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Abstract
Cycle-to-cycle variations in an optically accessible four-stroke direct injection spark-ignition gasoline engine are investi-
gated using high-speed scanning particle image velocimetry and in-cylinder pressure measurements. Particle image veloci-
metry allows to measure in-cylinder flow fields at high spatial and temporal resolution. Binary classifiers are used to
predict combustion cycles of high indicated mean effective pressure based on in-cylinder flow features and engineered
tumble features obtained during the intake and the compression stroke. Basic in-cylinder flow features of the mid-
cylinder plane are sufficient to predict combustion cycles of high indicated mean effective pressure as early as 180 degree
crank angle before the top dead center at 0 degree crank angle. Engineered characteristic tumble features derived from
the flow field are not superior to the basic flow features. The results are independent of the tested machine learning
method (multilayer perceptron and boosted decision trees) and robust to hyper-parameter selection.
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Introduction

Optimizing combustion engines is an important field of
ongoing research to increase the degree of efficiency
and to reduce emissions. Cycle-to-cycle variations
(CCVs) of in-cylinder flows result in significant varia-
tions of mixture distribution and lead to overall reduc-
tion in combustion performance1–3 and increased
emissions.

Experimentally, CCVs can be investigated on the
basis of time resolved data from a few measurement
locations. A single pressure sensor is commonly used,
mapping the complex spatio-temporal system to a sin-
gle temporal thermodynamic variable. Time-series
data of CCVs have been analyzed statistically4–6 or
with wavelets.7 Next-cycle predictions in homogeneous
charge compression ignition (HCCI) engines are possi-
ble based on online adaptive extreme learning
machines.8–10

Optically accessible engines allow investigations of
in-cylinder processes based on spatial and time resolved
data.11–14 High-speed particle image velocimetry (PIV)
extracts flow dynamics in cross-sections of the

combustion chamber.11 Different cross-section planes
can be investigated sequentially to extract the flow in
the whole volume.15,16 These spatio-temporal data have
been investigated using engineered features,17–19 condi-
tional statistics,19,20 or proper orthogonal decomposi-
tion.21–23 Graftieaux et al.17 engineered a tumble
feature from the flow field. Tracking the tumble trajec-
tory over time has been successfully applied to visua-
lize, understand, and optimize the flow in combustion
engines late in the compression stroke.20 Standard sta-
tistical tools turned out to be not suitable for
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investigating rare CCV events20 but require new analy-
sis methods.

Few studies have explored the potential of machine
learning (ML) methods to the spatio-temporal combus-
tion process. Flame images were investigated to detect
combustion instabilities in gas turbine engine.24,25

While Sarkar et al.25 applied deep-belief networks in
combination with symbolic time-series analysis,
Akintayo et al.24 used convolutional autoencoders. Jha
et al.26 investigated combustion flame dynamics in a
swirl-stabilized combustor using a combination of con-
volutional neural network and Gaussian processes.

Published ML approaches to understand and pre-
dict CCVs in internal combustion (IC) engines are
rare. Multivariate statistical analysis and in particular
linear regression have been employed to investigate
relevant features and predict the point in time of 10%
mass fraction burned and the indicated mean effective
pressure (IMEP) value.27 Truffin et al.28 used correla-
tion analysis and linear multivariate regression to
investigate the impact of flow-field and fuel distribu-
tion of a spark-ignition (SI) engine on CCVs.
Recently, Kodavasal et al.29 studied CCVs in a gaso-
line SI engine using random forest. They found that
features from the flow fields before ignition and flame
shapes can be used for peak cylinder pressure (PCP)
classification. Both latter studies are based on large
eddy simulation (LES) data.

In this study, we use spatio-temporal resolved PIV
data from an optically accessible single-cylinder pro-
duction-type direct injection spark-ignition (DISI) gas-
oline engine (Mercedes-Benz M254). Three different
ML methods are applied to predict high IMEP cycles
from the in-cylinder flow fields.

Methods

Flow-field measurements using time resolved multi-
plane high-speed scanning PIV

The data for this study are chosen from two slightly
different variants of a multi-plane (either n=3 or 5
planes) PIV experiment of an optically accessible
engine operated under identical conditions. The experi-
mental setup of the scanning PIV technique is described
in more detail in Bode et al.30 An overview of the
experimental setup is depicted in Figure 1.

A summary highlighting experimental setup, optical
engine and its operating point as well as the basic princi-
ples and parameters necessary to understand the ML
task, preprocessing, and training is given in the following.

Optically accessible engine

All measurements are carried out at an optically acces-
sible single-cylinder DISI engine. Its four-valve pent-

(a) (b)

Figure 1. Optical engine for high-speed scanning PIV recordings. (a) The optical engine: Intake (I) and exhaust (E) valves are
illustrated. The optical window has a height of 35 mm and is located below the cylinder head. Laser beams are directed from the
bottom through an optical transparent piston. The imaged area is indicated by dark petrol blue color. (b) Top view of the burning
chamber and orientation of measurement planes. The camera records both planes. Shown is the setup for the high-speed scanning
PIV with laser, mirrors (M), beam trap (BT), lenses (L1 and L2), and the acousto-optical deflector (AOD). Bottom panel: Time in
units of degree crank angle (�CA), relative to the top dead center (TDC) at 0 �CA (first injection (dotted line); ignition (solid line
and arrow)). The combustion volume is optically accessible without vertical restriction during 70 �CA around TDC (deep red area).
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roof cylinder head is equipped with a piezo-actuated
pintle-type injector (Bosch HDEV 4.1), which is cen-
trally mounted, and a spark plug located between the
exhaust valves. In the investigated stratified-lean oper-
ating point with a resulting global air/fuel equivalence
ratio of 2.9, the fuel (Gasoline E10) is injected with
200bar late in the compression stroke into the burning
chamber. Oil and coolant water temperature are kept
constantly at 50 �C and 80 �C, respectively. The engine
geometry and the parameters of the stratified-lean
operating point are summarized in Table 1.

Optical access to the combustion chamber of the
engine is given by two pent-roof windows in the cylin-
der head, a quartz glass cylinder with a height of 35mm
below the cylinder head, and a piston window within a
Bowditch piston arrangement (Figure 1(a)). Note that
the optical access is restricted to these windows and
hence does not cover the whole combustion chamber.
The vertical restriction is 35mm in its total height of
92mm. The whole vertical combustion volume is only
optically accessible during 70 degree crank angle (�CA)
around top dead center (TDC), that is, the early intake
and the late compression stroke (time period marked in
Figure 1, bottom). Horizontally, the optical access is
restricted to the area illuminated by the laser light
sheet. Its outer border is given by the crank angle
(CA)–dependent refraction from the piston window.
The observed horizontal plane size is decreasing with
increasing distance from the mid-cylinder plane. The
optical access is illustrated in Figure 1(a).

