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A categorical construction of Bachmann–Howard fixed points

Anton Freund

Abstract

Peter Aczel has given a categorical construction for fixed points of normal functors, that is,
dilators which preserve initial segments. For a general dilator X �→ TX , we cannot expect to
obtain a well-founded fixed point, as the order type of TX may always exceed the order type
of X. In the present paper, we show how to construct a Bachmann–Howard fixed point of T ,
that is, an order BH(T ) with an ‘almost’ order preserving collapse ϑ : TBH(T ) → BH(T ). Building

on previous work, we show that Π1
1-comprehension is equivalent to the assertion that BH(T ) is

well-founded for any dilator T .

1. Introduction: set existence and well-foundedness

The present paper contributes to a research program known as reverse mathematics (see [19]),
which aims to answer the following question: Which infinite sets are indispensable for the proof
of a given mathematical theorem?

To make the previous question precise, one can consider ω-models, which are defined as
collections M ⊆ P(N) of subsets of the natural numbers. For such a model, we can ask whether
it satisfies certain statements about finite objects (coded by natural numbers) and infinite
collections of such objects (represented by subsets of N). For example, the formula

∃X⊆N∀n∈N(n ∈ X ↔ ∃m∈N m + m = n)

holds in an ω-model M if, and only if, M contains the set of even numbers. More generally, we
evaluate a formula in an ω-model M by replacing all quantifiers ∃X⊆N and ∀X⊆N with ∃X∈M
and ∀X∈M, respectively (the quantifiers ∃n∈N and ∀n∈N remain unchanged).

An ω-model satisfies recursive comprehension if it contains any set that is computable relative
to some of its members. Classical results of reverse mathematics show that an ω-model of
recursive comprehension does always satisfy the intermediate value theorem, but not necessarily
the Bolzano–Weierstraß theorem (see [19, Theorems II.6.6, III.2.2]). In the following, we assume
that all ω-models satisfy recursive comprehension.

It turns out that the Bolzano–Weierstraß theorem corresponds to a stonger comprehen-
sion principle: Roughly speaking, a formula is called arithmetical if it does not involve
quantification over subsets of N (for example, the above formula is not arithmetical, due
to the quantifier ∃X⊆N, but the subformula ∃m∈N m + m = n is). An ω-model M satisfies
arithmetical comprehension if it contains any set that can be defined by an arithmetical
formula with parameters from M. Note that arithmetical comprehension implies recursive
comprehension. The classical result that we have cited above does actually show the following
stronger assertion: An ω-model satisfies the Bolzano–Weierstraß theorem if, and only if, it
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satisfies arithmetical comprehension (in fact, this holds for a more general class of models, but
ω-models are particularly intuitive). Hence, arithmatically defined sets are indispensable for
this theorem.

Our goal is to relate set existence to the notion of well-foundedness, which plays an important
role throughout mathematics. The idea is to consider transformations between well-orders,
which are known as (type-one) well-ordering principles. This approach was first realized by
Girard [10], who considered the transformation of an order X = (X,�X) into the set

ωX = {〈x0, . . . , xn−1〉 |xn−1 �X · · · �X x0}
of finite descending sequences with entries from X, ordered lexicographically (think of Cantor
normal forms). Girard has shown that an ω-model satisfies arithmetical comprehension if,
and only if, it satisfies the statement that ‘ωX is well founded for any well-order X’. Let us
point out that the order ωX from the previous paragraph is computable relative to X, so that
X ∈ M implies ωX ∈ M. In other words, the strength of the well-ordering principle lies in the
preservation of well-foundedness, not in the existence of the set ωX .

Many set existence principles have been characterized in terms of type-one well-ordering
principles (see [7] for a list of references). However, such a characterization cannot be given for
one particularly important set existence principle: An ω-model M satisfies Π1

1-comprehension
if it contains any set of the form

{n ∈ N | ∀X∈M ϕ(n,X)}, (1.1)

where ϕ is an arithmetical formula with parameters from M. The point is that any type-one
well-ordering principle can be expressed by a formula ∀X⊆N∃Y⊆N ϕ, where ϕ is arithmetical. It
is known that Π1

1-comprehension cannot be equivalent to a formula of this form.
Why is Π1

1-comprehension interesting? Firstly, Π1
1-comprehension is equivalent to important

mathematical theorems, such as the Cantor–Bendixson theorem or the result that any
countable Abelian group can be constructed as the direct sum of a divisible and a reduced
group (see [19, Theorems VI.1.6, VI.4.1]). Secondly, there is a fundamental difference between
Π1

1-comprehension and weaker principles: An ω-model

M = {M0,M1,M2, . . . }
of arithmetical comprehension can be built ‘from below’, by setting Mk+1 = {n ∈ N |ϕk(n)}
for some systematic enumeration ϕ0, ϕ1, . . . of the arithmetical formulas, where ϕk may contain
the parameters M0, . . . ,Mk. An ω-model of Π1

1-comprehension cannot be built in the same
way, since the quantifier ∀X∈M in (1.1) changes its range whenever we extend M by a set Mk+1,
so that the construction of M0, . . . ,Mk may be invalidated at this point. One can describe this
difference by saying that arithmetical comprehension is predicative, while Π1

1-comprehension
is impredicative (see [4] for a deeper discussion of these notions).

