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Abstract

Generalized Polynomial Chaos (gPC) expansions are well established for for-

ward uncertainty propagation in many application areas. Although the associ-

ated computational effort may be reduced in comparison to Monte Carlo

techniques, for instance, further convergence acceleration may be important to

tackle problems with high parametric sensitivities. In this work, we propose

the use of conformal maps to construct a transformed gPC basis, in order to

enhance the convergence order. The proposed basis still features orthogonality

properties and hence, facilitates the computation of many statistical quantities

such as sensitivities and moments. The corresponding surrogate models are

computed by pseudo-spectral projection using mapped quadrature rules, which

leads to an improved cost accuracy ratio. We apply the methodology to Max-

well's source problem with random input data. In particular, numerical results

for a parametric finite element model of an optical grating coupler are given.

KEYWORD S
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1 | INTRODUCTION

Due to recent developments in uncertainty quantification (UQ),1 studying random parameter variations within the
numerical simulation of fields and waves comes into reach. The present study is motivated from the design of optical
components and plasmonic structures, where relatively large variabilities of nano-scale geometrical parameters can be
observed, see, for example, Ref.2 In this work, we focus on the forward problem, that is, the propagation of uncertainties
from the model inputs to the outputs, in order to compute moments and sensitivities for physical quantities of interest
(QoIs). We rely on surrogate modeling3 to reduce the computational complexity of sampling the underlying finite ele-
ment (FE) Maxwell solver. Although motivated from a forward model perspective, the surrogate construction could
equally be used in an inverse problem context. Examples of surrogate modeling in electromagnetics can be found for
instance in Refs.,4-6 where microwave circuits and accelerator cavities are considered.

Generalized polynomial chaos (gPC) expansions7 are powerful tools for forward uncertainty propagation. They are
based on an orthogonal polynomial basis with respect to the underlying probability distribution of the input parame-
ters, to achieve good convergence properties. However, applying gPC may still be challenging, the computational cost
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to handle large parameter uncertainties and parametric sensitivities for instance may be quite high. To remedy this
issue, conformal maps can be utilized in order to improve the convergence of polynomial-based methods. The accelera-
tion of quadrature methods by the use of conformal maps has been considered in Refs.8-10 In Ref.,11 conformal maps
were combined with a stochastic collocation method, indicating significant gains in the accuracy of the corresponding
surrogate model. In this work, we propose a new orthogonal basis by combining gPC and conformal maps. We note
that, the proposed basis is constructed such that it fulfills the same orthogonality properties as gPC. Accordingly, advan-
tages of gPC methods are preserved, for example, stochastic moments and Sobol coefficients can be directly computed
from the expansion coefficients. It should also be noted that various approaches employing Polynomial Chaos expan-
sions with basis rotation have been reported recently, see Refs.12,13 Although, these works equally rely on mapped Poly-
nomial Chaos approximations, the transformations are linear (affine) and not based on conformal mappings. Also, the
emphasis there is on high dimensional approximation instead of convergence acceleration.

The proposed numerical scheme is applied to quantify uncertainties via surrogate models for Maxwell's equations
in the frequency domain. In particular, we consider the source problem on periodic domains with a plane wave excita-
tion and uncertainties in the material interface geometry. Such model equations can describe, for instance, the coupling
into metal-insulator-metal (MIM) plasmon modes with subwavelength diffraction gratings,2 which is illustrated in
Figure 1A. Although illustrated by means of this particular application example, we note that the employed UQ meth-
odologies apply in a much broader context.

This paper is structured as follows: Section 2 contains a brief description of Maxwell's source problem. The uncer-
tainty quantification part can be found in Section 3, where we briefly recall standard gPC before discussing the pro-
posed extension based on conformal mappings. Section 4 reports numerical results for an analytical RLC circuit and
the aforementioned optical grating coupler, before conclusions are drawn.

