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Abstract: This work is devoted to the influence of NaCl salt concentration on the formation and 
stability of colloidal gas aphrons (CGA) produced by the anionic surfactant sodium dodecyl sulfate 
(SDS) and zwitterionic surfactant coco amido propyl betaine (CAPB) in the presence of xanthan 
gum (XG) as a stabilizer. Dynamic surface tension measurements as well as volume and half-life 
time of the produced foams are considered for stability analysis. A sharp decrease of the half-life 
time and volume of the CGAs at NaCl concentrations larger than 20,000 ppm was observed, which 
was attributed to the precipitation of SDS in the solution. The mentioned SDS precipitation altered 
the dynamic surface tension behavior, dilational surface elasticity, and turbidity of the solution. 
The main reason for the precipitation of SDS is the increased Krafft point caused by the addition of 
salt. However, for the zwitterionic surfactant CAPB, the effects of added NaCl on the interfacial 
properties required for CGAs production was negligible due to the simultaneous effects on the 
cationic and anionic head groups in the CAPB leading to negligible changes in the net repulsion 
forces. Yet, an overall reduction in the half-life time of CGAs with increasing salt concentration, 
even when we have no precipitation, was observed for both surfactants, which could be explained 
by the reduction in the ability of XG to increase the viscosity with increasing salt concentration. 

Keywords: Colloidal gas aphrons, foam formation and stability, drilling fluid, dynamic surface 
tension, interfacial rheology, cocoamidopropyl betaine, sodium dodecyl sulfate, NaCl 

 

1. Introduction 

Colloidal gas aphrons (CGAs) were introduced by Sebba, and refer to a colloidal system of 
bubbles in the micron-range size. According to Sebba, each CGA comprises of a gas core 
encapsulated in a viscous shell formed by two layers of surfactants. The hydrophilic heads of the 
first layer are inside the shell and the tails are in the core. The second layer has heads in the shell 
while the tails are oriented outward. There is also a third layer of surfactant which is called the 
compatibility layer and has tails inward and heads in the aqueous medium [1,2]. CGAs have been 
frequently used as drilling fluid for depleted fractured formations. Their ability to survive longer at 
higher pressures in comparison to regular foams as well as easy production and easy handling have 
made them a suitable choice for drilling engineering [3–11]. From the review article [10], it can be 
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seen that many papers have studied the effect of different parameters, including stirring time and 
speed, surfactant and polymer type, and concentration, etc., on the formation, stability, and 
performance of CGAs. However, the influence of salts has not been sufficiently investigated. This is 
while the presence of salts significantly changes both the surface activity of ionic surfactants [12] and 
rheological properties of polymers [13–15]. In addition, many water sources used for making CGAs 
contain various amounts of salts and specifically during offshore drilling when using sea water, the 
salinity level may be even higher than 30,000 ppm. 

Let us mention a few works published in this framework. Longe evaluated the effect of added 
200 ppm NaCl to the solution of 0.5 g/l NaDBS for a CGA production and observed that the presence 
of NaCl lowers the minimum and maximum bubble size [16]. He argued that, in the presence of 
electrolyte, one of the ions is adsorbed at the surface along with the surfactant and increases the 
effective concentration of the ionic surfactant. Kommalapati et al. [17] also changed the salinity of a 
CGA system from 0 to 400 ppm and observed that the increased salt concentration enhances the 
stability. Save et al. [18] evaluated CGAs made by 0.85 mM of Cetyl Trimethyl Ammonium Chloride 
surfactant in the presence of 10,000, 40,000 and 80,000 ppm of NaCl and observed that the added salt 
increased the volume of CGAs but the value of half-life time was reduced. The half-life time 
describes the time needed for half of the liquid content of CGA solution to drain down and be 
collected at the bottom of the vessel. It should be noted that their work was in the category of water 
purification systems and their stability was of the order of 100–300 s, which is much lower than the 
needed stability for the cases of CGAs as drilling fluid. They concluded that the addition of salt 
compresses the electrical double layer leading to the reduction of their mutual repulsion and finally 
decreasing the thickness of the liquid films and the stability of the foam. They related the observed 
increase in the CGA volume to the reduction in CMC which increases foamability. Almost the same 
results were obtained by Juregi et al. who examined the stability of CGAs made by anionic 
surfactant sodium bis-(2-ethyl hexyl) sulfosuccinate) at NaCl concentrations of 0, 0.07, and 0.14 mM 
and observed that the stability of CGAs decreases with increasing salt concentration [19]. The 
authors stated that increasing salt concentration suppresses the repulsive electrostatic interactions 
between bubbles leading to less stability. Chaphalkar et al. also reported that adding 200 ppm of 
NaCl to the solution increases the volume of CGAs for the ionic surfactants used [20]. 