Experimental setup

A high-speed scanning PIV technique is established to
measure the in-cylinder flow field quasi-simultaneously
in multiple parallel planes (Figure 1(b)). Therefore, a
dual-cavity frequency-doubled Nd:YVO4 laser
(Edgewave IS100, 532nm, 1.1mJ/pulse) is operated at
9 kHz. The laser beam is guided to an acousto-optical

deflector (AOD) scanning system (AA Opto-
Electronix). The AOD scanning system is adapted to
engine measurements from Li et al.31 It consisted
mainly of a 1-axis deflector (AA Opto-Electronix,
DTSX-400, TeO2 crystal), in which an acoustic wave
propagates. The angle of the deflected beam depends
on the oscillation frequency in the AOD crystal. The
number of frequency steps defines the number of image
planes. Maximum separation distance of planes used in
this experiment is from one mid-intake valve plane to
the other.

The undeflected light (zero-order deflection angle) is
guided into a beam dump. After a certain distance,
the deflected beams reach the required distance and are
parallelized with separate mirrors. The light sheet is
formed with the convex cylindrical lens L1
(f=1000mm) and the concave cylindrical lens L2
(f=–50mm). The beams are then mirrored through
the glass piston into the cylinder with a resulting thick-
ness at full width half maximum of 0.5mm.

To visualize the in-cylinder flow, silicone oil droplets
with a mean diameter of 0.5mm are seeded into the
intake plenum upstream of the intake port providing a
homogeneous seeding density. The droplet-scattered
light is recorded with a 12-bit CMOS camera (Vision
Research Phantom v1610, 28mm pixel size, 768 3 624
active pixel). The camera operates at 9 kHz in double
frame mode. The camera, the laser, and the AOD
scanning system are synchronized with the engine at
2000 rpm via a high-speed controller and the image
recording software DaVis 8.3.1 (LaVision).

PIV data for this study are taken from two different
experiments recorded in chunks of 90 or 91 consecutive
cycles. Operational parameters of the engine (Table 1)
and operation conditions are consistent. The experi-
ments had the purpose to capture the three-dimensional
characteristics of the in-cylinder flow. PIV measure-
ments are done sequentially in n=3 or 5 planes. The
central plane (z=0mm, below the spark and injector)
and the mid-intake valve plane (z=–18mm) are illumi-
nated and imaged in every experiment and are com-
bined to get a consistent data set with a sufficient high
number of flow fields. With the engine speed set to
2000 rpm every 1.33 �CA, a double frame image is
recorded. Since the n planes are sequentially recorded,
this results in a flow-field measurement every 4 �CA
(three planes) and 6.66 �CA (five planes) for images of
the same plane (intra-plane time difference, Dtip).

In addition, for each combustion cycle, the in-
cylinder pressure trace is recorded with a commercial
indicating system (AVL IndiCom), which provides cyc-
lic resolved characteristic thermodynamic values, for
example, IMEP.

Flow-field calculation

The PIV processing is conducted with the commercial
software DaVis 8.3.1 (LaVision), and the same proce-
dure is used for all planes due to comparable velocity

Table 1. Optical engine specifications and operational
parameters.

Engine parameter Value

Bore 83 mm
Stroke 92 mm
Compression ratio 10.5
Engine speed 2000 rpm
IMEP (mean 6 SD) 3.05 6 0.13 bar
Intake manifold pressure 985 mbar
Intake valve opening (3 mm valve lift) –322 �CA
Intake valve closing (3 mm valve lift) –140 �CA
Triple injection

SOI1, t1 –36.25 �CA, 213 ms
SOI2, t2 –29.50 �CA, 130 ms
SOI3, t3 –24.25 �CA, 114 ms

Time of ignition –26 �CA

IMEP: indicated mean effective pressure; SD: standard deviation; �CA:

degree crank angle; SOI: start of injection.
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magnitudes. Image preprocessing is carried out to
improve raw image quality. First, to eliminate reflec-
tions, a time filter is used for each CA degree, and sec-
ond, to improve the contrast, an 8 3 8 pixel sliding
Gaussian background subtraction and a local intensity
normalization (5 3 5 pixel) are performed. For vector
calculation, cross-correlation with an adaptive decreas-
ing interrogation-window size and multi-pass iteration
from 64 3 64 to 24 3 24 pixel with an overlap of 75%,
are used. This results in an interrogation-area size of
2.5mm for the mid-valve plane at z=–18 mm and
2.6mm for the central plane (z=0mm). Post-process-
ing of the evaluated vector fields is done to remove
inaccurate vectors. They are identified by neighbor
comparison of the median and replaced by vector
choices of higher order. Finally, local noise in the order
of the spatial resolution is reduced with a 3 3 3 top-
hat filter. The extracted vector fields are flow fields (i.e.
velocity fields).

The flow fields and the thermodynamic data are
then imported and combined to a common database
with MATLAB (MathWorks). For standardization, all
flow fields are transferred to the same grid with a vec-
tor spacing of 0.5mm via linear interpolation. The
resulting flow fields have dimensions 167 3 95
(x : ½�41:5, 41:5� mm; y : ½�35, 12� mm) and are the
basis for the investigation described in the following.
Exemplary flow fields from a single combustion cycle
are presented in Figure 2. Flow fields from the central
plane (z=0mm; Figure 2, top) and mid-valve plane
(z=–18mm; Figure 2, bottom) are shown. During the
intake stroke (Figure 2, left), the tumble is not fully
developed yet. Later in the compression stroke (Figure
2, right), the tumble flow is clearly visible in both
planes. In this exemplary cycle, an out-of-center tumble

position leads to an upward directed flow under the
spark plug. This flow configuration influences the fuel
spray, mixture formation, and hence combustion effi-
ciency in a different way than a centered tumble posi-
tion. The occurrence of different tumble center
positions at the same operating point may result in high
CCVs of IMEP values. Detailed flow-field analysis of
this operation point can be found in Bode et al.30

ML approach

Supervised ML methods train a model with a set of
input (feature) and a corresponding set of output (label)
values. The set of input and output values provided
during training is called the training set. Appropriately,
trained models generalize if they predict the correct out-
put for given input values not used during training. A
set of input and output values not used during training
but to test the performance of the model is called the
test set. ML methods can be used for classification,
where labels are categorical. In case of only two classes
(categories), the problem is called binary classification
task.