Rathjen [15, 16] and Montalbán [12, 13] have conjectured that Π1
1-comprehension can be

characterized by a type-two well-ordering principle. Such a principle should take a type-one
well-ordering principle X 	→ TX as input and yield a well-order as output. In [7] (which is based
on the author’s PhD thesis [6] and an earlier arXiv preprint [5]), we have made a significant
step towards this conjecture. The basic idea was that the output should be a certain type of
fixed-point of the input X 	→ TX .

What is the correct notion of fixed point? Let us first observe that we cannot expect to
obtain well-founded fixed points in the obvious sense: Consider the transformation

X 	→ TX = X ∪ {�}
that extends a given order X by a new maximal element �. Let X be an arbitrary well-order.
Then there is a unique ordinal α with X ∼= α. Clearly, we have TX

∼= α + 1. By the uniqueness
of α, we can conclude

TX �∼= X.
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In [7], we have formulated precise conditions under which a function

ϑ : TX → X

can be considered as ‘almost’ order preserving. If such a function exists, then X is called
a Bachmann–Howard fixed point of the transformation T . In fact, these notions are only
defined if T is a particularly uniform transformation of orders, namely a dilator in the sense of
Girard [9]. Full details of all relevant definitions will be recalled in the following section. Relying
on these notions, we can now state the main result of [7]:

Theorem 1.1. The following are equivalent over the theory ATRset
0 :

(i) The principle of Π1
1-comprehension.

(ii) The statement that every dilator has a well-founded Bachmann–Howard fixed point.

Here ATRset
0 is Simpson’s [18] set-theoretic version of arithmetical transfinite recursion (see

the following section for details). The point is that ATRset
0 is a predicative theory (in the broad

sense). In this crucial respect, the theory in the ‘background’ is simpler than the principle of
Π1

1-comprehension, which is characterized by the theorem.
So what is new in the present paper? We will present an explicit construction, which trans-

forms a given dilator T into a Bachmann–Howard fixed point BH(T ) of T (see Theorem 4.2).
More precisely, the order BH(T ) can be constructed by a primitive recursive set function, as
explained at the beginning of the following section. We will also show that BH(T ) is minimal,
in the sense that it can be embedded into any other Bachmann–Howard fixed point of T (see
Theorem 4.4). It follows that BH(T ) is well founded if, and only if, the dilator T has some
well-founded Bachmann–Howard fixed point. This improves Theorem 1.1 as follows:

Theorem 1.2. The following are equivalent over the theory ATRset
0 .

(i) The principle of Π1
1-comprehension.

(ii) The statement that the order BH(T ) is well founded for every dilator T .

The crucial point is that BH(T ) is constructed ‘from below’, that is, in a predicative way.
Hence, the impredicative principle of Π1

1-comprehension is reduced to a predicative construction
and a statement about the preservation of well-foundedness, over a predicative background
theory. Statement (ii) from Theorem 1.1 will be called the abstract Bachmann–Howard
principle, since it asserts the existence of a fixed point without constructing one. Statement (ii)
of Theorem 1.2 will be called the predicative Bachmann–Howard principle.

To conclude this introduction, we explain how to construct the Bachmann–Howard fixed
point BH(T ). Our starting point is a construction due to Aczel [1, 2]: Given an endofunctor T
on the category of linear orders, let X be the direct limit of the diagram

X0 := ∅ ι0−−−−−→ X1 := TX0

ι1:=Tι0−−−−−→ X2 := TX1 −−−→ · · · .
If T preserves direct limits, then we have TX

∼= X. Aczel has shown that X is well founded
for an important class of functors, which correspond to normal functions on the ordinals (the
crucial condition requires that the range of Tf : TX → TY is an initial segment of the order TY

whenever the range of f : X → Y is an initial segment of Y ).
The transformation X 	→ TX = X ∪ {�} that we have considered above is readily extended

into a functor (set Tf (�) = �). We have seen that TX
∼= X cannot hold for any well-

order X. Indeed, the fixed point that results from Aczel’s construction is isomorphic to
the negative integers. In order to obtain well-founded Bachmann–Howard fixed points, we
will modify Aczel’s construction as follows: Given a linear order X, one can define an order
ϑT (X) with an ‘almost’ order preserving collapse ϑX : TX → ϑT (X). In fact, the situation is
somewhat more complicated: To define the order relation on ϑT (X), we already need a function
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ιX : X → ϑT (X) between the underlying sets. After the order has been defined, we will want
ιX to be an order embedding. We will introduce a notion of (good) Bachmann–Howard system
to keep track of this requirement. Relying on this notion, we will construct a diagram of the
form

The order BH(T ) will be defined as the direct limit of the orders Xn. To establish that BH(T )
is a Bachmann–Howard fixed point of T , we will show that the functions ϑXn

: TXn
→ Xn+1

glue to an almost order preserving function ϑ : TBH(T ) → BH(T ).
Finally, let us mention that it is possible to construct Bachmann–Howard fixed points in an

even weaker setting: In [8], we show that BH(T ) can be represented by an ordinal notation
system ϑ(T ), which is computable relative to (a suitable representation of) T . The assertion
that ϑ(T ) is well founded for any dilator T will be called the computable Bachmann–Howard
principle. According to [8, Theorem 4.6], this principle is still equivalent to Π1

1-comprehension,
even over the base theory RCA0. The construction in [8] is considerably more technical than
the one in the present paper, not least because it depends on a representation of dilators in
second-order arithmetic. It is often pointed out that ordinal notation systems such as ϑ(T )
are difficult to understand from a purely syntactical standpoint. The present paper provides
a transparent semantical construction of BH(T ), which is crucial for the understanding of
Bachmann–Howard fixed points.

