

i=0 ai = s. Then
limx→1−

∑∞
i=0 aix

i = s.

Note that Abel’s theorem is often stated with the addition assumption that the radius of convergence r of the
power series

∑∞
i=0 aix

i is exactly 1, as this is the only interesting case: Convergence of
∑∞

i=0 ai implies that r ≥ 1,
and if r > 1 then left sided continuity of the power series at x = 1 follows trivially from continuity of power series
within their radius of convergence.

Theorem 2.2 (Tauber’s theorem) Let {an} be a sequence of reals with an = o(1/n) and suppose that
limx→1−

∑∞
i=0 aix

i = s. Then
∑∞

i=0 ai = s.

Our preference for Cauchy variants of Abel’s and Tauber’s theorems lies in the fact that we do not have to
directly deal with limits, making the quantifier complexity of the underlying notions of convergence significantly
simpler. In particular, wewant to formulate the statement that limn→∞ sn = limx→− F (x) without mentioning either
of the limits explicitly.
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Lemma 2.3 Let F : [0, 1) → R be a function and {sn} a sequence of reals. Then each of the following implies
limn→∞ sn = limx→1− F (x):

(i) {sn} converges and limm,n→∞ |F (xm) − sn| = 0 for all {xm} in [0,1) with limm→∞ xm = 1.

(ii) limx→1− F (x) exists and limm,n→∞ |F (ym) − sn| = 0 for some {ym} in [0,1) with limm→∞ yn = 1.

P r o o f . From (i), suppose that limn→∞ sn = s and limm→∞ xm = 1. Then for any ε > 0 there is a suffi-
ciently large N such that |F (xm) − sn| ≤ ε

2 for allm, n ≥ N, and since in addition |sn − s| ≤ ε
2 for all n sufficiently

large, it follows that |F (xm) − s| ≤ ε form ≥ N. Since {xm} was arbitrary, we have shown that limm→∞ F (xm) = s
whenever limm→∞ xm = 1 and thus limx→1− F (x) = s. Similarly, from (ii), if limx→1− F (x) = s then in partic-
ular F (ym) → s and thus for any ε > 0 there is some N with |F (ym) − s| ≤ ε

2 for all m ≥ N and some N ′

with |F (ym) − sn| ≤ ε
2 for all m, n ≥ N ′. Therefore |sn − s| ≤ ε for all n ≥ N ′, and so we have shown that

limn→∞ sn = s. �

We are now able to give Cauchy variants to both main theorems, which we furnish with direct proofs. These are
adapted from standard proofs of Abel’s and Tauber’s theorem, but are written in a semi-quantitative way which
makes certain dependencies clear, with the intention being that that the reader can compare these with our fully
quantitative variants in § 4. For the remainder of the paper, we define {sn}, F : [0, 1) → R and F� : [0, 1) → R

for � ∈ N by

sn :=
n∑
i=0

ai, F (x) :=
∞∑
i=0

aix
i and F�(x) :=

�∑
i=0

aix
i

where {an} will be some given sequence of real numbers, which in practise will always be bounded so that F (x)
is well-defined on [0,1).

Theorem 2.4 (Abel’s theorem, Cauchy variant) Let {an} be a sequence of reals such that {sn} is Cauchy. Then
limm,n→∞ |F (xm) − sn| = 0 for any sequence {xm} ∈ [0, 1) with limm→∞ xm = 1.

P r o o f . We first observe that for any x and � we have

F�(x) = s�x
� + (1 − x)

�−1∑
i=0

six
i. (2)

Since {sn} is Cauchy, we must have limn→∞ an = 0 and so in particular {an} is bounded, which means that for any
x ∈ [0, 1) the power series F (x) converges. But then for any x ∈ [0, 1), since limn→∞ s�x� = 0 it follows from (2)
that

F (x) = (1 − x)
∞∑
i=0

six
i.

Now, using that (1 − x)
∑∞

i=0 x
i = 1 for x ∈ [0, 1) we have

|F (xm) − sn| =
∣∣∣∣∣(1 − xm)

∞∑
i=0

six
i
m − (1 − xm)

∞∑
i=0

snx
i
m

∣∣∣∣∣ ≤ (1 − xm)
∞∑
i=0

|si − sn|xim.