A binary classification task is formulated to predict
good/high IMEP combustion cycles and identify
important feature pattern (Figure 3(a)). Therefore, the
set of all IMEP values is median split into two classes.
One class represents the high/good and the second class
contains the low/poor IMEP combustion cycles. In
each PIV experiment, at least 46 (Dtip=6:66 8CA) time
points between –312 �CA and –8 �CA are recorded. A
reference time sequence with Dtip =6:66 8CA for all
experiments is set. Experiments with Dtip=4 8CA are
down-sampled and experiments with Dtip =6:66 8CA
are mapped; the experimental point in time closest

(a) (b)

(c) (d)

(e)

(f)

Figure 2. Exemplary flow fields of a single combustion cycle from PIV measurements; (a) mid-cylinder plane (z= 0 mm) at – 268 �CA
(intake stroke), (b) mid-cylinder plane (z= 0 mm) at –48 �CA (compression stroke), (c) mid-valve plane (z=–18mm) at –269.33 �CA (intake
stroke), (d) mid-valve plane (z= –18 mm) at –49.33 �CA (compression stroke). Every fifth vector in each direction is shown. Velocity
magnitude is color-coded (deep red= no data). Contours of cylinder head, spark plug, intake valve (a, c), and piston are given (b, d) for
orientation. (e) IMEP values of individual cycles. Median value indicated by horizontal line (petrol blue). (f) Histogram of IMEP values. Median
split into low (petrol blue) and high (deep red) IMEP values.
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to the reference time point is always selected without
flow-field interpolation. Three different data sets D1,
D2, and D3 are generated (Table 2). Data set
D1 includes plane z=0mm only, D2 planes z=0mm
and z=–18mm, and D3 plane z=–18mm only. All data
sets consist of ø 25,024 unique frames and 544 combus-
tion cycles (sample size) with the corresponding 544
IMEP values (labels). For each time window, the selected
data set is split into training (90%) and test (10%) sets.

Multilayer perceptrons (MLPs) and boosted deci-
sion trees (AdaBoost32 and Gradient Boost) are trained
on the training set and tested on the test set. The ML

methods and parameter sets used are summarized in
Table 3. A brief introduction to the ML methods,
model details, and a rigorous performance analysis is
given in Appendix.

Decision-tree methods allow direct feature importance
calculation, for example, using the Gini importance.
Heuristic methods33,34 or, for example, methods based on
relevance propagation35 to extract feature importance from
neural networks exist but are not utilized in this study.

Python is used throughout the study with MLP,
AdaBoost, and Gradient Boost implementations in
Scikit-learn36 v. 0.19. Calculations are performed on i7-

(a) (b)

Figure 3. Feature extraction and model overview. (a) Whether a combustion cycle results in a high/good (0) or low/poor (1) IMEP
value is predicted by a binary classifier. For each time point t, a feature vector is generated. Time-range models: Feature vectors of
consecutive time points are combined (sliding window, window size = ws). (b) Velocity features are calculated in nine spatial sections
(numbers, checkerboard regions). Exemplary flow field at t = –136 �CA and plane z = 0 mm.

Table 2. Data set parameters.

Name D1 D2 D3

Planes (mm) z = 0 z = 0, –18 z = –18
Features per time frame 134 268 134
Unique frames 25,024 50,048 25,024
Combustion cycles (sample size) 544 544 544
IMEP values (labels) 544 544 544
Time resolution 6.66 �CA 6.66 �CA 6.66 �CA

IMEP: indicated mean effective pressure; �CA: degree crank angle.

Table 3. Machine learning methods and parameters.

Model Method Parameter Preprocessing

M1 MLP hls = f50, 20g, a = 1e� 2, bs = 50, nmax = 20, bos = 100 nPCA = 10, vt = 0:05
M2 AdaBoost ne = 10, lr = 0:6, bos = 100 nfr
M3 GBoost ne = 4, lr = 0:5, bos = 100 vt = 0:05
M4 MLP hls = f100, 50g, a = 1e� 5, bs = 200, nmax = 100, bos = 100 nfr
M5 AdaBoost ne = 10, lr = 0:2, bos = 100 nfr
MGx , Gy

AdaBoost Same as M5 Two input features
M�vglobal, x, y

AdaBoost Same as M5 Two input features
Mv AdaBoost Same as M5 Features subset
MG AdaBoost Same as M5 Features subset
M6 MLP hls = f50, 20g, a = 3, bs = 50, nmax = 20, bos = 100 nPCA = 10, vt = 0:05

MLP: multilayer perceptron; hls: hidden layer sizes; a: L2 penalty (regularization); bs: batch size; nmax : maximum number of optimization steps; bos:

times bootstrapping; nPCA: number of PCA components; vt: variance threshold; ne: number of estimators; lr: learning rate; nfr: no feature reduction;

PCA: principal components analysis.
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6800K or i76820HQ (Intel) multi-core processors. Data
plots are generated with Matplotlib37 v. 2.0.0 and post-
processed with Inkscape v. 0.92.3.

Feature extraction

As described in the previous section, supervised ML
methods generate an ML model given a set of input fea-
ture values and corresponding output labels. Features
have to be chosen or engineered for the given problem.
Which input features to select is of crucial importance
because it influences model performance to a large
degree. Supervised ML methods (e.g. deep neural net-
works (DNNs)) which do not need feature engineering
exist and are discussed in the ‘‘Discussion’’ section.

For each image plane, 134 distinct features are
extracted for each time point (Table 4). Features of dif-
ferent planes are concatenated for each reference time
point in plane order z=0, –18mm. For example, for
data set D2 (compare Table 2), planes z=0mm and
z=–18mm are input to the classifier; the first 134 fea-
tures are from plane z=0mm and features 135 to 268
are from plane z=–18mm.

The first 44 features (tumble features) are derived
from the engineered in-plane tumble flow.17 This char-
acterization is called tumble criteria in the following.
For each position xi in the flow field, its gamma value
is given by

G ið Þ= 1

N

XN

j=1

sin gij

� �
ð1Þ

where gij is the angle between the vector rij= xj � xi
and the flow vector uj at xj for all elements j (i.e. posi-
tions) in the flow field. The highest absolute gamma
value is defined as tumble center. For each image plane,
the following features are extracted. The x position and
y position of the tumble center denote by Gx and Gy

(features 0 and 1), the tumble value distribution sG of
this frame binned into 40 bins (si, features 2–41), and
the values of the highest absolute tumble Gmax derived
from the histogram or the formula value (feature 42
or 43, respectively). The tumble center trajectory dur-
ing the compression stroke after –150 �CA has been
successfully applied to engine performance analysis.20

During this time period, tumble flow with a single
clear tumble center is observed in the central plane
(Figure 2(b)) and the mid-valve plane (Figure 2(d)).
During the intake stroke, the flow is less structured
and multiple vortex centers can exist as the tumble is
not fully developed yet. Although the tumble center
position (features 0 and 1) is only meaningful with a
developed and observable tumble, it is computed also
in the intake stroke to get a consistent feature map
that allows feature importance to be compared over
time.