2 | MAXWELL'S SOURCE PROBLEM

We consider Maxwell's source problem for periodic structures excited by an incident plane wave. For further details on
this subject, we refer to Refs.11,14 We start with the time-harmonic curl-curl equation

r× μ−1
r r×E

� �
−ω2εμ0E=0 inD, ð1Þ

for the electric field phasor E in the computational domain D, where ω denotes the angular frequency, ε the complex
permittivity and μr, μ0 denote the relative and vacuum permeability, respectively. Note that Equation (1) assumes
absence of charges and source currents in D. Based on Floquet's theorem (Ref.,14 chapter 13), the computational
domain D can be reduced to a unit cell of the periodic structure, as we assume a periodic excitation. Such a unit cell is
depicted in Figure 1B. Due to the oblique angle of the incident wave, the excitation has a different periodicity than the
geometry and, hence, periodic phase-shift boundary conditions need to be imposed on the respective boundaries. To
truncate the structure in the non-periodic direction, a Floquet absorbing boundary condition and a perfect electric con-
ductor (PEC) boundary condition are applied. This leads to the boundary value problem

FIGURE 1 Scattering of periodic structure excited by an incident plane wave; illustrations based on Ref.11. A, Optical coupling into

metal-insulator-metal (MIM) plasmon modes.2 B, Sketch of considered unit cell corresponding to the computational domain D. The blue

arrow illustrates the incident wavevector kinc
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r× μ−1
r r×E

� �
−ω2εμ0E=0 inD ð2Þ

E Γx+
ejk

inc
x dx =E

��� ���
Γx−

onΓx + [Γx− ð3Þ

E Γy+
ejk

inc
y dy =E

��� ���
Γy−

onΓy+ [Γy− ð4Þ

n×E=0 onΓz− ð5Þ

μ−1
r r×E

� �
×n+F Eð Þ=G Einc

� �
onΓz+ , ð6Þ

where we refer to (Ref.,11 appendix A) for a derivation and definition of the functionals ℱ �ð Þ, G �ð Þ.
We assume in the following that the complex permittivity ε depends smoothly on a parameter vector y � Ξ � ℝN.

These parameters can then be used to model variations in the refractive indices or extinction coefficients of the (differ-
ent) materials in D, as well as changes in the geometry of the material interfaces inside the domain D. Following a stan-
dard Galerkin procedure, cf. Ref.,11 we then obtain a FE model in the form

finde yð Þ�V s:t: ay e yð Þ,vð Þ= ly vð Þ 8v�V , ð7Þ

where ay(�,�) is a continuous sesquilinear form, ly(�) is a continuous (anti)linear form and V denotes a discrete subspace
of H(curl; D),15 enforcing periodic phase-shift conditions on the traces at the periodic boundaries and homogeneous
Dirichlet conditions at Γz− . To achieve a curl-conforming discretization of Equation (7), we employ Nédélec's elements
of the first kind16 and second order on a tetrahedral mesh of D. As QoI we consider the fundamental reflection coeffi-
cient Q e yð Þð Þ, that is, a scattering parameter, which can be computed as an affine-linear functional of the electric field
e in post-processing.11 For brevity, we replace Q e yð Þð Þ by Q yð Þ in the following.

3 | UNCERTAINTY QUANTIFICATION

To account for uncertainty, we model the input parameters y as independent random variable (RVs) with joint proba-
bility density function ρ and image set Ξ � ℝN, where we assume in this section for brevity of notation that Ξ is given
as the hypercube [−1, 1]N. Note that different image sets Ξ or stochastic dependence could also be considered, for exam-
ple, by an isoprobabilistic transformation.17 Additionally, we assume that the map Q :Ξ!ℂ is holomorphic. Note that
this assumption can often be justified for boundary value problems with random influences, see, for example, Ref.18

Holomorphy of the solution of Maxwell's source problem with respect to general shape parametrizations was
established in Ref.19

As discussed in the following, in this work we propose a method for surrogate modeling, where the basis func-
tions are mapped polynomials based on gPC7 combined with a mapping, which is conformal in each coordinate.
To compute the corresponding coefficients we rely on pseudo-spectral projection based on mapped quadrature
rules.8

3.1 | Generalized polynomial chaos

For convenience of the reader, we briefly recall the standard polynomial chaos expansions, going back to Wiener.20