Fixing some ε > 0, there exists some N1 such that |si − sn| ≤ ε for all i, n ≥ N1, and thus for n ≥ N1:

|F (xm) − sn| = (1 − xm)
N1−1∑
i=0

|si − sn|xim + (1 − xm)
∞∑
i=N1

εxim ≤ (1 − xm)
N1−1∑
i=0

|si − sn| + ε.

Since N1 is independent of xm and limm→∞(1 − xm) = 0, there exists some N2 (dependent on N1 and a bound on
{|sn|}) such that the first term on the right hand side is at most ε for any m ≥ N2. Thus there exists an N such that
|F (xm) − sn| ≤ 2ε for all m, n ≥ N, and so limm,n→∞ |F (xm) − sn| = 0. �

Theorem 2.5 (Tauber’s theorem, Cauchy variant) Let {an} be a sequence of reals with an = o(1/n) and suppose
that {F (vm)} is Cauchy, where vm := 1 − 1

m . Then limm,n→∞ |F (vm) − sn| = 0.
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P r o o f . Using the basic inequality 1 − xi ≤ i(1 − x) for x ∈ [0, 1], we note that

|Fn(vn) − sn| ≤
n∑
i=0

|ai|(1 − vin) ≤
n∑
i=0

i|ai|(1 − vn) = 1

n

n∑
i=0

i|ai|. (3)

Fixing ε > 0, there exists some N1 such that i|ai| ≤ ε for all i ≥ N1, and so for n ≥ N1 we have

|Fn(vn) − sn| ≤ 1

n

N1−1∑
i=0

i|ai| + 1

n

n∑
i=N1

ε ≤ 1

n

N1−1∑
i=0

i|ai| + ε.

It therefore follows that there exists some N ′ ≥ N1 (dependent on a bound on {|ai|} in addition to N1) such that for
all n ≥ N ′ we have |Fn(vn) − sn| ≤ 2ε. But observing that for n ≥ N ′ we also have

|F (vn) − Fn(vn)| ≤
∞∑

i=n+1

|ai|vin ≤ ε

∞∑
i=n+1

vin
i

≤ ε

(n+ 1)(1 − vn)
≤ ε

and thus |F (vn) − sn| ≤ 3ε for all n ≥ N ′. Finally, since {F (vm)} is Cauchy, there is some N2 such that |F (vm) −
F (vn)| ≤ ε for all m, n ≥ N2, and so there exists some N such that |F (vm) − sn| ≤ 4ε for all m, n ≥ N, and so
limm,n→∞ |F (xm) − sn| = 0. �

To see that Theorem 2.4 implies Theorem 2.1, suppose that limn→∞ sn = s. Then in particular {sn} is Cauchy,
and so limm,n→∞ |F (xm) − sn| = 0 whenever limm→∞ xm = 1. But then by Lemma 2.3 we have limx→1− F (x) = s.
That Theorem 2.5 implies Theorem 2.2 is similar: Suppose that an = o(1/n) and limx→1− F (x) = s. Since
limm→∞ vm = 1 then limm→∞ F (vm) = s and so in particular {F (vm)} is Cauchy, and thus limm,n→∞ |F (vm) −
sn| = 0. But then by Lemma 2.3 (ii) it follows that limn→∞ sn = s.

3 On Specker sequences

In this short section, we show that Specker phenomena propagate through both Theorems 2.4 & 2.5. For the former
this is completely straightforward, but for the latter a little care is needed to construct a suitable sequence satisfying
the Tauber condition an = o(1/n). Roughly speaking, these results confirm that if we do not have a direct rate of
convergence for the input data, then neither do we have a direct rate of convergence for |F (vm) − sn| → 0 as
m, n → ∞. This justifies our use of the relevant notions of metastability instead.