Table 4. List of features.

ID(s) Name Region

0 Tumble center x: (Gx) Global
1 Tumble center y: (Gy) Global
2–41a Tumble distribution (sG), histogram (40 bins) Global
42 Tumble histogram max value Global
43 Tumble center value (Gmax) Global
44 vx max Global
45 vx min Global
46 vx mean Global
47 vy max Global
48 vy min Global
49b vy mean Global
50 jvj max Global
51 jvj min Global
52 jvj mean Global
53–55c vx (max/min/mean) Section 1
56–58 vy (max/min/mean) Section 1
59–61 jvj(max/min/mean) Section 1
62–70 vx , vy , jvj: (max/min/mean) Section 2
71–79 vx , vy , jvj: (max/min/mean) Section 3
80–88 vx , vy , jvj: (max/min/mean) Section 4
89–97 vx , vy , jvj: (max/min/mean) Section 5
98–106 vx , vy , jvj: (max/min/mean) Section 6
107–115 vx , vy , jvj: (max/min/mean) Section 7
116–124 vx , vy , jvj: (max/min/mean) Section 8
125–133 vx , vy , jvj: (max/min/mean) Section 9

asG also written as si , with i 2 f1, . . . , 40g.
bGlobal mean vy also written as �vglobal, y .
cvx (max/min/mean) to abbreviate vx max, vx min, vx mean.
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The remaining features (IDs 44–133, basic flow fea-
tures) are directly derived from the flow field.
Velocity magnitudes during the compression stroke
after –150 �CA have been successfully correlated to
IMEP values before.15,20 The flow field is divided into
nine sections (compare Figure 3(b)). For the total area
and in each section, the minimum, maximum, and
mean value of the velocity in x-direction, y-direction,
and Euclidean vector norm are evaluated.

More than one reference time point must be evalu-
ated to investigate derivatives with respect to time (e.g.
gas acceleration). To cover this, a sliding window
approach is used. All features at all reference time
points within the sliding window of window size ws are
combined (Figure 3(a)). Models with ws=1 are called
(single) time-point models while models with ws. 1 are
called time-range models in the following. Time-range
models have a second parameter (non-overlap, set to 1
throughout this study) defining how the sliding win-
dows overlap. All feature values are mean subtracted
and normalized to one standard deviation (SD). To
reduce the number of features in a subset of the MLP,
AdaBoost and Gradient Boost model features of low
variance (threshold=0.05) are neglected and/or princi-
pal components analysis38,39 (PCA) is used for dimen-
sionality reduction (10, 25 components). For PCA, the
data are orthogonally transformed, and the axes of the
new basis set are called principal components. The pro-
jection is chosen such that the principal components
are orthogonal and explain the variance of the data in
decreasing order. Technically, the eigenvalue decompo-
sition of the data covariance matrix is carried out, and
the eigenvectors of the highest n eigenvalues are used as
principal components. A dimension reduction is
achieved by choosing n smaller than the data dimen-
sion. Preprocessing information for each model is given
in Table 3.

Results

The flow fields A to D in Figure 2 are instantaneous
representations of the in-cylinder flow (A and B, mid-
cylinder plane; C and D, mid-valve plane). The flow
fields in both planes are characterized by strong spatial
fluctuations and high velocity magnitudes during the
intake stroke (A and C). In the mid-valve plane (C), the
intake flow on the right-hand side of the intake valve
should be noted since this feature mainly forms the
large-scale tumble vortex. The tumble is clearly appar-
ent during compression (B and D). The spatial fluctua-
tions are considerably reduced, while the position of the
tumble center is shifted toward the right side of the
cylinder. This yields an upward directed flow feature in
the middle of the cylinder above the piston. But, regard-
ing the complete entity of cycles, the flow and especially
the tumble center is distributed from a centered position
to the shown one. These different realizations of indi-
vidual flow field lead to different flow–spray

interactions, fuel distributions, and combustion efficien-
cies.30 Figure 2(e) shows the IMEP over all measured
cycles. The high fluctuations of the IMEP highlight the
CCV of the engine combustion performance. The fluc-
tuations are summarized in a histogram (Figure 2(f)).
With a median split, the cycles are separated to good
cycles (50% highest IMEP, red) and poor cycles (50%
lowest IMEP, blue).

Binary classifiers (MLP and boosted decision trees)
are trained to distinguish good/high from poor/low
IMEP combustion cycles (Figure 3(a)). A single time-
point classifier is trained for each time point
(Dt=6:66 8CA) during the intake and compression
stroke of the combustion cycle.

Classification of high IMEP cycles is possible during
late intake and compression stroke

To evaluate the classifier performance, the accuracy of
the MLP model (M1, Table 3) is estimated on training
and test sets (D2, Table 2). The result is shown in
Figure 4(a). For time points in the compression stroke
(–180 �CA to –8 �CA), the classifier can clearly identify
good/high IMEP combustion cycles above chance level.
The mean accuracy value is always more than 1 SD
above chance level. For time points in the late intake
stroke (–200 �CA to –180 �CA), the mean model accu-
racy is above chance level but within the 1 SD range. A
strong decrease in model accuracy after –36 �CA, the
time of first injection, is observed. After the time of first
injection and the following flame kernel growth, the
quality of the PIV measurement decreases due to tracer
particle loss. For earlier time points in the intake stroke
(–301 �CA to –200 �CA), the mean accuracy is at chance
level. Also the training accuracy is lower for this phase.
The obtained accuracy at each time point is indepen-
dent of the classifier method. MLP (M1), AdaBoost
(M2), and Gradient Boost classifier (M3) results are
indistinguishable (Figure 4(b)). Receiver operating
characteristic (ROC) analysis and F1 scores are given in
Appendix.

The central plane is important for classification
accuracy

To investigate the contributions of different combus-
tion chamber (image) planes to model accuracies
(Figure 5(a)), three different data sets (Table 2) are
investigated with the same MLP classifier (M4). The
first data set (D1) contains the central plane
(z=0mm), the second (D2) the central plane
(z=0mm) and the mid-valve plane (z=–18mm), and
the third (D3) only the mid-valve plane (z=–18mm).
The results of data sets containing the central plane
(z=0mm) do not differ much. For the data set con-
taining only the mid-valve plane, the accuracy is lower
in the compression stroke. For values before –180 �CA,
all three models produce indistinguishable results. For
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the compression stroke, features of the central plane
are important for the classifier and just little additional
information is contained in the mid-valve plane
features.