Considering Gaussian random variables, any Q yð Þ with bounded variance, can be accurately represented using Hermite
polynomials as basis functions. Employing the Askey-Scheme,7 for different probability distributions ρ, basis functions
Ψm :Ξ!ℝ which are orthonormal w.r.t. the probability density ρ, that is,

 ΨiΨ j
� �

≔
ð
Ξ
Ψi yð ÞΨ j yð Þρ yð Þdy= δij, ð8Þ
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can be obtained. We note that gPC can also be constructed for arbitrary densities ρ.21 Moreover, the gPC expansion con-
verges for every square-integrable function if the support of the density is compact, for instance, see Ref.,22 theorem 3.4.
In this respect, we consider arbitrary densities on [−1, 1]N. The gPC approximation is then given as

QPC
M yð Þ=

XM
m=0

smΨm yð Þ, ð9Þ

where the sm � ℂ denote the gPC coefficients. The sum in Equation (9) has already been truncated to M < ∞ to obtain
a computable approximation and hence, limited polynomial degrees are considered. The coefficients sm can then be
determined in various ways, for example, by regression or stochastic collocation, see Ref.23 for an overview. Here we
consider projection, that is

sm = QΨm½ �=
ð
Ξ
Q yð ÞΨm yð Þρ yð Þdy: ð10Þ

The integral in Equation (10) is usually not readily computable and is hence often approximated by numeri-
cal quadrature. Due to orthogonality of the basis, stochastic moments as well as variance-based sensitivity
indices can then be calculated directly from the coefficients sm without further approximations, see Ref.23

These methods show spectral convergence, for example, in the norm uk kL2ρ ≔
ffiffiffiffiffiffiffiffiffiffiffi
 u2½ �p

.7 In particular, if the map
y 7!Q yð Þ is analytic, exponential convergence can be expected, as discussed in the following. Note that, for simplicity,
we first consider the univariate case, that is, N =1, while generalizations to the multivariate case N >1 will be discussed
later.

We assume that Q1D : −1,1½ �!ℂ can be analytically extended onto an open Bernstein ellipse Er�ℂ. A Bernstein
ellipse Er is an ellipse with foci at ±1 and the size r is given by the sum of the length of semi-major and semi-minor axis.
This is illustrated in Figure 2A. Following Ref.,9 the error of the polynomial best approximation Qpol�

M with degree
M can be estimated as

Q1D−Qpol�
M

��� ���
∞
≤
CBe− log rð ÞM

r−1
, ð11Þ

where k�k∞ denotes the supremum-norm on [−1, 1] and the constant CB > 0 depends on the uniform bound of Q1D in
Er. It can be seen that the asymptotic rate of geometric convergence (Ref.,24 definition 6) is given by the factor log r
and, hence, a large region of analyticity is desirable. Note that convergence in the supremum-norm implies convergence
in the �k kL2ρ norm as well, as

FIGURE 2 Illustration of

conformal mapping approach based

on Ref.11. A, Bernstein ellipse Er of

size r = rM + rm. B, Conformal map

of a Bernstein ellipse Er to a

straighter region g(Er)
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Q1D−Qpol�
M

��� ���
L2ρ
=

ð
−1,1½ �

Q1D−Qpol�
M

	 
2
ρ1Ddy

 !1
2

≤
ffiffiffiffiffiffiffi
ρ1D

p�� ��
∞ Q1D−Qpol�

M

��� ���
∞

ð
−1,1½ �

1dy

 !1
2

=
ffiffiffi
2

p ffiffiffiffiffiffiffi
ρ1D

p�� ��
∞ Q1D−Qpol�

M

��� ���
∞
:

ð12Þ

We further note that the additional aliasing error introduced by the discrete projection can be controlled so that it does
not harm the convergence order for a well-resolved smooth function (cf. Ref.7 chapter 3.6).

