
F U L L P A P E R

Atomistic hybrid particle-field molecular dynamics combined
with slip-springs: Restoring entangled dynamics to simulations
of polymer melts

Zhenghao Wu1 | Andreas Kalogirou1 | Antonio De Nicola2 | Giuseppe Milano2 |

Florian Müller-Plathe1

1Eduard-Zintl-Institut für Anorganische und

Physikalische Chemie, Technische Universität

Darmstadt, Darmstadt, Germany

2Department of Organic Materials Science,

Yamagata University, Yamagata-ken, Japan

Correspondence

Florian Müller-Plathe, Eduard-Zintl-Institut für

Anorganische und Physikalische Chemie,

Technische Universität Darmstadt, Alarich-

Weiss-Str. 8, 64287 Darmstadt, Germany.

Email: f.mueller-plathe@theo.chemie.tu-

darmstadt.de

Funding information

Deutsche Forschungsgemeinschaft, Grant/

Award Number: SFB-TRR 146

Abstract

In hybrid particle-field (hPF) simulations (J. Chem. Phys., 2009 130, 214106), the

entangled dynamics of polymer melts is lost due to chain crossability. Chains cross,

because the field-treatment of the nonbonded interactions makes them effectively

soft-core. We introduce a multi-chain slip-spring model (J. Chem. Phys., 2013 138,

104907) into the hPF scheme to mimic the topological constraints of entanglements.

The structure of the polymer chains is consistent with that of regular molecular

dynamics simulations and is not affected by the introduction of slip-springs. Although

slight deviations are seen at short times, dynamical properties such as mean-square

displacements and reorientational relaxation times are in good agreement with tradi-

tional molecular dynamics simulations and theoretical predictions at long times.
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1 | INTRODUCTION

Atomistic molecular dynamics (MD) calculations provide, in principle,

all the information desired for soft-matter systems: structure, thermo-

dynamics, and dynamics. In many practical applications, however, they

are too computationally expensive to allow the treatment of large

enough systems for long enough times. This has led to numerous

efforts to derive coarse-grained (CG) models, which are simplified by

aggregating a varying number of atoms into single superatoms. The

different coarse-graining procedures ensure that the CG models still

reproduce some aspects of the studied systems.[1] In this contribution,

we follow a different route to make MD calculations faster. First, we

maintain the description of the bonded interactions at the desired

level, which can be itself by CG or, as in this paper, atomistic. Second,

the nonbonded interactions are approximated by the interactions of

atoms with a potential field, which is, in turn, determined from the

atomic density. This so-called hybrid particle-field molecular dynamics

(hPF-MD) method was introduced by Milano and Kawakatsu a decade

ago.[2] It borrows several implementation tricks from the self-consis-

tent-field (SCF) theory.[3,4]

In hPF-MD, the nonbonded forces acting on a particle are

expressed as function of the derivatives of local density gradients.

This reformulation enables much more efficient simulations than stan-

dard MD as the evaluation of nonbonded pair forces is replaced by

building particle-to-mesh density fields and computing the density

field potentials. Both steps are of first order in the number of parti-

cles. The hPF-MD model has been demonstrated to be effective to

investigate homopolymers and block copolymers at both CG[2] and

atomistic resolutions.[5,6] More recently, the hPF-MD model was
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validated in describing the conformational and dynamical properties

of biological systems such as lipid bilayers[7–9] and bio-

surfactants.[10,11] After the integration of electrostatics,[12,13] the hPF-

MD method was further successfully applied in charged systems par-

ticularly of polyelectrolytes, charged amphiphiles[14] and

polypeptides.[15]

The hPF-MD method has, therefore, been around for a decade,

and its capabilities and shortcomings are well-known. We will discuss

them in this contribution only, as far as needed for our redevelopment,

and otherwise refer the reader to the existing literature.[2,5,7,8,15] For

various types of soft matter, the structural properties in are usually

well reproduced hPF-MD, with the exception of very small-scale struc-

tures, such as the short-range part of a radial distribution function. The

soft interactions of the density-functional-field, however, eliminate the

mechanisms, which are necessary for the correct dynamics. For exam-

ple, polymer chains are able to interpenetrate mutually due to the

absence of excluded-volume interactions, as the nonbonded atom-atom

interaction is effectively soft-core. This allows fast equilibration of

polymer melts also for long chains, but precludes entanglements and

reptation dynamics, rendering all dynamic properties, from diffusion to

rheology, artificial, and qualitatively wrong.

