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Wearable robots (WRs) are increasingly moving out of the labs toward real-world

applications. In order for WRs to be effectively and widely adopted by end-users, a

common benchmarking framework needs to be established. In this article, we outline

the perspectives that in our opinion are the main determinants of this endeavor, and

exemplify the complex landscape into three areas. The first perspective is related to

quantifying the technical performance of the device and the physical impact of the

device on the user. The second one refers to the understanding of the user’s perceptual,

emotional, and cognitive experience of (and with) the technology. The third one proposes

a strategic path for a global benchmarking methodology, composed by reproducible

experimental procedures representing real-life conditions. We hope that this paper can

enable developers, researchers, clinicians and end-users to efficiently identify the most

promising directions for validating their technology and drive future research efforts in the

short and medium term.
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1. INTRODUCTION

Performance evaluation is becoming an urgent issue in wearable robotics. The community strongly
needs reliable and replicable testing methods to verify and compare the performance of the
numerous and diverse exoskeletal and prosthetic solutions available (Windrich et al., 2016; Price
et al., 2019; Torricelli and Pons, 2019). Without clear and quantitative benchmarks, this rapidly
expanding market runs the risk of spreading chaotically, losing sight of real users’ needs. This
situation is aggravated by the fact that the application domains are now rapidly expanding from
the healthcare scenario toward industrial and logistic settings, characterized by a multitude of
new functional goals and safety constraints (Gopura et al., 2016; Bogue, 2018). This multifaceted
picture calls for a multidimensional approach that can guide not only developers in identifying
the most efficient path to market introduction and survival, but also users in identifying the
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FIGURE 1 | Wearable robot benchmarking should be pushed from several perspectives. We advocate taking a look at functional performance, user experience and

methodological aspects. To this end, we consider the sub-aspects and questions to outline research directions.

best solution according to their unique abilities, desires,
expectations, and needs. Fortunately, the scientific community
has already addressed some of these issues in the past two
decades: hundreds of studies have explored the biomechanical,
physiological, and psychological implications of the interaction
between humans and wearable robots (WRs) (Beckerle et al.,
2017b, 2019; Pinto-Fernandez and Torricelli, 2020). This has
been a multidisciplinary endeavor, which has resulted not only
in scientific evidence and better robotic prototypes, but also in a
plethora of potentially useful evaluation methods and protocols
(Ghillebert et al., 2019; Ármannsdóttir et al., 2020; Davis et al.,
2020). If well-organized and appropriately conveyed to the
relevant users, a careful selection of these methods can become
the foundation of a unified and standardized benchmarking
ecosystem for WRs. Different international consortia are now
targeting this ambitious goal, such as the COST Action for
Wearable Robots1, the EUROBENCH project (Torricelli and
Pons, 2019), the COVR project (Bessler et al., 2018), and
the Exskallerate project2, as well as the ASTM-driven Exo
Technology Center of Excellence3, to mention a few.

With the support of some of these projects, we gathered
several experts into a workshop titled “Benchmarking Wearable
Robots: from key enabling technologies, experimental methods
to final applications,” held during the 2019 edition of the

1https://www.researchgate.net/project/COST-Action-CA16116-Wearable-
Robots-for-Augmentation-Assistance-or-Substitution-of-Human-Motor-
Functions
2https://northsearegion.eu/exskallerate/
3https://www.etcoe.org/

ExoBerlin conference4. The main goal was to promote the
discussion across researchers and stakeholders from different
perspectives, to identify the key aspects that should be addressed
in the near future in the field of performance evaluation.
We identified three areas in which intensive research and
scientific discourse appears necessary (see Figure 1). The first one
addresses the functional performance, i.e., how the WR interacts
with and affects the user’s physical functions. Depending on
the specific application, performance may be related to different
desired outcomes, such as promoting a more physiological and
efficient movement pattern, reducing the user’s physical fatigue
or improving balance. The second one focuses on considering
and assessing the user’s experience, i.e., the perceptual, emotional,
and cognitive processes involved in the use of a WR. The third
area highlights the importance of standardizing the experimental
procedures, data collection and processing algorithms, in order
to ensure a wide adoption of the same testing methods
worldwide, fostering discussion and comparison among the
different stakeholders in the field.