3.2 | Conformally mapped generalized polynomial chaos

Equation (11) shows that the convergence is connected to the region of analyticity, in particular the convergence rate
log r depends on the size of the largest Bernstein ellipse not containing any poles of the continuation of Q1D (in the
complex plane). However, established procedures25 inferring the regularity of parametric problems based on a sensitiv-
ity analysis, do not lead to elliptical regions, but rather prove analyticity in an ε-neighborhood of the unit interval. In
this case, a conformal map g can be employed, which maps Bernstein ellipses to straighter regions and thus, enlarges
the domain of analyticity, as illustrated in Figure 2B. To this end, there are various mappings which could be employed,
cf. Ref.26 Here, we focus for simplicity on the so-called sausage mapping introduced in Ref.8 It represents a Taylor
approximation of the inverse sine function, which is then normalized such that g(±1) = ±1 is fulfilled. In particular, we
employ the 9-th order mapping, that is,

g sð Þ= 1
53089

40320s+6720s3 + 3024s5 + 1800s7 + 1225s9
� �

, ð13Þ

as it has already been established in the recent works8,11,26 and fulfills the intended properties for a substantial range of
epsilon neighborhoods, see, for example, Ref.,8 theorem 4 or Ref.,11 Figure 7B. A detailed comparison of different map-
pings is out of the scope of this paper. Note that g maps the unit interval to itself, that is

g −1,1½ �ð Þ= −1,1½ �: ð14Þ

Conformal maps were employed in Ref.8 to derive new numerical quadrature formulas, and have also recently been
considered in the context of stochastic collocation methods.10,11 In this work, we address the combination of conformal
maps and polynomial chaos expansions. Based on the assumption that h≔Q1D � g has a larger Bernstein ellipse than
Q1D, and is hence better suited to be approximated with polynomials, we propose a new orthogonal basis

Φm≔ ~Ψm � g−1, m=0,…,M, ð15Þ

where ~Ψm are orthonormal polynomials w.r.t. the transformed density

~ρ1D sð Þ≔ g0 sð Þρ1D g sð Þð Þ: ð16Þ

We emphasize that Φmf gMm=0 forms an orthonormal basis w.r.t. the input probability distribution ρ. This can be shown
by a change of variables y = g(s)

 ΦiΦ j
� �

=
ð1
−1

~Ψi � g−1
� �

yð Þ ~Ψ j � g−1
� �

yð Þρ1D yð Þdy ð17Þ

=
ð1
−1

~Ψi sð Þ~Ψ j sð Þρ1D g sð Þð Þg0 sð Þ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
~ρ1D sð Þ

ds= δij, ð18Þ
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where the last line holds by construction of the polynomials ~Ψm . Due to the orthogonality, the corresponding coeffi-
cients sm of the mapped approximation

QM yð Þ=
XM
m=0

smΦm yð Þ ð19Þ

can then be determined by the projection

sm = ΦmQ1D½ �=
ð1
−1
Φm yð ÞQ1D yð Þρ1D yð Þdy: ð20Þ

Note that, by abuse of notation, we use the same symbol sm for the gPC coefficients and the mapped gPC coefficients.
The mapped polynomial best approximation Q�

M converges as

Q1D−Q�
M

�� ��
∞ = Q1D � g−Q�

M
� g

�� ��
∞ = h−hpol

�
M

	 
��� ���
∞
≤

~CBe− log ~rð ÞM

~r−1
, ð21Þ

where hpol
�

M denotes the polynomial best approximation of h and ~r the size of a Bernstein ellipse E~r on which an analytic
continuation of h exists.

In particular, the asymptotic rate of geometric convergence log~r of the mapped approximation QM depends on the
size of the largest Bernstein ellipse E~rmax which is fully mapped into the region of analyticity of Q1D yð Þ . Note that
~rmax > rmax for any positive ε <0.75,11 and hence, a convergence improvement is to be expected in those cases, that is,
for functions analytic in such ε-neighborhoods. It should be mentioned nevertheless that this procedure does not always
yield improved convergence rates. One can easily imagine poles located such that a Bernstein ellipse may lead to a
larger region of analyticity than a strip-like geometry. In the examples considered in this work, however, convergence
acceleration could indeed be obtained.