The problem of incorrect chain crossability also arises in very CG

polymer models, since from a certain degree of coarse-graining

onward, interactions necessarily become soft-core.[1] To recover the

chain entanglements in simulations with such soft nonbonded interac-

tions, several attempts have been reported. Padding and Briels pro-

posed an algorithm called TWENTANGLEMENT to detect and

prevent chain-crossing events by including an additional interbond

interactions in mesoscopic simulations of polymer melts.[16,17] Similar

attempts are also made by Pan and Manke to reduce the frequency of

artificial chain segment crossing events in dissipative particle dynam-

ics (DPD) simulation via introducing a segmental repulsive poten-

tial.[18] Alternative methods have been developed to represent the

uncrossability (entanglements) in molecular simulations. Schieber and

coworkers demonstrated successive versions of discrete slip-link

models for predicting the rheology of entangled polymer liquids and

gels, where the chain is CG to the entanglement level and the dynam-

ics of chains is split into chain sliding and constraint release.[19,20] Due

to the failure of the standard tube model in describing the experimen-

tal neutron spin-echo measurements, Likhtman introduced a new

single-chain dynamic slip-link model (slip-spring hereafter) to describe

the experimental results for neutron spin echo, linear viscoelasticity,

and diffusion of monodisperse polymer melts.[21] Along with the

development of these single-chain models, several multi-chain models

have been proposed. Shanbhag et al. presented a dual slip-link model

for studying the relaxation of entangled star polymers with chain-end

fluctuations and constraint release, which explained deviations

observed in dielectric and stress relaxation experimental data. Later,

Masubuchi et al. proposed a primitive chain network,[22] in which the

chains are dispersed in the space and connected by slip-links to form

a network. This model is able to reproduce the linear and nonlinear

viscoelasticitic properties of entangled polymer melts. However, it is

not rigorous in terms of thermodynamical properties because the

free-energy description of the model has not been found. Inspired by

the single-chain slip-spring model of Likhtman, Masubuchi and co-

workers performed a series of multi-chain simulations where the

entanglements are replaced by slip-springs instead of the excluded-

volume interaction[23–26] with an accurate description of the free

energy in the system. Chappa et al.[27] and Langeloth et al.[28] in paral-

lel proposed models incorporating the slip-springs with DPD simula-

tions. The mean-square displacements (MSDs) of beads from their

models are demonstrated in favorable agreement with the tube model

predictions.[27–29] Later, Ramírez-Hernández et al. reported a theoreti-

cally informed entangled polymer simulation approach. In their

approach, the topological effects that arise from the noncrossability

of molecules are introduced through effective fluctuating interactions,

mediated by slip-springs, between neighboring pairs of polymer

chains.[30] Recently, Theodorou and coworkers[31] developed a

mesoscopic particle-field Brownian dynamics methodology for simu-

lating polymeric materials in realistic time scales. In their approach,

the CG beads consist of several Kuhn segments, and the entangle-

ment effect is introduced by the slip-springs, similar to the previous

work in this field.

Thus, multi-chain slip-springs have been shown in multiple cir-

cumstances to re-introduce the effect of entanglements into the

dynamics of polymer chains for particle models too CG. This is where

the second technique of our approach, namely slip-springs, comes

in. We adopt our own slip-spring model, which has already been used

successfully with DPD.[28,29] Slip-springs are virtual harmonic bonds

between monomers of two different polymer chains. These virtual

bonds are not connecting segments of chains statically and perma-

nently but they can move along the chains following a Monte-Carlo

governed hopping dynamics. This naturally restricts lateral chain

motion and facilitates the longitudinal one. The use of slip-springs

with dissipative-particle dynamics is another proven technology, with

its range of applicability well established.[28,29,32] We will, therefore,

not review its features in detail, but only to the extent needed for the

combination with hPF-MD.

In this paper, we report, for the first time, a combination of hPF-

MD with slip-springs, and we validate the performance of the combi-

nation of the two components. Those, we regard as established

methods with their advantages and disadvantages well documented in

the literature. In particular, we first check whether the addition of

slip-springs changes any static structural properties of the hPF-MD

method, or whether they can be combined safely. This is mainly done

by comparing these results for hPF-MD simulation with and without

slip-springs. Second, we study the capability of slip-springs to restore

entangled dynamics to hPF-MD. To this end, we compare slip-spring

hPF-MD calculations with both hPF-MD (no slip-springs) and refer-

ence traditional atomistic MD simulations, as far as we are able to

afford them. An atomistic model of polyethylene (PE) is chosen as an

example to examine the effectiveness of slip-springs in reproducing

the entangled dynamics in hPF-MD simulations. Our slip-spring hPF-

MD model demonstrates good reproduction of polymer structures

compared to the reference MD simulations. Additionally, the topologi-

cal entanglements as analyzed by the Z1 method[33–35] are consistent
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with those from MD simulations and the number of entanglements

(kinks) per chain is in qualitative agreement with the chain-length

dependent number of slip-springs in the long-chain region. Entangled

behavior in translational and reorientational dynamics are character-

ized by MSDs, bond and end-to-end vector reorientational autocorre-

lation functions in multiple ways. The time scaling behavior clearly

shows that reptation motion can be restored, whereas slight accelera-

tions are found in the short-time regime in both translational and ori-

entational dynamics. This serves to demonstrate that the new slip-

spring hPF-MD combination is an alternative to traditional atomistic

MD for the study of structural and dynamical properties of polymer

systems, as it is much faster. Its well-controlled approximations main-

tain enough agreement with the reference calculation to be a

useful tool.

2 | METHODOLOGY

2.1 | Model

In our model, the dynamics of the polymer system is divided into two

parts: (1) Newtonian motion of atoms and (2) hopping movement of

slip-springs. The Newtonian motions are governed by three types of

forces: (a) bonded, (b) density-functional, and (c) slip-spring potentials.

The bonded potentials such as bond, angle, and dihedral potentials are

exactly the same as used in standard atomistic MD simulations, see

below. The nonbonded interactions are calculated using the density-

functional potential field of the hPF-MD model. For a system of dif-

ferent types of particles, the total interaction energy in the density

field is

W ρ rð Þ½ �= 1
ρ0

ð
dr

kBT
2

X
i, j

χ i,jρi rð Þρj rð Þ+ 1
2κ

X
i

ρi rð Þ−ρ0

 !2
0
@

1
A ð1Þ

where the Flory-Huggins parameter χ i,j represents the strength of the

mean field interaction between particles of type i and j, ρ0 is the aver-

age number density of the system, ρi and ρj are the number densities

of particles of type i and j in the density field, respectively, and κ is the

compressibility factor for the system. The density-functional potential

acting on individual particles is obtained from the functional derivative

of the total field interaction energy with respect to the local density

which is given by:

Ufield
i rð Þ= δW ρ rð Þ½ �

δρi rð Þ
=

1
ρ0

kBT
X
j

χ i,j rð Þρj rð Þ+ 1
κ

X
i

ρi rð Þ−ρ0

 ! !
ð2Þ

Between lattice points, the potential is numerically interpolated,

so that the nonbonded force acting on an atom at any point in this

space can be calculated. More details about the density-functional

potential and its implementation can be found in former

publications.[2,5,10–12,14,15]

A constant number of slip-springs is introduced to mimic the

binary contacts of topological constraints between entangled strands,

replacing chain noncrossability in hPF-MD simulations. As discussed

in ref. [36], monomers of a Rouse chain are confined to a tube-like

region by an effective harmonic potential formed by the neighboring

chains. In this spirit, a harmonic bonding potential is employed for

slip-springs in this work:

Ussp rð Þ= 1
2
Kssp r−r0,sspð Þ2 ð3Þ

where r is the distance between two connected atoms, Kssp is the slip-

spring force constant and r0,ssp is the equilibrium distance of the slip-

spring.