This perspective paper aims to provide a concise
description of each of these three areas and thereby
promote a common understanding of the meaning and
relevance of WRs benchmarking. Such an effort may enable
developers, researchers, clinicians, end-users, and any other
relevant stakeholder to focus their efforts toward the most
promising directions that should be addressed in the short and
medium term.

4https://www.exo-berlin.de/
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2. FUNCTIONAL PERFORMANCE
PERSPECTIVE

WRs have an intrinsic, circular causal relationship with the
human user, in which the actions of the robot are determinant
for the behavior of the human and vice versa. Therefore,
performance should be characterized on technological,
biomechanical and physiological levels, within the context
of specific functional tasks.

Technological indicators describe the physical capabilities of
a WR. These indicators are obtained independently from a
specific user, but are essential to evaluate the applicability of
a WR for a specific target application with human users. One
important aspect is the kinematic compatibility, which describes
the ability of the robotic structure to follow the 3D kinematic
trajectories of the human limbs. Kinematic compatibility is one
of the main determinants of relative motion between the human
limbs and the device (Näf et al., 2018a), which has direct effects
on functionality, comfort and safety. On the kinetic side, the
evaluation of torque/force control behavior and the mechanical
impedance/admittance characteristics of the actuators is crucial.
Unfortunately, most of the existing benchmarking techniques
are realized under static assumptions, which result in unrealistic
reported actuation characteristics. Recent works are pointing
toward dynamic characterization procedures (Moltedo et al.,
2019), which in our opinion are essential to measure the potential
of a WR to interact safely and efficiently with the human in daily
activity tasks.

Biomechanical and physiological indicators relate
to the assessment of the physical human-robot interaction.
Given the complex nature of the systems under evaluation,
i.e., the WR, the user and their physical coupling—the choice
of the set of metrics and experimental methods is not trivial.
Several biomechanical and physiological metrics have been used
in human-in-the-loop studies to assess the effects of a WR on
the user’s physical capabilities. Among all, kinematics-related
metrics have been extensively reported in several works (Pinto-
Fernandez and Torricelli, 2020). Comparing joint kinematic
profiles in WR-assisted conditions with normative data is
a widely used method to assess whether a WR influences
the movement pattern of a user (Näf et al., 2018b). In the
majority of state-of-the-art papers on lower-limb WRs and
gait rehabilitation, gait speed, joint range of motion and
spatiotemporal parameters, such as cadence, step width, and
stride length, are the most recurring kinematics metrics (Lee
et al., 2019). However, given the high diversity of subject
conditions, other indicators could be highly relevant to assess
the effects of a WR. For instance, assessing the joint torque
profiles can provide useful information about the quality of the
movement pattern and may guide the interpretation of other
outcomes, such as those related to electromyographic (EMG)
measurements or metabolic efficiency. EMG measurements have
become extremely popular as a way to measure the internal
joint dynamics, thus to assess the physiological effects of the
human-machine interaction. The technological maturity of
commercial systems have made EMG one of the key metrics to
evaluate a WR’s efficacy in several application scenarios, from
rehabilitation, assistance (Collins et al., 2015), and industrial

(Pacifico et al., 2020) scenarios, particularly in out-of-the-lab
contexts, given that most of the EMG system are wireless and
portable. Energy expenditure is currently one of the most
adopted metrics to assess the effectiveness of a WR. Reduced
metabolic cost has been widely considered as valuable evidence
of effective human-robot interaction, with several recent studies
proving that such results can be achieved in several contexts,
ranging from walking and running (Kim et al., 2019), elderly
gait training (Martini et al., 2019), and to repetitive upper-limb
assistance of workers (Maurice et al., 2019; Baltrusch et al., 2020;
Koopman et al., 2020). Currently, to the author’s knowledge, no
studies have provided evidence that metabolic cost reductions
could be reliably assessed in out-the-lab conditions, but
worldwide many research teams are investigating this issue.