To numerically compute Equation (20), we derive mapped quadrature rules, cf. Refs.8,26 As pointed out in Ref.9 for
instance, Gaussian quadrature is derived from polynomial approximations and, hence, the convergence order also
depends on the size of the Bernstein ellipse corresponding to the regularity of the integrand, see for example, Ref.,8 the-
orem 1. Therefore, relying again the assumption that Q1D � g has a larger Bernstein ellipse, we apply a change of vari-
ables y = g(s) in Equation (20)

sm = ΦmQ1D½ �=
ð1
−1
Φm yð ÞQ1D yð Þρ1D yð Þdy=

ð1
−1
Φm g sð Þð ÞQ1D g sð Þð Þρ1D g sð Þð Þg0 sð Þ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

~ρ1D

ds: ð22Þ

The mapped quadrature scheme is then obtained by application of Gaussian quadrature w.r.t. the transformed den-

sity ~ρ1D , that is, quadrature nodes ~y ið Þ
n oMquad

i=0
and correspondings weights ~w ið Þ

n oMquad

i=0
, to the transformed integrand in

Equation (22)

sm≈
XMquad

i=0

Φm g ~y ið Þ
	 
	 


Q1D g ~y ið Þ
	 
	 


~w ið Þ =
XMquad

i=0

Φm ŷ ið Þ
	 


Q1D ŷ ið Þ
	 


ŵ ið Þ: ð23Þ

Note that the mapped quadrature nodes are obtained as ŷ ið Þ≔ g ~y ið Þ
	 


, while the mapped weights are given as ŵ ið Þ≔ ~w ið Þ.
Due to Equation (14), it is ensured that the mapped quadrature nodes ŷ ið Þ do not require the evaluation of the analytic
continuation of Q1D in the complex plane, which is, in practice, not always possible. A convergence improvement is
expected based on the assumption that the transformed integrand in Equation (22) has a larger Bernstein ellipse. For
further details on mapped quadrature schemes, we refer to Ref.8 However, we note the (minor) difference that in this
work we employ Gaussian quadrature w.r.t. the transformed density ~ρ1D to derive the mapped quadrature scheme,
while Ref.8 only considers unweighted Gaussian quadrature and, thereby, takes g0(s) as part of the integrand (instead of
the weight).
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We proceed with a discussion of the multivariate case N > 1. To this end, we introduce the multivariate mapping
g(s) = [g1(s1),…, gN(sN)], which is assumed to be conformal in each coordinate si. In this work, we employ, for simplic-
ity, the same mapping (13) for all parameters, that is, g1 = … = gN = g. However, different choices would be possible
as well. We also note that, for the trivial mapping gtriv : s 7! s standard polynomial chaos expansions would be recov-
ered. For each parameter yi with univariate probability density function (PDF) ρi, we define the transformed PDF
~ρi yið Þ≔ρi gi yið Þð Þg0i yið Þ. The corresponding transformed joint PDF is then given by ~ρ yð Þ= ~ρ1 y1ð Þ… ~ρN yNð Þ. In the follow-
ing, we denote by ~Ψm

� 

m an orthonormal polynomial basis w.r.t. to the transformed density ~ρ, that is,

~ρ
~Ψi

~Ψj
� �

≔
ð
Ξ

~Ψi yð Þ~Ψj yð Þ~ρ yð Þdy= δi1 j1 … δiN jN , ð24Þ

where we introduced the multi-index m = (m1, …, mN) holding the univariate polynomial degrees, such that ~Ψm is a
tensor-product polynomial of order mj in dimension j = 1, …, N. The respective mapped polynomials are then
obtained as

Φm yð Þ≔ ~Ψm �g−1
� �

yð Þ: ð25Þ

The coefficients of the multivariate mapped approximation

Qp yð Þ≔
X

mk k∞ ≤ p

smΦm yð Þ, ð26Þ

where we consider for simplicity a tensor-product construction of maximum degree p, can then again be obtained by
projection

sm = ΦmQ½ �=
ð
Ξ
Φm yð ÞQ yð Þρ yð Þdy: ð27Þ

To evaluate the multi-dimensional integral in Equation (27), we employ mapped Gaussian quadrature. In this case the
mapped nodes and weights are given by ŷ ið Þ≔g ~y ið Þ

