Chemistry-A European Journal

 Supporting InformationEnantioselective Synthesis of a Tricyclic, sp ${ }^{3}$-Rich
Diazatetradecanedione: an Amino Acid-Based Natural ProductLike Scaffold

Matthias Bischoff, ${ }^{[a]}$ Peter Mayer, ${ }^{[b]}$ Christian Meyners, ${ }^{[c]}$ and Felix Hausch* ${ }^{[c]}$

Enantioselective Synthesis of a tricyclic, sp^{3}-rich Diazatetradecanedione: an Amino Acid-based Natural Product-like Scaffold
 Matthias Bischoffa ${ }^{\text {a }}$ Peter Mayer ${ }^{\text {b }}$, Christian Meyners ${ }^{\text {c }}$ and Felix Hausch ${ }^{\text {^* }}$
 ${ }^{\text {a }}$ Compound Management and Screening Center (COMAS), Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
 ${ }^{\mathrm{b}}$ Department of Chemistry, Ludwig-Maximilians-University München, Butenandtstrasse 5-13, 81377 München, Germany
 ${ }^{\text {c }}$ Department of Chemistry, Institute of Chemistry and Biochemistry, Darmstadt University of Technology, Alarich-Weiss-Strasse 4, 64287 Darmstadt, Germany

Supporting Information

Table of Contents

Biochemical FKBP12 Binding Assay S2
General Experimental S3
Syntheses and Analytical Data of the Compounds S4
${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-Spectra of the Compounds S17
Crystallographic Data S29

Biochemical FKBP12 Binding Assay

The Ki-value of compound 1 was determined by using a fluorescence polarization assay as described earlier. Therefore, a serial dilution of compound 1 or FK506 in assay buffer (20 mM HEPES pH 8.0, 20 $\mathrm{mM} \mathrm{NaCl}, 0.002 \%$ Triton X-100) was placed in a 384 well micro titer plate and supplemented with a mixture of purified FKBP12 and the fluorescent tracer [4.3.1]-16g yielding final concentrations of 1 nM and 0.5 nM . After an incubation of 30 minutes at $25^{\circ} \mathrm{C}$ the fluorescence polarization was determined on a mirco plate reader using an excitation wavelength of 535 nm and an emission wavelength of 590 nm . The obtained data was plotted against the compound concentration and fitted to a competitive binding model yielding the Ki-value of the compounds.

General Experimental

Reactions were performed in heatgun-dried flasks under an argon atmosphere. All reagents purchased from commercial sources were used directly without further purification.
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra were recorded at the Department of Chemistry and Pharmacy, Ludwig Maximilians University München on a Bruker AC 300, a Bruker XL 400, or a Bruker AMX 600 at room temperature unless otherwise specified. Chemical shifts are given in ppm (δ). Residual peaks of the deuterated solvents indicated were used as internal standard. The coupling constants (J) are given in Hertz (Hz). The following abbreviations are used for the characterization of the multiplicity of the signals: singlet (s), singlet broad (s_{br}), doublet (d), triplet (t), quartet (q) multiplet (m) and centered multiplet (m_{c}).

Mass spectra (m / z) were obtained on a Thermo Finnigan LCQ DECA XP Plus mass spectrometer at the Max Planck Institute of Psychiatry München, while the high resolution mass spectrometry was carried out at Max Planck Institute of Biochemistry München on a Bruker micrOTOF LC mass spectrometer.

Thin-layer chromatography (TLC) was performed on precoated silica gel F-254 plates from Merck. The spots were visualized by UV light and/or by staining of the TLC plate with potassium permanganate stain ($1.5 \mathrm{~g} \mathrm{KMnO}_{4}, 10 \mathrm{~g} \mathrm{~K}_{2} \mathrm{CO}_{3}, 1.25 \mathrm{~mL} 10 \% \mathrm{NaOH}$ in 200 mL H O) followed, if necessary, by heating with a heat gun.

For column chromatography, silica gel 60 from Merck with a particle size of $0.040-0.063 \mathrm{~mm}$ was used.

Syntheses and Analytical Data of the Compounds

D-Aspartic acid 4-methyl ester hydrochloride (7)

Methanol (210 mL) was cooled to $-20^{\circ} \mathrm{C}$ and $\mathrm{SOCl}_{2}(31.0 \mathrm{~mL}, 425 \mathrm{mmol}, 1.4$ equiv.) was added dropwise over 45 min . D-Aspartic acid ($40.0 \mathrm{~g}, 300 \mathrm{mmol}$) was added over 5 min , the cooling bath was removed and stirred for 3 h at room temperature. $\mathrm{Et}_{2} \mathrm{O}(600 \mathrm{~mL})$ was added and the mixture cooled to $-20{ }^{\circ} \mathrm{C}$. The resulting solid was filtered off, washed with $\mathrm{Et}_{2} \mathrm{O}(200 \mathrm{~mL})$ and dried under reduced pressure to give the title compound ($33.0 \mathrm{~g}, 180 \mathrm{mmol}, 60 \%$) as a colorless solid.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right): \delta=2.98\left(\mathrm{~d}, J=5.6,1 \mathrm{H}, \mathrm{CH}_{\mathrm{A}}\right), 2.99\left(\mathrm{~d}, J=5.6,1 \mathrm{H}, \mathrm{CH}_{\mathrm{B}}\right), 3.64(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CO}_{2} \mathrm{Me}\right), 4.16(\mathrm{t}, \mathrm{J}=5.6,1 \mathrm{H}, \mathrm{CH}), 8.64\left(\mathrm{~s}_{\mathrm{br}}, 2 \mathrm{H}, \mathrm{CO}_{2} \mathrm{H}, \mathrm{HCl}\right)$.
${ }^{13}$ C-NMR (100 MHz, DMSO-d d_{6}): $\delta=34.05,48.47,52.05,169.6,169.8$.

HRMS (ESI) for $\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{NO}_{4}$: calcd. $148.0610[\mathrm{M}+\mathrm{H}]^{+}$, found 148.0624 .