The author would like to point out that parts of this paper are based on Sections 2.2 and 2.4
of his PhD thesis [6].

2. Preliminaries: dilators and collapsing functions

In the present section, we give precise definitions of notions that have been mentioned in the
introduction. We will be most interested in dilators and their Bachmann–Howard fixed points.
At the end of the section, we discuss the meta theory in which the present paper is supposed
to be formalized.

Dilators are particularly uniform endofunctors on the category of linear orders, with order
embeddings as morphisms. In order to express the uniformity condition, we consider the finite
subset functor on the category of sets, which is given by

[X]<ω = ‘the set of finite subsets of X’,

[f ]<ω(a) = {f(x) |x ∈ a}.
We will also apply [·]<ω to linear orders, omitting the forgetful functor to their underlying sets.
Conversely, a subset of a linear order will often be considered as a suborder. The following
notion is essentially due to Girard [9]:

Definition 2.1. A prae-dilator consists of

(i) an endofunctor X 	→ TX of linear orders and
(ii) a natural transformation suppT : T ⇒ [·]<ω that computes supports, in the following

sense: For any linear order X and any element σ ∈ TX , we have σ ∈ rng(Tισ ), where
ισ : suppT

X(σ) ↪→ X is the inclusion.

If TX is well founded for any well-order X, then (T, suppT ) is called a dilator.
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We point out that our notion of prae-dilator is slightly different from Girard’s notion of
pre-dilator, which involves an additional monotonicity condition. The latter is automatic for
well-orders, so that the difference vanishes in the case of dilators. Also, Girard’s definition
does not involve the natural transformation suppT . Instead, it demands that T preserves
direct limits and pullbacks. It is not hard to see that the two definitions are equivalent (see
[6, Remark 2.2.2]). Nevertheless, it will be very useful to make the supports explicit.

To say when a function is ‘almost’ order preserving we need the following notation: Given a
linear order (X,<X), we define a preorder <fin

X on [X]<ω by stipulating

a <fin
X b :⇔ ‘for any s ∈ a there is a t ∈ b with s <X t’.

We will write s <fin
X b and a <fin

X t rather than {s} <fin
X b and a <fin

X {t} for singletons. The
relation �fin

X is defined in the same way. The following notion was introduced in [7], based on
the author’s PhD thesis [6] and an earlier arXiv preprint [5]. It is inspired by the definition of
the Bachmann–Howard ordinal, in particular by the variant due to Rathjen (cf. [17, Section 1]).

Definition 2.2. Consider a prae-dilator (T, suppT ) and an order X. A function

ϑ : TX → X

is called a Bachmann–Howard collapse if the following holds for all σ, τ ∈ TX :

(i) If we have σ <TX
τ and suppT

X(σ) <fin
X ϑ(τ), then we have ϑ(σ) <X ϑ(t).

(ii) We have suppT
X(σ) <fin

X ϑ(σ).

If such a function exists, then X is called a Bachmann–Howard fixed point of T .

We can now officially introduce the following principle:

Definition 2.3. The abstract Bachmann–Howard principle is the assertion that every
dilator has a well-founded Bachmann–Howard fixed point.

To give an example, we recall the functor

X 	→ TX = X ∪ {�}
that was considered in the introduction. We obtain a dilator if we set suppT

X(�) = ∅ and
suppT

X(x) = {x} for x ∈ X ⊆ TX . It is straightforward to check that the function

ϑ : Tω → ω with

{
ϑ(�) = 0,
ϑ(n) = n + 1,

is a Bachmann–Howard collapse. Conversely, if ϑ : TX → X is any Bachmann–Howard collapse,
then we can define an embedding f : ω → X by setting f(0) = ϑ(�) and f(n + 1) = ϑ(f(n)).

Let us now discuss the formalization of the previous notions: The meta theory of the present
paper is primitive recursive set theory with infinity (PRSω), as introduced by Rathjen [14]
(see also the detailed exposition in [6, Chapter 1]). This theory has a function symbol for
each primitive recursive set function in the sense of Jensen and Karp [11]. When we speak
about class-sized objects of a certain kind (for example, about arbitrary endofunctors on linear
orders), we need to observe two restrictions: Firstly, we will only consider class-sized objects
which are primitive recursive. Secondly, we cannot quantify over all primitive recursive set
functions. However, we can quantify over a primitive recursive family of class-sized functions,
by quantifying over its set-sized parameters. Statements about class-sized objects should thus
be read as schemata.

In our context, the restrictions from the previous paragraph are harmless: Girard [9] has
shown that (prae-)dilators are essentially determined by their restrictions to the category of
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natural numbers. In [8, Section 2], we deduce that any prae-dilator is naturally equivalent to one
that is given by a primitive recursive set function. Indeed we show that there is a single primitive
recursive family that comprises (isomorphic copies of) all prae-dilators. Thus, the abstract
Bachmann–Howard principle can be expressed by a single sentence in the language of PRSω.
One can even represent prae-dilators in second-order arithmetic (see again [8, Section 2]), but
this will not be relevant for the present paper.