Lastly, estimating the interaction forces between the user and
the robot is particularly relevant for two main reasons. From
a design perspective the assessment of shear and compressive
components of the interaction forces can provide useful data
to design more comfortable and ergonomic physical interfaces
(Langlois et al., 2018), with reduced undesired parasitic forces
on the user’s musculoskeletal system, wide areas to distribute
pressure and tailored coupling with the user’s soft tissues. From
a functional perspective, the assessment of interaction forces
could provide information about the effectiveness and quality
of the WR assistance. Despite their great importance, assessing
interaction forces may be limited by technological constraints, as
either the WR needs to integrate ad-hoc force/torque sensors or
the experimental set-up should be designed to include sensory
systems at the human-robot interface (Donati et al., 2013).
Currently, techniques, both accurate and practical, for dynamic
in-the-loop pressure measurements are still lacking. Human-
machine interaction is one area in which kinetics are of utmost
importance. Nevertheless, interaction forces between the user
and the machine are likely underestimated and rarely reported
in the literature (del Carmen Sanchez-Villamañan et al., 2019).

Considering the complexity and intrinsic variability of
measuring human/robot performance indicators for WRs, it is
important to further explore the use of models, both software
simulations of human robot interaction as well as advanced
testing dummies that simulate the human on all relevant aspects.
Once such models can be validated for their ability to represent
a certain population, and are approved by the community,
important gains in efficiency may be reached. Thereby, the
wide range of WR application scenarios needs to be taken into
account, e.g., medical WRs call for specific biomechanical and/or
physiological metrics and exhibit very strict requirements.

3. USER EXPERIENCE PERSPECTIVE

Due to their tight connection with human users, the adequacy of
WRs strongly depends on the experience of and the interaction
with their users. When assessing the user outcomes of a WR
application, experiences will likely reflect the benefits perceived
in terms of physical function, but perceptual, emotional, and
cognitive aspects also need to be considered. Recent research has
explored how to measure, understand, and consider the users’
views. For systematic consideration, existing human-oriented
design approaches evaluate user experience and integrate it into
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design processes, e.g., ISO 9241 (Jokela et al., 2003) or human-
machine-centered design (Beckerle et al., 2017a). ISO 9241
defines user experience as perception and reactions of a person
resulting from the use of a system, i.e., including aesthetic aspects
(Hassenzahl and Tractinsky, 2006) or effects of neural plasticity
through co-adaptation (Beckerle et al., 2019). Considering user
experience early on could help to improve designs already during
their development and experience measures could be meshed in
the process of co-adaptation. In design, for instance, experience
might directly be assessed for particular components, e.g., the
intuitivity of a control algorithm, and serve as a predictor of
device acceptance and efficacy (Beckerle et al., 2017b), which also
relates the users’ attitudes and predispositions (Gauthier-Gagnon
et al., 1999; Gallagher, 2005; Kammers et al., 2006).

To quantitatively assess and understand users’ views and
needs in the first place, studies of human factors influencing the
experience of the technical system and, in the long term, validated
assessment methods are required. To this end, theoretical models
of human factors are helpful (Karwowski, 2006; Wilson and
Sharples, 2015), but might require customization regarding the
specific application: Gauthier-Gagnon et al. (1999), for example,
have proposed a model of human factors regarding lower limb
prostheses. The model distinguishes between enabling factors,
which might be altered by design, as well as predisposing and
psychosocial factors. From an engineering point of view, the
latter two might appear less important, but on the contrary,
the model explains how technical design might not be able to
meet a user’s needs since unforeseen psychological effects might
alter the resulting cybernetic performance, e.g., when the user’s
perceived security is compromised by the device (Legro et al.,
1998; Gallagher and MacLachlan, 2000; Beckerle et al., 2017a).
The literature provides extensive information about potentially
relevant psychological concepts that influence acceptance and
performance of WRs. For some devices, for example, the
subjective sense of embodiment (Rognini and Blanke, 2016;
Beckerle et al., 2019), the sense of agency over the device (Caspar
et al., 2015; Endo et al., 2020), or the subjective cognitive effort
(Beckerle et al., 2017a) have been suggested to be crucial.