Initially, one end of each slip-spring is connected randomly to an

atom. The other connected atom is chosen nearby under the distance

criterion 1
2r0,ssp < r <2r0,ssp . Slip-springs are allowed to exist as

interchain or intrachain, representing entanglements between differ-

ent chains and self-entanglements, respectively. The movements of

these interchain and intrachain slip-springs are controlled in the same

way by a Metropolis Monte-Carlo scheme. The locations of slip-

springs on atoms are frozen during the Newtonian motion of atoms,

and they are mobile only in the intervening Monte-Carlo phases. In a

single Monte-Carlo step, each slip-spring attempts to move by one

monomer to the left or to the right along the backbone of either

polymer chains with an equal probability. The move is accepted

with probability p=min 1,e−ΔUssp=kBT
� �

, where ΔUssp is the difference

of the slip-spring energy between the trial and the old configura-

tion. For simplicity, the movements of slip-springs are completely

independent of each other, which means they can pass through

one another and one atom can host multiple slip-springs. This

implementation is different to some recently developed slip-spring

models which apply an excluded volume repulsion between slip-

springs.[30,37] It is, however, still not clear whether the excluded

volume interaction of slip-springs makes a qualitative difference on

the dynamics of polymer melts.[23,27,28,30] In the rare event that

two ends of a slip-spring are connected to the same monomer, this

slip-spring is destroyed and recreated randomly elsewhere in the

system to avoid the formation of entanglement knots. The influ-

ence of this annihilation behavior of slip-springs on the dynamics

is negligible due to the extremely rare occurrence of this event. To

model the disentanglement at chain ends and the constraint

release mechanisms, we also introduced a relocation Monte-Carlo

move: If one end of a slip-spring reaches the end of the polymer

chain, it may be destroyed and recreated at another randomly cho-

sen chain end in the system. The relocation move is accepted with

probability p=min 1,e−ΔUssp=kBT
� �

, where ΔUssp is the difference of the

slip-spring energy between the new trial slip-spring and the old one.

Under this formalism, the lateral chain motion is strongly restricted by

the interchain slip-springs, while the longitudinal motion of the chain

along the contour remains allowed.[28,29]

The time evolution of the simulation uses alternating MD and MC

blocks. The atom positions are propagated by integrating the equation
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of motion under NVT conditions over nMD timesteps using a

verlocity-Verlet[38] algorithm and a Nosé-Hoover[39] thermostat.

Between MD intervals, the configurations of slip-springs are renewed

via nMC Monte-Carlo trial moves described above. At the end of an

MC block, the Hamiltonian for the subsequent MD has thus been

altered. The simulation ends when the total simulation time

(MD steps) is reached.

2.2 | Simulations details

We employ the same united-atom model of PE[40] for performing

reference MD simulations (denoted as MD in the following), hPF-

MD simulations without slip-spring (hPF-MD), and slip-spring

hPF-MD simulations. There are several advantages to choose this

polymer model as our example. First, this study investigates struc-

tural and dynamical properties of PE melts with chain length

N (number of carbons in the backbone) ranging from C150 to C2600

covering weakly to strongly entangled regimes. As a reference, the

experimental entanglement length of PE melts is around N = 85.[41]

The study of entangled PE requires long simulation times to show

the features of entangled dynamics. The choice of united-atom

model of PE reduces the computing expense. Moreover, united

atom models of PE have been used in a large body of literature

investigating its structures, dynamics and rheology properties, and

their relation to experiment.[41–46] The force field of the united-

atom model of PE is shown in Table 1. The atoms have no partial

charges.

In the particle-field part, the lattice constant of the density grid is

chosen as 2 Å which is close to the skeletal bond length 1.53 Å and

the updating interval of density field is set to be 1 MD timestep to

guarantee enough chemical details captured. At a melt density of

�0.77 g/cm3, a grid cell contains, on average, �0.29 united atoms. As

this contribution is focused on the interplay of hPF-MD and slip-

springs, we use this rather fine grid to rule out approximation errors

due to the numerics of the grid treatment, we deliberately forgo, for

the moment, the possibility of coarser grids, which would effectively

CG the nonbonded interactions and would further speed up the calcu-

lations.[47] The Flory-Huggins parameter χ is 0 for homogeneous

polymer melts. The incompressibility factor 1/κ is chosen as 5 kJ/mol

which is similar with previous studies.[5,48] For a better description of

the structural behavior of PE melts in hPF-MD simulations, we utilize

an additional intramolecular Leonard-Jones potential for 1–5 interac-

tions (Table 1), similar to that used in Monte-Carlo simulations of sin-

gle polymer chain in melt states,[49,50] whereas carbon atoms

separated by more than four bonds only interact by the nonbonded

interactions as modeled by the field.

In our slip-spring formalism, the confinement of a polymer chain

to its tube is governed by a set of slip-spring parameters: nMD and

nMC, Kssp and r0,ssp, and Nssp. Generally, the mobility of slip-springs is

determined by nMD and nMC, and the effect in our model is similar to

the findings in the slip-spring-DPD simulation of entangled polymer

melts.[28,29] We choose nMD = 500 time steps and nMC/nMD = 1 after

testing several combinations of nMD and nMC. Recent MD simulations

suggested that the distance of binary contacts in polymer entangle-

ments is between 1
2σ and 2σ, where σ is the monomer diameter.[51]

We use a similar equilibrium distance for the slip-springs

r0,ssp = 5.28Å, which is the distance of the first peak of the inter-

monomer radial distribution function. The collective localizing

strength of the slip-springs should be strong enough to confine the

polymer chains, but any single one should not be too strong, thus Kssp

is chosen to be 300 kJ=mol≈1
5Kb . Hence, the number of slip-springs

Nssp per chain is the only variable remaining in our formalism. It is

determined from the reference MD simulations. Specifically, we first

conduct slip-spring hPF-MD simulations with varying number of slip-

springs in the system. The number of slip-springs is then determined

when the target property (MSDs in this work) of the slip-spring hPF-

MD simulations matches that of the reference MD simulations. The

resulting number of slip-springs per chain is found to be dependent

on the polymer chain length in a linear relation (see details in

Figure S2). The relation between Nssp and the related topological

entanglement statistics is discussed below.