N-Boc-D-aspartic acid 4-methyl ester (8)

To a solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ ($19.1 \mathrm{~g}, 180 \mathrm{mmol}, 1.0$ equiv.) in dioxane $/ \mathrm{H}_{2} \mathrm{O}(540 \mathrm{~mL}, 2: 1)$ at $0^{\circ} \mathrm{C}$ was added 7 ($33.0 \mathrm{~g}, 180 \mathrm{mmol}, 1.0$ equiv.). After the CO_{2} evolution had ceased (15 min), $\mathrm{Na}_{2} \mathrm{CO}_{3}$ ($19.1 \mathrm{~g}, 180$ mmol, 1.0 equiv.) and $\mathrm{Boc}_{2} \mathrm{O}(43.2 \mathrm{~g}, 198 \mathrm{mmol}, 1.1$ equiv.) were successively added. The mixture was stirred for 1 h at $0{ }^{\circ} \mathrm{C}$ and for 21 h at room temperature. The dioxane was removed under reduced pressure, the residue was poured in ice-water (350 mL) and washed with $\mathrm{Et}_{2} \mathrm{O}(250 \mathrm{~mL})$. The aqueous phase was acidified with sat. aq. NaHSO_{4}-solution (pH 2.5) and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 250 \mathrm{~mL})$. The combined organic phases were washed with $\mathrm{H}_{2} \mathrm{O}(250 \mathrm{~mL})$, dried over MgSO_{4}, and the solvent was
removed under reduced pressure to give the title compound ($91 \%, 40.5 \mathrm{~g}, 164 \mathrm{mmol}$), as a colorless solid.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.44\left(\mathrm{~s}, 9 \mathrm{H}, 3 \times \mathrm{CH}_{3}\right), 2.84\left(\mathrm{dd}, \mathrm{J}=4.8,17.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{A}}\right), 3.03(\mathrm{dd}, \mathrm{J}$ $\left.=3.6,17.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{B}}\right), 3.71\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}\right), 4.61(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 5.56\left(\mathrm{~d}_{\mathrm{b}}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}\right) 7.20$ ($\mathrm{s}_{\mathrm{br},} 1 \mathrm{H}, \mathrm{CO}_{2} \mathrm{H}$).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=28.41,36.55,49.91,52.28,80.66,155.8,171.7,175.4$.

HRMS (ESI) for $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{NO}_{6}$: calcd. $270.0954\left[\mathrm{M}+\mathrm{Na}^{+}\right.$, found 270.0976 .

Methyl (3R)-3-\{[(tert-butoxy)carbonyl]amino\}-4-hydroxybutanoate (9)

A solution of $8(16.5 \mathrm{~g}, 66.7 \mathrm{mmol})$ in THF (67 mL) was added dropwise over 1 h to a solution of $\mathrm{BH}_{3} \cdot \mathrm{THF}\left(1 \mathrm{~m}\right.$ in THF, $200 \mathrm{~mL}, 200 \mathrm{mmol}, 3.0$ equiv.) at $0^{\circ} \mathrm{C}$. It was stirred for further 2 h at $0{ }^{\circ} \mathrm{C}$ and sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(250 \mathrm{~mL})$ was carefully added in portions over 1 h . The mixture was extracted with EtOAc ($2 \times 250 \mathrm{~mL}$), the combined organic phases were washed with sat. aq. NaCl solution $(250 \mathrm{~mL})$, dried over MgSO_{4}, and the solvent was removed under reduced pressure. Column chromatography on SiO_{2} (cyclohexane/EtOAc $1: 1 \rightarrow 1: 2$) afforded the title compound (10.6 g, 45.4 $\mathrm{mmol}, 68 \%$) as a colorless oil.
$\mathbf{R}_{\mathrm{f}}: 0.38$ (Cyclohexane/EtOAc 1:1, KMnO_{4})
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right): \delta=1.39\left(\mathrm{~s}, 9 \mathrm{H}, 3 \times \mathrm{CH}_{3}\right), 2.30\left(\mathrm{dd}, \mathrm{J}=8.4,15.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{A}}\right), 2.52$ (dd, $\left.J=5.2,15.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{B}}\right), 3.18-3.25\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{A}}\right), 3.32-3.41\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{B}}\right), 3.56(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CO}_{2} \mathrm{Me}\right), 3.71-3.83(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NH}), 4.74(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 6.61(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH})$.
${ }^{13}$ C-NMR (100 MHz , DMSO-d d_{6}): $\delta=28.18,36.12,49.60,51.25,62.84,77.64,155.0,171.7$.

MS (ESI): m/z (\%) = 134.0 (45) [M-Boc+H] $]^{+} 233.8(21)[M+H]^{+}, 256.1$ (14) [M+Na] ${ }^{+}$, 366.7 (100) [2MBoc+H] ${ }^{+}, 488.8$ (16) $[2 \mathrm{M}+\mathrm{Na}]^{+}$.

HRMS (ESI) for $\mathrm{C}_{10} \mathrm{H}_{19} \mathrm{NO}_{5}$: calcd. $256.1161[\mathrm{M}+\mathrm{Na}]^{+}$, found 256.1174.

Methyl (3R,4E)-3-\{[(tert-butoxy)carbonyl]amino\}-5-iodopent-4-enoate (10)

A solution of $9(7.57 \mathrm{~g}, 32.5 \mathrm{mmol})$ and $\mathrm{NEt}_{3}\left(27.0 \mathrm{~mL}, 195 \mathrm{mmol}, 6.0\right.$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(65 \mathrm{~mL})$ was cooled to $0^{\circ} \mathrm{C}$ and a suspension of pyridine $\cdot \mathrm{SO}_{3}(31.0 \mathrm{~g}, 195 \mathrm{mmol}, 6.0$ equiv.) in DMSO (65 mL) was added. After stirring for 1 h at $0^{\circ} \mathrm{C}$, ice water (250 mL) was added and it was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(3 \times 200 \mathrm{~mL})$. The combined organic phases were successively washed with 10% citric acid solution $(3 \times 100 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(3 \times 100 \mathrm{~mL})$, sat. aq. NaHCO_{3} solution (100 mL), sat. aq. NaCl solution (100 mL), dried over MgSO_{4}, and the solvent was removed under reduced pressure to afford the aldehyde ($6.75 \mathrm{~g}, 29.2 \mathrm{mmol}, 90 \%$) as an orange oil, which was used without further purification in the next step.