We first recall that a Specker sequence, first introduced in [16], is a computable, monotonically increasing and
bounded sequence of rationals {qn} whose limit is not a computable real number. What this means in practice is
that the sequence possess neither a computable rate of convergence nor a computable rate of Cauchy convergence,
where by the latter we mean a computable function π : Q+ → N satisfying

∀ε ∈ Q+,∀m, n ≥ π (ε)(|qm − qn| ≤ ε),

where here Q+ denotes the set of all strictly positive rationals.

Proposition 3.1 There exists some {an} satisfying the premise of Theorem 2.4, whereby for any {xn} in [0,1)
with limn→∞ xm = 1, though limm,n→∞ |F (xm) − sn| = 0 this has no computable rate of convergence, i.e., there
is no computable function π : Q+ → N satisfying

∀ε ∈ Q+,∀m, n ≥ π (ε)(|F (xm) − sn| ≤ ε).

P r o o f . Take any Specker sequence {qn} and define a0 := q0 and an+1 := qn+1 − qn, so that sn = qn, and
so by definition {sn} is Cauchy. Suppose for contradiction there exists some {xm} with limm→∞ xm = 1 such that
|F (xm) − sn| → 0 as m, n → ∞ with a computable rate of convergence π . Then for any ε ∈ Q+ we have

|sm − sn| ≤ |sm − F (xπ (ε/2))| + |F (xπ (ε/2)) − sn| ≤ ε

for all m, n ≥ π (ε/2), and thus {sn} has a computable rate of Cauchy convergence, which is false. �
Proposition 3.2 There exists {an} satisfying the premise of Theorem 2.5, whereby though limm,n→∞ |F (vm) −

sn| = 0 this has no computable rate of convergence.
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P r o o f . Take any Specker sequence {qn} and define a0 := q0, a1 := q1 − q0 and for n ≥ 2

an := qm+1 − qm
2m−1

for m := �log2(n)�.

We first observe that since 2m−1 ≥ n/2 we have

n|an| = n

2m−1
(qm+1 − qm) ≤ 2(qm+1 − qm) → 0

as n → ∞, and thus an = o(1/n). An easy induction establishes that s2n = qn+1 for all n ≥ 1, where for the in-
duction step we have

s2n = s2n−1 +
2n∑

i=2n−1+1

ai = qn +
2n∑

i=2n−1+1

(
qn+1 − qn

2n−1

)
= qn + (qn+1 − qn) = qn+1.

This implies that limn→∞ sn = limn→∞ qn, and so in particular by Abel’s theorem limx→1− F (x) exists and so
{F (vn)} is Cauchy. Therefore {an} satisfies the premise of Theorem 2.5. But now suppose by contradiction we
have a computable rate of convergence π : Q+ → N for limm,n→∞ |F (vm) − sn| = 0. Then as in the proof of
Proposition 3.1, for any ε ∈ Q+ we have |sm − sn| ≤ ε for all m, n ≥ π (ε/2), and therefore |qm − qn| ≤ ε for all
m, n ≥ ϕ(ε), where ϕ(ε) := �log2(π (ε/2))� + 1. But since ϕ is computable, this contradicts the assumption that
{qn} is a Specker sequence. �

4 The finitary theorems

We now give finitary, quantitative formulations to our Cauchy variants of Abel and Tauber’s theorems, presented
in each case as a route from a metastable version of the premise to that of the conclusion. These results are finitary
in the sense that aside from a global bound on our input data, we only consider finite initial segments of this
data, and quantitative in the sense that they provide an explicit method for constructing rates of metastability for
the conclusion in terms of rates of metastability from the premises. Moreover, the proofs of both results are also
entirely finitistic in nature, appealing to nothing more than simple arithmetic operations.

In the remainder of this paper, we denote by ω : Q+ × N>0 → N some canonical computable function satis-
fying, for all ε ∈ Q+ and p ≥ 1:

1. ω(ε, p) ≥ p,

2. if x ∈ [0, 1 − 1
p ] then x

� ≤ ε whenever � ≥ ω(ε, p).