All PE melts studied in this work are summarized in Table 2. The

initial configurations of all systems except PE (C2600) are taken from

the reference MD simulations after the density of the systems has

been converged. In the case of PE (C2600), we take the density of PE

(C1300) and equilibrate the system by a hPF-MD simulation following

TABLE 1 United-atom force field for polyethylene[40,46]

Force
field Analytical form Parameters

Bond Ubond rð Þ= 1
2Kb r−rbð Þ2 Kb = 1,463 kJ/Mol,

r0 = 1.53 Å

Angle Uangle θð Þ= 1
2Kθ θ−θ0ð Þ2 Kθ = 250.8 kJ/Mol/rad2,

θ0 = 109.5
�

Dihedral Udihedral ϕð Þ = P3
i= 0

Ci cosϕð Þi C0 = 7.26, C1 = −18.77,
C2 = 3.24, C3 = 29.21

(kJ/Mol)

Pair ULJ rð Þ=4ϵ σ
r

� �12− σ
r

� �6h i
, r < rC

σ = 4.01 Å, ϵ = 0.47 kJ/Mol,

rC = 10 Å

TABLE 2 Systems of polyethylene melts studied

N M Nssp d (Å)

150 60 9.7 64.7

200 60 11.6 71.1

250 48 13.4 70.8

300 40 15.3 70.8

350 35 17.1 71.2

520 53 23.5 93.3

1,300 25 52.5 97.6

2,600 25 100.8 97.6

Abbreviations: N, number of carbon atoms; M, number of chains in the

melts; Nssp, number of slip-springs per chain; d, size of the simulation box.
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the equilibration procedure introduced in ref. [19]. The MD time step

δt is 1 femtosecond for all simulations. All simulations are performed

in the NVT-ensemble at a temperature of 450 K, to ensure that the

polymer is in the melt state and that neither crystallization nor vitrifi-

cation occurs, using GPU-Accelerated Large-Scale Molecular Simula-

tion Toolkit (GALAMOST)[52] integrated with the in-house code of the

slip-spring model.

3 | RESULTS AND DISCUSSION

3.1 | Structural properties

3.1.1 | Statistics of polymer chains

First, we compute the mean square distance hR2(s)i between mono-

mers separated by a number of bonds s along the backbone of poly-

mer chains, as shown in Figure 1. Systems of the longest polymers

(C2600) in hPF-MD simulations with and without slip-springs reach the

same characteristic distance R sð Þ2
D E

=s≈l20C∞ =17:47�0:22 Å2, where

l0 is the skeletal bond length (1.53Å) and C∞ = 7.46 ±0.09 is the char-

acteristic ratio for the polymer with a given chemistry and tempera-

ture. As a reference, the PE characteristic ratio from experiments is

Cexp
∞ =7:5�1:7 423 Kð Þ .[53] The good overlap of the results from the

hPF-MD simulations with and without slip-springs indicates that the

conformations of the linear chain and the correlation between mono-

mers are, as expected, not affected by the introduction of slip-springs.

Compared to the MD results (C350), an excellent reproduction can be

seen for small and large numbers of bonds (s<50 and s>200) and a

slight deviation (less than 5%) for intermediate number of bonds

s which is due to the too weak short-range correlation provided by

soft potential of density fields. It is, thus, a feature introduced by the

hPF-MD approximation itself and not by the addition of slip-springs.

The probability distributions of the end-to-end distances P(Rete),

with C150 and C350 as examples, are shown in Figure 2. The coinci-

dence of the probabilities at all length scales shows the good agree-

ment of our model with the reference MD simulations on the

structures. In theory, the mean-square radius of gyration (R2
g ) and the

mean-square end-to-end distance (R2
ete ) of linear Gaussian polymer

chains in the melt are linearly related to the chain length or molar

mass, which is believed to be still valid in strongly entangled polymers.

Figure 3 shows R2
g and R2

ete for different chain lengths of hPF-MD with

and without slip-springs as well as reference MD simulations in a

double-logarithmic scale. From the fits in Figure 3, we extract scaling

exponents for R2
g and R2

ete , which are 1.01 and 1.01, respectively,

numerically equal to 1. This is in excellent agreement with the

F IGURE 1 Normalized mean square distance between monomers
of one chain as function of number of bonds s between them along
the backbone for hPF-MD (red, PE-C2600), slip-spring hPF-MD (blue,
PE-C2600), and MD (black, PE-C350) simulations. The dashed line is the
plateau value from the MD simulation [Color figure can be viewed at
wileyonlinelibrary.com]

F IGURE 2 Distribution of end-to-end distance for polyethylene
C150(circles) and C350(squares) in melts. Results from our hPF-MD
(hollow), slip-spring hPF-MD (filled), and MD (black) simulations are
compared [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 3 Dependence of radius gyration R2
g (filled, left axis) and

end-to-end distance R2
ete (hollow, right axis) on the chain length N.

Results from hPF-MD(red), slip-spring hPF-MD(blue), and MD(black)
simulations are compared. These results are compared with the
Brownian dynamics simulations of long polyethylene chain (pink
triangles[45] and gray pentagons[17]). Dashed lines are the power law
fits for the MD results [Color figure can be viewed at
wileyonlinelibrary.com]
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theoretical predictions. Furthermore, R2
g and R2

ete are separated by a

factor of 6.01 for long PE chains, which is very close to the value of

6 predicted for Gaussian chains. The MD values of both the radius of

gyration and end-to-end distance of short chains (C150, C350) are

reproduced very well by the hPF-MD simulations with and without

slip-springs. For long PE chains (C520, C1300, C2600), the configurations

of PE chains still follow the scaling law which is extrapolated from our

MD results. The good reproduction of both Rg and Rete compared with

reference MD simulations shows the validity of our slip-spring

hPF-MD simulations for structural properties, which is consistent or

even better than the original hPF-MD model.[5,48] The configurations

of polymer chains do not change with the introduction of slip-springs.

This further confirms that slip-springs do not alter the equilibrium

properties the polymers. It is worth noting that the impact of slip-

springs on the statistics of polymer chains may depend on the

incompressibility condition (κ in Eq. (2)) of our system. Specifically, if

the compressibility factor κ is large, which means that the system is

compressed more easily, the additional interactions of the slip-springs

may in principle cause contraction of the polymer chains. With the

current combination of parameters, though, this is evidently not

the case.