Let us also point out what these methodological remarks mean for the construction of
Bachmann–Howard fixed points: In the introduction, we have said that the transformation
of a (prae-)dilator T into its minimal Bachmann-Howard fixed point BH(T ) can be achieved
by a primitive recursive set function. We can now be more precise about this claim: If (Tu)u∈V is
a primitive recursive family of prae-dilators, indexed by elements of the set-theoretic universe,
then the function u 	→ BH(Tu) will be primitive recursive as well.

Finally, we recall Simpson’s [18, 19] set-theoretic version ATRset
0 of arithmetical transfinite

recursion: It results from PRSω by adding axiom beta (which asserts that every well-founded
relation can be collapsed to the ∈-relation) and the axiom of countability (which asserts that
every set is countable). The additional axioms of ATRset

0 are needed for Theorem 1.2, since
they are used in the proof of Theorem 1.1, as given in [7].

3. Bachmann–Howard systems

In the introduction, we have mentioned linear orders (ϑT (X), <ϑT (X)) that allow for an ‘almost’
order preserving collapse ϑX : TX → ϑT (X). The construction of these orders proceeds in two
steps. First, we must define the underlying sets:

Definition 3.1. Consider a prae-dilator T . For each linear order X, we define ϑT (X) as
the set of terms ϑσ with σ ∈ TX .

In view of Definition 2.2, the relation ϑσ <ϑT (X) ϑτ should depend on a comparison between
suppT

X(σ) and ϑτ . This is not completely straightforward, because suppT
X(σ) is a subset of X

rather than ϑT (X). To resolve this problem, we introduce the following notion:

Definition 3.2. Consider a linear order X together with functions ιX : X → ϑT (X) and
LX : X → ω. Define LϑT (X) : ϑT (X) → ω by

LϑT (X)(ϑσ) := max{LX(x) |x ∈ suppT
X(σ)} + 1.

If we have

LϑT (X) ◦ ιX = LX ,

then the tuple (X, ιX , LX) is called a Bachmann–Howard system (for T ).

Note that one obtains LϑT (X)(ιX(x)) = LX(x) < LϑT (X)(ϑσ) for x ∈ suppT
X(σ). This allows

for the following recursion:

Definition 3.3. Let (X, ιX , LX) be a Bachmann–Howard system for the prae-dilator T .
Relying on recursion over LϑT (X)(ϑσ) + LϑT (X)(ϑτ), we stipulate that ϑσ <ϑT (X) ϑτ holds
precisely if one of the following clauses is satisfied.

(i) We have σ <TX
τ and [ιX ]<ω(suppT

X(σ)) <fin
ϑT (X) ϑτ .

(ii) We have τ <TX
σ and ϑσ �fin

ϑT (X) [ιX ]<ω(suppT
X(τ)).

Let us establish the following basic property:
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Lemma 3.4. If (X, ιX , LX) is a Bachmann–Howard system, then (ϑT (X), <ϑT (X)) is a
linear order.

Proof. The antisymmetry of <ϑT (X) follows easily from the antisymmetry of <TX
.

Trichotomy for ϑσ and ϑτ is established by induction on LϑT (X)(ϑσ) + LϑT (X)(ϑτ): By
symmetry, we may assume σ <TX

τ . For an arbitrary x ∈ suppT
X(σ), the induction hypothesis

provides ιX(x) <ϑT (X) ϑτ or ϑτ �ϑT (X) ιX(x). If the former holds for all x ∈ suppT
X(σ),

we have ϑσ < ϑτ by clause (i) of the previous definition. If we have ϑτ �ϑT (X) ιX(x) for
some x ∈ suppT

X(σ), we get ϑτ <ϑT (X) ϑσ by clause (ii). Finally, we argue by induction
on LϑT (X)(ϑρ) + LϑT (X)(ϑσ) + LϑT (X)(ϑτ) to show that ϑρ <ϑT (X) ϑσ <ϑT (X) ϑτ implies
ϑρ <ϑT (X) ϑτ . If ϑρ <ϑT (X) ϑσ and ϑσ <ϑT (X) ϑτ hold by the same clause of the previous
definition, then it is easy to conclude by induction hypothesis. Now assume that ϑρ <ϑT (X) ϑσ
holds by clause (i) while ϑσ <ϑT (X) ϑτ holds by clause (ii). This means that we have

ρ <TX
σ and [ιX ]<ω(suppT

X(ρ)) <fin
ϑT (X) ϑσ,

τ <TX
σ and ϑσ �fin

ϑT (X) [ιX ]<ω(suppT
X(τ)).