A solution of the aldehyde ($6.75 \mathrm{~g}, 29.2 \mathrm{mmol}$) and $\mathrm{CHI}_{3}(11.5 \mathrm{~g}, 38.0 \mathrm{mmol}, 1.3$ equiv.) in THF (73 mL) was added dropwise over 0.5 h to a suspension of CrCl_{2} ($14.3 \mathrm{~g}, 117 \mathrm{mmol}, 4.0$ equiv.) in THF $(146 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The cooling bath was removed and it was stirred for further 17 h at room temperature. $\mathrm{H}_{2} \mathrm{O}(250 \mathrm{~mL})$ was added and it was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 150 \mathrm{~mL})$. The combined organic phases were washed with $1 \mathrm{~m} \mathrm{Na} \mathrm{S}_{2} \mathrm{O}_{3}$ solution (150 mL), $\mathrm{H}_{2} \mathrm{O}(150 \mathrm{~mL})$, dried over MgSO_{4}, and the solvent was removed under reduced pressure. Column chromatography on SiO_{2} (cyclohexane/EtOAc $8: 1 \rightarrow$ $4: 1$) afforded the title compound ($5.26 \mathrm{~g}, 14.8 \mathrm{mmol}, 46 \%$ over 2 steps) as a colorless oil, which solidified upon standing at $4^{\circ} \mathrm{C}$.
$\mathbf{R f}_{\mathrm{f}:} 0.60$ (Cyclohexane/EtOAc 4:1, KMnO_{4})
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.43\left(\mathrm{~s}, 9 \mathrm{H}, 3 \times \mathrm{CH}_{3}\right), 2.60\left(\mathrm{dd}, \mathrm{J}=2.0,5.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.70(\mathrm{~s}, 3 \mathrm{H}$,
 $14.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$).

```
 '3'C-NMR (100 MHz, CDCl )
```

MS (ESI): $m / z(\%)=255.9$ (100) $[\mathrm{M}-\mathrm{Boc}+\mathrm{H}]^{+}, 377.9$ (18) $[\mathrm{M}+\mathrm{Na}]^{+}, 610.5$ (54) [2M-Boc+H] ${ }^{+}, 732.6$ (10)
$[2 \mathrm{M}+\mathrm{Na}]^{+}$.

HRMS (ESI) for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{NO}_{4}$: calcd. $378.0178[\mathrm{M}+\mathrm{Na}]^{+}$, found 378.0175 .

tert-Butyl $\mathrm{N}-[(1 E, 3 R)$-5-hydroxy-1-iodopent-1-en-3-yl]carbamate (11) tert-Butyl $\mathrm{N}-[(1 E, 3 R)$-1-iodo-5-oxopent-1-en-3-yl]carbamate (12)

To a solution of $\mathbf{1 0}(5.26 \mathrm{~g}, 14.8 \mathrm{mmol})$ in toluene $(74 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added dropwise over 20 min a solution of DIBAL (1 m in toluene, $29.6 \mathrm{~mL}, 29.6 \mathrm{mmol}, 2.0$ equiv.). After stirring for further 10 min at $-78{ }^{\circ} \mathrm{C}, \mathrm{Na}_{2} \mathrm{SO}_{4} \cdot 10 \mathrm{H}_{2} \mathrm{O}(20 \mathrm{~g})$ was added, the cooling bath was removed and it was allowed to reach room temperature. The reaction mixture was filtered over Celite, washed with EtOAc and the solvent was removed under reduced pressure. Column chromatography on SiO_{2} (cyclohexane/EtOAc 4:1 \rightarrow $1: 1$) afforded the aldehyde ($3.58 \mathrm{~g}, 11.0 \mathrm{mmol}, 74 \%$) as slightly yellow oil, and the alcohol (905 mg , 2.77 mmol, 19%) as slightly yellow oil.

Alcohol 11:
$\mathbf{R f :}_{\mathrm{f}} 0.37$ (Cyclohexane/EtOAc 2:1, KMnO_{4})

MS (ESI): $m / z(\%)=227.9$ (100) $[\mathrm{M}-\mathrm{Boc}+\mathrm{H}]^{+}, 349.9$ (18) $[\mathrm{M}+\mathrm{Na}]^{+}, 554.5$ (68) [2M-Boc+H] ${ }^{+}, 676.6$ (10) $[2 \mathrm{M}+\mathrm{Na}]^{+}$.

HRMS (ESI) for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{INO}_{3}$: calcd. $350.0229[\mathrm{M}+\mathrm{Na}]^{+}$, found 350.0238 .

Aldehyde 12:
$\mathbf{R f}_{\mathrm{f}} 0.54$ (Cyclohexane/EtOAc 2:1, KMnO_{4})
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.43\left(\mathrm{~s}, 9 \mathrm{H}, 3 \times \mathrm{CH}_{3}\right), 2.74\left(\mathrm{dd}, \mathrm{J}=1.2,6.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.48-4.62$ (m, 1 H, CH), 4.95 (Sbr, $1 \mathrm{H}, \mathrm{NH}$), 6.38 (dd, J = 1.2, $14.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), 6.56 (dd, J = 6.6, $14.7 \mathrm{~Hz}, 1 \mathrm{H}$, CH), 9.71-9.75 (m, 1 H, CHO).
${ }^{13} \mathrm{C}$-NMR (75.5 MHz, CDCl_{3}): $\delta=27.07,28.46,47.89,78.75,80.40,144.3,154.9$, 199.6.

MS (ESI): $m / z(\%)=225.9(26)[M-B o c+H]^{+}, 269.8(100)[M-t B u+H]^{+}, 325.7(8)[M+H]^{+}$.

HRMS (ESI) for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{NO}_{3}$: calcd. $380.0335[\mathrm{M}+\mathrm{MeOH}+\mathrm{Na}]^{+}$, found 380.0346 .

tert-Butyl $\mathrm{N}-[(1 E, 3 R)$-1-iodo-5-oxopent-1-en-3-yl]carbamate (12)

To a solution of $11(2.92 \mathrm{~g}, 8.93 \mathrm{mmol})$ in $\mathrm{DMSO}(45 \mathrm{~mL})$ was added IBX ($3.75 \mathrm{~g}, 13.4 \mathrm{mmol}, 1.5$ equiv.) and the suspension was stirred for 16 h at room temperature. $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$ was added, it was filtered over Celite and washed with $\mathrm{Et}_{2} \mathrm{O}$. The filtrate was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 100 \mathrm{~mL})$, the combined organic phases were washed with sat. aq. NaCl solution (100 mL), dried over MgSO_{4}, and the solvent was removed under reduced pressure. Column chromatography on SiO_{2} (cyclohexane/EtOAc $3: 1$) afforded the title compound ($2.40 \mathrm{~g}, 7.38 \mathrm{mmol}, 83 \%$) as a slightly yellow oil.
$\mathbf{R f}_{\mathrm{f}} 0.54$ (Cyclohexane/EtOAc 2:1, KMnO_{4})
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.43\left(\mathrm{~s}, 9 \mathrm{H}, 3 \times \mathrm{CH}_{3}\right), 2.74\left(\mathrm{dd}, \mathrm{J}=1.2,6.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.48-4.62$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}$), 4.95 ($\mathrm{S}_{\mathrm{br},}, 1 \mathrm{H}, \mathrm{NH}$), 6.38 (dd, $J=1.2,14.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), 6.56 (dd, $J=6.6,14.7 \mathrm{~Hz}, 1 \mathrm{H}$, CH), 9.71-9.75 (m, $1 \mathrm{H}, \mathrm{CHO}$).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=27.07,28.46,47.89,78.75,80.40,144.3,154.9,199.6$.