	 

and ŵ ið Þ≔ ~w ið Þ , respectively, where, in turn, ~y ið Þ and ~w ið Þ are the

nodes and weights of a Gaussian quadrature w.r.t. ~ρ.
Finally, we emphasize that, since the mapped representation (26) uses an orthogonal basis, the coefficients sm can

be used to directly compute stochastic moments as well as variance-based sensitivity indices. For instance, the mean
value is given by

 Qp
� �

=
ð
Ξ

X
mk k∞ ≤ p

smΦm yð Þ
0
@

1
Aρ yð Þdy= s0, ð28Þ

where we employed, that the mapped basis function Φ0 is constant on Ξ, as well as the orthonormality condition (24).
Accordingly the variance is given by

 Qp
� �

= Q2
p

h i
− Qp
� �2

=
X

0< mk k∞ ≤ p

s2m: ð29Þ

Additionally, Sobol sensitivity indices,27 based on a decomposition of the variance, can also be directly derived from the
coefficients. Regarding the estimation of Sobol indices, we will focus on the so-called main-effect (1st order) and total-
effect (total order) indices. We define the multi-index sets Λmain

n ,Λtotal
n �ΛTP

p ≔ mj0≤ mk k∞ ≤ p
� 


, n = 1, 2, …, N,
such that

Λmain
n = m�ΛTP

p : mn 6¼ 0 and m j =0,n 6¼ j
n o

, ð30Þ
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Λtotal
n = m�ΛTP

p : mn 6¼ 0
n o

: ð31Þ

We then define the partial variances main
n Qp

� �
and total

n Qp

� �
, such that

main
n Qp

� �
=
X

m�Λmain
n

s2m, total
n Qp
� �

=
X

m�Λtotal
n

s2m: ð32Þ

Then, the main-effect and total-effect Sobol indices, Smain
n and Stotaln , respectively, are given as

Smain
n Qp

� �
=
main

n Qp
� �

 Qp
� � , Stotaln =

total
n Qp
� �

 Qp
� � : ð33Þ

4 | APPLICATION

We apply the UQ methods presented in the last section to two model problems. We first consider an academic example
of a stochastic RLC circuit, since there is a closed-form solution available which allows us to illustrate the main ideas of
the proposed approach in detail. We then consider the optical grating coupler,2 which is a non-trivial benchmark exam-
ple from nanoplasmonics.

4.1 | RLC circuit

We consider the model of an RLC circuit, as illustrated in Figure 3A. Assuming harmonic time dependency, the electric
current i is given by

−Lω2 + jωR+
1
C

� �
i= jωue: ð34Þ

We consider, arbitrarily chosen, an angular frequency ω = 104 s−1, excitation voltage ue = 1 V, capacitance C = 10 μF,
and a (rather small) resistance of R = 1 Ω. Additionally, we consider a variable inductance L(y) = 1 mH + 0.25 mH � y.
The parameter y is then modeled as a uniformly distributed random variable with probability density function ρ= 1=2,
on [−1,1] such that a stochastic model is obtained. As QoI Q , we consider the amplitude of the current Q≔ j i j .

FIGURE 3 Benchmark problem:

RLC circuit. A, Circuit diagram. B,

Amplitude of electric current w.r.t. input

parameter y
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Figure 3B shows the parametric dependency of the QoI |i| with respect to y, which is analytic for y � [−1, 1]. However,
the continuation in the complex plane has poles at

y= � i
R

ω� 0:25mH
: ð35Þ

This complex conjugate pole pair limits the size of the largest Bernstein ellipse, where Q yð Þ is analytic, which is illus-
trated in Figure 4A for different values of R.

In each case, we compute gPC approximations of increasing order for Q yð Þ using the Chaospy toolbox.28 In particu-
lar, the gPC coefficients of an M−th order approximation are computed by pseudo-spectral projection using Gaussian
quadrature of order M + 1. The accuracy of the surrogate models is then quantified in the empirical L2ρ norm. More pre-
cisely, we apply cross-validation using Ncv = 1000 random parameter realizations ycv

(i) drawn according to the probabil-
ity density ρ, to compute the error

Ecv =
1

Ncv

XNcv

i=1

QPC
M y ið Þ

cv

	 