This is in good agreement with correlation map
analyses of Stiehl et al.19 and Bode et al.15 and a condi-
tional statistical analysis of Krüger et al.20 where the
flow field in the central tumble plane prior to ignition
had the highest relevance for the IMEP CCV. These
authors showed in detail that the CCVs were due to
flow-spray interactions during stratified operation
where the flow in the central plane is directly pointing
toward the spray. However, Bode et al.15 and Krüger
et al.20 showed that CCVs of the tumble flow in the
mid-cylinder plane are initially caused by cross flows
from the mid-valve plane into the mid-cylinder plane.
Thus, the flow in the mid-valve plane is still highly rele-
vant for the entire chain of cause and effect.

Only little gain of time-range models

The features of consecutive time steps can be combined
using a sliding window of window size ws. 1. These
time-range models can potentially use derivatives of the
flow field (accelerations). We use the same MLP classi-
fier as above (M4) but vary the window size (Figure
5(b)). Only for large window sizes (ws=5, that is, time
window=33.3 �CA), a small increase in accuracy close
to the ignition time is observed. Similar results are
observed for a data set with smaller intra-plane time
difference (Dtip =4 8CA) but smaller (272 samples)
sampling size (data not shown).

Time-range models only show minor improvements
compared to single time-point models. First, the num-
ber of features increases in time-range models because
feature sets for each time step are combined. It becomes
harder to train a classifier with the same number of
samples but with more features, and the model becomes

prone to overfitting.40 Engineering a small (sub-)set of
features or native feature reduction like PCA might be
used. Second, the intra-plane time difference has to be
sufficiently small. CCV has been described as non-
linear41 and stochastic.42 Chaotic behavior has also
been reported.43–48 Nonlinear systems can be linearly
approximated in the limit of infinite small time differ-
ences. Chaotic behavior is characterized by its sensitiv-
ity to initial conditions. Two neighboring trajectories in
phase space separate exponentially in time. A suffi-
ciently small time difference in the order of one over
the largest Lyapunov exponent has to be chosen for
approximation.49

Multiple discrete planes are imaged sequentially with
PIV in this study. This results in a larger intra-plane
time difference. Our results indicate that in future,
experimental PIV recordings to study combustion
energy variations should be recorded with smaller
intra-plane time difference. This data set could then be
used for investigating time-range models.

Basic flow features more important than tumble
features

Feature importance can be extracted from decision-tree
classifier models. In the following, an AdaBoost classi-
fier (M5) is trained on the data set D2 containing
planes z=0mm and z=–18mm (Figure 6(a)). The
feature importance of each feature and time point is
shown in Figure 6(b). Nearly all features of high impor-
tance are from the mid-cylinder (z=0mm) plane,
reflecting the results shown in Figure 5(a). The topmost
features (0–43) are derived from the tumble criteria in
plane z=0mm. They do not show high importance
(Figure 6(b) and (c)). Note that neither Gx nor Gy are
selected by the classifier. In contrast, the basic flow-
derived velocity features in z=0mm are of high impor-
tance and show a pattern during the compression

(a) (b)

Figure 4. Model accuracy. (a) Accuracy (mean 6 SD) on the training set (dotted line, deep red color) and the test set (solid line,
deep red color) of the MLP classifier (M1). Chance level indicated by black line at accuracy of 0.5. First injection vertical dotted line;
ignition vertical solid line. (b) Comparison of different classifier. MLP (M1, deep red color), AdaBoost (M2, petrol blue color), and
GBoost (M3, gray color). Accuracy (mean) on the test set (solid line). Chance level, first injection, and ignition time are illustrated as
in panel (a). All models trained on planes z = 0 mm and z = –18mm (D2).
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stroke (Figure 6(b), (d), and (e)). Especially, �vglobal, x
(feature 46, mean velocity in x-direction of total plane)
and �vglobal, y (feature 49) are important (Figure 6(d)). To
evaluate the importance pattern, the mean importance
of the features belonging to the same spatial area (sec-
tion) is averaged (Figure 6(e)) and a clear pattern
emerges. At the beginning of the compression stroke
(roughly –170 �CA), features in the first section are
important. Nearly at the same time but during a longer
time period (roughly –160 �CA until –68 �CA), second
section features are important. Next (roughly –140 �CA
until –120 �CA and –74 �CA until –24 �CA) features in
the fifth and finally (after –30 �CA) in seventh and
eighth sections are important. The evolution of spatio–
temporal flow importance is visualized by arrows in the
upper panel of Figure 6(e).

It has been reported that flow near the spark plug is
most important for the CCV prediction.15,20 This is
consistent with our result where the spark plug region
(region 5) in the central plane after around –44 �CA
has been identified to be important for IMEP predic-
tion. We further show that in the compression stroke,
the averaged velocities are better suited for classifying
high IMEP combustion cycles than features derived
from the tumble criteria. This raises the questions of
whether the tumble trajectory can be approximated
with the averaged velocities and how these features cor-
relate. Conditioned statistics on averaged velocity tra-
jectories for best and worst IMEP subsets have been
investigated before20 but could be refined given the
results presented in this study. These investigations
could reveal why the averaged velocities are good pre-
dictive features. In combination with computational
fluid dynamics (CFD) simulations, this insight could be
used to optimize the overall engine performance.

The influence of two important features on the
model accuracy is investigated (Figure 7(a)). The two

input features Gx and Gy are used to train an AdaBoost
classifier (MGx,Gy

) on data set D1. MGx,Gy
only reaches

chance level before roughly –150 �CA. For later time
points, this model is able to fairly classify and is nearly
1 SD below the reference model trained on all 134 fea-
tures. A second model M�vglobal,x, y is trained with the two
features �vglobal, x and �vglobal, y (features 46 and 49) only.
M�vglobal,x, y is not able to classify above chance level for
time points in the intake stroke. In the early time period
of the compression stroke (–180 �CA until –100 �CA),
classification becomes feasible with lower accuracy as
the reference model. However, for the late compression
stroke . –100 �CA, the two feature classifier M�vglobal, x, y

is nearly as accurate as the reference classifier trained
on all features.