MS (ESI): $m / z(\%)=225.9(26)[M-B o c+H]^{+}, 269.8(100)[M-t B u+H]^{+}, 325.7(8)[M+H]^{+}$.

HRMS (ESI) for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{INO}_{3}$: calcd. $380.0335[\mathrm{M}+\mathrm{MeOH}+\mathrm{Na}]^{+}$, found 380.0346 .

Methyl (2E,5R,6E)-5-(((tert-butoxy)carbonyl)amino)-7-iodohepta-2,6-dienoate (3)

To a solution of Methyl diethylphosphonoacetate ($674 \mathrm{~mL}, 3.70 \mathrm{mmol}, 1.2$ equiv.) in THF (15 mL) at $0^{\circ} \mathrm{C}$ was added NaH ($148 \mathrm{mg}, 60 \%, 3.70 \mathrm{mmol}, 1.2$ equiv.) and it was stirred for 0.5 h at $0{ }^{\circ} \mathrm{C}$. Subsequently a solution of $\mathbf{1 2}(1.00 \mathrm{~g}, 3.08 \mathrm{mmol})$ in THF (2 mL) was added dropwise, and stirring was continued for 1 h at $0{ }^{\circ} \mathrm{C}$. Sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ solution (50 mL) was added, the aqueous phase was extracted with EtOAc ($2 \times 50 \mathrm{~mL}$), the combined organic phases were dried over MgSO_{4}, and the solvent was removed under reduced pressure. Column chromatography on SiO_{2} (cyclohexane/EtOAc 4:1) afforded the title compound ($926 \mathrm{mg}, 2.43 \mathrm{mmol}, 79 \%$) as a colorless oil.
$\mathbf{R}_{\mathrm{f}}: 0.52$ (Cyclohexane/EtOAc 3:1, KMnO_{4})
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.43\left(\mathrm{~s}, 9 \mathrm{H}, 3 \times \mathrm{CH}_{3}\right), 2.37-2.51\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.73\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}\right)$, $4.29\left(\mathrm{~s}_{\mathrm{br},} 1 \mathrm{H}, \mathrm{CH}\right), 4.54(\mathrm{sbr}, 1 \mathrm{H}, \mathrm{NH}), 5.90(\mathrm{dt}, J=1.8,15.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 6.34(\mathrm{dd}, J=1.2,14.4 \mathrm{~Hz}, 1$ H, CH), 6.47 (dd, J = 6.0, 14.4 Hz, $1 \mathrm{H}, \mathrm{CH}$), 6.85 (dt, J = 7.2, $15.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=28.44,37.42,51.75,53.89,78.44,80.27,124.6,143.3,144.9,154.9$, 166.4.

MS (ESI): $m / z(\%)=281.8(100)[\mathrm{M}-\mathrm{Boc}+\mathrm{H}]^{+}, 403.9$ (12) $[\mathrm{M}+\mathrm{Na}]^{+}, 662.7$ (36) [2M-Boc+H] ${ }^{+}$.

HRMS (ESI) for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{NO}_{4}$: calcd. $404.0335[\mathrm{M}+\mathrm{Na}]^{+}$, found 404.0340 .

12-tert-Butyl 1-methyl (2E,5R,6E,11S)-11-\{[(benzyloxy)carbonyl]amino\}-5-\{[(tert-butoxy)carbonyl]amino\}dodeca-2,6-dienedioate (13)

To a suspension of Zn powder ($1.33 \mathrm{~g}, 20.3 \mathrm{mmol}, 6.0$ equiv.) in DMF (1.7 mL) was added 1,2Dibromomethane ($88 \mu \mathrm{~L}, 1.02 \mathrm{mmol}, 0.3$ equiv.) and it was stirred for 0.5 h at $60^{\circ} \mathrm{C}$. After cooling to room temperature, $\mathrm{TMSCI}(26 \mu \mathrm{~L}, 0.203 \mathrm{mmol}, 0.06$ equiv.) was added and stirring was continued for further 0.5 h at room temperature. Then tert-Butyl-(S)-2-(benzyloxycarbonylamino)-5-iodopentanoate (4) ($1.47 \mathrm{~g}, 3.39 \mathrm{mmol}, 1.0$ equiv.) in DMF (1.7 mL) was added and the reaction mixture was stirred for 0.5 h at $35^{\circ} \mathrm{C}$. After cooling to room temperature, $\mathrm{Pd}_{2}(\mathrm{dba})_{3}\left(62 \mathrm{mg}, 0.068 \mathrm{mmol}, 0.02\right.$ equiv), $\mathrm{P}(\text { otol })_{3}$ ($83 \mathrm{mg}, 0.271 \mathrm{mmol}, 0.08$ equiv.), and 3 ($970 \mathrm{mg}, 2.54 \mathrm{mmol}, 0.75$ equiv.) in DMF (0.5 mL) were added and it was stirred for 18 h at room temperature. The resulting green suspension was filtered over Celite and washed with EtOAc (100 mL). The filtrate was washed with sat. aq. NaCl solution ($3 \times 100 \mathrm{~mL}$), dried over MgSO_{4} and the solvent was evaporated under reduced pressure. Column chromatography on SiO_{2} (cyclohexane/EtOAc 4:1) afforded the title compound ($1.01 \mathrm{~g}, 1.80 \mathrm{mmol}, 71 \%$) as yellow oil.
$\mathbf{R f}_{\mathrm{f}} 0.33$ (Cyclohexane/EtOAc 3:1, KMnO_{4})
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.33-1.41\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.43\left(\mathrm{~s}, 9 \mathrm{H}, 3 \times \mathrm{CH}_{3}\right), 1.45\left(\mathrm{~s}, 9 \mathrm{H}, 3 \times \mathrm{CH}_{3}\right)$, 1.57-1.65 (m, 1 H, CHA $), 1.72-1.81\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{B}}\right), 1.99-2.11\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.36-2.47\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, 3.71 (s, $3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}$), 4.18-4.28 (m $2 \mathrm{H}, 2 \times \mathrm{CH}$), 4.54 ($\mathrm{sbr}, 1 \mathrm{H}, \mathrm{NH}$), 5.10 (s, $2 \mathrm{H}, \mathrm{CH}_{2}$), 5.32 (d, J = $8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}$), 5.36 (dd, $J=6.0,15.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 5.55(\mathrm{dt}, J=6.0,15.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 5.86$ (dt, J= $7.2,15.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), $6.87(\mathrm{dt}, J=6.0,15.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 7.29-7.37(\mathrm{~m}, 5 \mathrm{H}, 5 \times \mathrm{Ar}-\mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=24.70,28.22,28.55,31.86,32.51,38.44,51.34,51.69,54.33,67.05$, 79.74, 82.22, 123.8, 128.3, 128.3, 128.7, 130.1, 131.5, 136.6, 144.9, 155.2, 156.0, 166.8, 171.7.