3.1.2 | Topological entanglement analysis

The phenomenological tube model assumes that a long polymer chain

is confined to a tube-like region and it is only allowed one-

dimensional reptational motion along it.[54,55] Numerous studies have

tried to find a microscopic definition of topological confinements or

entanglements.[35,51,56–58] One can analyze the topological entangle-

ments by means of contour-length minimization or chain-shrinking for

the polymer chains via CReTA[57] and Z1[33–35] algorithms. In brief,

these algorithms construct primitive paths (PP) by fixing the chain

ends in space and minimizing their contour-lengths without allowing

chains to cross each other. This means that the excluded volume

effect is preserved to avoid chain-crossings. The statistics of the topo-

logical constraints such as the entanglement length Ne is believed to

be closely related to dynamical analysis and rheological measurements

according to the tube model.[56] Results calculated on the same con-

figuration using CReTA and Z1 are found almost identical. As the Z1

algorithm converges faster and is more efficient for large systems,[35]

we choose it in this work to further investigate structural differences

between MD and hPF-MD simulations in terms of topological entan-

glements and the configurational effect of slip-springs in hPF-MD sim-

ulations. It is worth noting that the statistics of topological

entanglements obtained from Z1 code in hPF-MD simulations with

and without slip-springs is calculated only from single, static configu-

rations, without recourse to entangled dynamics. In theory, polymer

chains could cross each other in pure hPF-MD simulations, if we fixed

the chain ends and minimized the chain length, and the final contour

length would simply be the end-to-end distance. In the Z1 analysis,

we impose chain uncrossability, even if in the parent hPF-MD simula-

tion the chains were allowed to cross. In systems with the slip-spring

hPF-MD model, the slip-springs are interpreted as topological entan-

glements which are identical to “kinks” in Z1 code. Here, the contour

length can be calculated by summing up the distances between chain-

ends and segments connected by slip-springs.

The number of entanglements (kinks) per chain hZtopoi and the

slip-springs per chain Nssp are plotted as a function of N in Figure 4.

Both hZtopoi and Nssp are proportional to the polymer chain length in

general. The overall good agreements between MD and hPF-MD sim-

ulations are observed by the overlap between symbols of hZtopoi.
These observations indicate that hPF-MD simulations with soft non-

bonded interactions can generate configurations of entangled melt

similar to the standard MD with hard-core interactions. Furthermore,

the introduction of slip-spring does not affect the statistics of topo-

logical entanglements at all. Moreover, comparing to Monte-Carlo

simulations of PE melts by Kröger et al.,[43] who used a united-atom

model at 450 K, our simulation results are seen in good qualitative

agreement with theirs, although slightly larger. If the Nssp are multi-

plied by 0.6 (Figure 4, right axis), they coincide with the topological

entanglements hZtopoi in well-entangled PE melts. Thus, for long

enough chains, each slip-spring is comparable to 1.67 topological

entanglements (kinks) in the Z1 analysis, while in short chains

(C < 1,000), each slip-spring is comparable to fewer topological

entanglements.

The entanglement length Ne is defined through:

Ne = N−1ð Þ
R2
ete

D E
Lpph i2

ð4Þ

where the bracket indicates the ensemble average and Lpp represents

the primitive path length. This definition of Ne is denoted as classical

F IGURE 4 Dependence of the average number of topological
entanglements per chain hZtopoi (left axis) on the chain length N.
hZtopoi from our hPF-MD(red), slip-spring hPF-MD (blue), and MD
(black) as well as other simulation results (orange)[43] are compared.
Number of slip-springs per chain Nssp (right axis, green) is compared
with hZtopoi. Dashed lines are the linear fit of hZtopoi of our MD
results with slope �0.02 [Color figure can be viewed at
wileyonlinelibrary.com]
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S-coil in the Z1 code.[34,43] In Figure 5, the entanglement length Ne

from the Z1 analysis shows asymptotic behavior in all simulations. It

increases with the chain length and reaches a plateau for long chains.

Good agreement is observed between MD and hPF-MD results, indi-

cating the good reproduction of the topological entanglement, even

though the excluded volume is imposed only postsimulation at the

analysis stage (Z1 algorithm). For comparison, the entanglement

length Ne of long enough polymer chains from the hPF-MD simula-

tions with (Ne = 85.7 ± 5.9) and without slip-springs (Ne = 90.2 ± 6.2)

is found to be close to the experimental entanglement length

Ne = 85.7, the value of which was calculated from the plateau modu-

lus of ultrahigh-molecular-weight PE in the melt state at temperature

T = 463 K.[41,59] It is notable here that the entanglement length com-

puted by the Z1 code is not initially aimed to be quantitatively com-

parable to the experimental measurements due to the different

methods (definitions) used for its determinations, although the

molecular weight dependence of Ne was estimated in prior experi-

mental studies.[60,61] The slip-spring hPF-MD entanglement length

appears to be systematically shorter than the pure hPF-MD values

for the three longest chains by about 10%, thereby being in closer

agreement with the experiment. It is at present not clear whether this

fact is coincidental or whether the introduction of slip-springs

preconfigures the melt conformations to have more topological

entanglements.

3.2 | Translational dynamics

The diffusive motion of entangled polymers has been well investi-

gated by both experiments and molecular simulations.[42,62–66] In

well-entangled polymer melts of very long chains, the MSD of the

central monomers gmid
1 tð Þ should show five distinct regimes

corresponding to the different underlying relaxation mechanisms,

which are postulated by the tube model. The corresponding scaling

behaviors are

gmid
1 tð Þ≈

C0t2, t< τb
C1t1=2, τb < t< τe
C2t

1=4, τe < t< τR

C3
t1=2

N1=2
, τR < t< τd

C4
t

N2
, τd < t

8>>>>>>>>>><
>>>>>>>>>>:

ð5Þ

where C0, C1, C2, C3, and C4 are phenomenological parameters. One

can then determine the characteristic times: ballistic time τb, entangle-

ment time τe, Rouse time τR, and terminal (disentanglement) time τd

by the intersections between the power-law fits of different regimes.

PE united-atom models of C150–C350 are simulated by all methods

and longer chains (C520–C2600) are only simulated by hPF-MD simula-

tions with and without slip-springs. Within the time scale simulated,

good agreement with the theoretical predictions (Equation 5) is clearly

seen (Figure 6) for the MD simulation data and excellent reproduction

of the entangled dynamics is found for the slip-spring hPF-MD model.

The characteristic time from free Rouse motion to constrained Rouse

motion τe is shifted due to the low monomeric friction from the soft-

core particle-field potentials in the hPF-MD model.