To disentangle the influence of either tumble derived
features or basic flow features, two AdaBoost classifiers
on either all tumble features only (MG) or all velocity
features only (Mv) are generated (Figure 7(b)). Both are
not able to classify in the intake stroke above chance
level. In the compression stroke, the accuracy of Mv is
higher than the accuracy of MG. This observation is
consistent with the result reported above that the velo-
city features are more important than engineered tum-
ble features. The feature importance of MG for each
time point is shown in Figure 7(c). The tumble position
(Gx, Gy) is important in the entire compression stroke.
The s1 feature is only important at the end of the intake
stroke (–200 �CA to –180 �CA). The low tumble distri-
bution features (s2, . . . ,s18) are not used. These fea-
tures only show small variations (below 0.05 SD) and
are usually neglected if a feature preselection would
have been done. Higher tumble distribution features
(s19, . . . ,s40) are used with an unclear temporal pat-
tern. Even though si are calculated globally, they sum-
marize localized velocity structures. Note that Gmax (the
maximum value of tumble, features 42 and 43) is not

(a) (b)

Figure 5. Plane dependence and time-range models. (a) Comparison of models using different plane information (data sets D1,
D2, and D3). Accuracy (mean 6 SD; test set) of MLP classification model (M4) trained on plane z = 0 mm (D1), planes z = 0 mm and
z = –18 mm (D2), or on plane z = –18 mm (D3). Chance level indicated by black horizontal line. First injection vertical dotted line;
ignition vertical solid line. (b) Comparing different time-range models. Accuracy (mean 6 SD; test set) of MLP classifier (M4) with a
sliding window size (ws) of 1 (identical to panel (a), time window = 6.66 �CA), ws = 2 (time window = 13.3 �CA), and ws = 5 (time
window = 33.3 �CA). All models trained on planes z = 0 mm and z = –18 mm (D2).
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valued as important by the classifier. The feature impor-
tance of Mv (Figure 7(d)) is similar to the feature impor-
tance of the reference model on all features (Figure 6(b)).
The features �vglobal, x and �vglobal, y have high importance,
and a clear spatio-temporal pattern is observable in the
compression stroke.

The complete combustion chamber volume is not
optically accessible at all times. Only the area illumi-
nated by the laser light sheet can be imaged (horizontal
restriction) and does not always reach the cylinder wall
depending on the �CA (Figure 2). The light sheet has
maximum width in the center plane and is narrower in
the mid-valve planes due to reflection caused by the pis-
ton bowl shape. In addition, only the topmost 35mm
of the burning chamber are observed, while the cylinder
is 92mm in height (vertical restriction). In the time
period after –290 �CA and before –70 �CA, parts of the
combustion volume are not visible and CFD simula-
tions reveal that the tumble center can be below the
optical window.50 This might explain why the tumble
criteria derived features are not as powerful as the

raw flow-field data during this time period. However,
the tumble assumable generates correlated pattern in
the upper part of the cylinder which are sufficient for
the ML model. Such patterns have been described
before30 but are difficult to analyze manually.

Discussion

To our knowledge, this study is the first to have suc-
cessfully applied ML approaches to the in-cylinder pro-
cesses during the intake and compression stroke. We
show that an ML approach using a binary classifier is
able to identify high IMEP combustion cycles in each
time point of the compression stroke above chance
level. The spatial flow-field information or features
derived from the tumble criteria17 are sufficient.

To characterize the tumble flow, Graftieaux et al.17

engineered a tumble feature (G). We verified in this
study that a binary classifier with input features (Gx, Gy)
is capable to classify high IMEP combustion cycles in
the compression stroke. It is, however, remarkable that

(a)

(c)

(d)

(e)(b)

Figure 6. Feature importance for each time point. (a) Accuracy (mean 6 SD) of the AdaBoost classifier (M5) on the test set
(solid line, deep red color) and the training set (dotted line, black color). Chance level indicated by black horizontal line. Time of
first injection (black vertical dotted line) and ignition (black vertical solid line). (b) Feature importance (color) for each feature
and time point. Features 0 to 133 belong to plane z = 0 mm and features 134 to 268 to plane z = –18 mm. Features 0 to 2 and 44
to 52 are highlighted by deep red boxes (zoom is additionally presented in panels (c) and (d), respectively). (c) Tumble features
(0 = Gx , 1 = Gy , 2 = s1) of the central plane (z = 0). (d) Global velocity features (46 =�vglobal, x , 49 =�vglobal, y) of the central plane
(z = 0). (e) Section averaged velocity feature importance (lower panel) of the central plane (z = 0). Velocity features are calculated
in nine spatial sections (upper panel: numbers; 0 = global). Arrows (white) illustrate the change of region importance with time.
Exemplary flow field at –44 �CA. Panels (b), (c), and (d) share the same color bar (of panel (b)). Colors of panel (e) are linearly
scaled.
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the boosted decision-tree classifiers value the flow-field
information higher and gain more accuracy than the
models with this engineered tumble feature even during
the compression stroke. Several other engineered fea-
tures are widely used to characterize the combustion
process, but their rigorous testing is beyond the scope
of this study. It seems reasonable to argue that non-
invertible engineered functions discard information that
an ML approach could exploit. More generally, human
interpretable features derived from the vector field
might be less powerful than using the vector field infor-
mation directly in an ML approach. Indeed, advances
in visual object recognition have shown that human
engineered approaches are inferior to direct sensor
input to neural networks.51

MLPs and boosted decision trees are used in this
study for the binary classification task. Both methods
produce qualitatively and quantitatively similar results,
but their relative performance is not studied in detail.
Other methods like logistic regression, Bayesian net-
works, support vector machines,52 or random forest29

could be applied. Ensemble ML methods53 combining
several ML models could also be used. Recently, Moiz
et al.54 employed an ensemble ML method for engine
design optimization. A rigorous comparison of these

methods is beyond the scope of this study but could be
performed based on a data set of large sample size. It
should also be noted that the presented results should
be verified with larger sample sizes in the future. Any
data analysis relies on reproducible data, that is, data
recorded or modeled with invariant parameters and
conditions. ML methods for classification and cluster-
ing are notably vulnerable to inconsistent training sets
because their objective is to separate the feature space
into subregions. We deliberately restrict ourselves to
minimal feature engineering. Spatial flow-field informa-
tion alone is sufficient. However, sophisticated feature
engineering could be based on vector field feature
extraction55 or segmentation techniques.56–58

Kodavasal et al.29 used a random forest method to
classify PCP of parallel LES. The authors used 10 fea-
tures derived from the flame topology at 2 �CA and the
average local velocity in x-, y-, and z-directions in the
vicinity of the spark location at –10 �CA. They showed
that a random forest classifier is able to predict high
combustion cycles based on these features. A random
forest with only two features (average local velocities in
x- and z-directions at –10 �CA) proves to be able to pre-
dict high PCP similarly well. The latter result is consis-
tent with our findings that the local average flow-field

(a) (b)

(c) (d)

Figure 7. Models with different feature subsets. (a) Without spatial information: Accuracy (mean 6 SD; test set) of AdaBoost
classifiers with only two input features. M�vglobal, x, y

(features 46 and 49, black color) and MGx , Gy
(features 0 and 1, petrol blue color).