For instance, using the standard inequality (1 + y)r ≤ eyr (for y ∈ R and r > 0) we could set ω(ε, p) := p ·
�log(1/ε)�, but for notational simplicity we work directly with ω rather than any specific function. Our first result
recalls that a power series has a computable rate of convergence within any compact interval [0, 1 − 1

p ] ⊂ [0, 1)
given a bound on its coefficients, and thus the function F can be approximated by F� for � computable in the
desired degree of accuracy.

Lemma 4.1 Let {|an|} be bounded above by some L ∈ N. Then for any ε ∈ Q+ and p ≥ 1 we have |F (x) −
F�(x)| ≤ ε whenever x ∈ [0, 1 − 1

p ] and � ≥ ω( ε
Lp , p).

P r o o f . To see this, we simply observe that

|F (x) − F�(x)| =
∣∣∣∣∣

∞∑
i=�+1

aix
i

∣∣∣∣∣ ≤
∞∑

i=�+1

|ai|xi ≤ L

(
x�+1

1 − x

)
≤ Lpx�+1 ≤ Lpx� ≤ ε

where in the last step we use the defining property of ω. �
We now present our finitary theorems, where we recall the notation [n; k] := {n, n+ 1, . . . , k − 1, k} for n ≤ k,

and just [n; k] := ∅ for k < n.

Theorem 4.2 (Finite Abel’s theorem) Let {an} and {xk} be arbitrary sequences of reals, and L ∈ N a bound
for {|sn|}. Fix some ε ∈ Q+ and g : N → N. Suppose that N1,N2 ∈ N and p ≥ 1 are such that |si − sn| ≤ ε

4 and
1
p ≤ 1 − xm ≤ ε

8LN1
for all i, n ∈ [N1;max{N + g(N), �}] and all m ∈ [N2;N + g(N)] where
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1. N := max{N1,N2},
2. � := ω( ε

8Lp , p).

Then we have |F (xm) − sn| ≤ ε for all m, n ∈ [N;N + g(N)].

P r o o f . Fix somem, n ∈ [N;N + g(N)]. We first note that sincem ≥ N thenm ≥ N2 and thusm ∈ [N2;N +
g(N)] from which it follows that 2LN1(1 − xm) ≤ ε

4 . Using this together with the fact that n ∈ [N1;max{N +
g(N), �}] and thus |si − sn| ≤ ε

4 for any N1 ≤ i ≤ � ≤ max{N + g(N), �} we have
∣∣∣∣∣(1 − xm)

l−1∑
i=0

(si − sn)x
i
m

∣∣∣∣∣ ≤ (1 − xm)
l−1∑
i=0

|si − sn|xim

≤ (1 − xm)
N1−1∑
i=0

|si − sn|xim + (1 − xm)
l−1∑
i=N1

|si − sn|xim

≤ (1 − xm)
N1−1∑
i=0

(|si| + |sn|) + (1 − xm) · ε
4

l−1∑
i=N1

xim

≤ 2LN1(1 − xm) + ε
4 · (xN1

m − x�
m) ≤ ε

4 + ε
4 = ε

2 .

(4)

Next, using (2) from the proof of Theorem 2.4 together with (4) we see that

|F�(xm) − sn| =
∣∣∣∣∣s�x�

m + (1 − xm)
�−1∑
i=0

six
i
m − sn

∣∣∣∣∣

≤ |s�x�
m| +

∣∣∣∣∣(1 − xm)
�−1∑
i=0

(si − sn)x
i
m

∣∣∣∣∣ +
∣∣∣∣∣(1 − xm)

�−1∑
i=0

snx
i
m − sn

∣∣∣∣∣
≤ |s�|x�

m + ε
2 + |sn|x�

m ≤ 3ε
4

(5)

where for the last step we use that (|s�| + |sn|)x�
m ≤ 2Lx�

m ≤ ε
4p ≤ ε

4 which holds by definition of � together with

the fact that xm ∈ [0, 1 − 1
p ]. Finally, observing that |a j| = |s j − s j−1| ≤ |s j| + |s j−1| ≤ 2L for any j ∈ N, by

Lemma 4.1 and (5) we have |F (xm) − sn| ≤ |F (xm) − F�(xm)| + |F�(xm) − sn| ≤ ε
4 + 3ε