MS (ESI): m/z (\%) = 405.1 (24) [M-Boc-tBu+H] ${ }^{+}, 461.1$ (100) [M-Boc+H] ${ }^{+}, 527.1$ (12) [M-tBu+Na] ${ }^{+}$, $583.1(48)[\mathrm{M}+\mathrm{Na}]^{+}$.

HRMS (ESI) for $\mathrm{C}_{30} \mathrm{H}_{44} \mathrm{~N}_{2} \mathrm{O}_{8}$: calcd. $561.3176[\mathrm{M}+\mathrm{Na}]^{+}$, found 561.3220 .

Methyl (2E,5R)-5-[(2S,3S)-3-[(4S)-4-\{[(benzyloxy)carbonyl]amino\}-5-(tert-butoxy)-5-oxopentyl]oxiran-2-yl]-5-\{[(tert-butoxy)carbonyl]amino\}pent-2-enoate (2)

To a solution of 13 ($367 \mathrm{mg}, 0.654 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$ was added $\mathrm{NaHCO}_{3}(82 \mathrm{mg}, 0.981 \mathrm{mmol}$, 1.5 equiv.) and m CPBA ($70 \%, 177 \mathrm{mg}, 0.719 \mathrm{mmol}, 1.1$ equiv.) and the suspension was stirred for 24 h at room temperature. $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ was added and the organic phase was washed with sat. aq. NaHCO_{3} solution ($2 \times 50 \mathrm{~mL}$), dried over MgSO_{4}, and the solvent was evaporated under reduced pressure. Column chromatography on SiO_{2} (cyclohexane/EtOAc $3: 1 \rightarrow 2: 1$) afforded the title compound ($299 \mathrm{mg}, 0.518 \mathrm{mmol}, 79 \%$) as colorless oil.

The ratio of the two diastereomeric epoxides is 4:1.

Rf: 0.43 (Cyclohexane/EtOAc 2:1, KMnO_{4})
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.39-1.43\left(\mathrm{~m}, 9 \mathrm{H}, 3 \times \mathrm{CH}_{3}\right), 1.46\left(\mathrm{~s}, 9 \mathrm{H}, 3 \times \mathrm{CH}_{3}\right), 1.47-1.88(\mathrm{~m}, 6 \mathrm{H}$, $3 \times \mathrm{CH}_{2}$), 2.35-2.56 (m, $2 \mathrm{H}, \mathrm{CH}_{2}$), 2.70-2.83 (m, $2 \mathrm{H}, 2 \times \mathrm{CH}$), $3.72\left(\mathrm{~s}, 2.4 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}\right), 3.72(\mathrm{~s}, 0.6 \mathrm{H}$, $\left.\mathrm{CO}_{2} \mathrm{Me}\right), 3.98-4.05(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 4.20-4.27(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 4.49(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 5.08-5.12(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{CH}_{2}\right), 5.31-5.37(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NH}), 5.91(\mathrm{dt}, J=1.2,15.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 6.93(\mathrm{dt}, J=7.2,15.6 \mathrm{~Hz}, 1 \mathrm{H}$, CH), 7.29-7.38 (m, $5 \mathrm{H}, 5 \times \mathrm{Ar}-\mathrm{H}$).
${ }^{13}$ C-NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=21.83,28.15,28.39,31.01,32.62,36.54,48.33,51.70,54.37,55.54$, $58.23,59.20,67.04,82.31,124.2,128.2,128.3,128.7,136.5,144.0,155.5,156.0,166.0,171.5$.

MS (ESI): $m / z(\%)=421.1$ (28) [M-Boc-tBu+H] ${ }^{+}, 465.0$ (100) $[\mathrm{M}-2 t \mathrm{Bu}+\mathrm{H}]^{+}, 520.8$ (52) [M-tBu+H] ${ }^{+}$, $599.1(36)[\mathrm{M}+\mathrm{Na}]^{+}$.

HRMS (ESI) for $\mathrm{C}_{30} \mathrm{H}_{44} \mathrm{~N}_{2} \mathrm{O}_{9}$: calcd. $577.3125[\mathrm{M}+\mathrm{H}]^{+}$, found 577.3126 .

1-Benzyl 2-tert-butyl (2S,6R)-6-[(1S,2R)-2-\{[(tert-butoxy)carbonyl]amino\}-1-hydroxy-6-methoxy-6-oxohexyl]piperidine-1,2-dicarboxylate (14)

A suspension of 2 ($282 \mathrm{mg}, 0.489 \mathrm{mmol}$) and $\mathrm{Pd} / \mathrm{C}(28 \mathrm{mg}, 10 \mathrm{wt} . \%$) in EtOH (5 mL) was stirred for 2 h at room temperature under a H_{2}-atmosphere. The reaction mixture was filtered over Celite, washed with EtOAc and the solvent was evaporated under reduced pressure to give a colorless, crystalline solid.