Reference AdaBoost classifier (M5) with all features (deep red color). Time-point models on data set D1. Chance level (black
horizontal line), time of first injection (black vertical dotted line), and ignition (black vertical solid line). (b) With spatial information:
Accuracy (mean 6 SD; test set) of the AdaBoost classifier (parameter as in (a)) with either all velocity dependent features (Mv,
features 44–133, black color) or all tumble derived features (MG, features 0–43, petrol blue color). (c) Feature importance (color
values) for each tumble derived feature and time point for MG. (d) Feature importance (color values) for each velocity derived feature
and time point for model Mv. Panels (c) and (d) share the same color bar. Panels (b) to (d) group together as indicated by legends.
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features are sufficient to predict combustion cycles of
high/low IMEP in the late compression stroke.

Instead of deploying a binary classifier, a multi-class
classifier or a regression approach might reveal results
that are more finely graded. A regression approach
could uncover how individual features and their inter-
action determine the IMEP value at each point in time
during the combustion cycle. DNNs allow multi-class
classification and regression without feature engineer-
ing. The features are learned by the DNN.59,60 This
could help to identify high-level features which are not
hand crafted. These approaches require large sample
sizes with consistent engine parameters. It will be
insightful to test these approaches in the future on
larger data sets.

Conclusion

We show that ML approaches can be successfully
applied to analyze flow-field data of an IC engine with
minimal feature engineering. Classification of high
IMEP cycles is possible within the compression stroke
as early as –180 �CA before TDC.

Our study is based on high spatial and temporal
resolved in-cylinder flow-field PIV measurements.
Experimental data with sufficient high statistics are
derived from an optically accessible single-cylinder ver-
sion of a commercially available DISI gasoline engine
(Mercedes-Benz M254). This allows a direct utilization
of the results to future engine design.

The results are robust to classifier method and
hyper-parameter settings. MLP and boosted decision-
tree classifiers yield quantitatively and qualitatively
indistinguishable results. In contrast to previous anal-
ysis focusing on correlation analysis or multivariate
linear regression, our classifiers are potentially non-
linear. This might be the reason why predictions are
possible already for time points in the early compres-
sion stroke.

It turns out that the central plane is important for
classification accuracy in the compression stroke and
only little gain is achieved by using off-center plane
information or time-range models. Flow-field features
provide more information than the engineered features
from the tumble criteria. Hence, ML approaches
require less engineering expertise and minimal prepro-
cessing. Only two features (either gamma center (Gx,
Gy) or mean global velocity vectors (�vglobal, x, �vglobal, y))
are sufficient to classify in the compression stroke.

Our study highlights how ML approaches can be
successfully applied to investigate in-cylinder flow fields
and predict combustion cycles of high IMEP in com-
bustion engines. ML allows us to test well-proven engi-
neered features and reveal flow-field feature importance.
Important features can be further analyzed in detail. The
insights gained into relevant flow-field features can be used
for systematic engine design optimization.

Acknowledgements

The authors would like to thank Alruna Veith for her
support in an early phase of the project. A.H. would
like to thank David Headley for proofreading the
manuscript.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest
with respect to the research, authorship, and/or publi-
cation of this article.

Funding

The author(s) received no financial support for the
research, authorship, and/or publication of this article.

ORCID iD

Steven Peters https://orcid.org/0000-0003-3131-1664

References

1. Hu Z. Non-linear instabilities of combustion processes

and cycle-to-cycle variations in spark-ignition engines.

SAE technical paper 961197, 1996.
2. Lyon D. Knock and cyclic dispersion in a spark ignition

engine. In: Proceedings of the international conference on

petroleum based fuels and automotive applications, Lon-

don, 25–26 November 1986. London: Engineering Insti-

tution of Mechanical Engineers by Mechanical

Publications.
3. Young MB. Cyclic dispersion in the homogeneous-

charge spark-ignition engine—a literature survey. SAE

technical paper 810020, 1981.
4. Litak G, Kamiński T, Rusinek R, Czarnigowski J and

Wendeker M. Patterns in the combustion process in a

spark ignition engine. Chaos Soliton Fract 2008; 35(3):

578–585.
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Appendix

Multilayer perceptrons (MLPs) and boosted decision
trees are used for binary classification. In the following,
a brief introduction to these methods is given. MLPs
are feed-forward networks of artificial neurons (units)
based on the seminal work of Rosenblatt.61 They con-
sist of an input layer, an output layer, and at least one
hidden layer. All neurons of one layer are connected to
all neurons of the next layer (fully connected) and non-
linear activation functions are used. MLPs are trained
using the backpropagation algorithm.62 For classifica-
tion models, the neurons in the output layer represent
the different classes and a softmax function is applied.
MLPs are powerful tools as they have been proven
(with sufficient many hidden units) to be universal
approximators.63,64 A decision-tree classifier basically
asks a set of ‘‘if–else’’ questions (binary trees) until a
leaf node with an associated class value is reached. The
training (classification and regression tree (CART))
algorithm recursively splits a set into two subsets using
the single feature and the threshold-value producing
purest subsets (i.e. lowest number of false classified
training instances). Decision-tree classifiers are easy to
interpret (white box models) because they provide sim-
ple classification rules, are easy to visualize, and allow
direct calculation of feature importance. Boosted
decision-tree methods use an ensemble of weak
decision-tree classifier to create a strong classifier. A
single decision tree is trained and then a second deci-
sion tree is trained to correct for its errors. The latter
can be achieved by fitting the second tree to a weighted
version of the original data set. Additional decision
trees are added in the same fashion until a strong classi-
fier is obtained. AdaBoost is a boosting method which
performs very well on binary classification problems by
using decision trees with only one level (decision
stumps). Gradient boosting also sequentially adds new
weak classifiers. Each added weak classifier predicts the
error of the prior model and uses the gradient descent
algorithm to minimize the loss.

Model details

The MLP is optimized with the Adam optimizer65 on
batch sizes of 50 or 200 samples. To avoid bias due to
model selection,66 100 bootstrapping variants are
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generated, and the mean and standard deviation (SD)
of the derived model accuracies (number correct predic-
tions/total number predictions) are evaluated. The
MLP hyper-parameters are optimized using grid search
on regularization parameter (a), the hidden layer size,
and the maximum number of iterations at two
selected time points (–74.67 �CA (degree crank angle)
and –241.33 �CA). The AdaBoost with decision-tree
classifiers (weak learners; max depth=1) is also opti-
mized at this time points using grid search on learning
rate and the number of estimators. All other para-
meters use the default values as specified in the Python
Scikit-learn API v. 0.19.