Figure 6 generally shows three different representations of the

MSD of the central monomers of the polymer chain. The choice of

central monomers excludes the effect of chain ends, which gives bet-

ter agreements when comparing with the tube model.[66,67] Note that

no phenomenological or emprical shifting has been performed on the

curves in Figure 6. In Figure 6a, the normal MSDs from our MD and

hPF-MD simulations span around 10 orders of time which makes it

difficult to see clear characteristic behaviors and differences between

them. Figure 6b,c shows the same data but rescaled with t0.5 and t0.25

which reduces the range of the vertical axis to around 6 orders and

exposes the differences among them, allowing clearer comparisons

with the scaling predictions of the tube model. In theory, the free

Rouse motion (τb < t < τe) is seen as plateau in the representation of

gmid
1 rescaled with t0.5 (Figure 6b) and the constrained Rouse motion

(entangled dynamics, τe < t< τR) is seen as a deep depression. In

Figure 6c,d where gmid
1 is rescaled by t0.25, the constrained Rouse

motion is observed as a horizontal plateau. In the following, we mainly

focus on the rescaled representations of the MSD.

The monomer MSDs of PE with different chain lengths follow a

universal behavior in the ballistic regime (t < τb). Above τb, theoreti-

cally, the polymer segments conduct free Rouse motion (τb < t < τe).

Our MD and pure hPF-MD results reproduce this behavior

(Figure 6b), but the latter is significantly faster. The acceleration seen

in pure hPF-MD simulations is not surprising because the friction is

reduced due to the softness of the particle-field potential, consistent

with previous hPF-MD studies.[5,48] Polymer segments begin to feel

confinements from the neighboring chains at τe, which is 2 ns for MD

simulations, entering the constrained Rouse regime (τe < t < τR). Due

to the absence of entanglements, τe does not exist in pure hPF-MD

simulations. As seen in Figure 6c, no depression can be found, indicat-

ing that only free Rouse motions exist there. For slip-spring hPF-MD,

in contrast, no long and stable plateau is seen in Figure 6b, which

F IGURE 5 Dependence of entanglement length Ne computed by
the Z1 code on the chain length N. Results of Ne from hPF-MD (red),
slip-spring hPF-MD (blue) and MD (black) are compared. The dashed
line is the entanglement length for polyethylene melts from the
experiment[59] [Color figure can be viewed at wileyonlinelibrary.com]
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means that free Rouse motion is barely taking place and the con-

strained Rouse regime begins early. These well-developed constrained

Rouse motions are evident as the horizontal plateau in Figure 6c. The

coincidence of the curves of gmid
1 =t0:25 in Figure 6d demonstrates the

good agreement of MSDs beyond τe≈2 ns between the reference

MD and the slip-spring hPF-MD simulations. This is a strong indica-

tion of the effectiveness of the slip-spring model to restore entangled

dynamics to pure hPF-MD simulations. At the same time, the stable

plateaus in this representation exhibit the expected t0.25 scaling

behavior for long polymer chains. In contrast, the acceleration of hPF-

MD with respect to the reference MD simulations at short times

(τb < t< τe) is still observed after introducing slip-springs, suggesting

that the slip-springs impose constraints on the dynamics at the length

and time scales of the entire polymer chain, rather than alter the local

segmental dynamics. It should be noted here that the apparent coinci-

dence of segmental MSDs between the classic MD and the slip-spring

hPF-MD simulations are only statistical at long times in the time range

which is computationally accessible for mildly entangled polymers

(NC<C520) in this work.

The entanglement effects can also be identified through the ratios

of MSDs of the end and center of a chain gend1 =gmid
1 (Figure 7). For an

ideal well entangled linear Gaussian chain, the diffusion of the end

and central monomers is similar below the ballistic time τb, since it is

only affected by the background friction. In this stage gend1 =gmid
1 = 1 .

Upon entering the free Rouse regime (τb < t< τe), the diffusion of the

(a) (b)

(c) (d)

F IGURE 6 Mean square displacements of central monomers from hPF-MD (dot dashed lines), slip-spring hPF-MD (solid lines), and MD (black
solid lines) simulations, (a) raw data, (b) rescaled by t0.5 power law, (c) rescaled by t0.25 power law, and (d) zoom on the reptation regime. The
dashed lines are regimes postulated by the tube model for ballistic (t < τb), free Rouse motion (τb < t < τe) and constrained Rouse motion
(τe < t < τR) regimes. The vertical dotted lines are borders between two regimes, which are the characteristic time for polyethylene melts [Color
figure can be viewed at wileyonlinelibrary.com]

F IGURE 7 Ratios of the monomer mean square displacements of
chain end and center, gend1 =gmid

1 from hPF-MD (dot dashed lines) and

slip-spring hPF-MD (solid lines) simulations. The dashed line refers to
the Rouse model prediction of gend1 =gmid

1 = 2 at the intermediate time
regime [Color figure can be viewed at wileyonlinelibrary.com]
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monomers is not only influenced by the background friction, but also

by the bond connectivity of the chain. Chain end monomers are only

connected to one piece of the chain, resulting in less restriction than

for the central monomers of the chain. Thus, during this period, the

gend1 =gmid
1 curve increases with time and is expected to reach the

Rouse model value of 2 at t = τe in principle. Above t = τe, the motion

of the central monomers starts to feel the topological confinements

from the neighboring chains, while the chain ends are still free to

move to take part in the tube renewal. The gend1 =gmid
1 curve keeps

increasing and, at t = τR, it is predicted according to the tube model to

reach a maximum value. After that, the entire chain starts to move

coherently and fully diffuses around the terminal time τd. In this

regime, the gend1 =gmid
1 curve decays back to 1. For the result in

Figure 7, we take 10 monomers from chain center and the outermost

5 monomers at each chain end as our samples. The curves have been

smoothed by a spline interpolation for better visualization. The hPF-

MD simulations with and without slip-springs share the same qualita-

tive trend. Particularly, at t<10 ps, the gend1 =gmid
1 curves are well over-

lapped. However, the maximum values of pure hPF-MD simulations

do not increase much with the chain length, they seem to reach their

maxima around t≈2 ns with gend1 =gmid
1 ≈2:1 . For slip-spring hPF-MD

simulations, the gend1 =gmid
1 curves increase faster and reach their max-

ima later than for pure hPF-MD simulations. These obvious differ-

ences after introducing slip-springs confirm the ability of the slip-

springs to better confine the motion of the chain centers. Moreover,

the maximum value of gend1 =gmid
1 slip-spring hPF-MD increases with

the chain length, consistent with the previous Monte-Carlo and MD

simulations and the theoretical predictions for entangled

polymers.[62,67,68]