Human-in-the-loop experiments that get users in touch
with prototypal components or system implementations
appear promising and may provide useful information about
how variations of the technical system modulate the users’
experiences (Beckerle et al., 2017b, 2019). Assuming device
embodiment, agency, and cognitive effort are promising
measures in WR benchmarking: nevertheless, accepted
standardized testing procedures are still missing. These might
include psychometric tools to evaluate subjective experience
(Hart and Staveland, 1988; Longo et al., 2008; Caspar et al.,
2015) as well as more objective behavioral measures, e.g.,
proprioceptive drift for embodiment (Christ and Reiner,
2014), intentional binding techniques for agency (Caspar
et al., 2015; Endo et al., 2020), or physiological measures,
such as heart rate (Ikehara and Crosby, 2005), electrodermal
activity, or neurophysiological measures (Christ and Reiner,
2014). Such systematic measures might not only be used
to consider user experience in WR design, but could also
be a means to implement adaptive control schemes that

coordinate control behavior to improve user experience, e.g.,
predicting embodiment outcome to foster it by appropriately
adjusted control (Schürmann et al., 2019). While physiological
measurements and electrical stimulation might support this
by exploiting neuroplastic effects, deeper investigation of brain
plasticity is subject to ongoing research (McGie et al., 2015;
Makin et al., 2017). Future human-machine interfaces might
be able to mediate affective signals, and thereby, also forward
emotional and social information to the users (Beckerle et al.,
2018).

4. METHODOLOGICAL PERSPECTIVE

Turning the existing metrics, protocols, and algorithms into one
harmonized benchmarking ecosystem is an important challenge
that needs to be addressed for benchmarking to be converted
into common practice. This process has to consider several
perspectives (see Figure 1) and faces the challenge of finding new
and common terminology.

First, benchmarking should allow reproducibility of results,
defined as “the obtention of comparable results by different
teams, measuring systems, and locations” (Plesser, 2018). The
development of a reproducible experiment should clearly
consider at least the following four aspects: the physical testbed
and environment, the experimental procedure, the data format,
and the performance metrics (Torricelli et al., 2015). The
concept of reproducibility claims that a range of variations
in these elements may not affect the comparability of results,
while it greatly improves the chance to be adopted by many
users. The main question in this respect is “how different
can two testbeds, protocols, measurement systems be to still
allow for a truthful comparison?” Currently, there are no
guidelines available to help researchers answer this question
and to provide a clear description of these components in
a standardized way. Fortunately, some editorial initiatives
are currently encouraging this direction, e.g., the “R-articles”
initiative proposed by (Bonsignorio, 2017). Reproducibility in
WRs experiments can be particularly complicated, because the
results may be influenced by variables related to human-related
aspects that can be hardly controlled or classified, such as the
neurological and physical conditions of the user, the amount
and type of familiarization with the device, the tuning procedure
of the control system, as well as several environmental, i.e.,
non-technical, factors.

The second aspect is the transferability of results, i.e., the
ability of predicting how a system would behave in the real
world, by means of experiments conducted in a controlled
(typical laboratory) environment. This problem is now becoming
more and more relevant due to the increasing number of
applications of exoskeletons in diverse contexts. Performing
the experiments in a real setting may be either not possible
(e.g., in industrial settings) or too complex, due to the
multiple variations in the environment, which would imply
the execution of an excessive number of experiments. Two
promising approaches are the use of complex mechatronic
simulators, e.g., the CAREN system from MOTEK, or the
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decomposition of the complex tasks into basic environmental
conditions and motor skills (Torricelli and Pons, 2019). The
problem of transferability is particularly complex when it refers
to user experience, due to the difficulty to generalize across
multiple potential users with variable needs. This may explain
why these methods appear to be scarcely applied in the field of
WRs up to now (Beckerle et al., 2017b). Moreover, qualitative
data can provide very rich information for development
processes, but still not very easy to be considered as a hard
benchmark.