4 ≤ ε, which completes
the proof. �

Theorem 4.3 (Finite Tauber’s theorem) Let {an} be an arbitrary sequence of reals, and L a bound for {|an|}.
Define vm := 1 − 1

m , and fix some ε ∈ Q+ and g : N → N. Suppose that N1,N2 ∈ N are such that i|ai| ≤ ε
8 and|F (vm) − F (vn)| ≤ ε

4 for all i ∈ [N1; �] and all m, n ∈ [N2;N + g(N)] where

1. N := max{ 2LN2
1

ε
,N2},

2. � := ω( ε
4Lp , p) for p := N + g(N).

Then we have |F (vm) − sn| ≤ ε for all m, n ∈ [N;N + g(N)].

P r o o f . Fix some m, n ∈ [N;N + g(N)]. We first note that since 2LN2
1

ε
≤ n then we have LN2

1
2n ≤ ε

4 , and since

N1 ≤ 2LN2
1

ε
≤ n ≤ � then for anyN1 ≤ i ≤ nwe have i|ai| ≤ ε

8 . Therefore, using (3) from the proof of Theorem 2.5,
we have

|Fn(vn) − sn| ≤ 1

n

n∑
i=0

i|ai| = 1

n

N1−1∑
i=0

i|ai| + 1

n

n∑
i=N1

i|ai|

≤ L

n
· 1
2
(N1 − 1)N1 + ε

8n
(n− N1) ≤ LN2

1

2n
+ ε

8
≤ 3ε

8
.

(6)
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Similarly, we have

|F�(vn) − Fn(vn)| =
∣∣∣∣∣

�∑
i=n+1

aiv
i
n

∣∣∣∣∣ ≤ ε

8

�∑
i=n+1

vin
i

≤ ε

8(n+ 1)

�∑
i=n+1

vin ≤ ε(vn+1
n − v�+1

n )

8(n+ 1)(1 − vn)
≤ εn

8(n+ 1)
≤ ε

8
.

(7)

Now, since for any n ∈ [N;N + g(N)] we have vn ∈ [0, 1 − 1
p ] for p := N + g(N) by definition, it follows by

Lemma 4.1 that |F (vn) − F�(vn)| ≤ ε
4 , and thus

|F (vm) − sn| ≤ |F (vm) − F (vn)| + |F (vn) − F�(vn)| + |F�(vn) − sn|

≤ ε

4
+ ε

4
+ |F�(vn) − Fn(vn)| + |Fn(vn) − sn| ≤ ε

2
+ ε

8
+ 3ε

8
≤ ε

where the last line follows from (6) and (7). This completes the proof. �

5 Reobtaining the infinitary variants

We conclude by showing how the theorems of the previous section, though finitary in nature, are strong enough
to allow us to reobtain the usual formulations of Abel and Tauber’s theorems using purely logical reasoning. We
first need a simple but crucial lemma which we use throughout this section.

Lemma 5.1 Let P(ε,X ) be some predicate on ε ∈ Q+ and finite subsets X ⊂ N. Then the following two
statements are equivalent:

(a) ∀ε ∈ Q+ ∃n ∈ N ∀k P(ε, [n; k]),
(b) ∀ε ∈ Q+ ∀g : N → N ∃n ∈ N P(ε, [n; g(n)]).
P r o o f . For (a) =⇒ (b), if for some ε ∈ Q+ there is some n ∈ N satisfying P(ε, [n; k]) then in particular

for any g : N → N we have P(ε, [n; g(n)]). To establish (b) =⇒ (a) we suppose for contradiction that (a) is
false, and thus for some ε ∈ Q+ it is the case that for ∀n ∈ N ∃k ¬P(ε, [n; k]). Therefore by the axiom of choice
there is some g : N → N satisfying ∀n ∈ N ¬P(ε, [n; g(n)]), contradicting (b). �

By setting P(ε,X ) :⇐⇒ ∀m, n ∈ X (|sm − sn| ≤ ε) the equivalence of Cauchy convergence and metastabil-
ity in the sense of (1) is a direct corollary of the above lemma—note that the slightly different statement
∀ε, g∃nP(ε, [n; n+ g(n)]) is just another way of expressing (b). By extending Lemma 5.1 to the various other
Cauchy properties involved in our finitary theorems, we are able to prove the original, infinitary variants of
those theorems.