If we have ρ <TX
τ or τ <TX

ρ, then we can conclude by induction hypothesis. It remains
to exclude the case ρ = τ : By the assumption ϑσ �fin

ϑT (X) [ιX ]<ω(suppT
X(τ)), pick an element

x ∈ suppT
X(τ) = suppT

X(ρ) with ϑσ �ϑT (X) ιX(x). In view of [ιX ]<ω(suppT
X(ρ)) <fin

ϑT (X) ϑσ, we
also have ιX(x) <ϑT (X) ϑσ. The induction hypothesis allows us to conclude ιX(x) <ϑT (X) ιX(x)
by transitivity. This contradicts antisymmetry, as desired. Finally, assume that ϑρ <ϑT (X) ϑσ
holds by clause (ii) while ϑσ <ϑT (X) ϑτ holds by clause (i). This means that we have

σ <TX
ρ and ϑρ �fin

ϑT (X) [ιX ]<ω(suppT
X(σ)),

σ <TX
τ and [ιX ]<ω(suppT

X(σ)) <fin
ϑT (X) ϑτ.

The assumption ϑρ �fin
ϑT (X) [ιX ]<ω(suppT

X(σ)) yields an x ∈ suppT
X(σ) with ϑρ �ϑT (X) ιX(x).

By [ιX ]<ω(suppT
X(σ)) <fin

ϑT (X) ϑτ , we also have ιX(x) <ϑT (X) ϑτ . Using the induction hypoth-
esis, we can conclude ϑρ <ϑT (X) ϑτ , as required. �

We can now define the collapsing functions mentioned in the introduction:

Definition 3.5. Let (X, ιX , LX) be a Bachmann–Howard system for the prae-dilator T .
We define a function ϑX : TX → ϑT (X) by setting ϑX(σ) = ϑσ.

Let us recover the conditions from Definition 2.2:

Proposition 3.6. Assume that (X, ιX , LX) is a Bachmann–Howard system for the prae-
dilator T . Then the following holds for all σ, τ ∈ TX :

(i) if we have σ <TX
τ and [ιX ]<ω(suppT

X(σ)) <fin
ϑT (X) ϑX(τ), then ϑX(σ) <ϑT (X) ϑX(τ)

holds;
(ii) we have [ιX ]<ω(suppT

X(σ)) <fin
ϑT (X) ϑX(σ).

Proof. Claim (i) is immediate by the definitions. To establish claim (ii), we consider the
auxiliary function EX : ϑT (X) → [ϑT (X)]<ω with

EX(ϑσ) := {ϑσ} ∪
⋃

{EX(ιX(x)) |x ∈ suppT
X(σ)},

which is defined by recursion on LϑT (X)(ϑσ) > LϑT (X)(ιX(x)). One may think of ϑρ ∈ EX(ϑσ)
as a subterm of ϑσ: A straightforward induction on LϑT (X)(ϑσ) shows that ϑρ ∈ EX(ϑσ)
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implies EX(ϑρ) ⊆ EX(ϑσ) and LϑT (X)(ϑρ) � LϑT (X)(ϑσ). The crucial step towards claim (ii)
is the implication

ϑρ ∈ EX(ϑσ) ⇒ ϑρ �ϑT (X) ϑσ,

which we prove by induction on LϑT (X)(ϑρ) + LϑT (X)(ϑσ). Let us distinguish three cases: If
we have ρ = σ, then the claim is immediate. Now assume ρ <TX

σ. To infer ϑρ <ϑT (X) ϑσ, we
must establish [ιX ]<ω(suppT

X(ρ)) <fin
ϑT (X) ϑσ. For an arbitrary x ∈ suppT

X(ρ), we have

LϑT (X)(ιX(x)) < LϑT (X)(ϑρ) � LϑT (X)(ϑσ),

as well as

ιX(x) ∈ EX(ιX(x)) ⊆ EX(ϑρ) ⊆ EX(ϑσ).

So the induction hypothesis yields ιX(x) �ϑT (X) ϑσ. Also note that ιX(x) and ϑσ cannot be
the same term, since we have LϑT (X)(ιX(x)) < LϑT (X)(ϑσ). Thus, we get ιX(x) <ϑT (X) ϑσ, as
required. Finally, we consider the case σ <TX

ρ. By the definition of EX(ϑσ), we may pick a
y ∈ suppT

X(σ) with ϑρ ∈ EX(ιX(y)). The induction hypothesis provides ϑρ �ϑT (X) ιX(y) and
thus

ϑρ �fin
ϑT (X) [ιX ]<ω(suppT

X(σ)).

Then we can conclude ϑρ <ϑT (X) ϑσ by definition. To deduce claim (ii) of the proposition, we
observe that x ∈ suppT

X(σ) yields

ιX(x) ∈ EX(ιX(x)) ⊆ EX(ϑσ).

We have just shown that this implies ιX(x) �ϑT (X) ϑσ. Due to LϑT (X)(ιX(x)) < LϑT (X)(ϑσ),
the terms ιX(x) and ϑσ must be different. So indeed we get ιX(x) <ϑT (X) ϑσ = ϑX(σ). �

In particular, we have shown that the condition τ <TX
σ in clause (ii) of Definition 3.3

becomes redundant: The implication

ϑσ �fin
ϑT (X) [ιX ]<ω(suppT

X(τ)) ⇒ ϑσ <ϑT (X) ϑτ

follows from [ιX ]<ω(suppT
X(τ)) <fin

ϑT (X) ϑX(τ) and transitivity. To define the linear order
<ϑT (X), we have relied on a function ιX : X → ϑT (X) which respects the length assignments
LX and LϑT (X). Now that we have an order on ϑT (X) we want ιX to respect it as well:

Definition 3.7. A Bachmann–Howard system (X, ιX , LX) is called good if the function
ιX : X → ϑT (X) is an order embedding.