The third aspect is related to understandability. Benchmarks
should not only serve developers and researchers to perform
deep technical analysis on their systems, but also to the end-
users, to help them compare the different (but apparently
similar) solutions available in the market and make the right
choice. This can be done only if the user can grasp the main
features of the system clearly and quickly. Thus, conveying
the benchmarking results using non-technical terminology is of
utmost importance. Language should also consider that a single
term may have different meanings depending on the user, e.g.,
medical doctor, industrial stakeholder, generic user, etc., and
the related application domain. Last but not least: shareability.
Let’s consider the hypothetical case in which benchmarking is
adopted massively by theWR community worldwide. Where will
all those data generated by the different laboratories be stored?
Benchmarking, by definition, should allow the comparison with
a point of reference. How can such a reference be calculated?
How can we derive comparisons? Standards may help in this
process by establishing fixed reference values to categorize
performance into discrete levels but, in this evolving field,
it is more than likely that the performance references will
also evolve over time. This calls for a centralized software
platform that can gather both data and algorithms, and allow
comparisons between the scores obtained by one system with
all those already tested. However, there are currently two main
barriers that can be identified. First, the availability of researchers
and developers to provide access to data obtained on their
WRs. In this respect, some questions emerge: at what level of
detail need data be shared? To what extent can benchmarking
and confidentiality matters coexist? The second potential
roadblock is the compliance with privacy regulation, e.g., GDPR,
which applies to any experiment generating human sensible
data. Overcoming these barriers would considerably increase
the probability of benchmarking to be used worldwide, and
being converted into the de-facto methodology for evaluation
of performance.

5. CONCLUSIONS

Benchmarking is more than measuring or assessing. It is a
methodology that allows the entire innovation chain to be
monitored and potentially predicted. Without benchmarks,
development efforts risk to reach only a small portion of
the market, instead of favoring a global shift of the society
toward the inclusion of wearable robotic technologies in daily

life. The close interaction between a human and a WR
poses special challenges to researchers willing to quantify
the different aspects of the symbiotic performance. Several
international initiatives are paving the way for a standardized
benchmarking ecosystem, which has the ambitious goal of
facilitating the matching between user demands and product
capabilities.

In this article, we outline the research directions that in
our opinion are the main determinants of this endeavor and
exemplify the complex landscape into the three main areas here
described. In the following, we highlight a number of research
questions that, in our opinion, will be key to drive future efforts
in the field.

Since functional performance and user experience are
in reality highly intertwined to each other, we should ask
ourselves: would it be possible to predict the user’s view from
objective physiological, psychophysiological or biomechanical
measurements? If we could do so, this would significantly
contribute to speed up testing-development iterations and
improve individualizing WRs.

The human and the machine are two intelligent counterparts
that should learn to interact with each other to achieve
a given goal (Beckerle et al., 2017b, 2019). The particular
contributions of both agents to the joint task are not fully
understood. Establishing the cause-effect relationship between
the internal processes and the achievement of the goals is
one of the main challenges in benchmarking research, with
tremendous potential benefits. Due to the unavoidable presence
of the human in the loop, technology providers may encounter
difficulties in demonstrating a certain level of performance
for their device. In other words: how can the contribution
of the human be excluded when comparing different systems’
performances? This problem, clearly evident, e.g., in Cybathlon
competition—where the performance strongly relies on the
pilot’s skills, is an open issue that should be urgently considered
(Makin et al., 2017).

Finally, a good measured variable does not mean a useful
measure of performance. A typical example is kinematics:
having a joint profile closer to human healthy reference, e.g.,
Winter’s data, may not tell anything about stability, efficiency,
or safety of the device. Additionally, time profiles are usually
difficult to grasp for non-technical users. How can we convert
these variables into useful indicators of performance? We
advocate that WR research and development should strive for
finding the optimal balance between measurable, well-defined,
and relatively easy-to-administer benchmarks to improve
users’ outcomes.
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