This solid was dissolved in dioxane $/ \mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL}, 2: 1), \mathrm{Na}_{2} \mathrm{CO}_{3}(78 \mathrm{mg}, 0.734 \mathrm{mmol}, 1.5$ equiv.) and benzyl chloroformate ($70 \mu \mathrm{~L}, 0.489 \mathrm{mmol}, 1.0$ equiv.) were added and it was stirred for 20 h at room temperature. $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$ was added and it was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 50 \mathrm{~mL})$, dried over MgSO_{4}, and the solvent was removed under reduced pressure. Column chromatography on SiO_{2} (cyclohexane/EtOAc 4:1) afforded the title compound ($180 \mathrm{mg}, 0.311 \mathrm{mmol}, 64 \%$ over 2 steps) as colorless oil.
$\mathbf{R f}_{\mathrm{f}}: 0.57$ (Cyclohexane/EtOAc 2:1, KMnO_{4})
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}, 9{ }^{\circ} \mathrm{C}\right)$: $\delta=1.38\left(\mathrm{~m}_{\mathrm{c}}, 9 \mathrm{H}, 3 \times \mathrm{CH}_{3}\right), 1.39\left(\mathrm{~m}_{\mathrm{c}}, 9 \mathrm{H}, 3 \times \mathrm{CH}_{3}\right), 1.44-1.77$ ($\mathrm{m}, 8 \mathrm{H}, 4 \times \mathrm{CH}_{2}$), 1.94-2.03 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}$), 2.22-2.35 (m, $2 \mathrm{H}, \mathrm{CH}_{2}$), $3.59\left(\mathrm{~m}_{\mathrm{c}}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}\right), 3.62-3.70$ ($\mathrm{m}, 2 \mathrm{H}, 2 \times \mathrm{CH}$), 4.17-4.23(m,1 H, CH), $4.36(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 4.59(\mathrm{dd}, J=5.2,6.8 \mathrm{~Hz}, 1 \mathrm{H}$,
 $5 \mathrm{H}, 5 \times \mathrm{Ar}-\mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{DMSO}_{-} \mathrm{d}_{6}, 90^{\circ} \mathrm{C}\right.$): $\delta=16.20,20.72,22.39,24.91,25.90,27.18,27.79,32.07$, $33.01,50.39,51.92,54.08,66.06,72.67,77.13,80.50,126.8,127.1,127.8,136.5,155.1,155.2,171.3$, 172.7.

MS (ESI): m/z (\%) = 423.2 (78) [M-Boc-tBu+H] ${ }^{+}, 479.2$ (100) [M-Boc+H] ${ }^{+}, 579.0(56)[M+H]^{+}, 601.1$ (42) $[\mathrm{M}+\mathrm{Na}]^{+}$.

HRMS (ESI) for $\mathrm{C}_{30} \mathrm{H}_{46} \mathrm{~N}_{2} \mathrm{O}_{9}$: calcd. $579.3282[\mathrm{M}+\mathrm{H}]^{+}$, found 579.3394 .

Benzyl (1S,4R,5S,6R)-4-(4-methoxy-4-oxobutyl)-2-oxo-5-[(triethylsilyl)oxy]-3,10-diazabicyclo[4.3.1]decane-10-carboxylate (15)

To a solution of 14 ($1.50 \mathrm{~g}, 2.59 \mathrm{mmol}$) and 2,6-lutidine ($12.1 \mathrm{~mL}, 104 \mathrm{mmol}, 40$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (52 mL) at $0^{\circ} \mathrm{C}$ was added TESOTf ($11.7 \mathrm{~mL}, 51.8 \mathrm{mmol}, 20$ equiv.) dropwise. After 1 h the cooling bath was removed and the reaction was stirred for 16 h at room temperature. Sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(100 \mathrm{~mL})$ was added and stirring was continued for 1 h . The organic phase was separated, the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 100 \mathrm{~mL})$, the combined organic phases were dried over MgSO_{4}, and the solvent was evaporated under reduced pressure.

The obtained amino acid was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ and the solution was added dropwise at room temperature over 30 min to a solution of HATU ($985 \mathrm{mg}, 2.59 \mathrm{mmol}, 1.0$ equiv.) and (iPr) 2 NEt ($679 \mu \mathrm{~L}, 3.89 \mathrm{mmol}, 1.5$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (260 mL). Stirring was continued for further 20 h , following evaporation of the solvent under reduced pressure. The residue was taken up in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$, washed with CuSO_{4} solution ($10 \mathrm{wt} . \%, 3 \times 100 \mathrm{~mL}$), dried over MgSO_{4}, and the solvent was evaporated under reduced pressure. Column chromatography on SiO_{2} (cyclohexane/EtOAc 1:1) afforded the title compound ($1.00 \mathrm{~g}, 1.93 \mathrm{mmol}, 74 \%$ over 2 steps) as a slightly yellow oil.

The compound consists of two carbamate rotamers in a 1:1 ratio.
$\mathbf{R}_{\mathrm{f}:} 0.49$ (Cyclohexane/EtOAc 1:1, KMnO_{4})
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.58\left(\mathrm{~m}_{\mathrm{c}}, 6 \mathrm{H}, 3 \times \mathrm{CH}_{2}\right), 0.94\left(\mathrm{~m}_{\mathrm{c}}, 9 \mathrm{H}, 3 \times \mathrm{CH}_{3}\right), 1.24-1.89(\mathrm{~m}, 8 \mathrm{H}, 4 \times$ CH_{2}), 2.07-2.27 (m, $4 \mathrm{H}, 2 \times \mathrm{CH}_{2}$), 2.95-3.08 (m, $1 \mathrm{H}, \mathrm{CH}$), $3.63\left(\mathrm{~s}, 1.5 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}\right), 3.65(\mathrm{~s}, 1.5 \mathrm{H}$, $\left.\mathrm{CO}_{2} \mathrm{Me}\right), 4.09-4.14(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 4.39-4.43(\mathrm{~m}, 0.5 \mathrm{H}, \mathrm{CH}), 4.46-4.50(\mathrm{~m}, 0.5 \mathrm{H}, \mathrm{CH}), 4.97-5.01(\mathrm{~m}$, $0.5 \mathrm{H}, \mathrm{CH}), 5.06-5.09(\mathrm{~m}, 0.5 \mathrm{H}, \mathrm{CH}), 5.10\left(\mathrm{t}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 5.21\left(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 0.5 \mathrm{H}, \mathrm{CH}_{2}\right)$, $5.24\left(\mathrm{~d}, \mathrm{~J}=12.0 \mathrm{~Hz}, 0.5 \mathrm{H}, \mathrm{CH}_{2}\right), 6.32-6.48(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NH}), 7.28-7.40(\mathrm{~m}, 5 \mathrm{H}, 5 \times \mathrm{Ar}-\mathrm{H})$.
${ }^{13}$ C-NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.05,6.90,16.74,23.37$ (0.5 C), 23.63 (0.5 C), 26.32 (0.5 C), 27.01 (0.5 C),, 27.46 (0.5 C), 27.68 (0.5 C), 29.20, 33.82 (0.5 C), 33.89 (0.5 C), 51.68, 54.85 (0.5 C), 55.00 (0.5 C), 55.31 (0.5 C), 55.79 , (0.5 C), 59.13, 67.86, $74.67,128.1$ (0.5 C), 128.2 (0.5 C), 128.3 (0.5 C), 128.4 (0.5 C), 128.7, 136.5, 154.9 (0.5 C), 155.2 (0.5 C), 173.8 (0.5 C), 173.9 (0.5 C), 175.3 (0.5 C), 175.4 (0.5 C).