Deriving Theorem 2.4 from Theorem 4.2. Suppose that {an} and {xm} are such that (i) {sn} is Cauchy, (ii)
limm→∞ xm = 1. Note that since {sn} convergences then {|sn|} must be bounded above by some L. Now fix some
arbitrary ε ∈ Q+ and g : N → N. From limm→∞ xm = 1 and Lemma 5.1 we can infer that for any δ > 0 and
h : N → N there exists some n ∈ N such that

∀m ∈ [n; h(n)](1 − δ ≤ xm).

Using a weak form of the axiom of choice, let 	(δ, h) be the functional which returns such an n for any given δ

and h, and define f : N → N by f (a) := max{Ma + g(Ma), ω( ε
8Lpa

, pa)} where we define

Ma := max
{
a,	

( ε

8La
, ha

)}

pa := �max{1/(1 − xm) : m ≤ Ma + g(Ma)}�
ha(b) := max{a, b} + g(max{a, b}).
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Now, from Cauchyness and hence metastability of {sn} we can infer that there exists some N1 ∈ N such that

∀i, n ∈ [N1; f (N1)](|si − sn| ≤ ε
4 ).

Define N2 := 	( ε
8LN1

, hN1 ), so that

∀m ∈ [N2; hN1 (N2)]

(
1 − ε

8LN1
≤ xm

)
.

Then setting N := max{N1,N2} we see thatMN1 = N and therefore f (N1) = max{N + g(N), �} for � = ω( ε
8Lp , p)

with p = �max{1/(1 − xm) : m ≤ N + g(N)}�. We have in addition that hN1 (N2) = N + g(N). Observing finally
that for m ≤ N + g(N) we must have 1/(1 − xm) ≤ p and thus 1

p ≤ 1 − xm, we see that N1,N2 and p satisfy the
premise of Theorem 4.2, and therefore |F (xm) − sn| ≤ ε for all m, n ∈ [N,N + g(N)]. But since ε and g were
arbitrary, by Lemma 5.1 this means that limm,n→∞ |F (xm) − sn| = 0.

Deriving Theorem 2.5 from Theorem 2.2. Suppose that {an} is a sequence of reals such that (i) an = o(1/n)
and (ii) {F (vm)} is Cauchy. From (i) we must have that {|an|} is bounded above by some L. Now fix some arbitrary
ε ∈ Q+ and g : N → N. From Cauchyness and hence metastability of {F (vn)}we can infer that for any h : N → N

there exists some k ∈ N such that

∀m, n ∈ [k; h(k)](|F (vm) − F (vn)| ≤ ε
4 ).

Let 
(h) be the functional which returns such a k for any given h, and define f : N → N by f (a) := ω( ε
4Lpa

, pa)
where we define

pa := Ma + g(Ma)

Ma := max

{
2La2

ε
,
(ha)

}

ha(b) := max

{
2La2

ε
, b

}
+ g

(
max

{
2La2

ε
, b

})
.

From limn→∞ n|an| = 0 and Lemma 5.1 we infer that there exists some N1 ∈ N such that

∀i ∈ [N1; f (N1)](i|ai| ≤ ε
8 ).

Define N2 := 
(hN1 ) so that

∀m, n ∈ [N2, hN1 (N2)](|F (vm) − F (vn)| ≤ ε
4 ).

Then setting N := MN1 = max{ 2LN2
1

ε
,N2} we see that f (N1) = ω( ε

4Lp , p) for p = N + g(N) and hN1 (N2) = N +
g(N), and therefore N1 and N2 satisfy the premise of Theorem 4.3. Therefore |F (vm) − sn| ≤ ε for all m, n ∈
[N;N + g(N)], and since ε and gwere arbitrary, this means by Lemma 5.1 that limm,n→∞ |F (vm) − sn| = 0.