Time-point and time-range classifiers

A time-point classifier is trained on individual time
points (ws=1), while a time-range classifier is trained
on a set of time points (ws. 1) using a sliding window
approach (Figure 3(a)). For example, in data set D2
(Table 2), the reference time points are 6.66 �CA
apart with 268 features (134 features, 2 planes: z=0,
–18mm) each. Hence, for ws=2 reference points
(e.g. [–14.66, –8 �CA]), 536 features are used. The time
point classifier trained at time point t0 is independent
from a classifier trained on another time point t 6¼ t0,
except that they share the same feature space and
might share the same hyper-parameters during train-
ing (e.g. for 46 time points and 100 times bootstrap-
ping, 4600 independent classifier models are trained
and evaluated). Neighboring time-range classifiers
(ws. 1) share parts of the feature values (non-over-
lap=1). For example, neighboring time-range classi-
fiers with ws=2 share the last and first set of 134
feature values (per plane), respectively.

Receiver operating characteristic analysis

To evaluate the classifier performance, the receiver
operating characteristic (ROC) is investigated using
model M6 (Table 3). For each time point, one ROC
curve is calculated. PCA (principal components analy-
sis) with 10 components and a variance threshold of
0.05 are used for feature reduction. A shallow MLP
classifier (M6) is trained on individual time points
(ws=1). The regularization parameter a is increased
to 3 in comparison to model M1 (a=0:01). During
training, the Adam optimizer with a batch size of 50 is
used and the optimization is stopped after 20 epochs to
prevent overfitting. To obtain an estimate of the model
accuracy distribution, 100 times bootstrapping is
applied.

The true positive rate (TPR) as a function of false
positive rate (FPR) is plotted in Figure 8(a) using the
example of time points –241 �CA, –108 �CA, and
–41 �CA. Bin (20 bins) averaged TPR and FPR values
are plotted. ROC curves at –108 �CA and –41 �CA are
clearly above the bisection line, indicating that the
model learns to classify for each of these time points.
TPR and the FPR are equal on the bisection line,

indicating that the model performance is at chance
level. The area under the curve (AUC) can be used as
a measure for model quality.67 The AUC is largest for
–41 �CA, that is, the exemplary time point closest to
the ignition. The discrimination threshold (DT) of our
binary classifiers can be used to vary the TPR as a
function of FPR, as indicated in Figure 8(b). Here, the
(bin averaged) DT is plotted as a function of FPR (e.g.
at –41 �CA for a DT of 0.5, the FPR is ;0:2 and the
TPR is ;0:75, while for DT=0.2, the FPR is ;0:6
and the TPR is ;0:92). To visualize the ROC for each
time point, a heat map is generated (Figure 8(c)). As
can be seen from the figure, especially for time points
close to the first injection, high TPR and low FPR val-
ues are achieved. The information of the time resolved
ROC is easier to analyze by plotting the difference
between TPR and FPR (Figure 8(d)). The difference is
equal to the distance from the TPR line to the bisecting
line in each FPR point. As can be seen clearly, all ROC
curves for time points after –180 �CA are above the
bisecting line except for high FPR values close to 1.
Note that at the FPR values of 1, the DT threshold
and hence the TPR would be 1 and FPR–TPR=0.
These values are not plotted because only bin averaged
values are calculated. Time points between –200 �CA
and –180 �CA also exhibit large areas of (mean) posi-
tive differences. To indicate the classifier quality, the
FPR for DT=0.5 value is shown on top of the heat
map (white solid line in Figure 8(d)). The accuracy for
DT=0.5 is plotted in Figure 8(e). This DT value is
used throughout the study. All mean accuracy values
are above chance level of 0.5 (median split). The curve
of mean accuracy mirrors the shape of the FPR at
DT=0.5 curve in Figure 8(d), because the accuracy of
the model depends only on TPR and FPR (prior prob-
ability=0.5 for each class). For each time point during
the compression stroke (–180 �CA to –8 �CA), the clas-
sifier can clearly identify good/high indicated mean
effective pressure (IMEP) combustion cycles above
chance level. The mean accuracy value is always more
than 1SD above chance level. For time points in the
late intake stroke (–200 �CA to –180 �CA), the
mean accuracy is above chance level but within
the 1 SD range. A strong decrease in model accuracy
after –36 �CA, the time of first injection, is observed.
After the time of first injection and the following
flame kernel growth, the quality of the particle image
velocimetry (PIV) measurement decreases due to tracer
particle loss. For earlier time points in the intake stroke
(–301 �CA to –200 �CA), the mean accuracy is at
chance level. Also the training accuracy is lower for this
phase. For each time point, the hyper-parameters are
constant and deliberately conservatively chosen to
avoid overfitting. To further test for overfitting arti-
facts, the regularization parameter a in this model
(M6) is increased in comparison to model M1 (compare
Figures 4(a) and 8(e)). In this case, the training-set
accuracy is closer to test-set accuracy during the intake
stroke without changing the accuracy on the test set.
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As shown before, the obtained accuracy at each time
point is independent of the classifier method. MLP
(M1), AdaBoost (M2), and Gradient Boost (M3) classi-
fier results are indistinguishable (Figure 4(b)). The F1

score for the MLP classifiers (M6) is shown in Figure
8(f). F1 score and accuracy (Figure 8(e)) show the same
qualitative behavior. The F1 score is the weighted har-
monic mean of recall and precision. Precision is defined

by TP/(TP + FP) and recall by TP/(TP + FN) with
true positives (TP), true negatives (TN), false positives
(FP), and false negatives (FN). In this study, the classes
are perfectly balanced (median split), and the F1 score
for random guessing is 0.5. It can be problematic to
rely on the F1 score alone if the classes are not
balanced, because the score is biased to the majority
class.68

(a) (b)

(c) (d)

(e) (f)

Figure 8. Receiver operating characteristic (ROC) analysis. (a) ROC curve for the MLP classifier (parameters, see text) at different
time points on data set D2. False positive rate (FPR) and true positive rate (TPR). Bisecting line (dotted black) is added. (b)
Discrimination threshold (DT) as a function of FPR. DTof 0.5 indicated by black dotted line. (c) ROC curve for each time point. TPR
indicated by color. (d) Difference between TPR and FPR (color bar) for each time point. Negative values (deep red) are below the
bisection line of the ROC curve. FPR values with DT = 0.5 are marked (white, solid line). (e) Accuracy (mean 6 SD, DT = 0.5) on
training (dotted line) and test sets (solid line). Chance level indicated by black line at accuracy of 0.5. First injection vertical dotted
line; ignition vertical solid line. (f) F1 score (mean 6 SD). Line style, chance level, first injection, and ignition time are illustrated as in
panel (e).
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