MS (ESI): m/z (\%) = 519.2 (100) [M+H] ${ }^{+}$, 1036.8 (18) [2M+H] $]^{+}, 1060.0(6)[2 \mathrm{M}+\mathrm{Na}]^{+}$.

HRMS (ESI) for $\mathrm{C}_{27} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{Si}$: calcd. $405.2026[\mathrm{M}-\mathrm{TES}+\mathrm{H}]^{+}$, found 405.2098.

Benzyl (1S,4R,5S,6R)-5-methoxy-4-(4-methoxy-4-oxobutyl)-3-methyl-2-oxo-3,10-diazabicyclo[4.3.1]decane-10-carboxylate (16)

To a solution of 15 ($300 \mathrm{mg}, 0.578 \mathrm{mmol}$) in THF (3 mL) was added TBAF (1 m in THF, $636 \mu \mathrm{~L}, 0.636$ mmol, 1.1 equiv.) and the solution was stirred for 1 h at room temperature. Removal of the solvent under reduced pressure and column chromatography on SiO_{2} (EtOAc) afforded the alcohol (192 mg , $0.475 \mathrm{mmol}, 82 \%$) as a colorless solid.

To a solution of the alcohol ($219 \mathrm{mg}, 0.541 \mathrm{mmol}$) in DMF (2 mL) was added $\mathrm{Ag}_{2} \mathrm{O}(627 \mathrm{mg}, 2.71$ $\mathrm{mmol}, 5.0$ equiv.) and Mel ($337 \mu \mathrm{~L}, 5.41 \mathrm{mmol}, 10$ equiv.) and the suspension was stirred for 20 h at room temperature. The mixture was filtered over Celite, washed with EtOAc (50 mL), the filtrate was washed with sat. aq. NaCl solution $(2 \times 50 \mathrm{~mL})$, the organic phase was dried over MgSO_{4}, and the solvent removed under reduced pressure. Column chromatography on SiO_{2} (cyclohexane/EtOAc 1:2) afforded the title compound ($210 \mathrm{mg}, 0.486 \mathrm{~mol}, 90 \%$) as colorless oil.

The compound consists of two carbamate rotamers in a 1:1 ratio.
$\mathbf{R f}_{\mathrm{f}}: 0.35$ (Cyclohexane/EtOAc 1:3, KMnO_{4})
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(800 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.39-1.52\left(\mathrm{~m}, 1 \mathrm{H}, 0.5 \times \mathrm{CH}_{2}\right), 1.58-1.87\left(\mathrm{~m}, 8 \mathrm{H}, 4 \times \mathrm{CH}_{2}\right), 2.05-2.33$ ($\mathrm{m}, 3 \mathrm{H}, 1.5 \times \mathrm{CH}_{2}$), 3.09 (s, $1.5 \mathrm{H}, \mathrm{NMe}$), 3.11 ($\mathrm{s}, 1.5 \mathrm{H}, \mathrm{NMe}$), $3.31-3.35$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}$), 3.38 (s, 1.5 H , OMe), 3.38 ($\mathrm{s}, 1.5 \mathrm{H}, \mathrm{OMe}$), $3.58-3.62(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 3.65\left(\mathrm{~s}, 1.5 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}\right), 3.66\left(\mathrm{~s}, 1.5 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}\right)$, 4.32-4.35 (m, 0.5 H, CH), 4.43-4.46 (m, 0.5 H, CH), 4.99-5.01 (m, 0.5 H, CH), 5.07-5.09 (m, 0.5 H, CH), $5.10\left(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 5.17\left(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 0.5 \mathrm{H}, \mathrm{CH}_{2}\right), 5.21(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 0.5 \mathrm{H}$, CH_{2}), 7.29-7.38 (m, $\left.5 \mathrm{H}, 5 \times \mathrm{Ar}-\mathrm{H}\right)$.
${ }^{13}$ C-NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=16.85$ (0.5 C), 16.86 (0.5 C), 24.71 (0.5 C), 24.77 (0.5 C), 27.08 (0.5 C), 27.31 (0.5 C), 27.71 (0.5 C), 28.37 (0.5 C), 30.28 (0.5 C), 30.31 (0.5 C), $34.06,40.32$ (0.5 C), 40.42 (0.5 C), 51.68 (0.5 C), 51.71 (0.5 C), 52.25 (0.5 C), 52.85 (0.5 C), 55.68 (0.5 C), 56.00 (0.5 C), 58.39 (0.5 C), 58.43 (0.5 C), 62.21 (0.5 C), 62.50 (0.5 C), 67.87 (0.5 C), 67.92 (0.5 C), 83.89 (0.5 C), 84.45 (0.5 C), 128.3 (0.5 C), 128.4 (0.5 C), 128.4 (0.5 C), 128.4 (0.5 C), 128.7 (0.5 C), 128.7 (0.5 C), 136.5 , 154.8 (0.5 C), 155.0 (0.5 C), 172.5 (0.5 C), 172.8 (0.5 C), 173.7 (0.5 C), 173.8 (0.5 C).

MS (ESI): $m / z(\%)=433.2(100)[M+H]^{+}, 865.0(50)[2 M+H]^{+}, 886.7(6)[2 M+N a]^{+}$.

HRMS (ESI) for $\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{6}$: calcd. $433.2339\left[\mathrm{M}+\mathrm{H}^{+}\right.$, found 433.2422.

(1R,4S,8R,14S)-14-Methoxy-2-methyl-2,9-diazatricyclo[6.5.1.04, ${ }^{9}$]tetradecane-3,10-dione (1)

To a solution of $\mathbf{1 6}(233 \mathrm{mg}, 0.539 \mathrm{mmol})$ in $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL}, 1: 1)$ at $0^{\circ} \mathrm{C}$ was added $\mathrm{LiOH}(39 \mathrm{mg}, 1.62$ mmol, 3.0 equiv.) and it was stirred for 4 h at $0^{\circ} \mathrm{C} . \mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ was added and the pH was adjusted to 1 with 1 m aq. HCl solution. The aqueous solution was extracted with EtOAc ($3 \times 20 \mathrm{~mL}$), the combined organic phases were dried over MgSO_{4}, and the solvent removed under reduced pressure to give the carboxylic acid ($208 \mathrm{mg}, 0.497 \mathrm{mmol}, 92 \%$) as colorless semi-crystalline compound.

A suspension of the carboxylic acid ($224 \mathrm{mg}, 0.535 \mathrm{mmol}$) and $\mathrm{Pd} / \mathrm{C}(22 \mathrm{mg}, 10 \mathrm{wt} . \%$) in EtOH (2 mL) was stirred for 2 h at room temperature under a H_{2}-atmosphere. The reaction mixture was filtered over

Celite, washed with EtOAc and the solvent was evaporated under reduced pressure to give the amino acid ($134 \mathrm{mg}, 0.471 \mathrm{mmol}, 88 \%$) as slightly beige solid.