Note that this justifies the arrow TιX0
in the second diagram from the introduction: If ιX0

is an embedding of X0 into X1 = ϑT (X0), then TιX0
is an embedding of TX0 into TX1 . Based

on this arrow, we can also construct the arrow ιX1 : X1 → X2:

Definition 3.8. Let (X, ιX , LX) be a good Bachmann–Howard system. We define a function
ιϑT (X) : ϑT (X) → ϑT (ϑT (X)) by setting ιϑT (X)(ϑσ) := ϑTιX (σ).

Note that the empty order, together with the unique functions ι∅ : ∅ → ϑT (∅) and L∅ : ∅ → ω,
is a good Bachmann–Howard system for any prae-dilator. Once we have a starting point, we
can use the following result to construct iterations:

Theorem 3.9. Consider a prae-dilator T . If (X, ιX , LX) is a good Bachmann-Howard
system for T , then so is (ϑT (X), ιϑT (X), LϑT (X)).
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Proof. Abbreviate ϑ2
T (X) := ϑT (ϑT (X)) and consider Lϑ2

T (X) : ϑ2
T (X) → ω as constructed

in Definition 3.2. Since suppT is a natural transformation and X is a Bachmann–Howard
system, we can compute

Lϑ2
T (X)◦ιϑT (X)(ϑσ) = Lϑ2

T (X)(ϑTιX (σ)) =

= max{LϑT (X)(s) | s ∈ suppT
ϑT (X)(TιX (σ))} + 1 =

= max{LϑT (X)(s) | s ∈ [ιX ]<ω(suppT
X(σ))} + 1 =

= max{LϑT (X)(ιX(x)) |x ∈ suppT
X(σ)} + 1 =

= max{LX(x) |x ∈ suppT
X(σ)} + 1 = LϑT (X)(ϑσ).

This shows that (ϑT (X), ιϑT (X), LϑT (X)) is a Bachmann–Howard system. We can now invoke
Definition 3.3 an Lemma 3.4 to equip ϑ2

T (X) with a linear order. To show that ϑT (X) is good,
we establish the implication

s <ϑT (X) t ⇒ ιϑT (X)(s) <ϑ2
T (X) ιϑT (X)(t),

by induction on LϑT (X)(s) + LϑT (X)(t). First assume that s = ϑσ <ϑT (X) ϑτ = t holds by
clause (i) of Definition 3.3. This means that we have

σ <TX
τ and [ιX ]<ω(suppT

X(σ)) <fin
ϑT (X) t.

Clearly, we have TιX (σ) <TϑT (X) TιX (τ). To conclude

ιϑT (X)(s) = ϑTιX (σ) <ϑ2
T (X) ϑTιX (τ) = ιϑT (X)(t),

we need to establish

[ιϑT (X)]<ω(suppT
ϑT (X)(TιX (σ))) <fin

ϑ2
T (X) ιϑT (X)(t).

For any r ∈ suppT
ϑT (X)(TιX (σ)) = [ιX ]<ω(suppT

X(σ)), we have r <ϑT (X) t by assumption. The
induction hypothesis yields ιϑT (X)(r) <ϑ2

T (X) ιϑT (X)(t), as required. A similar argument applies
if s <ϑT (X) t holds by clause (ii) of Definition 3.3. �

By Definition 3.5, we obtain a collapse ϑϑT (X) : TϑT (X) → ϑT (ϑT (X)). The following shows
that the diagram from the introduction commutes:

Proposition 3.10. Assume that X and thus ϑT (X) is a good Bachmann–Howard system
for a prae-dilator T . Then we have ιϑT (X) ◦ ϑX = ϑϑT (X) ◦ TιX .

Proof. Unravelling definitions, we compute

ϑϑT (X)(TιX (σ)) = ϑTιX (σ) = ιϑT (X)(ϑσ) = ιϑT (X)(ϑX(σ)),

as promised. �

4. The minimal Bachmann–Howard fixed point

In the previous section, we have given a detailed construction of the diagram from the
introduction. The goal of this section is to investigate its direct limit. We have already observed
that the empty order ∅, together with the unique functions ι∅ : ∅ → ϑT (∅) and L∅ : ∅ → ω, is
a good Bachmann–Howard system for any prae-dilator. Together with Theorem 3.9, we can
construct the following objects:
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Definition 4.1. Consider a prae-dilator T . We build a sequence of good Bachmann–Howard
systems by setting

(X0, ιX0 , LX0) := (∅, ι∅, L∅),

(Xn+1, ιXn+1 , LXn+1) := (ϑT (Xn), ιϑT (Xn), LϑT (Xn)).

Define the order BH(T ) as the direct limit of the system (Xn, ιXn
: Xn → Xn+1)n∈ω. It comes

with embeddings jXn
: Xn → BH(T ) that satisfy jXn+1 ◦ ιXn

= jXn
.