6 General proof theoretic remarks

In this final section we give some deeper insights into proof theoretic aspects of our paper. We have deliberately
suppressed this aspect of the work so far, in order to make our main results as accessible and self-contained as
possible. However, we now outline briefly how the preceding results can be connected to both Gödel’s functional
interpretation and the ‘proof mining’ program.

6.1 Our finitary results and Gödel’s functional interpretation

The main quantitative results in this paper were obtained by carrying out an analysis of the original proofs of both
Abel’s and Tauber’s theorems using the classical Gödel functional interpretation (i.e., the combination of the usual
functional interpretation with a negative translation), which as already mentioned in the introduction constitutes a
formal technique for obtaining finitary version of infinitary theorems. In both cases, the resulting realizing terms
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were simple enough that the core combinatorial part of the analysis could be presented in a traditional mathemat-
ical style, in particular without reference to higher-order functionals. This gave rise to § 4 and Theorems 4.2 &
4.3.

The full analysis, in which higher-order rates of metastability for the conclusions of each theorem are con-
structed in terms of corresponding rates for the premises, follows by appealing to the results of § 5. In particular,
the routes from Theorem 4.2 to 2.4 and from Theorem 4.3 to 2.5 use, in both cases, a simple form of finite bar
recursion of length two, an explanation for which follows below. Though in this paper we do not work in any for-
mal systems, the proofs of § 5 essentially use just classical predicate logic together with the quantifier-free axiom
of choice, and in this sense, our finitary theorems imply the infinitary versions over a very weak base theory, and
using just elementary logical reasoning.

We now make these ideas more precise, though we do assume some familiarity with the classical functional
interpretation (background can be found in [7]). We first point out that in Lemma 5.1, (b) corresponds to the
classical functional interpretation (before the final Skolemization) of (a). Let us now focus on the proof of Tauber’s
theorem as stated in Theorem 2.5. A slight modification of the proof of this theorem allows us to establish that for
any ε > 0 we have

∃N1 ∀k P1( ε
8 , [N1; k]) ∧ ∃N2 ∀k P2( ε

4 , [N2; k]) =⇒ ∃N∀k Q(ε, [N; k]) (8)

where here the first conjunct of the premise represents the statement an = o(1/n), i.e.,

P1(δ, [n; k]) :⇐⇒ ∀i ∈ [n; k](i|ai| ≤ δ),

and in an analogous way the second conjunct and the conclusion represent the statements that {F (vn)} is Cauchy
and that limm,n→∞ |F (vm) − sn| = 0, respectively. Q represent the �3-statements that {F (vn)} is Cauchy resp.
limm,n→∞ |F (vm) − sn| = 0. Now, the classical functional interpretation of the negative translation of (8), i.e.,

∃N1 ∀k P1( ε
8 , [N1; k]) ∧ ∃N2 ∀k P2( ε

4 , [N2; k]) =⇒ ¬¬∃N∀k Q(ε, [N; k]) (9)

asks for terms ri(N1,N2, g) for i = 1, 2 and s(N1,N2, g) satisfying

P1( ε
8 , [N1; r1(N1,N2, g)] ∧ P2( ε

4 , [N2; r2(N1,N2, g)]))

=⇒ Q(ε, [s(N1,N2, g); s(N1,N2, g) + g(s(N1,N2, g))]).
(10)

Our finitary variant of Tauber’s theorem (Theorem 4.3) corresponds to the extraction of such terms from the proof
of (8), where these terms also depend on the global parameters ε together with a bound L for {|an|}.

Formally, in order to derive Theorem 2.5 from (10) (i.e., Theorem 4.3), we combined the conjunction of
(metastable variants) of the assumptions of Theorem 2.5 into a metastable version of the premise of (9), i.e.,
we used terms which witnessed the functional interpretation of the following implication:

¬¬∃N1∀k P1( ε
8 , [N1; k]) ∧ ¬¬∃N2∀k P2( ε

4 , [N2; k])
=⇒ ¬¬(∃N1 ∀k P1( ε

8 , [N1; k]) ∧ ∃N2 ∀k P2( ε
4 , [N2; k])).