−Q y ið Þ

cv

	 
��� ���2: ð36Þ

Additionally, we compute the error in the first-stochastic moment, that is, the mean value of the gPC approximation
given by the first polynomial coefficient s0. The reference solutions for the expected values are obtained by Gaussian
quadrature of order 200 up to machine accuracy. The convergence of the corresponding surrogate model w.r.t. the poly-
nomial order M, in terms of cross-validation and mean value accuracy, are presented in Figure 4B,C, respectively. The

FIGURE 4 Illustration of influence of poles in complex plane (RLC circuit). A, Poles of Q yð Þ and corresponding Bernstein ellipses for

different R. B, Convergence of empirical L2 error. C, Convergence of mean of GPC approximation
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plots confirm Equation (11) numerically, showing a decreasing convergence order for decreasing values of
R corresponding to decreasing sizes of the associated Bernstein ellipses. Note that, according to Equation (35), a similar
behavior as for decreasing damping can be expected for increasing amplitudes of the considered input variation.

Next, we apply the conformally mapped gPC expansions proposed in the last section. The implementation is done
in Python based on Chaospy.28 Figure 5A shows the transformed density (16) for a uniform input distribution ρ.
Figure 5B depicts some exemplary basis functions of gPC and mapped gPC. Note that the gPC basis functions are in this
case Legendre polynomials, while the mapped basis functions, given by Equation (15), are no polynomials. We then
study the convergence of the corresponding surrogate models, where mapped quadrature of order M + 1 is used to com-
pute the mapped gPC expansions of order M. Figure 5C-E demonstrate the improved convergence order of the mapped
approach, in terms of the cross-validation error, as well as the accuracy of the computed mean value and the computed
standard deviation (SD).

4.2 | Optical grating coupler

We now consider the FE model of an optical grating coupler,2 which was introduced in the beginning, see Figure 1A.
The structure's design29 is shown in Figure 6. A plane wave at optical frequency hits the surface of the grating coupler.
The incident wave couples with a MIM plasmon mode, which propagates along the metallic surface. It is found that the

FIGURE 5 (Mapped) Generalized polynomial chaos (gPC) for stochastic RLC circuit with R = 1 Ω. A, Uniform input distribution and

associated transformed density ~p. B, Some basis functions for gPC and mapped gPC. C, Convergence of empirical L2ρ error. D, Convergence

of mean value. E, Convergence of SD
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MIM resonance has a significant shift (in energy) as a function of the grating depth2 and therefore, it is of great interest
to evaluate the influence of nano-technological manufacturing imperfections.

We use FENICS30 for the discretization and implement a design element approach31 for the geometry parametriza-
tion. The numerical model is described in greater detail in Ref.11 Note that we only consider periodic variations, model-
ing a systematic offset in the fabrication process, and do not address local uncertainties leading to different unit cells.
Readers interested in the latter case are referred to Ref.32 The fundamental scattering parameter is considered as QoI
Q yð Þ�ℂ . We consider three sensitive geometrical parameters as uncertain, in particular the thicknesses of the upper
gold layer t1 = 12 nm+Δy1, the thickness of the dielectric layer t2 = 14 nm+Δy2 and the grating depth T =20nm
+Δy3, as illustrated in Figure 6. We model those parameters as independent beta distributed RVs in the range of
±Δ = ±2 nm. The corresponding shape parameters are chosen such that a normal distribution is approximated. The
corresponding probability distribution ρi of the RVs yi, i =1, …, 3 is shown in Figure 7A, together with the transformed
density ~ρi . The univariate gPC polynomials which are Jacobi polynomials in this case, as well as the mapped polyno-
mials are illustrated in Figure 7B.