As explained in the introduction, the present paper is supposed to be formalized in primitive
recursive set theory (PRSω). Let us briefly discuss the formalization of the above constructions
(more details can be found in [6, Sections 1.1, 1.2, 2.2]): Given a primitive recursive family
(Tu)u∈V of prae-dilators, it is straightforward to see that the transformation (u,X) 	→ ϑTu(X)
is a primitive recursive set function, and that the properties from the previous section can be
established in PRSω. Write Xu

n for the Bachmann–Howard systems from the above definition,
constructed with respect to Tu. Invoking primitive recursion along the ordinals we see that
(u, n) 	→ Xu

n is a primitive recursive set function. It follows that the transformation of u into
the underlying set of the direct limit BH(Tu) is primitive recursive as well, since the latter can
be explicitly represented by

BH(Tu) = {(n, s) | s ∈ Xu
n+1 ∧ s /∈ rng(ιXu

n
)}.

Similarly, one checks that the universal property is witnessed by a primitive recursive
transformation (see [6, Lemma 2.2.17]). In particular, we can use the universal property (in
the category of sets) to construct the limit order on BH(Tu). Thus, we finally learn that
u 	→ (BH(Tu), <BH(Tu)) is a primitive recursive set function. Let us now come to the first of
our main results:

Theorem 4.2. For each prae-dilator T , the order BH(T ) is a Bachmann–Howard fixed point
of T .

Proof. In order to construct a Bachmann–Howard collapse ϑ : TBH(T ) → BH(T ), we will
exploit the fact that TBH(T ) is a direct limit of the system

(TXn
, TιXn

: TXn
→ TXn+1)n∈ω.

Indeed, Girard’s original definition explicitly demands that (prae-)dilators preserve direct
limits. Since we have worked with a different formulation of the definition, we shall give a
short proof of this fact: Consider an arbitrary σ ∈ TBH(T ). Since the support suppT

BH(T )(σ) is
a finite subset of BH(T ), it is contained in the range of some embedding jXn

. Using clause (ii)
of Definition 2.1, we can infer that σ lies in the range of TjXn

. Thus, we have established

TBH(T ) =
⋃
n∈ω

rng(TjXn
),

which ensures that TBH(T ), together with the functions TjXn
: TXn

→ TBH(T ), is the desired
direct limit (both in the category of linear orders and in the category of sets). Relying on
Definition 3.5, let us now consider the functions

jXn+1 ◦ ϑXn
: TXn

→ BH(T ).

We can use Proposition 3.10 to compute

(jXn+2 ◦ ϑXn+1) ◦ TιXn
= jXn+2 ◦ (ϑϑT (Xn) ◦ TιXn

)

= jXn+2 ◦ (ιϑT (Xn) ◦ ϑXn
) = (jXn+2 ◦ ιXn+1) ◦ ϑXn

= jXn+1 ◦ ϑXn
.
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Now the universal property of TBH(T ) yields a function

ϑ : TBH(T ) → BH(T ) with ϑ ◦ TjXn
= jXn+1 ◦ ϑXn

.

We have to verify the conditions from Definition 2.2: Aiming at condition (i), consider elements
σ, τ ∈ TBH(T ) with

σ <TBH(T ) τ and suppT
BH(T )(σ) <fin

BH(T ) ϑ(τ).

Pick n large enough to write σ = TjXn
(σ0) and τ = TjXn

(τ0) with σ0, τ0 ∈ TXn
. Then we have

σ0 <TXn
τ0, as well as

[jXn+1 ]
<ω ◦ [ιXn

]<ω(suppT
Xn

(σ0)) = [jXn
]<ω(suppT

Xn
(σ0))

= suppT
BH(T )(TjXn

(σ0)) <fin
BH(T ) ϑ(τ) = ϑ ◦ TjXn

(τ0) = jXn+1 ◦ ϑXn
(τ0).

Since jXn+1 is an order embedding we obtain [ιXn
]<ω(suppT

Xn
(σ0)) <fin

Xn+1
ϑXn

(τ0). Now
Proposition 3.6 yields ϑXn

(σ0) <Xn+1 ϑXn
(τ0) and then

ϑ(σ) = jXn+1 ◦ ϑXn
(σ0) <BH(T ) jXn+1 ◦ ϑXn

(τ0) = ϑ(τ).

To establish condition (ii) of Definition 2.2, we again write σ = TjXn
(σ0). By Proposition 3.6,

we have [ιXn
]<ω(suppT

Xn
(σ0)) <fin

Xn+1
ϑXn

(σ0). This implies

suppT
BH(T )(σ) = suppT

BH(T )(TjXn
(σ0)) = [jXn

]<ω(suppT
Xn

(σ0))

= [jXn+1 ]
<ω ◦ [iXn

]<ω(suppT
Xn

(σ0)) <fin
BH(T ) jXn+1 ◦ ϑXn

(σ0) = ϑ ◦ TjXn
(σ0) = ϑ(σ),

just as required. �

The previous results were formulated for arbitrary prae-dilators, whether they preserve well-
foundedness or not. Restricting our attention to dilators, we obtain a more explicit version of
the Bachmann–Howard principle:

Definition 4.3. The predicative Bachmann–Howard principle is the assertion that BH(T )
is well founded for any dilator T .