Despite the mentioned works on the influence of salts on CGA properties, none of these works 
have considered the presence of polymer although it is frequently used as viscosifier in CGA based 
drilling fluids. It also affects the surface behavior of surfactants [21] and enhances the stability of 
produced CGA systems [10,22]. Moreover, the reported salinities are mostly in the low range and the 
given results cannot be used for regular saline water systems. 

The formation and stability of the CGAs mostly depend on the surface behavior of the 
surfactant in the solution which is strongly affected by the presence of salt. Therefore, in this work, 
we performed a systematic study to understand the main influences of added salt on the surfactant 
behavior and justify the changes of the volume and half-life time of CGAs. We specifically deal with 
the influence of NaCl salt on the performance of the anionic SDS and the zwitterionic CAPB 
surfactants for generating CGAs. This is done by studying the dynamic surface tension behavior of 
aqueous solutions of these surfactants in presence of XG as viscosifier and salt concentrations up to 
40,000 ppm as well as performing tests for calculating the volume and half-life time of CGAs. It 
should be noted that both SDS and CAPB surfactants are utilized in the CGA formation and are 
proven to produce CGAs with good stability [22]. 

2. Experimental Setup and Procedure 

The drop profile analysis Tensiometer (PAT) [23] manufactured by SINTERFACE Technologies, 
Germany, was employed for dynamic surface tension measurements. For performing each 
experiment, a drop was formed in a closed cuvette and the surface tension was recorded versus time 
by keeping the drop size constant until 600 s. Then, the drop surface area oscillation experiments 
with frequencies of 0.02, 0.05 and 0.08 Hz were performed. We also used the ODBA capillary 
pressure based apparatus (oscillating drop and bubble analyzer tensiometry) produced by 
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SINTERFACE Technologies, Germany) for the fast dynamic surface tension measurements in 
time-scales lower than 1 s. The capillary pressure method uses the pressure difference between 
inside and outside of the drop/bubble as well as the radius of curvature, to calculate the surface 
tension. The high-accuracy pressure sensor of the device is able to measure the pressure with a 
resolution of 1 Pascal and is sufficiently sensitive to record the pressure changes in the drop/bubble 
in the range of milliseconds during fast adsorption of the surfactants at interface [24]. 

For producing CGAs, a specific amount of polymer was dissolved in water using a disperser 
(IKA T25), then pre-weighted amounts of surfactant and salt were added consecutively to the fluid 
and were gently mixed until a homogeneous mixture was achieved. 200 mL of the prepared solution 
was poured into a 500 mL beaker, placed under the disperser and CGAs were generated at a specific 
stirring time and speed. When CGAs were produced, they were immediately poured in a 500 mL 
graduated cylinder and the total volume was recorded. Afterwards, the height of the clear liquid 
gathered at the bottom of the graduated cylinder was recorded versus time and the half-life time of 
the CGA was determined as the time needed to collect 100 mL of liquid at the bottom of the cylinder. 

XG was purchased from Sigma Aldrich, SDS was provided from AppliChem and CAPB was 
provided from Behdash Chemical Co., Iran. The CAPB surfactant came as a 30 wt.% solution in 
water. NaCl was also purchased from Mojallali Chemical Co., Iran. All the experiments were 
performed at constant temperature of 20 °C using deionized water. 

3. Results and Discussion 

3.1. Influence of NaCl on SDS made CGAs 

SDS is a frequently used surfactant for making CGAs [10,25]. But its anionic nature is a reason 
to be affected by the presence of ions in the system. Figure 1 depicts volume and half-life time of 
CGAs made by aqueous solutions of 16.6 mM (2 CMC) SDS and 0.1 wt.% XG for different NaCl 
concentrations. Two trends are seen in the figure. Below 10,000 ppm NaCl, an approximately constant 
value for the CGA volume could be observed while the half-life time decreases slightly. However, both 
CGA volume and half-life time diminish for NaCl concentrations above 10,000 ppm with a steep slope. 

 
Figure 1. Volume and half-life time for CGAs made by 0.1 wt.% XG and 16.6 mM SDS vs. NaCl 
concentration. 