The amino acid ($90 \mathrm{mg}, 0.317 \mathrm{mmol}$) was suspended in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ and the suspension was added dropwise at room temperature to a solution of HATU (119 mg, $0.317 \mathrm{mmol}, 1.0$ equiv.) and (iPr) ${ }_{2} \mathrm{NEt}$ ($83 \mu \mathrm{~L}, 0.478 \mathrm{mmol}, 1.5$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(32 \mathrm{~mL}$). Stirring was continued for further 18 h , followed by evaporation of the solvent under reduced pressure. Column chromatography on SiO_{2} (EtOAc) afforded the title compound ($75 \mathrm{mg}, 0.282 \mathrm{mmol}, 89 \%$) as colorless crystals.

$\mathbf{R f}_{\mathbf{f}}: 0.17\left(\mathrm{EtOAc}, \mathrm{KMnO}_{4}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{MeOH}-\mathrm{d}_{4}\right): \delta=1.60-1.88\left(\mathrm{~m}, 7 \mathrm{H}, 3.5 \times \mathrm{CH}_{2}\right), 2.21-2.54\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2}\right), 2.99(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{NMe}), 3.00-3.07(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 3.47(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 3.84-3.93(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{CH}), 4.10-4.16(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{CH}), 5.21-5.26(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH})$.
${ }^{13} \mathrm{C}-$ NMR (100 MHz, $\mathrm{MeOH}-\mathrm{d}_{4}$): $\delta=16.94,19.75,26.51,27.43,28.41,33.86,38.76,54.58$, 55.77, $58.95,59.62,84.48,175.2,177.5$.

MS (ESI): $m / z(\%)=267.1(84)[M+H]^{+}, 533.0(100)[2 M+H]^{+}$.

HRMS (ESI) for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3}$: calcd. $267.1709[\mathrm{M}+\mathrm{H}]^{+}$, found 267.1749 .
${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-Spectra of the Compounds Compound 7

${ }^{1} \mathrm{H}-\mathrm{NMR}, 400 \mathrm{MHz}$, DMSO- d_{6}

${ }^{13} \mathrm{C}-\mathrm{NMR}, 100 \mathrm{MHz}$, DMSO-d 6

Compound 8

${ }^{1} \mathrm{H}-\mathrm{NMR}, 300 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}-\mathrm{NMR}, 75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}-\mathrm{NMR}, 100 \mathrm{MHz}$, DMSO-d ${ }_{6}$

Compound 10
${ }^{1} \mathrm{H}-\mathrm{NMR}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}-\mathrm{NMR}, 100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

[^0]Compound 12
${ }^{1} \mathrm{H}-\mathrm{NMR}, 300 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}-\mathrm{NMR}, 75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$

[^1]
Compound 3

${ }^{1} \mathrm{H}-\mathrm{NMR}, 600 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}-\mathrm{NMR}, 125 \mathrm{MHz}, \mathrm{CDCl}_{3}$

Compound 13

${ }^{1} \mathrm{H}-\mathrm{NMR}, 600 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$\underbrace{\mathrm{MeO}_{2} \mathrm{C}}_{\text {NHBoc }} \underbrace{\mathrm{CO}_{2} \mathrm{Bu}}_{\mathrm{NHCbz}}$

${ }^{13} \mathrm{C}-\mathrm{NMR}, 125 \mathrm{MHz}, \mathrm{CDCl}_{3}$

Compound 2

${ }^{1} \mathrm{H}-\mathrm{NMR}, 600 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}-\mathrm{NMR}, 125 \mathrm{MHz}, \mathrm{CDCl}_{3}$

Compound 14

${ }^{1} \mathrm{H}-\mathrm{NMR}, 400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}, 90^{\circ} \mathrm{C}$

${ }^{13} \mathrm{C}-\mathrm{NMR}, 100 \mathrm{MHz}$, DMSO- $\mathrm{d}_{6}, 90^{\circ} \mathrm{C}$

Compound 15

${ }^{1} \mathrm{H}-\mathrm{NMR}, 600 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}-\mathrm{NMR}, 125 \mathrm{MHz}, \mathrm{CDCl}_{3}$

Compound 16

${ }^{1} \mathrm{H}-\mathrm{NMR}, 800 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}-\mathrm{NMR}, 200 \mathrm{MHz}, \mathrm{CDCl}_{3}$

Compound 1

${ }^{1} \mathrm{H}-\mathrm{NMR}, 400 \mathrm{MHz}, \mathrm{MeOH}-\mathrm{d}_{4}$

${ }^{13} \mathrm{C}-\mathrm{NMR}, 100 \mathrm{MHz}, \mathrm{MeOH}-\mathrm{d}_{4}$
会

Crystallographic Data of 1

Crystallographic data: C14H22N2O3_H2O

	1
net formula	$\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4}$
$M_{r} / \mathrm{g} \mathrm{mol}^{-1}$	284.35
crystal size/mm	$0.100 \times 0.070 \times 0.050$
T/K	173(2)
radiation	MoKa
diffractometer	'Bruker D8Venture'
crystal system	monoclinic
space group	'P 21'
a/Å	8.2276(6)
b/Å	12.1866(9)
c/Å	8.2513(7)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	116.603(2)
Y^{1}	90
V/A ${ }^{3}$	739.74(10)
Z	2
calc. density/g cm ${ }^{-3}$	1.277
μ / mm^{-1}	0.093
absorption correction	multi-scan
transmission factor range	0.8931-0.9585
refls. measured	9065
$R_{\text {int }}$	0.0247
mean $\sigma(I) / /$	0.0273
θ range	3.228-26.39
observed refls.	2779
x, y (weighting scheme)	0.0331, 0.1292
hydrogen refinement	mixed
Flack parameter	0.2(3)
refls in refinement	3030

parameters	191
restraints	1
$R\left(F_{\text {obs }}\right)$	0.0318
$R_{\mathrm{w}}\left(F^{2}\right)$	0.0723
S	1.064
shift/error ${ }_{\text {max }}$	0.001
max electron density/e \AA^{-3}	0.201
min electron density/e \AA^{-3}	-0.128

$\mathrm{C}-\mathrm{H}:$ constr, O-H: refall.

Scheme 1. Crystal structure of 1.

[^0]:

[^1]: $\begin{array}{lllllllllllllllllllllllll}200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & \underset{f 1}{ }(\mathrm{ppm}) & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$