4.2.1 | Decay of Fourier coefficients

We first study the decay of polynomial coefficients to numerically investigate the smoothness of the mapping from the
input parameters to the complex S-parameter Q and justify the use of (mapped) polynomial approximations. It has been

FIGURE 6 Numerical model of an optical grating coupler based on Ref.11. Excitation by incident plane wave at upper boundary

FIGURE 7 gPC for stochastic RLC circuit with beta distributed input parameter. A, Beta input distribution ρi and associated

transformed density ~ρi. B, Some univariate basis functions for gPC and mapped gPC

GEORG AND RÖMER 11 of 15



shown, see for example, Ref.,33 lemma 2 where Legendre polynomials are considered, that if this mapping is analytic,
the Fourier coefficients sm of an N − variate gPC approximation decay exponentially. In particular,

smj j2 ≤Ce−
PN

n=1
gnmn , ð37Þ

where C and gn, n = 1,…, N are positive constants independent of m and where we have assumed that the polynomials
are normalized. We consider the maximum of the absolute value of the Fourier coefficients sm with fixed maximum-
degree w

max
mk k∞ =w

smj j2 ≤ max
mk k∞ =w

Ce−
PN

n=1
gnmn =Ce−min mk k∞ =w

PN

n=1
gnmn ≤Ce− minngnð Þw: ð38Þ

It can be seen that the maximum Fourier coefficient is expected to decay exponentially with an increasing maximum-
degree w.

We construct a multivariate gPC approximation with a tensor-product basis of order mmax = 15. The multivariate
integrals of the pseudo-spectral projection are then computed by a Gauss quadrature of order 17. All coefficients sm are
plotted in Figure 8 in red color, where an exponential decay can indeed be observed. This can be seen as a numerical
indicator for smoothness of the approximated mapping Q yð Þ. Additionally, we also construct a mapped approximation
of same order and plot the corresponding coefficients in black color. It can be observed that the mapped coefficients
exhibit a faster convergence and hence the mapped approach can be expected to show, again, an improved
convergence.

4.2.2 | Uncertainty quantification

Next, we consider approximations of the magnitude of the S-parameter j Q yð Þ j using (mapped) tensor-product gPC
expansions of increasing order M, where pseudo-spectral projections of order M + 1 is employed to compute the coeffi-
cients. Figure 9A compares gPC and the proposed mapped counterpart in terms of the L2ρ-error (36), in particular, again,
by cross-validation with 103 random parameter realizations. It can be observed that the mapped approach converges
about 30% faster w.r.t. the order M than gPC. However, the respective computational gain grows, in this case, exponen-
tially w.r.t. the number of inputs and, hence, the required number of model evaluation to reach a prescribed accuracy
reduces roughly by a factor of 2. Similar findings hold for the stochastic moments, in particular, we present the conver-
gence of the mean value in Figure 9B and the computed SD in Figure 9C. In this case, the reference solutions are
obtained by Gaussian quadrature of order 30.

Finally, the most accurate surrogate model, that is, the mapped gPC expansion of order 14, is used to compute the
mean value  jQj½ �≈ 0:786 and the SD

ffiffiffiffiffiffiffiffiffiffiffiffiffi
 jQj½ �p

≈ 0:077 of the QoI. Additionally, Sobol indices are computed and pres-
ented in Figure 10. The thickness of the dielectric layer t2 is identified as the most influential parameter. We note that

FIGURE 8 Decay of Fourier coefficients of multivariate (mapped) gPC approximation
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there is a significant difference between the main- and total-effect indices. In particular, the sum of the first order indi-
ces is only 34%, while the remaining 66% can be attributed to strong coupling effects among the parameters.

5 | CONCLUSIONS

In this paper an efficient surrogate modeling technique for quantifying uncertainties in the material and geometry of
high-frequency and optical devices was presented. The proposed method is based on gPC to achieve spectral conver-
gence. Through a combination with conformal maps we were able to enlarge the region of analyticity. This led to an
improved convergence rate, which was numerically demonstrated for two benchmark problems. In particular, the
approach showed significant gains in either accuracy or computational cost, requiring only minor modifications of an

FIGURE 9 Convergence of (mapped) gPC expansions for the optical grating coupler. A, Convergence of empirical L2ρ error.

B, Convergence of mean value. C, Convergence of SD

FIGURE 10 Sensitivity of input parameters
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existing code. Due to orthogonality of the proposed basis, stochastic moments as well as Sobol indices can be directly
obtained from the coefficients. It is worth noting that this technique can also be combined with other techniques for
convergence acceleration such as adjoint-error correction, sparse-grids and (adjoint-based) adaptivity for the multivari-
ate case.11
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