Both the stability and volume of CGAs depend on the solution surface properties. In that 
regard, dynamic surface tension measurements were carried out for different NaCl concentrations 
using PAT experimental setup. Moreover, to have a better resolution on the dynamic surface tension 
at short times, which is an important parameter for foam formation as result of bubble formation in 
sub-seconds, ODBA capillary pressure based method was used for fast dynamic measurements [24]. 
According to Figure 2, a fast dynamic surface tension behavior is detected for 0, 5000, and 10,000 
ppm of NaCl, while an overall reduction in the surface tension could be observed with increasing 
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the salt concentration. This reduction is due to the decreased repulsion between the surfactant head 
groups which leads also to a reduction of the CMC of the ionic surfactants and an increase in surface 
activity [26]. But, for 20,000 ppm NaCl, although the equilibrium surface tension is further reduced, 
the dynamic surface behavior has changed and a further increase of surface tension at concentrations 
of 30,000 and 40,000 ppm indicates that a precipitation of SDS has occurred in the solution. The fast 
dynamic results in Figure 2-left also support this argument as the surface tension starts at a higher 
value for 20,000 ppm than 10,000 ppm which reveals the lower concentration of surfactants in the 
20,000 ppm case. The turbidity changes of the solutions as shown in Figure 3 and surface elasticity 
increments for concentrations larger than 20,000 ppm as depicted in supplementary information 
confirm this statement as well. 

 
Figure 2. Dynamic surface tension of aqueous solutions of 0.1 wt.% XG, 16.6 mM SDS and various 
concentrations of NaCl. The left picture shows the fast dynamic tensions measured by ODBA 
capillary pressure based setup and the right picture shows the PAT results. 
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Figure 3. Aqueous solutions of 0.1 wt.% XG, 16.6 mM SDS and various concentrations of NaCl. 
At lower concentrations than CMC, the solubility of SDS is controlled by the solubility product 

of sodium and dodecyl sulfate ions as well as the non-idealities induced by the presence of other 
ions [27,28]. But the behavior is much different above the CMC and large concentrations of SDS can 
be dissolved in water by micelle formation [29–31]. In this regard, The Krafft point plays an 
important role in the solubility as well since surfactant micelles can be formed above this 
temperature. Below the Krafft temperature, the individually dispersed surfactants are in equilibrium 
with the hydrated solid surfactants while above, hydrated solid surfactants melt and micelles also 
participate in the equilibrium [32]. Iyota and Krastev measured the surface tension of aqueous 
SDS-NaCl solution for different concentrations of NaCl at constant SDS mole fraction and observed 
a reduction of surface tension followed by an increase upon the NaCl concentration increment [33]. 
At the point of reversal of the surface tension trend, the solution became turbid as a sign of SDS 
precipitation. According to their work, ionic surfactants are salted out at high salt concentrations 
and hydrated crystalline particles are formed in solution. This is in accordance with the increment of 
the SDS Krafft temperature by addition of NaCl as reported by others [32,34–36]. For instance, 
Chundru observed that changing the NaCl concentration from 0 to 0.02 M at a constant SDS 
concentration of 0.1 M, increases the Krafft temperature from 15.7 to 17.5 °C [34]. Shinoda et al. also 
reported that the Krafft temperature of SDS increases significantly by the addition of NaNO3 [32]. In 
another work, Nakayama and Shinoda measured an increase in the Krafft point followed by a 
reduction in the solubility of SDS by adding salt [35]. Sharker also observed that the SDS Krafft 
temperature increases with the addition of NaCl, CsCl, and KCl while it decreases when LiCl is 
added [36]. This is because the type of the counterion is determinative in Krafft point changes and 
the Krafft point lowers in the presence of strongly hydrated ions such as Li+ [32]. 

As a result, when the Krafft point increases to above the solution temperature, surfactant 
micelles break down and hydrated solid surfactants are formed as precipitates. Consequently, the 
surfactant concentration in the medium diminishes and a slower dynamic of adsorption (reduction 
of surface tension versus time) is observed. This phenomenon could be observed in Figure 2 for 
concentrations of 20,000-40,000 ppm of NaCl. It should be noted that NaCl does not precipitate in 
our experiments since according to the literature at the temperature of 20 °C, an amount around 
260,000 ppm of NaCl is soluble in water [37] which is much more than the NaCl content for our case 
studies. 

Despite the mentioned points about the solubility changes by addition of single salts, it should 
be noted that when miscellaneous ions such as Ca2+and Mg2+ are present in the solution, the problem 
becomes more complex [27]. 