We also extract the maxima of the peaks in Figure 7 and plot

them together with the theoretical predictions of the tube model as

function of Ztopoh i−1
2 , as seen in Figure 8. The number of entangle-

ments per chain hZtopoi used in this plot is the one computed by the

Z1 code (see above). A value of max gend1 =gmid
1

� �
=4

ffiffiffi
2

p
is predicted

theoretically from the Evans-Edwards model for polymers with infinite

entanglements Z∞.
[68] In the pure hPF-MD simulations, the maximum

values of the gend1 =gmid
1 remain close to the Rouse prediction of 2 and

for all hZtopoi. This means that only the Rouse behavior is found and

entanglement effects are absent in the pure hPF-MD model for all

chain lengths. By introducing slip-springs into the hPF-MD model, in

contrast, the maxima clearly increase with hZtopoi, qualitatively consis-

tent with the theoretical predictions of the tube model. This shows

once more the capability of slip-springs to mimic the topological con-

straints in the hPF-MD model. There are, however, discrepancies

between the tube model predictions and the slip-spring hPF-MD,

which are probably owed to the different descriptions of the polymer

model. An ideal Gaussian chain is assumed in the tube model, while in

our simulations, an atomistic model with stronger chain rigidity is

adopted.

The diffusion coefficients have also been estimated[69,70] from lin-

ear regime of the MSD curve (t > td). According to the Rouse and tube

model, the diffusion coefficient D of a linear entangled polymer melt

system follows the scaling behavior given by:

D� N−1, N<Ne

N−2, N>Ne

(
ð6Þ

Figure 9 plots chain-length dependent diffusion coefficients. The

diffusion coefficients from the pure hPF-MD simulations (red squares)

scale approximately with N−1, which shows no signature of reptation

and is consistent with the chain-crossings allowed by the soft density-

field interactions. In contrast, for the hPF-MD simulations with slip-

springs, D scales with N−2.03 for N > Ne, indicating the recovery of

F IGURE 8 Dependence of maximum of the ratio gend1 =gmid
1 from

hPF-MD (red), slip-spring hPF-MD (blue), and MD (black) simulations
on Ztopoh i−1

2. The dashed line is the theoretical prediction of Rouse
model and the tube model [Color figure can be viewed at
wileyonlinelibrary.com]

F IGURE 9 Scaling behavior of the diffusion coefficients with
respect to the chain length. For hPF-MD simulations (red squares),
DhPF �N−1; For slip-spring hPF-MD simulations (blue circle), the
diffusion coefficients scale with N−2; The results are compared with
our MD simulations (green inverted triangle) and other MD
simulations of polyethylene melts (purple triangles,[69] orange
diamonds,[42] brown triangles,[70] and pink triangles[71]). The dashed
lines are guide lines to the eye [Color figure can be viewed at
wileyonlinelibrary.com]
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entangled dynamics. We also note that D from the slip-spring hPF-

MD simulations is very close to the atomistic MD calculations of us

and others quantitatively, the deviations of which may be attributed

to the low statistics at long times needed for calculating the diffusion

coefficients.

3.3 | Orientational dynamics

Polymer dynamics can also be measured in terms of orientational

autocorrelation functions of various intrachain vectors. In well

entangled polymers, the decay of the segmental orientational autocor-

relation functions is significantly slowed by the entanglements. These

retardations in orientational dynamics have been observed in NMR

and dielectric spectroscopy[72–77] and molecular simulations.[67,78] In

MD simulations, the normalized orientational auto-correlation func-

tions are calculated as:

ACF tð Þ= u
!

tð Þ�u! 0ð Þ
D E

ð7Þ

where u
!

tð Þ= l
!

tð Þ= l
!

tð Þ
��� ��� is the segmental unit vector with l

!
tð Þ

��� ��� being
the segment length at time t and the bracket denotes the ensemble

average. The shortest l
!

tð Þ is the backbone bond vector, which sam-

ples the local segmental dynamics. The longest is the end-to-end vec-

tor, which is only fully relaxed at the disentanglement time τd in

entangled polymers. The relaxation time of the end-to-end vector τete

is the longest single-chain relaxation time in entangled polymer melts.

In the Doi-Edwards tube model, τete is predicted to be proportional to

the third power of the chain length of entangled polymers N, while in

experiments this characteristic exponent is measured as N3.4. The

deviation is interpreted by the other two underlying relaxation mecha-

nisms: contour length fluctuation and constraint release which

accelerate the disentanglement process and have been widely

discussed.[55,79–82] Since in our slip-spring model, the implementation

naturally includes these two relaxation mechanisms besides reptation,

the molecular weight dependence of τete is expected to approach the

experimental value.

Figure 10 exhibits the next-neighbor bond orientational auto-

correlation function for various chain lengths in MD, hPF-MD and

slip-spring hPF-MD simulations. The results are averaged over

50 bond vectors in the central part of the chain. Generally, the

developments of the ACF function are similar to the translational

diffusion characteristics, which can be distinguished with several

characteristic times (τb, τe…). As seen in the figure, the curves coin-

cide in the ballistic regime (t < τb), afterward they are separated and

show different decay rates. The hPF-MD simulations with and with-

out slip-springs share the same behavior up to t ≈ 10 ps, which is

consistent with findings in the MSDs, indicating that slip-springs do

not alter the short-time segmental-orientation behavior either. After

this time, the hPF-MD simulations with and without slip-springs

deviate and the deviation increases with time. Discrepancies

between MD and both hPF-MD simulations starts above the ballis-

tic time τb ≈ 0.5 ps. Above τMD
e ≈2ns, the ACF of slip-spring hPF-MD

coincides again with that from MD simulations within the fluctuation

of the data. Overall, the transition around the characteristic times

(τb≈0.5 ps, τhPFe
~10ps and τMD

e ≈2ns ) is consistent with that of the

MSDs g1 shown above. This consistency implies that our slip-spring

model influences translational and orientational segmental dynamics

in the same way.