This an instance of the so-called finite double negation shift, and as shown in [12], this is interpreted using a form
of finite bar recursion (cf. also [4]). While the specific details of our particular case are given in § 5, our aim here is
to emphasise that our rederivation of the infinitary theorems from their finitary counterparts uses a simple version
of a much more fundamental scheme, which has recently been connected to game theory (cf. [2, 3]). The above
analysis is also valid for Abel’s theorem, although here we require a dependent version of the double negation
shift, which is nevertheless still solved using finite bar recursion.

6.2 Numerical results via proof mining

We conclude with a simple illustration of how our quantitative formulation of Abel’s theorem can be used to
obtain concrete rates of metastability in the style of traditional proof mining. Since it is clear that the proofs of
both Abel’s and Tauber’s theorems can be formalised in Peano arithmetic, it follows immediately from the main
soundness theorem of the classical functional interpretation that converting rates of metastability for the premises
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to one for the conclusion can be done in Gödel’s System T. However, in the concrete example that follows, the
actual bounds we obtain are extremely simple, as is typically the case in proof mining.

Let us take the following simple consequence of Abel’s theorem, which follows directly from Theorem 2.4,
using the fact that whenever {an} is a sequence of positive reals then {sn} is monotonically increasing, and thus is
Cauchy whenever it is bounded above:

Proposition 6.1 Let {an} be a sequence of positive reals whose partial sums {sn} are bounded above. Then
limm,n→∞ |F (vm) − sn| = 0.

An analysis of this result using Theorem 4.2 together with ideas from § 5 yields the following.

Proposition 6.2 Let {an} be a sequence of positive reals and L a bound for the partial sums {sn}. Then for any
ε ∈ Q+ and g : N → N we have

∃N ≤ �L(ε, g) ∀m, n ∈ [N,N + g(N)] (|F (vm) − sn)| ≤ ε)

for �L(ε, g) given as follows:

1. �L(ε, g) :=
⌈
8L f (�4L/ε�) (0)

ε

⌉
,

2. f (a) := pa ·
⌈
log( 8Lpa

ε
)
⌉
,

3. pa := g̃(
⌈
8La
ε

⌉
),

where f (k)(x) denotes the k-times iteration of f applied to x, and g̃(x) is defined by g̃(x) := x+ g(x).

P r o o f . Following closely and using notation from the proof of Theorem 2.4 from Theorem 4.2 given in § 5,
we first note that setting xm := vm = 1 − 1

m , for any δ > 0 and h : N → N we trivially have

∀m ∈ [n; h(n)](1 − δ ≤ vm)

for n := �1/δ�, and thus we can define 	(δ, h) := �1/δ�. Therefore in this case, Ma = max{a, �8La/ε�} =
�8La/ε� and pa = Ma + g(Ma) = g̃(�8La/ε�), and thus using our explicit definition of ω(ε, p) = p · �log(1/ε)�
from § 4, we see that f (a) = max{pa, ω(ε/8Lpa, pa)} = pa · �log(8Lpa/ε)�. Now, it is a well-known fact from
proof mining (cf. [7, Proposition 2.26]) that for any monotone increasing {sn} bounded above by some L, a bound
on the corresponding rate of metastability, i.e.,

∀ε′ ∈ Q+ ∀ f ′ : N → N ∃N ′ ≤ 
(ε′, f ′)∀m ∈ [N ′; f ′(N ′)](|sm − sn| ≤ ε′)

is given by
(ε′, f ′) := f ′�(L/ε
′ )�(0). Thus in this case, setting ε′ := ε

4 and f
′ = f we would have N1 ≤ f �(4L/ε)�(0)

and therefore N2 := 	( ε
8LN1

, hN1 ) =
⌈
8LN1

ε

⌉
≤

⌈
8L f �(4L/ε)�(0)

ε

⌉
. Therefore by Theorem 4.2, N := max{N1,N2} = N2

satisfies

∀m, n ∈ [N;N + g(N)] (|F (vm) − sn)| ≤ ε).

Backtracking through the above definitions yields the given bound on N. �
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