As discussed above, the SDS precipitation is responsible for a lower stability in region 2, as 
depicted in Figure 1. However, this is not the case in region 1 in which no precipitation occurs. The 
little decrease in the half-life time in region 1 is due to viscosity reduction of the XG solution in 
presence of ions that directly influences the CGAs stability [22]. XG is an anionic polymer in which 
the viscosity is created as the result of repulsion forces between different molecules. The presence of 
an ionic field weakens this repulsion force leading to a lower viscosity of the solution, which affects 
the stability of the system. Different studies have illustrated the influence of ions on the rheological 
properties of XG solutions [13–15]. 

3.2. Influence of NaCl on CAPB made CGAs 

CAPB is a zwitterionic surfactant having both anionic and cationic charges at medium and high 
pH levels [38,39]. Figure 4 depicts the dynamic surface tension behavior of aqueous 10 mM CAPB in 
presence of 0.1 wt.% XG and various NaCl concentrations. No considerable dependency on the NaCl 
concentration can be observed. All measured equilibrium surface tension values are between 
28.5-29.5 mN/m. This observation, which is in contrast to the results for SDS, originates from the 
surfactant’s nature. According to Rosen, the effect of electrolytes on the surface behavior and CMC is 
larger for anionic and cationic rather than zwitterionic surfactants [31]. The strong dependency of 
the surface behavior of anionic and cationic surfactants on the ionic strength is because the 
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electrostatic repulsion forces between the ionic head groups is weakened in the presence of 
counterions and surfactant molecules can get closer to each other at the interface. However, for 
zwitterionic surfactants, both electrostatic repulsion and attraction forces are present and a balance 
among them is responsible for the arrangement of surfactant molecules in micelles and at surfaces. 
In this case, the electric field generated by ions weakens both the repulsion and attraction forces 
leading to little alteration in the balance, so that the surface activity is not considerably influenced by 
added salt. In this regard, Kamenka et al. have also reported very little variations in the micellar 
aggregation number upon the addition of electrolyte for betaine type zwitterionic surfactants [40]. 

 
Figure 4. Dynamic surface tension of aqueous solutions of 0.1 wt.% XG, 10 mM CAPB and various 
concentrations of NaCl. 

Since CAPB is not influenced by the presence of high amounts of ions, its ability to produce 
CGAs is not damaged. Figure 5 shows the values of CGA volume and half-life time for aqueous 
solutions of 0.1 wt.% XG, 10 mM CAPB and different NaCl concentrations. A little decrease in the 
stability is observed by increasing NaCl concentration which, as stated previously, is the result of 
weakened ability of XG to build up viscosity of the solution. It should be noted that this decrease in 
stability could be compensated for by adding more XG to the solution. However, for the case of SDS, 
the precipitation at high salinities makes it impossible to utilize this surfactant in offshore drillings 
where large concentrations of different ions are present. 

 
Figure 5. Volume and half-life time for CGAs made by 0.1 wt.% XG and 10mM CAPB vs. NaCl 
concentrations. 
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4. Conclusions 

The influence of NaCl on formation and stability of CGAs made by the anionic SDS and 
zwitterionic CAPB surfactants in the presence of XG was investigated and the following conclusions 
can be drawn: 

• A significant reduction in the half-life time of produced CGAs by SDS was observed for 
NaCl concentrations above 20,000 ppm which can be attributed to the precipitation of SDS in 
the solution. 

• Increasing the Krafft temperature of SDS solutions by the addition of NaCl was the reason 
for SDS precipitation in solution. 

• Fast dynamic surface tension measurements using bubble pressure tensiometry supported 
this observation, i.e., lower effective surfactant concentration due to the precipitation 
process. 

• NaCl did not have considerable influence the surface behavior of the zwitterionic surfactant 
CAPB and its ability for CGAs production was not reduced. This is because of the presence 
of both cationic and anionic head groups at the surfactant inducing both attraction and 
repulsion forces. In this case, the presence of salt simultaneously weakens both attraction 
and repulsion forces leading to negligible changes in the net forces. 

• NaCl decreased the overall ability of XG to build up the viscosity, leading to a considerable 
decrease in the half-life time of CGAs for both surfactants. 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Figure S1: 
Surface elasticity values of aqueous solutions of 0.1 wt.% XG, 16.6 mM SDS for various 
concentrations of NaCl at a fixed frequency of 0.05 Hz.  
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