The nomenclature alludes to the view that the construction of BH(T ) is predicatively
acceptable, since it is realized by a primitive recursive set function (cf. [3]). To avoid
misunderstanding, we point out that the well-foundedness of BH(T ) cannot be established
by predicative means: Indeed, we will see that the predicative Bachmann–Howard principle is
equivalent to Π1

1-comprehension. This equivalence also ensures that the predicative Bachmann–
Howard principle is sound, which is not trivial at all (in general, well-foundedness is not
preserved under direct limits). Theorem 4.2 shows that the predicative Bachmann–Howard
principle implies its abstract counterpart. The converse implication follows from the fact that
BH(T ) is the minimal Bachmann–Howard fixed point:
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Theorem 4.4. Consider a prae-dilator T . The order BH(T ) can be embedded into any
Bachmann–Howard fixed point of T .

Proof. Let Y be a Bachmann–Howard fixed point of T , witnessed by a Bachmann–Howard
collapse ϑY : TY → Y . Given a good Bachmann–Howard system (X, ιX , LX) and an embedding
hX : X → Y , we can define a function hϑ

X : ϑT (X) → Y by

hϑ
X(ϑσ) = ϑY (ThX

(σ)).

If we have

hϑ
X ◦ ιX = hX ,

then hX is called a Bachmann–Howard interpretation of X. The main step of the present proof
is to establish the following claim: If hX is a Bachmann–Howard interpretation of X, then
hϑ
X is a Bachmann-Howard interpretation of ϑT (X) (in particular it is an order embedding).

Based on this claim, we can conclude as follows: Clearly, the empty map hX0 : X0 = ∅ → Y is a
Bachmann–Howard interpretation of X0. Iteratively we can then construct Bachmann–Howard
interpretations

hXn+1 := hϑ
Xn

: Xn+1 → Y

of the orders from Definition 4.1. The definition of Bachmann–Howard interpretation ensures
hXn+1 ◦ ιXn

= hXn
. Thus, the universal property of the limit BH(T ) allows us to glue the

embeddings hXn
: Xn → Y to the desired embedding of BH(T ) into Y . In order to establish

the open claim, we consider a Bachmann–Howard interpretation hX : X → Y . The implication

s <ϑT (X) t → hϑ
X(s) <Y hϑ

X(t)

can be established by induction on LϑT (X)(s) + LϑT (X)(t). Let us first consider the case where
s = ϑσ <ϑT (X) ϑτ = t holds because of

σ <TX
τ and [ιX ]<ω(suppT

X(σ)) <fin
ϑT (X) t.

Then we get ThX
(σ) <TY

ThX
(τ). Also recall that LϑT (X)(ιX(x)) < LϑT (X)(s) holds for any

x ∈ suppT
X(σ). Thus, the definition of Bachmann–Howard interpretation and the induction

hypothesis yield

suppT
Y (ThX

(σ)) = [hX ]<ω(suppT
X(σ))

= [hϑ
X ]<ω ◦ [ιX ]<ω(suppT

X(σ)) <fin
Y = hϑ

X(t) = ϑY (ThX
(τ)).

In view of Definition 2.2, we obtain the desired inequality

hϑ
X(s) = ϑY (ThX

(σ)) <Y ϑY (ThX
(τ)) = hϑ

X(t).

Next, assume that s = ϑσ <ϑT (X) ϑτ = t holds because of τ <TX
σ (which is in fact redundant)

and s �fin
ϑT (X) [ιX ]<ω(suppT

X(τ)). Parallel to the above, we obtain

hϑ
X(s) �fin

Y suppT
Y (ThX

(τ)).

Since Definition 2.2 provides the inequality

suppT
Y (ThX

(τ)) <fin
Y ϑY (ThX

(τ)) = hϑ
X(t),
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we can infer hϑ
X(s) <Y hϑ

X(t) by transitivity. So far we have established that hϑ
X : ϑT (X) → Y

is an embedding. To conclude that it is a Bachmann–Howard interpretation, we consider the
function hϑ2

X := (hϑ
X)ϑ : ϑT (ϑT (X)) → Y and compute

hϑ2

X ◦ ιϑT (X)(ϑσ) = hϑ2

X (ϑTιX (σ)) = ϑY (Thϑ
X
◦ TιX (σ)) = ϑY (ThX

(σ)) = hϑ
X(ϑσ),

using the assumption that hX is a Bachmann–Howard interpretation. �

We can now complete the proof of Theorem 1.2, which was stated in the introduction:

Proof. In view of Theorem 1.1 (which was established in [7], based on similar results in
[5, 6]), it suffices to show that the abstract and the predicative Bachmann–Howard principle
are equivalent. To show that the former implies the latter, we assume that Y is a well-founded
Bachmann–Howard fixed point of a given dilator T . By the previous theorem, there is an order
embedding of BH(T ) into Y . This ensures that BH(T ) is well founded as well, as demanded
by the predicative Bachmann–Howard principle. For the other direction, we consider a dilator
T and assume that BH(T ) is well founded. From Theorem 4.2, we know that BH(T ) is a
Bachmann–Howard fixed point of T . Thus, BH(T ) itself serves as a witness for the abstract
Bachmann–Howard principle. �

As explained in the introduction, the point of the predicative Bachmann–Howard principle
is that it separates the construction of a Bachmann–Howard fixed point from the question
of well-foundedness. Thus, it splits the impredicative principle of Π1

1-comprehension into a
predicative construction and a statement about the preservation of well-foundedness.
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