The other limit of single-chain relaxation time is that of the end-

to-end vector, τete, which can be estimated from the autocorrelation

function of the end-to-end unit vector ACFete (t). The autocorrelation

F IGURE 10 Bond orientational autocorrelation function
averaged over the 50 bond vectors in the central chain from hPF-MD
(hollow), slip-spring hPF-MD (filled), and MD (black) simulations of PE-
C150 and PE-C350. Dashed lines are the exponential fitting for hPF
simulations with and without slip-springs [Color figure can be viewed
at wileyonlinelibrary.com]

F IGURE 11 Results of relaxation time of end-to-end vector τete
as function of the chain length N from hPF-MD (red), slip-spring hPF-
MD (blue), and MD (black) simulations. These results are compared

with other molecular dynamics simulations (purple triangle,[83] orange
diamond,[45] brown triangle[70]), and equation of state Brownian
dynamics simulation (pink triangle[45]). The dashed lines are a guide to
the eye which are power law scaling (τete � M3.5) of entangled
dynamics observed in experiments and scaling (τete � M2.0) of
unentangled Rouse behavior [Color figure can be viewed at
wileyonlinelibrary.com]
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function is expected to show exponential decay at long times when

ACFete(t) is smaller than a certain value (i.e., 1/e). An exponential fit to

this regime

ACF tð Þ= exp −
t

τete

� �� 	
ð8Þ

yields τete as a fit parameter. As discussed above, the Rouse model

predicts τete � N2 in unentangled polymer melts. The dependence of

the relaxation time of end-to-end vectors τete on the chain length of

entangled PE chain from MD, hPF-MD simulations with and without

slip-springs is shown in Figure 11. For the hPF-MD simulations, τete is

found to follow the Rouse prediction τete � N2 for all chain lengths

examined. With addition of the slip-springs, the chain reorientational

mobility also slows down and its scales roughly as τete � N3.5 in the

limit of long chains, once more indicating the recovery of the reptation

motions by the introduction of slip-springs. In passing, we note that

the relaxation of the end-to-end vector is related to the stress relaxa-

tion in polymer melts.[78,82,84,85] Since slip-spring hPF-MD reproduces

the relaxation behavior of fully atomistic MD, it should offer a way to

obtain, in principle, rheological properties of polymer melts. This is an

interesting prospect, not yet pursued in this contribution, for

obtaining rheological properties from hPF-MD. The traditional MD

route via the Green-Kubo relation G(t) = V hσαβ(t)σαβ(0)i/kBT from the

stress fluctuation in equilibrium melts, does not work in hPD-MD

since a rigorous presciption for calculating the stress tensor compo-

nents σαβ(t) for the particle-field terms has not (yet) been worked out.

4 | CONCLUSIONS

This work shows that the combination of multi-chain slip-springs with

hybrid particle-field-MD (hPF-MD) simulations reproduces most

aspects of entangled dynamics in polymer melts at atomistic resolu-

tion. The hybrid particle-field simulation is known for its computa-

tional efficiency compared to classic MD simulations. The

combination with slip-springs inevitably requires additional computa-

tions. The calculation of slip-spring forces is in fact adds a small num-

ber of terms to the bond forces, and is thus cheap. The most

demanding part is the neighbor search in relocation step. However, it

takes place only infrequently through the whole simulation. As a con-

sequence, the speed of the hybrid particle-field simulation with slip-

springs reaches around 75% of the unmodified hPF-MD simulations

for systems composed of up to 5 × 105 particles in the current serial

implementation of slip-spring Monte-Carlo movements. The slip-

springs successfully replace the topological constraints and efficiently

offset the chain crossings inherent in hPF-MD models. Static polymer

properties are reproduced well by hPF-MD simulations with and with-

out slip-springs such as the chain conformations and primitive path

statistics. Correct static structure calculations are not necessarily

found in other single-chain or multi-chain slip-spring models.[23,86] In

addition, the detailed comparisons of the equilibrium structural prop-

erties between hPF-MD with and without slip-springs indicate that

the introduction of slip-springs alters neither the chain statistics nor

the topological entanglements, even though no additional correction

potential is utilized. This suggests that, at least for polymer melts, the

interactions from the density-field are sufficient to sustain the poly-

mer configurations, similar as for the DPD model reported ear-

lier.[28,29] This is an advantage of our slip-spring hPF-MD model over

some other slip-spring models.[23,27]

The unmodified hPF-MD ignores chain noncrossability and leads

to a polymer mobility which is not only too fast, but also qualitatively

wrong. Introducing slip-springs restores correct polymer dynamics on

almost all time scales as has been shown in the analysis of monomer

MSDs and bond orientational autocorrelation functions. These results

are rather close to reference MD calculations with full pairwise inter-

actions, especially above the entanglement time τe ≈ 2 ns. The impact

of slip-springs is similar on translational (MSDs) and reorientational

motion (bond auto-correlation functions) and scaling cross-overs

occur at the same characteristic times. Moreover, with slip-springs

present, the end-to-end relaxation time τete obeys the same power

law relation to molar mass of PE, as seen in experiments and MD sim-

ulations, whereas the end-to-end relaxation time τete of unmodified

hPF-MD follows the Rouse-law for all molar masses. The entangle-

ment effect however emerges at relatively short times in slip-spring

hPF-MD simulations and the Rouse-like regime is compressed and

hardly seen in either segmental translational or orientational charac-

terizations. Thus, slip-springs seem to alter the dynamics at intermedi-

ate time and length scales. The dynamics at this scale, however, might

be separately addressed, if needed, via modifying the equations of

motion such as employing Langevin or Lowe-Andersen dynamics. For

t < τe, the dynamics is Rouse like and the motions are governed by the

monomeric frictions in three dimensions ζ3D,
[54,55,87,88] which has also

been shown in CG polymer simulations.[89]

We seem to have found a working combination of the control

parameters of the slip-springs. Yet, the underlying physics of some

parameters such as the ratio of MD to MC steps and the number of

slip-springs used in our present formalism may need further investiga-

tions. The MD/MC ratio has been found to impact the diffusion

behavior in a similar way in a previous model proposed by our

group,[28,90] namely by altering the effective Rouse time in one dimen-

sion (reptation) τR,1D. This time is related to the one dimensional seg-

mental friction coefficient ζ1D
[88] which is different from its three-

dimensional counter part ζ3D. Furthermore, the multi-chain slip-spring

formulation and its incorporation with hPF-MD allow applications of

the present model to problems specifically where the chemical details

and intermolecular interactions have significant influences such as

kinetics in complex morphologies of multicomponent polymeric

materials[91–93] and dispersions of nanoparticles into polymer

matrices.[94,95]
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